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Abstra
t

Constru
ting highly nonlinear balan
ed Boolean fun
tions with very good auto
orre-

lation property is an interesting open question. In this dire
tion we use the measure

�

f

, the highest magnitude of all auto
orrelation 
oeÆ
ients for a fun
tion f . We

provide balan
ed fun
tions f with 
urrently best known nonlinearity and �

f

values

together. We extend the result of Maitra and Sarkar (2000) for 15-variable fun
tions

whi
h experimentally disprove the 
onje
ture proposed by Zhang and Zheng (1995).

We prove it theoreti
ally for di�erent ranges of nonlinearity, where our 
onstru
-

tions are based on modi�
ations of Patterson-Wiedemann (1983) fun
tions. Also

we propose a simple bent based 
onstru
tion te
hnique to get fun
tions with very

good �

f

values for odd number of variables. This 
onstru
tion has a root in Ker-

do
k Codes. Moreover, our 
onstru
tion on even number of variables is a re
ursive

one and we 
onje
ture (similar to Dobbertin's 
onje
ture (1994) with respe
t to

nonlinearity) that this provides the minimum possible value of �

f

for a balan
ed

fun
tion f on even number of variables. Next we dis
uss about the auto
orrelation

values of 
orrelation immune and resilient Boolean fun
tions. We provide new lower

bounds and related results on absolute indi
ator and sum of square indi
ator (of au-

to
orrelation) for 
ertain orders of 
orrelation immunity and resilien
y and 
learly

show that auto
orrelation goes against order of 
orrelation immunity. We also point

out the weakness of two re
ursive 
onstru
tion te
hniques for resilient fun
tions in

terms of auto
orrelation values.
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Auto
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teristi
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1 Introdu
tion

Nonlinearity and auto
orrelation values are two fundamental properties for


ryptographi
ally signi�
ant Boolean fun
tions. It is well known (26; 21; 10; 8)

that bent fun
tions possess the best possible nonlinearity and auto
orrelation

values. However, bent fun
tions are available for even number of variables only

and they are not balan
ed. For nonlinear balan
ed fun
tions the relationship

between nonlinearity and auto
orrelation values is not expli
it. In this paper

we 
onstru
t balan
ed Boolean fun
tions with 
urrently best known trade-o�

between nonlinearity and auto
orrelation values. For a fun
tion F , we use the

parameter nl(F ) (see De�nition 2) for nonlinearity and �

F

(see De�nition 6)

for absolute indi
ator of auto
orrelation values. A good balan
ed fun
tion F

must have high nl(F ) and low �

F

.

We provide balan
ed fun
tions F on n variables (n even) with nonlinearity

nl(F ) = 2

n�1

� 2

n

2

+ nl(f) and �

F

= 2

n

2

+ �

f

, where f is an

n

2

variable

balan
ed fun
tion. This result is superior to the result proposed in (37), where

nl(F ) = 2

n�1

� 2

n

2

and �

F

= 2

n

2

+1

. Also we 
onje
ture from our re
ursive

result that this 
onstru
tion provides the minimum possible value of �

f

for a

balan
ed fun
tion f on even number of variables.

In 
ase of odd number of variables we use a bent based 
onstru
tion whi
h

is motivated from synthesis of Kerdo
k 
odes. The parameters we a
hieve are

same as the parameters that appeared in (37, Se
tion 5.2). However, our 
on-

stru
tion is easy to understand. In (37) it was 
onje
tured that for a balan
ed

fun
tion F on n variables (n odd), �

F

� 2

n+1

2

. The 
onje
ture has been ex-

perimentally disproved by running a 
omputer program in (19). Experimental

results (19) show that the 
onje
ture is not true for fun
tions with nonlinearity

stri
tly greater than 2

n�1

� 2

n�1

2

. However, we show here that the 
onje
ture


an be disproved dire
tly from Patterson-Wiedemann fun
tions and without

running a 
omputer experiment. We here extend the analysis of (19) by the-

oreti
ally showing that the 
onje
ture (37) is not true for di�erent ranges of

nonlinearity. We disprove the 
onje
ture showing that for n = 15, there are

fun
tions with �

F

< 2

n+1

2

and this happens for fun
tions with nonlinearity

stri
tly less than, equal to and stri
tly greater than (three di�erent 
ases) the

bent 
on
atenation nonlinearity 2

n�1

� 2

n�1

2

.

Next we 
on
entrate on the auto
orrelation values for 
orrelation immune

and resilient (balan
ed 
orrelation immune) Boolean fun
tions (see De�ni-

tion 7). We provide the 
urrently best known lower bounds on �

f

; �

f

(see

De�nition 6) for these 
lasses. Very re
ently auto
orrelation properties of 
or-

relation immune and resilient Boolean fun
tions were presented in (40) and

we provide better results here. Also we provide sharper result for the 
lass of


orrelation immune and resilient fun
tions whi
h attain the maximum possible
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nonlinearity. In (41), it has been dis
ussed that the propagation property goes

against 
orrelation immunity. We here expli
itly show that the �

f

values goes

against the order of 
orrelation immunity. We also point out the limitation of

two re
ursive 
onstru
tion methods of resilient Boolean fun
tions in terms of

auto
orrelation values.

2 Preliminaries

Here we introdu
e a few de�nitions and notations.

De�nition 1 Let s; s

1

; s

2

be binary strings of same length �. The bitwise


omplement of s is denoted by s




. We denote by #(s

1

= s

2

) (respe
tively

#(s

1

6= s

2

)), the number of pla
es where s

1

and s

2

are equal (respe
tively

unequal). The Hamming distan
e between s

1

; s

2

is denoted by d(s

1

; s

2

), i.e.

d(s

1

; s

2

) = #(s

1

6= s

2

):

The Walsh distan
e wd(s

1

; s

2

), between s

1

and s

2

, is de�ned as,

wd(s

1

; s

2

) = #(s

1

= s

2

)�#(s

1

6= s

2

):

Note that, wd(s

1

; s

2

) = � � 2 d(s

1

; s

2

). The Hamming weight or simply the

weight of s is the number of ones in s and is denoted by wt(s). An n-variable

fun
tion f is said to be balan
ed if its output 
olumn in the truth table 
ontains

equal number of 0's and 1's (i.e. wt(f) = 2

n�1

).

By 


n

we mean the set of all n-variable Boolean fun
tions. Note that we denote

the addition operator over GF (2) by �. An n-variable Boolean fun
tion 
an

be uniquely represented by a multivariate polynomial over GF (2).

De�nition 2 Let f(X

n

; : : : ; X

1

) be an n-variable fun
tion. We 
an write f

as

a

0

� (

i=n

M

i=1

a

i

X

i

)� (

M

1�i 6=j�n

a

ij

X

i

X

j

)� : : :� a

12:::n

X

1

X

2

: : :X

n

;

where the 
oeÆ
ients a

0

; a

i

; a

ij

; : : : ; a

12:::n

2 f0; 1g. This representation of f

is 
alled the algebrai
 normal form (ANF) of f . The number of variables in

the highest order produ
t term with nonzero 
oeÆ
ient is 
alled the algebrai


degree, or simply degree of f . Fun
tions of degree at most one are 
alled aÆne

fun
tions. An aÆne fun
tion with 
onstant term equal to zero is 
alled a lin-

ear fun
tion. The set of all n-variable aÆne (respe
tively linear) fun
tions is

denoted by A(n) (respe
tively L(n)). The nonlinearity nl(f) of an n-variable

fun
tion f is de�ned as

nl(f) = min

g2A(n)

(d(f; g));
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i.e. nl(f) is the distan
e of f from the set of all n-variable aÆne fun
tions.

We also de�ne

�

f

= max

g2A(n)

j wd(f; g) j = 2

n

� 2nl(f):

Lower value of �

f

implies better nonlinearity of f .

In this do
ument we will use 
on
atenation of Boolean fun
tions. Consider

f

1

; f

2

2 


n�1

and f 2 


n

. Then by 
on
atenation of f

1

and f

2

, we mean that

the output 
olumns of truth table of f

1

; f

2

will be 
on
atenated to provide

the output 
olumn of the truth table of an n-variable fun
tion. We denote

the 
on
atenation of f

1

; f

2

by f

1

f

2

. Thus, f = f

1

f

2

means that in algebrai


normal form, f = (1�X

n

)f

1

�X

n

f

2

.

Proposition 3 Let l

1

; l

2

2 L(k). Then, d(l

1

; l

2

) = 0; 2

k�1

; 2

k

(wd(l

1

; l

2

) =

2

k

; 0;�2

k

) a

ording as l

1

= l

2

(are same), l

1

6= l

2

or l




2

(are distin
t), l

1

= l




2

(are 
omplement to ea
h other).

