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Abstract

Recently weight divisibility results on resilient and correlation immune Boolean functions
have received a lot of attention. These results have direct consequences towards the upper
bound on nonlinearity of resilient and correlation immune Boolean functions of certain order.
Now the clear benchmark in the design of resilient Boolean functions (which optimizes Siegen-
thaler’s inequality) is to provide results which attain the upper bound on nonlinearity. Here
we construct a 7-variable, 2-resilient Boolean function with nonlinearity 56. This solves the
maximum nonlinearity issue for 7-variable functions with any order of resiliency. Using this
7-variable function, we also construct a 10-variable, 4-resilient Boolean function with nonlin-
earity 480. Construction of these two functions were justified as important open questions in
Crypto 2000. Also we provide methods to generate an infinite sequence of Boolean functions
on n = 7+ 3i variables (i > 0) with order of resiliency m = 2 + 2i, algebraic degree 4 + i and
nonlinearity 2"~! — 2m+! which were not known earlier. We conclude with a few interesting
construction results on unbalanced correlation immune functions of 5 and 6 variables.

Keywords: Boolean functions, Nonlinearity, Correlation Immunity, Resiliency, Stream Ci-
phers.

1 Introduction

Very recently Sarkar and Maitra [16] have provided weight divisibility results on resilient Boolean
functions which in turn present a nontrivial upper bound on the nonlinearity of such functions.
Similar kinds of results related to weight divisibility and upper bound on nonlinearity of resilient and
correlation immune Boolean functions have also been presented independently by Tarannikov [20]
and Zheng and Zhang [21]. Currently Carlet [3] and Sarkar [14] have (independently and using
different kinds of techniques) settled the weight divisibility results for resilient and correlation
immune Boolean functions involving the algebraic degree too. Note that balanced correlation
immune Boolean functions are also known as resilient Boolean functions.

These weight divisibility results have direct consequences to the upper bound on nonlinearity
of these functions and a benchmark in design of such resilient Boolean functions has thus been set-
tled. In other direction, construction of these functions achieving the upper bound on nonlinearity
strengthens the tightness of the upper bound results.

In a more practical direction, these functions have immediate applications in stream cipher
cryptosystems. A standard model of stream cipher [18, 19, 5] combines the outputs of several
independent Linear Feedback Shift Register (LFSR) sequences using a nonlinear Boolean function
to produce the keystream. This keystream is bitwise XORed with the message bitstream to produce



the cipher. The decryption machinery is identical to the encryption machinery. Getting the kind of
Boolean functions which we propose here provide the best possible trade-off among the parameters
important to resist the known cryptanalytic techniques [19, 12, 9, 8, 10].

It is now well accepted that for a Boolean function to be used in stream cipher systems, it
must satisfy the properties balancedness, high nonlinearity, high algebraic degree and high order
of correlation immunity (see Section 2 for definitions). All of the above mentioned parameters are
important for resisting different kinds of attacks. Also it is not possible to get the best possible
values for each of these parameters separately and there are certain trade-offs involved among the
above parameters. Siegenthaler showed [18] that for an n-variable function, of degree d and order
of correlation immunity m, the following holds: m + d < n. Further, if the function is balanced
then m +d < n — 1. Currently, the exact nature of trade-off among order of correlation immunity,
nonlinearity and algebraic degree has also been investigated [15, 20, 21, 3, 14]. Earlier, a series
of papers [2, 17, 4, 6, 11, 13, 15] have approached the construction problem by fixing the number
of variables and the order of correlation immunity (and possibly the algebraic degree) and then
trying to design balanced Boolean functions with as high nonlinearity as possible. However, the
existence of the current papers [15, 20, 21, 3, 14] completely changed the motivation. Now either
we have to design a function which provides the best possible trade-off among the parameters we
are discussing, or we have to show that such a function cannot exist.

In this paper, for the first time we construct a 7-variable, 2-resilient Boolean function with
nonlinearity 56. Earlier all the 7-variable resilient functions of different orders (except order 2) with
maximum possible algebraic degree and maximum possible nonlinearity (equal to the upper bound)
were known. We here close the issue by proving the case for order 2 also. Our method is basically a
search technique, where we decrease the search space using different involved necessary conditions
on the functions (see Section 3). We start with the table of 5-variable functions (48 different
equivalence classes) provided by Berlekamp and Welch [1]. We use our necessary conditions to
select very few classes out of those 48 and concatenate four 5-variable functions from those classes
to get 7-variable functions.

