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Abstrat

Reently weight divisibility results on resilient and orrelation immune Boolean funtions

have reeived a lot of attention. These results have diret onsequenes towards the upper

bound on nonlinearity of resilient and orrelation immune Boolean funtions of ertain order.

Now the lear benhmark in the design of resilient Boolean funtions (whih optimizes Siegen-

thaler's inequality) is to provide results whih attain the upper bound on nonlinearity. Here

we onstrut a 7-variable, 2-resilient Boolean funtion with nonlinearity 56. This solves the

maximum nonlinearity issue for 7-variable funtions with any order of resilieny. Using this

7-variable funtion, we also onstrut a 10-variable, 4-resilient Boolean funtion with nonlin-

earity 480. Constrution of these two funtions were justi�ed as important open questions in

Crypto 2000. Also we provide methods to generate an in�nite sequene of Boolean funtions

on n = 7 + 3i variables (i � 0) with order of resilieny m = 2 + 2i, algebrai degree 4 + i and

nonlinearity 2

n�1

� 2

m+1

, whih were not known earlier. We onlude with a few interesting

onstrution results on unbalaned orrelation immune funtions of 5 and 6 variables.

Keywords: Boolean funtions, Nonlinearity, Correlation Immunity, Resilieny, Stream Ci-

phers.

1 Introdution

Very reently Sarkar and Maitra [16℄ have provided weight divisibility results on resilient Boolean

funtions whih in turn present a nontrivial upper bound on the nonlinearity of suh funtions.

Similar kinds of results related to weight divisibility and upper bound on nonlinearity of resilient and

orrelation immune Boolean funtions have also been presented independently by Tarannikov [20℄

and Zheng and Zhang [21℄. Currently Carlet [3℄ and Sarkar [14℄ have (independently and using

di�erent kinds of tehniques) settled the weight divisibility results for resilient and orrelation

immune Boolean funtions involving the algebrai degree too. Note that balaned orrelation

immune Boolean funtions are also known as resilient Boolean funtions.

These weight divisibility results have diret onsequenes to the upper bound on nonlinearity

of these funtions and a benhmark in design of suh resilient Boolean funtions has thus been set-

tled. In other diretion, onstrution of these funtions ahieving the upper bound on nonlinearity

strengthens the tightness of the upper bound results.

In a more pratial diretion, these funtions have immediate appliations in stream ipher

ryptosystems. A standard model of stream ipher [18, 19, 5℄ ombines the outputs of several

independent Linear Feedbak Shift Register (LFSR) sequenes using a nonlinear Boolean funtion

to produe the keystream. This keystream is bitwise XORed with the message bitstream to produe
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the ipher. The deryption mahinery is idential to the enryption mahinery. Getting the kind of

Boolean funtions whih we propose here provide the best possible trade-o� among the parameters

important to resist the known ryptanalyti tehniques [19, 12, 9, 8, 10℄.

It is now well aepted that for a Boolean funtion to be used in stream ipher systems, it

must satisfy the properties balanedness, high nonlinearity, high algebrai degree and high order

of orrelation immunity (see Setion 2 for de�nitions). All of the above mentioned parameters are

important for resisting di�erent kinds of attaks. Also it is not possible to get the best possible

values for eah of these parameters separately and there are ertain trade-o�s involved among the

above parameters. Siegenthaler showed [18℄ that for an n-variable funtion, of degree d and order

of orrelation immunity m, the following holds: m + d � n. Further, if the funtion is balaned

then m+ d � n� 1. Currently, the exat nature of trade-o� among order of orrelation immunity,

nonlinearity and algebrai degree has also been investigated [15, 20, 21, 3, 14℄. Earlier, a series

of papers [2, 17, 4, 6, 11, 13, 15℄ have approahed the onstrution problem by �xing the number

of variables and the order of orrelation immunity (and possibly the algebrai degree) and then

trying to design balaned Boolean funtions with as high nonlinearity as possible. However, the

existene of the urrent papers [15, 20, 21, 3, 14℄ ompletely hanged the motivation. Now either

we have to design a funtion whih provides the best possible trade-o� among the parameters we

are disussing, or we have to show that suh a funtion annot exist.

