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Abstract. We initiate the investigation of the class of relations that admit extremely e�cient perfect

zero knowledge proofs of knowledge: constant number of rounds, communication linear in the length of

the statement and the witness, and negligible knowledge error. In its most general incarnation, our result

says that for relations that have a particular three-move honest-veri�er zero-knowledge (HVZK) proof

of knowledge, and which admit a particular three-move HVZK proof of knowledge for an associated

commitment relation, perfect zero knowledge (against a general veri�er) can be achieved essentially

for free, even when proving statements on several instances combined under under monotone function

composition. In addition, perfect zero-knowledge is achieved with an optimal 4-moves. Instantiations

of our main protocol lead to e�cient perfect ZK proofs of knowledge of discrete logarithms and RSA-

roots, or more generally, q-one-way group homomorphisms. None of our results rely on intractability

assumptions.

1 Introduction

1.1 The Problem and the Motivation

Suppose a prover P to would like to e�ciently convince a veri�er V about knowledge of some secret,

for instance, a discrete logarithm or an RSA root. More formally, we want to prove knowledge of a

secret witness to a public value over some given relation. Of course, a trivial way to do this would be

to simply reveal the secret. However, this is useless in a cryptographic context { we want a solution

allowing P to keep the secret to himself. More concretely, we want an e�cient zero-knowledge proof

of knowledge for the given relation.

In this paper we characterize a class of relations where such a zero-knowledge proof of knowledge

can be built without making any computational assumptions, and at negligible extra cost (com-

munication and number of moves) compared to the trivial non zero-knowledge solution. Related

results in this vein were shown before in [CD98], but for the case of proofs of language membership

(concretely, for the boolean-circuit satis�ability problem).

Before describing our results in more detail, we emphasize that the fact that we use no in-

tractability assumptions implies that soundness and zero-knowledge of our protocols hold indepen-

dently of the hardness of any problem, including even the problems for which we build our proofs

of knowledge. Even if this is nice from a theoretical point of view, one could argue that in practice,

there is no use in making a zero-knowledge proof of knowledge for a problem that does not satisfy

an intractability assumption: if anyone can compute the prover's secret, there is not any sense in

trying to hide it.

?

An abridged version of this paper appeared in the Third International Workshop on Practice and Theory in Public

Key Cryptosystems, PKC 2000
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There are two answers to this objection: �rst it implicitly assumes that computational problems

fall in two classes, where you have on one side problems for which an intractability assumption holds,

and on the other side easy problems. This is in fact not the case. Cryptographic assumptions require

that the problem be hard on average, whereas problems that are hard in the worst case, but often

easy, fall in neither of the two classes. For instance, graph isomorphism seems to be one such case.

Thus there could well be cases where one would like a zero-knowledge proof for a problem, even

though one might be reluctant to base an intractability assumption on it.

Secondly, it should be noted that a protocol with no assumptions is much easier to use as

subprotocol in a larger construction (and this is indeed an important type of application of ZK

proofs). Let us elaborate on this: In any multiplayer protocol it is an obvious advantage if we can

prove it secure against cheating by player A, even if A is computationally unbounded. Indeed many

cryptographic tasks do allow for solutions where some (though not all!) players can be unbounded.

However, if in constructing such a solution, we use as subprotocol a ZK proof that only works if one

of the players, say A, has bounded computing power, then nothing we build on top will allow us to

prove the overall protocol secure against an unbounded A. So we see that using subprotocols with

no assumptions allows more design freedom in deciding which players should be protected against

unconditionally.

1.2 Our Results

Our results apply to relations admitting a proof of knowledge of a special form: a prover P can

convince in perfect zero-knowledge an honest veri�er using a 3-move protocol, where P sends the

�rst message, V sends a random challenge, and P answers the challenge. We assume that, whereas

a truthful P can answer any challenge, a cheating prover can answer at most one. We call this

a �-protocol (a precise de�nition follows below). There are several known protocols of this form,

e.g., [Sch89] for discrete logs and [GQ88] for RSA roots. These protocols have the e�ciency we are

after: constant round and communication a constant factor larger than the length of the secret.

But they cannot be proved to be zero-knowledge against a dishonest veri�er - at least not by any

known resettable simulation technique [GK96b].

Our main result is as follows: it was observed in [Dam89,FS89] that any �-protocol for a relation

R leads to existence of a commitment scheme, which in turn naturally de�nes a new relation R

0

(see

below for details). Loosely speaking, R

0

consists of pairs in which one component is a commitment

and the other is a string opening that commitment. We consider the case where both R and R

0

have

�-protocols. This class includes the cases of discrete log, RSA roots, and in general any relation

built from a q-one-way function [CD98].

1

For any such relation, we obtain a 4-move protocol that

is perfect zero-knowledge in general without making any computational assumptions. Note that this

in particular means - somewhat surprisingly - that we do not need to assume that the commitment

scheme associate to R is secure. We just use it as a building block in the protocol.

Our results come at the price of one extra move and a small constant factor of communication

compared to the �-protocols we start from. The 4 moves is optimal for protocols that are black-box

zero-knowledge [GK96b]. Additionally, we obtain a 6-move protocol with an even smaller constant

factor of communication overhead.

When instantiated for concrete problems like discrete log and RSA, we get very practical per-

fect zero-knowledge protocols which naturally have many applications, including improving the

1

Actually this class includes random self-reducible languages also (i.e., our result encompasses all the languages

considered in [BMO90,SKS91]), but we are mainly concerned with those languages with e�cient (linear commu-

nication) �-protocols.
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e�ciency of many distributed cryptographic protocols (e.g., [GRR98,FMY98]). As an example of

the practicality of these protocols, consider the problem of discrete logs in Z

�

p

(p prime) where jpj

denotes the bit length of p. We present a 4-round ZK proof of knowledge for this relation that

communicates only 9jpj bits, Additionally it only requires 10 exponentitations (6 by V , 4 by P ), so

there is only a small constant factor of computation overhead, also. Our 6-move version of this pro-

tocol communicates 8jpj bits and requires only 7 exponentiations (4 by V , 3 by P ). The knowledge

error for both proofs is simply 1=q, where q is the order of the generator used. As another example,

we mention one case where our protocols are more e�cient than any previous ones, with or without

intractability assumptions, namely the case of proving knowledge of an RSA root where the public

exponent is a small prime, say 3. If we try to apply Guillou-Quisquater [GQ88] directly to this sit-

uation, we can only get negligible error probability if we iterate their protocol many times because

the error probability of one instance is 1=3 in this case. By constrast, a variant of our construction

allows to give a perfect ZK proof of knowledge of an RSA third root with the same asymptotic

e�ciency as for RSA roots with large public exponent. Speci�cally, to achieve knowledge error 3

�t

for an RSA modulus n, our protocol runs in 4 rounds and communicates only 11jnj + 5t bits, as

compared to 
(t) rounds and 
(tjnj) bits for the iterated GQ protocol.