It is known that for an n-variable m-resilient function (m > § — 2), the maximum possible
nonlinearity is 2! — 2”*! and such a function must have the maximum possible algebraic degree
n—m—1[16, 20, 3, 14]. In [16], the concept of saturated sequence SS for resilient Boolean functions
achieving the best possible trade-off has been proposed. All the functions of SS(0) and SS(1) are
already known. However, the initial functions for an SS(i) were not known earlier for ¢ > 1. In
fact the T-variable, 2-resilient, nonlinearity 56 function is the initial function of the sequence SS(2).
Using this 7 variable function we can construct a 10-variable, 4-resilient, nonlinearity 480 function,
which was also presented as an open question in [16]. This function is the second function of SS(3).
The initial function of SS(3) is a 9-variable, 3-resilient, nonlinearity 240 function, which is still
an open question and we are working on it now. However, we explain how we can extend our
techniques to find such a 9-variable function.

Tarannikov [20] has provided a construction technique of resilient Boolean functions with maxi-
mum possible nonlinearity. The method presents n-variable, m-resilient functions with nonlinearity
on—l _ om+l {4 2"777 < m < n — 2. Basically Tarannikov’s construction is a recursive one and
using this technique and taking n-variable, m-resilient, degree d, nonlinearity « functions one can
generate (n + 3)-variable, (m -+ 2)-resilient, degree (d + 1) and nonlinearity 2"*! + 4z functions.
These (n+3)-variable functions can again be used to generate (n+6)-variable resilient functions and
so on. We here provide a much simplified modification of Tarannikov’s construction, which gives
the same quality results. We interpret Tarannikov’s construction [20] as concatenation of Boolean
functions. In Tarannikov’s construction two functions are required as inputs and the functions must
satisfy certain properties. Here we modify the construction so that it requires only one function in



a desired form as input and also the resulting function becomes a desired one (See Subsection 3.1
for desired form). This construction is much easier to understand.

However, the most important thing is to get a desired resilient function which can be used as
the initial function for this recursive construction. The 7-variable, 2-resilient function we construct
here is in desired form. Starting with this 7-variable function as a single input and using the
recursive construction proposed here, we show that for n = 7 4+ 3%, m = 2 + 2¢, we can construct
resilient functions with nonlinearity 2" ! —2™*! and algebraic degree n —m — 1 (see recursive use of
Construction 2 in Subsection 3.1). This improves Tarannikov’s bound on m, as for n = 7+ 31, it is
possible to construct n-variable, m-resilient functions with nonlinearity 2”1 — 27+! for % —-1<
m<mn-—2.

At the end we provide some important results on 5-variable and 6-variable unbalanced cor-
relation immune functions. We present a search technique using inverse Walsh transform to get
5-variable, 2-ci (correlation immune of order 2), nonlinearity 12 functions. These functions can
be used immediately to get 6-variable, 3-ci, nonlinearity 24 functions. Moreover, we run a search
technique to show that 6-variable, 1-ci, nonlinearity 26 function exists. This question was open
for quite sometime. Also this shows that the upper bound on nonlinearity provided by the weight
divisibility results [16, 3, 14] is tight in this case.

2 Definitions and Notations

Definition 2.1 The addition operator over GF(2) is denoted by @&. For binary strings Si,S2 of
same length X\, we denote by #(S1 = Sa) (respectively #(S1 # S2)), the number of places where
S1 and Sy are equal (respectively unequal). The Hamming distance between Sy, Se is denoted by
d(S1,S2), i.e. d(S1,S2) = #(S1 # S2). The Walsh distance wd(S1,S2), between Sy and Sa, is
defined as, wd(S1,S2) = #(S1 = S2) — #(S1 # S2). Note that, wd(S1,S2) = A —2d(S1,S2). Also
the Hamming weight or simply the weight of a binary string S s the number of ones in S. This is
denoted by wt(S). By Q, we mean the set of n-variable Boolean functions. An n-variable function
f s said to be balanced if its output column in the truth table contains equal number of 0’s and 1’s

(i.e. wt(f)=2""1).

Definition 2.2 An n-variable Boolean function f(Xy,...,X1) can be considered to be a multivari-
ate polynomial over GF(2). This polynomial can be expressed as a sum of products representation
of all distinct k-th order products (0 < k < mn) of the variables. More precisely, f(Xy,...,X1) can
be written as ag® (@E? @i Xi) ® (D1<izj<n 3ij XiXj)®. . . Oar2. nX1X2 ... X;, where the coefficients
ag, Gij, - - -, 012..n € {0,1}. This representation of f is called the algebraic normal form (ANF) of
f. The number of variables in the highest order product term with nonzero coefficient is called the
algebraic degree, or simply degree of f.

