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Abstrat

Construting highly nonlinear balaned Boolean funtions with very good autoorre-

lation property is an interesting open question. In this diretion we use the measure

�

f

, the highest magnitude of all autoorrelation oeÆients for a funtion f . We

provide balaned funtions f with urrently best known nonlinearity and �

f

values

together. We extend the result of Maitra and Sarkar (2000) for 15-variable funtions

whih experimentally disprove the onjeture proposed by Zhang and Zheng (1995).

We prove it theoretially for di�erent ranges of nonlinearity, where our onstru-

tions are based on modi�ations of Patterson-Wiedemann (1983) funtions. Also

we propose a simple bent based onstrution tehnique to get funtions with very

good �

f

values for odd number of variables. This onstrution has a root in Ker-

dok Codes. Moreover, our onstrution on even number of variables is a reursive

one and we onjeture (similar to Dobbertin's onjeture (1994) with respet to

nonlinearity) that this provides the minimum possible value of �

f

for a balaned

funtion f on even number of variables. Next we disuss about the autoorrelation

values of orrelation immune and resilient Boolean funtions. We provide new lower

bounds and related results on absolute indiator and sum of square indiator (of au-

toorrelation) for ertain orders of orrelation immunity and resilieny and learly

show that autoorrelation goes against order of orrelation immunity. We also point

out the weakness of two reursive onstrution tehniques for resilient funtions in

terms of autoorrelation values.

Key words: Boolean Funtion, Nonlinearity, Balanedness, Correlation Immunity,

Autoorrelation, Propagation Charateristis, Global Avalanhe Charateristis.
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1 Introdution

Nonlinearity and autoorrelation values are two fundamental properties for

ryptographially signi�ant Boolean funtions. It is well known (26; 21; 10; 8)

that bent funtions possess the best possible nonlinearity and autoorrelation

values. However, bent funtions are available for even number of variables only

and they are not balaned. For nonlinear balaned funtions the relationship

between nonlinearity and autoorrelation values is not expliit. In this paper

we onstrut balaned Boolean funtions with urrently best known trade-o�

between nonlinearity and autoorrelation values. For a funtion F , we use the

parameter nl(F ) (see De�nition 2) for nonlinearity and �

F

(see De�nition 6)

for absolute indiator of autoorrelation values. A good balaned funtion F

must have high nl(F ) and low �

F

.

We provide balaned funtions F on n variables (n even) with nonlinearity

nl(F ) = 2

n�1

� 2

n

2

+ nl(f) and �

F

= 2

n

2

+ �

f

, where f is an

n

2

variable

balaned funtion. This result is superior to the result proposed in (37), where

nl(F ) = 2

n�1

� 2

n

2

and �

F

= 2

n

2

+1

. Also we onjeture from our reursive

result that this onstrution provides the minimum possible value of �

f

for a

balaned funtion f on even number of variables.

In ase of odd number of variables we use a bent based onstrution whih

is motivated from synthesis of Kerdok odes. The parameters we ahieve are

same as the parameters that appeared in (37, Setion 5.2). However, our on-

strution is easy to understand. In (37) it was onjetured that for a balaned

funtion F on n variables (n odd), �

F

� 2

n+1

2

. The onjeture has been ex-

perimentally disproved by running a omputer program in (19). Experimental

results (19) show that the onjeture is not true for funtions with nonlinearity

stritly greater than 2

n�1

� 2

n�1

2

. However, we show here that the onjeture

an be disproved diretly from Patterson-Wiedemann funtions and without

running a omputer experiment. We here extend the analysis of (19) by the-

oretially showing that the onjeture (37) is not true for di�erent ranges of

nonlinearity. We disprove the onjeture showing that for n = 15, there are

funtions with �

F

< 2

n+1

2

and this happens for funtions with nonlinearity

stritly less than, equal to and stritly greater than (three di�erent ases) the

bent onatenation nonlinearity 2

n�1

� 2

n�1

2

.

Next we onentrate on the autoorrelation values for orrelation immune

and resilient (balaned orrelation immune) Boolean funtions (see De�ni-

tion 7). We provide the urrently best known lower bounds on �

f

; �

f

(see

De�nition 6) for these lasses. Very reently autoorrelation properties of or-

relation immune and resilient Boolean funtions were presented in (40) and

we provide better results here. Also we provide sharper result for the lass of

orrelation immune and resilient funtions whih attain the maximum possible
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nonlinearity. In (41), it has been disussed that the propagation property goes

against orrelation immunity. We here expliitly show that the �

f

values goes

against the order of orrelation immunity. We also point out the limitation of

two reursive onstrution methods of resilient Boolean funtions in terms of

autoorrelation values.

2 Preliminaries

Here we introdue a few de�nitions and notations.

De�nition 1 Let s; s

1

; s

2

be binary strings of same length �. The bitwise

omplement of s is denoted by s



. We denote by #(s

1

= s

2

) (respetively

#(s

1

6= s

2

)), the number of plaes where s

1

and s

2

are equal (respetively

unequal). The Hamming distane between s

1

; s

2

is denoted by d(s

1

; s

2

), i.e.

d(s

1

; s

2

) = #(s

1

6= s

2

):

The Walsh distane wd(s

1

; s

2

), between s

1

and s

2

, is de�ned as,

wd(s

1

; s

2

) = #(s

1

= s

2

)�#(s

1

6= s

2

):

Note that, wd(s

1

; s

2

) = � � 2 d(s

1

; s

2

). The Hamming weight or simply the

weight of s is the number of ones in s and is denoted by wt(s). An n-variable

funtion f is said to be balaned if its output olumn in the truth table ontains

equal number of 0's and 1's (i.e. wt(f) = 2

n�1

).

By 


n

we mean the set of all n-variable Boolean funtions. Note that we denote

the addition operator over GF (2) by �. An n-variable Boolean funtion an

be uniquely represented by a multivariate polynomial over GF (2).

De�nition 2 Let f(X

n

; : : : ; X

1

) be an n-variable funtion. We an write f

as

a

0

� (

i=n

M

i=1

a

i

X

i

)� (

M

1�i 6=j�n

a

ij

X

i

X

j

)� : : :� a

12:::n

X

1

X

2

: : :X

n

;

where the oeÆients a

0

; a

i

; a

ij

; : : : ; a

12:::n

2 f0; 1g. This representation of f

is alled the algebrai normal form (ANF) of f . The number of variables in

the highest order produt term with nonzero oeÆient is alled the algebrai

degree, or simply degree of f . Funtions of degree at most one are alled aÆne

funtions. An aÆne funtion with onstant term equal to zero is alled a lin-

ear funtion. The set of all n-variable aÆne (respetively linear) funtions is

denoted by A(n) (respetively L(n)). The nonlinearity nl(f) of an n-variable

funtion f is de�ned as

nl(f) = min

g2A(n)

(d(f; g));
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i.e. nl(f) is the distane of f from the set of all n-variable aÆne funtions.

We also de�ne

�

f

= max

g2A(n)

j wd(f; g) j = 2

n

� 2nl(f):

Lower value of �

f

implies better nonlinearity of f .

In this doument we will use onatenation of Boolean funtions. Consider

f

1

; f

2

2 


n�1

and f 2 


n

. Then by onatenation of f

1

and f

2

, we mean that

the output olumns of truth table of f

1

; f

2

will be onatenated to provide

the output olumn of the truth table of an n-variable funtion. We denote

the onatenation of f

1

; f

2

by f

1

f

2

. Thus, f = f

1

f

2

means that in algebrai

normal form, f = (1�X

n

)f

1

�X

n

f

2

.

Proposition 3 Let l

1

; l

2

2 L(k). Then, d(l

1

; l

2

) = 0; 2

k�1

; 2

k

(wd(l

1

; l

2

) =

2

k

; 0;�2

k

) aording as l

1

= l

2

(are same), l

1

6= l

2

or l



2

(are distint), l

1

= l



2

(are omplement to eah other).

