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Abstract

When designing password-authenticated key exchange protocols (as opposed to key exchange

protocols authenticated using cryptographically secure keys), one must not allow any informa-

tion to be leaked that would allow veri�cation of the password (a weak shared key), since an

attacker who obtains this information may be able to run an o�-line dictionary attack to de-

termine the correct password. Of course, it may be extremely di�cult to hide all password

information, especially if the attacker may pose as one of the parties in the key exchange.

Nevertheless, we present a new protocol called PAK which is the �rst Di�e-Hellman-based

password-authenticated key exchange protocol to provide a formal proof of security (in the ran-

dom oracle model) against both passive and active adversaries. In addition to the PAK protocol

that provides mutual explicit authentication, we also show a more e�cient protocol called PPK

that is provably secure in the implicit-authentication model. We then extend PAK to a protocol

called PAK-X, in which one side (the client) stores a plaintext version of the password, while

the other side (the server) only stores a veri�er for the password. We formally prove security of

PAK-X, even when the server is compromised. Our formal model for password-authenticated

key exchange is new, and may be of independent interest.

Keywords: Password authentication, key exchange, Di�e-Hellman.

1 Introduction

Two entities, who only share a password, and who are communicating over an insecure network,

want to authenticate each other and agree on a large session key to be used for protecting their

subsequent communication. This is called the password-authenticated key exchange problem. If

one of the entities is a user and the other is a server, then this can be seen as a problem in the

area of remote user access. Many solutions for remote user access rely on cryptographically secure

keys, and consequently have to deal with issues like key management, public-key infrastructure, or

secure hardware. Many solutions that are password-based, like telnet or Kerberos, have problems

that range from being totally insecure (telnet sends passwords in the clear) to being susceptible to

certain types of attacks (Kerberos is vulnerable to o�-line dictionary attacks [40]).
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Over the past decade, many password-authenticated key exchange protocols that promised

increased security have been developed, e.g., [8, 9, 22, 21, 37, 25, 26, 29, 39, 34].

1

Some of these

have been broken [31, 32], and, in fact, only two very recent ones have been formally proven secure.

The SNAPI protocol in [30] is proven secure in the random oracle model,

2

assuming the security

of RSA (and also Decision Di�e-Hellman,

3

when perfect forward secrecy is desired). The simple

and elegant protocol in [3] is proven as secure as Decision Di�e-Hellman in a model that includes

random oracles and ideal block ciphers. (Our work was performed independently of [3]. In fact,

the conference version of our results [13] appears in the same proceedings as [3].)

We present a new password-authenticated key exchange protocol calledPAK (Password-Authenticated

Key exchange), which we prove to be as secure as Decision Di�e-Hellman in the random oracle

model. Compared to the protocol of [30], PAK (1) does not require the RSA assumption for secu-

rity, (2) is more e�cient in terms of the number of rounds, and (3) is conceptually simpler, with

a simpler proof. Compared to the protocol of [3], PAK does not require an ideal block cipher

assumption for security, but has a more complicated proof. (We note that the ideal block cipher

assumption is used much less often in the literature than the random oracle assumption.) We

also show how the security of PAK can be related to the Computational Di�e-Hellman problem,

although with weaker security bounds.

In addition to PAK, we also show a more e�cient protocol called PPK (Password Protected

Key exchange) that is provably secure in the implicit-authentication model. The PPK protocol

only requires 2 rounds of communication.

We then extend PAK to a protocol called PAK-X, in which one side (the client) stores a plaintext

version of the password, while the other side (the server) only stores a veri�er for the password.

We formally prove security of PAK-X, even when the server is compromised. Security in this case

refers to an attacker not being able to pose as a client after compromising the server; naturally, it

would be trivial to pose as the server.

Our formal model for password-authenticated key exchange is new, and may be of independent

interest. It is based on the formal model for secure key exchange by Shoup [35] (which follows the

work of [2]), enhanced with notions of password authentication security from [23, 30]. This model

is based on the multi-party simulatability tradition (e.g. [1]), in which one �rst de�nes an ideal

system that models, using a trusted center, the service to be performed (in this case, password-

authenticated key exchange), and then one proves that the protocol running in the real world is

essentially equivalent to that ideal system.

2 Background

2.1 User Authentication

Techniques for user authentication are broadly based on one or more of the following categories:

(1) what a user knows, (2) what a user is, or (3) what a user has. Passwords or PINs are ex-

ample of the �rst category. Biometric techniques, such as analysis of voice, �ngerprints, retinal

1

We will discuss hybrid protocols (i.e., password-based protocols in which a server public key is also known to the

user) in Section 2.2.

2

The random oracle model was introduced in [5]. Many popular protocols have been proven secure in that model,

including Optimal Asymmetric Encryption Padding (OAEP) [6]. It would certainly be desirable to have a security

proof using only standard cryptographic assumptions [14], but, so far, no protocol (and in particular, no e�cient

protocol) is known for the password authentication problem that is provably secure in the standard model.

3

The hardness of the Decision Di�e-Hellman problem is essentially equivalent to the semantic security of the

ElGamal encryption scheme [18]. See Boneh [11] for more information on this problem.
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scans, or keystrokes, �t in the second category. Identi�cation tokens, such as smart cards, �t in

the third category. Techniques involving biometric devices tend to be cost-prohibitive, while tech-

niques involving smart cards tend to be both expensive and relatively inconvenient for users. The

least expensive and most convenient solutions for user authentication have been based on the �rst

category, of \what a user knows," and that is what we will focus on in this work.

In fact, we will focus on the harder problem of remote user authentication, in which not only

must the basic authentication techniques be secure, but the protocol that communicates the au-

thentication data across the network must also be secure. The need for remote user authentication

is greatly increasing, due mainly to the explosive growth of the Internet and other types of networks,

such as wireless communication networks. In any of these environments, it is safest to assume that

the underlying links or networks are insecure, and we should realistically expect that a powerful

adversary would be capable of eavesdropping on legitimate sessions, deleting and inserting messages

into those sessions, and even initiating sessions herself.

Now let us consider the question: \What can a user know?" It is common knowledge that

users cannot remember long random numbers, hence if the user is required to know a large secret

key (either a large symmetric key or a private key corresponding to a public key), then these keys

will have to be stored on the user's system. Furthermore, keeping these secret requires an extra

security assumption and introduces a new point of weakness. Even if a user is required to know

some public but non-generic data, like the server's public key, this must be stored on the user's

system and requires an extra assumption that the public key cannot be modi�ed. In either case,

(1) there is a signi�cant increase in administration overhead because both secret and public keys

have to be generated and securely distributed to the user's system and the server, and (2) this

would not allow for users to walk up to a generic station that runs the authentication protocol and

be able to perform secure remote authentication to a system that was previously unknown to that

station (such as, perhaps, the user's home system).

To solve these problems one may wish to use a trusted third party, either on-line (as in Kerberos)

or o�-line (i.e., a certi�cation authority). However, the fact that the third party is \trusted" implies

another security requirement. Also, the users or servers must at some point interact with the third

party before they can communicate remotely, which increases the overhead of the whole system.

Naturally, if an organized and comprehensive PKI emerges, this may be less of a problem. Still,

password-only protocols seem very inviting because they are based on direct trust between a user

and a server, and do not require the user to store long secrets or data on the user's system. They

are thus cheaper, more 
exible, and less administration-intensive. They also allow for a generic

protocol which can be pre-loaded onto users' systems.

2.2 Password-Authentication Protocols

Many existing password authentication protocols, like telnet and ftp, send the password in the

clear and are thus vulnerable to eavesdroppers.

4

Sending the password in the clear can be avoided

by using more sophisticated schemes, such as one-time passwords systems (e.g., S/KEY [24]), or

simple challenge-response schemes (e.g., CHAP [36]). However, these protocols are susceptible to

o�-line dictionary attacks: Many users choose passwords of relatively low entropy, so it is possible

for the adversary to compile a dictionary of possible passwords.

5

Obviously, we can't prevent the

adversary from trying all the passwords on-line, but such an attack can be made infeasible by

4

Hashing the password does not o�er more protection.

5

See, for example, the experiment performed by Wu [40]. Brie
y, using an o�-line dictionary attack, he was

able to discover 2045 passwords in a realm of slightly over twenty-�ve thousand users by verifying about 100 million

candidate passwords.
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simply placing a limit on the number of unsuccessful authentication attempts. On the other hand,

an o�-line search through the dictionary is quite doable. Here is an example of an o�-line dictionary

attack against a simple challenge-response protocol: The adversary overhears a challenge R and the

associated response f(P;R) that involves the password. Now she can go o�-line and run through all

the passwords P

0

from a dictionary of likely passwords, comparing the value f(P

0

; R) with f(P;R).

If one of the values matches the response, then the true password has been discovered.

A decade ago, Lomas et.al. [28] presented the �rst protocols which were resistant to these types

of o�-line dictionary attacks. The protocols assumed that the client had the server's public key

and thus were not strictly password-only protocols. Gong et.al. [22] later presented their versions

of these types of protocols. Recently, Halevi and Krawczyk [23] presented protocols and formal

proofs of security for the same scenario as addressed by [28], i.e., where the client authenticates

with a password and the server with a public key. Boyarsky [12] has addressed some problems with

the Halevi-Krawczyk protocols in the multi-user scenario.

The EKE protocol [8] was the �rst password-authenticated key exchange protocol that did

not require the user to know the server's public key. The idea of EKE was to use the password

to symmetrically encrypt the protocol messages of a standard key exchange (e.g., Di�e-Hellman

[17]). Then an attacker making a password guess could decrypt the symmetric encryption, but

could not break the asymmetric encryption in the messages, and thus could not verify the guess.

Following EKE, many protocols for password-authenticated key exchange were proposed which did

not require the user to know the server's public key [9, 22, 21, 37, 25, 26, 29, 39]. Some of these

protocols were, in addition, designed to protect against server compromise, so that an attacker that

was able to steal data from a server could not later masquerade as a user without having performed

a dictionary attack.

6

All of these protocol proposals contained informal arguments for security.

However, the fact that some of these protocols were subsequently shown to be insecure [31, 32]

should emphasize the importance of formal proofs of security.

2.3 Models for Secure Authentication and Key Exchange

Bellare and Rogaway [4] present the �rst formal model of security for entity authentication and key

exchange, for the symmetric two party case. In [7] they extend it to the three party case. Blake-

Wilson et.al. [10] further extend the model to cover the asymmetric setting. Independently, [30]

and [3] present extensions to the model to allow for password authentication. Halevi and Krawczyk

[23] and Boyarsky [12] present models which include both passwords and asymmetric keys (since

both of those papers deal with protocols that are password-based, but rely on server public keys).

Bellare, Canetti, and Krawczyk [2] present a di�erent model for security of entity authentication

and key exchange, based on the multi-party simulatability tradition [1]. Shoup [35] re�nes and

extends their model. We present a further extension of [35] that includes password authentication.

3 Model

For our proofs, we extend the formal notion of security for key exchange protocols from Shoup [35]

to password-authenticated key exchange. We will prove security against a static adversary, i.e.,

one whose choice of whom to corrupt is independent of its view while attacking the protocol. We

assume the adversary totally controls the network, a la [4].

6

Naturally, given the data from a server, an attacker could perform an o�-line dictionary attack, since the server

must know something that would allow veri�cation of a user's password.
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Security for key exchange in [35] is de�ned using an ideal system, which describes the service

(of key exchange) that is to be provided, and a real system, which describes the world in which the

protocol participants and adversaries work. The ideal system should be de�ned such that an \ideal

world adversary" cannot (by de�nition) break the security. Then, intuitively, a proof of security

would show that anything an adversary can do in the real system can also be done in the ideal

system, and thus it would follow that the protocol is secure in the real system.

3.1 De�nition of Security

The de�nition of security for key exchange given in [35] requires

1. completeness: for any real world adversary that faithfully delivers messages between two

user instances with complimentary roles and identities, both user instances accept; and

2. simulatability: for every e�cient real world adversary A, there exists an e�cient ideal

world adversary A

�

such that RealWorld(A) and IdealWorld(A

�

) are computationally indis-

tinguishable (here RealWorld(�) and IdealWorld(�) refer to real and ideal world transcripts,

respectively, and are de�ned in Sections 3.3 and 3.2).

We will use this de�nition for password-authenticated key exchange as well, with no modi�ca-

tions. We can do this because, as will be seen below, our ideal model includes passwords explicitly.

If it did not, we would have to somehow explicitly state the probability of distinguishing real world

from ideal world transcripts, given how many impersonation attempts the real world adversary

made.

We now proceed with a description of the Ideal System for password authentication. The parts

that are not directly related to passwords are taken from [35], except for a slight modi�cation to

handle mutual authentication.

3.2 Ideal System

The basic assumption of the ideal system is that the key exchange is done by a trusted third party

(called the ring master): The ring master generates all the keys, and delivers them to the users.

The communication between the users and the ring master is presumed to be perfectly secure.

Thus, the key exchange in the ideal system is perfectly secure.

Let us now present the details. We assume there is a set of (honest) users, indexed i = 1; 2; : : : .

Each user i may have several instances j = 1; 2; : : : . Then (i; j) refers to a given user instance. A

user instance (i; j) is told the identity of its partner, i.e., the user it is supposed to connect to (or

receive a connection from). An instance is also told its role in the session, i.e., whether it is going

to open itself for connection, or whether it is going to connect to another instance.

There is also an adversary that may perform certain operations, and a ring master that handles

these operations by generating certain random variables and enforcing certain global consistency

constraints. Some operations result in a record being placed in a transcript.

The ring master keeps track of session keys fK

ij

g that are set up among user instances (as will

be explained below, the key of an instance is set when that instance starts a session). In addition,

the ring master has access to a random bit string R of some agreed-upon length (this string is not

revealed to the adversary). We will refer to R as the environment. The purpose of the environment

is to model information shared by users in higher-level protocols.

Since we deal with password authentication, and because passwords are not cryptographically

secure, our system must somehow allow a non-negligible probability of an adversary successfully
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impersonating an honest user. We do this by including passwords explicitly in our model. We let

� denote the function assigning passwords to pairs of users. To simplify notation, we will write

�[A;B] to mean �[fA;Bg] (i.e., �[A;B] is by de�nition equivalent to �[B;A]).

The adversary may perform the following types of operations:

initialize user [Transcript: ("initialize user"; i; ID

i

)]

The adversary assigns identity string ID

i

to (new) user i. In addition, a random password

�[ID

i

; ID

i

0

] is chosen by the ring master for each existing user i

0

. The passwords are not placed

in the transcript. This models the out-of-band communication required to set up passwords

between users.

set password [Transcript: ("set password"; i; ID

0

; �)]

The identity ID

0

is required to be new, i.e., not assigned to any user. This sets �[ID

i

; ID

0

] to

� and places a record in the transcript.

After ID

0

has been speci�ed in a set password operation, it cannot be used in a subsequent

initialize user operation.

initialize user instance [Transcript: ("init. user inst."; i; j; role(i; j);PID

ij

)]

The adversary assigns a user instance (i; j) a role (one of fopen; connectg) and a user PID

ij

that is supposed to be its partner. If PID

ij

is not set to an identity of an initialized user,

then we require that a set password operation has been previously performed for i and PID

ij

(and hence there can be no future initialize user operation with PID

ij

as the user ID).

terminate user instance [Transcript: ("terminate user instance",i,j)]

The adversary speci�es a (previously initialized) user instance (i; j) to terminate.

test instance password

This is called with an instance (i; j) and a password guess �. The adversary queries if

� = �[ID

i

;PID

ij

]. If this is true, the query is called a successful guess on fID

i

;PID

ij

g (note

that a successful guess on fA;Bg is also a successful guess on fB;Ag).

This query may only be asked once per user instance. The instance has to be initialized and

not yet engaged in a session (i.e., no start session operation has been performed for that

instance). Note that the adversary is allowed to ask a test instance password query on an

instance that has been terminated.

This query does not leave any records in the transcript.

start session [Transcript: ("start session"; i; j)]

The adversary speci�es that a session key K

ij

for user instance (i; j) should be constructed.

The adversary speci�es which connection assignment should be used. There are three possible

connection assignments, as shown in Table 1.

Note that the connection assignment is not recorded in the transcript.

application [Transcript: ("application"; f; f(R; fK

ij

g))]

The adversary is allowed to obtain any information she wishes about the environment and

the session keys. (This models leakage of session key information in a real protocol through

the use of the key in, for example, encryptions of messages.) The function f is speci�ed by

the adversary and is assumed to be e�ciently computable.
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1. open for connection from (i

0

; j

0

). This

requires that

� role(i; j) is \open,"

� (i

0

; j

0

) has been initialized and has not

been terminated,

� role(i

0

; j

0

) is \connect,"

� PID

ij

= ID

i

0

,

� PID

i

0

j

0

= ID

i

,

� no other instance is open for connec-

tion from (i

0

; j

0

), and

� no test instance password operation

has been performed on (i; j).

The ring master generates K

ij

randomly.

We now say that (i; j) is open for connec-

tion from (i

0

; j

0

).