De�nition 4 Let X = (X

n

; : : : ; X

1

) and ! = (!

n

; : : : ; !

1

) be n-tuples on

GF(2) and X:! = X

n

!

n

� : : :�X

1

!

1

. Let f(X) be a Boolean fun
tion whose

domain is the ve
tor spa
e over GF(2)

n

. Then the Walsh transform of f(X)

is a real valued fun
tion over GF(2)

n

that 
an be de�ned as

W

f

(!) =

X

X

(�1)

f(X)�X:!

;

where the sum is over all X in GF(2)

n

. The relationship between Walsh dis-

tan
e and Walsh transform is

W

f

(!) = wd(f;

i=n

M

i=1

!

i

X

i

):

For a fun
tion f , we de�ne

F

f

=j f! 2 f0; 1g

n

j W

f

(!) 6= 0g j :

This is the number of nonzero 
oeÆ
ients in the Walsh spe
tra.

Propagation Chara
teristi
 (PC) and Stri
t Avalan
he Criteria (SAC) (36; 25)

are important properties of Boolean fun
tions to be used in S-boxes.

De�nition 5 Let X be an n tuple X

1

; : : : ; X

n

and � 2 f0; 1g

n

. A fun
tion

f 2 


n

is said to satisfy

(1) SAC if f(X)� f(X � �) is balan
ed for any � su
h that wt(�) = 1.

(2) SAC(k) if any fun
tion obtained from f by keeping any k input bits 
on-

stant satis�es SAC.

(3) PC(l) if f(X)� f(X ��) is balan
ed for any � su
h that 1 � wt(�) � l.
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(4) PC(l) of order k if any fun
tion obtained from f by keeping any k input

bits 
onstant satis�es PC(l).

However, Zhang and Zheng (37) justi�ed that SAC and PC have some limi-

tations in identifying 
ertain desirable 
ryptographi
 properties of a Boolean

fun
tion. In this dire
tion they have proposed the idea of Global Avalan
he

Chara
teristi
s (GAC). The following de�nition states two important indi
a-

tors of GAC. Note that, the absolute indi
ator of GAC is a stronger property

than the sum-of-square indi
ator.

De�nition 6 Let X 2 f0; 1g

n

be an n tuple X

n

; : : : ; X

1

and � 2 f0; 1g

n

be

an n tuple �

n

; : : : ; �

1

. Let f 2 


n

and

�

f

(�) = wd(f(X); f(X � �));

the auto
orrelation value of f with respe
t to the ve
tor �. The sum-of-square

indi
ator

�

f

=

X

�2f0;1g

n

�

2

f

(�):

The absolute indi
ator

�

f

= max

�2f0;1g

n

;�6=0

j �

f

(�) j:

Note that �

f

(�) = 0 i� f(X) � f(X � �) is balan
ed. Also j �

f

(�) j = 2

n

i� f(X) � f(X � �) is 
onstant and � is 
alled a linear stru
ture of f . Note

that 0 is always a linear stru
ture for a Boolean fun
tion. However, existen
e

of any nonzero linear stru
ture is 
ryptographi
ally undesirable.

For fun
tions f , on even number of variables, we have �

f

= 0, i� f is a

bent fun
tion. However, bent fun
tions are not balan
ed. In fa
t, for balan
ed

fun
tions f , �

f

� 8 (see (34)) for both odd and even number of variables.

In the next two se
tions (Se
tion 3, 4) we will propose several 
onstru
tion

methods to provide balan
ed fun
tions f with very high nl(f) and very low

�

f

.

Then we 
on
entrate on the auto
orrelation spe
tra of 
orrelation immune and

resilient Boolean fun
tions (Se
tion 5). In (13), the following 
hara
terization

of 
orrelation immunity is provided.

De�nition 7 A fun
tion f(X

n

; : : : ; X

1

) is m-th order 
orrelation immune

(CI) i� its Walsh transform W

f

satis�es

W

f

(!) = 0; for 1 � wt(!) � m:

If f is balan
ed then W

f

(0) = 0. Balan
ed m-th order 
orrelation immune

fun
tions are 
alled m-resilient fun
tions. Thus, a fun
tion f(X

n

; : : : ; X

1

) is

5



m-resilient i� its Walsh transform W

f

satis�es

W

f

(!) = 0; for 0 � wt(!) � m:

By (n;m; d; x) we denote an n-variable resilient fun
tion of order m, nonlin-

earity x and degree d.

It may very well happen that 
orrelation immune or resilient fun
tions, whi
h

are good in terms of order of 
orrelation immunity, algebrai
 degree and non-

linearity, may not be good in terms of SAC or PC properties. Also getting

good SAC or PC properties may not be suÆ
ient for 
ryptographi
 purposes.

There may be a fun
tion f whi
h possesses good SAC or PC properties, but

f(X) � f(X � �) is 
onstant for some nonzero �, whi
h is a weakness. It is

important to get good auto
orrelation properties for su
h fun
tions. That is

why, we here look into the auto
orrelation properties of 
orrelation immune

and resilient fun
tions in Se
tion 5.

3 Constru
tion for any odd n

First we need the following important result. The motivation of 
hoosing two

bent fun
tions with the property used in the following lemma 
omes from the

use of bent fun
tions in Kerdo
k 
ode.

Lemma 8 Let n be odd and f

1

; f

2

2 


n�1

are two bent fun
tions su
h that

f

1

(X

n�1

; : : : ; X

1

) � f

2

(X

n�1

� �

n�1

; : : : ; X

1

� �

1

) is also bent for any ve
tor

(�

n�1

; : : : ; �

1

) 2 f0; 1g

n�1

. Constru
t F 2 


n

su
h that F = f

1

f

2

, i.e. F =

(1�X

n

)f

1

(X

n�1

; : : : ; X

1

)�X

n

f

2

(X

n�1

; : : : ; X

1

). Then �

F

= 2

n+1

2

. Also it is

possible to get su
h a balan
ed F .

PROOF. We have to 
al
ulate wd(F (X

n

; : : : ; X

1

); F (X

n

��

n

; : : : ; X

1

��

1

))

for nonzero (�

n

; : : : ; �

1

) 2 f0; 1g

n

. We have two 
ases.

When �

n

= 0, then wd(F (X

n

; : : : ; X

1

); F (X

n

� �

n

; : : : ; X

1

� �

1

))

= wd(f

1

(X

n�1

; : : : ; X

1

); f

1

(X

n�1

� �

n�1

; : : : ; X

1

� �

1

))

+wd(f

2

(X

n�1

; : : : ; X

1

); f

2

(X

n�1

� �

n�1

; : : : ; X

1

� �

1

))

= 0 + 0 = 0, sin
e both f

1

; f

2

are bent.

When �

n

= 1, then j wd(F (X

n

; : : : ; X

1

); F (X

n

� �

n

; : : : ; X

1

� �

1

)) j

� j wd(f

1

(X

n�1

; : : : ; X

1

); f

2

(X

n�1

� �

n�1

; : : : ; X

1

� �

1

)) j

+j wd(f

2

(X

n�1

; : : : ; X

1

); f

1

(X

n�1

� �

n�1

; : : : ; X

1

� �

1

)) j

= 2

n�1

2

+2

n�1

2

= 2

n+1

2

, sin
e f

1

(X

n�1

; : : : ; X

1

)�f

2

(X

n�1

��

n�1

; : : : ; X

1

��

1

) is

also bent. It is also easy to see that �

F

(�) 
an have the values 0;�2

n+1

2

. Sin
e

F is on odd number of variables, all the �

F

(�) values 
annot be zero. Hen
e,

�

F

= 2

n+1

2

. If F = f

1

f

2

is not balan
ed, use F = f

1

f




2

, whi
h is balan
ed.
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Next we propose the following 
onstru
tion.

Constru
tion 0 Let g

1

; g

2

2 


m

and h

1

; h

2

2 


k

are all bent fun
tions for

m; k even and take n = m+k. Also, g

1

(Y

m

; : : : ; Y

1

)�g

2

(Y

m

��

m

; : : : ; X

1

��

1

)

is bent for any (�

m

; : : : ; �

1

) 2 f0; 1g

m

and h

1

(Z

k

; : : : ; Z

1

)�h

2

(Z

k

�


k

; : : : ; Z

1

�




1

) is bent for any (


k

; : : : ; 


1

) 2 f0; 1g

k

. Let f

1

; f

2

2 


n

su
h that f

1

= g

1

�h

1

and f

2

= g

2

�h

2

, where X

n

= Y

m

; : : : ; X

n�m+1

= Y

1

; X

n�m

= Z

k

; : : : ; X

1

= Z

1

.