De�nition 4 Let X = (X

n

; : : : ; X

1

) and ! = (!

n

; : : : ; !

1

) be n-tuples on

GF(2) and X:! = X

n

!

n

� : : :�X

1

!

1

. Let f(X) be a Boolean funtion whose

domain is the vetor spae over GF(2)

n

. Then the Walsh transform of f(X)

is a real valued funtion over GF(2)

n

that an be de�ned as

W

f

(!) =

X

X

(�1)

f(X)�X:!

;

where the sum is over all X in GF(2)

n

. The relationship between Walsh dis-

tane and Walsh transform is

W

f

(!) = wd(f;

i=n

M

i=1

!

i

X

i

):

For a funtion f , we de�ne

F

f

=j f! 2 f0; 1g

n

j W

f

(!) 6= 0g j :

This is the number of nonzero oeÆients in the Walsh spetra.

Propagation Charateristi (PC) and Strit Avalanhe Criteria (SAC) (36; 25)

are important properties of Boolean funtions to be used in S-boxes.

De�nition 5 Let X be an n tuple X

1

; : : : ; X

n

and � 2 f0; 1g

n

. A funtion

f 2 


n

is said to satisfy

(1) SAC if f(X)� f(X � �) is balaned for any � suh that wt(�) = 1.

(2) SAC(k) if any funtion obtained from f by keeping any k input bits on-

stant satis�es SAC.

(3) PC(l) if f(X)� f(X ��) is balaned for any � suh that 1 � wt(�) � l.
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(4) PC(l) of order k if any funtion obtained from f by keeping any k input

bits onstant satis�es PC(l).

However, Zhang and Zheng (37) justi�ed that SAC and PC have some limi-

tations in identifying ertain desirable ryptographi properties of a Boolean

funtion. In this diretion they have proposed the idea of Global Avalanhe

Charateristis (GAC). The following de�nition states two important india-

tors of GAC. Note that, the absolute indiator of GAC is a stronger property

than the sum-of-square indiator.

De�nition 6 Let X 2 f0; 1g

n

be an n tuple X

n

; : : : ; X

1

and � 2 f0; 1g

n

be

an n tuple �

n

; : : : ; �

1

. Let f 2 


n

and

�

f

(�) = wd(f(X); f(X � �));

the autoorrelation value of f with respet to the vetor �. The sum-of-square

indiator

�

f

=

X

�2f0;1g

n

�

2

f

(�):

The absolute indiator

�

f

= max

�2f0;1g

n

;�6=0

j �

f

(�) j:

Note that �

f

(�) = 0 i� f(X) � f(X � �) is balaned. Also j �

f

(�) j = 2

n

i� f(X) � f(X � �) is onstant and � is alled a linear struture of f . Note

that 0 is always a linear struture for a Boolean funtion. However, existene

of any nonzero linear struture is ryptographially undesirable.

For funtions f , on even number of variables, we have �

f

= 0, i� f is a

bent funtion. However, bent funtions are not balaned. In fat, for balaned

funtions f , �

f

� 8 (see (34)) for both odd and even number of variables.

In the next two setions (Setion 3, 4) we will propose several onstrution

methods to provide balaned funtions f with very high nl(f) and very low

�

f

.

Then we onentrate on the autoorrelation spetra of orrelation immune and

resilient Boolean funtions (Setion 5). In (13), the following haraterization

of orrelation immunity is provided.

De�nition 7 A funtion f(X

n

; : : : ; X

1

) is m-th order orrelation immune

(CI) i� its Walsh transform W

f

satis�es

W

f

(!) = 0; for 1 � wt(!) � m:

If f is balaned then W

f

(0) = 0. Balaned m-th order orrelation immune

funtions are alled m-resilient funtions. Thus, a funtion f(X

n

; : : : ; X

1

) is
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m-resilient i� its Walsh transform W

f

satis�es

W

f

(!) = 0; for 0 � wt(!) � m:

By (n;m; d; x) we denote an n-variable resilient funtion of order m, nonlin-

earity x and degree d.

It may very well happen that orrelation immune or resilient funtions, whih

are good in terms of order of orrelation immunity, algebrai degree and non-

linearity, may not be good in terms of SAC or PC properties. Also getting

good SAC or PC properties may not be suÆient for ryptographi purposes.

There may be a funtion f whih possesses good SAC or PC properties, but

f(X) � f(X � �) is onstant for some nonzero �, whih is a weakness. It is

important to get good autoorrelation properties for suh funtions. That is

why, we here look into the autoorrelation properties of orrelation immune

and resilient funtions in Setion 5.

3 Constrution for any odd n

First we need the following important result. The motivation of hoosing two

bent funtions with the property used in the following lemma omes from the

use of bent funtions in Kerdok ode.

Lemma 8 Let n be odd and f

1

; f

2

2 


n�1

are two bent funtions suh that

f

1

(X

n�1

; : : : ; X

1

) � f

2

(X

n�1

� �

n�1

; : : : ; X

1

� �

1

) is also bent for any vetor

(�

n�1

; : : : ; �

1

) 2 f0; 1g

n�1

. Construt F 2 


n

suh that F = f

1

f

2

, i.e. F =

(1�X

n

)f

1

(X

n�1

; : : : ; X

1

)�X

n

f

2

(X

n�1

; : : : ; X

1

). Then �

F

= 2

n+1

2

. Also it is

possible to get suh a balaned F .

PROOF. We have to alulate wd(F (X

n

; : : : ; X

1

); F (X

n

��

n

; : : : ; X

1

��

1

))

for nonzero (�

n

; : : : ; �

1

) 2 f0; 1g

n

. We have two ases.

When �

n

= 0, then wd(F (X

n

; : : : ; X

1

); F (X

n

� �

n

; : : : ; X

1

� �

1

))

= wd(f

1

(X

n�1

; : : : ; X

1

); f

1

(X

n�1

� �

n�1

; : : : ; X

1

� �

1

))

+wd(f

2

(X

n�1

; : : : ; X

1

); f

2

(X

n�1

� �

n�1

; : : : ; X

1

� �

1

))

= 0 + 0 = 0, sine both f

1

; f

2

are bent.

When �

n

= 1, then j wd(F (X

n

; : : : ; X

1

); F (X

n

� �

n

; : : : ; X

1

� �

1

)) j

� j wd(f

1

(X

n�1

; : : : ; X

1

); f

2

(X

n�1

� �

n�1

; : : : ; X

1

� �

1

)) j

+j wd(f

2

(X

n�1

; : : : ; X

1

); f

1

(X

n�1

� �

n�1

; : : : ; X

1

� �

1

)) j

= 2

n�1

2

+2

n�1

2

= 2

n+1

2

, sine f

1

(X

n�1

; : : : ; X

1

)�f

2

(X

n�1

��

n�1

; : : : ; X

1

��

1

) is

also bent. It is also easy to see that �

F

(�) an have the values 0;�2

n+1

2

. Sine

F is on odd number of variables, all the �

F

(�) values annot be zero. Hene,

�

F

= 2

n+1

2

. If F = f

1

f

2

is not balaned, use F = f

1

f



2

, whih is balaned.
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Next we propose the following onstrution.

Constrution 0 Let g

1

; g

2

2 


m

and h

1

; h

2

2 


k

are all bent funtions for

m; k even and take n = m+k. Also, g

1

(Y

m

; : : : ; Y

1

)�g

2

(Y

m

��

m

; : : : ; X

1

��

1

)

is bent for any (�

m

; : : : ; �

1

) 2 f0; 1g

m

and h

1

(Z

k

; : : : ; Z

1

)�h

2

(Z

k

�

k

; : : : ; Z

1

�



1

) is bent for any (

k

; : : : ; 

1

) 2 f0; 1g

k

. Let f

1

; f

2

2 


n

suh that f

1

= g

1

�h

1

and f

2

= g

2

�h

2

, where X

n

= Y

m

; : : : ; X

n�m+1

= Y

1

; X

n�m

= Z

k

; : : : ; X

1

= Z

1

.

