
New Constru
tions of Resilient and Correlation Immune Boolean

Fun
tions a
hieving Upper Bounds on Nonlinearity

Enes Pasali
 & Thomas Johansson

Lund University

P. O. Box 118, 221 00 Lund, SWEDEN

e-mail: fenes, thomasg�it.lth.se

Subhamoy Maitra & Palash Sarkar

Indian Statisti
al Institute

203, B.T. Road, Cal
utta 700 035, INDIA

e-mail: fsubho, palashg�isi
al.a
.in

Abstra
t

Re
ently weight divisibility results on resilient and 
orrelation immune Boolean fun
tions

have re
eived a lot of attention. These results have dire
t 
onsequen
es towards the upper

bound on nonlinearity of resilient and 
orrelation immune Boolean fun
tions of 
ertain order.

Now the 
lear ben
hmark in the design of resilient Boolean fun
tions (whi
h optimizes Siegen-

thaler's inequality) is to provide results whi
h attain the upper bound on nonlinearity. Here

we 
onstru
t a 7-variable, 2-resilient Boolean fun
tion with nonlinearity 56. This solves the

maximum nonlinearity issue for 7-variable fun
tions with any order of resilien
y. Using this

7-variable fun
tion, we also 
onstru
t a 10-variable, 4-resilient Boolean fun
tion with nonlin-

earity 480. Constru
tion of these two fun
tions were justi�ed as important open questions in

Crypto 2000. Also we provide methods to generate an in�nite sequen
e of Boolean fun
tions

on n = 7 + 3i variables (i � 0) with order of resilien
y m = 2 + 2i, algebrai
 degree 4 + i and

nonlinearity 2

n�1

� 2

m+1

, whi
h were not known earlier. We 
on
lude with a few interesting


onstru
tion results on unbalan
ed 
orrelation immune fun
tions of 5 and 6 variables.

Keywords: Boolean fun
tions, Nonlinearity, Correlation Immunity, Resilien
y, Stream Ci-

phers.

1 Introdu
tion

Very re
ently Sarkar and Maitra [16℄ have provided weight divisibility results on resilient Boolean

fun
tions whi
h in turn present a nontrivial upper bound on the nonlinearity of su
h fun
tions.

Similar kinds of results related to weight divisibility and upper bound on nonlinearity of resilient and


orrelation immune Boolean fun
tions have also been presented independently by Tarannikov [20℄

and Zheng and Zhang [21℄. Currently Carlet [3℄ and Sarkar [14℄ have (independently and using

di�erent kinds of te
hniques) settled the weight divisibility results for resilient and 
orrelation

immune Boolean fun
tions involving the algebrai
 degree too. Note that balan
ed 
orrelation

immune Boolean fun
tions are also known as resilient Boolean fun
tions.

These weight divisibility results have dire
t 
onsequen
es to the upper bound on nonlinearity

of these fun
tions and a ben
hmark in design of su
h resilient Boolean fun
tions has thus been set-

tled. In other dire
tion, 
onstru
tion of these fun
tions a
hieving the upper bound on nonlinearity

strengthens the tightness of the upper bound results.

In a more pra
ti
al dire
tion, these fun
tions have immediate appli
ations in stream 
ipher


ryptosystems. A standard model of stream 
ipher [18, 19, 5℄ 
ombines the outputs of several

independent Linear Feedba
k Shift Register (LFSR) sequen
es using a nonlinear Boolean fun
tion

to produ
e the keystream. This keystream is bitwise XORed with the message bitstream to produ
e
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the 
ipher. The de
ryption ma
hinery is identi
al to the en
ryption ma
hinery. Getting the kind of

Boolean fun
tions whi
h we propose here provide the best possible trade-o� among the parameters

important to resist the known 
ryptanalyti
 te
hniques [19, 12, 9, 8, 10℄.

It is now well a

epted that for a Boolean fun
tion to be used in stream 
ipher systems, it

must satisfy the properties balan
edness, high nonlinearity, high algebrai
 degree and high order

of 
orrelation immunity (see Se
tion 2 for de�nitions). All of the above mentioned parameters are

important for resisting di�erent kinds of atta
ks. Also it is not possible to get the best possible

values for ea
h of these parameters separately and there are 
ertain trade-o�s involved among the

above parameters. Siegenthaler showed [18℄ that for an n-variable fun
tion, of degree d and order

of 
orrelation immunity m, the following holds: m + d � n. Further, if the fun
tion is balan
ed

then m+ d � n� 1. Currently, the exa
t nature of trade-o� among order of 
orrelation immunity,

nonlinearity and algebrai
 degree has also been investigated [15, 20, 21, 3, 14℄. Earlier, a series

of papers [2, 17, 4, 6, 11, 13, 15℄ have approa
hed the 
onstru
tion problem by �xing the number

of variables and the order of 
orrelation immunity (and possibly the algebrai
 degree) and then

trying to design balan
ed Boolean fun
tions with as high nonlinearity as possible. However, the

existen
e of the 
urrent papers [15, 20, 21, 3, 14℄ 
ompletely 
hanged the motivation. Now either

we have to design a fun
tion whi
h provides the best possible trade-o� among the parameters we

are dis
ussing, or we have to show that su
h a fun
tion 
annot exist.

In this paper, for the �rst time we 
onstru
t a 7-variable, 2-resilient Boolean fun
tion with

nonlinearity 56. Earlier all the 7-variable resilient fun
tions of di�erent orders (ex
ept order 2) with

maximum possible algebrai
 degree and maximum possible nonlinearity (equal to the upper bound)

were known. We here 
lose the issue by proving the 
ase for order 2 also. Our method is basi
ally a

sear
h te
hnique, where we de
rease the sear
h spa
e using di�erent involved ne
essary 
onditions

on the fun
tions (see Se
tion 3). We start with the table of 5-variable fun
tions (48 di�erent

equivalen
e 
lasses) provided by Berlekamp and Wel
h [1℄. We use our ne
essary 
onditions to

sele
t very few 
lasses out of those 48 and 
on
atenate four 5-variable fun
tions from those 
lasses

to get 7-variable fun
tions.