2. connect to (i

0

; j

0

). This requires that

� role(i; j) is \connect,"

� (i

0

; j

0

) has been initialized and has not

been terminated,

� role(i

0

; j

0

) is \open,"

� PID

ij

= ID

i

0

,

� PID

i

0

j

0

= ID

i

,

� (i

0

; j

0

) was open for connection from

(i; j) after (i; j) was initialized, and

� no test instance password operation

has been performed on (i; j).

The ring master sets K

ij

= K

i

0

j

0

. We

now say that (i

0

; j

0

) is no longer open for

connection.

3. expose. This requires that either PID

ij

has not been assigned to an identity of an

initialized user, or there has been a successful guess on fID

i

;PID

ij

g. The ring master sets

K

ij

to the value speci�ed by the adversary.

Table 1: Valid connection assignments for the start session operation
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implementation [Transcript: ("impl"; cmnt)]

The adversary is allowed to put in an \implementation comment" which does not a�ect

anything else in the ideal world. This will be needed for generating ideal world views that

are equivalent to real world views, as will be discussed later.

For an adversary A

�

, IdealWorld(A

�

) is the random variable denoting the transcript of the

adversary's operations.

Discussion (general key exchange): Because keys exchanged between two honest users are not

transmitted during the start session operations, it should be clear that key exchange is completely

secure in the ideal world. Naturally, application operations may reveal keys. This models the use

of the keys in a higher-level protocol. What we require from a secure key exchange protocol is that

even given some partial information about the keys, the adversary shouldn't be able to do anything

in the real world that he couldn't do in the ideal world. In other words, if a higher-level protocol

is secure (in some appropriate sense) in an ideal system with keys generated by the ring master,

that protocol should also be secure if we use a secure key exchange scheme.

Remarks on mutual authentication: As may be seen from the de�nition, the guarantees

provided to the instances in open and connect roles are not completely symmetric. Speci�cally,

an instance in a connect role is guaranteed that a connection will be established (since its partner

is ready to accept the connection). On the other hand, an instance (i; j) in an open role has

no guarantee that anyone will ever connect to it. All that is required is that there must exist an

instance (i

0

; j

0

) of the partner that has not yet been terminated, and the only connection that either

(i; j) or (i

0

; j

0

) could ever establish would be to each other. It appears impossible to completely

eliminate the asymmetry of the de�nition without unrealistic assumptions.

The unilateral-authentication model of Shoup [35] is di�erent from the one presented above

in the following way: The open connection assignment does not specify the instance from which

the connection is expected, and any instance of the partner is allowed to connect. On the other

hand, the connect connection assignment still speci�es an instance. It is unclear to us as to why

one would need a model that provides authentication to only one of the parties. In any case, as

Shoup remarks, authentication is not an important issue in ordinary key exchange. We will see,

however, that authentication is more of an issue with passwords. This will become apparent when

we consider the password key exchange model with implicit authentication in Section 5.1.

Discussion (password authentication): The major di�culty in designing an ideal system

for password-authenticated key exchange is that there may be a non-negligible probability of an

adversary guessing a password and impersonating a user. Thus either the de�nition of security

must allow for a non-negligible simulation error, or the ideal system is forced to have some notion

of passwords built in.

Our ideal system for password-authenticated key exchange explicitly uses (ring master gener-

ated) passwords. This forces any proof of security to have a simulator that has to be not only aware

of a password-guessing attempt, but of exactly which password is being guessed. (In the proof for

the PAK protocol presented in this thesis, the simulator is able to learn this information.) If this

is not possible, then constructing and using a di�erent ideal system would be required.

We did not specify how the ring master chooses passwords for pairs of users. The simplest model

would be to have a dictionary D, which is a set of strings, and let all passwords be chosen uniformly

and independently from that dictionary. To achieve the strongest notion of security, though, we can

give the adversary all the power, and simply let her specify the distribution of the passwords as an

argument to the initialize user operation (the speci�cation of the distribution would be recorded

8



in the transcript). The passwords of a user could even be dependent on the passwords of other

users. We note that our proofs of security do not rely on any speci�c distribution of passwords,

and would thus be correct even in the stronger model.

Why does our ideal system correctly describe the ideal world of password-authenticated key

exchange? If two users successfully complete a key exchange, then the adversary cannot obtain the

key or the password. This is modeled by the adversary not being allowed any test instance password

queries for a successful key exchange. On the other hand, the adversary is allowed one test password

query for any other key exchange, with successful impersonation only allowed if the adversary

actually guesses the password correctly. This corresponds to an on-line impersonation/password-

guessing attempt by the adversary. (One may think of this as modeling an adversary who attempts

to log in to a server by sending a guessed password.)

We also model the ability for an adversary to set up passwords between any users and himself,

using the set password query. This can be thought of as letting the adversary set up rogue accounts

on any computer she wishes, as long as those rogue accounts have di�erent user IDs from all the

valid users.

3.3 Real System with Passwords

We now describe the real system in which we assume a password-authenticated key exchange

protocol runs. Again, this is basically from [35], except that we do not concern ourselves with public

keys and certi�cation authorities, since all authentication is performed using shared passwords.

Note that the same real system is used, no matter what authentication model we choose for our

ideal system.

Users and user instances are denoted as in the ideal system. User instances are de�ned as state

machines with implicit access to the user's ID, PID, and password (i.e., user instance (i; j) is

given access to �[ID

i

;PID

ij

]). User instances also have access to private random inputs (i.e., they

may be randomized). A user instance starts in some initial state, and may transform its state only

when it receives a message. At that point it updates its state, generates a response message, and

reports its status, either \continue", \accept", or \reject", with the following meanings:

� \continue": the user instance is prepared to receive another message.

� \accept": the user instance (say (i; j)) is �nished and has generated a session key K

ij

.

� \reject": the user instance is �nished, but has not generated a session key.

The adversary may perform the following types of operations:

initialize user [Transcript: ("initialize user"; i; ID

i

)]

As in the ideal system (with passwords), the adversary assigns identity string ID

i

to (new)

user i (as before). In addition, a random password �[ID

i

; ID

i

0

] is chosen by the ring master for

each existing user i

0

. The passwords are not placed in the transcript. This models the out-of-

band communication required to set up passwords between users. As mentioned above with

respect to the ideal system, the distribution of passwords may be �xed, or may be speci�ed

by the adversary as an argument to the operation (in the latter case, a description of the

distribution would be recorded in the transcript).

initialize user instance [Transcript: ("init. user inst."; i; j; role(i; j);PID

ij

)]

As in the ideal system, the adversary assigns a user instance (i; j) a role (one of fopen; connectg)

and a user PID

ij

that is supposed to be the partner of (i; j).
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deliver message [Transcript: ("impl"; "message"; i; j; InMsg;OutMsg; status)]

The adversary delivers InMsg to user instance (i; j). The user instance updates its state, and

replies withOutMsg and reports status. If status is \accept", the record ("start session"; i; j)

is added to the transcript, and if status is \reject", the record ("terminate instance"; i; j)

is added to the transcript.

set password [Transcript: ("set password"; i; ID

0

; �)]

As in the ideal system, this sets �[ID

i

; ID

0

] to � and places a record in the transcript.

application [Transcript: ("application"; f; f(R; fK

ij

g))]

As in the ideal system, the adversary is allowed to obtain any information she wishes about the

environment and the session keys, except that the keys are now actual session keys generated

by user instances.

random oracle [Transcript: ("impl"; "random oracle"; i; x;H

i

(x))]

The adversary queries random oracle i on a binary string x and receives the result of the

random oracle query H

i

(x). Note that we do not allow application operations to query

random oracles H

i

. In other words, we do not give higher-level protocols access to the

random oracles used by the key exchange scheme. (Although a higher-level protocol could

have its own random oracle.) The adversary, however, does have access to all the random

oracles.

For an adversary A, RealWorld(A) denotes the transcript of the adversary's operations. In

addition to records made by the operations, the transcript will include the random coins of the

adversary in an implementation record ("impl"; "coins"; coins).

4 Explicit Authentication: The PAK Protocol

4.1 Preliminaries

Let � and ` denote our security parameters, where � is the \main" security parameter and can be

thought of as a general security parameter for hash functions and secret keys (say 128 or 160 bits),

and ` > � can be thought of as a security parameter for discrete-log-based public keys (say 1024 or

2048 bits). Let f0; 1g

�

denote the set of �nite binary strings and f0; 1g

n

the set of binary strings of

length n. A real-valued function �(n) is negligible if for every c > 0, there exists n

c

> 0 such that

�(n) < 1=n

c

for all n > n

c

.

Let q of size at least � and p of size ` be primes such that p = rq+1 for some value r co-prime

to q. Let g be a generator of a subgroup of Z

�

p

of size q. Call this subgroup G

p;q

. We will often

omit \ mod p" from expressions when it is obvious that we are working in Z

�

p

.

Let DH(X;Y ) denote the Di�e-Hellman value g

xy

of X = g

x

and Y = g

y

. We assume the

hardness of the Decision Di�e-Hellman problem (DDH) in G

p;q

. One formulation is that given

g;X; Y; Z in G

p;q

, where X = g

x

and Y = g

y

are chosen randomly, and Z is either DH(X;Y )

or random, each with half probability, determine if Z = DH(X;Y ). Breaking DDH implies a

constructing a polynomial-time adversary that distinguishes Z = DH(X;Y ) from a random Z with

non-negligible advantage over a random guess.

4.2 The Protocol

De�ne hash functions H

2a

;H

2b

;H

3

: f0; 1g

�

! f0; 1g

�

and H

1

: f0; 1g

�

! f0; 1g

�

(where � � `+�).

We will assume that H

1

, H

2a

, H

2b

, and H

3

are independent random functions. Note that while H

1

10
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-
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y 2

R

Z

q

� = g

y

� = (

m

(H

1

(A;B;�))

r

)

y

� = �

x

�; k

�

k = H

2a

(A;B;m; �; �; �)

Test k

?

= H

2a

(A;B;m; �; �; �)

k

0

= H

2b

(A;B;m; �; �; �)

K = H

3

(A;B;m; �; �; �)

k

0

-

Test k

0

?

= H

2b

(A;B;m; �; �; �)

K = H

3

(A;B;m; �; �; �)

Figure 1: The PAK protocol, with � = �[A;B]. The resulting session key is K. If a \Test" returns

false, the protocol is aborted.

is described as returning a bit string, we will operate on its output as a number modulo p.

The PAK protocol is given in Figure 1.

Theorem 1. The PAK protocol is a secure password-authenticated key exchange protocol in the

explicit-authentication model.

The proof is given in Appendix A.

5 Implicit Authentication: The PPK Protocol

We �rst describe an Ideal System with Implicit Authentication, and then describe the PPK protocol.

Note that we still use the Real System from Section 3.3.

5.1 Ideal System with Implicit Authentication

Here we consider protocols in which the parties are implicitly authenticated, meaning that if one of

the communicating parties is not who it claims to be, it simply won't be able to obtain the session

key of the honest party. However, the honest party (which could be playing the role of "open" or

"connect") would still open the session, but with no one able to actually communicate with on

that session.

7

Thus some of the connections may be \dangling." We will allow two new connection assign-

ments:

dangling open. This requires role(i; j) to be \open."

dangling connect. This requires role(i; j) to be \connect."

In both cases, the ring master generates K

ij

randomly.

To use implicit authentication with passwords, we will make the following rules:

7

In a later version of [35], Shoup also deals with implicit authentication, but in a di�erent way. We feel our

solution is more straightforward and intuitive.
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� We no longer require that no two instances are open for connection from the same instance

(since for implicit authentication we don't care that every accepting instance has a unique

partner instance).

� Dangling connection assignments are allowed even for instances on which the test instance

password query has been performed.

� A test instance password query is allowed on an instance that has started a session with a

dangling connection assignment. In that case, if the test is successful, then the ring master

returns to the adversary the key of the instance (the adversary is \rewarded" with the key,

since the usual \reward," i.e., the ability to make an expose connection assignment, is not

usable once the dangling connection assignment has been made).

We still restrict the number of test instance password queries to at most one per instance. The

rules relating to other connection assignments do not change.

The reason for the permissiveness in test instance password is that an instance with a dangling

connection assignment can't be sure that it wasn't talking to the adversary. All that is guaranteed

is that the adversary won't be able to get the key of that instance, unless she correctly guesses the

password.

In practice, this means that we can't rule out an unsuccessful password guess attempt on an

instance until we can con�rm that some partner instance has obtained the same key. (If another

instance has indeed obtained the same key, that guarantees that a non-dangling connection assign-

ment was made, since otherwise the keys would be independent.) It follows that if we are trying to

count the number of unsuccessful login attempts (e.g., so that we can lock the account when some

threshold is reached), we can't consider an attempt successful until we get some kind of con�rma-

tion that the other side has obtained the same key. We thus see that key con�rmation (which, in

our model, is equivalent to explicit authentication) is indeed relevant when we use passwords.

5.2 PPK Protocol

If we don't require explicit authentication, we can make a much more e�cient protocol. The PPK

protocol requires only two rounds of communication. The protocol is given in Figure 2. Here

H

0

1

: f0; 1g

�

! f0; 1g

�

is another random function. PPK has the same basic structure as PAK,

except without the \authentication" values k and k

0

.

Note that in PPK, as opposed to PAK, both the m and � values need to be \encrypted" with

the password (by multiplication with a random oracle value). The reason is that in PPK these

values are not in any way authenticated. If, as in PAK, � wasn't \encrypted," then an adversary

could carry out the following attack:

1. Perform a conversation with Alice, impersonating Bob: Alice sends m = g

x

� (H

1

(A;B; �

�

))

r

.

Adversary responds with � = g

y

.

2. Adversary asks an application query to get Alice's key

K = H

3

(A;B;m; �; (

m

(H

1

(A;B; �

�

))

r

)

y

; �

�

):

3. Now the adversary can carry out an o�-line dictionary attack, by checking K against

H

3

(A;B;m; �; (

m

(H

1

(A;B; �))

r

)

y

; �)

for all values of �.
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� = (

�

(H

0

1

(A;B;�))

r

)

x

K = H

3

(A;B;m; �; �; �)

Figure 2: The PPK protocol, with � = �[A;B]. The resulting session key is K.

This attack is not possible against PAK, since Alice would not accept (and would not compute K)

without receiving a proper k value, and the adversary can't generate the proper k value without

knowing the password.

Theorem 2. The PPK protocol is a secure password-authenticated key exchange protocol in the

implicit-authentication model.

The completeness requirement follows directly by inspection. The proof of simulatability ap-

pears in Appendix B. The basic structure of the proof is the same as for the PAK protocol, except

that we now have an analog of Claim 1 for both initiator and responder instances.

6 Resilience to Server Compromise: The PAK-X Protocol

6.1 Ideal System with Passwords: Resilience to Server Compromise

We now de�ne a system in which one party is designated as a server, and which describes the

ability of an adversary to obtain information about passwords stored on the server, along with the

resultant security. The information stored by the server is called the veri�er (since it allows for

veri�cation of the client's password). The goal in this model is that the adversary shouldn't be able

to impersonate the client, even if she obtains the veri�er stored by the server (clearly, the adversary

will be able to impersonate the server). Note that the veri�er can be used for an o�-line dictionary

attack, since it obviously contains enough information to check the password. We can thus only

require that impersonating the client using the veri�er should be impossible without a dictionary

attack.

The modi�cations to the model of the ideal system are as follows: One role (open or connect)

is designated as the server role, while the other is designated as the client role. We add the test

password and get veri�er operations, and change the start session operation. In our ideal system

there is no tangible veri�er stored by the server. Rather, possession of the veri�er (which results

from the get veri�er operation) gives the adversary a \right" to perform an o�-line dictionary

attack.

The operations are handled as follows:

test password

This query takes two users, say i and i

0

, as arguments, along with a password guess �. If

13



a get veri�er query has been made on fi; i

0

g, then this returns whether � = �[ID

i

; ID

i

0

]. If

the comparison returns true, this is called a successful guess on fID

i

; ID

i

0

g. If no get veri�er

has been made on fi; i

0

g, then no answer is returned (but see the description of get veri�er

below).

This query does not place a record in the transcript. It can be asked any number of times, as

long as the next query after every test password is of type implementation. (The idea of the

last requirement is that a test password query has to be caused by a \real-world" operation,

which leaves an implementation record in the transcript.)

get veri�er [Transcript: ("get verifier"; i; i

0

)]

Arguments: users i and i

0

. For each test password query on fi; i

0

g that has previously been

asked (if any), returns whether or not it was successful. If any one of them actually was

successful, then this get veri�er query is called a successful guess on fID

i

; ID

i

0

g. Note that

the information about the success of failure of test password queries is not placed in the

transcript.

start session [Transcript: ("start session"; i; j)]

In addition to the rules speci�ed previously, a connection assignment of expose for client

instance (i; j) is allowed at any point after a get veri�er query on users i or i

0

has been

performed, where ID

i

0

= PID

ij

.

The test password query does not a�ect the legality of open and connect connection assignments.

6.2 Real System: Resilience to Server Compromise

As in the ideal system, one role (open or connect) is designated as the server role, while the other

is designated as the client role. In the real system the server stores an actual bit string, a veri�er,

to verify a client's password. Thus the protocol has to specify a polynomial-time veri�er generation

algorithm VGen that, given a set of user identities fA;Bg, and a password �, produces a veri�er

V .

As above for �[A;B], we will write V [A;B] to mean V [fA;Bg], the veri�er of user pair fA;Bg.