Our methods generalize to provide perfect zero-knowledge proofs of partial knowledge, allowing

P to, for example, prove that he knows at least t out of n > t secrets, in particular without releasing

any information about which secrets are known. This may be seen as a generalization of the work by

Cramer, Damg�ard and Schoenmakers [CDS94] who provide e�cient witness hiding protocols for the

same type of problems. In this context, our work shows that the stronger property of perfect zero-

knowledge can be obtained at the cost of one extra move in the protocol. Monotone compositions

of ZK were also studied in [SCP93] and [SCPY94], but their protocols are not as e�cient as ours,

in fact we exhibit example cases, where our protocols are super polynomially more e�cient.

1.3 Related Work

There are several earlier results on building general zero-knowledge proofs from honest-veri�er zero-

knowledge protocols of this type. A well-known technique that acheives constant round protocols

(which was only proven secure quite recently [GK96a]) is to let V commit to his challenge before P

sends his �rst message. Apart from the fact that this would require a computational assumption,

the method only seems to work for proofs of language membership. Damg�ard [Dam93] shows a

method without computational assumptions, which however leads to a non-constant number of

moves. Subsequent results, such as [GSV98], also lead to a non-constant number of moves, and

actually do not apply to proofs of knowledge.

Also, there are methods for building constant-round protoocols from scratch: Bellare, Micali and

Ostrovsky [BMO90] show that 5-move perfect zero-knowledge proofs are possible for any random

self-reducible relation.

2

Saito, Kurosawa and Sakurai [SKS91] improve this to 4-moves. Feige and

Shamir [FS89] show a general method for constructing constant-round ZK proofs of knowledge.

Their 4-move protocol relies on the hardness of discrete log, and their 5-move protocol relies on

the existence of a one-way function. The protocols work for any NP relation, but do not lead to

practical protocols. Bellare, Jakobsson, and Yung [BJY97] construct a four-round (computational)

proof of knowledge for any NP-relation that is computationally ZK, and relies only on the existence

of a one-way function. Again, this is not a practical protocol. None of these results achieve linear

communication.

2

They prove this for language membership, but it is not hard to show that their protocol is also a proof of knowledge.
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1.4 Road map to the paper

Section 3 presents most of the notation, concepts, de�nitions, and model we use. Section 4 presents

the 4-move and 6-move perfect ZK proof-of-knowledge protocols. Section 5 presents security theo-

rems for these protocols, with proofs in the appendix. Section 6 present some examples of how the

general protocol can be instantiated. Section 7 presents an extension to monotone composititions.

2 De�nitions of Proofs of Knowledge and Perfect Zero-Knowledge

For a Proof of Knowledge (P; V ) for some binary relation R = f(�; �)g we use the de�nition of

Bellare and Goldreich [BG92]. This de�nition includes the usual completeness condition which says

that a prover indeed knowing what he claims he knows is accepted by the veri�er. For convenience

we (informally) state the technical soundness condition.

There is a function � : f0; 1g

�

! [0; 1] (knowledge error) and a probabilistic expected polynomial

time oracle machine E (knowledge extractor) such that the following holds.

Let P be an arbitrary prover(not necessarily following the protocol!), claiming to know a witness

� for a given public string �, and let �(�) denote P 's success probability. Then E, having rewindable

black-box access to the prover P , either outputs some witness � for �, or a special halting-symbol.

Furthermore, the probability that E outputs a witness is greater than or equal to �(�)� �(�).

In our context Perfect Zero-Knowledge is de�ned by means of the usual black-box formulation

[Gol95], but with perfect indistinguishablity of conversations produced by the expected polynomial

time univeral simulator, having rewindable black-box access to the veri�er, and the conversations

resulting from \real life" interactions between prover and veri�er.

Formal de�nitions are given in Appendix A.

3 De�nition and Basic Theory of �-protocols

We overview the basic de�nitions and properties of our primitive �-protocols. Let a �-protocol

(A;B) be a three move interactive protocol between a probabilistic polynomial-time prover A and

a probabilistic polynomial-time veri�er B, where the prover acts �rst. The veri�er is only required

to send random bits as a challenge to the prover.

More precisely, let R = f(�; �)g be a binary relation and assume that for some given polynomial

p(�) it holds that j�j � p(j�j) for all (�; �) 2 R. Furthermore, let R be testable in polynomial time,

and let R

�

denote the collection of strings � such that, for some string �, (�; �) 2 R. The string

� is called a witness for �. For some (�; �) 2 R, the common input to both players is � while � is

private input to the prover. For such given �, let (a; c; z) denote the conversation between the prover

and the veri�er. To compute the �rst and �nal messages, the prover invokes e�cient algorithms

a(�) and z(�), respectively, using (�; �) and random bits as input. Using an e�cient predicate �(�),

the veri�er decides whether the conversation is accepting with respect to �. The relation R, the

algorithms a(�), z(�) and �(�) are public. The length of the challenges is denoted t

B

, and we assume

that t

B

only depends on the length of the common string �.

In the present context, we will assume that all�-protocols we are given satisfy the following security

properties. First, (A;B) satis�es a strong avour of knowledge soundness: Let (a; c; z) and (a; c

0

; z

0

)

be two conversations, that are accepting for some given �. If c 6= c

0

, then � 2 R

�

and, on input

� and those two conversations, we can e�ciently compute � such that (�; �) 2 R. This is called

special soundness, and the pair of accepting conversations (a; c; z) and (a; c

0

; z

0

) with c 6= c

0

is called

a collision .
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It can be shown by the results of Damgaard and P�tzmann [DP] that a �-protocol (A;B)

with special soundness is a proof of knowledge in the sense of Bellare and Goldreich [BG92], with

knowledge error 2

�t

B

.

3

Finally, we assume (A;B) satis�es special honest veri�er zero knowledge (special HVZK). This

means that we are given a (probabilistic polynomial time) simulator M that on input � 2 R

�

generates accepting conversations with the exactly same distribution as when A and B execute the

protocol on common input � (and A is given a witness � for �), and B indeed honestly chooses its

challenges uniformly at random. The simulator is special in the sense that it can additionally take

a random string c as input, and output an accepting conversation for � where c is the challenge.

