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Abstract

This paper presents a new attack called Decimation Attack of most

stream ciphers. It exploits the property that multiple clocking (or equiv-

alently d-th decimation) of a LFSR can simulate the behavior of many

other LFSRs of possible shorter length. It yields then signi�cant improve-

ments of all the previous known correlation and fast correlation attacks.

A new criterion on the length of the polynomial is then de�ned to resist

to the decimation attack. Simulation results and complexity comparison

are detailed for ciphertext only attacks.

Keywords: stream cipher, linear feedback shift register, correlation attack,

fast correlation attack, sequence decimation, multiple clocking.

1 Introduction

Despite growing importance of block ciphers, stream ciphers remain a very im-

portant class of cipher systems mainly used by governmental world.

In a binary additive stream cipher, the ciphertext is obtained by bitwise

addition of the plaintext to a pseudo-random sequence called the running key.

This latter is produced by a pseudo-random generator whose initial state con-

stitutes the secret key. Most real-life designs center around Linear Feedback

Shift-Register (LFSR) combined by a nonlinear Boolean function. Di�erent

variant exist: clock-controlled systems, �lter generators, multiplexed systems,

memory combiners, decimated generators,... This paper will focus on the most

common class of combination generators depicted in Figure 1.

The cryptanalyst's problem often deals with that of recovering the initial

states of some LFSRs, assuming that the structure of the generator is known to

him.State of the art in generic stream ciphers cryptanalysis can be summarized
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Figure 1: Nonlinear combination generator

as follows: correlation and fast correlation attacks. Both exploit an existing

correlation (of order k) between the running key � and some linear combination

of the k input variables x

i

1

; x

i

2

; : : : ; x

i

k

. A so-called divide and conquer attack

is conducted which consists to try to recover the initial state of the k target

LFSRs independently of the other unknown key bits. Such correlations always

exist but functions o�ering a good cryptographic resistance generally o�er a high

correlation order k thus imposing on the cryptanalyst to consider simultaneously

several LFSRs [6]. In this case it is obvious that the k distinct LFSRs can be

seen as a unique LFSR of length L; the length and the feedback polynomial P

of this LFSR can be derived from the feedback polynomials of the constituent

polynomials [17]. In the following we will generalize by speaking of the unique

target LFSR of length L. A single LFSR will then be a particular case for k = 1.

� In correlation attacks [18, 19], the 2

L

� 1 possible initializations of the

LFSR are exhaustively tried and each time its corresponding produced

sequence x is compared to the captured running key �. The initialization

yielding the closest awaited statistical bias is supposed to be the correct

one. This attack is limited by the length L of the target LFSR (by now

L � 50) since it requires 2

L

� 1 trials and practical attacks can deal with

only correlation order k = 1 (i.e. considering only one LFSR). Moreover

the longer the LFSR is and the lower the correlation value, the longer the

necessary running key sequence will be. This attack is nowadays no longer

e�cient except for weak schemes.

� Fast correlation attacks were introduced by Meier and Sta�elbach [13]

and avoid examining all possible initializations of the LFSR. The output

of the target LFSR is considered to have passed through a noisy channel,

most frequently modelled by the Binary (Memoryless) Symmetric Chan-

nel, BSC with some error probability p <

1

2

, where � =

1

2

� p is usually

very small. In this setting, an LFSR output sequence of �xed length N

can be considered as a (N;L) binary linear code. Each of its codewords

can be uniquely related to a possible initialization. Then the cryptan-

alyst's problem becomes a decoding problem in the presence of a BSC

with strong noise. Meier and Sta�elbach attack uses iterative decoding

process for low-density parity-check codes when feedback polynomial is of

low-weight. Minor improvements have then been obtained [3, 14, 15]. Jo-
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hansson and J�onsson recently presented new powerful ideas by considering

convolutional codes [8] and turbo-codes [9]. Canteaut and Trabbia in [2]

show that Gallager iterative decoding [7] with parity-check equations of

weight 4 and 5 is usually more e�cient than all other previous attacks

since it successfully decodes very high error probabilities with a relatively

feasible time and memory complexity.