It is known that for an n-variable m-resilient fun
tion (m >

n

2

� 2), the maximum possible

nonlinearity is 2

n�1

� 2

m+1

and su
h a fun
tion must have the maximum possible algebrai
 degree

n�m�1 [16, 20, 3, 14℄. In [16℄, the 
on
ept of saturated sequen
e SS for resilient Boolean fun
tions

a
hieving the best possible trade-o� has been proposed. All the fun
tions of SS(0) and SS(1) are

already known. However, the initial fun
tions for an SS(i) were not known earlier for i > 1. In

fa
t the 7-variable, 2-resilient, nonlinearity 56 fun
tion is the initial fun
tion of the sequen
e SS(2).

Using this 7 variable fun
tion we 
an 
onstru
t a 10-variable, 4-resilient, nonlinearity 480 fun
tion,

whi
h was also presented as an open question in [16℄. This fun
tion is the se
ond fun
tion of SS(3).

The initial fun
tion of SS(3) is a 9-variable, 3-resilient, nonlinearity 240 fun
tion, whi
h is still

an open question and we are working on it now. However, we explain how we 
an extend our

te
hniques to �nd su
h a 9-variable fun
tion.

Tarannikov [20℄ has provided a 
onstru
tion te
hnique of resilient Boolean fun
tions with maxi-

mum possible nonlinearity. The method presents n-variable, m-resilient fun
tions with nonlinearity

2

n�1

� 2

m+1

for

2n�7

3

� m � n � 2. Basi
ally Tarannikov's 
onstru
tion is a re
ursive one and

using this te
hnique and taking n-variable, m-resilient, degree d, nonlinearity x fun
tions one 
an

generate (n + 3)-variable, (m + 2)-resilient, degree (d + 1) and nonlinearity 2

n+1

+ 4x fun
tions.

These (n+3)-variable fun
tions 
an again be used to generate (n+6)-variable resilient fun
tions and

so on. We here provide a mu
h simpli�ed modi�
ation of Tarannikov's 
onstru
tion, whi
h gives

the same quality results. We interpret Tarannikov's 
onstru
tion [20℄ as 
on
atenation of Boolean

fun
tions. In Tarannikov's 
onstru
tion two fun
tions are required as inputs and the fun
tions must

satisfy 
ertain properties. Here we modify the 
onstru
tion so that it requires only one fun
tion in
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a desired form as input and also the resulting fun
tion be
omes a desired one (See Subse
tion 3.1

for desired form). This 
onstru
tion is mu
h easier to understand.

However, the most important thing is to get a desired resilient fun
tion whi
h 
an be used as

the initial fun
tion for this re
ursive 
onstru
tion. The 7-variable, 2-resilient fun
tion we 
onstru
t

here is in desired form. Starting with this 7-variable fun
tion as a single input and using the

re
ursive 
onstru
tion proposed here, we show that for n = 7 + 3i, m = 2 + 2i, we 
an 
onstru
t

resilient fun
tions with nonlinearity 2

n�1

�2

m+1

and algebrai
 degree n�m�1 (see re
ursive use of

Constru
tion 2 in Subse
tion 3.1). This improves Tarannikov's bound on m, as for n = 7+3i, it is

possible to 
onstru
t n-variable, m-resilient fun
tions with nonlinearity 2

n�1

�2

m+1

for

2n�7

3

�1 �

m � n� 2.

At the end we provide some important results on 5-variable and 6-variable unbalan
ed 
or-

relation immune fun
tions. We present a sear
h te
hnique using inverse Walsh transform to get

5-variable, 2-
i (
orrelation immune of order 2), nonlinearity 12 fun
tions. These fun
tions 
an

be used immediately to get 6-variable, 3-
i, nonlinearity 24 fun
tions. Moreover, we run a sear
h

te
hnique to show that 6-variable, 1-
i, nonlinearity 26 fun
tion exists. This question was open

for quite sometime. Also this shows that the upper bound on nonlinearity provided by the weight

divisibility results [16, 3, 14℄ is tight in this 
ase.

2 De�nitions and Notations

De�nition 2.1 The addition operator over GF (2) is denoted by �. For binary strings S

1

; S

2

of

same length �, we denote by #(S

1

= S

2

) (respe
tively #(S

1

6= S

2

)), the number of pla
es where

S

1

and S

2

are equal (respe
tively unequal). The Hamming distan
e between S

1

; S

2

is denoted by

d(S

1

; S

2

), i.e. d(S

1

; S

2

) = #(S

1

6= S

2

). The Walsh distan
e wd(S

1

; S

2

), between S

1

and S

2

, is

de�ned as, wd(S

1

; S

2

) = #(S

1

= S

2

) �#(S

1

6= S

2

). Note that, wd(S

1

; S

2

) = �� 2 d(S

1

; S

2

). Also

the Hamming weight or simply the weight of a binary string S is the number of ones in S. This is

denoted by wt(S). By 


n

we mean the set of n-variable Boolean fun
tions. An n-variable fun
tion

f is said to be balan
ed if its output 
olumn in the truth table 
ontains equal number of 0's and 1's

(i.e. wt(f) = 2

n�1

).

De�nition 2.2 An n-variable Boolean fun
tion f(X

n

; : : : ;X

1

) 
an be 
onsidered to be a multivari-

ate polynomial over GF (2). This polynomial 
an be expressed as a sum of produ
ts representation

of all distin
t k-th order produ
ts (0 � k � n) of the variables. More pre
isely, f(X

n

; : : : ;X

1

) 
an

be written as a

0

�(

L

i=n

i=1

a

i

X

i

)�(

L

1�i 6=j�n

a

ij

X

i

X

j

)�: : :�a

12:::n

X

1

X

2

: : : X

n

where the 
oeÆ
ients

a

0

; a

ij

; : : : ; a

12:::n

2 f0; 1g. This representation of f is 
alled the algebrai
 normal form (ANF) of

f . The number of variables in the highest order produ
t term with nonzero 
oeÆ
ient is 
alled the

algebrai
 degree, or simply degree of f .