A simple but important fact (see [CDS94]) is that if a �-protocol is HVZK, the protocol is

perfectly witness indistinguishable (WI) [FS89]. Although HVZK by itself is de�ned with respect to

a very much restricted veri�er, i.e. an honest one, this means that if for a given instance � there are

at least two witnesses �, then even an arbitrarily powerful and malicious veri�er cannot distinguish

which witness the prover uses.

Examples of �-protocols can be based on one-way group homomorphisms, claw-free pairs of

trapdoor permutations, random self-reducible languages, and q-one-way group homomorphisms

[CD98], which are very attractive from an e�ciency point of view.

3.1 Partial Proofs

A General Theorem The following material is relevant to Section 7. Let f : f0; 1g

n

! f0; 1g,

f 6� 0; 1, be a monotone function

4

, i.e. for all x � y we have f(x) � f(y).

The dual f

�

of f is de�ned as f

�

(x) = f(x� 1)� 1, where 1 denotes the all-one string. This is

a monotone function as well.

There is a natural connection between monotone functions and monotone access structures from

secret sharing: �

f

is the collection of all sets A � f1; : : : ; ng such that f(A) = 1, i.e. f applied to

the characteristic bit string of A is equal to 1.

Consider an e�cient perfect secret sharing scheme S with access structure �

f

. Write f0; 1g

t

for

its key-space (the set from which secrets are chosen). It is e�cient in the sense that all operations

take time polynomial in n (the number of players) and t. Say that each player receives a number

of strings from f0; 1g

t

as share in a secret. Then the total number of strings dealt to all players is

denoted size(S), the size of S.

We say that S has completion

5

if the following holds. Let A 62 �

f

be arbitrary and consider

the distribution D

A

of shares resulting from S for players in A. By the condition on A and the

perfectness of S, D

A

is independent of the secret dealt by the dealer. Completion is satis�ed if

there exists an e�cient probabilistic algorithm that takes as input a random sample from D

A

and

an arbitrary secret s 2 f0; 1g

t

, and outputs a full set of shares consistent with s, with distribution

identical to a full set of shares of s generated by the honest dealer in S.

Let F = ff

n

g

n>0

denote a collection of e�ciently computable monotone functions f

n

on n bits.

Let R be a binary relation as before. For all f

n

2 F and for all l, consider the collection of all

tuples � = (f

n

; �

1

; : : : ; �

n

) such that �

i

2 f0; 1g

l

for i = 1 : : : n. Let � = f�

j

g

j2I

� f0; 1g

�

be given

where I � f1; : : : ; ng and j�

j

j � p(j�

j

j) for j 2 I. Then (�; �) 2 R

F

if and only if f

n

(I) = 1 and

(�

j

; �

j

) 2 R for j 2 I. Note that by our assumptions on R and F , the composite binary relation

3

This is a non-trivial observation, but by standard rewinding techniques one can already verify the slightly weaker

property that there is a knowledge extractor that runs in expected time polynomial in the running time of the

prover and 1=(� � 2

�t

B

), where � is the prover's success probability.

4

Usual Boolean ordering: a � b i� for all bit positions where a has 1, the corresponding position in b is 1 as well.

5

This notion corresponds to \semi-smooth" in [CDS94]
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can be tested e�ciently. The results from [CDS94] imply the following theorem (see also [Cra96]

for the full version)

Theorem 1. Let a �-protocol (A;B) for relation R be given, satisfying special honest veri�er

zero-knowledge and special soundness. Let F = ff

n

g be a family of e�ciently computable monotone

functions. Assume that there is an e�cient perfect secret sharing scheme S with completion for the

dual family F

�

= ff

�

n

g with key-space f0; 1g

t

B

.

Then there exists a �-protocol (A;B) for relation R

F

satisfying special honest veri�er zero-

knowledge and special soundness. The size t

B

of the challenges is equal to t

B

. The total communi-

cation complexity of (A;B) is size(S) times that of (A;B) plus t

B

bits.

Examples of secret sharing schemes satisfying our requirements include all e�cient linear secret

sharing schemes, so in particular Shamir's scheme for the threshold access structure.

A Special Instance: Proof of \OR" In our results to follow, we need a particular, simple instance

of the main theorem from [CDS94].

What we use is a slight generalization of a corollary in [CDS94] which enables a prover,

given two values (x

1

; x

2

), corresponding relations (R

1

; R

2

), and corresponding 3-move �-protocols

((A

1

; B

1

); (A

2

; B

2

)), to present a 3-move �-protocol (A

or

; B

or

) for proving knowledge of a w such

that either (x

1

; w) 2 R

1

or (x

2

; w) 2 R

2

.

We will describe the protocol assuming the challenges from (A

1

; B

1

) and (A

2

; B

2

) are of the same

length. This can easily be generalized, as long as the challenge length in the combined protocol is at

least as long as the challenges from either protocol. The protocol consists of (A

1

; B

1

) and (A

2

; B

2

)

running in parallel, but with the veri�er's challenge c split into c = c

1

� c

2

by P , who uses c

1

as

the challenge for (A

1

; B

1

), and c

2

as the challenge for (A

2

; B

2

).

The protocol for A

or

is as follows: Without loss of generality, say A

or

knows w such that

(x

1

; w) 2 R

1

. Let M

2

be the simulator for S

2

. Then A

or

runs M

2

(x

2

) to generate (m; e; z). It sends

the �rst message of (A

1

; B

1

), along with m as the �rst message of (A

2

; B

2

). On challenge c, it

chooses c

2

= e, and c

1

= c� e. It is able to provide the �nal response in (A

1

; B

1

) because it knows

w, and the �nal response in (A

2

; B

2

) is simply z.

3.2 Commitments using �-protocols

For relation R = f(x;w)g and �-protocol (A;B), consider the relation R

0

= f((x; a); (c; z))g which

holds if (a; c; z) is an accepting conversation for (A;B) on (public) input x. We call R

0

a commitment

relation for (A;B), since given an input x for which a party A does not know a witness, there is a

commitment protocol for A that works as follows:

1. Say A wishes to commit to a value c. A runs the special simulator M for (A;B) with input x

and challenge c, producing accepting conversation (a; c; z) for (A;B).

2. A commits to c by publishing a.

3. A opens the commitment by revealing (c; z).

4. Anyone can verify this by testing if �(x; a; c; z) outputs \accept"

It is easy to see that the commitment is binding as long as A does not know a witness for x.
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4 General Protocol

Say a relation R has a �-protocol (A;B) with t-bit challenges. Assume the commitment relation

R

0

for (A;B) also has a �-protocol (call it (A

0

; B

0

)) satisfying special soundness and special HVZK

with t-bit challenges.