Definition 2.3 Functions of degree at most one are called affine functions. An affine function with
constant term equal to zero is called a linear function. The set of all n-variable affine (respectively
linear) functions is denoted by A(n) (respectively L(n)). The nonlinearity of an n variable function
[ s nl(f) = minge an) (d(f, g)), i-e. the distance from the set of all n-variable affine functions.

Definition 2.4 Let X = (X,,...,X1) and @ = (wp,...,w1) both belong to {0,1}" and X.w =
Xpwn @ ...® Xiwy. Let f(X) be a Boolean function on n variables. Then the Walsh transform of
f(X) is a real valued function over {0,1}" that can be defined as Wy(w) = Zye{oyl}n(—l)f(X)@X'w.



Definition 2.5 [7] 4 function f(Xy,,...,X1) is m-th order correlation immune (CI) iff its Walsh
transform Wy satisfies Wg(w) = 0, for 1 <wt(w) < m. If f is balanced then W;(0) = 0. Bal-
anced m-th order correlation immune functions are called m-resilient functions. Thus, a function
J(Xn, ..., X1) is m-resilient iff its Walsh transform Wy satisfies Wy(w) =0, for 0 < wt(@) < m.

The relationship between Walsh transform and Walsh distance is [11] W (@) = wd(f, D=7 wi X;).

Before proceeding, we would like to introduce a few notations for future convenience. By an
(n,m,d,z) function we mean an m-variable, m-resilient function with degree d and nonlinearity
z. By (n,0,d,z) function we mean a balanced n-variable function with degree d and nonlinearity
z. By [n,m,d,z] we denote an n-variable unbalanced correlation immune function of order m,
nonlinearity z and degree d. In the above notation a component is replaced by a -’ if we do
not specify it, e.g., (n,m,—,x), if we do not want to specify the degree. Further, given an affine

function I € A(n), by ndg(l) we denote the number of variables on which [ is nondegenerate.

3 Construction of (7,2,4,56) Functions

From [20, 3, 14], it is clear that if an n-variable, m-resilient (m > § — 2) function achieves the
maximum possible nonlinearity 27~ — 2™*! then the function must have the maximum possible
algebraic degree n — m — 1. Putting n = 7,m = 2, we find that maximum possible nonlinearity
56 can be obtained only when the algebraic degree is n — m — 1 = 4. Thus, a (7,2, —, 56) function
must be a (7,2,4,56) function, i.e. of algebraic degree 4. Next we have the following result relating

a (7,2,4,56) function with two (6,1,4,24) functions.

Proposition 3.1 Let f be a (7,2,4,56) function. Then f can be represented as
f=0&X7)fi(Xe,...,X1) ® X7fo(Xe,...,X1) where f1, fa € Q6, and both fi1, fo are (6,1,4,24)
functions. That is f can be expressed as concatenation of fi and fo.

Proof : The function f can be represented as f = (1 & X;)f1(X7,..., Xi+1, Xio1,...,X1) &
Xifo(X7y. ooy Xiv1, Xio1,. .., X1) where f1, fo € Qg. Since degree of f is 4, we can select at least
one term of degree 4 which does not contain some X;, 1 <+¢ < 7. If we condition on that variable
X;, then both fi, fo must be of degree 4. Thus, from Siegenthaler’s inequality, fi, fo can have
resiliency of order at most 1. Also, since f is 2-resilient, f1, fo must have resiliency of order at least
1. Thus, f1, fo are l-resilient. Since, nl(f) = 56, nl(f1),nl(f2) > 56 — 32 = 24. However, it is
known [13, 16] that the maximum possible nonlinearity of 1-resilient functions on 6 variables is 24.
Now, it is easy to see that if we permute the input variables, then X; and X7 can be interchanged.
Then the output column of f in the truth table can be written as concatenation of two (6, 1,4, 24)
functions. [

The importance of this result is that if we can construct all the (6,1,4,24) functions, then
concatenating every pair of them either we will find (7,2,4,56) functions or if we do not get such
a function then we can guarantee that (7,2,4,56) function does not exist. Next we consider the
results related to Walsh spectra of (6,1,4,24) functions fi, fo.

Proposition 3.2 Let f be a (7,2,4,56) function made by concatenation of two (6,1,4,24) func-
tions fi1, fo. Then we have the following results. (1) wd(f;,l) = 0, for ndg(l) < 1,1 <37 < 2.
(2) wd(fi,1) = 0 or £8, for ndg(l) =2, 1 < i < 2. (3) wd(fi,l) = £16 iff wd(f;,l) = 0 for
1 <i#j <2 (4) wd(fi,l) = £8 iff wd(f;,1) = F8 for 1 < i # 35 < 2. (5). Let the number
of places where wd(f;,1) = £16 is x and the number of places where wd(f;,1) = £16 is y for
1 <i# j <2. Then the number of places where wd(f,l) = £16 is 4z + y = 64.