If wt(f

1

) = wt(f

2

), then repla
e f

2

by f




2

. This is required to make the fun
tion

f

1

f

2

balan
ed.

Lemma 9 Let f

1

; f

2

are as in Constru
tion 0. Then f

1

(X

n

; : : : ; X

1

)�f

2

(X

n

�

�

n

; : : : ; X

1

� �

1

) is bent for any (�

n

; : : : ; �

1

) 2 f0; 1g

n

.

PROOF. We have f

1

; f

2

as in Constru
tion 0. Let �

n

= �

m

; : : : ; �

n�m+1

=

�

1

; �

n�m

= 


k

; : : : ; �

1

= 


1

. Thus, f

1

(X

n

; : : : ; X

1

)� f

2

(X

n

� �

n

; : : : ; X

1

� �

1

)

= (g

1

(Y

m

; : : : ; Y

1

) � h

1

(Z

k

; : : : ; Z

1

)) � (g

2

(Y

m

� �

m

; : : : ; Y

1

� �

1

) � h

2

(Z

k

�




k

; : : : ; Z

1

� 


1

)) = (g

1

(Y

m

; : : : ; Y

1

)� g

2

(Y

m

� �

m

; : : : ; Y

1

� �

1

))

�(h

1

(Z

k

; : : : ; Z

1

)� h

2

(Z

k

� 


k

; : : : ; Z

1

� 


1

)), whi
h is bent (16, Theorem 10,

Page 428) as g

1

(Y

m

; : : : ; Y

1

)� g

2

(Y

m

� �

m

; : : : ; Y

1

� �

1

) and h

1

(Z

k

; : : : ; Z

1

)�

h

2

(Z

k

� 


k

; : : : ; Z

1

� 


1

) are both bent.

Lemma 10 For even n � 4, it is possible to �nd bent fun
tions f

1

; f

2

2 


n

where f

1

(X

n

; : : : ; X

1

)�f

2

(X

n

��

n

; : : : ; X

1

��

1

) is bent for any (�

n

; : : : ; �

1

) 2

f0; 1g

n

.

PROOF. We have 
he
ked by running 
omputer program that there exists

g

1

; g

2

2 


4

su
h that g

1

(X

4

; : : : ; X

1

)�g

2

(X

4

��

4

; : : : ; X

1

��

1

) is bent for any

(�

4

; : : : ; �

1

) 2 f0; 1g

4

.

First we 
onsider n of the form 0 mod 4. Thus, taking f

1

= g

1

; f

2

= g

2

we

prove the base 
ase for n = 4. Let there exists su
h f

1

; f

2

2 


4a

, a > 1 integer.

Now, we will prove su
h pair of fun
tions will be available for n = 4a + 4.

From indu
tion hypothesis, we have su
h h

1

; h

2

2 


4a

. Hen
e, if we take,

f

1

= g

1

� h

1

and f

2

= g

2

� h

2

, where f

1

; f

2

2 


n

, then from Lemma 9,

f

1

(X

n

; : : : ; X

1

)�f

2

(X

n

��

n

; : : : ; X

1

��

1

) is bent for any (�

n

; : : : ; �

1

) 2 f0; 1g

n

.

Next we 
onsider n of the form 2 mod 4. For the base 
ase, we run 
omputer

program to �nd bent fun
tions h

1

; h

2

2 


6

, su
h that h

1

(X

6

; : : : ; X

1

)�h

2

(X

6

�

�

6

; : : : ; X

1

��

1

) is bent for any (�

6

; : : : ; �

1

) 2 f0; 1g

6

. We take f

1

= h

1

; f

2

= h

2

as base 
ase. Let there exists su
h f

1

; f

2

2 


4a+2

, a > 1 integer. Now, we will

prove su
h pair of fun
tions will be available for n = 4a + 6. From indu
tion

hypothesis, we have su
h h

1

; h

2

2 


4a+2

. Hen
e, if we take, f

1

= g

1

� h

1

and

f

2

= g

2

�h

2

, where f

1

; f

2

2 


n

, then from Lemma 9, f

1

(X

n

; : : : ; X

1

)�f

2

(X

n

�

�

n

; : : : ; X

1

� �

1

) is bent for any (�

n

; : : : ; �

1

) 2 f0; 1g

n

.

7



Theorem 11 Consider the balan
ed fun
tion F 2 


n

, n > 3 odd, as in Con-

stru
tion 0. Then �

F

= 2

n+1

2

and nl(F ) = 2

n�1

� 2

n�1

2

. For n = 3, �

F

= 8,

nl(F ) = 2.

PROOF. The proof for �

F

follows from Lemma 8, Lemma 9 and Lemma 10.

A

ording to Constru
tion 0, F is a 
on
atenation of two bent fun
tions.

Hen
e, nl(F ) = 2

n�1

� 2

n�1

2

.

Thus, we provide fun
tions F on odd number of variables whi
h are of similar

quality as in (37) in terms of nl(F ) and �

F

. However, our 
onstru
tion is

mu
h simpler. Now it is important to refer to the paper (1). Following (1,

Theorem 4), the 
on
atenation of any two bent fun
tions of (n� 1) variables

provides a fun
tion F of n variables with nonlinearity 2

n�1

� 2

n�1

2

. Sin
e the

sum-of-square indi
ator (see De�nition 6) of the obtained fun
tion F equals

2

2n+1

(see (1, Theorem 1)), the absolute indi
ator of F equals 2

n+1

2

i� the

magnitudes of all auto
orrelation 
oeÆ
ients with respe
t to � = (�

n

; : : : ; �

1

)

with �

n

= 1 are equal to 2

n+1

2

(be
ause all auto
orrelation 
oeÆ
ients with

respe
t to �

n

= 0 are equal to 0). We 
ould provide 
onstru
tion of su
h

fun
tions here.

3.1 Constru
tion for odd n = 15

In (37), 
onstru
tion of balan
ed fun
tion f on odd number of variables with

�

f

= 2

n+1

2

and nonlinearity 2

n�1

� 2

n�1

2

has been proposed. It has also been


onje
tured in (37) that for balan
ed Boolean fun
tions on odd number of

variables, this is the minimum possible value of �

f

.

Here we 
onsider the fun
tions provided in (27) and provide simple mathe-

mati
al argument towards disproving the 
onje
ture. The 
onje
ture was �rst

disproved in (19), whi
h we extend here. In fa
t we prove that, it is possi-

ble to 
onstru
t 15 variable balan
ed fun
tions f with nonlinearity less that,

equal to and greater than 2

14

� 2

7

(the bent 
on
atenation nonlinearity) with

�

f

< 2

15+1

2

= 256. Thus, the 
onje
ture is disproved for three di�erent ranges

of nonlinearity.

Consider a Boolean fun
tion of n-variables as its truth table whi
h is a binary

string of length 2

n

. It is then easy to see the following result.

Proposition 12 Let f 2 


n

. If x bits of the output 
olumn of f is 
omple-

mented to get g, then (1) nl(g) � nl(f)� x and (2) �

g

� �

f

+ 4x.

Proposition 13 It is possible to 
onstru
t f 2 


15

with nl(f) = 16276,

wt(f) = 16364 and �

f

= 160.

8



PROOF. Consider a fun
tion f

1

2 


15

with nl(f

1

) = 16276, wt(f

1

) = 16492

and �

f

1

= 160 (we found su
h a fun
tion by running the same experiment as

done by Patterson and Wiedemann (23)). From (23), we know that there are

3255 linear fun
tions in L(15) at a distan
e 16364 from f

1

. Let l be one of these

3255 linear fun
tions. De�ne f = f

1

� l. Then f 2 


15

, nl(f) = nl(f

1

) = 16276

and wt(f) = wt(f

1

� l) = d(f

1

; l) = 16364 (see also (27)). Also it is 
lear that

�

f

= �

f

1

and hen
e the result.

Lemma 14 It is possible to 
onstru
t a balan
ed fun
tion g 2 


15

su
h that

nl(g) = 16256 = 2

14

� 2

7

and �

g

� 240 < 256 = 2

15+1

2

.