All these attacks have the length L of the target LFSR as major limitation

(particularly when the correlation order k is high). As soon as L increases too

much and � is too small, the memory and complexity requirements explode,

making these attacks unfeasible. This paper presents how to bypass this limi-

tation. By considering d-fold clocking (or d-th decimation) of the target LFSR

output sequence, we show how to use a simulated shorter LFSR thus improving

the known attacks. This approach is particularly e�cient when dealing with

long LFSRs or with combining functions of high correlation order of real-life

designs. With a relatively longer sequence we signi�cantly reduce the complex-

ity and suppress the memory requirements of the best known attack (Canteaut

and Trabbia [2]). Moreover this attack consider only the LFSR length and not

the feedback polynomial. We will only consider ciphertext only attack to make

this attack more realistic.

This paper is organized as follows. Section 2 presents the theoretical tools we

use in this attack. In Section 3, the Decimation Attack (DA) itself is described

and simulation results for di�erent cases are given. A new criterion is then

de�ned allowing to choose LFSRs resisting this attack. Section 4 compares

decimation attack with the best known attack of [2].

These results can be easily generalized to most other kind of stream ciphers.

Numerous details can be found at[5].

2 Theoretical background

2.1 Linear Feedback Shift Register sequences

A linear feedback shift register of length L is characterized by L binary connec-

tion coe�cients (p

i

)

1�i�L

. It associates to any L-bit initialization (s

t

)

1�t�L

a

sequence (s

t

)

t>0

de�ned by the L-th order linear recurrence relation

s

t+L

=

L

X

i=1

p

i

s

t+L�i

; t � 0 :

The connection coe�cients are usually represented by a univariate polynomial P

over F

2

, called the feedback polynomial:

P (X) = 1 +

L

X

i=1

p

i

X

i

:

Most applications use a primitive feedback polynomial to ensure that the periods

of all sequences produced by the LFSR are maximal.
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Let us consider the sequence � produced by LFSR i

1

, LFSR i

2

; : : : , LFSR

i

k

combined by a function g. The sequence � obvioulsy corresponds to the

output of a unique LFSR of length L. The length and the feedback polynomial

P of this LFSR can be determined from the feedback polynomials of the k

LFSRs. We have L � g(L

i

1

; L

i

2

; : : : ; L

i

k

) where g is evaluated over the integers.

Equality holds when the feedback polynomials of the k LFSRs are primitive

and when their degrees are coprimes [17]. Generally linear approximation of

the original combining function f is considered, that is to say g = u:x is linear.

Then any feedback polynomial of � = g(x

i

1

; x

i

2

; : : : ; x

i

k

) is

Q

i2supp(u)

P

i

where

supp(u) = fi; u

i

= 1g.

2.2 Decimation of LFSR sequences

Let us consider a sequence � = �

1

; �

2

; : : : ; produced by a LFSR of length L

whose feedback polynomial is irreducible in GF (q)[X ]. Suppose now that we

operate a sampling on � at intervals of d clock cycles (d-fold clocking) thus

producing a subsequence � = �

1

; �

2

; : : : . In other words, it is equivalent to the

d-decimation of the original sequence �. Thus we have �

i

= �

dj

for j = 0; 1; 2; : : :

or in sequence notation � = �[d].

With d-fold clocking, the original LFSR will behave like a di�erent LFSR

which is called the simulated LFSR [16]. The interesting question is to determine

its properties, especially relatively to the original LFSR. They are summarized

in the following proposition.