Proof : Item 1 follows from the definition of 1-resilient functions.

Now we prove Item 2. If wd(f1,l) = 16, for ndg(l) = 2, then wd(f2,1) = —16, since wd(f,1l) =0
as fis (7,2,4,56) and ndg(ll) = 2. In that case wd(f,ll¢) = 32 and hence nl(f) = 48 which is a
contradiction.

Item 3 follows similarly as otherwise nonlinearity of f will decrease.

Item 4 follows as wd(f,!) must be divisible by 222 = 16 [16].

In item 5, the relation 4x + y = 64 follows from the Parseval’s relation on square of Walsh
distances. [

Note that it is not clear whether a (7,2,4,56) function f (if exists) can always be seen as
concatenation of two (6,2,3,24) functions f1, fo. However, we have the following result. The proof
is similar to the proof of Proposition 3.2.

Proposition 3.3 Let f be a (7,2,4,56) function made by concatenation of two (6,2,3,24) func-
tions f1, fa. Then we have the following results. (1) wd(f;,1) =0, for ndg(l) <2, 1 <7< 2.
(2) wd(f;,1) = £16 iff wd(f;,1) =0 for ndg(l) >2, 1 <i#j <2.

For a Boolean function f, we define NZ(f) = {w | Wy(w) # 0}, where Wy is the Walsh
transform of f. If we can find two (6,2,3,24) functions f1, fo such that NZ(f1) N NZ(f2) = 0,
then f = (1 & X7)f1 & X7 fe will be a (7,2,4,56) function. Hence, if we can generate the database
of all (6,2,3,24) functions, then we can check for concatenation of any two of them.

However, preparation of the database containing (6,2,3,24) and (6,1,4,24) functions in turn
needs concatenation of 5 variable Boolean functions. For this we concentrate on the Berlekamp-
Welch paper [1]. All Boolean functions on 5 variables are divided into 48 equivalence classes (see [1]),
where the functions f and g are equivalent iff there exist an invertible 5 x 5 binary matrix M, two
binary vectors a and b and a binary scalar ¢, such that g(z) = f(Mx + a) + bz + ¢. Note that f
and g have the same algebraic degree and nonlinearity.

Proposition 3.4 Let f be a (7,2,4,56) function made by concatenation of four functions
hi,he, hs,hy on 5 variables. Then each of the h;’s are balanced and nl(h;) > 8 fori=1,2,3,4.

Now our algorithm is as follows. We denote by O(f) the linear transformation f(Mz+a)+bzr+c.
We take two representative Boolean functions hq, he and try all the concatenation of hy and O(hs)
(for all possible different values of M,a,b,c, M nonsingular) to generate the 6-variable functions.
Then we check for (6,2,3,24) and (6,1,4,24) functions.

However, there are 21 equivalence classes with nonlinearity greater than or equal to 8. It seems
computationally infeasible to generate all the 5-variable functions of those equivalence classes by
necessary linear transformation and concatenate any two of them to generate 6 variable functions
and then checking for (6,2,3,24) and (6, 1,4,24) functions. It is clear that we can discard some
of the combinations considering the algebraic degree and weight distributions of the five variable
functions. Still then the search space explodes.

At this point we take a calculated risk. There are only four equivalence classes of 5-variable
functions with nonlinearity 12. We concentrate on those only, leaving the other 17 equivalence
classes with nonlinearity 8 and 10.

Thus we have the following strategy. Counsider the following four functions [1, Table 1] presented
in terms of their algebraic normal forms (ANF) representing the four equivalence classes. The weight
distributions are also presented here. This means, that for the function h;, and for [ € L(5), there
are 12 such [’s so that d(hy,l) = 12,20, there are 16 such [’s so that d(h1,l) = 14,18, and there are
4 such I’s so that d(hq,l) = 16.



ANF 12,20 | 14, 18 | 16
h1 = XoX3X4 X5 ® X1 Xo0X3P Xo X, d X3X5 12 16 4
ho = X1 X0 X360 X1X4 & X0 X5 16 0 16
hy = X1 X0 X3 0 X1 X4 X5 ® XoX3 D Xo Xy d X3X5 16 0 16
hy = X1 X0 ® X3Xy 16 0 16

Table 1. Representative functions of 5 variables with nonlinearity 12.

Now the algorithm for generating the database of (6,2,3,24) and (6,1,4,24) functions are as
follows. Once again note that this database is not exhaustive as we consider the five variable
functions with nonlinearity 12 only.