A user instance (i; j) in the server role is given access to V [ID

i

;PID

ij

]. A user instance (i; j) in the

client role is given access to �[ID

i

;PID

ij

].

The changes to the initialize user and set password operations are as follows:

initialize user [Transcript: ("initialize user"; i; ID

i

)]

In addition to what is done in the basic real system, V [ID

i

; ID

i

0

] = VGen(fID

i

; ID

i

0

g;

�[ID

i

; ID

i

0

]) is computed for each i

0

.

set password [Transcript: ("set password"; i; ID

0

; �)]

In addition to what is done in basic real system, V [ID

i

; ID

0

] is set to VGen(fID

i

; ID

0

g; �).

We add the get veri�er operation:

get veri�er [Transcript:("get verifier"; i; i

0

), followed by ("impl"; "verifier"; i; i

0

;

V [ID

i

; ID

i

0

])]

The adversary performs this query with i and i

0

as arguments, with V [ID

i

; ID

i

0

] being re-

turned.
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Figure 3: The PAK-X protocol, with � = �[A;B], v = v[A;B], and V = V [A;B]. The resulting

session key is K.

6.3 PAK-X Protocol

In our protocol, we will designate the open role as the client role. We will use A and B to denote the

identities of the client and the server, respectively. In addition to the random oracles we have used

before, we will use additional functions H

0

: f0; 1g

�

! f0; 1g

jqj+�

and H

0

0

: f0; 1g

�

! f0; 1g

jqj+�

,

which we will assume to be random functions. The veri�er generation algorithm is

VGen(fA;Bg; �) = g

v[A;B]

;

where we de�ne v[A;B] = H

0

(min(A;B);max(A;B); �) (we need to order user identities, just so

that any pair of users has a unique veri�er).

The PAK-X protocol is given in Figure 3.

Theorem 3. The PAK-X protocol is a secure password-authenticated key exchange protocol in the

explicit-authentication model, with resilience to server compromise.

The completeness requirement follows directly by inspection. The proof of simulatability ap-

pears in Appendix C. The basic structure of the proof is the same as for the PAK protocol. A

major technical di�culty in the simulation is the case when the adversary has obtained the veri-

�er, and is now acting as the server (in fact, the security of the SNAPI-X protocol [30] has only

been shown under the assumption that such a scenario does not occur). The di�culty is that the

simulator needs to verify the value of V

H

0

0

(A;B;c)

without knowing v. This is achieved by checking

all the H

0

0

queries until we �nd a query c that gives a = g

H

0

0

(A;B;c)

. We can then use this value of c

to determine the correct value of V

H

0

0

(A;B;c)

. (A similar technique was used independently in [20]

to obtain an e�cient encryption scheme secure against an adaptive chosen-ciphertext attack.)
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7 Conclusions and Open Problems

We have presented new formal de�nitions of security for password-authenticated key exchange

protocols, with several variations: explicit authentication, implicit authentication, and resilience

to server compromise. For each variation of the model, we have presented a new, e�cient, and

provably secure construction: the PAK, PPK, and PAK-X protocols. The proofs of security are

based on the DDH problem and the random oracle assumption.

The major open problem seems to be the construction of provably secure password-authenticated

key exchange protocols without using random oracles. It seems unlikely that random oracles can be

easily removed from our schemes, as the proofs rely on the random oracle model quite heavily. One

of the major issues in proving the security of a protocol in our security model is the ability of the

simulator to extract the adversary's attempted guess of the password (as passwords appear explic-

itly in the ideal world). In our proofs, this extraction is accomplished by examining the adversary's

random oracle queries, which is clearly impossible in a standard security model. It may, however,

be possible to construct protocols based on zero-knowledge techniques, where the simulator would

extract attempted passwords through rewinding. The problem with this approach is that the best

known zero-knowledge protocols in the general concurrent setting take a polynomial number of

rounds [33], which is too ine�cient for use in practice. In any case, it may be advantageous to

consider variations of the model, where the passwords do not need to be extracted, but can be

tested in some indirect manner (e.g., by asking the ring master whether the password is equal to

the value of some hard-to-compute expression).
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A Security of the PAK Protocol

The completeness requirement follows directly by inspection. Here we prove that the simulatability

requirement holds. The basic technique is essentially that of Shoup [35]. The idea is to create an

ideal world adversary A

�

by running the real world adversary A against a simulated real system,

which is built on top of the underlying ideal system. In particular, A

�

(i.e., the simulator combined

with A) will behave in the ideal world just like A behaves in the real world, except that idealized

session keys will be used in the real world simulation instead of the actual session keys computed

in the real system.

Thus our proof consists of constructing a simulator (that is built on top of an ideal system)

for a real system so that the transcript of an adversary attacking the simulator is computationally

indistinguishable from the transcript of an adversary attacking the real system.

Let T be the running time of the adversary. (We will also use this as a bound on the number

of operations the adversary performs in the real system.) T must be polynomial in the security

parameter �. W.o.p. stands for \with overwhelming probability," i.e., with probability at least

1� �, for some � which is negligible in the security parameter �.

Let DH(X;Y ) denote the Di�e-Hellman value g

xy

of X = g

x

and Y = g

y

.

A.1 The Simulator

The general idea of our simulator is to try to detect guesses on the password (by examining the

adversary's random oracle queries) and turn them into test instance password queries. If the

simulator does not notice a password guess, then it either sets up a connection between two instances

(if all the messages between them have been correctly relayed), or rejects (otherwise).

The main di�culty in constructing the simulator is that we need to simulate the protocol

without knowing the actual passwords. We solve this problem as follows: It may be seen that the

password only appears in the protocol as an argument to random oracle queries. Now, whenever

the actual protocol would use the result of a random oracle query whose arguments involve the

password, we will simply substitute a random value for the oracle's response. We can think of this

as an \implicit" oracle call, i.e., one where we know the value returned, even though we don't (as

of yet, at least) know the arguments. In handling the adversary's explicit random oracle queries,

as well as those protocol operations that use random oracles, we need to make sure that we don't

use inconsistent values for the result of a random oracle on a certain input. In particular, we need

to be able to detect if an adversary's query to a random oracle might match a prior implicit oracle

call. We will say that an oracle query is shadowed by an implicit oracle query if the two queries

would be equal for some feasible (i.e., not yet ruled out) value of the password.

Indeed, one of the main concerns in the proof is dealing with the possible shadowings: either

detecting them when they occur, or showing that they are impossible. The possible shadowings in

the PAK simulator are shown in Table 2.

In the process of describing the simulator, we will show that the transcript of the simulation in

the ideal world is computationally indistinguishable from the transcript of the actual adversary in

the real world, step by step, unless is is possible to construct an algorithm to break the Decision

Di�e-Hellman problem.

Let us now proceed with the technical details. Say an initiator is an instance that sends the

�rst message in the protocol, and a responder is an instance that sends the second message in the

protocol. We will always write (i; j) for the user instance that is an initiator, and (i

0

; j

0

) for the user

instance that is a responder. Let A (resp. B) be the ID of the current initiator (resp. responder),

i.e., either ID

i

or PID

i

0

j

0

(resp. PID

ij

or ID

i

0

), depending on the context. Let �

�

= �[A;B].
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Current

Earlier H

2a

H

2b

H

3

B1 B1

0

A2

H

2a

� �

H

2b

Claim 3

H

3

Claim 3

B1 Claim 3 � �

B1

0

Explicit � �

A2 Claim 3 Claim 3 �

The names of rows and columns refer to parts of the simulator: handling of the adversary's

random oracle queries (H

i

) and message responses (e.g., B1). A message-response action

without a prime (e.g., B1) denotes that there is a matching conversation with an acceptable

partner, while a prime (e.g., B1

0

) denotes the lack of one. Only actions that could possibly

cause shadowing are shown in the table.

The columns of the table correspond to an action being currently handled by the simulator.

The rows correspond to earlier actions. An entry in the table indicates whether or not

while handling the current action we need to be concerned for shadowing caused by an

earlier action.

The entries of the table have the following meaning:

blank shadowing is impossible by the structure of the simulator,

� shadowing is possible, but has a negligible probability (statistically),

claim if the adversary can cause such shadowing with nonnegligible probability, then we

can construct a DDH distinguisher (as shown in the referenced claim),

explicit shadowing can indeed occur, and is explicitly dealt with in the simulator.

Table 2: Possible shadowings in the PAK simulator.
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An acceptable partner for an instance (i; j) (resp. (i

0

; j

0

)) is any instance (i

0

; j

0

) (resp. (i; j)) with

PID

i

0

j

0

= ID

i

and PID

ij

= ID

i

0

(resp. PID

ij

= ID

i

0

and PID

i

0

j

0

= ID

i

). We say that two instances

had a matching conversation if all the messages sent by one were received by the other (preserving

order) and vice versa. (This de�nition is as in [4], except that we don't care about the timings, i.e.,

we don't rule out the possibility of a message being received before it is sent. However, we will see

that the probability of this is negligible in our protocol. Also note that, as opposed to [4], matching

conversations are not used in our de�nition of security, but only as a notion to better illustrate our

proof.) When we say that an instance in the open role has had a matching conversation with an

instance in the connect role, this does not make any requirements on the last message (i.e., the last

message is not required to have been delivered properly). However, in order for an instance in the

connect role to have a matching conversation with an instance in the open role, all the messages

need to be delivered properly.

We now describe the actions of the simulator for each possible operation of the adversary in

the real protocol. An initialize user instance or an application operation is simply passed on to the

ideal system. A set password operation is also passed through to the ideal system (and the password

is recorded by the simulator). A deliver message operation is dealt with depending on the state

of the user instance involved. This state includes the role of the user instance, and the previous

messages to and from that user instance. A random oracle operation is answered depending on

which random oracle is queried. The responses to deliver message and random oracle operations

are speci�ed below.

We name the actions of user instances on deliver message operations as follows:

A0 Initiator instance action to start the protocol (i.e., an A0 action for an initiator instance is

generating and sending m).

B1 Responder instance action upon receiving the �rst message (i.e., m).

A2 Initiator instance action upon receiving the message from the responder (i.e., (�; k)).

B3 Responder instance action upon receiving the second message from the initiator (i.e., k

0

).

For example, B1(m) denotes an adversary's deliver message operation on some responder instance,

with InMsg being m.

We now describe some general rules for handling deliver message operations: We discard all

improper messages to user instances, just as would be done in the real system. These messages

may be improper because, for instance, they are not formatted correctly, or the user identities do

not match. If the partner ID of a user instance is not set to an identity of an initialized user, then

the original protocol is followed, and the expose connection assignment is used for a start session

operation (this is possible, since the simulator has seen the necessary password in the set password

operation).

Here are some general rules for handling random oracle operations: The simulator keeps a

record of all random oracle query-response pairs (of course, this is only done for explicit oracle

queries). If a query made to a random oracle matches a previous query to the same random oracle,

the stored response is returned. If a random oracle is given user identities A and B as arguments,

and either (or both) of A and B is not the identity of a valid user, then the query is answered with

a random string (as in the real system).

Detailed descriptions of how the simulator responds to deliver message and random oracle

operations (that do not fall under the above rules) follow:
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1. H

1

(A;B; �)

Generate �[A;B; �] 2

R

Z

q

and store it. Then generate h 2

R

Z

�

p

and � 2

R

Z

b2

�

=pc

, and return

(h

q

g

�[A;B;�]

mod p) + �p. Note that this will be indistinguishable from a random bit string

of length �, since h

q

g

�[A;B;�]

mod p is a random element from Z

�

p

8

and

2

�

modp

2

�

is negligible.

Note that (H

1

(A;B; �))

r

= (h

q

g

�[A;B;�]

)

r

= h

qr

g

r��[A;B;�]

= g

r��[A;B;�]

.

2. H

2a

(A;B;m; �; �; �)

Case 1 Some prior B1 query has recorded a tuple of the form (i

0

; j

0

;m; �; y; k

i

0

j

0

), with A =

PID

i

0

j

0

and B = ID

i

0

, for some values of y and k

i

0

j

0

. This implies that a B1(m) query

was made to (i

0

; j

0

) and returned (�; k

i

0

j

0

), but no A0 query to an acceptable partner

returned m|see the B1 query description below. (In other words, this H

2a

query might

be shadowed by the implicit H

2a

query from case 2 of the B1 action.)

W.o.p., there will be at most one such tuple, since � values stored in these tuples are

random and independent. If H

1

(A;B; �) has been asked, and (

m

(H

1

(A;B;�))

r

)

y

= �, then:

(a) If there has been a successful guess on fA;Bg and � was the password in that guess,

call this H

2a

query a successful H

2a

query on (i

0

; j

0

).

(b) If there hasn't been a successful guess on fA;Bg, and there never was an unsuccessful

guess on fA;Bg for �:

i. If a test instance password operation has not previously been performed on

(i

0

; j

0

), perform a test instance password operation with arguments (i

0

; j

0

) and �.

If the test is successful, we also call this query a successful H

2a

query on (i

0

; j

0

).

ii. If a test instance password operation has previously been performed on (i

0

; j

0

),

then abort. We will call this event an H

2a

failure.

Finally, if this query is a successful H

2a

query on (i

0

; j

0

) for some (i

0

; j

0

), then return

k

i

0

j

0

. Otherwise, return k 2

R

f0; 1g

�

.

If no H

2a

failure occurs as a result of this H

2a

query, then the simulation will be indis-

tinguishable from the real world, as follows: In the real world the k value sent by (i

0

; j

0

)

is H

2a

(A;B;m; �;DH(�;

m

(H

1

(A;B;�

�

))

r

); �

�

). Therefore, if this H

2a

query is successful,

it will return a value consistent with the adversary's view. On the other hand, if this

query is not successful, then generating a random response is indistinguishable from the

adversary's view in the real world.

The following claim shows that w.o.p. A will not ask an H

2a

query that causes an H

2a

failure. (The H

2b

case in the claim is necessary to handle B3 operations.)

Claim 1. Let � be returned by a B1(m) query to (i

0

; j

0

). Let A = PID

i

0

j

0

and B = ID

i

0

.

Then w.o.p. it will not happen that the two oracle queries

H

s

(A;B;m; �;DH(�;

m

(H

1

(A;B; �

1

))

r

); �

1

);

and

H

t

(A;B;m; �;DH(�;

m

(H

1

(A;B; �

2

))

r

); �

2

)

will be asked, with s; t 2 f2a; 2bg, unless either �

1

= �

2

, or by the time of the second

query there has already been a successful guess on fA;Bg.

8

To see this, note that h

q

is a random element from the subgroup of order r in Z

�

p

and g

�[A;B;�]

is a random

element of the subgroup of order q in Z

�

p

.
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Note that in this claim we speak both about queries made by the adversary, and explicit

queries made within the simulator (e.g., in case 2 of the A2 operation).

The proof appears in Appendix A.2.

Note that an H

2a

query can result in a test instance password query on (i

0

; j

0

) only if a

tuple (i

0

; j

0

;m; �; y; k

i

0

j

0

) has previously been recorded. It will become apparent below

(see the B1 query description) that, w.o.p., this could only happen if (i

0

; j

0

) has not had

a matching conversation with an acceptable partner. We have just proven one part of

the following claim:

Claim 2. If a test instance password query is made on a responder instance (i

0

; j

0

),

then (i

0

; j

0

) has not had a matching conversation with an acceptable partner.

The other part is shown in case 3b of B3 (which is the only other place where a test

instance password could be made on a responder instance).

Case 2 No tuple of the form (i

0

; j

0

;m; �; y; k

i

0

j

0

) has been recorded with A = PID

i

0

j

0

and

B = ID

i

0

.

Return k 2

R

f0; 1g

�

. The only way this response could be distinguishable from the

real system is if this query would be shadowed by an implicit H

2a

query from case 1

of some B1 action, i.e., if m and � are from a matching conversation of two valid user

instances, and � = DH(�;

m

(H

1

(A;B;�))

r

). However, by the following claim, w.o.p. this will

not occur.

Claim 3. Let m be returned by an A0 query to (i; j) with A = ID

i

and B = PID

ij

, and

� be returned by a subsequent B1(m) query to (i

0

; j

0

) with B = ID

i

0

and A = PID

i

0

j

0

.

Then, w.o.p., the there will never be (neither before nor after the A0 and B1 queries)

an oracle query (A;B;m; �;DH(�;

m

(H

1

(A;B;�))

r

); �) to H

2a

, H

2b

, or H

3

, for any �.

The proof of the claim appears in Appendix A.2. Note that we only consider B1(m)

queries subsequent to an A0 query that returns m, since the probability of their occur-

rence prior to an A0 query that returns m is negligible (by randomness of m).

3. H

2b

(A;B;m; �; �; �)

Return k

0

2

R

f0; 1g

�

. This is indistinguishable from the real system by the following argu-

ment: The only implicit H

2b

query that could shadow this one is the query from case 1 of an

A2 action. However, that shadowing is, w.o.p., impossible by Claim 3. (Note that the H

2b

query from case 2 of an A2 action is explicit, i.e., all of its arguments are known, and so a

query-response pair would be stored for it.)

4. H

3

(A;B;m; �; �; �)

Return K 2

R

f0; 1g

�

. As for H

2b

queries, indistinguishability easily follows by Claim 3.