If wt(f

1

) = wt(f

2

), then replae f

2

by f



2

. This is required to make the funtion

f

1

f

2

balaned.

Lemma 9 Let f

1

; f

2

are as in Constrution 0. Then f

1

(X

n

; : : : ; X

1

)�f

2

(X

n

�

�

n

; : : : ; X

1

� �

1

) is bent for any (�

n

; : : : ; �

1

) 2 f0; 1g

n

.

PROOF. We have f

1

; f

2

as in Constrution 0. Let �

n

= �

m

; : : : ; �

n�m+1

=

�

1

; �

n�m

= 

k

; : : : ; �

1

= 

1

. Thus, f

1

(X

n

; : : : ; X

1

)� f

2

(X

n

� �

n

; : : : ; X

1

� �

1

)

= (g

1

(Y

m

; : : : ; Y

1

) � h

1

(Z

k

; : : : ; Z

1

)) � (g

2

(Y

m

� �

m

; : : : ; Y

1

� �

1

) � h

2

(Z

k

�



k

; : : : ; Z

1

� 

1

)) = (g

1

(Y

m

; : : : ; Y

1

)� g

2

(Y

m

� �

m

; : : : ; Y

1

� �

1

))

�(h

1

(Z

k

; : : : ; Z

1

)� h

2

(Z

k

� 

k

; : : : ; Z

1

� 

1

)), whih is bent (16, Theorem 10,

Page 428) as g

1

(Y

m

; : : : ; Y

1

)� g

2

(Y

m

� �

m

; : : : ; Y

1

� �

1

) and h

1

(Z

k

; : : : ; Z

1

)�

h

2

(Z

k

� 

k

; : : : ; Z

1

� 

1

) are both bent.

Lemma 10 For even n � 4, it is possible to �nd bent funtions f

1

; f

2

2 


n

where f

1

(X

n

; : : : ; X

1

)�f

2

(X

n

��

n

; : : : ; X

1

��

1

) is bent for any (�

n

; : : : ; �

1

) 2

f0; 1g

n

.

PROOF. We have heked by running omputer program that there exists

g

1

; g

2

2 


4

suh that g

1

(X

4

; : : : ; X

1

)�g

2

(X

4

��

4

; : : : ; X

1

��

1

) is bent for any

(�

4

; : : : ; �

1

) 2 f0; 1g

4

.

First we onsider n of the form 0 mod 4. Thus, taking f

1

= g

1

; f

2

= g

2

we

prove the base ase for n = 4. Let there exists suh f

1

; f

2

2 


4a

, a > 1 integer.

Now, we will prove suh pair of funtions will be available for n = 4a + 4.

From indution hypothesis, we have suh h

1

; h

2

2 


4a

. Hene, if we take,

f

1

= g

1

� h

1

and f

2

= g

2

� h

2

, where f

1

; f

2

2 


n

, then from Lemma 9,

f

1

(X

n

; : : : ; X

1

)�f

2

(X

n

��

n

; : : : ; X

1

��

1

) is bent for any (�

n

; : : : ; �

1

) 2 f0; 1g

n

.

Next we onsider n of the form 2 mod 4. For the base ase, we run omputer

program to �nd bent funtions h

1

; h

2

2 


6

, suh that h

1

(X

6

; : : : ; X

1

)�h

2

(X

6

�

�

6

; : : : ; X

1

��

1

) is bent for any (�

6

; : : : ; �

1

) 2 f0; 1g

6

. We take f

1

= h

1

; f

2

= h

2

as base ase. Let there exists suh f

1

; f

2

2 


4a+2

, a > 1 integer. Now, we will

prove suh pair of funtions will be available for n = 4a + 6. From indution

hypothesis, we have suh h

1

; h

2

2 


4a+2

. Hene, if we take, f

1

= g

1

� h

1

and

f

2

= g

2

�h

2

, where f

1

; f

2

2 


n

, then from Lemma 9, f

1

(X

n

; : : : ; X

1

)�f

2

(X

n

�

�

n

; : : : ; X

1

� �

1

) is bent for any (�

n

; : : : ; �

1

) 2 f0; 1g

n

.

7



Theorem 11 Consider the balaned funtion F 2 


n

, n > 3 odd, as in Con-

strution 0. Then �

F

= 2

n+1

2

and nl(F ) = 2

n�1

� 2

n�1

2

. For n = 3, �

F

= 8,

nl(F ) = 2.

PROOF. The proof for �

F

follows from Lemma 8, Lemma 9 and Lemma 10.

Aording to Constrution 0, F is a onatenation of two bent funtions.

Hene, nl(F ) = 2

n�1

� 2

n�1

2

.

Thus, we provide funtions F on odd number of variables whih are of similar

quality as in (37) in terms of nl(F ) and �

F

. However, our onstrution is

muh simpler. Now it is important to refer to the paper (1). Following (1,

Theorem 4), the onatenation of any two bent funtions of (n� 1) variables

provides a funtion F of n variables with nonlinearity 2

n�1

� 2

n�1

2

. Sine the

sum-of-square indiator (see De�nition 6) of the obtained funtion F equals

2

2n+1

(see (1, Theorem 1)), the absolute indiator of F equals 2

n+1

2

i� the

magnitudes of all autoorrelation oeÆients with respet to � = (�

n

; : : : ; �

1

)

with �

n

= 1 are equal to 2

n+1

2

(beause all autoorrelation oeÆients with

respet to �

n

= 0 are equal to 0). We ould provide onstrution of suh

funtions here.

3.1 Constrution for odd n = 15

In (37), onstrution of balaned funtion f on odd number of variables with

�

f

= 2

n+1

2

and nonlinearity 2

n�1

� 2

n�1

2

has been proposed. It has also been

onjetured in (37) that for balaned Boolean funtions on odd number of

variables, this is the minimum possible value of �

f

.

Here we onsider the funtions provided in (27) and provide simple mathe-

matial argument towards disproving the onjeture. The onjeture was �rst

disproved in (19), whih we extend here. In fat we prove that, it is possi-

ble to onstrut 15 variable balaned funtions f with nonlinearity less that,

equal to and greater than 2

14

� 2

7

(the bent onatenation nonlinearity) with

�

f

< 2

15+1

2

= 256. Thus, the onjeture is disproved for three di�erent ranges

of nonlinearity.

Consider a Boolean funtion of n-variables as its truth table whih is a binary

string of length 2

n

. It is then easy to see the following result.

Proposition 12 Let f 2 


n

. If x bits of the output olumn of f is omple-

mented to get g, then (1) nl(g) � nl(f)� x and (2) �

g

� �

f

+ 4x.

Proposition 13 It is possible to onstrut f 2 


15

with nl(f) = 16276,

wt(f) = 16364 and �

f

= 160.

8



PROOF. Consider a funtion f

1

2 


15

with nl(f

1

) = 16276, wt(f

1

) = 16492

and �

f

1

= 160 (we found suh a funtion by running the same experiment as

done by Patterson and Wiedemann (23)). From (23), we know that there are

3255 linear funtions in L(15) at a distane 16364 from f

1

. Let l be one of these

3255 linear funtions. De�ne f = f

1

� l. Then f 2 


15

, nl(f) = nl(f

1

) = 16276

and wt(f) = wt(f

1

� l) = d(f

1

; l) = 16364 (see also (27)). Also it is lear that

�

f

= �

f

1

and hene the result.

Lemma 14 It is possible to onstrut a balaned funtion g 2 


15

suh that

nl(g) = 16256 = 2

14

� 2

7

and �

g

� 240 < 256 = 2

15+1

2

.