In this paper, for the �rst time we onstrut a 7-variable, 2-resilient Boolean funtion with

nonlinearity 56. Earlier all the 7-variable resilient funtions of di�erent orders (exept order 2) with

maximum possible algebrai degree and maximum possible nonlinearity (equal to the upper bound)

were known. We here lose the issue by proving the ase for order 2 also. Our method is basially a

searh tehnique, where we derease the searh spae using di�erent involved neessary onditions

on the funtions (see Setion 3). We start with the table of 5-variable funtions (48 di�erent

equivalene lasses) provided by Berlekamp and Welh [1℄. We use our neessary onditions to

selet very few lasses out of those 48 and onatenate four 5-variable funtions from those lasses

to get 7-variable funtions.

It is known that for an n-variable m-resilient funtion (m >

n

2

� 2), the maximum possible

nonlinearity is 2

n�1

� 2

m+1

and suh a funtion must have the maximum possible algebrai degree

n�m�1 [16, 20, 3, 14℄. In [16℄, the onept of saturated sequene SS for resilient Boolean funtions

ahieving the best possible trade-o� has been proposed. All the funtions of SS(0) and SS(1) are

already known. However, the initial funtions for an SS(i) were not known earlier for i > 1. In

fat the 7-variable, 2-resilient, nonlinearity 56 funtion is the initial funtion of the sequene SS(2).

Using this 7 variable funtion we an onstrut a 10-variable, 4-resilient, nonlinearity 480 funtion,

whih was also presented as an open question in [16℄. This funtion is the seond funtion of SS(3).

The initial funtion of SS(3) is a 9-variable, 3-resilient, nonlinearity 240 funtion, whih is still

an open question and we are working on it now. However, we explain how we an extend our

tehniques to �nd suh a 9-variable funtion.

Tarannikov [20℄ has provided a onstrution tehnique of resilient Boolean funtions with maxi-

mum possible nonlinearity. The method presents n-variable, m-resilient funtions with nonlinearity

2

n�1

� 2

m+1

for

2n�7

3

� m � n � 2. Basially Tarannikov's onstrution is a reursive one and

using this tehnique and taking n-variable, m-resilient, degree d, nonlinearity x funtions one an

generate (n + 3)-variable, (m + 2)-resilient, degree (d + 1) and nonlinearity 2

n+1

+ 4x funtions.

These (n+3)-variable funtions an again be used to generate (n+6)-variable resilient funtions and

so on. We here provide a muh simpli�ed modi�ation of Tarannikov's onstrution, whih gives

the same quality results. We interpret Tarannikov's onstrution [20℄ as onatenation of Boolean

funtions. In Tarannikov's onstrution two funtions are required as inputs and the funtions must

satisfy ertain properties. Here we modify the onstrution so that it requires only one funtion in
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a desired form as input and also the resulting funtion beomes a desired one (See Subsetion 3.1

for desired form). This onstrution is muh easier to understand.

However, the most important thing is to get a desired resilient funtion whih an be used as

the initial funtion for this reursive onstrution. The 7-variable, 2-resilient funtion we onstrut

here is in desired form. Starting with this 7-variable funtion as a single input and using the

reursive onstrution proposed here, we show that for n = 7 + 3i, m = 2 + 2i, we an onstrut

resilient funtions with nonlinearity 2

n�1

�2

m+1

and algebrai degree n�m�1 (see reursive use of

Constrution 2 in Subsetion 3.1). This improves Tarannikov's bound on m, as for n = 7+3i, it is

possible to onstrut n-variable, m-resilient funtions with nonlinearity 2

n�1

�2

m+1

for

2n�7

3

�1 �

m � n� 2.