PROOF. Take the fun
tion f as in Proposition 13. Sin
e nl(f) = 16276,

there is one aÆne fun
tion � 2 A(15) su
h that d(f; �) = 16276. Now 
onsider

the truth table of f; �, whi
h are binary strings of length 2

15

. For a string S,

denote S[i℄ as the ith lo
ation of the string S, where 0 � i � 2

15

�1. Now let us

identify 20 lo
ations i

1

; : : : ; i

20

su
h that �[i

k

℄ = 1 and f [i

k

℄ = 0. We 
onstru
t

g from f su
h that g[j℄ = f [j℄ for the 2

15

� 20 positions, where j 6= i

k

for

1 � k � 20. For j = i

k

, 1 � k � 20 we take g[j℄ = 1. Thus, wt(g) = 16364 +

20 = 16384 = 2

14

and from item 1 of Proposition 12, nl(g) � 16276 � 20.

Sin
e, d(g; �) = 16276� 20 = 16256 = 2

14

� 2

7

, we have nl(g) = 16256. Now

from Proposition 12, item 2 we get, �

g

� �

f

+ 4� 20 = 240.

Lemma 15 It is possible to 
onstru
t a balan
ed fun
tion h 2 


15

su
h that

nl(h) = 16254 = 2

14

� 2

7

� 2 < 2

14

� 2

7

and �

h

� 248 < 256 = 2

15+1

2

.

PROOF. Take the fun
tion g as in Lemma 14. We have nl(g) = 16256,

and there is one linear fun
tion � 2 L(15) (the same one as in the proof of

Lemma 14) su
h that d(g; �) = 16256. Now 
onsider the truth table of g; �,

whi
h are binary strings of length 2

15

. Now let us identify 2 lo
ations i

1

; i

2

su
h

that �[i

1

℄ = 1; g[i

1

℄ = 0; �[i

2

℄ = 0; g[i

2

℄ = 1. We 
onstru
t h from g su
h that

h[j℄ = g[j℄ for the 2

15

� 2 positions, where j 6= i

k

for 1 � k � 2. For j = i

k

,

1 � k � 2 we take h[j℄ = 1� g[j℄. Note that wt(h) = wt(g) + 1� 1 = wt(g).

Also, d(h; �) = 16256 � 2 = 16254 < 2

14

� 2

7

. Hen
e, nl(h) = 16254. Now

from Proposition 12, item 2 we get, �

h

� �

g

+ 4� 2 = 248.

The following 
ase provides a 
onstru
tion for n = 15 variable fun
tions h with

nonlinearity stri
tly greater than bent 
on
atenation nonlinearity 2

n�1

� 2

n�1

2

and �

g

< 2

n+1

2

. In (19), a balan
ed fun
tions f on 15 variables 
onstru
ted

in (27) with nonlinearity 2

14

�2

7

+6 has been examined by running 
omputer

program and it has been found that �

f

for su
h a fun
tion is 216 < 256 =

2

15+1

2

. Thus the 
onje
ture of (37) for this spe
i�
 range of nonlinearity (greater

than bent 
on
atenation nonlinearity) has been disproved in (19) by exper-

iment. The fun
tion f , as des
ribed in (27), is a modi�
ation of Patterson-

9



Wiedemann fun
tion (23). We provide the mathemati
al justi�
ation here.

Lemma 16 It is possible to 
onstru
t a balan
ed fun
tion H 2 


15

su
h that

nl(H) = 16262 = 2

14

� 2

7

+ 6 > 2

14

� 2

7

and �

H

� 240 < 256 = 2

15+1

2

.

PROOF. From Proposition 13, we 
an 
onstru
t f 2 


15

with nl(f) =

16276; wt(f) = 16364 and �

f

= 160. As des
ribed in (27), sele
t 20 bits in the

truth table of f uniformly at random whi
h 
ontain the value 0 and 
omple-

ment them to 1. In pro
ess we get a fun
tion H. Note that wt(H) = 16364 +

20 = 16384 = 2

14

and from item 1 of Proposition 12, nl(H) � 16276�20. The

random experiment shows that it is possible to get H with nl(H) = 16262 (see

also (27)). Now from Proposition 12, item 2 we get, �

H

� �

f

+4� 20 = 240.

Further, the random experiment shows that it is possible to �nd �

H

= 216 at

minimum (see also (19)).

Note that we are interested in three di�erent ranges of nonlinearity. The fun
-

tions 
onstru
ted by Patterson and Wiedemann (23; 24) are important sin
e

the 
onstru
tion provides better nonlinearity than bent 
on
atenation non-

linearity. Also the balan
ed fun
tions (27) 
onstru
ted from the Patterson-

Wiedemann fun
tions provide the nonlinearity greater than the bent 
on
ate-

nation one. The �

f

values of these fun
tions is less than 256. We like to point

out that we 
an modify the Patterson-Wiedemann fun
tions in su
h a manner

su
h that the nonlinearity falls below (also equal to) the bent 
on
atenation

nonlinearity, and even then the �

f

value is less than 256. However, there are

other 
onstru
tion methods for balan
ed fun
tions with nonlinearity equal to

and less than the bent 
on
atenation nonlinearity (27; 20), whi
h 
an not

provide the �

f

value less than 2

n+1

2

for any odd n.

Now 
onsider the other side. Let us use the fun
tion H, with �

H

= 216

as in the proof of Lemma 16, to 
onstru
t a balan
ed fun
tion H

2i+15

=

b(Y

2i

; : : : ; Y

1

)�H(X

15

; : : : ; X

1

), where b is a bent fun
tion. Note that H

2i+15

has nonlinearity greater than the bent 
on
atenation nonlinearity, but �

H

2i+15

=

2

2i

��

H

= 2

2i

� 216 > 2

2i+15

2

. That is, even if the nonlinearity is greater than

the bent 
on
atenation nonlinearity, we are not getting good auto
orrelation

value. It is an interesting open problem in this area to disprove the 
onje
ture

of (37) for odd n 6= 15.

4 Constru
tion for even n

In this se
tion we modify the Maiorana-M
Farland type bent fun
tions to

get balan
ed Boolean fun
tions with very small value of �

f

. Similar kinds of


onstru
tions have earlier been 
onsidered in (11; 29; 27). This 
onstru
tion

10



provides high nonlinearity and high algebrai
 degree whi
h are 
ryptograph-

i
ally important. However, there the �

f

parameter has not been 
onsidered

before, whi
h is the main thrust in this se
tion. Let us �rst des
ribe the 
on-

stru
tion.

Constru
tion 1 Let G be a bent fun
tion on n variables, whi
h is the 
on-


atenation of q = 2

n

2

distin
t linear fun
tions on k =

n

2

variables. Thus we


an write, G = l

0

l

1

: : : l

q�1

, where l

i

2 L(

n

2

) and l

i

6= l

j

for i 6= j. Basi
ally,

l

i

= a

k

X

k

� : : :� a

1

X

1

, where (a

k

; : : : ; a

1

) is k bit binary representation of i.

Here, l

0

means the 
onstant zero fun
tion. Let F = fl

1

: : : l

q�1

, where f 2 


n

2

is a balan
ed fun
tion. That is in G we repla
e l

0

by f to get F .

Theorem 17 (29; 11; 27) For even n, let F 2 


n

as des
ribed in Con-

stru
tion 1. Then we have the following. (1) F is balan
ed. (2) nl(F ) =

2

n�1

� 2

n

2

+ nl(f). (3) deg(F ) =

n

2

+ deg(f).

Now we will prove some results to get an upper bound on �

F

. First let us


onsider � 2 f0; 1g

n

, where � = (�

n

; : : : ; �

n

2

+1

; �

n

2

; : : : ; �

1

) and we write

� = (�

n

; : : : ; �

n

2

+1

) and 
 = (�

n

2

; : : : ; �

1

). That is � = (�; 
). Note that

� 6= (0; 0; : : : ; 0), i.e. � is not an all zero ve
tor. Moreover, we denote X =

(X; : : : ; X

n

2

+1

; X

n

2

; : : : ; X

1

), U = (X

n

; : : : ; X

n

2

+1

) and V = (X

n

2

; : : : ; X

1

). That

is X = (U; V ).

Lemma 18 Consider F 2 


n

as in Constru
tion 1. Let us 
onsider � =

(�

n

= 0; : : : ; �

n

2

+1

= 0; �

n

2

; : : : ; �

1

) and 
 = (�

n

2

; : : : ; �

1

). Then j �

F

(�) j �

2

n

2

+ j �

f

(
) j.

PROOF. For the bent fun
tion G 2 


n

, �

G

(�) = 0 for all nonzero �. That

means, wd(G(X); G(X � �)) = 0. This gives that

wd(l

0

; l

0

(V�
))+wd(l

1

; l

1

(V�
))+: : :+wd(l

q�2

; l

q�2

(V�
))+wd(l

q�1

; l

q�1

(V�


)) = 0.