6

Then we show how to construct a 4-move perfect ZK proof of knowledge

with knowledge error 2

�t

for R that does not rely on any intractability assumptions, and whose

communication complexity is twice the communication complexity of (A

0

; B

0

) plus the communi-

cation complexity of (A;B) plus the number of bits in a commitment. We describe it as a 6-move

protocol, but the second and third moves of the �rst part can be combined with the �rst and second

moves of the second part, as in [FS89].

In the protocol, say a prover P wishes to prove to V knowledge of a witness w for x, i.e., a w

such that (x;w) 2 R.

Part 1 Using the commitment relation R

0

and the input x, V commits to value e and proves

knowledge of this value using (A

0

; B

0

). This proof is WI, so does not reveal any information

about e. If V does not give an accepting proof, P halts. Otherwise, say the commitment is

(x;m).

Part 2 Let R

or

be the relation over input pairs ((�

1

; �

2

); (�

1

; �

2

)) where either (�

1

; �

1

) 2 R or

(�

2

; �

2

) 2 R

0

. Using the �-protocol (A

or

; B

or

) from Section 3.1, P gives a WI proof that it

knows either a witness for x, or how to open the commitment (x;m). An honest prover can do

this since it knows a witness for x.

Based on the x for which the prover claims to know a witness, the veri�er provides a perfectly

hiding commitment and a perfect WI proof [FS89] that he can open it. Note that we set it up so

that a witness for x can be computed e�ciently given any two distinct openings of the commitment.

Next, the prover gives a perfect WI proof of knowledge that he can open the commitment or

knows the witness he claims. So why should this convince the veri�er that, unconditionally and not

relying on intractability assumptions, the prover knows the claimed witness?

This is by the existence of the following knowledge extractor. First, K sets up the commitment

and runs, as an honest veri�er, the protocol with the prover. Intuitively, by rewinding the prover

during the second part of the proof, K either extracts a witness for x, in which case we are done,

or extracts an opening of the commitment. In the latter case, and assuming for simplicity that

there is an overwhelming number of di�erent ways to open a commitment, we know by the witness

indistinguishability of K's proof of knowledge of an opening that with very high probability the

opening extracted from the prover is di�erent from the one known to K. With two di�erent ways

to open the commitment, K can �nd a witness for x and we are done.

The black-box simulation for this protocol intuitively works by rewinding the veri�er the simu-

lator extracts an opening for the commitment and thus can give the perfect WI proof to the veri�er

that he knows the witness or can open the commitment. Thus we achieve perfect zero knowledge.

4.1 A Remark on Computational ZK Proofs of Knowledge

We emphasize that our method allows us to construct perfect ZK proofs of knowledge from �-

protocols without making any complexity assumptions, not even on the underlying problem itself.

6

Since the special soundness and special HVZK properties are not a�ected by parallel executions of a protocol,

if there exists a �-protocol for R

0

with t

0

-bit challenges for t

0

< t, then a �-protocol with t

00

-bit challenges

(t

00

= t

0

dt=t

0

e � t) can be constructed using parallel executions of the t

0

-bit challenge protocol. On the other hand,

if there exists a �-protocol for R

0

with t

0

-bit challenges for t

0

> t, then a �-protocol with t-bit challenges can be

created by simply allowing the prover to choose the remaining t

0

� t bits of the challenge, and then sending those

bits along with z to the veri�er. Again, special soundness and SHVZK are preserved.



8 Cramer et al.

If we were willing to do that, one could construct a ZK proof of knowledge for any �-protocol as

follows. Assume there is an invulnerable generator G [FS89] for relation R and assume R has a

�-protocol. Then given problem instance y, where P claims to know a solution, V makes instances

z

1

, z

2

using G and shows that he knows a solution to z

1

or or z

2

. This will naturally be witness

hiding, since there are at least two witnesses. The P proves she knows a solution to y or z

1

or

z

2

. The zero-knowledge property is obtained immediately, and soundness follows by a standard

argument, assuming P is poly time and G is invulnerable.

5 Security of the general protocols

The following theorems are proved in Appendix B.

Theorem 2. If relation R has a �-protocol (A;B) with t-bit challenges, and commitment relation

R

0

associated with (A;B) also has a �-protocol (A

0

; B

0

) with t-bit challenges, then R has a 4-move

perfect ZK proof of knowledge with no intractability assumptions, with knowledge error at most 2

�t

,

and with communication complexity twice that of (A

0

; B

0

) plus that of (A;B) plus the number of

bits in a commitment.

Theorem 3. If relation R has a �-protocol (A;B) with t-bit challenges, and commitment relation

R

0

associated with (A;B) also has a �-protocol (A

0

; B

0

) with t-bit challenges, then R has a 6-move

perfect ZK proof of knowledge with no intractability assumptions, with knowledge error at most 2

�t

,

and with communication complexity twice that of (A;B) plus that of (A

0

; B

0

) plus the number of

bits in a commitment.

6 Instantiations of the General Protocol

6.1 q-one-way group homomorphisms (q-OWGH)

De�nition q-OWGH's are introduced in [CD98]. We briey review the de�nition.

7

Let q be a �xed prime, and let H and G be �nite Abelian groups, with e�cient basic operations

(as usual: random sampling, equality testing, group operations). Let f : H ! G be a one-way group

homomorphism (easy to compute on elements from its domain, but hard to invert on a random

element from its image).

De�nition 1. f is a q-one-way group homomorphism, if given f and an arbitrary x in f 's image,

one can e�ciently compute ~w 2 H such that f( ~w) = x

q

.

Lemma 1. Given f , z, x, 0 < i < q with f(z) = x

i

, one can e�ciently compute w with f(w) = x.

To prove the lemma, let i, j, �, z, ~w be such that ij = 1 + �q, f(z) = x

i

, f( ~w) = x

q

. Then

f(z

j

) = x

1+�q

. Hence, f(z

j

~w

��

) = x, and de�ne w = z

j

~w

��

.

�-protocols First we give the basic �-protocol from [CD98]. A proves knowledge of an f -preimage

w of x 2 G. It starts by A choosing p 2

R

H and sending a = f(p) to B. Next, B chooses

c 2

R

f0; : : : ; q � 1g and sends c to A. Finally, A sends z = pw

c

to B, who checks that f(z) = ax

c

(These computations are performed in the group G).

The proof that this basic protocol, which is clearly a generalization of the RSA-protocol from

Guillou/Quisquater [GQ88] and the DL-protocol from Schnorr [Sch89], is a �-protocol with satis�es

7

We also remove a redundant requirement from the de�nition given in [CD98].
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V P

i; j; i

0

; j

0

2

R

Z

q

h g

i

X

j

mod p

h

0

 g

i

0

X

j

0

mod p

h; h

0

-

c; p; r 2

R

Z

q

B  g

p+xcr

h

r

mod p

c; B

�

i

00
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0

mod q

j

00

 jc+ j

0

mod q

k 2

R

Z

q

i

00

; j

00

; k

-

Check g

i

00

+xj

00 ?