Proposition 1 [16, page 146] Let � be the sequence produced by the original

LFSR whose feedback polynomial P (x) is irreducible in GF (q) of degree L. Let

� be a root of P (x) and let T be the period of P (x). Let � the sequence resulting

from the d-th decimation of �, i.e. � = �[d]. Then the simulated LFSR, that is

the LFSR directly producing � has the following properties:

1. The feedback polynomial P

�

(x) of the simulated LFSR is the minimum

polynomial of �

d

in GF (q

L

).

2. The period T

�

of P

�

(x) is equal to

T

gcd(d;T )

.

3. The degree L

�

of P

�

(x) is equal to the multiplicative order of q in Z

T

�

.

Moreover all d in C

k

where C

k

= fk; kq; kq

2

; : : : ; g mod T denotes the cy-

clotomic coset of k modulo T , result in the same simulated LFSR, except for

di�erent initial contents. Finally, every sequence producible by the simulated

LFSR is equal to �[d] for some choice of the initial contents of the original

LFSR.

In real case applications, P (x) is primitive so T = 2

L

� 1. Thus when T is not

prime, by a careful choice of d such that gcd(2

L

� 1; d) 6= 1 one may expect to

obtain a simulated LFSR shorter than the original one.

Example 1 Let us consider the original LFSR with P (x) = X

4

+X + 1.
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� d 2 C

3

= f3; 6; 9; 12g; T

�

= 5 and L

�

= 4 since the multiplicative order

of 2 in Z

5

is 4.

� d 2 C

5

= f5; 10g; T

�

= 3 and L

�

= 2 since the multiplicative order of 2

in Z

3

is 2 (and P

�

(x) = X

2

+X + 1).

The feedback polynomial P

�

(x) of the simulated LFSR can be obtained by

applying the Berlekamp-Massey LFSR synthesis algorithm [11] to the sequence

�.

2.3 Boolean functions for stream ciphers

A Boolean function with n variables is a function from the set of n-bit words,

F

n

2

, into F

2

.

TheWalsh-Hadamard transform of a Boolean function f refers to the Fourier

transform of the corresponding sign function, x 7! (�1)

f(x)

:

8u 2 F

n

2

; b�

f

(u) =

X

x2F

n

2

(�1)

f(x)

(�1)

u�x

where u � x denotes the usual scalar product. The Walsh coe�cient b�

f

(u) then

estimates the Hamming distance between f and the a�ne function u � x + ",

" 2 F

2

, both seen as Reed-Muller codewords [12]:

d

H

(f; u � x+ ") = 2

n�1

�

(�1)

"

2

b�

f

(u) :

It is well-known that a combining function must ful�ll some criteria to yield

a cryptographically secure combination generator (see e.g. [6]). For correlation

attacks and fast correlation attacks the main criterion is that f should be far

from all a�ne functions regarding Hamming distance. The existence of a good

approximation of f by an a�ne function makes fast correlation attacks feasi-

ble [2, 8, 9]. The Hamming distance between f and the set of a�ne functions,

called the nonlinearity of f , is given by

NL(f) = 2

n�1

�

1

2

max

u2F

n

2

jb�

f

(u)j :

Finally, the combination generator is vulnerable to correlation attacks [19] if

the output of the combining function statistically depends on one of its inputs.

More generally, Siegenthaler [18] introduced the following criterion:

De�nition 1 A Boolean function is t-th order correlation-immune if the proba-

bility distribution of its output is unaltered when any t input variables are �xed.

This property equivalently asserts that the output of f is statistically indepen-

dent of any linear combination of t input variables. The correlation-immunity

order of a function can be characterized by its Walsh spectrum:
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Proposition 2 [20] A Boolean function f is t-th order correlation-immune (de-

noted CI(t)) if and only if

8u 2 F

n

2

; 1 � wt(u) � t; b�

f

(u) = 0 :

If f is CI(t) then f if CI(k) for any k � t as well. Then the correlation-immunity

order of a function f the highest integer t such that f is CI(t). Equivalently f

is said (t+ 1)-th order correlated.

