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Abstract

Constructing highly nonlinear balanced Boolean functions with very good autocorre-
lation property is an interesting open question. In this direction we use the measure
Ay, the highest magnitude of all autocorrelation coefficients for a function f. We
provide balanced functions f with currently best known nonlinearity and Ay values
together. We extend the result of Maitra and Sarkar (2000) for 15-variable functions
which experimentally disprove the conjecture proposed by Zhang and Zheng (1995).
We prove it theoretically for different ranges of nonlinearity, where our construc-
tions are based on modifications of Patterson-Wiedemann (1983) functions. Also
we propose a simple bent based counstruction technique to get functions with very
good Ay values for odd number of variables. This construction has a root in Ker-
dock Codes. Moreover, our construction on even number of variables is a recursive
one and we conjecture (similar to Dobbertin’s conjecture (1994) with respect to
nonlinearity) that this provides the minimum possible value of Ay for a balanced
function f on even number of variables. Next we discuss about the autocorrelation
values of correlation immune and resilient Boolean functions. We provide new lower
bounds and related results on absolute indicator and sum of square indicator (of au-
tocorrelation) for certain orders of correlation immunity and resiliency and clearly
show that autocorrelation goes against order of correlation immunity. We also point
out the weakness of two recursive construction techniques for resilient functions in
terms of autocorrelation values.
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1 Introduction

Nonlinearity and autocorrelation values are two fundamental properties for
cryptographically significant Boolean functions. It is well known (26; 21; 10; 8)
that bent functions possess the best possible nonlinearity and autocorrelation
values. However, bent functions are available for even number of variables only
and they are not balanced. For nonlinear balanced functions the relationship
between nonlinearity and autocorrelation values is not explicit. In this paper
we construct balanced Boolean functions with currently best known trade-off
between nonlinearity and autocorrelation values. For a function F', we use the
parameter nl(F) (see Definition 2) for nonlinearity and Ap (see Definition 6)
for absolute indicator of autocorrelation values. A good balanced function F
must have high nl(F) and low Ap.

We provide balanced functions F' on n variables (n even) with nonlinearity
nl(F) = 271 — 2% 4+ nl(f) and Ap = 2% + Ay, where f is an 2 variable
balanced function. This result is superior to the result proposed in (37), where
nl(F) = 2"' — 25 and Ap = 2571 Also we conjecture from our recursive
result that this construction provides the minimum possible value of A for a
balanced function f on even number of variables.

In case of odd number of variables we use a bent based construction which
is motivated from synthesis of Kerdock codes. The parameters we achieve are
same as the parameters that appeared in (37, Section 5.2). However, our con-
struction is easy to understand. In (37) it was conjectured that for a balanced
function F' on n variables (n odd), Ap > 2"%. The conjecture has been ex-
perimentally disproved by running a computer program in (19). Experimental
results (19) show that the conjecture is not true for functions with nonlinearity
strictly greater than 27! — 2", However, we show here that the conjecture
can be disproved directly from Patterson-Wiedemann functions and without
running a computer experiment. We here extend the analysis of (19) by the-
oretically showing that the conjecture (37) is not true for different ranges of
nonlinearity. We disprove the conjecture showing that for n = 15, there are
functions with Ap < 2"3 and this happens for functions with nonlinearity
strictly less than, equal to and strictly greater than (three different cases) the
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bent concatenation nonlinearity 27~ — 277 .

Next we concentrate on the autocorrelation values for correlation immune
and resilient (balanced correlation immune) Boolean functions (see Defini-
tion 7). We provide the currently best known lower bounds on Ag, o (see
Definition 6) for these classes. Very recently autocorrelation properties of cor-
relation immune and resilient Boolean functions were presented in (40) and
we provide better results here. Also we provide sharper result for the class of
correlation immune and resilient functions which attain the maximum possible



nonlinearity. In (41), it has been discussed that the propagation property goes
against correlation immunity. We here explicitly show that the A values goes
against the order of correlation immunity. We also point out the limitation of
two recursive construction methods of resilient Boolean functions in terms of
autocorrelation values.

2 Preliminaries

Here we introduce a few definitions and notations.

Definition 1 Let s, 1,59 be binary strings of same length . The bitwise
complement of s is denoted by s¢. We denote by #(s1 = s2) (respectively
#(s1 # s2)), the number of places where sy and sy are equal (respectively
unequal). The Hamming distance between sy, so is denoted by d(sq, s2), i.e.

d(Sl, 52) = #(81 7£ 82).

The Walsh distance wd(sy, $3), between s, and sq, is defined as,

wd(sy, s2) = #(51 = s2) — F#(s51 # S9).

Note that, wd(sy, sy) = A — 2d(s1,s2). The Hamming weight or simply the
weight of s is the number of ones in s and is denoted by wt(s). An n-variable
function f is said to be balanced if its output column in the truth table contains
equal number of 0’s and 1’s (i.e. wt(f) =2"71).

By 2, we mean the set of all n-variable Boolean functions. Note that we denote
the addition operator over GF(2) by @. An n-variable Boolean function can
be uniquely represented by a multivariate polynomial over GF(2).

Definition 2 Let f(X,,...,X;1) be an n-variable function. We can write f

as
=n
ag D (@ ale) D ( @ ainin) D...D alg___nXng ce Xn,
i=1 1<iZj<n
where the coefficients ag, a;, @ij, ..., a12..n € {0,1}. This representation of f

is called the algebraic normal form (ANF) of f. The number of variables in
the highest order product term with nonzero coefficient is called the algebraic
degree, or simply degree of f. Functions of degree at most one are called affine
functions. An affine function with constant term equal to zero is called a lin-
ear function. The set of all n-variable affine (respectively linear) functions is
denoted by A(n) (respectively L(n)). The nonlinearity nl(f) of an n-variable
function f is defined as

9€A(n)



i.e. nl(f) is the distance of f from the set of all n-variable affine functions.
We also define

7p = max |wd(f,g) | = 2" —2nl(f).

Lower value of Ty implies better nonlinearity of f.

In this document we will use concatenation of Boolean functions. Consider
fi, fo € Q,_1 and f € Q,. Then by concatenation of f; and f,, we mean that
the output columns of truth table of fi, fo will be concatenated to provide
the output column of the truth table of an n-variable function. We denote
the concatenation of fi, fo by fifs. Thus, f = fifo means that in algebraic
normal form, f = (1 X,)f1 & X, fo.