1. For i = 1,2,3,4 concatenate h; and O(h;), j =i to 4 for all possible linear transformations of
h; (all possible options for M,a,b,c, M nonsingular). Thus their are total 10 pair of cases with
hi, h; to be checked using all possible linear transformation for h;.

2. Check whether the function is a (6,1,4,24) function. In this case, store the function f in
database if wd(f,l) =0 or £8, for [ € L(6), ndg(l) = 2 (see Proposition 3.2). Otherwise reject it.
3. If the function is a (6,2,3,24) function, then store it in the database.

4. Reject all other functions.

Moreover, it should be considered that the search space can be further reduced keeping in mind
the following constraints when we consider the algorithm.

1. The function f = hy O(h;) (concatenation of hy, O(h;)), for i = 2,3,4, will not generate any
(6,1,4,24) or (6,2,3,24) function as the algebraic degree of f becomes 5. This completely discards
3 out of 10 cases and reduces the search space to 70% of the original.

2. The function f = hy O(hy) will not generate any (6,1,4,24) function as the algebraic degree of
f becomes at most 3. Here we only need to check for (6,2,3,24) functions.

We started generating the functions and storing the (6,1, 4,24) and (6,2, 3,24) functions in two
separate databases. At the same time we have started concatenating any two of these six variable
functions inside each of the databases separately. Note that we did not wait for generating all
the functions in the two databases. We started constructing 7-variable functions as soon as the 6-
variable functions were generated. We estimated that the program will run for 30 days using a 500
MHz Pentium on Linux platform. Fortunately, in between half an hour, we found one (7,2, 4, 56)
function, which is generated from the concatenation of two (6,2,3,24) functions. We terminated
the program then. However, getting such a function in a very short time gives the idea that there
are a lot of (7,2,4,56) functions available in the search space we have concentrated on. The truth
table of the function is as follows. Note that hy, kg, h3.hys are all 5-variable functions.

h; =01100110001111000101101010010110, ko = 10011001011010011010010111000011
hs =00001011011101101011010111001000, k4 = 11011100011000101010000100011111

Here hihg,hshy are both (6,2,3,24) functions. The function hihohshg is a (7,2,4,56) function.
Note that the function hihshohy is also a (7,2,4,56) function. This can be seen as a concatenation
of two (6,1,4,24) functions hihs, hohy.

From the above discussion we get the following theorem.

Theorem 3.1 It is possible to construct a (7,2,4,56) function.

This completely solves the maximum nonlinearity issue of resilient functions on 7 variables. The
following table shows the maximum nonlinearity corresponding to each order of resiliency and note
that it is possible to construct such functions. Also it is very clear from [20, 3, 14] that all these
functions possess the maximum possible algebraic degree (6 —m) where m is the order of resiliency.



order of resiliency 1123|415

maximum achievable nonlinearity | 56 | 56 | 48 | 32 | 0
Table 2. Nonlinearity results for 7-variable Boolean functions.

In the next section we discuss about the recursive constructions which will generate interesting
resilient functions on higher number of variables.

3.1 Recursive Construction

Here we use two general construction techniques for generating resilient functions on higher number
of variables from functions on lower number of variables.

Construction 1. [18, 2, 11, 16] Let f be an (n,m,n —m —1,z) function. Let F' € Q1 be defined
as FY,X)=(1Y)f(X)®Y(ad f(X ®a)). Now, (1) either « is an all zero vector and a = 1
(2) or @ is an all one vector and a = m mod 2. Then F is an (n+1,m+1,n—m—1,2z) function.

Next we present a modification of Tarannikov’s construction [20]. In Tarannikov’s construction
two functions are required as inputs and the functions must satisfy certain properties. However,
this is a disadvantage in certain situations. Here we modify the construction so that it requires only
one function as input and also the resulting construction becomes somewhat easier to understand.
In the modified construction, the input function must be of certain form for the construction to
work. It is easier in general to get functions in this form than the property required in the original
Tarannikov’s construction [20].

We say that an (n,m,—,—) function f is in the desired form if it is of the form fi fo, where
f1, f2 are (n — 1,m, —, —) functions. Here note that the (7,2,4,56) function we have found can
be seen as concatenation of two (6,2,4,24) functions. Hence this (7,2,4,56) function is in desired
form.

Construct(f) { /* Here f is an (n,m, —, z) function in the desired form f; fo, where f1, fo are both

(n —1,m,—, —) functions. */
L F=fferef.

2. g=fifi and h = fof5.

3. G = ghhtg°.

4. I = FG.

5. Return the function F3.

}

Note that in the language of [20], the function G above is said to depend quasilinearly on the
pair of variables (Xp4+2, Xp+1).