5. A0 query to (i; j)

Generate and store w 2

R

Z

q

, and send m = g

w

. Clearly, m is uniformly drawn from G

p;q

,

just as in the real system.

6. B1(m) query to (i

0

; j

0

)

Generate y 2

R

Z

q

and k

i

0

j

0

2

R

f0; 1g

�

. Send � = g

y

and k = k

i

0

j

0

. Now consider two cases:
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Case 1 The value of m has been sent by an acceptable partner.

We can think of k

i

0

j

0

as the result of an implicit query

H

2a

(A;B;m; �;DH(�;

m

(H

1

(A;B; �

�

))

r

); �

�

):

Since � is a freshly chosen random number, this implicit query, w.o.p., will not shadow

any prior H

2a

queries (whether explicit or implicit). Consequently, k

i

0

j

0

will be indistin-

guishable from the value sent in the real system.

Case 2 The value of m has not been sent by an acceptable partner.

In this case, record the tuple (i

0

; j

0

;m; �; y; k

i

0

j

0

). It is important to note (for Claim 2,

that if this tuple is recorded, then, w.o.p., (i

0

; j

0

) will never be considered to have a

matching conversation with an acceptable partner, due to the fact that values of m are

generated randomly by initiator instances. (Recall that in our de�nition of \matching

conversation" we are not concerned with the timing of sends and receives.)

As in case 1, we can view k

i

0

j

0

as the result of an implicit query

H

2a

(A;B;m; �;DH(�;

m

(H

1

(A;B; �

�

))

r

); �

�

):

The value of k

i

0

j

0

will be indistinguishable from the one sent in the real system for the

same reason as before.

7. A2(�; k) query to (i; j)

Case 1 (i; j) has had a matching conversation with an acceptable partner (i

0

; j

0

).

Generate k

0

ij

2

R

f0; 1g

�

, send k

0

= k

0

ij

, set status to Accept, and perform a start ses-

sion operation with the connection assignment open for connection from (i

0

; j

0

). This

corresponds to the following implicit oracle queries:

k

0

ij

= H

2b

(A;B;m; �;DH(�;

m

(H

1

(A;B; �

�

))

r

); �

�

);

K

ij

= H

3

(A;B;m; �;DH(�;

m

(H

1

(A;B; �

�

))

r

); �

�

);

where K

ij

is the random session key assigned by the ring master at the time of the start

session operation.

By Claim 3, these implicit queries couldn't shadow any past or future explicit queries. It

is also easy to see that these implicit queries will not shadow any other implicit queries,

unless there is a collision of m values between two initiator instances (and that only

occurs with negligible probability).

The open connection assignment will be legal, since the only place that the simulator

could perform a test instance password operation on (i; j) would be in case 2 of the

A2 query (see there). Also, w.o.p., we will never have two initiator instances (i

1

; j

1

)

and (i

2

; j

2

) that are open for connection from the same responder instance (i

0

; j

0

), since

that would imply that (i

1

; j

1

) and (i

2

; j

2

) generated the same m value (otherwise, they

couldn't both have had matching conversations with (i

0

; j

0

)).

Case 2 (i; j) has not had a matching conversation with an acceptable partner.

Look for a value of � for which an H

1

(A;B; �) query has been made, and another query

H

2a

(A;B;m; �; �

w�r�[A;B;�]

; �) has been made and returned k. (W.o.p. there will be at
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most one such value of �, due to the randomness of H

2a

.) If no such � is found, then

reject. This is indistinguishable from the real system, since w.o.p. the k received would be

incorrect in the real system (i.e., the correct k = H

2a

(A;B;m; �;DH(�;

m

(H

1

(A;B;�

�

))

r

); �

�

)

would be independent of the adversary's view).

Otherwise (if such a � is found), perform a test instance password operation with argu-

ments (i; j) and � (note that this is the only place where we could perform this operation

for an initiator instance, and no session has been started yet, so the operation is legal).

If the guess is not successful, then reject (this is indistinguishable from the real system,

by an argument similar to the one above). If the guess is successful, then:

(a) Set k

0

= H

2b

(A;B;m; �; �

w�r�[A;B;�]

; �).

(b) Send k

0

.

(c) Accept.

(d) Set K = H

3

(A;B;m; �; �

w�r�[A;B;�]

; �).

(e) Expose using session key K (this is allowed, since there was a successful guess on

the password).

Note that the values of k

0

and K are computed through explicit oracle queries (we can

think of these as subroutine calls within the simulator), and the queries and responses

are recorded, as usual. It is clear that the values of k

0

and K produced in this case are

the same as would be computed in the real system.

8. B3(k

0

) query to (i

0

; j

0

)

Case 1 (i

0

; j

0

) has had a matching conversation with an acceptable partner (i; j).

Set status to Accept and perform a start session operation with a connect to (i; j)

connection assignment. This is legal because

(a) w.o.p., the instance (i; j) will still be open for connection by the randomness of �

values sent by responder instances (so that, w.o.p., for each initiator (i; j), there

will be at most one (i

0

; j

0

) with which it has had a matching conversation, and so at

most one instance will try to connect to (i; j)), and

(b) by Claim 2, there could not have been a test instance password query on (i

0

; j

0

),

since (i

0

; j

0

) has had a matching conversation with an acceptable partner.

Case 2 The current value m has been sent by some acceptable partner (i; j), and � and k

have been received by (i; j), but the value of k

0

that was received has not been sent by

(i; j).

Reject. This is indistinguishable from the real system since k

0

is invalid.

Case 3 Neither Case 1 nor Case 2 holds.

Look for a value of � such that an H

1

(A;B; �) query has been asked, and a query

H

2b

(A;B;m; �; (

m

(H

1

(A;B;�))

r

)

y

; �) has been asked and returned k

0

. (W.o.p. there will be

at most one such value of �, due to the randomness of H

2b

.) If no such � is found,

then reject. This is indistinguishable from the real system, since w.o.p. the k

0

received

would be incorrect in the real system (i.e., the correct k

0

would be independent of the

adversary's view). (The only way k

0

could be correct, other than through a random

guess, is if it is the result of an implicit H

2b

query in case 1 of A2. However, it is easy

to see that if that was the case, we couldn't get to case 3 of B3.)

Otherwise (if such a � is found), check if there was a successful guess on fA;Bg.
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Case 3a There was a successful guess on fA;Bg. If that guess was not �, then reject.

Case 3b There was no successful guess on fA;Bg. If there already was an unsuccessful

guess on fA;Bg for �, then reject. Otherwise, perform a test instance password

operation with arguments (i

0

; j

0

) and �. (Note that in this case (i

0

; j

0

) has not had

a matching conversation with an acceptable partner. This completes the proof of

Claim 2.) If the guess is not successful, then reject.

We can easily see by Claim 1 (using s = 2a and t = 2b), that, w.o.p., this procedure

will not make a test instance password query on (i

0

; j

0

) if one has already been made

before.

If we haven't rejected yet, then

(a) set status to Accept,

(b) set K = H

3

(A;B;m; �; (

m

(H

1

(A;B;�))

r

)

y

; �), and

(c) expose using session key K (this is allowed, since there was a successful guess on

the password).

Note that the value of K is computed through an explicit oracle query. It is clear that

the value of K produced in this case are the same as would be computed in the real

system.

A.2 Proofs of Claims

Proof of Claim 1. We will call an oracle query of form H

s

(A;B;m; �; �; �), for s 2 f2a; 2bg, \bad"

if � = DH(�;

m

(H

1

(A;B;�))

r

).

Suppose that with some nonnegligible probability � there will be some responder instance (

^

i

0

;

^

j

0

)

(with B = ID

^

i

0

and A = PID

^

i

0

^

j

0

) such that the following \bad event" occurs:

1. query B1(m̂) is made to (

^

i

0

;

^

j

0

) and returns �̂, and

2. at least two \bad" queries are made with (A;B; m̂; �̂) and distinct values of �, before there

is a successful guess on fA;Bg.

We will then show how to construct a distinguisher D for the DDH problem.

The idea of the distinguisher D is as follows: We start with a triple (X;Y;Z) as input, for

which we need to determine whether or not Z = DH(X;Y ). We will run the adversary against a

simulation of the original PAK simulator. In the simulation, we will use X and Y in place of some

random values. If D runs indistinguishably from the simulator up to the bad event, then we will

be able to use the logs to determine whether or not Z = DH(X;Y ).

More speci�cally, we will \incorporate" X into half of the H

1

responses (randomly), and Y into

B1 responses (i.e., the � values). A bad query will then have to contain

� = DH(�;

m

(H

1

(A;B; �))

r

) = DH(Y g

z

;

m

X

b[�]r

g

�

);

where b[�] 2 f0; 1g, z and � are random values known to us, and m comes from the adversary. One

bad query does not give us information about DH(X;Y ), since we don't know m. However, two

bad queries with di�erent values of b[�] will give us enough information. If b[�] is randomly chosen

for each �, and the adversary asks two bad queries for di�erent choices of the password, then we

will get information about DH(X;Y ). The main di�culty in the construction is how to perform

the simulation without knowing the discrete logarithms of H

1

and � values. For that reason, we
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want to minimize the number of places where X and Y get used, and so we need to make a guess

as to where the \bad event" will occur.

Now let us give the details. Our distinguisher D for input (X;Y;Z) runs as follows:

1. Generate random d between 1 and T .

2. Initialize two lists BAD

0

and BAD

1

(initially empty).

3. We will be running the simulator in the normal manner, but playing the ring master also.

(That is, we will choose passwords for user pairs, and answer any test password queries.) Run

the simulation until the dth pair of users (A;B) is mentioned. (This may be from an oracle

query H

1

(A;B; �), or from an initialize user instance query with user ID A and partner ID

B, or vice-versa.) If we guessed d correctly, this pair will be the identities of the users in the

\bad event."

4. Once A and B are set, continue as in the original simulator, except:

(a) B1(m) query to instance (i

0

; j

0

) with ID

i

0

= B and PID

i

0

j

0

= A: generate z

i

0

j

0

2

R

Z

q

and

k

i

0

j

0

2

R

f0; 1g

�

, set � = Y g

z

i

0

j

0

, and respond with (�; k

i

0

j

0

).

(b) H

1

(A;B; �): If � = �

�

, then set b[�] = b[�

�

] = 0. Otherwise, let b[�] 2

R

f0; 1g. Respond

with (X

b[�]

� h

q

g

�[A;B;�]

mod p) + �p, for �[A;B; �] 2

R

Z

q

, h 2

R

Z

�

p

, and � 2

R

Z

b2

�

=pc

.

(c) A2(�; k) query to initiator instance (i; j), where ID

i

= A and PID

ij

= B: Behave as in

the original simulator, except if we get into case 2, then look for query

H

2a

(A;B;m; �; �

w�r�[A;B;�

�

]

; �

�

);

i.e., ignore any � 6= �

�

.

Note that we know �

�

, and that (H

1

(A;B; �

�

))

r

= g

r��[A;B;�

�

]

, since b[�

�

] = 0. Thus,

the original simulator will work correctly in this case. It is safe to ignore oracle queries

with � 6= �

�

, since those wouldn't lead to an accept (as the test instance password query

would fail).

(d) B3(k

0

) query to responder instance (i

0

; j

0

), where PID

i

0

j

0

= A and ID

i

0

= B: If there is no

matching conversation with an acceptable partner, then respond with reject. Otherwise,

behave as in the original simulator.

If the \bad event" is about to occur and d has been guessed correctly, then this response

is appropriate: If there was no matching conversation with an acceptable partner and

this query was supposed to result in an accept, then there would be a successful guess on

fA;Bg before the second \bad" oracle query, and that would contradict the de�nition

of the \bad event." On the other hand, if the \bad event" has already occurred, then we

don't care whether or not the response was correct (as will be seen below, it is su�cient

for us to have the \bad event" at any point in our execution, and we don't need to know

the point at which it actually occurred).

(e) (A;B;m; �; �; �) query to H

2a

or H

2b

:

If H

1

(A;B; �) was queried and there is an instance (i

0

; j

0

) with B = ID

i

0

that was queried

with B1(m) and returned � = Y g

z

i

0

j

0

, then do the following (and otherwise, answer the

query as in the original simulator):

First note that if this is a bad query, then

� = DH(�;

m

(H

1

(A;B; �))

r

) = DH(Y g

z

i

0

j

0

;

m

X

b[�]r

g

r��[A;B;�]

):
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Now compute


 = �m

�z

i

0

j

0

X

b[�]rz

i

0

j

0

Z

b[�]r

Y

r�[A;B;�]

g

r��[A;B;�]z

i

0

j

0

:

Put 
 on the list BAD

b[�]

. Then respond with a random k.

If the bad event is about to occur, then this response will be indistinguishable from the

original simulator, since no successful guess on fA;Bg can occur before the bad event.

At the end of the simulation, check whether the lists BAD

0

and BAD

1

intersect (note that this

check can be done in time O(T log T ), by sorting the lists together). If yes, then output \True

DH," otherwise output \Random."

Note that the values stored in BAD

0

and BAD

1

are simply guesses of DH(m;Y ), assuming

Z = DH(X;Y ). If Z is random, then the probability of an intersection between the lists would be

at most T

2

=q by the union bound, since Z

r

would be a random element of G

p;q

(note that q and r

are relatively prime, and m 6= 0 mod p because of the test by B).

On the other hand, suppose Z = DH(X;Y ). If the adversary makes two \bad" queries for the

pair of users (A;B), for passwords �

1

; �

2

with b[�

1

] 6= b[�

2

], then the distinguisher will correctly

answer \True DH" (since each \bad" query will result in 
 = DH(m;Y )). The probability of the

\bad event" is �. The probability of guessing d correctly is

1

T

. The probability of b[�

1

] 6= b[�

2

] for

�

1

6= �

2

is

1

2

. All of these events are independent.

Now, the probability that the distinguisher D guesses correctly is at least

Pr(D is correct) = Pr(D guesses \DH True"jDH instance)Pr(DH instance)

+Pr(D guesses \Random"jRandom instance)Pr(Random instance)

�

�

�

2T

�

�

1

2

�

+

�

1�

T

2

q

��

1

2

�

:

Thus the probability that D is correct is at least

1

2

+

�

4T

�

T

2

2q

, which is non-negligibly more than

1

2

.

Proof of Claim 3. If such a query is indeed made with some non-negligible probability �, then we

will construct a distinguisher D for DDH. Let (X;Y;Z) be the challenge DDH instance.

The idea of the construction is similar to the one in the previous proof. The main di�erence

is that now we \incorporate" X and Y into the m and � values, respectively, sent in a matching

conversation.

The distinguisher runs as follows:

1. Generate random d between 1 and T , and random b 2 f0; 1g.

2. We will be running the simulator in the normal manner, but playing the ring master also.

(That is, we will choose passwords for user pairs, and answer any test password queries.) Run

the simulator until the dth A0 query. Say this query is to (i; j). Let A = ID

i

, B = PID

ij

,

and �

�

= �[A;B]. Reply to this A0 query with m = X.

3. Continue with the simulation, but with the following changes:

(a) B1(m) query to instance (i

0

; j

0

) where m = X, ID

i

0

= B, and PID

i

0

j

0

= A:

Generate a random z

i

0

j

0

2 Z

q

, and set � = Y g

z

i

0

j

0

. Compute k = k

i

0

j

0

as in the original

simulator and return (�; k).
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(b) Any H

2a

, H

2b

or H

3

query (A;B;X; �; �; �) where � = Y g

z

i

0

j

0

for some (i

0

; j

0

) and

� = ZX

z

i

0

j

0

=�

r�[A;B;�]

: Stop the distinguisher and guess \True DH."

(c) A2(�; k) query to (i; j) not part of a matching conversation with an acceptable partner:

Check that an H

1

(A;B; �

�

) query has been asked and a query H

2a

(A;B;m; �; �; �

�

) has

been asked and returned k (w.o.p., there will be at most one such H

2a

query, by the

randomness of H

2a

responses). If not, then reject.

Otherwise, if b = 0, reject, and if b = 1,

i. Set k

0

ij

= H

2b

(A;B;m; �; �; �

�

).

ii. Send k

0

= k

0

ij

.

iii. Accept.

iv. Set K

ij

= H

3

(A;B;m; �; �; �

�

).

v. Expose using K = K

ij

.

(d) B3(k

0

) query to instance (i

0

; j

0

) where m = X, which is not part of a matching conver-

sation:

Reject. If the simulator should have accepted, the adversary w.o.p. would have already

queried H

2b

with the correct Di�e-Hellman value.

4. If the simulation ends without outputting \True DH," then output \Random."

Note that if the adversary does make a bad query, we have probability at least 1=T of guessing

the correct initiator user instance, and probability at least 1=2 of answering the A2 query to

that user instance correctly (thus allowing the DDH distinguisher to continue in a way that is

indistinguishable from the regular simulator).

Now, the probability that the distinguisher D guesses correctly is at least

Pr(D is correct) = Pr(D guesses \DH True"jDH instance)Pr(DH instance)

+Pr(D guesses \Random"jRandom instance)Pr(Random instance)

�

�

�

2T

�

�

1

2

�

+

�

1�

T

q

��

1

2

�

;

where the term T=q comes from the probability of the adversary \guessing" a random Z correctly

on a random oracle query. Thus, the probability that D guesses correctly is at least

1

2

+

�

4T

�

T

2q

,

which is non-negligibly more than

1

2

.