Proposition 3 Let ly,ly € L(k). Then, d(ly,l) = 0,281 2% (wd(ly,ly) =
2k 0, —2%) according as I, = ly (are same), 1y # lo or IS (are distinct), I, =I5
(are complement to each other).

Definition 4 Let X = (X,,,..., X)) and @ = (wy,...,w;) be n-tuples on
GF(2) and X.w = X,w, ®...® Xjw;. Let f(X) be a Boolean function whose
domain is the vector space over GF(2)". Then the Walsh transform of f(X)
is a real valued function over GF(2)"™ that can be defined as

W) (@) = (-1 O,

X

where the sum is over all X in GF(2)". The relationship between Walsh dis-
tance and Walsh transform is

Wy (@) = wd(f, DX,

For a function f, we define

Fp=[{we{0,1}" | W;@) #0} |.
This s the number of nonzero coefficients in the Walsh spectra.

Propagation Characteristic (PC) and Strict Avalanche Criteria (SAC) (36; 25)
are important properties of Boolean functions to be used in S-boxes.

Definition 5 Let X be an n tuple Xy,..., X, and @ € {0,1}". A function
f € Q, is said to satisfy

(1) SAC if f(X)® f(X @ @) is balanced for any @ such that wt(@) = 1.

(2) SAC(k) if any function obtained from f by keeping any k input bits con-
stant satisfies SAC.

(3) PC(l) if f(X)® f(X®@) is balanced for any @ such that 1 < wt(a) < L.



(4) PC(l) of order k if any function obtained from f by keeping any k input
bits constant satisfies PC(I).

However, Zhang and Zheng (37) justified that SAC and PC have some limi-
tations in identifying certain desirable cryptographic properties of a Boolean
function. In this direction they have proposed the idea of Global Avalanche
Characteristics (GAC). The following definition states two important indica-
tors of GAC. Note that, the absolute indicator of GAC is a stronger property
than the sum-of-square indicator.

Definition 6 Let X € {0,1}" be an n tuple X,,..., X, and @ € {0,1}" be
an n tuple ay,,...,aq. Let f € Q, and

As(@) = wd(f(X), f(X @ @),

the autocorrelation value of f with respect to the vector @. The sum-of-square

indicator
of = Z A?c (a)
ae{o,1}1n
The absolute indicator

Af: max |Af(a) |

@e{0,1}7,a#0

Note that Ay(@) = 0 iff f(X) ® f(X @ @) is balanced. Also | Ay(@) | = 2"
iff f(X)® f(X @ @) is constant and @ is called a linear structure of f. Note
that 0 is always a linear structure for a Boolean function. However, existence
of any nonzero linear structure is cryptographically undesirable.

For functions f, on even number of variables, we have Ay = 0, iff f is a
bent function. However, bent functions are not balanced. In fact, for balanced
functions f, Ay > 8 (see (34)) for both odd and even number of variables.
In the next two sections (Section 3, 4) we will propose several construction
methods to provide balanced functions f with very high ni(f) and very low
Ay

Then we concentrate on the autocorrelation spectra of correlation immune and
resilient Boolean functions (Section 5). In (13), the following characterization
of correlation immunity is provided.

Definition 7 A function f(X,,...,X1) is m-th order correlation immune
(CI) iff its Walsh transform Wy satisfies

We(@) =0, forl < wt(w) < m.

If f is balanced then W;(0) = 0. Balanced m-th order correlation immune
functions are called m-resilient functions. Thus, a function f(X,,...,X;) is



m-resilient uoff its Walsh transform Wy satisfies
We(@) =0, for 0 < wt(w) < m.

By (n,m,d,x) we denote an n-variable resilient function of order m, nonlin-
earity x and degree d.

It may very well happen that correlation immune or resilient functions, which
are good in terms of order of correlation immunity, algebraic degree and non-
linearity, may not be good in terms of SAC or PC properties. Also getting
good SAC or PC properties may not be sufficient for cryptographic purposes.
There may be a function f which possesses good SAC or PC properties, but
f(X) ® f(X @ @) is constant for some nonzero @, which is a weakness. It is
important to get good autocorrelation properties for such functions. That is
why, we here look into the autocorrelation properties of correlation immune
and resilient functions in Section 5.

3 Construction for any odd n

First we need the following important result. The motivation of choosing two
bent functions with the property used in the following lemma comes from the
use of bent functions in Kerdock code.

Lemma 8 Let n be odd and fi, fo € Q,_1 are two bent functions such that

(X1, X))@ (X 1P ay1,..., X1 ® ay) is also bent for any vector

(ap_1,...,a1) € {0,1}*"L. Construct F' € Q, such that F = fifs, i.e. F =
n+1

(1 D Xn)fl(Xn—la . ,Xl) D anZ(Xn—I; . ,Xl). Then AF =272 . Also it is
possible to get such a balanced F'.

PROOF. We have to calculate wd(F(Xp,...,X1), F(X, ®an,..., X1 ©a))
for nonzero (ay,...,a1) € {0,1}". We have two cases.

When «,, = 0, then wd(F(X,,...,X1), F(X, ® ay,..., X1 ®ay))
=wd(fi(Xp 1,.... X1), i(Xpn 1@y 1,...,X1 B ay))

+wd(fo(Xp 1, ., X1), fo(Xpn 1B 1,..., X1 ®ay))

=04 0 =0, since both f;, f5 are bent.

When «,, = 1, then | wd(F(X,,..., X1), F( X, ® ap,..., X1 ® ay)) |

< | wd(fi(Xp=1,-..,X1), fo(Xno1 @ apor, ..., X1 @ ar)) |

+Howd(fo( X1y, X1), (X 1 a1y, X1 D)) |

= 2% 42" = 2nT+l, since f1(X, 1,..., X1)®fo( Xy 1Py 1,..., X1Pay) is
also bent. It is also easy to see that Ap(@) can have the values 0, +2"3" . Since
F is on odd number of variables, all the Ay (@) values cannot be zero. Hence,
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Ap =272 . If FF= f, f5 is not balanced, use F' = f; f5, which is balanced. =



Next we propose the following construction.

Construction 0 Let g1, 92 € 2, and hy, hy € Q. are all bent functions for
m, k even and take n = m+k. Also, g1 (Y, .-, Y1) D 92(Y ® B, -- -, X1 B 1)
is bent for any (B, .-, 1) € {0,1}"™ and hy(Zy, ..., Z1)®ho(Zr DYk - - -, Z1D
v1) 48 bent for any (e, ...,71) € {0,1}F. Let fi, fo € Q, such that fi = gy ®hy
and fy = go®hy, where X;, =Yy, oo, Xp o1 = Y1, X0 = Zg, -, X1 = 2.
If wt(f1) = wt(f2), then replace fy by fS. This is required to make the function
f1fe balanced.