Note that the correlation-immunity order of a function with n variables can

not exceed (n� 1). This comes from Parseval's relation:

X

u2F

n

2

(b�

f

(u))

2

= 2

2n

:

This equality insures that there always exists a possibly high correlation order

allowing correlation attack. It also points out the existence of a trade-o� between

the correlation-immunity order and the non-linearity of a function. The higher

the correlation-immunity order is, the lower the nonlinearity (i.e. the correlation

value) may be. The correlation-immunity order t of a Boolean function f with

n variables also provides an upper bound on its degree [18]: deg(f) � n � t :

Moreover, if f is balanced, we have deg(f) � n� t� 1 :

3 The Decimation Attack

3.1 Description of the Algorithm

To deal with a more realistic attack, we will consider only ciphertext attack. So

this will limit the drawback of ciphertext length increasing. Then the BSC with

error probability p will model at the same time the correlation of the Boolean

function P [x

t

= �] = p

�

and the bit probability of plaintext p

0

= P [m

t

= 0].

We take p

0

= 0:65 which corresponds to most real-life cases. Then we have

p = p

0

+ p

�

� 2:p

0

p

�

.

Let be a target LFSR of length L such that there exists dj2

L

� 1 satisfying

Proposition 1. In all these cases (it has been con�rmed by exhaustive computing

using GMP library), the best d yields a simulated LFSR of length at most

L

2

(for extended tables see [5]).

With the decimated ciphertext sequence � = �[d] we try to recover the

corresponding output sequence y of the simulated LFSR which is the decimated

sequence x[d] of the (original) target LFSR output sequence. It simply consists

of a Siegenthaler attack [19] on this simulated LFSR(see Figure 1). It then

needs only 2

L

�

exhaustive searches.

Any kept L

�

-bit candidate is used to generate L bits of the decimated se-

quence x[d]. Since each bit of sequence x[d] is a bit of sequence x as well, it can

be described by two di�erent equations. One has L

�

variables (the bit is seen

as a bit of sequence x[d]). The other has L variables (the bit is seen as a bit of

sequence x). Example 2 illustrates that.
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The system of equations in L variables has obviously rank L

�

. Then by

taking L

�

principal variables, we can express them (gaussian elimination on the

principal subsystem) depending on the L

�

other variables taken as parameters.

An additional L

�

-bit exhaustive search on these parameters allows to retrieve

the correct L-bit initialization.

Note that in all our experiments, the correct L

�

-bit initialization of the

simulated LFSR was always detected with the best or second best estimator

value (�rst or second rank, see farther), thus insuring detection and limiting

cost of additional exhaustive search. However, to prevent a non such optimal

detection, �rst step of L

�

-bit exhaustive search is conducted on a few shifted

decimated sequences �

0

[d]; �

1

[d]; : : : ; �

k

[d] where �

i

[d] means that we decimate

� from index position i (0 � i < d). Sorting always allowed to detect the correct

L

�

-bit initialization. Good experimental values are 2 � k � 8 and always less

than k < L

�

.

We compute for each of the 2

L

�

possible initializations the value of estimator

E =

X

t

(x

t

i

[d]� �

t

[d]� 1)

For the correct L

�

-bit initialization, E has Gaussian distribution with mean

value N:(1 � p) and variance �

2

= N:p:(1 � p) (H

1

hypothesis) whilst for all

the wrong ones E has Gaussian distribution with mean value N:

1

2

and variance

�

2

= N:

1

4

(H

0

) where N is the minimum number of required ciphertext bits of

�[d].

To discriminate H

0

from H

1

we use a decision threshold T . If jEj > T

then H

1

is accepted and the initialization is kept otherwise H

0

is chosen and

the initialization is rejected. The minimum number N of required ciphertext

bits of �[d] depends on the number of wrong decisions that we accept. This

number (as well as the threshold T ) is determined by the false alarm probability

(pfa = P [E > T jH

0

]) and the non detection probability (pnd = P [E < T jH

1

]).