Remark on the use of Computational Di�e-Hellman: It is easy to see that the proofs

could be modi�ed to base security on the Computational Di�e-Hellman problem (i.e., the hardness

of computing Z = DH(X;Y ) for random X and Y ). Basically, instead of checking whether the

random oracle queries match a given form, we would just guess which of the oracle queries are

\right," and thereby extract Z. However, this approach would only give O(

�

T

3

) success probability

in Claim 1, since we would need to guess the location of both of the bad oracle queries.

B Security of the PPK Protocol

B.1 The Simulator

The proof of simulatability of PPK is similar in structure to that of PAK. We name the actions of

user instances on deliver message operations as follows:
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Current

Earlier H

3

B1 B1

0

A2

0

H

3

� �

B1 Claim 8 � �

B1

0

Explicit (case 1 of H

3

) � �

A2

0

Explicit (case 2 of H

3

) � � �

Table 3: Possible shadowings in the PPK simulator. This table is to be interpreted in the same way

as Table 2 (see page 20), except for one technicality: For clarity of presentation, the \B1" entry in

the table covers cases 1 and 2 of the B1 action, while the \B1

0

" entry covers case 3, even though

in case 2 there is no matching conversation (and thus it should, strictly speaking, be included in

\B1

0

").

A0 Initiator instance action to start the protocol (i.e., an A0 action for an initiator instance is

generating and sending m).

B1 Responder instance action upon receiving the �rst message (i.e., m).

A2 Initiator instance action upon receiving the message from the responder (i.e., �).

The possible shadowings in the PPK simulator are shown in Table 3.

We will let (i; j), (i

0

; j

0

), A, B, and �

�

have the same meaning as in the proof of PAK (see the

beginning of Appendix A.1). The notions of acceptable partner and matching conversation will also

retain their meaning.

The simulator will follow the same general rules as described in Appendix A.1. Responses to

deliver message and random oracle operations that do not fall under those rules are done as follows:

1. H

1

(A;B; �)

Same as for PAK: Generate �[A;B; �] 2

R

Z

q

and store it. Then generate h 2

R

Z

�

p

and

� 2

R

Z

b2

�

=pc

, and return (h

q

g

�[A;B;�]

mod p) + �p. Note that this will be indistinguishable

from a random bit string of length �, since h

q

g

�[A;B;�]

mod p is a random element from Z

�

p

9

and

2

�

modp

2

�

is negligible.

2. H

0

1

(A;B; �)

Same as for PAK: Generate �

0

[A;B; �] 2

R

Z

q

and store it. Then generate h 2

R

Z

�

p

and

�

0

2

R

Z

b2

�

=pc

, and return (h

q

g

�

0

[A;B;�]

mod p) + �

0

p. Note that this will be indistinguishable

from a random bit string of length �, since h

q

g

�

0

[A;B;�]

mod p is a random element from Z

�

p

10

and

2

�

modp

2

�

is negligible.

3. H

3

(A;B;m; �; �; �)

9

To see this, note that h

q

is a random element from the subgroup of order r in Z

�

p

and g

�[A;B;�]

is a random

element of the subgroup of order q in Z

�

p

.

10

To see this, note that h

q

is a random element from the subgroup of order r in Z

�

p

and g

�

0

[A;B;�]

is a random

element of the subgroup of order q in Z

�

p

.
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Case 1 Some prior B1 query has recorded a tuple of the form (i

0

; j

0

;m; �; z), with A = PID

i

0

j

0

and B = ID

i

0

, for some value of z. This implies that a B1(m) query was made to (i

0

; j

0

)

and returned �, but no A0 query to an acceptable partner returnedm|see the B1 query

description below. (In other words, this H

3

query might be shadowed by the implicit H

3

query from case 3 of the B1 action.) Instance (i

0

; j

0

) must have already opened a session

with the dangling open connection assignment (see case 3 of B1).

W.o.p., there will be at most one such tuple, since � values stored in these tuples are

random and independent. If queries H

1

(A;B; �) and H

0

1

(A;B; �) have been asked, and

(

m

(H

1

(A;B;�))

r

)

z�r�

0

[A;B;�]

= �, then:

(a) If a test instance password operation has not previously been performed on (i

0

; j

0

),

perform a test instance password operation with arguments (i

0

; j

0

) and �. If the test

is successful, the ring master will give us the key K

i

0

j

0

of instance (i

0

; j

0

) (since (i

0

; j

0

)

has a dangling connection assignment). Return K

i

0

j

0

.

(b) If a test instance password operation with � has already been performed on (i

0

; j

0

)

and was successful, then let K

i

0

j

0

be the key obtained from the ring master in that

operation. Return K

i

0

j

0

.

(c) If an unsuccessful test instance password operation has already been performed on

(i

0

; j

0

) with a password �

0

6= �, then abort. We will call this event a responder failure

(note that (i

0

; j

0

) is a responder instance).

If we have neither failed nor returned anything yet, then return k 2

R

f0; 1g

�

.

If no responder failure occurs as a result of this H

3

query, then the simulation will be

indistinguishable from the real world, as follows: In the real world the key generated by

(i

0

; j

0

) is

H

3

�

A;B;m; �;DH

�

�

(H

0

1

(A;B; �

�

))

r

;

m

(H

1

(A;B; �

�

))

r

�

; �

�

�

:

Therefore, if this H

3

query is successful, it will return a value consistent with the adver-

sary's view. On the other hand, if this query is not successful, then generating a random

response is indistinguishable from the adversary's view in the real world.

The following claim shows that w.o.p. A will not cause a responder failure.

Claim 4. W.o.p., no responder failure will occur.

The proof appears in Appendix B.2. Note that case 1 of H

3

is the only place in the

simulation where a responder failure can occur.

As can be seen, an H

3

query is the only place in the simulation that a test instance pass-

word query can be made on a responder instance. We can therefore state the following

claim (similarly to PAK):

Claim 5. If a test instance password query is made on a responder instance (i

0

; j

0

),

then the m value received by (i

0

; j

0

) was not sent by an acceptable partner.

The reason is that an H

3

query can result in a test instance password query on (i

0

; j

0

)

only if a tuple (i

0

; j

0

;m; �; z) has previously been recorded. It will become apparent

below (see the B1 query description) that, w.o.p., this could only happen if the m value

received by (i

0

; j

0

) was not sent by an acceptable partner.

Case 2 Some prior A2 query has recorded a tuple of the form (i; j;m; �;w), with A = ID

i

and B = PID

ij

, for some value of w. This implies that (i; j) sent m and received � back,
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but did not have a matching conversation with an acceptable partner|see the A2 query

description below. (In other words, this H

3

query might be shadowed by the implicit

H

3

query from case 2a or 2b of the A2 action.) Instance (i; j) must have already opened

a session with the dangling connect connection assignment (see cases 2a and 2b of A2).

(Note that this case cannot overlap with the previous one, i.e., w.o.p., we won't have

both a tuple (i

0

; j

0

;m; �; z) and tuple (i; j;m; �;w) recorded, with matching values of A

and B. That reason is that if the values of m and � in the tuples match up, then (i; j)

and (i

0

; j

0

) will have had a matching conversation. Also, the two instances are acceptable

partners. However, an initiator instance that has had a matching conversation with an

acceptable partner will not record a tuple|it will be in case 1 of A2, while an initiator

tuple can only be recorded in case 2 of A2.)

W.o.p., there will be at most one such tuple, since m values stored in these tuples are

random and independent. If queries H

1

(A;B; �) and H

0

1

(A;B; �) have been asked, and

(

�

(H

0

1

(A;B;�))

r

)

w�r�[A;B;�]

= �, then:

(a) If a test instance password operation has not previously been performed on (i; j),

perform a test instance password operation with arguments (i; j) and �. If the test

is successful, the ring master will give us the key K

ij

of instance (i; j) (since (i; j)

has a dangling connection assignment). Return K

ij

.

(b) If a test instance password operation with � has already been performed on (i

0

; j

0

)

and was successful, then let K

i

0

j

0

be the key obtained from the ring master in that

operation. Return K

i

0

j

0

.

(c) If an unsuccessful test instance password operation has already been performed on

(i; j), then abort. We will call this event an initiator failure (note that (i; j) is an

initiator instance; in addition, see case 2c of A2 for another place where an initiator

failure can occur).

If we have neither failed nor returned anything yet, then return k 2

R

f0; 1g

�

.

If no initiator failure occurs as a result of this H

3

query, then the simulation will be

indistinguishable from the real world, similarly to case 1.

The following claim shows that w.o.p. A will not cause an initiator failure.

Claim 6. W.o.p., no initiator failure will occur (whether in case 2 of H

3

or in case 2c

of A2).

The proof appears in Appendix B.2.

Note that the test instance password query on (i; j) will only be made here if a tuple

(i; j;m; �;w) has previously been recorded. That, in turn, implies w.o.p. that (i; j) did

not have a matching conversation with an acceptable partner (see the note at the end

of case 2b of A2). We have just proven one part of the following claim:

Claim 7. If a test instance password query is made on an originator instance (i; j),

then (i; j) has not had a matching conversation with an acceptable partner.

The other part is shown in case 2a of A2 (which is the only other place where a test

instance password could be made on an originator instance).

Case 3 Otherwise.

Return k 2

R

f0; 1g

�

.

Let's show that this response is valid, i.e., that this H

3

query can't be shadowed by

any prior implicit queries. Implicit H

3

queries are made in cases 1, 2, and 3 of B1, and
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cases 2a and 2b of A2. It is easy to see that any H

3

call that might shadow an implicit

query from case 3 of B1 would not be dealt with here (rather, it would be dealt with

in case 1 of H

3

). Similarly, we don't need to be concerned for implicit queries from

cases 2a and 2b of A2, since they are only relevant to case 2 of H

3

. Thus, we only need

to show that there is no shadowing from cases 1 and 2 of B1. These are dealt with by

the following:

Claim 8. Let m be returned by an A0 query to (i; j) with A = ID

i

and B = PID

ij

, and �

be returned by a subsequent B1(m) query to (i

0

; j

0

) with B = ID

i

0

and A = PID

i

0

j

0

. Then,

w.o.p., the there will never be a query H

3

(A;B;m; �;DH(

�

(H

0

1

(A;B;�))

r

;

m

(H

1

(A;B;�))

r

); �),

for any �.

The proof of the claim appears in Appendix B.2.

4. A0 query to (i; j)

Same as for PAK: Generate and store w 2

R

Z

q

, and send m = g

w

. Clearly, m is uniformly

drawn from G

p;q

, just as in the real system.

5. B1(m) query to (i

0

; j

0

)

Generate and store z 2

R

Z

q

, and send � = g

z

(which clearly has the correct distribution).

Now consider three cases:

Case 1 The value of m has been sent by an acceptable partner (i; j), and no A2 action has

yet been performed for (i; j). (Note that by the randomness of m values, there will,

w.o.p., be at most one such (i; j).)

Set status to Accept, and perform a start session operation with the connection assign-

ment open for connection from (i; j). This corresponds to the implicit oracle query

K

i

0

j

0

= H

3

�

A;B;m; �;DH

�

m

(H

1

(A;B; �

�

))

r

;

�

(H

0

1

(A;B; �

�

))

r

�

; �

�

�

;

where K

i

0

j

0

is the random session key assigned by the ring master at the time of the start

session operation. Since � is a freshly chosen random number, this implicit query, w.o.p.,

will not shadow any prior H

3

queries (whether explicit or implicit). Consequently, K

i

0

j

0

will be indistinguishable from the value used in the real system.

The connection assignment is legal because, by Claim 5, there could not have been a

test instance password query on (i

0

; j

0

), since (i

0

; j

0

) has received m from an acceptable

partner.

Case 2 The value of m has been sent by an acceptable partner (i; j), and an A2(�

0

) action

has been performed for (i; j), for some �

0

.

Set status to Accept, and perform a start session operation with the connection assign-

ment dangling open. This corresponds to the implicit oracle query

K

i

0

j

0

= H

3

�

A;B;m; �;DH

�

m

(H

1

(A;B; �

�

))

r

;

�

(H

0

1

(A;B; �

�

))

r

�

; �

�

�

;

where K

i

0

j

0

is the random session key assigned by the ring master at the time of the

start session operation. As in case 1, it is easy to see that the values of � and K

i

0

j

0

will

be indistinguishable from those used in the real system.
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Case 3 The value of m has not been sent by an acceptable partner.

Record the tuple (i

0

; j

0

;m; �; z). Then set status to Accept, and perform a start ses-

sion operation with the connection assignment dangling open. This corresponds to the

implicit oracle query

K

i

0

j

0

= H

3

�

A;B;m; �;DH

�

m

(H

1

(A;B; �

�

))

r

;

�

(H

0

1

(A;B; �

�

))

r

�

; �

�

�

;

and is valid for the same reason as in case 2.

It is important to note (for Claim 5), that if a tuple is recorded, then, w.o.p., the m

value received by (i

0

; j

0

) neither was nor every will be sent by an acceptable partner, due

to the fact that values of m are generated randomly by initiator instances.

6. A2(�) query to (i; j)

Consider two cases:

Case 1 (i; j) has had a matching conversation with an acceptable partner (i

0

; j

0

).

Set status to Accept and perform a start session operation with a connect to (i

0

; j

0

)

connection assignment.

Let's show that this connection assignment is legal. Since (i; j) had a matching con-

versation with (i

0

; j

0

), it follows that (i

0

; j

0

) has received the m sent by (i; j), and (i; j)

received the � sent by (i

0

; j

0

). Since � was a fresh random number generated by (i

0

; j

0

),

it follows that w.o.p. (i; j) received � after (i

0

; j

0

) sent it. It is now easy to see that the

B2(m) action for (i

0

; j

0

) was, w.o.p., in case 1. Thus, (i

0

; j

0

) was open for connection from

(i; j). W.o.p., (i

0

; j

0

) became open for connection from (i; j) after (i; j) sent m, since m

was a fresh random number.

In addition, by Claim 7, no test instance password could have been performed on (i; j),

since (i; j) has had a matching conversation with an acceptable partner.

Case 2 (i; j) has not had a matching conversation with an acceptable partner.

Now consider two cases:

Case 2a There exists exactly one � such that queries H

1

(A;B; �) and H

0

1

(A;B; �) have

been asked, and query H

3

(A;B;m; �; (

�

(H

0

1

(A;B;�))

r

)

w�r�[A;B;�]

;

�) has been asked and returned K.

Perform a test instance password operation with arguments (i; j) and �. (Note that

in this case (i; j) has not had a matching conversation with an acceptable partner.

This completes the proof of Claim 7.) This is legal for the following reason: The

only other place where a test instance password could be asked on an originator

instance is in case 2 of H

3

. However, that case can only lead to a test if a tuple

(i; j; : : : ) has been recorded. Such a tuple can only be recorded by an A2 action.

Now, clearly no tuple has been recorded thus far by this A2 action, and also no A2

action could have occurred on (i; j) before (we don't allow more than one A2 action

to be performed on any particular instance).

(a) If the test is successful, then set status to Accept and expose using key K. This

is acceptable for the same reasons as above.

(b) Otherwise, record the tuple (i; j;m; �;w), set status to Accept, and perform a

start session operation with the connection assignment dangling connect.
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This corresponds to the implicit oracle query

K

ij

= H

3

�

A;B;m; �;DH

�

m

(H

1

(A;B; �

�

))

r

;

�

(H

0

1

(A;B; �

�

))

r

�

; �

�

�

;

whereK

ij

is the random session key assigned by the ring master at the time of the

start session operation. Clearly, this implicit query will not, w.o.p., shadow any

prior explicit queries, or else we would have exposed. W.o.p., it won't shadow

another implicit query from an A2 action, by the randomness of m values. Also,

it won't shadow an implicit query from a B1 action of any instance (i

0

; j

0

), since

that would imply that (i; j) had a matching conversation with an acceptable

partner (as A, B, m, and � would have to match), and so we would not be in

case 2 of A2.

Case 2b No such � exists.

Record the tuple (i; j;m; �;w). Then set status to Accept, and perform a start ses-

sion operation with the connection assignment dangling connect. This corresponds

to the implicit oracle query

K

ij

= H

3

�

A;B;m; �;DH

�

m

(H

1

(A;B; �

�

))

r

;

�

(H

0

1

(A;B; �

�

))

r

�

; �

�

�

;

and is valid for the same reason as above at the end of case 2a.

It is important to note (for Claim 7), that if a tuple is recorded (either in case 2a or in

case 2b), then, w.o.p., (i; j) will never be considered to have a matching conversation

with an acceptable partner, due to the fact that values of � are generated randomly

by responder instances. (Recall that in our de�nition of \matching conversation"

we are not concerned with the timing of sends and receives.)

Case 2c There is more than one such �.

Abort with an initiator failure. W.o.p., this case will not occur, by Claim 6.