Lemma 9 Let f1, fo are as in Construction 0. Then fi(X,, ..., X1)® fo(X, @
Qp,y ... X1 D ay) is bent for any (a,...,0q) € {0,1}"

PROOF. We have fi, fo as in Construction 0. Let o, = By -+, Q1 =
61, Aqp—m = Vs 501 = 71- ThU_S, fl(Xn7 . ,X]_) ) fZ(Xn ) Qp,y ... 7X1 ) O[]_)
= (1 (Yo, .- Y1) @ hi(Zy, ..., 21)) @ (92(Yon @ By - -, Y1 @ B1) © ho(Zy @
Viy - 21 D)) = (1 (Y, -, Y1) @ g2(Yi @ B,y .., Y1 © 1))

®(h1(Zky. ., Z1) ® ha(Zk ® Yy - -, Z1 B 1)), which is bent (16, Theorem 10,
Page 428) a5 (Yo, -, Y1) @ 0 (Vin © Bns - Y1 ® 1) and by (Z, ..., 7,) &
ho(Zk @ Yk, - - ., Z1 @ 1) are both bent. ]

Lemma 10 For even n > 4, it is possible to find bent functions fi, fo € Q,
where f1(Xp, ..., X1)® fo(Xn®ay, ..., X1Bay) is bent for any (a,...,q1) €
{0,1}".

PROOF. We have checked by running computer program that there exists
gi,92 € ), such that gl(X4, . ,Xl) EBQQ(X4@CY4, . ,Xl @al) is bent for any
(014, Tt al) S {07 1}4

First we consider n of the form 0 mod 4. Thus, taking f, = g1, fo = g we
prove the base case for n = 4. Let there exists such f, fo € (4,, a > 1 integer.
Now, we will prove such pair of functions will be available for n = 4a + 4.
From induction hypothesis, we have such Ay, ho € €,. Hence, if we take,
fi = g1 ® hy and fo = g9 @ ho, where fi, fo € €2,, then from Lemma 9,
(X, .., X))@ (X, ®a,, ..., X1®Bay) is bent for any (ay,, ..., aq) € {0,1}".

Next we consider n of the form 2 mod 4. For the base case, we run computer
program to find bent functions hy, hy € g, such that hy (X, ..., X;)Dhe(Xe®
a, - - -, X1Pay) is bent for any (ag, ..., a1) € {0,1}%. We take fi = hy, fo = hy
as base case. Let there exists such fi, fo € Quu19, a > 1 integer. Now, we will
prove such pair of functions will be available for n = 4a + 6. From induction
hypothesis, we have such hi, hy € (4,12. Hence, if we take, f1 = g1 ® hy and
f2 = gg@hg, where fl; f2 S Qn; then from Lemma 9, fl(Xn; . ,Xl)@fZ(XnEB
Qp, ..., X1 @ aq) is bent for any (a,...,a1) € {0,1}". n



Theorem 11 Consider the balanced function F € Q,, n > 3 odd, as in Con-
struction 0. Then Ap = 2"% and nl(F) = 21 — 2" . Forn =3, Ap = 8,
nl(F) = 2.

PROOF. The proof for A follows from Lemma 8, Lemma 9 and Lemma 10.
According to Construction 0, F' is a concatenation of two bent functions.

n—1

Hence, nl(F) =2""1—-273". ]

Thus, we provide functions F' on odd number of variables which are of similar
quality as in (37) in terms of nl(F) and Ap. However, our construction is
much simpler. Now it is important to refer to the paper (1). Following (1,
Theorem 4), the concatenation of any two bent functions of (n — 1) variables
provides a function F' of n variables with nonlinearity 27! — 2"7". Since the
sum-of-square indicator (see Definition 6) of the obtained function F' equals
922n+1 (see (1, Theorem 1)), the absolute indicator of F equals 2% iff the
magnitudes of all autocorrelation coefficients with respect to @ = (a,, . .., a1)
with o, = 1 are equal to 2% (because all autocorrelation coefficients with
respect to «, = 0 are equal to 0). We could provide construction of such
functions here.

3.1  Construction for odd n = 15

In (37), construction of balanced function f on odd number of variables with
Ay = 2"3 and nonlinearity 2" ! — 2”7 has been proposed. It has also been
conjectured in (37) that for balanced Boolean functions on odd number of
variables, this is the minimum possible value of Ay.

Here we consider the functions provided in (27) and provide simple mathe-
matical argument towards disproving the conjecture. The conjecture was first
disproved in (19), which we extend here. In fact we prove that, it is possi-
ble to construct 15 variable balanced functions f with nonlinearity less that,
equal t(isa?d greater than 2! — 27 (the bent concatenation nonlinearity) with
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Ay <273 = 256. Thus, the conjecture is disproved for three different ranges
of nonlinearity.

Consider a Boolean function of n-variables as its truth table which is a binary
string of length 2". It is then easy to see the following result.

Proposition 12 Let f € Q,. If x bits of the output column of f is comple-
mented to get g, then (1) nl(g) > nl(f) —x and (2) Ay < Ay + 4u.

Proposition 13 [t is possible to construct f € Q5 with nl(f) = 16276,
wt(f) = 16364 and Ay = 160.



PROOF. Consider a function f, € Q5 with ni(f1) = 16276, wt(f1) = 16492
and Ay, =160 (we found such a function by running the same experiment as
done by Patterson and Wiedemann (23)). From (23), we know that there are
3255 linear functions in L(15) at a distance 16364 from f,. Let [ be one of these
3255 linear functions. Define f = fi®1. Then f € Qu5, nl(f) = nl(f1) = 16276
and wt(f) = wt(fr® 1) = d(f1,1) = 16364 (see also (27)). Also it is clear that
Ay = Ay, and hence the result. ]

Lemma 14 It is possible to construct a balanced {iurloction g € Q5 such that
nl(g) = 16256 = 2" — 27 and A, < 240 < 256 =22 .