PROOF. Take the funtion f as in Proposition 13. Sine nl(f) = 16276,

there is one aÆne funtion � 2 A(15) suh that d(f; �) = 16276. Now onsider

the truth table of f; �, whih are binary strings of length 2

15

. For a string S,

denote S[i℄ as the ith loation of the string S, where 0 � i � 2

15

�1. Now let us

identify 20 loations i

1

; : : : ; i

20

suh that �[i

k

℄ = 1 and f [i

k

℄ = 0. We onstrut

g from f suh that g[j℄ = f [j℄ for the 2

15

� 20 positions, where j 6= i

k

for

1 � k � 20. For j = i

k

, 1 � k � 20 we take g[j℄ = 1. Thus, wt(g) = 16364 +

20 = 16384 = 2

14

and from item 1 of Proposition 12, nl(g) � 16276 � 20.

Sine, d(g; �) = 16276� 20 = 16256 = 2

14

� 2

7

, we have nl(g) = 16256. Now

from Proposition 12, item 2 we get, �

g

� �

f

+ 4� 20 = 240.

Lemma 15 It is possible to onstrut a balaned funtion h 2 


15

suh that

nl(h) = 16254 = 2

14

� 2

7

� 2 < 2

14

� 2

7

and �

h

� 248 < 256 = 2

15+1

2

.

PROOF. Take the funtion g as in Lemma 14. We have nl(g) = 16256,

and there is one linear funtion � 2 L(15) (the same one as in the proof of

Lemma 14) suh that d(g; �) = 16256. Now onsider the truth table of g; �,

whih are binary strings of length 2

15

. Now let us identify 2 loations i

1

; i

2

suh

that �[i

1

℄ = 1; g[i

1

℄ = 0; �[i

2

℄ = 0; g[i

2

℄ = 1. We onstrut h from g suh that

h[j℄ = g[j℄ for the 2

15

� 2 positions, where j 6= i

k

for 1 � k � 2. For j = i

k

,

1 � k � 2 we take h[j℄ = 1� g[j℄. Note that wt(h) = wt(g) + 1� 1 = wt(g).

Also, d(h; �) = 16256 � 2 = 16254 < 2

14

� 2

7

. Hene, nl(h) = 16254. Now

from Proposition 12, item 2 we get, �

h

� �

g

+ 4� 2 = 248.

The following ase provides a onstrution for n = 15 variable funtions h with

nonlinearity stritly greater than bent onatenation nonlinearity 2

n�1

� 2

n�1

2

and �

g

< 2

n+1

2

. In (19), a balaned funtions f on 15 variables onstruted

in (27) with nonlinearity 2

14

�2

7

+6 has been examined by running omputer

program and it has been found that �

f

for suh a funtion is 216 < 256 =

2

15+1

2

. Thus the onjeture of (37) for this spei� range of nonlinearity (greater

than bent onatenation nonlinearity) has been disproved in (19) by exper-

iment. The funtion f , as desribed in (27), is a modi�ation of Patterson-

9



Wiedemann funtion (23). We provide the mathematial justi�ation here.

Lemma 16 It is possible to onstrut a balaned funtion H 2 


15

suh that

nl(H) = 16262 = 2

14

� 2

7

+ 6 > 2

14

� 2

7

and �

H

� 240 < 256 = 2

15+1

2

.

PROOF. From Proposition 13, we an onstrut f 2 


15

with nl(f) =

16276; wt(f) = 16364 and �

f

= 160. As desribed in (27), selet 20 bits in the

truth table of f uniformly at random whih ontain the value 0 and omple-

ment them to 1. In proess we get a funtion H. Note that wt(H) = 16364 +

20 = 16384 = 2

14

and from item 1 of Proposition 12, nl(H) � 16276�20. The

random experiment shows that it is possible to get H with nl(H) = 16262 (see

also (27)). Now from Proposition 12, item 2 we get, �

H

� �

f

+4� 20 = 240.

Further, the random experiment shows that it is possible to �nd �

H

= 216 at

minimum (see also (19)).

Note that we are interested in three di�erent ranges of nonlinearity. The fun-

tions onstruted by Patterson and Wiedemann (23; 24) are important sine

the onstrution provides better nonlinearity than bent onatenation non-

linearity. Also the balaned funtions (27) onstruted from the Patterson-

Wiedemann funtions provide the nonlinearity greater than the bent onate-

nation one. The �

f

values of these funtions is less than 256. We like to point

out that we an modify the Patterson-Wiedemann funtions in suh a manner

suh that the nonlinearity falls below (also equal to) the bent onatenation

nonlinearity, and even then the �

f

value is less than 256. However, there are

other onstrution methods for balaned funtions with nonlinearity equal to

and less than the bent onatenation nonlinearity (27; 20), whih an not

provide the �

f

value less than 2

n+1

2

for any odd n.

Now onsider the other side. Let us use the funtion H, with �

H

= 216

as in the proof of Lemma 16, to onstrut a balaned funtion H

2i+15

=

b(Y

2i

; : : : ; Y

1

)�H(X

15

; : : : ; X

1

), where b is a bent funtion. Note that H

2i+15

has nonlinearity greater than the bent onatenation nonlinearity, but �

H

2i+15

=

2

2i

��

H

= 2

2i

� 216 > 2

2i+15

2

. That is, even if the nonlinearity is greater than

the bent onatenation nonlinearity, we are not getting good autoorrelation

value. It is an interesting open problem in this area to disprove the onjeture

of (37) for odd n 6= 15.

4 Constrution for even n

In this setion we modify the Maiorana-MFarland type bent funtions to

get balaned Boolean funtions with very small value of �

f

. Similar kinds of

onstrutions have earlier been onsidered in (11; 29; 27). This onstrution

10



provides high nonlinearity and high algebrai degree whih are ryptograph-

ially important. However, there the �

f

parameter has not been onsidered

before, whih is the main thrust in this setion. Let us �rst desribe the on-

strution.

Constrution 1 Let G be a bent funtion on n variables, whih is the on-

atenation of q = 2

n

2

distint linear funtions on k =

n

2

variables. Thus we

an write, G = l

0

l

1

: : : l

q�1

, where l

i

2 L(

n

2

) and l

i

6= l

j

for i 6= j. Basially,

l

i

= a

k

X

k

� : : :� a

1

X

1

, where (a

k

; : : : ; a

1

) is k bit binary representation of i.

Here, l

0

means the onstant zero funtion. Let F = fl

1

: : : l

q�1

, where f 2 


n

2

is a balaned funtion. That is in G we replae l

0

by f to get F .

Theorem 17 (29; 11; 27) For even n, let F 2 


n

as desribed in Con-

strution 1. Then we have the following. (1) F is balaned. (2) nl(F ) =

2

n�1

� 2

n

2

+ nl(f). (3) deg(F ) =

n

2

+ deg(f).

Now we will prove some results to get an upper bound on �

F

. First let us

onsider � 2 f0; 1g

n

, where � = (�

n

; : : : ; �

n

2

+1

; �

n

2

; : : : ; �

1

) and we write

� = (�

n

; : : : ; �

n

2

+1

) and  = (�

n

2

; : : : ; �

1

). That is � = (�; ). Note that

� 6= (0; 0; : : : ; 0), i.e. � is not an all zero vetor. Moreover, we denote X =

(X; : : : ; X

n

2

+1

; X

n

2

; : : : ; X

1

), U = (X

n

; : : : ; X

n

2

+1

) and V = (X

n

2

; : : : ; X

1

). That

is X = (U; V ).

Lemma 18 Consider F 2 


n

as in Constrution 1. Let us onsider � =

(�

n

= 0; : : : ; �

n

2

+1

= 0; �

n

2

; : : : ; �

1

) and  = (�

n

2

; : : : ; �

1

). Then j �

F

(�) j �

2

n

2

+ j �

f

() j.