De�nition 2.3 Fun
tions of degree at most one are 
alled aÆne fun
tions. An aÆne fun
tion with


onstant term equal to zero is 
alled a linear fun
tion. The set of all n-variable aÆne (respe
tively

linear) fun
tions is denoted by A(n) (respe
tively L(n)). The nonlinearity of an n variable fun
tion

f is nl(f) = min

g2A(n)

(d(f; g)), i.e. the distan
e from the set of all n-variable aÆne fun
tions.

De�nition 2.4 Let X = (X

n

; : : : ;X

1

) and ! = (!

n

; : : : ; !

1

) both belong to f0; 1g

n

and X:! =

X

n

!

n

� : : :�X

1

!

1

. Let f(X) be a Boolean fun
tion on n variables. Then the Walsh transform of

f(X) is a real valued fun
tion over f0; 1g

n

that 
an be de�ned as W

f

(!) =

P

X2f0;1g

n

(�1)

f(X)�X:!

.
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De�nition 2.5 [7℄ A fun
tion f(X

n

; : : : ;X

1

) is m-th order 
orrelation immune (CI) i� its Walsh

transform W

f

satis�es W

f

(!) = 0; for 1 � wt(!) � m: If f is balan
ed then W

f

(0) = 0. Bal-

an
ed m-th order 
orrelation immune fun
tions are 
alled m-resilient fun
tions. Thus, a fun
tion

f(X

n

; : : : ;X

1

) is m-resilient i� its Walsh transform W

f

satis�es W

f

(!) = 0; for 0 � wt(!) � m.

The relationship between Walsh transform and Walsh distan
e is [11℄ W

f

(!) = wd(f;

L

i=n

i=1

!

i

X

i

).

Before pro
eeding, we would like to introdu
e a few notations for future 
onvenien
e. By an

(n;m; d; x) fun
tion we mean an n-variable, m-resilient fun
tion with degree d and nonlinearity

x. By (n; 0; d; x) fun
tion we mean a balan
ed n-variable fun
tion with degree d and nonlinearity

x. By [n;m; d; x℄ we denote an n-variable unbalan
ed 
orrelation immune fun
tion of order m,

nonlinearity x and degree d. In the above notation a 
omponent is repla
ed by a '�' if we do

not spe
ify it, e.g., (n;m;�; x), if we do not want to spe
ify the degree. Further, given an aÆne

fun
tion l 2 A(n), by ndg(l) we denote the number of variables on whi
h l is nondegenerate.

3 Constru
tion of (7; 2; 4; 56) Fun
tions

From [20, 3, 14℄, it is 
lear that if an n-variable, m-resilient (m >

n

2

� 2) fun
tion a
hieves the

maximum possible nonlinearity 2

n�1

� 2

m+1

then the fun
tion must have the maximum possible

algebrai
 degree n �m � 1. Putting n = 7;m = 2, we �nd that maximum possible nonlinearity

56 
an be obtained only when the algebrai
 degree is n�m� 1 = 4. Thus, a (7; 2;�; 56) fun
tion

must be a (7; 2; 4; 56) fun
tion, i.e. of algebrai
 degree 4. Next we have the following result relating

a (7; 2; 4; 56) fun
tion with two (6; 1; 4; 24) fun
tions.

Proposition 3.1 Let f be a (7; 2; 4; 56) fun
tion. Then f 
an be represented as

f = (1 �X

7

)f

1

(X

6

; : : : ;X

1

) �X

7

f

2

(X

6

; : : : ;X

1

) where f

1

; f

2

2 


6

, and both f

1

; f

2

are (6; 1; 4; 24)

fun
tions. That is f 
an be expressed as 
on
atenation of f

1

and f

2

.

Proof : The fun
tion f 
an be represented as f = (1 � X

i

)f

1

(X

7

; : : : ;X

i+1

;X

i�1

; : : : ;X

1

) �

X

i

f

2

(X

7

; : : : ;X

i+1

;X

i�1

; : : : ;X

1

) where f

1

; f

2

2 


6

. Sin
e degree of f is 4, we 
an sele
t at least

one term of degree 4 whi
h does not 
ontain some X

i

, 1 � i � 7. If we 
ondition on that variable

X

i

, then both f

1

; f

2

must be of degree 4. Thus, from Siegenthaler's inequality, f

1

; f

2


an have

resilien
y of order at most 1. Also, sin
e f is 2-resilient, f

1

; f

2

must have resilien
y of order at least

1. Thus, f

1

; f

2

are 1-resilient. Sin
e, nl(f) = 56, nl(f

1

); nl(f

2

) � 56 � 32 = 24. However, it is

known [13, 16℄ that the maximum possible nonlinearity of 1-resilient fun
tions on 6 variables is 24.

Now, it is easy to see that if we permute the input variables, then X

i

and X

7


an be inter
hanged.

Then the output 
olumn of f in the truth table 
an be written as 
on
atenation of two (6; 1; 4; 24)

fun
tions.

The importan
e of this result is that if we 
an 
onstru
t all the (6; 1; 4; 24) fun
tions, then


on
atenating every pair of them either we will �nd (7; 2; 4; 56) fun
tions or if we do not get su
h

a fun
tion then we 
an guarantee that (7; 2; 4; 56) fun
tion does not exist. Next we 
onsider the

results related to Walsh spe
tra of (6; 1; 4; 24) fun
tions f

1

; f

2

.

Proposition 3.2 Let f be a (7; 2; 4; 56) fun
tion made by 
on
atenation of two (6; 1; 4; 24) fun
-

tions f

1

; f

2

. Then we have the following results. (1) wd(f

i

; l) = 0, for ndg(l) � 1, 1 � i � 2.