PROOF. Take the function f as in Proposition 13. Since nl(f) = 16276,
there is one affine function A € A(15) such that d(f, \) = 16276. Now consider
the truth table of f, \, which are binary strings of length 2!%. For a string S,
denote S[i] as the ith location of the string S, where 0 < i < 2" —1. Now let us
identify 20 locations i, . ..,z such that A[ig] = 1 and f[ix] = 0. We construct
g from f such that g[j] = f[j] for the 2% — 20 positions, where j # i) for
1 <k <20. For j =i, 1 <k <20 we take g[j] = 1. Thus, wt(g) = 16364 +
20 = 16384 = 2'* and from item 1 of Proposition 12, nl(g) > 16276 — 20.
Since, d(g, \) = 16276 — 20 = 16256 = 2'* — 27, we have nl(g) = 16256. Now
from Proposition 12, item 2 we get, A, < Ay + 4 x 20 = 240. [

Lemma 15 [t is possible to construct a balanced function h € 5 such that
1 1
nl(h) = 16254 =2 —27 —2 < 214 97 gnd A, < 248 < 256 =22 .

PROOF. Take the function g as in Lemma 14. We have nl(g) = 16256,
and there is one linear function A € L(15) (the same one as in the proof of
Lemma 14) such that d(g, \) = 16256. Now consider the truth table of g, A,
which are binary strings of length 2'°. Now let us identify 2 locations 41, i, such
that A[i1] = 1, g[i1] = 0, \[iz] = 0, g[is] = 1. We construct h from g such that
hlj] = g[j] for the 2'5 — 2 positions, where j # i for 1 < k < 2. For j = i,
1 < k <2 we take h[j] = 1 — g[j]. Note that wt(h) = wt(g) + 1 — 1 = wt(g).
Also, d(h, \) = 16256 — 2 = 16254 < 214 — 27. Hence, nl(h) = 16254. Now
from Proposition 12, item 2 we get, A, < Ay +4 x 2 = 248. [ ]

The following case provides a construction for n = 15 variable functions h with
-1

nonlinearity strictly greater than bent concatenation nonlinearity 2"~! — 27z
and A, < 2" In (19), a balanced functions f on 15 variables constructed
in (27) with nonlinearity 2'* — 27 4 6 has been examined by running computer
program and it has been found that A for such a function is 216 < 256 =
275" . Thus the conjecture of (37) for this specific range of nonlinearity (greater
than bent concatenation nonlinearity) has been disproved in (19) by exper-

iment. The function f, as described in (27), is a modification of Patterson-




Wiedemann function (23). We provide the mathematical justification here.

Lemma 16 [t is possible to construct a balanced function H € Q5 such that
1 1
nl(H) = 16262 = 2% — 27+ 6 > 214 — 27 and Ay < 240 < 256 = 22

PROOF. From Proposition 13, we can construct f € Q5 with nl(f) =
16276, wt(f) = 16364 and Ay = 160. As described in (27), select 20 bits in the
truth table of f uniformly at random which contain the value 0 and comple-
ment them to 1. In process we get a function H. Note that wt(H) = 16364 +
20 = 16384 = 2!* and from item 1 of Proposition 12, nl(H) > 16276 —20. The
random experiment shows that it is possible to get H with nl(H) = 16262 (see
also (27)). Now from Proposition 12, item 2 we get, Ay < Ay +4 x 20 = 240.
Further, the random experiment shows that it is possible to find Ay = 216 at
minimum (see also (19)). n

Note that we are interested in three different ranges of nonlinearity. The func-
tions constructed by Patterson and Wiedemann (23; 24) are important since
the construction provides better nonlinearity than bent concatenation non-
linearity. Also the balanced functions (27) constructed from the Patterson-
Wiedemann functions provide the nonlinearity greater than the bent concate-
nation one. The Ay values of these functions is less than 256. We like to point
out that we can modify the Patterson-Wiedemann functions in such a manner
such that the nonlinearity falls below (also equal to) the bent concatenation
nonlinearity, and even then the Ay value is less than 256. However, there are
other construction methods for balanced functions with nonlinearity equal to
and less than the bent concatenation nonlinearity (27; 20), which can not

provide the Ay value less than 2" for any odd n.

Now consider the other side. Let us use the function H, with Ay = 216
as in the proof of Lemma 16, to construct a balanced function Ho;115 =
b(Yai, ..., Y1) ® H(Xys5,...,X1), where b is a bent function. Note that Ho; 15
has nonlinearity greater than the bent concatenation nonlinearity, but Ag,, . . =
92 . Ay = 2% .216 > 2°F°. That is, even if the nonlinearity is greater than
the bent concatenation nonlinearity, we are not getting good autocorrelation

value. It is an interesting open problem in this area to disprove the conjecture
of (37) for odd n # 15.

4 Construction for even n

In this section we modify the Maiorana-McFarland type bent functions to
get balanced Boolean functions with very small value of Ay. Similar kinds of
constructions have earlier been considered in (11; 29; 27). This construction
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provides high nonlinearity and high algebraic degree which are cryptograph-
ically important. However, there the Ay parameter has not been considered
before, which is the main thrust in this section. Let us first describe the con-
struction.

Construction 1 Let G be a bent function on n variables, which is the con-
catenation of ¢ = 2% distinct linear functions on k = 5 wariables. Thus we
can write, G = lgly ...y, where [; € L(3) and l; # l; for i # j. Basically,
li=ap Xy ® ... 0 a1 Xy, where (a,...,ay) is k bit binary representation of i.
Here, ly means the constant zero function. Let F' = fly...l;_1, where f € Qu

s a balanced function. That is in G we replace ly by f to get F.

Theorem 17 (29; 11; 27) For even n, let F' € €, as described in Con-
struction 1. Then we have the following. (1) F is balanced. (2) nl(F) =
2n=L — 2% +nl(f). (3) deg(F) = 2 + deg(f).

Now we will prove some results to get an upper bound on Ay. First let us

consider @ € {0,1}", where @ = (au,..., @z, az,...,a;) and we write
B = (. .,anyy) and 7 = (an,...,q;). That is @ = (B,7). Note that
a # (0,0,...,0), i.e. @ is not an all zero vector. Moreover, we denote X =

(X,...,X%_l_l,X%,...,Xl),U: (Xn,...,X%+1) andV: (X%,,Xl) That
is X = (U,V).