PROOF. For the bent funtion G 2 


n

, �

G

(�) = 0 for all nonzero �. That

means, wd(G(X); G(X � �)) = 0. This gives that

wd(l

0

; l

0

(V�))+wd(l

1

; l

1

(V�))+: : :+wd(l

q�2

; l

q�2

(V�))+wd(l

q�1

; l

q�1

(V�

)) = 0.

We have, wd(l

i

; l

i

(V � )) an take the values �q = �2

n

2

. In partiular,

wd(l

0

; l

0

(V � )) takes the value q = 2

n

2

. Thus,

wd(l

1

; l

1

(V � )) + : : : + wd(l

q�2

; l

q�2

(V � )) + wd(l

q�1

; l

q�1

(V � )) = �q.

Hene,

wd(F (X); F (X��)) = wd(f; f(V�))+wd(l

1

; l

1

(V�))+: : :+wd(l

q�2

; l

q�2

(V�

)) + wd(l

q�1

; l

q�1

(V � )) = �

f

()� q = �2

n

2

+�

f

().

Thus j �

F

(�) j � 2

n

2

+ j �

f

() j.

Lemma 19 Consider F 2 


n

as in Constrution 1.
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Let us onsider � = (�

n

; : : : ; �

n

2

+1

; �

n

2

; : : : ; �

1

) where U = (�

n

; : : : ; �

n

2

+1

) is a

nonzero vetor and V = (�

n

2

; : : : ; �

1

). Then j �

F

(�) j � 2jW

f

(U) j.

PROOF. From Constrution 1, it is lear that the funtion F an be seen as

onatenation of q funtions. Sine (�

n

; : : : ; �

n

2

+1

) is a nonzero vetor, if we

write the truth tables of F (X) and F (X � �), then for the small funtions of

n

2

variables, the truth tables of f(V ) and f(V � ) or any of the l

i

(V ) and

l

i

(V � ) annot our at the orresponding positions in the truth tables of

F (X) and F (X � �).

The funtions f and l

r

will orrespond in the truth tables, where r has a binary

representation (�

n

; : : : ; �

n

2

+1

). Hene, from De�nition 4, wd(f; l

r

) = W

f

(U),

the Walsh transform value. Also let i = i

n

; : : : ; i

k+1

and j = j

n

; : : : ; j

k+1

in

binary representation. If (i

n

; : : : ; i

k+1

) and (j

n

; : : : ; j

k+1

) are related by i

n

=

�

n

� j

n

; : : : ; i

k

= �

k

� j

k

, then the smaller truth tables of l

i

; l

j

will ome at

the orresponding positions in the truth tables of F (X) and F (X � �).

Thus, wd(F (X); F (X��)) = 2wd(f(V ); l

r

(V �))+2

P

i=r�j

wd(l

i

(V ); l

j

(V �

)) = 2wd(f(V ); l

r

(V � )). This is beause, l

i

(V ); l

j

(V � ) are two distint

aÆne funtions and hene by Proposition 3, wd(l

i

(V ); l

j

(V � )) = 0.

In the next lemma we need the parameter �

f

(see De�nition 2).

Lemma 20 Let us onsider the funtion F 2 


n

as in Constrution 1. Then

�

F

= max(2

n

2

+�

f

; 2�

f

).

PROOF. From Lemma 18, we get that the maximum value of j �

f

() j is

�

f

and from Lemma 19, we have that maximum value of jW

f

(U) j is �

f

.

Now we provide an updated version of Constrution 1.

Constrution 2 We onstrut a balaned funtion F as in Constrution

1, with a restrition on the balaned funtion f . We onstrut f suh that,

nl(f) � 2

n

2

�2

.

Theorem 21 Let us onsider F as in Constrution 2. Then, �

F

� 2

n

2

+�

f

.

PROOF. Here, 2�

f

= 2� 2

n

2

� 4nl(f) � 2

n

2

. Thus, 2

n

2

+�

f

� 2�

f

.

In the above theorem, we provide an upper bound on �

F

. However, for all the

funtions those have been heked, we get the strit equality �

F

= 2

n

2

+�

f

.

Let us denote �

b

(n) = min

h2


n

;h balaned

�

h

. Theorem 21 provides the bound

�

b

(n) � 2

n

2

+ �

b

(

n

2

). However, we ould not devise any method suh that

12



the strit inequality �

b

(n) < 2

n

2

+�

b

(

n

2

) ours. Thus we make the following

onjeture.

Conjeture 1 Let n be an even integer. Then �

b

(n) = 2

n

2

+�

b

(

n

2

).

This onjeture is similar to Dobbertin's onjeture (11) on nonlinearity of

balaned Boolean funtions on even number of variables. Let nlb(n) is the

maximum nonlinearity for balaned funtions on n variables. Then the on-

jeture states that, for even n, nlb(n) = 2

n�1

� 2

n

2

+ nlb(

n

2

). Presently this

onjeture is still open. Thus the balaned funtions we have desribed here

possess urrently best known nonlinearity and autoorrelation values together.

Our result provides a reursive onstrution. Now we have to onsider di�er-

ent ases to provide some ompat nonreursive formulae. First we onsider

the ase where, n = 2

i

� j, for i � 1 and j � 3, odd. We an extend the

Constrution 2 in the following way. Let F 2 


n

. Now, �

F

= 2

n

2

+�

f

. Here

f 2 


n

2

, i.e., f 2 


2

i�1

�j

. Then we an use Constrution 2 one again sine

n

2

is still even if i > 1. If i = 1, then we use a balaned funtion on odd number

of variables as desribed in previous setion. Hene we get the following result.

Theorem 22 It is possible to onstrut F 2 


n

, where n = 2

i

� j with

�

F

=

P

i

x=1

2

n

2

x

+ � where � = 2

n

2

i+1

+

1

2

if j � 5 and � = 8 for j = 3. Also,

nl(F ) = 2

n�1

�

P

i

x=1

2

n

2

x

�1

� 2

n

2

i+1

�

1

2

.

PROOF. �

F

= 2

n

2

+�

f

= 2

n

2

+ 2

n

4

+�

g

= 2

n

2

+ 2

n

4

+ : : : + 2

n

2

i

+�

h

. Now

n

2

i

= j = 2y + 1 and by onstrution of Theorem 11 for Boolean funtions

on odd number of variables, �

h

= 2

y+1

= 2

n

2

i+1

+

1

2

for j � 5. Also �

h

= 8

for j = 3. The nonlinearity result follows from reursive use of Theorem 17,

item 2 and the result that it is possible to onstrut a balaned funtion on j

variables with nonlinearity 2

j�1

� 2

j�1

2

.

We also like to point out that the results for a 30 variable funtion is already

an interesting one. Note that we have got a balaned funtion f 2 


15

with

nl(f) = 16262 > 2

15�1

� 2

15�1

2

and �

f

= 216 < 2

n+1

2

(see proof of Lemma 16).

Thus we get a balaned funtion F 2 


30

with nl(F ) = 2

29

� 2

15

+ 16262 and

�

F

= 2

15

+216. This is learly a better result than what we have presented in

Theorem 22. In Theorem 22 we onsider �

h

= 2

y+1

and nl(h) = 2

j�1

� 2

j�1

2

.

Here, for a 15-variable funtion h, �

h

< 2

y+1

and nl(h) > 2

j�1

� 2

j�1

2

.

Next we onsider the ase n = 2

i

. Here we use the reursive onstrution and

ome down to a 4 variable funtion ultimately.

Theorem 23 It is possible to onstrut F 2 


n

, where n = 2

i

with �

F

=

P

i�2

x=1

2

n

2

x

+ 8. Also, nl(F ) = 2

n�1

�

P

i�2

x=1

2

n

2

x

�1

� 4.
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PROOF. We use the onstrution reursively until we get a 4 variable Boolean

funtion. For balaned 4 variable funtion h, by omputer searh it has been

heked that the minimum value of �

h

is 8. The nonlinearity result follows

from reursive use of Theorem 17, item 2.