(2) wd(f

i

; l) = 0 or � 8, for ndg(l) = 2, 1 � i � 2. (3) wd(f

i

; l) = �16 i� wd(f

j

; l) = 0 for

1 � i 6= j � 2. (4) wd(f

i

; l) = �8 i� wd(f

j

; l) = �8 for 1 � i 6= j � 2. (5). Let the number

of pla
es where wd(f

i

; l) = �16 is x and the number of pla
es where wd(f

i

; l) = �16 is y for

1 � i 6= j � 2. Then the number of pla
es where wd(f; l) = �16 is 4x+ y = 64.

4



Proof : Item 1 follows from the de�nition of 1-resilient fun
tions.

Now we prove Item 2. If wd(f

1

; l) = 16, for ndg(l) = 2, then wd(f

2

; l) = �16, sin
e wd(f; ll) = 0

as f is (7; 2; 4; 56) and ndg(ll) = 2. In that 
ase wd(f; ll




) = 32 and hen
e nl(f) = 48 whi
h is a


ontradi
tion.

Item 3 follows similarly as otherwise nonlinearity of f will de
rease.

Item 4 follows as wd(f; l) must be divisible by 2

2+2

= 16 [16℄.

In item 5, the relation 4x + y = 64 follows from the Parseval's relation on square of Walsh

distan
es.

Note that it is not 
lear whether a (7; 2; 4; 56) fun
tion f (if exists) 
an always be seen as


on
atenation of two (6; 2; 3; 24) fun
tions f

1

; f

2

. However, we have the following result. The proof

is similar to the proof of Proposition 3.2.

Proposition 3.3 Let f be a (7; 2; 4; 56) fun
tion made by 
on
atenation of two (6; 2; 3; 24) fun
-

tions f

1

; f

2

. Then we have the following results. (1) wd(f

i

; l) = 0, for ndg(l) � 2, 1 � i � 2.

(2) wd(f

i

; l) = �16 i� wd(f

j

; l) = 0 for ndg(l) > 2, 1 � i 6= j � 2.

For a Boolean fun
tion f , we de�ne NZ(f) = f! j W

f

(!) 6= 0g, where W

f

is the Walsh

transform of f . If we 
an �nd two (6; 2; 3; 24) fun
tions f

1

; f

2

su
h that NZ(f

1

) \ NZ(f

2

) = ;,

then f = (1�X

7

)f

1

�X

7

f

2

will be a (7; 2; 4; 56) fun
tion. Hen
e, if we 
an generate the database

of all (6; 2; 3; 24) fun
tions, then we 
an 
he
k for 
on
atenation of any two of them.

However, preparation of the database 
ontaining (6; 2; 3; 24) and (6; 1; 4; 24) fun
tions in turn

needs 
on
atenation of 5 variable Boolean fun
tions. For this we 
on
entrate on the Berlekamp-

Wel
h paper [1℄. All Boolean fun
tions on 5 variables are divided into 48 equivalen
e 
lasses (see [1℄),

where the fun
tions f and g are equivalent i� there exist an invertible 5� 5 binary matrix M , two

binary ve
tors a and b and a binary s
alar 
, su
h that g(x) = f(Mx + a) + bx + 
. Note that f

and g have the same algebrai
 degree and nonlinearity.

Proposition 3.4 Let f be a (7; 2; 4; 56) fun
tion made by 
on
atenation of four fun
tions

h

1

; h

2

; h

3

; h

4

on 5 variables. Then ea
h of the h

i

's are balan
ed and nl(h

i

) � 8 for i = 1; 2; 3; 4.

Now our algorithm is as follows. We denote by O(f) the linear transformation f(Mx+a)+bx+
.

We take two representative Boolean fun
tions h

1

; h

2

and try all the 
on
atenation of h

1

and O(h

2

)

(for all possible di�erent values of M;a; b; 
, M nonsingular) to generate the 6-variable fun
tions.

Then we 
he
k for (6; 2; 3; 24) and (6; 1; 4; 24) fun
tions.

However, there are 21 equivalen
e 
lasses with nonlinearity greater than or equal to 8. It seems


omputationally infeasible to generate all the 5-variable fun
tions of those equivalen
e 
lasses by

ne
essary linear transformation and 
on
atenate any two of them to generate 6 variable fun
tions

and then 
he
king for (6; 2; 3; 24) and (6; 1; 4; 24) fun
tions. It is 
lear that we 
an dis
ard some

of the 
ombinations 
onsidering the algebrai
 degree and weight distributions of the �ve variable

fun
tions. Still then the sear
h spa
e explodes.

At this point we take a 
al
ulated risk. There are only four equivalen
e 
lasses of 5-variable

fun
tions with nonlinearity 12. We 
on
entrate on those only, leaving the other 17 equivalen
e


lasses with nonlinearity 8 and 10.

Thus we have the following strategy. Consider the following four fun
tions [1, Table 1℄ presented

in terms of their algebrai
 normal forms (ANF) representing the four equivalen
e 
lasses. The weight

distributions are also presented here. This means, that for the fun
tion h

1

, and for l 2 L(5), there

are 12 su
h l's so that d(h

1

; l) = 12; 20, there are 16 su
h l's so that d(h

1

; l) = 14; 18, and there are

4 su
h l's so that d(h

1

; l) = 16.
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ANF 12, 20 14, 18 16

h

1

= X

2

X

3

X

4

X

5

�X

1

X

2

X

3

�X

2

X

4

�X

3

X

5

12 16 4

h

2

= X

1

X

2

X

3

�X

1

X

4

�X

2

X

5

16 0 16

h

3

= X

1

X

2

X

3

�X

1

X

4

X

5

�X

2

X

3

�X

2

X

4

�X

3

X

5

16 0 16

h

4

= X

1

X

2

�X

3

X

4

16 0 16

Table 1. Representative fun
tions of 5 variables with nonlinearity 12.

Now the algorithm for generating the database of (6; 2; 3; 24) and (6; 1; 4; 24) fun
tions are as

follows. On
e again note that this database is not exhaustive as we 
onsider the �ve variable

fun
tions with nonlinearity 12 only.