Lemma 18 Consider F' € €, as in Construction 1. Let us consider @
((ifn =0,...,az4 = 0,az,...,01) and 7 = (az,...,a1). Then | Ap(@Q) |
22 + | Ar(9) |-

IA I

PROOF. For the bent function G € Q,, Ag(@) = 0 for all nonzero @. That
means, wd(G(X), G(X @ a)) = 0. This gives that

wd(lo, lo(Vay))+wd(ly, L (VET))+. . Awd(ly—2, ly—o(VET))+wd(ly—1, L1 (VD
7)) = 0.

We have, wd(l;,[;(V @ 7)) can take the values +q = 42%2. In particular,
wd(ly, lo(V ©7)) takes the value ¢ = 2%. Thus,

’U}d(ll, ll(v &, 7)) 4+ ...+ U)d(lq_Q, lq_Q(V D 7)) + U)d(lq_l, lq_l(v D 7)) = —q.
Hence,

wd(F(X), F (X))

= wd(f, f(VeT))+wd(ly, L(VET))+. . Awd(ly—2, 12V
7)) + wd(qul, qul(v %)
+

w
7)) = Ap(F) — g = —2% + As(7).
Thus | Ap(@) | < 2%

Lemma 19 Consider F' € ,, as in Construction 1.

11



Let us consider @ = (o, ..., any,an, ..., 1) where U = (a, ..., any) is a
nonzero vector and V = (az, ..., ) Then | Ap(@) | < 2| Wi(U ) |-

PROOF. From Construction 1, it is clear that the function F' can be seen as
concatenation of ¢ functions. Since (ay,...,an ;) is a nonzero vector, if we

write the truth tables of F'(X) and F(X @ @), then for the small functions of
% variables, the truth tables of f(V) and f(V @ %) or any of the [;(V) and
1;(V & 7) cannot occur at the corresponding positions in the truth tables of

F(X) and F(X @ @).

The functions f and [, will correspond in the truth tables, where r has a binary
representation (ay, ..., an ). Hence, from Definition 4, wd(f,l,) = W (0),

the Walsh transform value. Also let ¢ = 4,,...,ix11 and j = Jp, ..., Jgs1 N
binary representation. If (i,,...,ik+1) and (Jn, ..., jk1) are related by i, =
QD Jny -5l = o D Ji, then the smaller truth tables of [;,1; will come at

the corresponding positions in the truth tables of F(X) and F(X & @).

Thus, wd(F(X), F(X®a)) = 2wd(f(V), (V7)) +2 Tiepae; wd(l;(V), ;(V e

7)) = 2wd(f(V),1,(V &7)). This is because, [;(V),;(V &7) are two d1st1nct
affine functions and hence by Proposition 3, wd(l; (V) L(Vew)=0. n

In the next lemma we need the parameter 7 (see Definition 2).

Lemma 20 Let us consider the function F' € §, as in Construction 1. Then
Ap =max(2% + Ay, 274).

PROOF. From Lemma 18, we get that the maximum value of | Af(7) | is
Ay and from Lemma 19, we have that maximum value of | W;(U) | is 7;. =

Now we provide an updated version of Construction 1.

Construction 2 We construct a balanced function F as in Construction
1, with a restriction on the balanced function f. We construct f such that,
nl(f) > 2272

Theorem 21 Let us consider F' as in Construction 2. Then, Ap < 27 + Ay.

n

PROOF. Here, 277 = 2 x 22 — 4nl(f) < 22. Thus, 22 + A; > 27. n

In the above theorem, we provide an upper bound on Ag. However, for all the
functions those have been checked, we get the strict equality Ap = 27 + A /-
Let us denote Ab(n) = minpeq, 4 patancea An- Theorem 21 provides the bound
A’(n) < 2% 4+ A’(%). However, we could not devise any method such that

12



the strict inequality A’(n) < 2% + A’(2) occurs. Thus we make the following
conjecture.

Conjecture 1 Let n be an even integer. Then AP(n) =22 + AP(%),

This conjecture is similar to Dobbertin’s conjecture (11) on nonlinearity of
balanced Boolean functions on even number of variables. Let nlb(n) is the
maximum nonlinearity for balanced functions on n variables. Then the con-
jecture states that, for even n, nlb(n) = 2"~' — 2% + nib(%). Presently this
conjecture is still open. Thus the balanced functions we have described here
possess currently best known nonlinearity and autocorrelation values together.

Our result provides a recursive construction. Now we have to consider differ-
ent cases to provide some compact nonrecursive formulae. First we consider
the case where, n = 2! x j, for i > 1 and j > 3, odd. We can extend the
Construction 2 in the following way. Let F' € Q,. Now, Ap = 27 + Ay. Here
[ €Qx, ie., f € Qyi-1,;. Then we can use Construction 2 once again since 3
is still even if 7 > 1. If = 1, then we use a balanced function on odd number
of variables as described in previous section. Hence we get the following result.

Theorem 22 [t is possible to construct F € €, where n = 2' x j with

Ap = Y4 2% +0 where o = 2515 if j > 5 and 0 = 8 for j = 3. Also,
. n n__ 1

nl(F) = 21— ¥ 231 93

PROOF. Ap =25 + Ay =25 +2% + A, =25 +2% + ... +25 + A, Now
5 = J = 2y + 1 and by construction of Theorem 11 for Boolean functions
on odd number of variables, A, = 2¢t! = 9T for j > 5. Also A, = 8
for j = 3. The nonlinearity result follows from recursive use of Theorem 17,
item 2 and the result that it is possible to construct a balanced function on j

variables with nonlinearity 2/-1 — 2°5. n

We also like to point out that the results for a 30 variable function is already
an interesting one. Note that we have got a balanced function f € ;5 with
nl(f) = 16262 > 2151 — 25 and A; = 216 < 2% (see proof of Lemma 16).
Thus we get a balanced function F' € Qg with nl(F) = 2% — 215 416262 and
Ap = 2'"+216. This is clearly a better result than what we have presented in
Theorem 22. In Theorem 22 we consider A, = 2v+1 and nl(h) = 29-1 — 2'5.

Here, for a 15-variable function h, A, < 2¢™! and nl(h) > 2/-1 — 9l

Next we consider the case n = 2¢. Here we use the recursive construction and
come down to a 4 variable function ultimately.

Theorem 23 It is possible to construct F' € Q,, where n = 2! with Ap =
172 23F + 8. Also, nl(F) =2"1 — Y12 2951 4,

13



PROOF. We use the construction recursively until we get a 4 variable Boolean
function. For balanced 4 variable function A, by computer search it has been
checked that the minimum value of A, is 8. The nonlinearity result follows
from recursive use of Theorem 17, item 2. [ ]

It should be noted that in (37), construction of balanced Boolean functions
f on even number of variables have been proposed with Ay = 2311 and
nl(f) = 27! — 2%. Our results are clearly superior. It will be an interesting
research direction either to prove that this is the best possible parameters or
to construct a balanced function with better results than this.