� h

c

h

0

mod p

z  p+ kx mod q

r; z

�

Check g

z+ir

?

� X

k�(c+j)r

B mod p

Fig. 1. DL-1: Given a public value X, P proves that it knows the discrete log x of X.

completeness, special soundness, and special HVZK is given in Lemma 25 from [CD98]. Note that

it is in fact a proof of knowledge with knowledge error 1=q. (See [CD98] for the proofs that q-

OWGH's and the corresponding �-protocols can be constructed for RSA and Discrete Logarithms.)

It remains to be shown that this �-protocol admits a �-protocol for the commitment relation.

This means that we have to provide a �-protocol for A to prove knowledge of a (e; s) for (x;m),

where (m; e; s) is an accepting conversation for x 2 G in the basic �-protocol for q-OWGH's. i.e.

A has to prove knowledge of e; s such that f(s)x

�e

= m. The �-protocol follows:

1. A chooses � 2

R

H and � 2

R

f0; : : : ; q � 1g and sends a = f(�)x

�

to B.

2. B chooses c 2

R

f0; : : : ; q � 1g and sends c to A.

3. A has to �nd z

1

2 H and z

2

2 f0; : : : ; q � 1g such that f(z

1

)x

z

2

= am

c

.

A computes ~w such that f( ~w) = x

q

and integers 0 � � < q and � such that � � ec = � + �q.

A sends z

1

= �s

c

~w

�

and z

2

= � to B, who checks that f(z

1

)x

z

2

= am

c

.

In the general protocol, the � operation for the challenge bits in the \OR" protocol may be

replaced by addition mod q.

Assuming that the members of groups G and H can be represented with l bits, the communica-

tion complexity of the basic �-protocol for q-OWGHs is 3l, and that of the commitment �-protocol

for q-OWGHs is 4l. Therefore, the communication complexity of the 4-move ZK proof of knowledge

for q-OWGHs is 12l, and that of the 6-move ZK proof of knowledge for q-OWGHs is 11l.

In Appendix C, we show how to apply our results to not only q-OWGHs, but also to the

commitment relations of q-OWGHs.

6.2 Optimized Discrete-Log

Figure 1 gives an optimized version of the general protocol for discrete logarithms (DL-1). The proof

of knowledge of either how to open the commitment, or a discrete log of X, is actually combined,

with B being the �rst message of both proofs, and z and r taking the place of the challenge split
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and last messages of both proofs. It's communication complexity is 9jpj and it has a total of 10

exponentiations.

6.3 RSA with prime exponents

By using the protocol for q-one-way group homomorphisms, we can directly implement a ZK proof

of knowledge of RSA decryption when the public exponent is a prime q. However, the soundness

error is 1=q, which implies that for small q, the protocol might need to be repeated a number of

times to achieve negligible soundness error. However, we can also get an e�cient 4-move protocol for

any small prime RSA exponent q with soundness error q

�t

assuming that the prover knows a q

t

th

root of the encryption. (which, for instance, the prover could �nd if it knew the the factorization

of the RSA modulus n). For concreteness, let us assume the public exponent is 3, although the

protocol will work for any prime public exponent.

First we give a 3-move �-protocol with two parameters, t and t

0

, which has soundness error 3

�t

and proves knowledge of a 3

t

0

+1

th root. It requires that A knows a 3

t+t

0

th root. Assume the public

input is y 2 Z

�

n

, and that A knows x, where x

3

t+t

0

� y mod n.

Protocol:

1. A chooses r 2

R

Z

�

n

and sends m � r

3

t+t

0

mod n to B.

2. B chooses e 2 Z

3

t
and sends e to A.

3. A sends z � rx

e

mod n, and B checks that z

3

t+t

0

= my

e

mod n.

In a way, A is attempting to prove that he knows a 3

t+t

0

th root, but ends up proving that he

knows a 3

t

0

+1

th root.

Lemma 2. The protocol above is a �-protocol.

Proof. Completeness is trivial. To prove special soundness, consider two accepting conversations

(m; e; z) and (m; e

0

; z

0

) with e 6= e

0

. These give an equation (z=z

0

)

3

t+t

0

= y

e�e

0

mod n. Also, gcd(e�

e

0

; 3

t+t

0

) is 3

s

for some s < t, so by the Extended Euclidean Algorithm, i and j can be found such

that i(e�e

0

)+j3

t+t

0

= 3

s

. Then the equation can be transformed into ((z=z

0

)

i

y

j

)

3

t+t

0

� y

3

s

mod n.

Since raising to 3 is a permutation in Z

�

n

, assuming 3 is a valid RSA public key for n, we immediately

get a 3

t

0

+1

th root of y from this. Special HVZK can be shown by using the simulator that on input

c chooses r randomly and outputs (r=y

c

; c; r).

We do not know how to construct a general commitment protocol for the above �-protocol.

However, we will be able to substitute a di�erent commitment protocol that works just as well for

constructing an e�cient 4-move ZK proof for cube roots. We describe the new ZK proof here.

Part 1 First V commits to a value b with commitment C = y

b

r

3

2t

mod n and proves knowledge

of a 3

t

th root of C or Cy

�1

, using the �-protocol above with t

0

= t, combined with the Proof

of \OR" method of Section 3.1. This proof is WI, so does not reveal any information about b.

If V does not give an accepting proof, P halts.

Part 2 Using Section 3.1, P proves knowledge of either (1) a cube root of y, (2) a cube root of C,

or (3) a cube root of Cy

�1

. An honest prover can do this since it knows a cube root of y.

As in Section 4, the protocol above can be made into a 4-round protocol by combining the

second and third steps of the �-protocol of Part 1 with the �rst and second steps, respectively, of

the �-protocol of Part 2.
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Theorem 4. The protocol above is a 4-move perfect ZK proof of knowledge of a cube root of y

with no intractability assumptions, with knowledge error at most 3

�t

, and with communication

complexity �ve times that of the �-protocol for cube roots (i.e., the �-protocol above with t

0

= 0),

plus the number of bits in a commitment.

Proof. (sketch) The computational complexity calculation is straightforward, and the completeness

is immediate.

The soundness is similar to that of Theorem 2. In this case the extractor either extracts a cube

root of y or with probability 1=2, a new way to open C. The proof follows as in Theorem 2 since

in that proof we only required the extractor to have probability at least 1=2 of �nding a new way

to open the commitment.