1. For i = 1; 2; 3; 4 
on
atenate h

i

and O(h

j

), j = i to 4 for all possible linear transformations of

h

j

(all possible options for M;a; b; 
, M nonsingular). Thus their are total 10 pair of 
ases with

h

i

; h

j

to be 
he
ked using all possible linear transformation for h

j

.

2. Che
k whether the fun
tion is a (6; 1; 4; 24) fun
tion. In this 
ase, store the fun
tion f in

database if wd(f; l) = 0 or � 8, for l 2 L(6), ndg(l) = 2 (see Proposition 3.2). Otherwise reje
t it.

3. If the fun
tion is a (6; 2; 3; 24) fun
tion, then store it in the database.

4. Reje
t all other fun
tions.

Moreover, it should be 
onsidered that the sear
h spa
e 
an be further redu
ed keeping in mind

the following 
onstraints when we 
onsider the algorithm.

1. The fun
tion f = h

1

O(h

i

) (
on
atenation of h

1

;O(h

i

)), for i = 2; 3; 4, will not generate any

(6; 1; 4; 24) or (6; 2; 3; 24) fun
tion as the algebrai
 degree of f be
omes 5. This 
ompletely dis
ards

3 out of 10 
ases and redu
es the sear
h spa
e to 70% of the original.

2. The fun
tion f = h

4

O(h

4

) will not generate any (6; 1; 4; 24) fun
tion as the algebrai
 degree of

f be
omes at most 3. Here we only need to 
he
k for (6; 2; 3; 24) fun
tions.

We started generating the fun
tions and storing the (6; 1; 4; 24) and (6; 2; 3; 24) fun
tions in two

separate databases. At the same time we have started 
on
atenating any two of these six variable

fun
tions inside ea
h of the databases separately. Note that we did not wait for generating all

the fun
tions in the two databases. We started 
onstru
ting 7-variable fun
tions as soon as the 6-

variable fun
tions were generated. We estimated that the program will run for 30 days using a 500

MHz Pentium on Linux platform. Fortunately, in between half an hour, we found one (7; 2; 4; 56)

fun
tion, whi
h is generated from the 
on
atenation of two (6; 2; 3; 24) fun
tions. We terminated

the program then. However, getting su
h a fun
tion in a very short time gives the idea that there

are a lot of (7; 2; 4; 56) fun
tions available in the sear
h spa
e we have 
on
entrated on. The truth

table of the fun
tion is as follows. Note that h

1

; h

2

; h

3

:h

4

are all 5-variable fun
tions.

h

1

= 01100110001111000101101010010110; h

2

= 10011001011010011010010111000011

h

3

= 00001011011101101011010111001000; h

4

= 11011100011000101010000100011111

Here h

1

h

2

; h

3

h

4

are both (6; 2; 3; 24) fun
tions. The fun
tion h

1

h

2

h

3

h

4

is a (7; 2; 4; 56) fun
tion.

Note that the fun
tion h

1

h

3

h

2

h

4

is also a (7; 2; 4; 56) fun
tion. This 
an be seen as a 
on
atenation

of two (6; 1; 4; 24) fun
tions h

1

h

3

; h

2

h

4

.

From the above dis
ussion we get the following theorem.

Theorem 3.1 It is possible to 
onstru
t a (7; 2; 4; 56) fun
tion.

This 
ompletely solves the maximum nonlinearity issue of resilient fun
tions on 7 variables. The

following table shows the maximum nonlinearity 
orresponding to ea
h order of resilien
y and note

that it is possible to 
onstru
t su
h fun
tions. Also it is very 
lear from [20, 3, 14℄ that all these

fun
tions possess the maximum possible algebrai
 degree (6�m) where m is the order of resilien
y.
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order of resilien
y 1 2 3 4 5

maximum a
hievable nonlinearity 56 56 48 32 0

Table 2. Nonlinearity results for 7-variable Boolean fun
tions.

In the next se
tion we dis
uss about the re
ursive 
onstru
tions whi
h will generate interesting

resilient fun
tions on higher number of variables.

3.1 Re
ursive Constru
tion

Here we use two general 
onstru
tion te
hniques for generating resilient fun
tions on higher number

of variables from fun
tions on lower number of variables.

Constru
tion 1. [18, 2, 11, 16℄ Let f be an (n;m; n�m� 1; x) fun
tion. Let F 2 


n+1

be de�ned

as F (Y;X) = (1 � Y )f(X)� Y (a� f(X � �)). Now, (1) either � is an all zero ve
tor and a = 1

(2) or � is an all one ve
tor and a = m mod 2. Then F is an (n+1;m+1; n�m�1; 2x) fun
tion.

Next we present a modi�
ation of Tarannikov's 
onstru
tion [20℄. In Tarannikov's 
onstru
tion

two fun
tions are required as inputs and the fun
tions must satisfy 
ertain properties. However,

this is a disadvantage in 
ertain situations. Here we modify the 
onstru
tion so that it requires only

one fun
tion as input and also the resulting 
onstru
tion be
omes somewhat easier to understand.

In the modi�ed 
onstru
tion, the input fun
tion must be of 
ertain form for the 
onstru
tion to

work. It is easier in general to get fun
tions in this form than the property required in the original

Tarannikov's 
onstru
tion [20℄.

We say that an (n;m;�;�) fun
tion f is in the desired form if it is of the form f

1

f

2

, where

f

1

; f

2

are (n � 1;m;�;�) fun
tions. Here note that the (7; 2; 4; 56) fun
tion we have found 
an

be seen as 
on
atenation of two (6; 2; 4; 24) fun
tions. Hen
e this (7; 2; 4; 56) fun
tion is in desired

form.

Constru
t(f) f /* Here f is an (n;m;�; x) fun
tion in the desired form f

1

f

2

, where f

1

; f

2

are both

(n� 1;m;�;�) fun
tions. */

1. F = ff




f




f .

2. g = f

1

f




1

and h = f

2

f




2

.

3. G = ghh




g




.

4. F

1

= FG.

5. Return the fun
tion F

1

.

g

Note that in the language of [20℄, the fun
tion G above is said to depend quasilinearly on the

pair of variables (X

n+2

;X

n+1

).