5 Correlation Immune and Resilient Boolean Functions

Correlation immunity is a very significant cryptographic property of Boolean
functions and it has received a lot of attention in literature (see (31; 32; 13;
3; 30; 4; 12; 28) and the references in these papers). On the other hand, two
fundamental properties for cryptographically significant Boolean functions are
nonlinearity and autocorrelation. Nonlinearity is one of the most challenging
combinatorial properties of Boolean functions and is related to the covering
radius of first order Reed-Muller code (see (26; 23; 24; 11; 14; 15; 5; 27) and the
references in these papers). Very recently weight divisibility results of corre-
lation immune and resilient (balanced correlation immune) Boolean functions
have been proved (28; 35; 39; 1) and these results have direct consequences to-
wards nontrivial upper bounds on nonlinearity of these subclasses of Boolean
functions. Also these results show that if we increase the order of correlation
immunity then the nonlinearity decreases. Currently it has been noted in (41)
that propagation property also goes against correlation property, and some
lower bounds on Ay values of m-th order correlation immune and resilient
functions have been presented (40).

Here we provide better results which directly relate the autocorrelation mea-
sures with order of correlation immunity. For a linear function f, Ay = 2",
and o; = 2%". For functions f, on even number of variables, we have A; = 0
(op = 2*) iff f is a bent function (21; 37). However, bent functions are
not balanced. In fact, for a function f of even weight Ay = 0 mod 8 and
for a function f of odd weight Ay = 4 mod 8 (9). For balanced function f,
op > 22" 4 273 (33) for both odd and even number of variables. A compara-
tively sharper result in this direction has been proposed in (34) which we will
discuss shortly.

Note that the properties A¢, oy are invariant under nonsingular linear trans-
formation on input variables of the function f. Thus, it is easy to see that the
oy results of the papers (33; 34) are valid for any Boolean function f whose
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Walsh spectrum contains at least one zero.
5.1 Lower Bound on sum-of-square Indicator

We start this section with a result from (38, Theorem 3).

Theorem 24 Let f €),. Then oy > 2Fﬁ
f

Next we have the following result, which follows directly from Definition 7.

Proposition 25 Let f € €, be an m-th order correlation immune function.
Then Fy < 27 — 3700 (”) Moreover, if f is m-resilient, then F; < 2" —

=1 \ 4
m n
1=0\4 /"

The sum-of-square indicator of GAC has been introduced in (37) (see also
Definition 6). We start with the following result which uses Theorem 24 and
Proposition 25.

Lemma 26 Let f € (), be an m-th order correlation immune function. Then,

oF > ?7%” Moreover, if f is m-resilient, then oy > ?7%”
(7) -3 ()

anz:’;l

To identify important consequences of this result we need to get an approxi-
mate result which will provide a o; value of the form 22" + 2" where ¢ is a
function of n, m. This we provide in the following result.

Theorem 27 Let f € (), be an m-th order correlation immune function.

n
i 22

Then, op > 22" + 2 ) Similarly, if f s m-resilient, then of >

gon g tlom S, (’Z) |

3n

PROOF. Note that ——2—— > 22" 42" 377" (TZ) Thus the result follows

on_\"m L ( .

1= 1

for correlation immune functions. The result is similar for resilient functions
also. -

Note that, in our analysis, there is no significant difference in the result of
correlation immune and resilient functions in terms of numerical values.

Currently there is no result on lower bound of o values for correlation immune
and resilient functions. The only known results are for balanced functions
which are given in (33; 34). The lower bound for balanced functions given
in (33) is 22" + 2"*3. The result in (34) is as follows. For a balanced function

f,
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op> 22042520 —¢t—1),if0<t<2"—2"% — 1, todd, (i)
220 4 25(2" —t+2),if 0 < ¢ < 2" —2"3 — 1, ¢ even, (ii)
(14 m)22, if2n —2n 3 -1 <t < 2" =2, (iii)

if f satisfies propagation characteristics with respect to t vectors. Note that
for case (i) and (ii), even if we overestimate this lower bound, it is 22" + 2"*6,
For the case (iii) the lower bound varies from 22" + 2"+3 to 2271 and also this
depends on the propagation characteristics of the function.

Now we enumerate the consequences of our result.

e [n our result the lower bound depends directly on the order m of correlation
immunity and this is the first nontrivial result in this direction.

e Note that for m > %, log, 3%, (?) > n — 1. Thus for all m-th order
correlation immune functions with m > 2, oy > 22" + 22"~1_ The result is
true for m-resilient functions also. This provides a strong lower bound on
sum-of-square indicator for m-th order correlation immune and m-resilient
functions.

e Given any valuer (1 < r < n), it is possible to find an m-th order correlation
immune or m-resilient function f such that oy > 22" + 2"*" by properly
choosing m.

5.2 Lower Bound on Absolute Indicator

Now we concentrate on the absolute indicator of GAC. We have the result
on sum-of-square indicator for correlation immune and resilient functions. We
use the result in this direction.

Lemma 28 For an n-variable m-th order correlation immune function f,

ws i (3) o 2o i
Ay > 2"1122:—21”:_11 %Z)) Simalarly, Ay > inlz:_zim_z ((,;%

m-resilient function f.

for an n-variable

PROOF. We know, 05 = Ygeqo1n A%(@). Thus, the absolute value of each
Ag(@) will be minimum only when they all possess equal values. Hence, the

0'f722"
on 1
oy from Lemma 26. ]

minimum value of Ay will be . This gives the result using the value of

Thus, using simplification we get the following result.
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Theorem 29 For an n-variable m-th order correlation immune function f,

Zi%@} for an n-variable
2n72i=0 ( i )

m-resilient function f.

PROOQOF. The result follows from overestimating 2" — 1 by 2". [ ]

It is known that, for a function f of even weight, Ay = 0 mod 8 (9). Since the
correlation immune functions and resilient functions are all of even weight,
the Ay values will be the value greater than the values given in Theorem 29,
which are divisible by 8. The only published result on the lower bound on
Ay for a balanced function f is Ay > 8 (33). Our result has the following
consequences.