We have, wd(l

i

; l

i

(V � 
)) 
an take the values �q = �2

n

2

. In parti
ular,

wd(l

0

; l

0

(V � 
)) takes the value q = 2

n

2

. Thus,

wd(l

1

; l

1

(V � 
)) + : : : + wd(l

q�2

; l

q�2

(V � 
)) + wd(l

q�1

; l

q�1

(V � 
)) = �q.

Hen
e,

wd(F (X); F (X��)) = wd(f; f(V�
))+wd(l

1

; l

1

(V�
))+: : :+wd(l

q�2

; l

q�2

(V�


)) + wd(l

q�1

; l

q�1

(V � 
)) = �

f

(
)� q = �2

n

2

+�

f

(
).

Thus j �

F

(�) j � 2

n

2

+ j �

f

(
) j.

Lemma 19 Consider F 2 


n

as in Constru
tion 1.
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Let us 
onsider � = (�

n

; : : : ; �

n

2

+1

; �

n

2

; : : : ; �

1

) where U = (�

n

; : : : ; �

n

2

+1

) is a

nonzero ve
tor and V = (�

n

2

; : : : ; �

1

). Then j �

F

(�) j � 2jW

f

(U) j.

PROOF. From Constru
tion 1, it is 
lear that the fun
tion F 
an be seen as


on
atenation of q fun
tions. Sin
e (�

n

; : : : ; �

n

2

+1

) is a nonzero ve
tor, if we

write the truth tables of F (X) and F (X � �), then for the small fun
tions of

n

2

variables, the truth tables of f(V ) and f(V � 
) or any of the l

i

(V ) and

l

i

(V � 
) 
annot o

ur at the 
orresponding positions in the truth tables of

F (X) and F (X � �).

The fun
tions f and l

r

will 
orrespond in the truth tables, where r has a binary

representation (�

n

; : : : ; �

n

2

+1

). Hen
e, from De�nition 4, wd(f; l

r

) = W

f

(U),

the Walsh transform value. Also let i = i

n

; : : : ; i

k+1

and j = j

n

; : : : ; j

k+1

in

binary representation. If (i

n

; : : : ; i

k+1

) and (j

n

; : : : ; j

k+1

) are related by i

n

=

�

n

� j

n

; : : : ; i

k

= �

k

� j

k

, then the smaller truth tables of l

i

; l

j

will 
ome at

the 
orresponding positions in the truth tables of F (X) and F (X � �).

Thus, wd(F (X); F (X��)) = 2wd(f(V ); l

r

(V �
))+2

P

i=r�j

wd(l

i

(V ); l

j

(V �


)) = 2wd(f(V ); l

r

(V � 
)). This is be
ause, l

i

(V ); l

j

(V � 
) are two distin
t

aÆne fun
tions and hen
e by Proposition 3, wd(l

i

(V ); l

j

(V � 
)) = 0.

In the next lemma we need the parameter �

f

(see De�nition 2).

Lemma 20 Let us 
onsider the fun
tion F 2 


n

as in Constru
tion 1. Then

�

F

= max(2

n

2

+�

f

; 2�

f

).

PROOF. From Lemma 18, we get that the maximum value of j �

f

(
) j is

�

f

and from Lemma 19, we have that maximum value of jW

f

(U) j is �

f

.

Now we provide an updated version of Constru
tion 1.

Constru
tion 2 We 
onstru
t a balan
ed fun
tion F as in Constru
tion

1, with a restri
tion on the balan
ed fun
tion f . We 
onstru
t f su
h that,

nl(f) � 2

n

2

�2

.

Theorem 21 Let us 
onsider F as in Constru
tion 2. Then, �

F

� 2

n

2

+�

f

.

PROOF. Here, 2�

f

= 2� 2

n

2

� 4nl(f) � 2

n

2

. Thus, 2

n

2

+�

f

� 2�

f

.

In the above theorem, we provide an upper bound on �

F

. However, for all the

fun
tions those have been 
he
ked, we get the stri
t equality �

F

= 2

n

2

+�

f

.

Let us denote �

b

(n) = min

h2


n

;h balan
ed

�

h

. Theorem 21 provides the bound

�

b

(n) � 2

n

2

+ �

b

(

n

2

). However, we 
ould not devise any method su
h that

12



the stri
t inequality �

b

(n) < 2

n

2

+�

b

(

n

2

) o

urs. Thus we make the following


onje
ture.

Conje
ture 1 Let n be an even integer. Then �

b

(n) = 2

n

2

+�

b

(

n

2

).

This 
onje
ture is similar to Dobbertin's 
onje
ture (11) on nonlinearity of

balan
ed Boolean fun
tions on even number of variables. Let nlb(n) is the

maximum nonlinearity for balan
ed fun
tions on n variables. Then the 
on-

je
ture states that, for even n, nlb(n) = 2

n�1

� 2

n

2

+ nlb(

n

2

). Presently this


onje
ture is still open. Thus the balan
ed fun
tions we have des
ribed here

possess 
urrently best known nonlinearity and auto
orrelation values together.

Our result provides a re
ursive 
onstru
tion. Now we have to 
onsider di�er-

ent 
ases to provide some 
ompa
t nonre
ursive formulae. First we 
onsider

the 
ase where, n = 2

i

� j, for i � 1 and j � 3, odd. We 
an extend the

Constru
tion 2 in the following way. Let F 2 


n

. Now, �

F

= 2

n

2

+�

f

. Here

f 2 


n

2

, i.e., f 2 


2

i�1

�j

. Then we 
an use Constru
tion 2 on
e again sin
e

n

2

is still even if i > 1. If i = 1, then we use a balan
ed fun
tion on odd number

of variables as des
ribed in previous se
tion. Hen
e we get the following result.

Theorem 22 It is possible to 
onstru
t F 2 


n

, where n = 2

i

� j with

�

F

=

P

i

x=1

2

n

2

x

+ � where � = 2

n

2

i+1

+

1

2

if j � 5 and � = 8 for j = 3. Also,

nl(F ) = 2

n�1

�

P

i

x=1

2

n

2

x

�1

� 2

n

2

i+1

�

1

2

.

PROOF. �

F

= 2

n

2

+�

f

= 2

n

2

+ 2

n

4

+�

g

= 2

n

2

+ 2

n

4

+ : : : + 2

n

2

i

+�

h

. Now

n

2

i

= j = 2y + 1 and by 
onstru
tion of Theorem 11 for Boolean fun
tions

on odd number of variables, �

h

= 2

y+1

= 2

n

2

i+1

+

1

2

for j � 5. Also �

h

= 8

for j = 3. The nonlinearity result follows from re
ursive use of Theorem 17,

item 2 and the result that it is possible to 
onstru
t a balan
ed fun
tion on j

variables with nonlinearity 2

j�1

� 2

j�1

2

.

We also like to point out that the results for a 30 variable fun
tion is already

an interesting one. Note that we have got a balan
ed fun
tion f 2 


15

with

nl(f) = 16262 > 2

15�1

� 2

15�1

2

and �

f

= 216 < 2

n+1

2

(see proof of Lemma 16).

Thus we get a balan
ed fun
tion F 2 


30

with nl(F ) = 2

29

� 2

15

+ 16262 and

�

F

= 2

15

+216. This is 
learly a better result than what we have presented in

Theorem 22. In Theorem 22 we 
onsider �

h

= 2

y+1

and nl(h) = 2

j�1

� 2

j�1

2

.

Here, for a 15-variable fun
tion h, �

h

< 2

y+1

and nl(h) > 2

j�1

� 2

j�1

2

.

Next we 
onsider the 
ase n = 2

i

. Here we use the re
ursive 
onstru
tion and


ome down to a 4 variable fun
tion ultimately.

Theorem 23 It is possible to 
onstru
t F 2 


n

, where n = 2

i

with �

F

=

P

i�2

x=1

2

n

2

x

+ 8. Also, nl(F ) = 2

n�1

�

P

i�2

x=1

2

n

2

x

�1

� 4.

13



PROOF. We use the 
onstru
tion re
ursively until we get a 4 variable Boolean

fun
tion. For balan
ed 4 variable fun
tion h, by 
omputer sear
h it has been


he
ked that the minimum value of �

h

is 8. The nonlinearity result follows

from re
ursive use of Theorem 17, item 2.