It should be noted that in (37), onstrution of balaned Boolean funtions

f on even number of variables have been proposed with �

f

= 2

n

2

+1

and

nl(f) = 2

n�1

� 2

n

2

. Our results are learly superior. It will be an interesting

researh diretion either to prove that this is the best possible parameters or

to onstrut a balaned funtion with better results than this.

5 Correlation Immune and Resilient Boolean Funtions

Correlation immunity is a very signi�ant ryptographi property of Boolean

funtions and it has reeived a lot of attention in literature (see (31; 32; 13;

3; 30; 4; 12; 28) and the referenes in these papers). On the other hand, two

fundamental properties for ryptographially signi�ant Boolean funtions are

nonlinearity and autoorrelation. Nonlinearity is one of the most hallenging

ombinatorial properties of Boolean funtions and is related to the overing

radius of �rst order Reed-Muller ode (see (26; 23; 24; 11; 14; 15; 5; 27) and the

referenes in these papers). Very reently weight divisibility results of orre-

lation immune and resilient (balaned orrelation immune) Boolean funtions

have been proved (28; 35; 39; 1) and these results have diret onsequenes to-

wards nontrivial upper bounds on nonlinearity of these sublasses of Boolean

funtions. Also these results show that if we inrease the order of orrelation

immunity then the nonlinearity dereases. Currently it has been noted in (41)

that propagation property also goes against orrelation property, and some

lower bounds on �

f

values of m-th order orrelation immune and resilient

funtions have been presented (40).

Here we provide better results whih diretly relate the autoorrelation mea-

sures with order of orrelation immunity. For a linear funtion f , �

f

= 2

n

,

and �

f

= 2

3n

. For funtions f , on even number of variables, we have �

f

= 0

(�

f

= 2

2n

) i� f is a bent funtion (21; 37). However, bent funtions are

not balaned. In fat, for a funtion f of even weight �

f

� 0 mod 8 and

for a funtion f of odd weight �

f

� 4 mod 8 (9). For balaned funtion f ,

�

f

� 2

2n

+ 2

n+3

(33) for both odd and even number of variables. A ompara-

tively sharper result in this diretion has been proposed in (34) whih we will

disuss shortly.

Note that the properties �

f

; �

f

are invariant under nonsingular linear trans-

formation on input variables of the funtion f . Thus, it is easy to see that the

�

f

results of the papers (33; 34) are valid for any Boolean funtion f whose

14



Walsh spetrum ontains at least one zero.

5.1 Lower Bound on sum-of-square Indiator

We start this setion with a result from (38, Theorem 3).

Theorem 24 Let f 2 


n

. Then �

f

�

2

3n

F

f

.

Next we have the following result, whih follows diretly from De�nition 7.

Proposition 25 Let f 2 


n

be an m-th order orrelation immune funtion.

Then F

f

� 2

n

�

P

m

i=1

�

n

i

�

. Moreover, if f is m-resilient, then F

f

� 2

n

�

P

m

i=0

�

n

i

�

.

The sum-of-square indiator of GAC has been introdued in (37) (see also

De�nition 6). We start with the following result whih uses Theorem 24 and

Proposition 25.

Lemma 26 Let f 2 


n

be an m-th order orrelation immune funtion. Then,

�

f

�

2

3n

2

n

�

P

m

i=1

�

n

i

�

. Moreover, if f is m-resilient, then �

f

�

2

3n

2

n

�

P

m

i=0

�

n

i

�

.

To identify important onsequenes of this result we need to get an approxi-

mate result whih will provide a �

f

value of the form 2

2n

+ 2

n+q

, where q is a

funtion of n;m. This we provide in the following result.

Theorem 27 Let f 2 


n

be an m-th order orrelation immune funtion.

Then, �

f

> 2

2n

+ 2

n+log

2

P

m

i=1

�

n

i

�

. Similarly, if f is m-resilient, then �

f

>

2

2n

+ 2

n+log

2

P

m

i=0

�

n

i

�

.

PROOF. Note that

2

3n

2

n

�

P

m

i=1

�

n

i

�

> 2

2n

+2

n

P

m

i=1

�

n

i

�

. Thus the result follows

for orrelation immune funtions. The result is similar for resilient funtions

also.

Note that, in our analysis, there is no signi�ant di�erene in the result of

orrelation immune and resilient funtions in terms of numerial values.

Currently there is no result on lower bound of �

f

values for orrelation immune

and resilient funtions. The only known results are for balaned funtions

whih are given in (33; 34). The lower bound for balaned funtions given

in (33) is 2

2n

+ 2

n+3

. The result in (34) is as follows. For a balaned funtion

f ,

15



�

f

� 2

2n

+ 2

6

(2

n

� t� 1), if 0 � t � 2

n

� 2

n�3

� 1, t odd, (i)

2

2n

+ 2

6

(2

n

� t + 2), if 0 � t � 2

n

� 2

n�3

� 1, t even, (ii)

(1 +

1

2

n

�1�t

)2

2n

, if 2

n

� 2

n�3

� 1 < t � 2

n

� 2, (iii)

if f satis�es propagation harateristis with respet to t vetors. Note that

for ase (i) and (ii), even if we overestimate this lower bound, it is 2

2n

+2

n+6

.

For the ase (iii) the lower bound varies from 2

2n

+2

n+3

to 2

2n+1

and also this

depends on the propagation harateristis of the funtion.

Now we enumerate the onsequenes of our result.

� In our result the lower bound depends diretly on the order m of orrelation

immunity and this is the �rst nontrivial result in this diretion.

� Note that for m >

n

2

, log

2

P

m

i=1

�

n

i

�

> n � 1. Thus for all m-th order

orrelation immune funtions with m >

n

2

, �

f

> 2

2n

+ 2

2n�1

. The result is

true for m-resilient funtions also. This provides a strong lower bound on

sum-of-square indiator for m-th order orrelation immune and m-resilient

funtions.

� Given any value r (1 � r < n), it is possible to �nd anm-th order orrelation

immune or m-resilient funtion f suh that �

f

> 2

2n

+ 2

n+r

by properly

hoosing m.

5.2 Lower Bound on Absolute Indiator

Now we onentrate on the absolute indiator of GAC. We have the result

on sum-of-square indiator for orrelation immune and resilient funtions. We

use the result in this diretion.

Lemma 28 For an n-variable m-th order orrelation immune funtion f ,

�

f

�

v

u

u

u

t

1

2

n

�1

2

2n

P

m

i=1

�

n

i

�

2

n

�

P

m

i=1

�

n

i

�

. Similarly,�

f

�

v

u

u

u

t

1

2

n

�1

2

2n

P

m

i=0

�

n

i

�

2

n

�

P

m

i=0

�

n

i

�

for an n-variable

m-resilient funtion f .

PROOF. We know, �

f

=

P

�2f0;1g

n

�

2

f

(�). Thus, the absolute value of eah

�

f

(�) will be minimum only when they all possess equal values. Hene, the

minimum value of �

f

will be

r

�

f

�2

2n

2

n

�1

. This gives the result using the value of

�

f

from Lemma 26.

Thus, using simpli�ation we get the following result.
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Theorem 29 For an n-variable m-th order orrelation immune funtion f ,

�

f

> 2

n

2

v

u

u

u

t

P

m

i=1

�

n

i

�

2

n

�

P

m

i=1

�

n

i

�

. Similarly, �

f

> 2

n

2

v

u

u

u

t

P

m

i=0

�

n

i

�

2

n

�

P

m

i=0

�

n

i

�

for an n-variable

m-resilient funtion f .

PROOF. The result follows from overestimating 2

n

� 1 by 2

n

.

It is known that, for a funtion f of even weight, �

f

� 0 mod 8 (9). Sine the

orrelation immune funtions and resilient funtions are all of even weight,

the �

f

values will be the value greater than the values given in Theorem 29,

whih are divisible by 8. The only published result on the lower bound on

�

f

for a balaned funtion f is �

f

� 8 (33). Our result has the following

onsequenes.