The value Ay is a function of n, m.
Form > &, Ay > 23,

For small values of m, Ay > \/z;“_l (TZ) > \/(:1)
Form =1, A; > \/n.

5.3 Lower Bounds using Weight Divisibility Results

Here we use the weight divisibility results of correlation immune and resilient
Boolean functions (28). It is known that the values in the Walsh spectrum of
an m-th order correlation immune function is divisible by 2!, Similarly for
m-resilient functions, the Walsh spectrum values are divisible by 2712,

Let us now find out the sum of square indicators of such functions. We once
again refer to Theorem 24. For f € Q,, oy > %

e For an n-variable, m-th order correlation immune function the values in
Walsh spectra are 0,4i2™"' ¢ = 1,2,.... From Parseval’s relation (10)

> zefoyr Wi(@) = 2*". Hence, we get that for such a function f, Fy <
22n72m72

e For an n-variable, m-resilient function the values in Walsh spectra are
0,4i2™%2 i = 1,2,.... Using Parseval’s relation, we get that for such a
function f, F, < 22n—2m=14,

Theorem 30 For an n-variable, m-th order correlation immune function f,

op > 202 Similarly, for an n-variable, m-resilient function f, oy >
2n+2m+4_

17



PROOF. The result for correlation immune function follows from Theo-
rem 24 and F; < 22272"72 The result for resilient function follows from
Theorem 24 and F; < 22n—2m—4 [ |

Note that the trivial lower bound on the sum of square indicator is 22. Hence,
for correlation immune functions, this bound is nontrivial, when n+2m+2 >
2n, i.e, m > % — 1. Similarly for resilient functions, this bound is nontrivial
for m > 3 — 2. Using these results, we immediately get the result on the Ay
values of these functions.

Theorem 31 For an n-variable, m-th (m > % —1) order correlation immune
. 2m—+41
function f, Ay > 27
2m—+43

function f, Ay > 27

. Similarly, for an n-variable, m-resilient (m > § — 2)

PROOF. For the correlation immune function f, we have, Ay > 1/%.
Thus, overestimating 2" — 1 as 2", Ay > /22m+2 —2n > /22m+1 (since

m > 5 —1) = 275 Similarly for the resilient function f, we have, Ay >

”W' Thus, overestimating 2" —1 as 2", Ay > /22m+4 — 2n > V/22m+3 =

2m+3
27z . [ |

Note that the weight divisibility results using algebraic degree of the functions
have been presented in (6; 7). These results can be used to provide sharper
lower bounds on oy, Ay involving algebraic degree. From (6; 7), it is clear
that for an n-variable, m-th order correlation immune function with algebraic
degree d, the values of the Walsh spectra will be divisible by 2m+1+1=F=1,
Similarly for an n-variable, m-resilient function with algebraic degree d, the
values of the Walsh spectra will be divisible by 2m+2+[*=5=*]_ Using these
results we can update Theorem 30, Theorem 31 involving algebraic degree as

follows.

Theorem 32 For an n-variable, m-th order (m > § — 1) correlation im-

. . . n—m—1
mune function f with algebraic degree d, op > 2"T2m+H2H215=i—1 " and A; >
2mA14 | =m=l
s Similarly, for an n-variable, m-resilient (m > 5 —2) fungtion
2m+3+L%J

[ with algebraic degree d, o5 > gn+2m A2 RG] g g Ap>2 2

In (40), it has been shown that A, > 2m~1 5% 2im=1=n) for an unbalanced
n-variable m-th order correlation immune function for the range 2 < m <
n. Note that, Ay > 2m=ty oo oilm=1-n) — om=1_L__ Thus even if we
overestimate the lower bound, it can be at most 2™ as the maximum value of
2m-tniis 1o Also Ay > 2m 3% 240m 1) for an n-variable m-resilient function
for the range 1 < m < n — 1. This gives, Ay > 2™y 2im—n) = gm__L__
Overestimating this we will get 2™+,
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For higher orders (m > § — 1 for correlation immunity and m > § — 2 for
resiliency) Theorem 31 provides better result than (40). For lower order of

correlation immunity (m < & —1), we use our result in Theorem 29. Note that
our result is better than that of (40) when (27+2%™) S ( ) > 2MH2m For the

case of resiliency (m < % —2), our result is better when (2" +2%™) > (’Z) >
2n+2m'

Next we concentrate on a very important subset of correlation immune and
resilient functions which possess maximum possible nonlinearity. Importantly
the resilient functions have direct application in stream cipher systems. Now
the clear benchmark in selecting the resilient functions is the functions which
possess the best possible trade-off among the parameters nonlinearity, alge-
braic degree and the order of resiliency. However, we point out that we should
consider one more important criteria in the selection process. In fact we find
functions with best possible trade-off having same values of nonlinearity, al-
gebraic degree and order of resiliency but having different autocorrelation
properties. Thus, it is important to select the one with better A, values. It is
also interesting to note that any two functions with this best possible trade-off
must possess the same oy values, which we prove here.

Now we concentrate on Definition of plateaued functions (38, Definition 9).
Apart from the bent and linear functions, the other plateaued functions have
the property that they have three valued Walsh spectra 0, +2*. We call that
these functions possess three valued Walsh spectra with the values 0, +2%.
Next we have the following result from (38, Theorem 3).

Theorem 33 Let f € Q, and f has a three valued Walsh spectra 0,+£27.
Then of = 23n

Now we concentrate on two special subsets of correlation immune and resilient
Boolean functions respectively. We present the following known (28) results.

e For an n-variable, m-th order correlation immune function with m > % —1,
the maximum possible nonlinearity that can be achieved is 2"~! — 2™ and
these functions possess three valued Walsh spectra 0,£2™*!. Thus from
Parseval’s relation (10) ZwE{O 13 W (@) = 2°". Hence, we get that for such
a function f, F, = 22n—2m~

e For an n-variable, m- resﬂlent function with m > 7 — 2, the maximum
possible nonlinearity that can be achieved is 2! —2™*! and these functions
possess three valued Walsh spectra 0, £2™%2. Using Parseval’s relation, we
get that for such a function f, F, = 22n—2m~4,

Hence we get the following result.

Theorem 34 For an n-variable, m-th (m > % —1) order correlation immune
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function f with mazimum possible nonlinearity, oy = Qnt2m+2

. Stmilarly, for
an n-variable, m-resilient (m > % — 2) function f with mazimum possible

2
nonlinearity, oy = 2"+2m+4,

PROOF. The result for correlation immune function follows from Theo-
rem 33 and F; = 22n=2m=2  The result for resilient function follows from
Theorem 33 and Fy = 22n=2m—4, m

Current results (35; 6; 7) clearly identify that the nonlinearity and algebraic
degree of the correlation immune and resilient functions are optimized simul-
taneously. Here we show that at this situation, the sum of square indicator
attains its minimum value too.