Theorem 3.2 The fun
tion F

1

in Constru
t(f) is an (n+3;m+ 2;�; 2

n+1

+4x) fun
tion in the

desired form.

Proof : In Step 1, the fun
tion F is 
learly an (n+ 2;m+ 2;�; 4x) fun
tion.

Claim : In Step 2, the fun
tion G is an (n+ 2;m+ 2;�; 4x) fun
tion.

Proof of Claim : Clearly both g and h are (n;m+1;�;�) fun
tions. The fun
tion gh is of the form

f

1

f




1

f

2

f




2

. If we inter
hange the variables X

n+1

and X

n

for the fun
tion gh, we get a fun
tion in

the form f

1

f

2

f




1

f




2

whi
h is a
tually ff




. Hen
e we have nl(gh) = 2nl(f) = 2x. Let � 2 L(n+ 2).

We 
an write � in one of the forms llll; ll




ll




; lll




l




; ll




l




l. We 
ompute

1. wd(G; llll) = wd(ghh




g




; llll) = wd(hh




; ll) + wd(gg




; ll) = 0 + 0 = 0:

2. wd(G; ll




ll




) = wd(ghh




g




; ll




ll




) = 2wd(gh; ll




):

3. wd(G; lll




l




) = wd(ghh




g




; lll




l




) = 2wd(gh; ll):
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4. wd(G; ll




l




l) = wd(ghh




g




; ll




l




l) = 0:

If � is nondegenerate on at most (m + 2) variables, then l is nondegenerate on at most (m + 1)

variables. Hen
e wd(g; l) = wd(h; l) = wd(h; l




) = 0 and so wd(G;�) = 0. Thus G is (m + 2)-

resilient. Further, by the above 
al
ulation we have nl(G) = 2nl(gh) = 4nl(f) = 4x. This 
ompletes

the proof of the 
laim.

Sin
e F and G are both (n+2;m+2;�; 4x) fun
tions, the fun
tion F

1

is 
learly an (n+3;m+

2;�; y) fun
tion in the desired form. Thus it is suÆ
ient to show that y = 2

n+1

+4x. This is proved

by showing that NZ(F )\NZ(G) = ;. Let � be in L(n+2), su
h that wd(F;�) 6= 0. Then 
learly

� is of the form ll




l




l. Thus it is enough to show that for any su
h �, wd(G;�) = 0. But this is

what has been shown in item 4 above.

Starting with a fun
tion f in the desired form Constru
t(f) is repeatedly used in the manner

while (true) ff = Constru
t(f)g. Thus we summarize the 
onstru
tion as follows.

Constru
tion 2. Let f be an (n;m; n � m � 1; x = 2

n�1

� 2

m+1

) fun
tion in desired form

and f = g

1

g

2

, where g

1

; g

2

2 


n�1

. Let F = g

1

g

2

g




1

g




2

g




1

g




2

g

1

g

2

g

1

g




1

g

2

g




2

g




2

g

2

g




1

g

1

. Then F is an

(n+ 3;m+ 2; n�m; 4x+ 2

n+1

= 2

n+2

� 2

m+3

) fun
tion in desired form.

In [16℄, an (n;m; n�m�1; 2

n�1

�2

m+1

) fun
tion is 
alled a saturated maximum degree fun
tion

and its spe
trum is three valued. For su
h a fun
tion we must ne
essarily have m > b

n

2


� 2. From

this a notion of a sequen
e of Boolean fun
tions, ea
h of whi
h is a saturated maximum degree

fun
tion with maximum possible nonlinearity was proposed in [16℄.

De�nition 3.1 For i � 0 we de�ne SS(i) as follows. An SS(0) is a sequen
e f

0;0

; f

0;1

; : : :, where

f

0;0

is a (3; 0; 2; 2) fun
tion and f

0;j

is a (3 + j; j; 2; 2

j+1

) fun
tion for j > 0. For i > 0, an SS(i)

is a sequen
e f

i;0

; f

i;1

; : : :, where f

i;0

is a (3 + 2i; i; 2 + i; 2

2+2i

� 2

1+i

) fun
tion. Also for j > 0, f

i;j

is a (3 + 2i+ j; i+ j; 2 + i; 2

2+2i+j

� 2

1+i+j

) fun
tion.

Note that all fun
tions in an SS(t) have the same degree 2 + t. It is also important to see that

given a fun
tion f of some SS(t), Constru
tion 1 generates all the 
onse
utive fun
tions of SS(t).

However, given a fun
tion f of some SS(t), Constru
tion 2 generates one fun
tion ea
h of SS(t+ p)

for all p � 1. That is Constru
tion 2 generates fun
tions in di�erent saturated sequen
es.

Constru
tion of SS(0) and SS(1) are already known [16℄. The initial fun
tions for an SS(i) for

i > 1 were not known earlier. Here the (7; 2; 4; 56) fun
tion is the initial fun
tion of SS(2). Thus,

from this fun
tion, using the Constru
tion 1, one 
an generate all the fun
tions of SS(2). Note that

this sequen
e was earlier known from the 2nd fun
tion onwards, where the se
ond fun
tion of SS(2)

is an (8; 3; 4; 112) fun
tion.

Starting from (7; 2; 4; 56) fun
tion (whi
h is in desired form), Constru
tion 2 generates one

fun
tion ea
h of SS(2 + p) (whi
h is again in desired form) for all p � 1. These are basi
ally

(p + 1)th fun
tions of SS(2 + p). These fun
tions were not known earlier. For p = 1, we get the

(10; 4; 5; 480) fun
tion, whi
h was posed as an open problem in [16℄. Constru
tion 2, when used

re
ursively, generates an in�nite sequen
e of Boolean fun
tions on n = 7+3p variables (p � 0) with

order of resilien
y m = 2 + 2p, algebrai
 degree 4 + p and nonlinearity 2

n�1

� 2

m+1

, whi
h were

not known earlier. These fun
tions are (7; 2; 4; 56); (10; 4; 5; 480); (13; 6; 6; 3968); (16; 8; 7; 32256); : : :

and so on. Note that all these fun
tions with moderate number of input variables have immediate

use in stream 
ipher systems as 
ombining Boolean fun
tions.