The proof of zero knowledge is also similar to that of Theorem 2. In this case, the simulator

extracts a 3

t

th root of either C or Cy

�1

, and then can simulate the proof of knowledge of the cube

root of either C or Cy

�1

.

We stress again that the protocol above generalizes to any small prime RSA public key. Also

note that we can construct an e�cient 6-move protocol for the same problem, as in Section 4.

7 Monotone Composition

We discuss a further application of our results. It's is now possible to combine Theorems 2 and

Theorem 1:

Theorem 5. Let relation R have a �-protocol (A;B) with t-bit challenges, and let the commitment

relation R

0

associated with (A;B) also have a �-protocol (A

0

; B

0

) with t-bit challenges. Let F = ff

n

g

be a family of e�ciently computable monotone functions. Assume that there is an e�cient perfect

secret sharing scheme S with completion for the dual family F

�

= ff

�

n

g with key-space f0; 1g

t

. Then

relation R

F

has a 4-move perfect ZK proof of knowledge with no intractability assumptions, with

knowledge error at most 2

�t

, and with communication complexity size(S) times that of (A

0

; B

0

) plus

size(S) times that of (A;B) plus the number of bits in a commitment.

To prove this theorem it su�cices to show that the protocol (A;B) for relation R

F

guaranteed

by 1 admits a �-protocol for its associated commitment relation R

0

F

. This can be constructed from

the �-protocol for the commitment relation R

0

of R, by invoking Theorem 1 on the commitment

relation R

0

and its associated �-protocol (A

0

; B

0

). A similar combination is possible with Theorem 3.

We now identify an interesting class of secret sharing schemes suitable for our purposes, namely

linear secret sharing schemes (LSSS), and establish an example of a super-polynomial gap with

earlier work.

Let K denote a �nite �eld. In an LSSS each player receives some linear combination of the

secret s 2 K and some random values � 2 K chosen by the dealer. The distribution of a secret in

fact consists of the dealer selecting a random vector with s in its �rst coordinate and multiplying a

public matrix with this vector to get the shares. In the public matrix, each row is associated with

a player and a player may have several rows. In Shamir's scheme, for instance, the matrix is a Van

der Monde-matrix.

The matrix has the property that theK-span of rows corresponding to players in a set A contains

the vector (1; 0; : : : ; 0) i� A 2 �

f

. It is in this sense that Karchmer and Wigderson [KW93] say

that the matrix (with its assignments of players to rows), which they call monotone span program

(MSP), computes the function f . The size of an MSP is the number of rows in the matrix, which

is equal to the total number of �eld elements given to players in the corresponding LSSS.
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It is easy to see an MSPM gives rise to e�cient perfect secret sharing schemes with completion

(the latter comes down to solving a system of linear equations and sampling a random element from

its solution space). The time required for all operations is polynomial in log(jKj) and size(M).

In the following we set K = GF (2) for simplicity. It's easy to see that to increase the key-space

from f0; 1g to f0; 1g

t

it su�ces to execute the basic LSSS t times, and it will still be e�cient with

completion.

It is well known that if f is computed by an MSP of size m then f 's dual f

�

is also computed

by an MSP of size m. Another relevant fact about MSP's is that all monotone functions f can be

computed, and that monotone formula complexity of f is an upperbound on the minimal size of an

MSP computing f . Furthermore, there are monotone functions which are computed by polynomial

size MSP's (over GF (2)), but require super-polynomial monotone circuits (the ODDFACTOR func-

tion [BGK

+

96]) (and hence its dual ODDFACTOR

�

also has super-polynomial monotone circuit

complexity).

With this in mind, we can now show that our protocol gives in some cases a superpolynomial

e�ciency improvement over earlier work, namely [SCPY94] on perfect ZK for monotone formula

closure of Random Self-reducible Languages. To see this, let the family F of monotone functions

occurring in Theorem 5 be the family of ODDFACTOR functions, and choose as the relation

R anything derived from a random self-reducible problem, for instance the Discrete Logarithm

problem. Theorem 5 now provides an e�cient protocol for the composite language derived from

R and F , while [SCPY94] will have super-polynomial complexity, since that result is polynomial

in the monotone formula complexity of the monotone composition function, ODDFACTOR in our

example.
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Appendix A: Formal De�nitions

Proofs of knowledge were de�ned in [BG92]. Much of the formalism below is from that paper.

Let R be a relation as de�ned in Section 3. Let R(x) = fy : (x; y) 2 Rg be the witness set of x.

Let L

R

= fx : 9y such that (x; y) 2 Rg.

Let A;B be interactive functions (as de�ned in [BG92]). Let A(x) denote the interactive function

with input x. Let A(x;B) be a random variable describing the output of A when interacting with B

on common input x. Let A

z

(x;B) be a random variable describing the output of A with auxiliary

input z when interacting with B on common input x, Let tr

A;B

(x) denote a transcript of the

interaction between A and B on common input x. For a veri�er V , modeled as an interactive

function, let acc

V

(x) be the set of accepting transcripts for V on input x. For a probabilistic oracle

machine C, let C

A(x)

(x) denote a a random variable describing the output of C with oracle A(x)

and input x, with the probability being over the random choices of M and A. (Technically, we can

assume A's random bits are �xed [BG92].) We can assume that C can query the oracle for any part

of a conversation, by supplying the appropriate pre�x to the conversation. (In other words, C can

arbitrarily \rewind" the interactive function A.)

We say that a function f(n) is negligible if for any poly(�), there is an n

0

such that for n > n

0

,

f(n) < 1=poly(n).

De�nition 2. Let � : f0; 1g

�

! [0; 1]. An interactive proof of knowledge system for a relation R

is a pair of interactive functions (V; P ), where V is computable in probabilistic polynomial-time,

satisfying:

1. Completeness: 8x 2 L

R

, Pr(tr

V;P

(x) 2 acc

V

(x)) = 1

2. Soundness: There exists a probabilistic expected polynomial-time oracle machine E (the knowl-

edge extractor) such that 8P

0

8x 2 L

R

, it is the case that E

P

0

(x)

(x) 2 R(x)[?, and Pr(E

P

0

(x)

(x) 2

R(x)) � Pr(tr

V;P

0

(x) 2 acc

V

(x)) � �(x).

The ? symbol is the output of the oracle that indicates \failure."

All knowledge extractors that we consider satisfy the following slightly stronger soundness

property, which basically states that the knowledge extractor can di�erentiate the prover's failure

from its own failure.