If � denotes the normal distribution function

�(x) =

1

sqrt2�

Z

x

1

exp(

�t

2

2

) dt

then we have [4]

pfa = 1� �

0

@

a =

T �

N

2

q

N

4

1

A

pnd = �

 

b =

T �N(1� p)

p

N(1� p)p

!

Finally we obtain

N =

 

2b

p

p(1� p)� a

1� 2p)

!

2

(1)

T =

1

2

�

a

p

N +N

�

(2)

In terms of ciphertext we then need N:d bits. Global complexity of the attack

is then in O(2

L

�

+1

) with no memory requirements.
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3.2 Simulation Results

Now let us present simulation results of our attack.

Example 2 CI(0) function.

Let us consider a LFSR of length L = 40 with feedback polynomial:

P (x) = 1 + x

2

+ x

3

+ x

4

+ x

5

+ x

6

+ x

8

+ x

11

+ x

12

+ x

15

+ x

17

+ x

19

+

x

22

+ x

24

+ x

25

+ x

26

+ x

27

+ x

28

+ x

29

+ x

35

+ x

40

Consider a BSC with noise probability of p = 0:49(P

0

= 0:65 and P [x

t

= y

t

] =

0:534) modelling a CI(0) Boolean function and the plaintext noise at the same

time. Since 2

40

� 1 = 3:5

2

:11:17:31:41:61681, by choosing d = 1; 048; 577 as

decimation factor for the LFSR output sequence �, we obtain a simulated shorter

LFSR of length L

�

= 20 with feedback polynomial:

P

�

(x) = 1 + x+ x

2

+ x

3

+ x

6

+ x

7

+ x

8

+ x

11

+ x

12

+ x

13

+ x

15

+ x

18

+ x

20

With pnd = 0:1 and pfa = 0:1, we then need by Equation 2, N = 13050 bits

of decimated sequence � = �[d] that is to say N:d = 2

33

bits of ciphertext.

Complete computation time (i.e. recovering the correct inital state, with k = 2)

required about 15 minutes on PII 400 Mhz with less than 1 Mo of memory.

Note that the 20,971,541st bit (e.g.), when seen as belonging to sequence x is

described by the following (40 variables) equation (where x

i

0 � i � 39 denotes

ith unknown bit of the L-bit initialization):

b

20;971;541

= x

2

+ x

4

+ x

6

+ x

7

+ x

14

+ x

16

+ x

17

+ x

19

+ x

20

+ x

22

+ x

23

+x

25

+ x

26

+ x

28

+ x

29

+ x

30

+ x

33

+ x

36

+ x

37

whilst, when seen as 21st bit of x[d], we have the following (20 variables) equa-

tion (where y

i

0 � i � 19 denotes ith unknown bit of the L

�

-bit initialization):

b

20;971;541

= y

0

+ y

1

+ y

2

+ y

3

+ y

6

+ y

7

+ y

8

+ y

11

+ y

12

+ y

13

+ y

15

+ y

18

Example 3 CI(1) function.

Consider now two LFSRs P

1

of length L

1

= 34 and P

2

of length L

2

= 39

combined by a CI(1) Boolean function.

P

1

(x) = 1 + x

4

+ x

5

+ x

6

+ x

7

+ x

12

+ x

13

+ x

14

+ x

15

+ x

16

+ x

18

+

x

20

+ x

21

+ x

22

+ x

24

+ x

25

+ x

29

+ x

30

+ x

31

+ x

33

+ x

34

P

2

(x) = 1 + x+ x

2

+ x

3

+ x

4

+ x

5

+ x

14

+ x

15

+ x

16

+ x

17

+ x

19

+ x

21

+

x

24

+ x

21

+ x

24

+ x

27

+ x

28

+ x

29

+ x

31

+ x

32

+ x

36

+ x

37

+ x

39

We take the same BSC model as Example 2 but for a CI(1) Boolean function.