Tarannikov [20℄ has presented 
onstru
tion of n-variable, m-resilient fun
tions with nonlinearity

2

n�1

� 2

m+1

for

2n�7

3

� m � n � 2. Our 7-variable fun
tion 
an be taken as an initial fun
tion

when Constru
tion 2 will be used re
ursively. This gives that for n = 7 + 3p, m = 2 + 2p, we


an 
onstru
t resilient fun
tions with nonlinearity 2

n�1

� 2

m+1

and algebrai
 degree n �m � 1.

This improves Tarannikov's bound on m as for n = 7 + 3p, it is possible to 
onstru
t n-variable,

m-resilient fun
tions with nonlinearity 2

n�1

� 2

m+1

for

2n�7

3

� 1 � m � n� 2.
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Now we mention the issue regarding the 9-variable resilient fun
tions. We 
on
entrate on the

initial fun
tion of SS(3), the (9; 3; 5; 240) fun
tion. The existen
e of this fun
tion is not yet known.

We are 
urrently sear
hing this fun
tion in the following manner using 
omputer program.

1. Constru
t an (8; 3; 4; 112) fun
tion f

1

= hh




, where h is a (7; 2; 4; 56) fun
tion. That is we apply

the Constru
tion 1 here.

2. Constru
t an (8; 3; 4; 112) fun
tion f

2

using Constru
tion 2 on a fun
tion g whi
h is a (5; 1; 3; 12)

fun
tion.

3. Constru
t F = f

1

f

2

.

4. If NZ(f

1

) \NZ(f

2

) = ;, then F will be a (9; 3; 5; 240) fun
tion.

In this situation we 
an update the table of interesting Boolean fun
tions on small number of

variables than what presented in [16℄. The

�

marked entries are the fun
tions whi
h we 
onstru
t

here.

n

7 (7, 2, 4, 56)

�

8 (8, 1, �, 116)

9 (9, 1, �, 244), (9, 2, 6, 240), (9, 3, 5, 240)

10 (10, 1, �, 492), (10, 1, �, 488), (10, 2, �, 488), (10, 4, 5, 480)

�

Table 3. Constru
tion of these fun
tions were posed as open question in [16℄.

Also it is important to note that using the weight divisibility results of resilient fun
tions involv-

ing the algebrai
 degree [3, 14℄, it 
an be shown that the (8; 1;�; 116); (10; 1;�; 492); (10; 2;�; 488)

fun
tions, if at all exist, must be (8; 1; 6; 116); (10; 1; 8; 492); (10; 2; 7; 488) fun
tions.

4 Correlation Immune Fun
tions on 5 and 6 variables

In this se
tion we will parti
ularly 
onsider the [5; 2; 3; 12℄; [6; 3; 3; 24℄ and [6; 1; 5; 26℄ fun
tions.

These fun
tions provide the best possible trade-o� among the parameters order of 
orrelation

immunity, nonlinearity and algebrai
 degree.

First we will show the 
onstru
tion of [5; 2; 3; 12℄; [6; 3; 3; 24℄ fun
tions. Our te
hnique is 
om-

pletely new whi
h is based on spe
tral analysis of su
h fun
tions. The [5; 2; 3; 12℄; [6; 3; 3; 24℄ fun
-

tions have also been 
onsidered earlier in [20℄. However, there only one example of [6; 3; 3; 24℄

fun
tion has been given and a [5; 2; 3; 12℄ fun
tion has been derived from the 6-variable one. We

will provide a systemati
 
onstru
tion te
hnique of [5; 2; 3; 12℄; [6; 3; 3; 24℄ fun
tions.

Next we provide a 
onstru
tion to show that the [6; 1; 5; 26℄ fun
tion exists. It was the last

important question that was unanswered for 6-variable 
orrelation immune fun
tions. This result

also shows that the upper bound on nonlinearity of 
orrelation immune fun
tions [16℄ is tight in

this 
ase.

4.1 [5; 2; 3; 12℄; [6; 3; 3; 24℄ Fun
tions

Here we �rst provide a 
onstru
tion method for [5; 2; 3; 12℄ fun
tions. The ne
essary 
onditions

for the existen
e of a [5; 2; 3; 12℄ fun
tions are best viewed in terms of the Walsh spe
tra of the

fun
tion. Clearly, the fun
tion F must have at least 15 zeros in its Walsh spe
tra sin
e W

F

(!) = 0

for wt(!) = 1; 2. Note that ! 2 f0; 1g

5

. Furthermore, the maximum absolute value in the Walsh

spe
tra must be equal to 8. There are just 2 equivalen
e 
lasses in [1℄ satisfying these 
riteria

and with algebrai
 degree 3. These are h

2

; h

3

in Table 1. Ea
h of these 2 
lasses have the same

distribution of Walsh 
oeÆ
ients up to 
omplementation, that is the spe
tra will always be given
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either as W

F

1

(!) or W

F

2

(!), whi
h is shown in the table below. Note that the spe
tra given

by W

F

1

(!) is the inversion of W

F

2

(!) whi
h 
orresponds to the 
omplementation of the Boolean

fun
tion's truth table.

W

F

1

(!) #fW

F

1

(!)g W

F

2

(!) #fW

F

2

(!)g

0 16 0 16

8 10 8 6

-8 6 -8 10

Table 4. Walsh transform values.

We 
onsider the 
ase where the Walsh spe
tra 
ontains 16 zero values, 10 values of +8 and six

values of �8 as in W

F

1

. We �x 15 zero values in the spe
tra at the pla
es where wt(!) = 1; 2.