It should be noted that in (37), 
onstru
tion of balan
ed Boolean fun
tions

f on even number of variables have been proposed with �

f

= 2

n

2

+1

and

nl(f) = 2

n�1

� 2

n

2

. Our results are 
learly superior. It will be an interesting

resear
h dire
tion either to prove that this is the best possible parameters or

to 
onstru
t a balan
ed fun
tion with better results than this.

5 Correlation Immune and Resilient Boolean Fun
tions

Correlation immunity is a very signi�
ant 
ryptographi
 property of Boolean

fun
tions and it has re
eived a lot of attention in literature (see (31; 32; 13;

3; 30; 4; 12; 28) and the referen
es in these papers). On the other hand, two

fundamental properties for 
ryptographi
ally signi�
ant Boolean fun
tions are

nonlinearity and auto
orrelation. Nonlinearity is one of the most 
hallenging


ombinatorial properties of Boolean fun
tions and is related to the 
overing

radius of �rst order Reed-Muller 
ode (see (26; 23; 24; 11; 14; 15; 5; 27) and the

referen
es in these papers). Very re
ently weight divisibility results of 
orre-

lation immune and resilient (balan
ed 
orrelation immune) Boolean fun
tions

have been proved (28; 35; 39; 1) and these results have dire
t 
onsequen
es to-

wards nontrivial upper bounds on nonlinearity of these sub
lasses of Boolean

fun
tions. Also these results show that if we in
rease the order of 
orrelation

immunity then the nonlinearity de
reases. Currently it has been noted in (41)

that propagation property also goes against 
orrelation property, and some

lower bounds on �

f

values of m-th order 
orrelation immune and resilient

fun
tions have been presented (40).

Here we provide better results whi
h dire
tly relate the auto
orrelation mea-

sures with order of 
orrelation immunity. For a linear fun
tion f , �

f

= 2

n

,

and �

f

= 2

3n

. For fun
tions f , on even number of variables, we have �

f

= 0

(�

f

= 2

2n

) i� f is a bent fun
tion (21; 37). However, bent fun
tions are

not balan
ed. In fa
t, for a fun
tion f of even weight �

f

� 0 mod 8 and

for a fun
tion f of odd weight �

f

� 4 mod 8 (9). For balan
ed fun
tion f ,

�

f

� 2

2n

+ 2

n+3

(33) for both odd and even number of variables. A 
ompara-

tively sharper result in this dire
tion has been proposed in (34) whi
h we will

dis
uss shortly.

Note that the properties �

f

; �

f

are invariant under nonsingular linear trans-

formation on input variables of the fun
tion f . Thus, it is easy to see that the

�

f

results of the papers (33; 34) are valid for any Boolean fun
tion f whose

14



Walsh spe
trum 
ontains at least one zero.

5.1 Lower Bound on sum-of-square Indi
ator

We start this se
tion with a result from (38, Theorem 3).

Theorem 24 Let f 2 


n

. Then �

f

�

2

3n

F

f

.

Next we have the following result, whi
h follows dire
tly from De�nition 7.

Proposition 25 Let f 2 


n

be an m-th order 
orrelation immune fun
tion.

Then F

f

� 2

n

�

P

m

i=1

�

n

i

�

. Moreover, if f is m-resilient, then F

f

� 2

n

�

P

m

i=0

�

n

i

�

.

The sum-of-square indi
ator of GAC has been introdu
ed in (37) (see also

De�nition 6). We start with the following result whi
h uses Theorem 24 and

Proposition 25.

Lemma 26 Let f 2 


n

be an m-th order 
orrelation immune fun
tion. Then,

�

f

�

2

3n

2

n

�

P

m

i=1

�

n

i

�

. Moreover, if f is m-resilient, then �

f

�

2

3n

2

n

�

P

m

i=0

�

n

i

�

.

To identify important 
onsequen
es of this result we need to get an approxi-

mate result whi
h will provide a �

f

value of the form 2

2n

+ 2

n+q

, where q is a

fun
tion of n;m. This we provide in the following result.

Theorem 27 Let f 2 


n

be an m-th order 
orrelation immune fun
tion.

Then, �

f

> 2

2n

+ 2

n+log

2

P

m

i=1

�

n

i

�

. Similarly, if f is m-resilient, then �

f

>

2

2n

+ 2

n+log

2

P

m

i=0

�

n

i

�

.

PROOF. Note that

2

3n

2

n

�

P

m

i=1

�

n

i

�

> 2

2n

+2

n

P

m

i=1

�

n

i

�

. Thus the result follows

for 
orrelation immune fun
tions. The result is similar for resilient fun
tions

also.

Note that, in our analysis, there is no signi�
ant di�eren
e in the result of


orrelation immune and resilient fun
tions in terms of numeri
al values.

Currently there is no result on lower bound of �

f

values for 
orrelation immune

and resilient fun
tions. The only known results are for balan
ed fun
tions

whi
h are given in (33; 34). The lower bound for balan
ed fun
tions given

in (33) is 2

2n

+ 2

n+3

. The result in (34) is as follows. For a balan
ed fun
tion

f ,

15



�

f

� 2

2n

+ 2

6

(2

n

� t� 1), if 0 � t � 2

n

� 2

n�3

� 1, t odd, (i)

2

2n

+ 2

6

(2

n

� t + 2), if 0 � t � 2

n

� 2

n�3

� 1, t even, (ii)

(1 +

1

2

n

�1�t

)2

2n

, if 2

n

� 2

n�3

� 1 < t � 2

n

� 2, (iii)

if f satis�es propagation 
hara
teristi
s with respe
t to t ve
tors. Note that

for 
ase (i) and (ii), even if we overestimate this lower bound, it is 2

2n

+2

n+6

.

For the 
ase (iii) the lower bound varies from 2

2n

+2

n+3

to 2

2n+1

and also this

depends on the propagation 
hara
teristi
s of the fun
tion.

Now we enumerate the 
onsequen
es of our result.

� In our result the lower bound depends dire
tly on the order m of 
orrelation

immunity and this is the �rst nontrivial result in this dire
tion.

� Note that for m >

n

2

, log

2

P

m

i=1

�

n

i

�

> n � 1. Thus for all m-th order


orrelation immune fun
tions with m >

n

2

, �

f

> 2

2n

+ 2

2n�1

. The result is

true for m-resilient fun
tions also. This provides a strong lower bound on

sum-of-square indi
ator for m-th order 
orrelation immune and m-resilient

fun
tions.

� Given any value r (1 � r < n), it is possible to �nd anm-th order 
orrelation

immune or m-resilient fun
tion f su
h that �

f

> 2

2n

+ 2

n+r

by properly


hoosing m.

5.2 Lower Bound on Absolute Indi
ator

Now we 
on
entrate on the absolute indi
ator of GAC. We have the result

on sum-of-square indi
ator for 
orrelation immune and resilient fun
tions. We

use the result in this dire
tion.

Lemma 28 For an n-variable m-th order 
orrelation immune fun
tion f ,

�

f

�

v

u

u

u

t

1

2

n

�1

2

2n

P

m

i=1

�

n

i

�

2

n

�

P

m

i=1

�

n

i

�

. Similarly,�

f

�

v

u

u

u

t

1

2

n

�1

2

2n

P

m

i=0

�

n

i

�

2

n

�

P

m

i=0

�

n

i

�

for an n-variable

m-resilient fun
tion f .

PROOF. We know, �

f

=

P

�2f0;1g

n

�

2

f

(�). Thus, the absolute value of ea
h

�

f

(�) will be minimum only when they all possess equal values. Hen
e, the

minimum value of �

f

will be

r

�

f

�2

2n

2

n

�1

. This gives the result using the value of

�

f

from Lemma 26.

Thus, using simpli�
ation we get the following result.
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Theorem 29 For an n-variable m-th order 
orrelation immune fun
tion f ,

�

f

> 2

n

2

v

u

u

u

t

P

m

i=1

�

n

i

�

2

n

�

P

m

i=1

�

n

i

�

. Similarly, �

f

> 2

n

2

v

u

u

u

t

P

m

i=0

�

n

i

�

2

n

�

P

m

i=0

�

n

i

�

for an n-variable

m-resilient fun
tion f .

PROOF. The result follows from overestimating 2

n

� 1 by 2

n

.

It is known that, for a fun
tion f of even weight, �

f

� 0 mod 8 (9). Sin
e the


orrelation immune fun
tions and resilient fun
tions are all of even weight,

the �

f

values will be the value greater than the values given in Theorem 29,

whi
h are divisible by 8. The only published result on the lower bound on

�

f

for a balan
ed fun
tion f is �

f

� 8 (33). Our result has the following


onsequen
es.