This implies we must try all the possible initial states of at least two LFSRs at

the same time thus requiring with previous known attacks to consider a unique
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target LFSR of length 73. The best decimation factor in this case is d = 131; 073

which divides 2

34

� 1. So we obtain these two new simulated LFSRs:

P

�

1

(x) = 1 + x+ x

2

+ x

5

+ x

6

+ x

7

+ x

9

+ x

10

+ x

11

+ x

12

+ x

13

+ x

15

+

x

17

P

�

2

(x) = 1 + x+ x

4

+ x

6

+ x

7

+ x

14

+ x

16

+ x

17

+ x

18

+ x

20

+ x

22

+

x

24

+ x

28

+ x

30

+ x

32

+ x

34

+ x

39

With pnd = 0:1 and pfa = 0:1, we then need by Equation 2, N = 13050 bits

of decimated sequence � = �[d] that is to say N:d = 2

30

bits of ciphertext.

Complexity is in O(2

56

) with less than 1 Mo of memory. Partial experiment

(k = 8) have been conducted on a PII 400 Mhz to verify that �nal pfa was

e�ectively close to zero.

Note that rank of the system in L variables is 56, thus with 17 parameters.

Then the additional exhaustive search is on 17 bits and is negligible compared

to the �rst exhaustive search step.

3.3 Decimation Attack Resistance Criterion

By direct use of Proposition 1, we can de�ne the following criterion for Decima-

tion Attack resistance.

Proposition 3 Let L 2 N Any feedback polynomial of degree L will resist the

decimation attack if and only if 8d < 2

L

�1 such that dj(2

L

�1), the multiplica-

tive order of 2 in Z

T

�

is equal to L where T

�

=

2

L

�1

gcd(2

L

�1;d)

We then obviously have

Corollary 1 If T = 2

L

� 1 is prime then any feedback polynomial of length L

will resist the decimation attack.

In fact, �nite �eld theory allows to precise im a simpler way this criterion.

Theorem 1 (Sub�eld Criterion) [10] Let F

q

be a �nite �eld with q = p

n

ele-

ments. Then every sub�eld of F

q

has order p

m

, where m is a positive divisor of

n. Conversely, if m is a positive divisor of n, then there is exactly one sub�eld

of F

q

with p

m

elements.

Then we can easily state the resistance criterion as follows:

Proposition 4 Any feedback polynomial of length L, such that L is prime, will

resist the decimation attack.

Proof.

straightforward by direct application of Theorem 1 and Proposition 3. 2

Equivalently, resistance is ensured as soon as the �eld F

2

L contains no sub�eld.

It becomes then obvious that, when decimation attack is possible, there exists

a value of L

�

at most equal to

L

2

.
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Note that this criterion is very new and must not be mistaken with that of

relative primality of periods when considering the sum of outputs of LFSRs

as described by the following theorem:

Theorem 2 [10, p. 224] For each i = 1; 2; : : : ; h, let �

i

be an ultimately peri-

odic sequence in F

q

with least period r

i

. If r

1

; r

2

; : : : ; r

h

are pairwise relatively

prime, then the least period of the sum �

1

+ �

2

+ � � � + �

h

is equal to product

r

1

r

2

: : : r

h

.

When designing a stream cipher system, one must carefully check the degree

of the chosen feedback polynomials (in connection with correlation order) to

resist the Decimation Attack. Table 1 gives some values of L satisfying this

new resistance criterion ("prime" relates to Corollary 1 and "order" relates to

Proposition 3).