B.2 Proofs of Claims

Proof of Claim 4. We will call an oracle query of form H

3

(A;B;m; �; �; �) \bad" if

� = DH(

�

(H

0

1

(A;B; �))

r

;

m

(H

1

(A;B; �))

r

):

Suppose that with some nonnegligible probability � there will be a responder failure. This

implies that there will be some responder instance (

^

i

0

;

^

j

0

) (with B = ID

^

i

0

and A = PID

^

i

0

^

j

0

) such

that the following \bad event" occurs:

1. query B1(m̂) is made to (

^

i

0

;

^

j

0

) and returns �̂, and

2. at least two \bad" queries are made with (A;B; m̂; �̂) and distinct values of �, before there

is either a successful test instance password on (

^

i

0

;

^

j

0

) or an initiator failure. (Note that the

simulator aborts when it encounters an initiator failure. Thus, if a responder failure occurs,

that implies that no initiator failure has occurred so far.)

We will then show how to construct a distinguisher D for the DDH problem, with input (X;Y;Z).

The idea of the construction is similar to the one in the proof of Claim 1. Again, we will

\incorporate" X into half of the H

1

responses (randomly), and Y into B1 responses (i.e., the �
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values). The main di�erence is in the de�nition of the bad event: In Claim 1, the bad event could

not occur after a successful test instance password on fA;Bg. In this claim, the bad event is only

guaranteed not to occur after a successful test instance password on the speci�c instance involved.

(The reason for the di�erence has to do with the special handling of test instance password for

dangling connection assignments.) Since the bad event is thus less restricted, D needs to guess the

actual instance where the bad event will occur, as opposed to just guessing the pair of users. This

reduces the success probability of D (as compared to Claim 1) by a factor of

1

T

.

Our distinguisher D for input (X;Y;Z) runs as follows:

1. Generate random d

1

and d

2

between 1 and T .

2. Initialize two lists BAD

0

and BAD

1

(initially empty).

3. We will be running the simulator in the normal manner, but playing the ring master also.

(That is, we will choose passwords for user pairs, and answer any test password queries.) Run

the simulation until the d

1

th pair of users (A;B) is mentioned. (This may be from an oracle

query H

1

(A;B; �), or from an initialize user instance query with user ID A and partner ID

B, or vice-versa.) If we guessed d

1

correctly, this pair will be the identities of the users in the

\bad event."

4. Once A and B are set, continue as in the original simulator, except:

(a) B1(m) query to the d

2

th responder instance (

^

i

0

;

^

j

0

) with ID

^

i

0

= B and PID

^

i

0

^

j

0

= A:

respond with �̂ = Y . Let m̂ = m.

If we guessed d

2

correctly, this will be the responder instance in the \bad event." Note

that it is OK to set �̂ = Y , since Y is assumed to be uniformly distributed.

(b) H

1

(A;B; �): If � = �

�

, then set b[�] = b[�

�

] = 0. Otherwise, let b[�] 2

R

f0; 1g. Respond

with (X

b[�]

� h

q

g

�[A;B;�]

mod p) + �p, for h 2

R

Z

�

p

, �[A;B; �] 2

R

Z

p�1

and � 2

R

Z

b2

�

=pc

.

(c) A2(�) query to initiator instance (i; j), where ID

i

= A and PID

ij

= B: Behave as in the

original simulator, except if we get into case 2, then look for query

H

3

(A;B;m; �; (

�

(H

0

1

(A;B; �

�

))

r

)

w�r�[A;B;�

�

]

; �

�

);

i.e., ignore any � 6= �

�

.

Note that we know �

�

, and that (H

1

(A;B; �

�

))

r

= g

r��[A;B;�

�

]

, since b[�

�

] = 0. Thus,

the original simulator will work correctly in this case. It is safe to ignore oracle queries

with � 6= �

�

, since those wouldn't lead to an accept (as the test instance password query

would fail).

It is easy to see that the only way this behavior might be distinguishable from the

original simulator is if this query was supposed to cause an abort (i.e., an initiator

failure). However, this is not a problem: If the bad event has already occurred, then we

are no longer interested in preserving indistinguishability. On the other hand, if the bad

event is still about to occur, then this query couldn't cause an initiator failure (since the

bad event, by de�nition, can't occur after an initiator failure).

(d) H

3

(A;B;m; �; �; �) query, with a tuple (i; j;m; �;w) recorded, A = ID

i

, B = PID

ij

: If

� = �

�

, then behave as in the original simulator (this will be correct, since b[�

�

] = 0).

Otherwise, return k 2

R

f0; 1g

�

.

This behavior is indistinguishable from the original simulator for the same reasons as

mentioned in the A2 query.
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(e) H

3

(A;B; m̂; �̂; �; �) query (note that this case will not, w.o.p., overlap with the preceding

one for reasons similar to those mentioned in case 2 ofH

3

in the description of the original

simulator, i.e., that it would imply a matching conversation with an acceptable partner,

and thus the tuple (i; j; : : : ) wouldn't have been recorded):

If H

1

(A;B; �) and H

0

1

(A;B; �) were queried, then do the following (and otherwise, an-

swer the query as in the original simulator):

First note that if this is a bad query, then

� = DH

�

m̂

(H

1

(A;B; �))

r

;

�̂

(H

0

1

(A;B; �))

r

�

= DH

�

m̂

X

b[�]r

g

r��[A;B;�]

;

Y

g

r��

0

[A;B;�]

�

:

Now compute


 = � � Z

b[�]r

� Y

r�[A;B;�]

� (m̂ �X

�b[�]r

� g

�r�[A;B;�]

)

r�

0

[A;B;�]

:

Put 
 on the list BAD

b[�]

. Then respond with a random k.

If the bad event is about to occur, then this response will be indistinguishable from the

original simulator, since no successful test instance password on (

^

i

0

;

^

j

0

) can occur before

the bad event.

At the end of the simulation, check whether the lists BAD

0

and BAD

1

intersect (note that this

check can be done in time O(T log T ), by sorting the lists together). If yes, then output \True

DH," otherwise output \Random."

Note that the values stored in BAD

0

and BAD

1

are simply guesses of DH(m̂; Y ), assuming

Z = DH(X;Y ). If Z is random, then the probability of an intersection between the lists would be

at most T

2

=q by the union bound, since Z

r

would be a random element of G

p;q

(note that q and r

are relatively prime, and m 6= 0 mod p because of the test by B).

On the other hand, suppose Z = DH(X;Y ). If the adversary makes two \bad" queries for the

pair of users (A;B), for passwords �

1

; �

2

with b[�

1

] 6= b[�

2

], then the distinguisher will correctly

answer \True DH" (since each \bad" query will result in 
 = DH(m̂; Y )). The probability of

the \bad event" is �. The probability of guessing d

1

and d

2

correctly is

1

T

2

. The probability of

b[�

1

] 6= b[�

2

] for �

1

6= �

2

is

1

2

. All of these events are independent.

Now, the probability that the distinguisher D guesses correctly is at least

Pr(D is correct) = Pr(D guesses \DH True"jDH instance)Pr(DH instance)

+Pr(D guesses \Random"jRandom instance)Pr(Random instance)

�

�

�

2T

2

�

�

1

2

�

+

�

1�

T

2

q

��

1

2

�

:

Thus the probability that D is correct is at least

1

2

+

�

4T

2

�

T

2

2q

, which is non-negligibly more than

1

2

.

Proof of Claim 6. We will call an oracle query of form H

3

(A;B;m; �; �; �) \bad" if

� = DH(

�

(H

0

1

(A;B; �))

r

;

m

(H

1

(A;B; �))

r

)

.
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Suppose that with some nonnegligible probability � there will be an initiator failure. This

implies that there will be some initiator instance (

^

i;

^

j) (with A = ID

^

i

and B = PID

^

i

^

j

) such that

the following \bad event" occurs:

1. query A0 is made to (

^

i;

^

j) and returns m̂,

2. at least two \bad" queries are made with (A;B; m̂; �̂) and distinct values of �, for some �̂,

before there is either a successful test instance password on (

^

i;

^

j) or a responder failure, and

3. at some point in the execution, the adversary asks the query A2(�̂) to (

^

i;

^

j), and it is processed

in case 2 of A2 (this could be either before, in between, or after the bad queries).

We will then show how to construct a distinguisher D for the DDH problem, with input (X;Y;Z).

The construction of D is similar to that of Claim 4, except that now the roles of A and B are

switched around. Most notably, H

1

and H

0

1

are switched around. Thus, we will \incorporate" X

into half of the H

0

1

responses (randomly), and Y into an A0 response (i.e., m value). One peculiarity

of the construction for this claim is that the value of �̂ might not become known until after the

\bad" queries are made to H

3

(see the de�nition of the bad event above). For that reason the lists

BAD

0

and BAD

1

are now indexed with values of �. At the end, when �̂ is already set, the lists

BAD

0

[�̂] and BAD

1

[�̂] are compared.

Our distinguisher D for input (X;Y;Z) runs as follows:

1. Generate random d

1

and d

2

between 1 and T .

2. Initialize two arrays of lists BAD

0

[�] and BAD

1

[�] (initially empty).

3. We will be running the simulator in the normal manner, but playing the ring master also.

(That is, we will choose passwords for user pairs, and answer any test password queries.) Run

the simulation until the d

1

th pair of users (A;B) is mentioned. (This may be from an oracle

query H

1

(A;B; �), or from an initialize user instance query with user ID A and partner ID

B, or vice-versa.) If we guessed d

1

correctly, this pair will be the identities of the users in the

\bad event."

4. Once A and B are set, continue as in the original simulator, except:

(a) A0 query to the d

2

th initiator instance (

^

i;

^

j) with ID

^

i

= B and PID

^

i

^

j

= A: respond with

m̂ = Y .

If we guessed d

2

correctly, this will be the initiator instance in the \bad event." Note

that it is OK to set m̂ = Y , since Y is assumed to be uniformly distributed.

(b) H

0

1

(A;B; �): If � = �

�

, then set b[�] = b[�

�

] = 0. Otherwise, let b[�] 2

R

f0; 1g. Respond

with (X

b[�]

�h

q

g

�

0

[A;B;�]

mod p)+�

0

p, for h 2

R

Z

�

p

, �

0

[A;B; �] 2

R

Z

p�1

and �

0

2

R

Z

b2

�

=pc

.

(c) A2(�) on (

^

i;

^

j): Set �̂ = �. Then do start session with the dangling connect connection

assignment.

Note that if the bad event is about to occur, then we don't need to be concerned for

case 1 of A2. Also, the original simulator would not expose, since that would imply a

successful test instance password on (

^

i;

^

j), and that is also ruled by the bad event. Now,

it is easy to see that the only way the above behavior might be distinguishable from

the original simulator is if this query was supposed to cause an abort (i.e., an initiator

failure). However, this would imply that the bad event has already occurred (i.e., the two

bad queries have already been asked), and so we are no longer interested in preserving

indistinguishability.
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(d) H

3

(A;B;m; �; �; �) query, with a tuple (i

0

; j

0

;m; �; z) recorded, A = PID

i

0

j

0

, B = ID

i

0

:

If � = �

�

, then behave as in the original simulator (this will be correct, since b[�

�

] = 0).

Otherwise, return k 2

R

f0; 1g

�

.

It is easy to see that the only way this behavior might be distinguishable from the

original simulator is if this query was supposed to cause an abort (i.e., a responder

failure). However, this is not a problem: If the bad event has already occurred, then we

are no longer interested in preserving indistinguishability. On the other hand, if the bad

event is still about to occur, then this query couldn't cause a responder failure (since

the bad event, by de�nition, can't occur after a responder failure).

(e) H

3

(A;B; m̂; �; �; �) query (note that this case will not, w.o.p., overlap with the preceding

one since it would imply that some responder instance (i

0

; j

0

) has received its m from an

acceptable partner, and yet recorded a tuple|that is impossible, since cases 1 and 2 of

B1 do not record tuples):

If H

1

(A;B; �) and H

0

1

(A;B; �) were queried, then do the following (and otherwise, an-

swer the query as in the original simulator):

First note that if this is a bad query, then

� = DH

�

m̂

(H

1

(A;B; �))

r

;

�

(H

0

1

(A;B; �))

r

�

= DH

�

Y

g

r��[A;B;�]

;

�

X

b[�]r

g

r��

0

[A;B;�]

�

:

Now compute


 = � � Z

b[�]r

� Y

r�

0

[A;B;�]

� (� �X

b[�]r

� g

r��

0

[A;B;�]

)

r�[A;B;�]

:

Put � on the list BAD

b[�]

[�]. Then respond with a random k.

If the bad event is about to occur, then this response will be indistinguishable from the

original simulator, since no successful test instance password on (

^

i;

^

j) can occur before

the bad event.

At the end of the simulation, check whether the lists BAD

0

[�̂] and BAD

1

[�̂] intersect (note that

this check can be done in time O(T log T ), by sorting the lists together). If yes, then output \True

DH," otherwise (and also if �̂ has never been set) output \Random."

It is easy to show, similarly to Claim 4, that D is correct with probability at least

1

2

+

�

4T

2

�

T

2

2q

,

which is non-negligibly more than

1

2

.

Proof of Claim 8. If such a query is indeed made with some non-negligible probability �, then we

will construct a distinguisherD for DDH. Note that, as in proofs of Claims 4 and 6, we can presume

that no failures will occur before the \bad event."

The construction of the distinguisher, with input (X;Y;Z), is similar to that in Claim 3. Thus,

we \incorporate" X and Y into the m and � values, respectively, sent in a matching conversation.

The main di�erence is in the handling of the A2 action that is not part of a matching conversation:

In Claim 3, the distinguisher had to guess whether or not to accept, since it couldn't check whether

or not the � value used by the adversary to compute k

0

is correct. If the distinguisher decided to

accept, then it would expose using the key based on the � value used by the adversary for k

0

. On

the other hand, in PPK, the adversary does not send k

0

. The � values can only appear in queries

to H

3

. Since the adversary could ask many queries to H

3

, and we don't know which of them she
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intended to succeed, we have to pick one by guessing. This reduces the success probability of the

distinguisher (as compared to Claim 3) by a factor of

1

T

.

Let us now present the details. The distinguisher, on input (X;Y;Z), runs as follows:

1. Generate random d

1

and d

2

between 1 and T , and random b 2 f0; 1g.

2. We will be running the simulator in the normal manner, but playing the ring master also.

(That is, we will choose passwords for user pairs, and answer any test password queries.) Run

the simulator until the d

1

th A0 query. Say this query is to (

^

i;

^

j). Let A = ID

^

i

, B = PID

^

i

^

j

,

and �

�

= �[A;B]. Reply to this A0 query with m̂ = X.

3. Continue with the simulation, but with the following changes:

(a) B1(m̂) query to instance (i

0

; j

0

) where ID

i

0

= B, and PID

i

0

j

0

= A:

Generate a random z

i

0

j

0

2 Z

q

, and send � = Y g

z

i

0

j

0

.

(b) A2(�) query to (

^

i;

^

j) not part of a matching conversation with an acceptable partner:

The di�culty in this case is that the adversary may ask an H

3

query that should give

him the correct key, but we are unable to determine which of the adversary's queries

is correct (since we don't know the discrete log of m̂). We will resolve the problem by

guessing which query is correct: If b = 0, our guess is that none of them are correct. If

b = 1, then our guess is that the d

2

th query is correct.

Proceed as follows: Set �̂ = �. Consider all the H

3

queries of form (A;B; m̂; �̂; �; �

�

).

If b = 1 and there have been d

2

or more of such queries, then expose using the result

of the d

2

th query. Otherwise, do a start session with the dangling connect connection

assignment.

Note that we don't need to be concerned about the possibility of an initiator failure,

if a bad event is about to occur (as mentioned at the beginning of the proof of this

claim). It now easily follows that the above response is indistinguishable from the original

simulator, if b and d

2

are guessed correctly.

(c) H

3

(A;B;X; �; �; �):

If � = Y g

z

i

0

j

0

for some (i

0

; j

0

) and

� = Z �X

z

i

0

j

0

�r�

0

[A;B;�]

� g

r

2

��[A;B;�]�

0

[A;B;�]

=�

r�[A;B;�]

;

then stop the distinguisher and guess \True DH."

Otherwise, if �̂ has been set, � = �̂, � = �

�

, b = 1, and this is the d

2

th query of form

H

3

(A;B; m̂; �̂; �; �

�

), then respond with the key of (

^

i;

^

j) (note that the distinguisher is

playing the ring master, and so has access to all the keys). Otherwise, return k 2

R

f0; 1g

�

.

Note that we don't have to be concerned with the possibility of an initiator failure, as

above. It is then easy to see that the response is indistinguishable from the original

simulator, as long as b and d

2

have been guessed correctly.

4. If the simulation ends without outputting \True DH," then output \Random."

Note that if the adversary does make a bad query, we have probability at least 1=T of guessing

the correct initiator user instance, and probability at least 1=2T of answering the A2 and H

3

queries

to that user instance correctly (thus allowing the DDH distinguisher to continue in a way that is

indistinguishable from the regular simulator).
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Current

Earlier get veri�er H

0

H

2a

H

2b

H

3

B1 B1

0

A2

get veri�er Explicit

H

0

Explicit

H

2a

� �

H

2b

Claim 12

H

3

Claim 12

B1 Claim 12 � �

B1

0

Explicit � �

A2 Claim 12 Claim 12 �

Table 4: Possible shadowings in the PAK-X simulator. This table is to be interpreted in the same

way as Table 2 (see page 20).