� The value �

f

is a fun
tion of n;m.

� For m >

n

2

, �

f

> 2

n

2

.

� For small values of m, �

f

>

r

P

m

i=1

�

n

i

�

>

r

�

n

m

�

.

� For m = 1, �

f

>

p

n.

5.3 Lower Bounds using Weight Divisibility Results

Here we use the weight divisibility results of 
orrelation immune and resilient

Boolean fun
tions (28). It is known that the values in the Walsh spe
trum of

an m-th order 
orrelation immune fun
tion is divisible by 2

m+1

. Similarly for

m-resilient fun
tions, the Walsh spe
trum values are divisible by 2

m+2

.

Let us now �nd out the sum of square indi
ators of su
h fun
tions. We on
e

again refer to Theorem 24. For f 2 


n

, �

f

�

2

3n

F

f

.

� For an n-variable, m-th order 
orrelation immune fun
tion the values in

Walsh spe
tra are 0;�i2

m+1

; i = 1; 2; : : :. From Parseval's relation (10)

P

!2f0;1g

n

W

f

(!) = 2

2n

. Hen
e, we get that for su
h a fun
tion f , F

f

�

2

2n�2m�2

.

� For an n-variable, m-resilient fun
tion the values in Walsh spe
tra are

0;�i2

m+2

; i = 1; 2; : : :. Using Parseval's relation, we get that for su
h a

fun
tion f , F

f

� 2

2n�2m�4

.

Theorem 30 For an n-variable, m-th order 
orrelation immune fun
tion f ,

�

f

� 2

n+2m+2

. Similarly, for an n-variable, m-resilient fun
tion f , �

f

�

2

n+2m+4

.
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PROOF. The result for 
orrelation immune fun
tion follows from Theo-

rem 24 and F

f

� 2

2n�2m�2

. The result for resilient fun
tion follows from

Theorem 24 and F

f

� 2

2n�2m�4

.

Note that the trivial lower bound on the sum of square indi
ator is 2

2n

. Hen
e,

for 
orrelation immune fun
tions, this bound is nontrivial, when n+2m+2 >

2n, i.e, m >

n

2

� 1. Similarly for resilient fun
tions, this bound is nontrivial

for m >

n

2

� 2. Using these results, we immediately get the result on the �

f

values of these fun
tions.

Theorem 31 For an n-variable, m-th (m >

n

2

�1) order 
orrelation immune

fun
tion f , �

f

> 2

2m+1

2

. Similarly, for an n-variable, m-resilient (m >

n

2

� 2)

fun
tion f , �

f

> 2

2m+3

2

.

PROOF. For the 
orrelation immune fun
tion f , we have, �

f

�

q

2

n+2m+2

�2

2n

2

n

�1

.

Thus, overestimating 2

n

� 1 as 2

n

, �

f

>

p

2

2m+2

� 2

n

�

p

2

2m+1

(sin
e

m >

n

2

� 1) = 2

2m+1

2

. Similarly for the resilient fun
tion f , we have, �

f

�

q

2

n+2m+4

�2

2n

2

n

�1

. Thus, overestimating 2

n

�1 as 2

n

, �

f

>

p

2

2m+4

� 2

n

�

p

2

2m+3

=

2

2m+3

2

.

Note that the weight divisibility results using algebrai
 degree of the fun
tions

have been presented in (6; 7). These results 
an be used to provide sharper

lower bounds on �

f

;�

f

involving algebrai
 degree. From (6; 7), it is 
lear

that for an n-variable, m-th order 
orrelation immune fun
tion with algebrai


degree d, the values of the Walsh spe
tra will be divisible by 2

m+1+b

n�m�1

d




.

Similarly for an n-variable, m-resilient fun
tion with algebrai
 degree d, the

values of the Walsh spe
tra will be divisible by 2

m+2+b

n�m�2

d




. Using these

results we 
an update Theorem 30, Theorem 31 involving algebrai
 degree as

follows.

Theorem 32 For an n-variable, m-th order (m >

n

2

� 1) 
orrelation im-

mune fun
tion f with algebrai
 degree d, �

f

� 2

n+2m+2+2b

n�m�1

d




, and �

f

>

2

2m+1+b

n�m�1

d




2

. Similarly, for an n-variable, m-resilient (m >

n

2

� 2) fun
tion

f with algebrai
 degree d, �

f

� 2

n+2m+4+2b

n�m�2

d




, and �

f

> 2

2m+3+b

n�m�2

d




2

.

In (40), it has been shown that �

f

� 2

m�1

P

+1

i=0

2

i(m�1�n)

for an unbalan
ed

n-variable m-th order 
orrelation immune fun
tion for the range 2 � m �

n. Note that, �

f

� 2

m�1

P

+1

i=0

2

i(m�1�n)

= 2

m�1

1

1�2

m�1�n

. Thus even if we

overestimate the lower bound, it 
an be at most 2

m

as the maximum value of

2

m�1�n

i is

1

2

. Also �

f

� 2

m

P

+1

i=0

2

i(m�n)

for an n-variable m-resilient fun
tion

for the range 1 � m � n � 1. This gives, �

f

� 2

m

P

+1

i=0

2

i(m�n)

= 2

m

1

1�2

m�n

.

Overestimating this we will get 2

m+1

.
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For higher orders (m >

n

2

� 1 for 
orrelation immunity and m >

n

2

� 2 for

resilien
y) Theorem 31 provides better result than (40). For lower order of


orrelation immunity (m �

n

2

�1), we use our result in Theorem 29. Note that

our result is better than that of (40) when (2

n

+2

2m

)

P

m

i=1

�

n

i

�

> 2

n+2m

. For the


ase of resilien
y (m �

n

2

�2), our result is better when (2

n

+2

2m

)

P

m

i=0

�

n

i

�

>

2

n+2m

.

Next we 
on
entrate on a very important subset of 
orrelation immune and

resilient fun
tions whi
h possess maximum possible nonlinearity. Importantly

the resilient fun
tions have dire
t appli
ation in stream 
ipher systems. Now

the 
lear ben
hmark in sele
ting the resilient fun
tions is the fun
tions whi
h

possess the best possible trade-o� among the parameters nonlinearity, alge-

brai
 degree and the order of resilien
y. However, we point out that we should


onsider one more important 
riteria in the sele
tion pro
ess. In fa
t we �nd

fun
tions with best possible trade-o� having same values of nonlinearity, al-

gebrai
 degree and order of resilien
y but having di�erent auto
orrelation

properties. Thus, it is important to sele
t the one with better �

f

values. It is

also interesting to note that any two fun
tions with this best possible trade-o�

must possess the same �

f

values, whi
h we prove here.

Now we 
on
entrate on De�nition of plateaued fun
tions (38, De�nition 9).

Apart from the bent and linear fun
tions, the other plateaued fun
tions have

the property that they have three valued Walsh spe
tra 0;�2

x

. We 
all that

these fun
tions possess three valued Walsh spe
tra with the values 0;�2

x

.

Next we have the following result from (38, Theorem 3).

Theorem 33 Let f 2 


n

and f has a three valued Walsh spe
tra 0;�2

x

.

Then �

f

=

2

3n

F

f

.

Now we 
on
entrate on two spe
ial subsets of 
orrelation immune and resilient

Boolean fun
tions respe
tively. We present the following known (28) results.

� For an n-variable, m-th order 
orrelation immune fun
tion with m >

n

2

� 1,

the maximum possible nonlinearity that 
an be a
hieved is 2

n�1

� 2

m

and

these fun
tions possess three valued Walsh spe
tra 0;�2

m+1

. Thus from

Parseval's relation (10)

P

!2f0;1g

n

W

f

(!) = 2

2n

. Hen
e, we get that for su
h

a fun
tion f , F

f

= 2

2n�2m�2

.

� For an n-variable, m-resilient fun
tion with m >

n

2

� 2, the maximum

possible nonlinearity that 
an be a
hieved is 2

n�1

�2

m+1

and these fun
tions

possess three valued Walsh spe
tra 0;�2

m+2

. Using Parseval's relation, we

get that for su
h a fun
tion f , F

f

= 2

2n�2m�4

.

Hen
e we get the following result.

Theorem 34 For an n-variable, m-th (m >

n

2

�1) order 
orrelation immune
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fun
tion f with maximum possible nonlinearity, �

f

= 2

n+2m+2

. Similarly, for

an n-variable, m-resilient (m >

n

2

� 2) fun
tion f with maximum possible

nonlinearity, �

f

= 2

n+2m+4

.