Also we �x W

F

(0) = �8. Now there are 16 pla
es left and we 
an pla
e another zero at any one

of these pla
es in 16 ways. Now we have 15 more pla
es left and we 
hoose 5 pla
es and put �8,

the remaining 10 pla
es are �lled with +8. Similarly we have to 
he
k for W

F

2

. Thus the total

number of 
ases we 
he
k is N

per

, will be N

per

= 2 � 16 �

�

15

5

�

. Thus, instead of doing an exhaustive

sear
h for [5; 2; 3; 12℄ fun
tions we simply 
reate all permitted permutations, N

per

in number, and


he
k if the Walsh spe
tra is a valid spe
tra of a Boolean fun
tion. If the spe
tra is valid, then we

get the Boolean fun
tion ba
k using inverse Walsh transform and the fun
tion must be 
orrelation

immune of order 2. We obtain in total 384 distin
t [5; 2; 3; 12℄ fun
tions in this way.

Next we provide the following result.

Proposition 4.1 Let F be an [n;m; d; x℄ fun
tion where m is even. Then FF

r

(
on
atenation of

the truth table of the fun
tion F and its reverse) will be an [n+ 1;m+ 1; d; 2x℄ fun
tion.

Proof : It is very 
lear that FF

r

is an [n+1;m; d; 2x℄ fun
tion. That it is also 
orrelation immune

of order m+1 follows from the result that for any linear fun
tion l whi
h is nondegenerate on odd

number of variables, l

r

= l




. Here m+ 1 is odd.

Hen
e given a [5; 2; 3; 12℄ fun
tion F , we 
an get a [6; 3; 3; 24℄ fun
tion FF

r

.

4.2 [6; 1; 5; 26℄ Fun
tion

In this se
tion we provide a 
onstru
tion of [6; 1; 5; 26℄ fun
tion. First we need the following result.

Proposition 4.2 Any [6; 1;�; 26℄ fun
tion must be a [6; 1; 5; 26℄ fun
tion.

Proof : The maximum nonlinearity of a six variable fun
tion is 28 (bent fun
tion). Consider an 1-


i fun
tion F on 6 variables. A 
orrelation immune fun
tion F 
an not be bent. Hen
e, nl(F ) < 28.

It is known [14℄ that for an n variable, m-
i, degree d fun
tion f , the weights of f � l, (l 2 L(n)),

are always divisible by 2

m+b

n�m�1

d




. Here n = 6;m = 1 and hen
e nl(F ) � 28� 2

1+b

4

d




. Note that,

if F has nonlinearity 26, then d must be 5. If d < 5, then nonlinearity of F will de
rease further,

and it 
an be at most 24. Thus, F must be of degree 5.

Lemma 4.1 Let if possible F be a [6; 1; 5; 26℄ fun
tion. Then it is possible to write F = (1 �

X

6

)f

1

�X

6

f

2

, where f

1

and f

2

are 5-variable fun
tions ea
h having nonlinearity 11 and degree 5.

Proof : The degree of F is 5. Without loss of generality we 
onsider X

5

: : : X

1

is a degree 5

term in the ANF of F . This is be
ause we 
an permute the input variables to do this. We put

f

1

(X

5

; : : : ;X

1

) = F (X

6

= 0;X

5

; : : : ;X

1

) and f

2

(X

5

; : : : ;X

1

) = F (X

6

= 1;X

5

; : : : ;X

1

). Thus both
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f

1

; f

2

are of degree 5 and hen
e of odd weight and so nl(f

1

); nl(f

2

) � 11. It 
an be proved that if

any of nl(f

1

) or nl(f

2

) is < 11, then nl(F ) < 26.

The importan
e of this result is that, given a [6; 1; 5; 26℄ fun
tion F , we 
an always permute

the input variables so that the term X

5

: : : X

1

of degree 5 stays in F and then we 
an 
onsider

it as 
on
atenation of two 5-variable fun
tions with nonlinearity 11. Hen
e if we 
on
atenate all

pairs of su
h 5-variable fun
tions, either we will �nd a [6; 1; 5; 26℄ fun
tion, or we 
an 
on
lude that

su
h a fun
tion does not exist. A 
loser inspe
tion of the Berlekamp's paper leaves just 4 out of 49

equivalen
e 
lasses with nonlinearity 11 whose fun
tions may be 
on
atenated to possibly obtain a

[6; 1; 5; 26℄ fun
tion. The following table provides the algebrai
 normal form of the representative

fun
tions with their weight distribution. This means, that for the fun
tion h

1

, and for l 2 L(5),

there are 6 su
h l's so that d(h

1

; l) = 11; 21, there are 10 su
h l's so that d(h

1

; l) = 13; 19, and there

are 16 su
h l's so that d(h

1

; l) = 15; 17. Note that A = X

1

X

2

X

3

X

4

X

5

.

ANF 11, 21 13, 19 15,17

h

1

= A�X

1

X

2

�X

3

X

4

6 10 16

h

2

= A�X

1

X

2

X

3

�X

1

X

4

�X

2

X

5

6 10 16

h

3

= A�X

1

X

2

X

3

�X

1

X

4

X

5

�X

3

X

5

�X

2

X

4

�X

2

X

3

6 10 16

h

4

= A�X

1

X

2

X

3

�X

1

X

4

X

5

�X

4

X

5

�X

3

X

5

�X

2

X

4

�X

2

X

3

4 16 12

Table 5. Representative fun
tions of 5 variables with nonlinearity 11.

Thus, 
on
atenating ea
h representative of the i-th 
lass, i = 1; : : : ; 4, with all nonsingular aÆne

transformations applied to a representant of the j-th 
lass, j = i; : : : ; 4 and �nally 
he
king the

possibility of obtaining a 
orrelation immune fun
tion with nonlinearity 26 will answer the question

if there exists a [6; 1; 5; 26℄ fun
tion. We ran this 
omputer program and found a [6; 1; 5; 26℄ fun
tion.

The fun
tion is the 
on
atenation of h

1

and h

2

where h

1

= 01001001110100001010100101000101

and h

2

= 10000010101001110011100110000001 are both of nonlinearity 11.

Theorem 4.1 It is possible to 
onstru
t a [6; 1; 5; 26℄ fun
tion.
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