{ There exists a probabilistic expected polynomial-time oracle machine E such that 8P

0

8x, it is

the case that E

P

0

(x)

(x) 2 R(x) [ ? [4, and

� Pr(E

P

0

(x)

(x) = 4) = Pr(tr

V;P

0

(x) 62 acc

V

(x)),

� Pr(E

P

0

(x)

(x) =2 R(x)) � Pr(tr

V;P

0

(x) 2 acc

V

(x))� �(jxj), and

� Pr(E

P

0

(x)

(x) = ?) � �(jxj).

In this case, 4 indicates that V would not accept the proof of P

0

, and ? indicates that E failed,

even though V accepted the proof of P

0

.

Two random variables S and S

0

are perfectly indistinguishable if the distributions of S and S

0

are identical.

De�nition 3. A proof system (V; P ) is perfect zero knowledge over R if there exists a proba-

bilistic expected polynomial-time oracle machine M (the simulator) such that for any probabilistic

polynomial-time V

0

, for any (x; y) 2 R, and any auxiliary input z to V

0

, the two random variables

V

0

z

(x;P ) and M

V

0

z

(x)

(x; z) are perfectly indistinguishable.

Taking away z from the inputs to M implies that M is a black-box simulator. All simulators in this

paper are black-box.
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De�nition 4. The proof system consisting of a pair of interactive functions (V; P ), where both V

and P are computed in probabilistic polynomial time, is witness indistinguishable (WI) over R if

for any probabilistic polynomial-time V

0

, any large enough input x, any y

1

; y

2

2 R(x), and for any

auxiliary input z to V

0

, tr

V

0

z

;P

y

1

(x) and tr

V

0

z

;P

y

2

(x) are perfectly indistinguishable.

Appendix B: Proofs

Proof of Theorem 2

Proof. Communication Complexity: Straightforward.

Completeness: Straightforward.

Soundness: Let E

or

be the extractor guaranteed by the special soundness property of (A

or

; B

or

)

[DP]. We construct an extractor E as follows. Say the prover is P

�

, and assume its bits are �xed.

1. E performs Part 1 like a true veri�er, say using commitment pair ((x;m); (e; s)). If P

�

does not

give a well-formed challenge, E outputs 4.

2. E runs E

or

using oracle P

�

(in its current state after Part 1, i.e., after receiving commitment

m, and the proof transcript T from Part 1).

3. Based on the output of E

or

, E performs di�erent actions:

(a) if E

or

outputs 4, E outputs 4 and stops. (In this case, P

�

failed to provide a valid proof.)

(b) If E

or

outputs ?, E outputs ? and stops. (In this case P

�

provided a valid proof, but E

or

failed.)

(c) If E

or

outputs a witness w for x, E outputs w and stops.

(d) If E

or

outputs a witness (e

0

; s

0

) to commitment (x;m), with e 6= e

0

, E uses the two con-

versations (m; e; s) and (m; e

0

; s

0

) and the special soundness feature of (A;B) to generate a

witness w for x. Then E outputs w and stops.

(e) Otherwise E repeatedly performs steps 1 and 2 (sequentially) until either cases 3c or 3d

would occur, at which point E �nishes as indicated for that case. In step 1, instead of

stopping if P

�

does not provide a well-formed challenge, E simply rewinds and tries again.

It is obvious that Pr(E

P

�

(x)

(x) = 4) = Pr(tr

V;P

�

(x) 62 acc

V

(x)), and that Pr(E

P

�

(x)

(x) = ?)

(i.e., the soundness error of E) is bounded by the probability that E

or

outputs ?, which by the

special soundness of (A

or

; B

or

), is at most 2

�t

[DP].

To analyze the expected running time of E we use the following fact: given that a witness (e

0

; s

0

)

for commitment (x;m) is extracted, the probability that e = e

0

is 2

�t

, since the protocol in Part

1 is witness indistinguishable [CDS94] and e is drawn randomly from a set of size 2

t

. (We actually

only use that the probability that e = e

0

is at most 1=2.)

Let q be the probability of E hitting case 3c, 3d, or 3e. Note that this probability is computed

for E starting at step 1, and thus is averaged over all possible transcripts produced in step 1,

including the possibility of E stopping. The probability of hitting case 3e is at most q=2, by the

fact stated above, and therefore the probability of either case 3c or 3d occurring (implying success

for E) is at least q=2. Thus the expected time of E is easily seen to be polynomial.

Zero-Knowledge: We construct a simulator SIM (that uses V

�

as a black-box) as follows.

1. SIM plays the part of the P in Part 1 (i.e., the part of B

0

in (A

0

; B

0

)). If P does not accept

the proof (i.e. V

�

failed in its proof), SIM halts, like P would.

2. Otherwise SIM repeatedly runs the extractor E

0

for protocol (A

0

; B

0

) in Part 1 until E

0

does

not output 4.
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3. If E

0

outputs a witness to the commitment, SIM plays the part of the prover in the (A

or

; B

or

)

in Part 2, which it can do since it has found a witness to the commitment.

4. If E

0

outputs ?, SIM uses the simulator M

or

to generate a conversation with a random chal-

lenge, and attempts to play the prover in the (A

or

; B

or

) in Part 2.

5. E

0

performs one of the following, depending on the challenge of V

�

.

(a) If V

�

does not send a valid challenge, SIM stops, like a true prover would.

(b) If V

�

actually sends the challenge generated in the simulated conversation, SIM �nishes

the proof with the simulated responses.

(c) If neither of the previous cases hold, then SIM rewinds V

�

and generates conversations

with random challenges until V

�

actually sends the challenge generated in the simulated

conversation, so that SIM can �nish the proof.

Obviously SIM produces the same distribution as an honest prover (including when V

�

mis-

behaves).

Say the probability of P accepting the proof of V

�

in Part 1 is q

0

. Then the probability SIM

reaches step 2 is q

0

, and the extractor E

0

produces 4 with probability 1 � q

0

. Thus, the overall

expected number of rewinds in step 2 is constant.

Since (A

0

; B

0

) has special soundness, we can assume E

0

works with soundness error at most 2

�t

[CD98]. Then the probability that the E

0

outputs ? (and thus SIM reaches step 4) is at most 2

�t

.

If E

0

does not output ?, SIM can �nish the protocol directly. Otherwise, SIM attempts to �nish

the protocol by guessing the challenge of V

�

.

Let q be the probability that V

�

sends a valid challenge, given that step 4 is reached. (Note that

q will depend on the conversation transcript from step 1.) The total probability of reaching step

5c is at most q2

�t

(considering the probability of reaching step 4 is at most 2

�t

). Moreover, the

probability of V

�

sending a valid challenge in (A

or

; B

or

) and SIM guessing it correctly is q2

�t

. So

the expected number of rewinds for SIM in step 5c is constant. Thus the total expected running

time of SIM is polynomial.