5.4  Construction Results

Resilient Boolean functions, which are provably optimized in terms of order of
resiliency, algebraic degree and nonlinearity (28), have immediate applications
in stream cipher systems. Unfortunately, the general construction techniques
does not provide good autocorrelation properties. First we will talk about some
specific resilient functions and their Ay values. Then we will analyze some of
the well known constructions and calculate the autocorrelation values.

Let us consider the (5,1,3,12) functions. We initially consider such a func-
tion f constructed using linear concatenation (27), which is (1 & X;5)(1 &
X)(X1@Xy)d (1 X5)Xy(X18X;3) 0 Xs(10 Xy)(Xo® X3)® X5 Xy (X, B
Xy @ X3). This function has Ay = 16. However, by studying the equivalence
classes in (2) and then using linear transformation, it is possible to get a
(5,1,3,12) function g, such that A, = 8. The truth table of the function is
00001011110110011110010100111000. This function achieves the best possible
trade-off among order of resiliency, nonlinearity, algebraic degree and auto-
correlation.

Also, recently (7, 2, 4, 56) (22) and (8, 1, 6, 116) (17) functions have been
found by computer search. It is very interesting to note Ay values for these
two cases are same for all the functions those are found by computer search,
which are respectively 32, 80.

However, the existing recursive construction results are not very good in terms

of the autocorrelation values. We now discuss the absolute indicator values of
autocorrelation of some of these constructions.
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5.4.1 Recursive Construction [

Here we consider the recursive construction which has been discussed in (3; 18;
20) in different forms. We consider the notation in (20) here for constructing
an (n + 1)-variable function F' from two n-variable functions f, g.

Q’L(f(XnJ s JXl)Jg(X’nJ v JXI)) :F(Xn-i-la v JXI)
=(1®X)f(Xp, o, Xig1, Xi1, .0, X0)
@X’Lg(XTLJ cee JX’H-IJXi—la s JXI)'

Let f be an n-variable, m-resilient degree d function having nonlinearity .
Define F(X,41,...,X1) to be an (n + 1)-variable function as

F(Xn+1,...,X1) = Qz(f(Xn,,Xl),a®f(b@Xn,,b@X1))

Here a,b € {0,1} and if m is even a # b and if m is odd, a = 1 and b can
be either 0 or 1. Then F(X,41,X,,...,X;) is an (m + 1)-resilient, degree d
function having nonlinearity 2z (20).

Note that, any of the operators (); can be expressed as a composition of @),
and a suitable permutation of the input variables. The permutation of input
variables preserves the autocorrelation property, resiliency, algebraic degree
and nonlinearity. So it is enough to look into the construction function as

F(Xn+1, e ,Xl) = Qn—l—l(f(Xn; Ce ,Xl),(l D f(b@ Xn; Ceey b D Xl)),i.e.,

F(Xpi1,.., X1) = (10Xo) f(Xns -, X1) B X1 (@@ (0B X, - .., 00 X)),

First consider the case when m is even. Then a # b. Let us consider,a = 1,b =
0, then F(Xn+1, ce ,Xl) = (1®Xn+1)f(Xn; Cey X1)®Xn+1(]-@f(Xn; e ,Xl)) =
Xni1 @ f(Xn, ..., X1). It is clear that Ay(1,0,...,0) = —2"*1,

If we consider a = 0,b = 1, then F/(X,,41,...,X1) = (106X, 41) f( Xy, ..., X1)®
X1 f(1® X,, ..., 1®X;). Then, Ap(1,1,...,1) =27+,

Similarly it can be shown that for the case m odd, there will be linear struc-
tures in this construction. Thus, for this recursive construction, for an n vari-
able function, the absolute indicator value is 2".

5.4.2  Recursive Construction 11

Now we consider an elegant construction (35) which was later modified in (22).
An (n,m,d,z) function f (see Definition 7) is said to be in desired form (22)
if it is of the form (1 ® X,,)f1 ® X, f2, where fi, fo are (n — 1,m,d — 1,z —
2"=?) functions. This means that the nonzero values of the Walsh spectra
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of fi, fo do not intersect, i.e., if Wy, (@) # 0, then Wy, (w) = 0, and vice
versa. Let f be an (n,m,d,z) function in the desired form, where fi, fo are
both (n — 1,m,d — 1,z — 2"2) functions. Let F = X, .o ® X,,1; @ f and
G=10X,12®0X11)1® (Xnio® Xpni1)fo ® Xnio ® X, Note that in the
language of (35), the function G above is said to depend quasilinearly on the
pair of variables (X, 12, Xp41)- Also, F} = (1® X,,13)F & X,,13G. The function
Fy constructed from f above is an (n+ 3, m + 2,d + 1,2""! 4+ 4x) function in
the desired form.

Consider the case ay, 413 = 0,19 = @, 11 = 1 and any pattern for a,,, ..., a;.
In this case, FI(X,12,...,X1) = F(Xu12 ® apio,..., X1 @ ;) and hence
AF(O[n+2, ey O[l) == 2n+2. On the other hand, G(Xn+2, e ,Xl) D G(Xn+2 D
Qpioy -, X1Daq) = f1® fo® 1. Note that, if the nonzero values of the Walsh
spectra of fi, fo do not intersect, then f; @ f5 is balanced, i.e. f; @ fo @1 is also
balanced. Hence, Ag (42, ...,a1) = 0. This gives that Ap, (ap43,...,01) =
Ap(Qpiz, -y a1) + Ag(Quyz, - -ya) = 2772+ 0 = 272 So, Ap > 2M2,

Thus, for this recursive construction, for an n variable function the absolute
indicator value is greater than or equal to 2" .

Note that different kinds of constructions of resilient Boolean functions has
been proposed in (27). The main technique used there is concatenation of
small affine functions. It will be of interest to analyze the absolute indicator
values of such constructions.

6 Conclusion

Here we have discussed about the autocorrelation values of different classes of
cryptographically significant Boolean functions. We present constructions of
balanced functions which provide currently best known autocorrelation val-
ues. We also discuss the autocorrelation properties of correlation immune and
resilient Boolean functions.
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