PROOF. The result for 
orrelation immune fun
tion follows from Theo-

rem 33 and F

f

= 2

2n�2m�2

. The result for resilient fun
tion follows from

Theorem 33 and F

f

= 2

2n�2m�4

.

Current results (35; 6; 7) 
learly identify that the nonlinearity and algebrai


degree of the 
orrelation immune and resilient fun
tions are optimized simul-

taneously. Here we show that at this situation, the sum of square indi
ator

attains its minimum value too.

5.4 Constru
tion Results

Resilient Boolean fun
tions, whi
h are provably optimized in terms of order of

resilien
y, algebrai
 degree and nonlinearity (28), have immediate appli
ations

in stream 
ipher systems. Unfortunately, the general 
onstru
tion te
hniques

does not provide good auto
orrelation properties. First we will talk about some

spe
i�
 resilient fun
tions and their �

f

values. Then we will analyze some of

the well known 
onstru
tions and 
al
ulate the auto
orrelation values.

Let us 
onsider the (5; 1; 3; 12) fun
tions. We initially 
onsider su
h a fun
-

tion f 
onstru
ted using linear 
on
atenation (27), whi
h is (1 � X

5

)(1 �

X

4

)(X

1

�X

2

)� (1�X

5

)X

4

(X

1

�X

3

)�X

5

(1�X

4

)(X

2

�X

3

)�X

5

X

4

(X

1

�

X

2

�X

3

). This fun
tion has �

f

= 16. However, by studying the equivalen
e


lasses in (2) and then using linear transformation, it is possible to get a

(5; 1; 3; 12) fun
tion g, su
h that �

g

= 8. The truth table of the fun
tion is

00001011110110011110010100111000. This fun
tion a
hieves the best possible

trade-o� among order of resilien
y, nonlinearity, algebrai
 degree and auto-


orrelation.

Also, re
ently (7, 2, 4, 56) (22) and (8, 1, 6, 116) (17) fun
tions have been

found by 
omputer sear
h. It is very interesting to note �

f

values for these

two 
ases are same for all the fun
tions those are found by 
omputer sear
h,

whi
h are respe
tively 32, 80.

However, the existing re
ursive 
onstru
tion results are not very good in terms

of the auto
orrelation values. We now dis
uss the absolute indi
ator values of

auto
orrelation of some of these 
onstru
tions.
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5.4.1 Re
ursive Constru
tion I

Here we 
onsider the re
ursive 
onstru
tion whi
h has been dis
ussed in (3; 18;

20) in di�erent forms. We 
onsider the notation in (20) here for 
onstru
ting

an (n+ 1)-variable fun
tion F from two n-variable fun
tions f; g.

Q

i

(f(X

n

; : : : ; X

1

); g(X

n

; : : : ; X

1

))=F (X

n+1

; : : : ; X

1

)

= (1�X

i

)f(X

n

; : : : ; X

i+1

; X

i�1

; : : : ; X

1

)

�X

i

g(X

n

; : : : ; X

i+1

; X

i�1

; : : : ; X

1

):

Let f be an n-variable, m-resilient degree d fun
tion having nonlinearity x.

De�ne F (X

n+1

; : : : ; X

1

) to be an (n+ 1)-variable fun
tion as

F (X

n+1

; : : : ; X

1

) = Q

i

(f(X

n

; : : : ; X

1

); a� f(b�X

n

; : : : ; b�X

1

)):

Here a; b 2 f0; 1g and if m is even a 6= b and if m is odd, a = 1 and b 
an

be either 0 or 1. Then F (X

n+1

; X

n

; : : : ; X

1

) is an (m + 1)-resilient, degree d

fun
tion having nonlinearity 2x (20).

Note that, any of the operators Q

i


an be expressed as a 
omposition of Q

n+1

and a suitable permutation of the input variables. The permutation of input

variables preserves the auto
orrelation property, resilien
y, algebrai
 degree

and nonlinearity. So it is enough to look into the 
onstru
tion fun
tion as

F (X

n+1

; : : : ; X

1

) = Q

n+1

(f(X

n

; : : : ; X

1

); a� f(b�X

n

; : : : ; b�X

1

)); i:e:;

F (X

n+1

; : : : ; X

1

) = (1�X

n+1

)f(X

n

; : : : ; X

1

)�X

n+1

(a�f(b�X

n

; : : : ; b�X

1

)):

First 
onsider the 
ase when m is even. Then a 6= b. Let us 
onsider, a = 1; b =

0, then F (X

n+1

; : : : ; X

1

) = (1�X

n+1

)f(X

n

; : : : ; X

1

)�X

n+1

(1�f(X

n

; : : : ; X

1

)) =

X

n+1

� f(X

n

; : : : ; X

1

). It is 
lear that �

f

(1; 0; : : : ; 0) = �2

n+1

.

If we 
onsider a = 0; b = 1, then F (X

n+1

; : : : ; X

1

) = (1�X

n+1

)f(X

n

; : : : ; X

1

)�

X

n+1

f(1�X

n

; : : : ; 1�X

1

). Then, �

f

(1; 1; : : : ; 1) = 2

n+1

.

Similarly it 
an be shown that for the 
ase m odd, there will be linear stru
-

tures in this 
onstru
tion. Thus, for this re
ursive 
onstru
tion, for an n vari-

able fun
tion, the absolute indi
ator value is 2

n

.

5.4.2 Re
ursive Constru
tion II

Now we 
onsider an elegant 
onstru
tion (35) whi
h was later modi�ed in (22).

An (n;m; d; x) fun
tion f (see De�nition 7) is said to be in desired form (22)

if it is of the form (1 � X

n

)f

1

� X

n

f

2

, where f

1

; f

2

are (n � 1; m; d � 1; x �

2

n�2

) fun
tions. This means that the nonzero values of the Walsh spe
tra
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of f

1

; f

2

do not interse
t, i.e., if W

f

1

(!) 6= 0, then W

f

2

(!) = 0, and vi
e

versa. Let f be an (n;m; d; x) fun
tion in the desired form, where f

1

; f

2

are

both (n � 1; m; d � 1; x � 2

n�2

) fun
tions. Let F = X

n+2

� X

n+1

� f and

G = (1�X

n+2

�X

n+1

)f

1

� (X

n+2

�X

n+1

)f

2

�X

n+2

�X

n

. Note that in the

language of (35), the fun
tion G above is said to depend quasilinearly on the

pair of variables (X

n+2

; X

n+1

). Also, F

1

= (1�X

n+3

)F�X

n+3

G. The fun
tion

F

1


onstru
ted from f above is an (n+ 3; m+ 2; d+ 1; 2

n+1

+ 4x) fun
tion in

the desired form.

Consider the 
ase �

n+3

= 0; �

n+2

= �

n+1

= 1 and any pattern for �

n

; : : : ; �

1

.

In this 
ase, F (X

n+2

; : : : ; X

1

) = F (X

n+2

� �

n+2

; : : : ; X

1

� �

1

) and hen
e

�

F

(�

n+2

; : : : ; �

1

) = 2

n+2

. On the other hand, G(X

n+2

; : : : ; X

1

) � G(X

n+2

�

�

n+2

; : : : ; X

1

��

1

) = f

1

�f

2

�1. Note that, if the nonzero values of the Walsh

spe
tra of f

1

; f

2

do not interse
t, then f

1

�f

2

is balan
ed, i.e. f

1

�f

2

�1 is also

balan
ed. Hen
e, �

G

(�

n+2

; : : : ; �

1

) = 0. This gives that �

F

1

(�

n+3

; : : : ; �

1

) =

�

F

(�

n+2

; : : : ; �

1

) + �

G

(�

n+2

; : : : ; �

1

) = 2

n+2

+ 0 = 2

n+2

. So, �

F

1

� 2

n+2

.

Thus, for this re
ursive 
onstru
tion, for an n variable fun
tion the absolute

indi
ator value is greater than or equal to 2

n�1

.

Note that di�erent kinds of 
onstru
tions of resilient Boolean fun
tions has

been proposed in (27). The main te
hnique used there is 
on
atenation of

small aÆne fun
tions. It will be of interest to analyze the absolute indi
ator

values of su
h 
onstru
tions.

6 Con
lusion

Here we have dis
ussed about the auto
orrelation values of di�erent 
lasses of


ryptographi
ally signi�
ant Boolean fun
tions. We present 
onstru
tions of

balan
ed fun
tions whi
h provide 
urrently best known auto
orrelation val-

ues. We also dis
uss the auto
orrelation properties of 
orrelation immune and

resilient Boolean fun
tions.
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