Now, the probability that the distinguisher D guesses correctly is at least

Pr(D is correct) = Pr(D guesses \DH True"jDH instance)Pr(DH instance)

+Pr(D guesses \Random"jRandom instance)Pr(Random instance)

�

�

�

2T

2

�

�

1

2

�

+

�

1�

T

q

��

1

2

�

;

where the term T=q comes from the probability of the adversary \guessing" a random Z correctly

on a random oracle query. Thus, the probability that D guesses correctly is at least

1

2

+

�

4T

2

�

T

2q

,

which is non-negligibly more than

1

2

.

C Security of the PAK-X Protocol

C.1 The Simulator

The proof of simulatability of PAK-X is similar in structure to that of PAK. We name the actions

of user instances on deliver message operations as follows:

A0 Initiator instance action to start the protocol (i.e., an A0 action for an initiator instance is

generating and sending m).

B1 Responder instance action upon receiving the �rst message (i.e., m).

A2 Initiator instance action upon receiving the message from the responder (i.e., (�; a; k)).

B3 Responder instance action upon receiving the second message from the initiator (i.e., k

0

).

The possible shadowings in the PAK-X simulator are shown in Table 4.

We will let (i; j), (i

0

; j

0

), A, B, and �

�

have the same meaning as in the proof of PAK (see the be-

ginning of Appendix A.1). The notions of acceptable partner andmatching conversation will also re-

tain their meaning. For brevity, we will write H

0

(fA;Bg; �) to mean H

0

(min(A;B);max(A;B); �).

In addition, we will write v

�

and V

�

to mean H

0

(fA;Bg; �

�

) and g

v

�

, respectively. (Note that when
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v

�

and V

�

appear in expressions for implicit oracle calls, their values might not yet be determined,

i.e., the H

0

queries may not yet have been made.)

The simulator will follow the same general rules as described in Appendix A.1. Responses to

deliver message and random oracle operations that do not fall under those rules, as well as to the

new get veri�er operation, are done as follows:

1. H

0

(fA;Bg; �)

We presume that A and B are valid user IDs, say of users i and i

0

(otherwise, this query

would be handled by one of the general rules, as mentioned in Appendix A.1). Perform a

test password on (i; i

0

) (this is legal, since an impl operation will be made next to record the

result of this oracle query). Now consider two cases:

Case 1 No get veri�er operation has yet been performed on (i; i

0

).

Generate and store v[fA;Bg; �] 2

R

f0; 1g

jqj+�

. Respond with v[fA;Bg; �].

This response is indistinguishable from the real system, since the only prior implicit

query that could shadow this one is in get veri�er on (i; i

0

). However, this case assumes

that no get veri�er operation has yet been performed on (i; i

0

).

Case 2 A get veri�er operation has been performed on (i; i

0

).

In this case, the test password operation above has returned whether or not � = �

�

.

If � 6= �

�

, then return v 2

R

f0; 1g

jqj+�

. If � = �

�

(in which case this query is shad-

owed), then return v[fA;Bg] (which has been set while processing get veri�er|see the

description of get veri�er below).

2. H

0

0

(A;B; c)

Return u 2

R

f0; 1g

jqj+�

.

3. H

1

(A;B; V )

Generate �[A;B; �] 2

R

Z

q

and store it. Then generate h 2

R

Z

�

p

and � 2

R

Z

b2

�

=pc

, and return

(h

q

g

�[A;B;�]

mod p) + �p. Note that this will be indistinguishable from a random bit string

of length �, since h

q

g

�[A;B;�]

mod p is a random element from Z

�

p

11

and

2

�

modp

2

�

is negligible.

4. H

2a

(A;B;m; �; a; �; �; V )

Case 1 Some prior B1 query has recorded a tuple of the form (i

0

; j

0

;m; �; y

i

0

j

0

; c

i

0

j

0

; k

i

0

j

0

),

with A = PID

i

0

j

0

and B = ID

i

0

, for some values of y

i

0

j

0

, c

i

0

j

0

, and k

i

0

j

0

. This implies that

a B1(m) query was made to (i

0

; j

0

) and returned (�; g

H

0

0

(A;B;c

i

0

j

0

)

; k

i

0

j

0

), but no A0 query

to an acceptable partner returned m|see the B1 query description below. (In other

words, this H

2a

query might be shadowed by the implicit H

2a

query from case 2 of the

B1 action.)

W.o.p., there will be at most one such tuple, since � values stored in these tuples are

random and independent. Consider two cases:

Case 1a QueryH

1

(A;B; V ) has been asked, (

m

(H

1

(A;B;V ))

r

)

y

i

0

j

0

= �, and � = V

H

0

0

(A;B;c

i

0

j

0

)

.

The simulator proceeds as follows: If there has been a successful guess �

�

on fA;Bg

and V = g

H

0

(fA;Bg;�

�

)

, then call this H

2a

query a successful H

2a

query on (i

0

; j

0

).

11

To see this, note that h

q

is a random element from the subgroup of order r in Z

�

p

and g

�[A;B;�]

is a random

element of the subgroup of order q in Z

�

p

.
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If there hasn't been a successful guess on fA;Bg, then check all the H

0

queries, and

look for � that results in V = g

H

0

(fA;Bg;�)

. If such a � is found (there can be at most

one such �, w.o.p., by the randomness of H

0

), and there never was an unsuccessful

guess on fA;Bg for �:

(a) If a test instance password operation has not previously been performed on

(i

0

; j

0

), perform a test instance password operation with arguments (i

0

; j

0

) and �.

If the test is successful, we also call this query a successful H

2a

query on (i

0

; j

0

).

(b) If a test instance password operation has previously been performed on (i

0

; j

0

),

then abort. We will call this event an H

2a

failure.

In explanation, let's note that V is independent of V

�

, unless either the discrete

log of V has been returned by a prior H

0

query, or V has been returned by a get

veri�er query (in which case V = V

�

). The following claim shows that even in the

latter case, this H

2a

query can't be \correct" unless a prior H

0

query resulted in the

discrete log of V (or else there has been a successful guess on fA;Bg):

Claim 9. Let (�; a; k) be returned by a B1(m) query to (i

0

; j

0

). Let A = PID

i

0

j

0

and

B = ID

i

0

. Suppose get veri�er is performed on fA;Bg (either before or after the B1

action), and returns V

�

. Then, w.o.p., no query

H

2a

(A;B;m

0

; �

0

; a;DH(�

0

;

m

0

(H

1

(A;B; V

�

))

r

);DH(a; V

�

); V

�

);

for any m

0

and �

0

, will be made, unless by the time of the H

2a

query there has been

either a successful guess on fA;Bg, or an H

0

(fA;Bg; �) query, for some �, with

V

�

= g

H

0

(fA;Bg;�)

.

The proof of the claim appears in Appendix C.2.

Case 1b Otherwise.

Do nothing.

Finally, if this query is a successful H

2a

query on (i

0

; j

0

) for some (i

0

; j

0

), then return

k

i

0

j

0

. Otherwise, return k 2

R

f0; 1g

�

.

If no H

2a

failure occurs as a result of this H

2a

query, then the simulation will be indis-

tinguishable from the real world, as follows: In the real world the k value sent by (i

0

; j

0

)

is

H

2a

(A;B;m; �; g

H

0

0

(A;B;c

i

0

j

0

)

;DH(�;

m

(H

1

(A;B; V

�

))

r

); (V

�

)

H

0

0

(A;B;c

i

0

j

0

)

; V

�

):

Therefore, if this H

2a

query is successful, it will return a value consistent with the

adversary's view. On the other hand, if this query is not successful, then generating a

random response is indistinguishable from the adversary's view in the real world.

The following claim shows that w.o.p. there will be no failure:

Claim 10. W.o.p., no H

2a

failure will occur.

The proof appears in Appendix C.2.

As can be seen, an H

2a

query is the only place in the simulation that a test instance pass-

word query can be made on a responder instance. We can therefore state the following

claim (similarly to PAK and PPK):

Claim 11. If a test instance password query is made on a responder instance (i

0

; j

0

),

then (i

0

; j

0

) has not had a matching conversation with an acceptable partner.
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The reason is that an H

2a

query can result in a test instance password query on (i

0

; j

0

)

only if a tuple (i

0

; j

0

;m; �; y

i

0

j

0

; c

i

0

j

0

; k

i

0

j

0

) has previously been recorded. It will become

apparent below (see the B1 query description) that, w.o.p., this could only happen if

(i

0

; j

0

) has not had a matching conversation with an acceptable partner.

Case 2 No tuple of the form (i

0

; j

0

;m; �; y

i

0

j

0

; c

i

0

j

0

; k

i

0

j

0

) has been recorded with A = PID

i

0

j

0

and B = ID

i

0

.

Return k 2

R

f0; 1g

�

. The only way this response could be distinguishable from the real

system is if this query would be shadowed by an implicit H

2a

query from case 1 of some

B1 action, i.e., if m and � are from a matching conversation of two valid user instances,

and � = DH(�;

m

(H

1

(A;B;V ))

r

). However, by the following claim, w.o.p. this will not occur.

Claim 12. Let m be returned by an A0 query to (i; j) with A = ID

i

and B = PID

ij

,

and � be returned by a subsequent B1(m) query to (i

0

; j

0

) with B = ID

i

0

and A = PID

i

0

j

0

.

Then, w.o.p., the there will never be (neither before nor after the A0 and B1 queries) an

oracle query to either H

2a

, H

2b

, or H

3

, that includes (A;B;m; �;DH(�;

m

(H

1

(A;B;V ))

r

); V ),

for any V .

This claim is proved in the same way as Claim 3 (with obvious changes to accommodate

the di�erences between PAK and PAK-X).

5. H

2b

(A;B;m; �; �; a; k; c; V )

Return k

0

2

R

f0; 1g

�

.

This is indistinguishable from the real system by the following argument: The only implicit

H

2b

query that could shadow this one is the query from case 1 of an A2 action. However, that

shadowing is, w.o.p., impossible by Claim 12. (Note that the H

2b

queries in case 2 of the A2

action are explicit, i.e., all of their arguments are known, and so a query-response pair would

be stored for them.)

6. H

3

(A;B;m; �; �; c; V )

Return K 2

R

f0; 1g

�

.

As for H

2b

queries, indistinguishability easily follows by Claim 12.

7. A0 query to (i; j)

Generate and store w 2

R

Z

q

, and send m = g

w

. Clearly, m is uniformly drawn from G

p;q

,

just as in the real system.

8. B1(m) query to (i

0

; j

0

)

Generate y

i

0

j

0

2

R

Z

q

, c

i

0

j

0

2

R

f0; 1g

�

, k

i

0

j

0

2

R

f0; 1g

�

. Send � = g

y

i

0

j

0

, a = g

H

0

0

(A;B;c

i

0

j

0

)

, and

k = k

i

0

j

0

. Now consider two cases:

Case 1 The value of m has been sent by an acceptable partner.

The simulation corresponds to the implicit oracle query

k

i

0

j

0

� c

i

0

j

0

= H

2a

(A;B;m; �; a;DH(�;

m

(H

1

(A;B; V

�

))

r

); (V

�

)

H

0

0

(A;B;c

i

0

j

0

)

; V

�

):

Since � is a freshly chosen random number, this implicit query, w.o.p., will not shadow

any prior H

2a

queries (whether explicit or implicit). Consequently, k

i

0

j

0

will be indistin-

guishable from the value sent in the real system.
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Case 2 The value of m has not been sent by an acceptable partner.

In this case, record the tuple (i

0

; j

0

;m; �; y

i

0

j

0

; c

i

0

j

0

; k

i

0

j

0

). It is important to note (for

Claim 11), that if this tuple is recorded, then, w.o.p., (i

0

; j

0

) will never be considered to

have a matching conversation with an acceptable partner, due to the fact that values

of m are generated randomly by initiator instances. (Recall that in our de�nition of

\matching conversation" we are not concerned with the timing of sends and receives.)

As in the previous case, we have an implicit oracle query

k

i

0

j

0

� c

i

0

j

0

= H

2a

(A;B;m; �; a;DH(�;

m

(H

1

(A;B; V

�

))

r

); (V

�

)

H

0

0

(A;B;c

i

0

j

0

)

; V

�

);

which is indistinguishable as above by the randomness of � values.

9. A2(�; a; k) query to (i; j)

Case 1 (i; j) has had a matching conversation with an acceptable partner (i

0

; j

0

).

Generate k

0

ij

2

R

f0; 1g

�

, send k

0

= k

0

ij

, set status to Accept, and perform a start ses-

sion operation with the connection assignment open for connection from (i

0

; j

0

). This

corresponds to the following implicit oracle queries:

k

0

ij

= H

2b

(A;B;m; �;DH(�;

m

(H

1

(A;B; V

�

))

r

); a; k

i

0

j

0

; c

i

0

j

0

; V

�

);

K

ij

= H

3

(A;B;m; �;DH(�;

m

(H

1

(A;B; V

�

))

r

); c

i

0

j

0

; V

�

);

where K

ij

is the random session key assigned by the ring master at the time of the start

session operation.

By Claim 12, these implicit queries couldn't shadow any past or future explicit queries. It

is also easy to see that these implicit queries will not shadow any other implicit queries,

unless there is a collision of m values between two initiator instances (and that only

occurs with negligible probability).

The open connection assignment will be legal, since the only place that the simulator

could perform a test instance password operation on (i; j) would be in case 2 of the

A2 query (see there). Also, w.o.p., we will never have two initiator instances (i

1

; j

1

)

and (i

2

; j

2

) that are open for connection from the same responder instance (i

0

; j

0

), since

that would imply that (i

1

; j

1

) and (i

2

; j

2

) generated the same m value (otherwise, they

couldn't both have had matching conversations with (i

0

; j

0

)).

Case 2 (i; j) has not had a matching conversation with an acceptable partner.

Look for a value of c for which an H

0

0

(A;B; c) query has been made and a = g

H

0

0

(A;B;c)

.

(W.o.p. there will be at most one such value of c, due to the randomness of H

0

0

.) If no

such c is found, then reject. This is indistinguishable from the real system, since w.o.p.

the a received would not pass the test a = g

H

0

0

(A;B;c)

, no matter what c would have been

computed in the real system.

Otherwise (if such a c is found), look for a value of V for which an H

1

(A;B; V ) query

has been made, and another query

H

2a

(A;B;m; �; a; �

w�r�[A;B;V ]

; V

H

0

0

(A;B;c)

; V )

has been made and returned k�c. (W.o.p. there will be at most one such value of V , due

to the randomness of H

2a

.) If no such V is found, then reject. This is indistinguishable
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from the real system, since w.o.p. the k received would be incorrect in the real system

(i.e., the correct k = c�H

2a

(A;B;m; �; a;DH(�;

m

(H

1

(A;B;V

�

))

r

); (V

�

)

H

0

0

(A;B;c)

; V

�

) would

be independent of the adversary's view).

Suppose such a V is found. Consider two cases:

Case 2a A get veri�er query has been performed on (i; i

0

) and returned V

�

.

If V 6= V

�

, then reject. This is clearly indistinguishable from the real system, since

the correct k is independent of the adversary's view (as the V argument to H

2a

is

incorrect).

If V = V

�

, then proceed as follows:

(a) Set k

0

= H

2b

(A;B;m; �; �

w�r�[A;B;V ]

; a; k; c; V ).

(b) Send k

0

.

(c) Accept.

(d) Set K = H

3

(A;B;m; �; �

w�r�[A;B;V ]

; c; V ).

(e) Expose using session key K (this is allowed, since (i; j) is a client instance, and

a get veri�er query has been performed on (i; i

0

)).

Note that the values of k

0

and K are computed through explicit oracle queries (we

can think of these as subroutine calls within the simulator), and the queries and

responses are recorded, as usual. It is clear that the values of k

0

and K produced in

this case are the same as would be computed in the real system.

Case 2b No get veri�er query has been performed on (i; i

0

).

Look for a value of � such that H

0

(fA;Bg; �) has been asked and V = g

H

0

(fA;Bg;�)

.

(W.o.p. there will be at most one such value of �, due to the randomness of H

0

.) If

no such � is found, then reject. This is indistinguishable from the real system, since

w.o.p. the k received would be incorrect in the real system (as the V argument to

H

2a

is incorrect w.o.p.).

Otherwise (if such a � is found), perform a test instance password operation with

arguments (i; j) and � (note that this is the only place where we could perform

this operation for an initiator instance, and no session has been started yet, so the

operation is legal). If the guess is not successful, then reject (this is indistinguishable

from the real system, by an argument similar to the one above). If the guess is

successful, then:

(a) Set k

0

= H

2b

(A;B;m; �; �

w�r�[A;B;V ]

; a; k; c; V ).

(b) Send k

0

.

(c) Accept.

(d) Set K = H

3

(A;B;m; �; �

w�r�[A;B;V ]

; c; V ).

(e) Expose using session key K (this is allowed, since there was a successful guess

on the password).

This is correct similarly to above.

10. B3(k

0

) query to (i

0

; j

0

)

Case 1 (i

0

; j

0

) has had a matching conversation with an acceptable partner (i; j).