Theorem 3.2 The function Fy in Construct(f) is an (n+3,m + 2, —, 2" + 4x) function in the
desired form.

Proof : In Step 1, the function F' is clearly an (n + 2,m + 2, —, 4x) function.

Claim : In Step 2, the function G is an (n + 2, m + 2, —, 4z) function.

Proof of Claim : Clearly both g and h are (n, m+1, —, —) functions. The function gh is of the form
fififafs. If we interchange the variables X,,,; and X,, for the function gh, we get a function in
the form fy fof{ fS which is actually ff¢. Hence we have nl(gh) = 2ni(f) = 2z. Let A € L(n + 2).
We can write A in one of the forms [[Il,11¢11¢, [11€]¢,[I°]°]. We compute

L. wd(G, ) = wd(ghh®g®, ) = wd(hh, ) + wd(gg®,l1l) =0+ 0= 0.

2. wd(G,1°°) = wd(ghh©g®, lI°ll¢) = 2wd(gh, 11¢).

3. wd(G, %) = wd(ghh€g®,lI°°) = 2wd(gh,Il).



4. wd(G,U°IT) = wd(ghhtg®,lI€l°l) = 0.

If A is nondegenerate on at most (m + 2) variables, then [ is nondegenerate on at most (m + 1)
variables. Hence wd(g,l) = wd(h,l) = wd(h,l°) = 0 and so wd(G,A) = 0. Thus G is (m + 2)-
resilient. Further, by the above calculation we have nl(G) = 2nl(gh) = 4nl(f) = 4x. This completes
the proof of the claim.

Since F' and G are both (n +2,m + 2, —, 4z) functions, the function F) is clearly an (n+ 3, m +
2, —,y) function in the desired form. Thus it is sufficient to show that y = 2"*! +4x. This is proved
by showing that NZ(F)NNZ(G) = 0. Let A be in L(n+ 2), such that wd(F, A) # 0. Then clearly
A is of the form [(€I°]. Thus it is enough to show that for any such A, wd(G,A) = 0. But this is
what has been shown in item 4 above. [

Starting with a function f in the desired form Construct(f) is repeatedly used in the manner
while (true) {f = Construct(f)}. Thus we summarize the construction as follows.

Construction 2. Let f be an (n,m,n —m — 1,z = 2" 1 — 27 function in desired form
and [ = g1g2, where g1,92 € Qn_1. Let F = ¢1929795919591929197929595929791- Then F is an
(n+3,m +2,n —m,dx + 2" = 2n+2 _ 2m+3) function in desired form.

In [16], an (n,m,n—m — 1,271 — 2™+ function is called a saturated mazimum degree function
and its spectrum is three valued. For such a function we must necessarily have m > |5 ] — 2. From
this a notion of a sequence of Boolean functions, each of which is a saturated maximum degree
function with maximum possible nonlinearity was proposed in [16].

Definition 3.1 For i > 0 we define SS(i) as follows. An S$S5(0) is a sequence fop, fo1,..., where
fo0 is a (3,0,2,2) function and fo; is a (3 + 7,7,2,2°TL) function for j > 0. For i >0, an SS(i)
is a sequence fio, fi1,..., where fig is a (34 2i,4,2 +1,2*T2 — 217 function. Also for j >0, f;
is a (3 +2i+ 7,7+ 5,2 + 0,222+ _ 214140 function.

Note that all functions in an SS(¢) have the same degree 2 4 ¢. It is also important to see that
given a function f of some SS(¢), Construction 1 generates all the consecutive functions of SS(¢).
However, given a function f of some SS(¢), Construction 2 generates one function each of SS(t+ p)
for all p > 1. That is Construction 2 generates functions in different saturated sequences.

Construction of SS(0) and SS(1) are already known [16]. The initial functions for an SS(i) for
i > 1 were not known earlier. Here the (7,2,4,56) function is the initial function of SS(2). Thus,
from this function, using the Construction 1, one can generate all the functions of SS(2). Note that
this sequence was earlier known from the 2nd function onwards, where the second function of SS(2)
is an (8,3,4,112) function.

Starting from (7,2,4,56) function (which is in desired form), Construction 2 generates one
function each of SS(2 + p) (which is again in desired form) for all p > 1. These are basically
(p + 1)th functions of SS(2 + p). These functions were not known earlier. For p = 1, we get the
(10,4,5,480) function, which was posed as an open problem in [16]. Construction 2, when used
recursively, generates an infinite sequence of Boolean functions on n = 7+ 3p variables (p > 0) with
order of resiliency m = 2 + 2p, algebraic degree 4 4+ p and nonlinearity 2! — 2™+! which were
not known earlier. These functions are (7,2,4, 56), (10,4, 5, 480), (13, 6, 6, 3968), (16, 8,7, 32256), . ..
and so on. Note that all these functions with moderate number of input variables have immediate
use in stream cipher systems as combining Boolean functions.