Comment L

Prime 5 - 7 - 13 - 17 - 19 - 31 - 61 - 89 - 107 - 127

Order 11 - 23 - 29 - 37 - 41 - 43 - 47 - 53 - 59 - 67 - 71 - 73

83 - 97 - 101 - 109 - 113 - 131 - 139 - 149 - 151 - 157 - 163

167 - 173 - 178 - 179 - 181 - 191 - 193 - 197 - 199

211 - 223 - 227 - 229 - 233 - 239 - 241 - 251

Table 1: Values of L < 256 resisting the Decimation Attack

A complete list of parameters d, T

�

and L

�

up to L = 256 has been computed

and can be found in [5]

4 Comparison with the Best Known Attacks

Canteaut and Trabbia (CT) in [2] recently obtained the best known attack on

stream ciphers. They considered parity-check equations of weight � = 4; 5 with

Gallager iterative decoding. However, the main drawback of their approach,

despite its relative e�ciency, remains the huge amount of required memory

both for preprocessing (generation of the parity-check equations) and decoding

steps. This latter, though being the best, still requires higher complexity than

suitable for frequent key recovering.

We now give here comparison of our attack (DA)(when possible, see Section

3.3) with CT attack. Suppose that by applying condition of Proposition 1 a

reduction of �L bits on exhaustive search is possible. Then our attack has

complexity C

DA

= O(2

L��L

) and a negligible amount of memory. Let us now

compute the complexity gain from CT attack. In [2] the complexity is given by

the following formula:

C

CT

= 5:(� � 1):

K

�

C

��2

(p)

:2

�

�

(p)+

L

��1

10



where � is the weight of the parity-check equation (3 � � � 5) and C

��2

(p) is

the BSC capacity (with overall error probability p

��2

=

1

2

(1� (1� 2p)

��2

)) i.e.

C

��2

(p) = 1 + p

��2

log(p

��2

) + (1 � p

��2

) log(1 � p

��2

). The value K

�

� 1 if

� � 4 and K

3

� 2. Finally �

�

(p) =

1

��1

log

2

[(� � 1)!

K

�

C

��2

(p)

].

The complexity gain of our attack is then

C

CT

C

DA

= 5:(� � 1):

K

�

C

��2

(p)

:2

�

�

(p)+

L

��1

��L

It is easy to see that the gain increases with �. Now using higher weight precisely

constitutes the central point of CT attack. That particularly reinforces the

impact of our technique. Moreover, the gain increases with the error probability

p. This fact ensures greater e�ciency than with CT attack in real-life cases.

Concerning the memory requirement, CT attack needs (� � 1):

K

�

C

��2

(p)

+

2

�

�

(p)+

L

��1

+1

computer words of memory. This once again increases with � and

p.

To illustrate this gain Tables 2 and 3 compare our simulation results (see

Section 3.2) with those of CT attack [1, 2]. Yet requiring a longer sequence,

Decimation Attack CT Attack (� = 5)

Ciphertext bits 2

33

2

20

Complexity 2

21

2

59

Memory (bytes) < 1024 2

38

Table 2: Comparaison on Example 2

we have a complexity gain of 2

39

with no memory requirement. However CT

attack still presents advantages in terms of ciphertext length only for relatively

short LFSRs. This is no longer the case as soon as L increases as we can see it

for Example 3 ("ppm" means preprocessing with memory and "ppwm" means

preprocessing without memory).

DA CT (� = 5) CT (� = 5) CT (� = 5)

(decoding step) (ppm step) (ppwm step)

Ciphertext bits 2

30

2

29

- -

Complexity 2

56

2

67

2

56

2

81

Mem. (bytes) < 1024 2

39

2

57

-

Table 3: Comparaison on Example 3

Note that preprocessing step in CT attack must be done once and for all but

for each di�erent feedback polynomial of length L. On the contrary, Decimation

Attack apply to all polynomials of degree L (for suitable L) and no preprocessing

is required.

11



5 Conclusion

A new attack on stream ciphers, called Decimation Attack has been presented

which overperformed all the previous known attacks, provided that a given new

criterion is satis�ed. Particularly, Decimation Attack is not possible when L is

prime, where L is the length of the feedback polynomial. Only very few values

of L allow to resist this attack.
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