� The value �

f

is a funtion of n;m.

� For m >

n

2

, �

f

> 2

n

2

.

� For small values of m, �

f

>

r

P

m

i=1

�

n

i

�

>

r

�

n

m

�

.

� For m = 1, �

f

>

p

n.

5.3 Lower Bounds using Weight Divisibility Results

Here we use the weight divisibility results of orrelation immune and resilient

Boolean funtions (28). It is known that the values in the Walsh spetrum of

an m-th order orrelation immune funtion is divisible by 2

m+1

. Similarly for

m-resilient funtions, the Walsh spetrum values are divisible by 2

m+2

.

Let us now �nd out the sum of square indiators of suh funtions. We one

again refer to Theorem 24. For f 2 


n

, �

f

�

2

3n

F

f

.

� For an n-variable, m-th order orrelation immune funtion the values in

Walsh spetra are 0;�i2

m+1

; i = 1; 2; : : :. From Parseval's relation (10)

P

!2f0;1g

n

W

f

(!) = 2

2n

. Hene, we get that for suh a funtion f , F

f

�

2

2n�2m�2

.

� For an n-variable, m-resilient funtion the values in Walsh spetra are

0;�i2

m+2

; i = 1; 2; : : :. Using Parseval's relation, we get that for suh a

funtion f , F

f

� 2

2n�2m�4

.

Theorem 30 For an n-variable, m-th order orrelation immune funtion f ,

�

f

� 2

n+2m+2

. Similarly, for an n-variable, m-resilient funtion f , �

f

�

2

n+2m+4

.
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PROOF. The result for orrelation immune funtion follows from Theo-

rem 24 and F

f

� 2

2n�2m�2

. The result for resilient funtion follows from

Theorem 24 and F

f

� 2

2n�2m�4

.

Note that the trivial lower bound on the sum of square indiator is 2

2n

. Hene,

for orrelation immune funtions, this bound is nontrivial, when n+2m+2 >

2n, i.e, m >

n

2

� 1. Similarly for resilient funtions, this bound is nontrivial

for m >

n

2

� 2. Using these results, we immediately get the result on the �

f

values of these funtions.

Theorem 31 For an n-variable, m-th (m >

n

2

�1) order orrelation immune

funtion f , �

f

> 2

2m+1

2

. Similarly, for an n-variable, m-resilient (m >

n

2

� 2)

funtion f , �

f

> 2

2m+3

2

.

PROOF. For the orrelation immune funtion f , we have, �

f

�

q

2

n+2m+2

�2

2n

2

n

�1

.

Thus, overestimating 2

n

� 1 as 2

n

, �

f

>

p

2

2m+2

� 2

n

�

p

2

2m+1

(sine

m >

n

2

� 1) = 2

2m+1

2

. Similarly for the resilient funtion f , we have, �

f

�

q

2

n+2m+4

�2

2n

2

n

�1

. Thus, overestimating 2

n

�1 as 2

n

, �

f

>

p

2

2m+4

� 2

n

�

p

2

2m+3

=

2

2m+3

2

.

Note that the weight divisibility results using algebrai degree of the funtions

have been presented in (6; 7). These results an be used to provide sharper

lower bounds on �

f

;�

f

involving algebrai degree. From (6; 7), it is lear

that for an n-variable, m-th order orrelation immune funtion with algebrai

degree d, the values of the Walsh spetra will be divisible by 2

m+1+b

n�m�1

d



.

Similarly for an n-variable, m-resilient funtion with algebrai degree d, the

values of the Walsh spetra will be divisible by 2

m+2+b

n�m�2

d



. Using these

results we an update Theorem 30, Theorem 31 involving algebrai degree as

follows.

Theorem 32 For an n-variable, m-th order (m >

n

2

� 1) orrelation im-

mune funtion f with algebrai degree d, �

f

� 2

n+2m+2+2b

n�m�1

d



, and �

f

>

2

2m+1+b

n�m�1

d



2

. Similarly, for an n-variable, m-resilient (m >

n

2

� 2) funtion

f with algebrai degree d, �

f

� 2

n+2m+4+2b

n�m�2

d



, and �

f

> 2

2m+3+b

n�m�2

d



2

.

In (40), it has been shown that �

f

� 2

m�1

P

+1

i=0

2

i(m�1�n)

for an unbalaned

n-variable m-th order orrelation immune funtion for the range 2 � m �

n. Note that, �

f

� 2

m�1

P

+1

i=0

2

i(m�1�n)

= 2

m�1

1

1�2

m�1�n

. Thus even if we

overestimate the lower bound, it an be at most 2

m

as the maximum value of

2

m�1�n

i is

1

2

. Also �

f

� 2

m

P

+1

i=0

2

i(m�n)

for an n-variable m-resilient funtion

for the range 1 � m � n � 1. This gives, �

f

� 2

m

P

+1

i=0

2

i(m�n)

= 2

m

1

1�2

m�n

.

Overestimating this we will get 2

m+1

.

18



For higher orders (m >

n

2

� 1 for orrelation immunity and m >

n

2

� 2 for

resilieny) Theorem 31 provides better result than (40). For lower order of

orrelation immunity (m �

n

2

�1), we use our result in Theorem 29. Note that

our result is better than that of (40) when (2

n

+2

2m

)

P

m

i=1

�

n

i

�

> 2

n+2m

. For the

ase of resilieny (m �

n

2

�2), our result is better when (2

n

+2

2m

)

P

m

i=0

�

n

i

�

>

2

n+2m

.

Next we onentrate on a very important subset of orrelation immune and

resilient funtions whih possess maximum possible nonlinearity. Importantly

the resilient funtions have diret appliation in stream ipher systems. Now

the lear benhmark in seleting the resilient funtions is the funtions whih

possess the best possible trade-o� among the parameters nonlinearity, alge-

brai degree and the order of resilieny. However, we point out that we should

onsider one more important riteria in the seletion proess. In fat we �nd

funtions with best possible trade-o� having same values of nonlinearity, al-

gebrai degree and order of resilieny but having di�erent autoorrelation

properties. Thus, it is important to selet the one with better �

f

values. It is

also interesting to note that any two funtions with this best possible trade-o�

must possess the same �

f

values, whih we prove here.

Now we onentrate on De�nition of plateaued funtions (38, De�nition 9).

Apart from the bent and linear funtions, the other plateaued funtions have

the property that they have three valued Walsh spetra 0;�2

x

. We all that

these funtions possess three valued Walsh spetra with the values 0;�2

x

.

Next we have the following result from (38, Theorem 3).

Theorem 33 Let f 2 


n

and f has a three valued Walsh spetra 0;�2

x

.

Then �

f

=

2

3n

F

f

.

Now we onentrate on two speial subsets of orrelation immune and resilient

Boolean funtions respetively. We present the following known (28) results.

� For an n-variable, m-th order orrelation immune funtion with m >

n

2

� 1,

the maximum possible nonlinearity that an be ahieved is 2

n�1

� 2

m

and

these funtions possess three valued Walsh spetra 0;�2

m+1

. Thus from

Parseval's relation (10)

P

!2f0;1g

n

W

f

(!) = 2

2n

. Hene, we get that for suh

a funtion f , F

f

= 2

2n�2m�2

.

� For an n-variable, m-resilient funtion with m >

n

2

� 2, the maximum

possible nonlinearity that an be ahieved is 2

n�1

�2

m+1

and these funtions

possess three valued Walsh spetra 0;�2

m+2

. Using Parseval's relation, we

get that for suh a funtion f , F

f

= 2

2n�2m�4

.

Hene we get the following result.

Theorem 34 For an n-variable, m-th (m >

n

2

�1) order orrelation immune
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funtion f with maximum possible nonlinearity, �

f

= 2

n+2m+2

. Similarly, for

an n-variable, m-resilient (m >

n

2

� 2) funtion f with maximum possible

nonlinearity, �

f

= 2

n+2m+4

.