Tarannikov [20] has presented construction of n-variable, m-resilient functions with nonlinearity
on—l _ gm+l for 2”—3_7 < m < n—2. Our 7-variable function can be taken as an initial function
when Construction 2 will be used recursively. This gives that for n = 7 4+ 3p, m = 2 4+ 2p, we
can construct resilient functions with nonlinearity 2"~ — 2™*! and algebraic degree n —m — 1.
This improves Tarannikov’s bound on m as for n = 7 + 3p, it is possible to construct n-variable,
m-resilient functions with nonlinearity 2"~ — 2™+1 for % —1<m<n-—2.



Now we mention the issue regarding the 9-variable resilient functions. We concentrate on the
initial function of SS(3), the (9, 3,5, 240) function. The existence of this function is not yet known.
We are currently searching this function in the following manner using computer program.

1. Construct an (8, 3,4, 112) function f; = hh®, where h is a (7,2,4,56) function. That is we apply
the Construction 1 here.

2. Counstruct an (8, 3,4, 112) function f2 using Construction 2 on a function g which is a (5,1, 3, 12)
function.

3. Construct F' = fi fo.

4. f NZ(f1) N NZ(f2) =0, then F will be a (9,3, 5,240) function.

In this situation we can update the table of interesting Boolean functions on small number of
variables than what presented in [16]. The * marked entries are the functions which we construct
here.

n

7 (7,2, 4, 56)"

8 | (8,1, — 116)

9 | (9,1, —, 244), (9, 2, 6, 240), (9, 3, 5, 240)

10 | (10, 1, , 492), (10, 1, —, 488), (10, 2, —, 488), (10, 4, 5, 480)*
Table 3. Construction of these functions were posed as open question in [16].

Also it is important to note that using the weight divisibility results of resilient functions involv-
ing the algebraic degree [3, 14], it can be shown that the (8,1, —, 116), (10, 1, —,492), (10, 2, —, 488)
functions, if at all exist, must be (8,1,6,116), (10, 1,8,492), (10,2, 7,488) functions.

4 Correlation Immune Functions on 5 and 6 variables

In this section we will particularly consider the [5,2,3,12],[6,3,3,24] and [6,1,5,26] functions.
These functions provide the best possible trade-off among the parameters order of correlation
immunity, nonlinearity and algebraic degree.

First we will show the construction of [5,2,3,12],[6, 3, 3,24] functions. Our technique is com-
pletely new which is based on spectral analysis of such functions. The [5,2, 3,12],[6, 3, 3,24] func-
tions have also been considered earlier in [20]. However, there only one example of [6,3,3,24]
function has been given and a [5,2, 3, 12] function has been derived from the 6-variable one. We
will provide a systematic construction technique of [5,2,3,12], [6, 3, 3,24] functions.

Next we provide a construction to show that the [6,1,5,26] function exists. It was the last
important question that was unanswered for 6-variable correlation immune functions. This result
also shows that the upper bound on nonlinearity of correlation immune functions [16] is tight in
this case.

4.1 [5,2,3,12],]6,3,3,24] Functions

Here we first provide a construction method for [5,2,3,12] functions. The necessary conditions
for the existence of a [5,2,3,12] functions are best viewed in terms of the Walsh spectra of the
function. Clearly, the function F' must have at least 15 zeros in its Walsh spectra since Wy (w) = 0
for wt(w) = 1,2. Note that @ € {0,1}%. Furthermore, the maximum absolute value in the Walsh
spectra must be equal to 8. There are just 2 equivalence classes in [1] satisfying these criteria
and with algebraic degree 3. These are hy, hs in Table 1. Each of these 2 classes have the same
distribution of Walsh coefficients up to complementation, that is the spectra will always be given



either as W, (w) or Wg,(w), which is shown in the table below. Note that the spectra given
by W, (w) is the inversion of Wp,(w) which corresponds to the complementation of the Boolean
function’s truth table.

0 16 0 16
8 10 8 6
-8 6 -8 10

Table 4. Walsh transform values.

We consider the case where the Walsh spectra contains 16 zero values, 10 values of +8 and six
values of —8 as in Wp,. We fix 15 zero values in the spectra at the places where wt(w) = 1,2.
Also we fix Wg(0) = —8. Now there are 16 places left and we can place another zero at any one
of these places in 16 ways. Now we have 15 more places left and we choose 5 places and put —8,

the remaining 10 places are filled with 4+8. Similarly we have to check for Wy,. Thus the total

15
5

search for [5,2,3,12] functions we simply create all permitted permutations, Npe, in number, and
check if the Walsh spectra is a valid spectra of a Boolean function. If the spectra is valid, then we
get the Boolean function back using inverse Walsh transform and the function must be correlation
immune of order 2. We obtain in total 384 distinct [5,2, 3, 12] functions in this way.