Set status to Accept and perform a start session operation with a connect to (i; j)

connection assignment. This is legal because
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(a) w.o.p., the instance (i; j) will still be open for connection by the randomness of �

values sent by responder instances (so that, w.o.p., for each initiator (i; j), there

will be at most one (i

0

; j

0

) with which it has had a matching conversation, and so at

most one instance will try to connect to (i; j)), and

(b) by Claim 11, there could not have been a test instance password query on (i

0

; j

0

),

since (i

0

; j

0

) has had a matching conversation with an acceptable partner.

Case 2 The current value m has been sent by some acceptable partner (i; j), and (�; a; k

i

0

j

0

)

have been received by (i; j), but the value of k

0

that was received has not been sent by

(i; j).

Reject. This is indistinguishable from the real system since k

0

is invalid.

Case 3 The current value m has been sent by some acceptable partner (i; j), but the triple

received by (i; j) in A2 is not equal to (�; a; k

i

0

j

0

) sent by (i

0

; j

0

).

Reject. By Claim 12, w.o.p., the H

2b

query that would produce the correct value of k

0

has never been asked. Also, no implicit query could have produced the correct k

0

(note

that (i; j) did not have a matching conversation, and thus did not \make" an implicit

H

2b

query; also, any other initiator instance would, w.o.p., have a di�erent value of m).

Thus, the correct value of k

0

is independent of the adversary's view, and so it is safe to

reject.

Case 4 Otherwise. (Note that in this case, the current value of m has not been sent by an

acceptable partner, and thus a tuple must have been recorded by (i

0

; j

0

) in case 2 of the

B1 action.)

Look for a value of V such that an H

1

(A;B; V ) query has been asked and a query

H

2b

(A;B;m; �; (

m

(H

1

(A;B;V ))

r

)

y

i

0

j

0

; a; k

i

0

j

0

; c

i

0

j

0

; V ) has been asked and returned k

0

. (W.o.p.

there will be at most one such value of V , due to the randomness of H

2b

.) If no such V

is found, then reject. This is indistinguishable from the real system, since w.o.p. the k

0

received would be incorrect in the real system (i.e., the correct k

0

would be independent

of the adversary's view). (The only way k

0

could be correct, other than through a ran-

dom guess, is if it is the result of an implicit H

2b

query in case 1 of A2. However, it is

easy to see that if that was the case, we couldn't get to case 3 of B3.)

Otherwise (if such a V is found), consider two cases:

Case 4a There has been a successful guess � on fA;Bg.

If V = g

H

0

(fA;Bg;�)

, then expose with key

K = H

3

(A;B;m; �; (

m

(H

1

(A;B; V ))

r

)

y

i

0

j

0

; c

i

0

j

0

; V ):

This is clearly allowed and indistinguishable from the real system.

Otherwise, reject. This is clearly indistinguishable from the real system, since the

correct k

0

is independent of the adversary's view (as the V argument to H

2b

is

incorrect).

Case 4b There has not been a successful guess on fA;Bg.

In this case, reject.

Let's show that this behavior is indistinguishable from the real system. Suppose we

were instead supposed to accept. The value c

i

0

j

0

is independent of the adversary's

view, unless the adversary has queried

H

2a

(A;B;m; �; a;DH(�;

m

(H

1

(A;B; V

�

))

r

);DH(a; V

�

); V

�

):
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Since the value of c

i

0

j

0

was present in one of the adversary's H

2b

queries, it fol-

lows that, w.o.p., the adversary has indeed made the above H

2a

query. Now, from

Claim 9 and the discussion preceding that claim, it follows that, w.o.p., the adver-

sary has made a prior query H

0

(fA;Bg; �), for some �, such that V

�

= g

H

0

(fA;Bg;�)

.

However, that would imply that H

0

(fA;Bg; �) = v

�

. It is easy to see that, w.o.p.,

H

0

(fA;Bg; �) would only return v

�

if � = �

�

. From the H

2a

action description

above, it is easy to see that this situation would, w.o.p., result in a successful guess

on fA;Bg (made during the H

2a

query). Thus, there has already been a successful

guess on fA;Bg, which contradicts our original assumption.

11. get veri�er on user pair (i; i

0

)

Let A and B be the IDs of users i and i

0

, respectively. Send a get veri�er query on (i; i

0

) to

the ring master (i.e., in the ideal world). The ring master will return whether any prior test

password query on (i; i

0

) was successful. If there was a successful guess on fA;Bg for some �

(whether through test instance password or test password), then return g

H

0

(fA;Bg;�)

.

Otherwise (i.e., if no query was successful), generate and store v[fA;Bg] 2

R

f0; 1g

jqj+�

.

Return g

v[fA;Bg]

. This corresponds to the implicit oracle query

v[fA;Bg] = H

0

(fA;Bg; �

�

):

Clearly, this implicit query cannot shadow any prior explicit H

0

query, or else some prior test

password would have been successful.

C.2 Proofs of Claims

Proof of Claim 9. Suppose that with some nonnegligible probability � there will be some responder

instance (

^

i

0

;

^

j

0

) (with B = ID

^

i

0

and A = PID

^

i

0

^

j

0

) such that the following \bad event" occurs:

1. query B1(m̂) is made to (

^

i

0

;

^

j

0

) and returns (�̂; â;

^

k),

2. get veri�er is performed on fA;Bg and returns V

�

(either before or after the B1 action), and

3. query

H

2a

(A;B;m; �; â;DH(�;

m

(H

1

(A;B; V

�

))

r

);DH(â; V

�

); V

�

)

(for some m and �) is made, before there has been either a successful guess on fA;Bg or an

H

0

(fA;Bg; �) query, for some �, with V

�

= g

H

0

(fA;Bg;�)

.

We will then construct a distinguisherD for DDH. Let (X;Y;Z) be the challenge DDH instance.

The idea of the construction is to \incorporate" X into the result of the get veri�er query, and Y

into the a values sent by B instances.

The construction is as follows:

1. Generate random d between 1 and T .

2. We will be running the simulator in the normal manner, but playing the ring master also.

(That is, we will choose passwords for user pairs, and answer any test password queries.)

Run the simulation until the dth pair of users (A;B) is mentioned. (This may be from a

get veri�er query on users with IDs A and B, or from an initialize user instance query with

user ID A and partner ID B, or vice-versa.) If we guessed d correctly, this pair will be the

identities of the users in the \bad event."
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3. Once A and B are set, continue as in the original simulator, except:

(a) get veri�er on users with IDs A and B:

Respond with X. Note that this results in V

�

= X.

If the \bad event" is about to occur, then this response is correct, since there could not

have been a successful guess on fA;Bg.

(b) B1(m) query to instance (i

0

; j

0

) with ID

i

0

= B and PID

i

0

j

0

= A:

Generate y

i

0

j

0

2

R

Z

q

, z

i

0

j

0

2

R

Z

q

, and k

i

0

j

0

2

R

f0; 1g

�

. Send � = g

y

i

0

j

0

, a = Y g

z

i

0

j

0

, and

k = k

i

0

j

0

.

Note that this corresponds to an implicit query

y + z

i

0

j

0

= H

0

0

�

A;B; k

i

0

j

0

�H

2a

�

A;B;m; �; Y g

z

i

0

j

0

;

DH(�;

m

(H

1

(A;B;X))

r

);DH(Y g

z

i

0

j

0

;X);X

��

:

W.o.p., this implicit query will not shadow any prior H

0

0

query (whether implicit or

explicit), by the randomness of k

i

0

j

0

.

(c) H

0

(fA;Bg; �) query: Generate and store v[fA;Bg; �] 2

R

f0; 1g

jqj+�

. Respond with

v[fA;Bg; �].

If the \bad event" is about to occur and d has been guessed correctly, then this response

is appropriate, as the \bad event" rules out H

0

queries that would return the discrete

log of V

�

.

(d) H

0

0

(A;B; c) query: Behave as in the original simulator.

The only way this behavior could be distinguishable from the original simulator is if this

query was shadowed by an implicit query from a B1 action. However, it is easy to see

that this will not occur, w.o.p., unless the adversary �rst makes the query

H

2a

(A;B;m; �; Y g

z

i

0

j

0

;DH(�;

m

(H

1

(A;B;X))

r

);DH(Y g

z

i

0

j

0

;X);X);

(since without such an H

2a

query, the value of c that would cause the shadowing would

be independent of the adversary's and simulator's view). However, such an H

2a

query

would imply that the bad event has already occurred, in which case we are no longer

concerned with indistinguishability.

(e) A2(�; a; k) query to instance (i; j) with ID

i

= A and PID

ij

= B, not part of a matching

conversation: If the value of a is not equal to Y g

z

i

0

j

0

for any (i

0

; j

0

), then proceed as in

the original simulator. Otherwise, reject.

In the �rst case, the behavior is clearly indistinguishable. On the other hand, suppose

a = Y g

z

i

0

j

0

for some (i

0

; j

0

). Our response could be incorrect if query

H

2a

(A;B;m; �; Y g

z

i

0

j

0

;DH(�;

m

(H

1

(A;B;X))

r

);DH(Y g

z

i

0

j

0

;X);X)

has been made. However, that would imply that the bad event has already occurred, in

which case we are no longer concerned with indistinguishability.
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(f) B3(k

0

) query to responder instance (i

0

; j

0

), where PID

i

0

j

0

= A and ID

i

0

= B: If there is no

matching conversation with an acceptable partner, then respond with reject. Otherwise,

behave as in the original simulator.

If the \bad event" is about to occur and d has been guessed correctly, then this response

is appropriate: If there was no matching conversation with an acceptable partner and

this query was supposed to result in an accept, then there would be a successful guess

on fA;Bg, and that would contradict the de�nition of the \bad event" (unless the \bad

event" has already occurred, in which case we don't care whether or not the response

was correct).

(g) H

2a

(A;B;m; �; a; �; �;X) query where a = Y g

z

i

0

j

0

for some (i

0

; j

0

) and � = ZX

z

i

0

j

0

: Stop

the distinguisher and guess \True DH."

4. If the simulation ends without outputting \True DH," then output \Random."

Note that if the \bad event" does occur, we have probability at least 1=T of guessing the correct

pair of users. Now, the probability that the distinguisher D guesses correctly is at least

Pr(D is correct) = Pr(D guesses \DH True"jDH instance)Pr(DH instance)

+Pr(D guesses \Random"jRandom instance)Pr(Random instance)

�

�

�

T

�

�

1

2

�

+

�

1�

T

q

��

1

2

�

;

where the term T=q comes from the probability of the adversary \guessing" a random Z correctly

on a random oracle query. Thus, the probability that D guesses correctly is at least

1

2

+

�

2T

�

T

2q

,

which is non-negligibly more than

1

2

.

Proof of Claim 10. We will call an oracle query of form H

2a

(A;B;m; �; a; �; �; V ) \bad" if

1. some responder instance (i

0

; j

0

), with ID

i

0

= B and PID

i

0

j

0

= A, has sent � (w.o.p., by

randomness of � values, there will be at most one such instance),

2. � = DH(�;

m

(H

1

(A;B;V ))

r

), and

3. � = DH(a; V ).

Suppose that with some nonnegligible probability � there will be an H

2a

failure. This implies

that there will be some responder instance (

^

i

0

;

^

j

0

) (with B = ID

^

i

0

and A = PID

^

i

0

^

j

0

) such that the

following \bad event" occurs:

1. query B1(m̂) is made to (

^

i

0

;

^

j

0

) and returns (�̂; â;

^

k), and

2. at least two \bad" queries are made with (A;B; m̂; �̂) and distinct values of V , before there

is a successful guess on fA;Bg.

(Note that we speak of distinct values of V , since, w.o.p., distinct values of � will result in distinct

values of V .) We will then show how to construct a distinguisher D for the DDH problem, with

input (X;Y;Z).

The idea of the construction is similar to the one in the proof of Claim 1. Again, we will

\incorporate" X into half of the H

1

responses (randomly), and Y into B1 responses (i.e., the �

values). The main di�erence is in the handling of the A2 action: In Claim 1, the distinguisher
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would check the H

2a

queries that used the correct value of �. In this claim, the distinguisher needs

to check the H

2a

queries that used the correct value of V . Note that the correct value of V is not

determined until either a get veri�er query is made, or H

0

is queried with the correct value of �.

Our distinguisher D for input (X;Y;Z) runs as follows:

1. Generate random d between 1 and T .

2. Initialize two lists BAD

0

and BAD

1

(initially empty).

3. We will be running the simulator in the normal manner, but playing the ring master also.

(That is, we will choose passwords for user pairs, and answer any test password queries.) Run

the simulation until the dth pair of users (A;B) is mentioned. (This may be from an oracle

query H

1

(A;B; �), or from an initialize user instance query with user ID A and partner ID

B, or vice-versa.) If we guessed d correctly, this pair will be the identities of the users in the

\bad event."

We will say that V

�

is determined when either the query H

0

(fA;Bg; �

�

) or the query get

veri�er on fA;Bg is made. Note that, since the distinguisher itself generates �

�

, we will be

able to detect whether or not V

�

has been determined, and we will also be able to compute

V

�

after that point.

4. Once A and B are set, continue as in the original simulator, except:

(a) B1(m) query to instance (i

0

; j

0

) with ID

i

0

= B and PID

i

0

j

0

= A: generate z

i

0

j

0

2

R

Z

q

, set

� = Y g

z

i

0

j

0

, and then proceed as in the original simulator.

(b) H

1

(A;B; V ): If V

�

has been determined and V = V

�

, then set b[V ] = b[V

�

] = 0. (Note

that w.o.p. the queryH

1

(A;B; V

�

) will not be made until after V

�

has been determined.)

Otherwise, let b[V ] 2

R

f0; 1g. Respond with (X

b[V ]

�h

q

g

�[A;B;V ]

mod p)+�p, for h 2

R

Z

�

p

,

�[A;B; V ] 2

R

Z

p�1

, and � 2

R

Z

b2

�

=pc

.

(c) A2(�; a; k) query to initiator instance (i; j), where ID

i

= A and PID

ij

= B: Behave as

in the original simulator, except if we get into case 2, then only check oracle queries with

V = V

�

(and if V

�

has not yet been determined, then simply reject).

Note that (H

1

(A;B; V

�

))

r

= g

r��[A;B;V

�

]

, since b[V

�

] = 0. Thus, the original simulator

will work correctly in this case. It is safe to ignore oracle queries with V 6= V

�

, since

those wouldn't lead to an accept (as the test instance password query would fail).

(d) B3(k

0

) query to responder instance (i

0

; j

0

), where PID

i

0

j

0

= A and ID

i

0

= B: If there is no

matching conversation with an acceptable partner, then respond with reject. Otherwise,

behave as in the original simulator.

If the \bad event" is about to occur and d has been guessed correctly, then this response

is appropriate: If this query was supposed to result in an accept, then there would

be a successful guess on fA;Bg before the second \bad" oracle query, and that would

contradict the de�nition of the \bad event." On the other hand, if the \bad event" has

already occurred, then we don't care whether or not the response was correct.

(e) H

2a

(A;B;m; �; a; �; �; V ) query:

IfH

1

(A;B; V ) was queried and there is an instance (i

0

; j

0

) with B = ID

i

0

that was queried

with B1(m) and returned � = Y g

z

i

0

j

0

, then do the following (and otherwise, answer the

query as in the original simulator):
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First note that if this is a bad query, then

� = DH(�;

m

(H

1

(A;B; V ))

r

) = DH(Y g

z

i

0

j

0

;

m

X

b[V ]r

g

r��[A;B;V ]

):

Now compute


 = �m

�z

i

0

j

0

X

b[V ]rz

i

0

j

0

Z

b[V ]r

Y

r�[A;B;V ]

g

r��[A;B;V ]z

i

0

j

0

:

Put 
 on the list BAD

b[V ]

. Then respond with a random k.

If the bad event is about to occur, then this response will be indistinguishable from the

original simulator, since no successful guess on fA;Bg can occur before the bad event.

At the end of the simulation, check whether the lists BAD

0

and BAD

1

intersect (note that this

check can be done in time O(T log T ), by sorting the lists together). If yes, then output \True

DH," otherwise output \Random."

Note that the values stored in BAD

0

and BAD

1

are simply guesses of DH(m;Y ), assuming

Z = DH(X;Y ). If Z is random, then the probability of an intersection between the lists would be

at most T

2

=q by the union bound, since Z

r

would be a random element of G

p;q

(note that q and r

are relatively prime, and m 6= 0 mod p because of the test by B).

On the other hand, suppose Z = DH(X;Y ). If the adversary makes two \bad" queries for

the pair of users (A;B), for values V

1

; V

2

with b[V

1

] 6= b[V

2

], then the distinguisher will correctly

answer \True DH" (since each \bad" query will result in 
 = DH(m;Y )). The probability of the

\bad event" is �. The probability of guessing d correctly is

1

T

. The probability of b[V

1

] 6= b[V

2

] for

V

1

6= V

2

is

1

2

. All of these events are independent.

Now, the probability that the distinguisher D guesses correctly is at least

Pr(D is correct) = Pr(D guesses \DH True"jDH instance)Pr(DH instance)

+Pr(D guesses \Random"jRandom instance)Pr(Random instance)

�

�

�

2T

�

�

1

2

�

+

�

1�

T

2

q

��

1

2

�

:

Thus the probability that D is correct is at least

1

2

+

�

4T

�

T

2

2q

, which is non-negligibly more than

1

2

.
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