Proof of Theorem 3

Proof. Communication Complexity: This can be derived in a straightforward way, similar to

the 4-move protocol.

Completeness: Straightforward.

Soundness: Let E

or

be the extractor guaranteed by the special soundness property of (A

or

; B

or

)

[DP] We construct an extractor E as follows. Say the prover is P

�

, and assume its bits are �xed.

1. E performs Part 1 like a true veri�er, say using commitment pair ((x;m); (e; s)).

2. E runs E

or

using oracle P

�

(in its current state after Part 1, i.e., after receiving commitment

m, and the proof transcript T ), but with the last step split, and revealing (e; s) between the

last two messages from P

�

.

3. Based on the output of E

or

, E performs di�erent actions:

(a) if E

or

outputs 4, E outputs 4 and stops. (In this case, P

�

failed to provide a valid proof.)

(b) If E

or

outputs ?, E outputs ? and stops. (In this case P

�

provided a valid proof, but E

or

failed.)

(c) If E

or

outputs a witness w for x, E outputs w and stops.

(d) If E

or

outputs a witness (e

0

; s

0

) to commitment (x;m), with e 6= e

0

, E uses the two con-

versations (m; e; s) and (m; e

0

; s

0

) and the special soundness feature of (A;B) to generate a

witness w for x. Then E outputs w and stops.
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(e) Otherwise E repeatedly performs steps 1 and 2 (sequentially) until either cases 3c or 3d

would occur, at which point E �nishes as indicated for that case. In step 1, instead of

stopping if P

�

does not provide a well-formed challenge, E simply rewinds and tries again.

It is obvious that Pr(E

P

�

(x)

(x)) = 4) = Pr(tr

V;P

�

(x) 62 acc

V

(x)), and that Pr(E

P

�

(x)

(x)) = ?)

(i.e., the soundness error of E) is bounded by the probability that E

or

outputs ?, which by the

special soundness of (A

or

; B

or

), is at most 2

�t

[DP].

To analyze the expected running time of E we use the following fact: given that a witness (e

0

; s

0

)

for commitment (x;m) is extracted, the probability that e = e

0

is 2

�t

, since (e; s) is only revealed

after the last message for (A

0

; B

0

) is sent (\proving" knowledge of a way to open (x;m)), and e is

drawn randomly from a set of size 2

t

. (We actually only use that the probability that e = e

0

is at

most 1=2.)

Let q be the probability of E hitting case 3c, 3d, or 3e. Note that this probability is computed

for E starting at step 1, and thus is averaged over all possible transcripts produced in step 1,

including the possibility of E stopping. The probability of hitting case 3e is at most q=2, by the

fact stated above, and therefore the probability of either case 3c or 3d occurring (implying success

for E) is at least q=2. Thus the expected time of E is easily seen to be polynomial.

Zero-Knowledge: We construct a simulator SIM (that uses V

�

as a black-box) as follows.

1. SIM plays the part of the P in Part 1.

2. SIM plays the part of the prover in the (A

or

; B

or

) in Part 2 until Step 5, but with both (A;B)

and (A

0

; B

0

) being simulated. It can do this since he can provide the simulated response in Step

4. If V

�

does not provide a valid message in step 3 or 5, SIM halts, like a true prover would.

3. Once V

�

outputs the way to open the commitment, SIM rewinds and completes the protocol,

rewinding if V

�

does not provide valid messages in steps 3 or 5.

Obviously SIM produces the same distribution as an honest prover (including when V

�

mis-

behaves).

Let q be the probability that V

�

sends valid messages in steps 3 and 5 (given that it already

sent a valid message in step 1). Then SIM will start rewinding with probability q, and the total

expected number of rewinds will be constant. Thus the total expected running time of SIM is

polynomial.

Appendix C: �-protocol commitments

In some cases, it is desirable to have a zero-knowledge proof of how to open the commitment

corresponding to a certain �-protocol. In order to do this according to the methods described in

this paper, one would need a �-protocol for the commitment relation corresponding to the �-

protocol for the commitment relation of the certain �-protocol. In fact, it is conceivable that this

could be applied recursively, i.e., the commitment of the commitment of the commitment, etc.

Here we show how to handle this in the case the original �-protocol is for a q-OWGH. Note

that this can be thought of as a generalization of a zero-knowledge proof of knowledge of the

representation of a a group element over a set of bases.

We forego some formalities, and simply note that the �-protocol desired is one in which

(x

1

; : : : ; x

k

;m) is public and A must prove knowledge of (s; e

1

: : : ; e

k

) such that f(s)

Q

k

i=1

x

e

i

i

= m.

1. A chooses � 2

R

H and for 1 � i � k, �

i

2

R

f0; : : : ; q � 1g and sends a = f(�)

Q

k

i=1

x

�

i

i

to B.

2. B chooses c 2

R

f0; : : : ; q � 1g and sends c to A.
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3. A has to �nd z

0

2 H and for 1 � i � k, z

i

2 f0; : : : ; q � 1g such that f(z

0

)

Q

k

i=1

x

z

i

i

= am

c

.

A computes ~w such that f( ~w) = x

q

and for 1 � i � k, integers 0 � �

i

< q and �

i

such that

�

i

+ e

i

c = �

i

+ �

i

q. A sends z

0

= �s

c

~w

P

k

i=1

�

i

and for 1 � i � k, z

i

= �

i

to B, who checks that

f(z

0

)

Q

k

i=1

x

z

i

i

= am

c

.

Lemma 3. The protocol above is a �-protocol.

Proof. Completeness is trivial. To prove special soundness, consider two accepting conversations,

(a; c; (z

0

; : : : ; z

k

)) and (a; c

0

; (z

0

0

; : : : ; z

0

k

)), with 0 � c < c

0

< q.Then f(z

0

0

z

�1

0

)

Q

k

i=1

x

z

0

i

�z

i

i

= m

c

0

�c

.

Let ~w and ~m be such that f( ~w) = x

q

and f( ~m) = m

q

. Let the integer  be such that (c

0

�c) = 1+�q,

and for 1 � i � k, let the integers 0 � �

i

< q and �

i

be such that (z

i

� z

0

i

) = �

i

+ �

i

q. Then

f((z

0

0

z

�1

0

)



~w

P

k

i=1

�

i

~m

��

)

Q

k

i=1

x

�

i

i

= m, with 0 � �

i

< q for 1 � i � k.

Special HVZK can be shown by using the simulator that on input c chooses z

0

; : : : ; z

k

randomly

and outputs (f(z

0

)

Q

k

i=1

x

z

i

i

m

�c

; c; (z

0

; : : : ; z

k

)).