Next we provide the following result.

number of cases we check is Ny, will be Npe, = 2-16- ( ) Thus, instead of doing an exhaustive

Proposition 4.1 Let F' be an [n,m,d, x| function where m is even. Then FF" (concatenation of
the truth table of the function F and its reverse) will be an [n+ 1,m + 1,d, 2z] function.

Proof : It is very clear that F'F" is an [n+1,m, d, 2z] function. That it is also correlation immune

of order m + 1 follows from the result that for any linear function ! which is nondegenerate on odd

number of variables, " = [°. Here m + 1 is odd. [ |
Hence given a [5,2, 3,12] function F', we can get a [6, 3, 3,24] function FF".

4.2 [6,1,5,26] Function
In this section we provide a construction of [6,1, 5, 26] function. First we need the following result.
Proposition 4.2 Any [6,1, —,26] function must be a [6,1,5,26] function.

Proof : The maximum nonlinearity of a six variable function is 28 (bent function). Consider an 1-
ci function F' on 6 variables. A correlation immune function F' can not be bent. Hence, nl(F') < 28.
It is known [14] that for an n variable, m-ci, degree d function f, the weights of f &, (I € L(n)),
are always divisible by om+1"=3=] Here n = 6, m = 1 and hence nl(F) < 28 — 21+1a). Note that,
if F' has nonlinearity 26, then d must be 5. If d < 5, then nonlinearity of F' will decrease further,

and it can be at most 24. Thus, F' must be of degree 5. [ |

Lemma 4.1 Let if possible F be a [6,1,5,26] function. Then it is possible to write F = (1 &
X¢)f1 @ Xefa2, where fi and fo are 5-variable functions each having nonlinearity 11 and degree 5.

Proof : The degree of F' is 5. Without loss of generality we consider X5... X is a degree 5
term in the ANF of F. This is because we can permute the input variables to do this. We put
fl(X5, cee ,Xl) = F(Xs = 0,X5, ce ,Xl) and fg(Xg,, ce ,Xl) = F(X6 = ]_,X5, cee ,Xl). Thus both

10



f1, f2 are of degree 5 and hence of odd weight and so nl(f1),nl(f2) < 11. It can be proved that if
any of nl(f1) or nl(f2) is < 11, then nl(F) < 26. [ ]

The importance of this result is that, given a [6,1,5,26] function F', we can always permute
the input variables so that the term Xs...X; of degree b stays in F' and then we can counsider
it as concatenation of two 5-variable functions with nonlinearity 11. Hence if we concatenate all
pairs of such 5-variable functions, either we will find a [6, 1,5, 26] function, or we can conclude that
such a function does not exist. A closer inspection of the Berlekamp’s paper leaves just 4 out of 49
equivalence classes with nonlinearity 11 whose functions may be concatenated to possibly obtain a
[6,1,5,26] function. The following table provides the algebraic normal form of the representative
functions with their weight distribution. This means, that for the function hi, and for I € L(5),
there are 6 such I’s so that d(hy,l) = 11,21, there are 10 such I’s so that d(h1,l) = 13,19, and there
are 16 such [’s so that d(hy,l) = 15,17. Note that A = X X2 X35X4X5.

ANF 11, 21 | 13, 19 | 15,17
hi =A® X1 X9 ® X3Xy 6 10 16
ho =A® X1 XoX30 X1 X4 D XoX5 6 10 16
hs = A® X1 X9 X3P X1 X3 X5 X3X5 D Xo Xy D XoX3 6 10 16

hy =A® X1 X X3 D X1 X4 X5 @ Xy X5 D X3 X5 @ Xo Xy @ XoX3 4 16 12
Table 5. Representative functions of 5 variables with nonlinearity 11.

Thus, concatenating each representative of the i-th class, ¢ = 1,...,4, with all nonsingular affine
transformations applied to a representant of the j-th class, 5 = 4,...,4 and finally checking the
possibility of obtaining a correlation immune function with nonlinearity 26 will answer the question
if there exists a [6, 1,5, 26] function. We ran this computer program and found a [6,1,5,26] function.
The function is the concatenation of hi and hy where hy = 01001001110100001010100101000101
and hs = 10000010101001110011100110000001 are both of nonlinearity 11.

Theorem 4.1 [t is possible to construct a [6,1,5,26] function.
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