PROOF. The result for orrelation immune funtion follows from Theo-

rem 33 and F

f

= 2

2n�2m�2

. The result for resilient funtion follows from

Theorem 33 and F

f

= 2

2n�2m�4

.

Current results (35; 6; 7) learly identify that the nonlinearity and algebrai

degree of the orrelation immune and resilient funtions are optimized simul-

taneously. Here we show that at this situation, the sum of square indiator

attains its minimum value too.

5.4 Constrution Results

Resilient Boolean funtions, whih are provably optimized in terms of order of

resilieny, algebrai degree and nonlinearity (28), have immediate appliations

in stream ipher systems. Unfortunately, the general onstrution tehniques

does not provide good autoorrelation properties. First we will talk about some

spei� resilient funtions and their �

f

values. Then we will analyze some of

the well known onstrutions and alulate the autoorrelation values.

Let us onsider the (5; 1; 3; 12) funtions. We initially onsider suh a fun-

tion f onstruted using linear onatenation (27), whih is (1 � X

5

)(1 �

X

4

)(X

1

�X

2

)� (1�X

5

)X

4

(X

1

�X

3

)�X

5

(1�X

4

)(X

2

�X

3

)�X

5

X

4

(X

1

�

X

2

�X

3

). This funtion has �

f

= 16. However, by studying the equivalene

lasses in (2) and then using linear transformation, it is possible to get a

(5; 1; 3; 12) funtion g, suh that �

g

= 8. The truth table of the funtion is

00001011110110011110010100111000. This funtion ahieves the best possible

trade-o� among order of resilieny, nonlinearity, algebrai degree and auto-

orrelation.

Also, reently (7, 2, 4, 56) (22) and (8, 1, 6, 116) (17) funtions have been

found by omputer searh. It is very interesting to note �

f

values for these

two ases are same for all the funtions those are found by omputer searh,

whih are respetively 32, 80.

However, the existing reursive onstrution results are not very good in terms

of the autoorrelation values. We now disuss the absolute indiator values of

autoorrelation of some of these onstrutions.
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5.4.1 Reursive Constrution I

Here we onsider the reursive onstrution whih has been disussed in (3; 18;

20) in di�erent forms. We onsider the notation in (20) here for onstruting

an (n+ 1)-variable funtion F from two n-variable funtions f; g.

Q

i

(f(X

n

; : : : ; X

1

); g(X

n

; : : : ; X

1

))=F (X

n+1

; : : : ; X

1

)

= (1�X

i

)f(X

n

; : : : ; X

i+1

; X

i�1

; : : : ; X

1

)

�X

i

g(X

n

; : : : ; X

i+1

; X

i�1

; : : : ; X

1

):

Let f be an n-variable, m-resilient degree d funtion having nonlinearity x.

De�ne F (X

n+1

; : : : ; X

1

) to be an (n+ 1)-variable funtion as

F (X

n+1

; : : : ; X

1

) = Q

i

(f(X

n

; : : : ; X

1

); a� f(b�X

n

; : : : ; b�X

1

)):

Here a; b 2 f0; 1g and if m is even a 6= b and if m is odd, a = 1 and b an

be either 0 or 1. Then F (X

n+1

; X

n

; : : : ; X

1

) is an (m + 1)-resilient, degree d

funtion having nonlinearity 2x (20).

Note that, any of the operators Q

i

an be expressed as a omposition of Q

n+1

and a suitable permutation of the input variables. The permutation of input

variables preserves the autoorrelation property, resilieny, algebrai degree

and nonlinearity. So it is enough to look into the onstrution funtion as

F (X

n+1

; : : : ; X

1

) = Q

n+1

(f(X

n

; : : : ; X

1

); a� f(b�X

n

; : : : ; b�X

1

)); i:e:;

F (X

n+1

; : : : ; X

1

) = (1�X

n+1

)f(X

n

; : : : ; X

1

)�X

n+1

(a�f(b�X

n

; : : : ; b�X

1

)):

First onsider the ase when m is even. Then a 6= b. Let us onsider, a = 1; b =

0, then F (X

n+1

; : : : ; X

1

) = (1�X

n+1

)f(X

n

; : : : ; X

1

)�X

n+1

(1�f(X

n

; : : : ; X

1

)) =

X

n+1

� f(X

n

; : : : ; X

1

). It is lear that �

f

(1; 0; : : : ; 0) = �2

n+1

.

If we onsider a = 0; b = 1, then F (X

n+1

; : : : ; X

1

) = (1�X

n+1

)f(X

n

; : : : ; X

1

)�

X

n+1

f(1�X

n

; : : : ; 1�X

1

). Then, �

f

(1; 1; : : : ; 1) = 2

n+1

.

Similarly it an be shown that for the ase m odd, there will be linear stru-

tures in this onstrution. Thus, for this reursive onstrution, for an n vari-

able funtion, the absolute indiator value is 2

n

.

5.4.2 Reursive Constrution II

Now we onsider an elegant onstrution (35) whih was later modi�ed in (22).

An (n;m; d; x) funtion f (see De�nition 7) is said to be in desired form (22)

if it is of the form (1 � X

n

)f

1

� X

n

f

2

, where f

1

; f

2

are (n � 1; m; d � 1; x �

2

n�2

) funtions. This means that the nonzero values of the Walsh spetra
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of f

1

; f

2

do not interset, i.e., if W

f

1

(!) 6= 0, then W

f

2

(!) = 0, and vie

versa. Let f be an (n;m; d; x) funtion in the desired form, where f

1

; f

2

are

both (n � 1; m; d � 1; x � 2

n�2

) funtions. Let F = X

n+2

� X

n+1

� f and

G = (1�X

n+2

�X

n+1

)f

1

� (X

n+2

�X

n+1

)f

2

�X

n+2

�X

n

. Note that in the

language of (35), the funtion G above is said to depend quasilinearly on the

pair of variables (X

n+2

; X

n+1

). Also, F

1

= (1�X

n+3

)F�X

n+3

G. The funtion

F

1

onstruted from f above is an (n+ 3; m+ 2; d+ 1; 2

n+1

+ 4x) funtion in

the desired form.

Consider the ase �

n+3

= 0; �

n+2

= �

n+1

= 1 and any pattern for �

n

; : : : ; �

1

.

In this ase, F (X

n+2

; : : : ; X

1

) = F (X

n+2

� �

n+2

; : : : ; X

1

� �

1

) and hene

�

F

(�

n+2

; : : : ; �

1

) = 2

n+2

. On the other hand, G(X

n+2

; : : : ; X

1

) � G(X

n+2

�

�

n+2

; : : : ; X

1

��

1

) = f

1

�f

2

�1. Note that, if the nonzero values of the Walsh

spetra of f

1

; f

2

do not interset, then f

1

�f

2

is balaned, i.e. f

1

�f

2

�1 is also

balaned. Hene, �

G

(�

n+2

; : : : ; �

1

) = 0. This gives that �

F

1

(�

n+3

; : : : ; �

1

) =

�

F

(�

n+2

; : : : ; �

1

) + �

G

(�

n+2

; : : : ; �

1

) = 2

n+2

+ 0 = 2

n+2

. So, �

F

1

� 2

n+2

.

Thus, for this reursive onstrution, for an n variable funtion the absolute

indiator value is greater than or equal to 2

n�1

.

Note that di�erent kinds of onstrutions of resilient Boolean funtions has

been proposed in (27). The main tehnique used there is onatenation of

small aÆne funtions. It will be of interest to analyze the absolute indiator

values of suh onstrutions.

6 Conlusion

Here we have disussed about the autoorrelation values of di�erent lasses of

ryptographially signi�ant Boolean funtions. We present onstrutions of

balaned funtions whih provide urrently best known autoorrelation val-

ues. We also disuss the autoorrelation properties of orrelation immune and

resilient Boolean funtions.
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