At the end we provide some important results on 5-variable and 6-variable unbalaned or-

relation immune funtions. We present a searh tehnique using inverse Walsh transform to get

5-variable, 2-i (orrelation immune of order 2), nonlinearity 12 funtions. These funtions an

be used immediately to get 6-variable, 3-i, nonlinearity 24 funtions. Moreover, we run a searh

tehnique to show that 6-variable, 1-i, nonlinearity 26 funtion exists. This question was open

for quite sometime. Also this shows that the upper bound on nonlinearity provided by the weight

divisibility results [16, 3, 14℄ is tight in this ase.

2 De�nitions and Notations

De�nition 2.1 The addition operator over GF (2) is denoted by �. For binary strings S

1

; S

2

of

same length �, we denote by #(S

1

= S

2

) (respetively #(S

1

6= S

2

)), the number of plaes where

S

1

and S

2

are equal (respetively unequal). The Hamming distane between S

1

; S

2

is denoted by

d(S

1

; S

2

), i.e. d(S

1

; S

2

) = #(S

1

6= S

2

). The Walsh distane wd(S

1

; S

2

), between S

1

and S

2

, is

de�ned as, wd(S

1

; S

2

) = #(S

1

= S

2

) �#(S

1

6= S

2

). Note that, wd(S

1

; S

2

) = �� 2 d(S

1

; S

2

). Also

the Hamming weight or simply the weight of a binary string S is the number of ones in S. This is

denoted by wt(S). By 


n

we mean the set of n-variable Boolean funtions. An n-variable funtion

f is said to be balaned if its output olumn in the truth table ontains equal number of 0's and 1's

(i.e. wt(f) = 2

n�1

).

De�nition 2.2 An n-variable Boolean funtion f(X

n

; : : : ;X

1

) an be onsidered to be a multivari-

ate polynomial over GF (2). This polynomial an be expressed as a sum of produts representation

of all distint k-th order produts (0 � k � n) of the variables. More preisely, f(X

n

; : : : ;X

1

) an

be written as a

0

�(

L

i=n

i=1

a

i

X

i

)�(

L

1�i 6=j�n

a

ij

X

i

X

j

)�: : :�a

12:::n

X

1

X

2

: : : X

n

where the oeÆients

a

0

; a

ij

; : : : ; a

12:::n

2 f0; 1g. This representation of f is alled the algebrai normal form (ANF) of

f . The number of variables in the highest order produt term with nonzero oeÆient is alled the

algebrai degree, or simply degree of f .

De�nition 2.3 Funtions of degree at most one are alled aÆne funtions. An aÆne funtion with

onstant term equal to zero is alled a linear funtion. The set of all n-variable aÆne (respetively

linear) funtions is denoted by A(n) (respetively L(n)). The nonlinearity of an n variable funtion

f is nl(f) = min

g2A(n)

(d(f; g)), i.e. the distane from the set of all n-variable aÆne funtions.

De�nition 2.4 Let X = (X

n

; : : : ;X

1

) and ! = (!

n

; : : : ; !

1

) both belong to f0; 1g

n

and X:! =

X

n

!

n

� : : :�X

1

!

1

. Let f(X) be a Boolean funtion on n variables. Then the Walsh transform of

f(X) is a real valued funtion over f0; 1g

n

that an be de�ned as W

f

(!) =

P

X2f0;1g

n

(�1)

f(X)�X:!

.
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De�nition 2.5 [7℄ A funtion f(X

n

; : : : ;X

1

) is m-th order orrelation immune (CI) i� its Walsh

transform W

f

satis�es W

f

(!) = 0; for 1 � wt(!) � m: If f is balaned then W

f

(0) = 0. Bal-

aned m-th order orrelation immune funtions are alled m-resilient funtions. Thus, a funtion

f(X

n

; : : : ;X

1

) is m-resilient i� its Walsh transform W

f

satis�es W

f

(!) = 0; for 0 � wt(!) � m.

The relationship between Walsh transform and Walsh distane is [11℄ W

f

(!) = wd(f;

L

i=n

i=1

!

i

X

i

).

Before proeeding, we would like to introdue a few notations for future onveniene. By an

(n;m; d; x) funtion we mean an n-variable, m-resilient funtion with degree d and nonlinearity

x. By (n; 0; d; x) funtion we mean a balaned n-variable funtion with degree d and nonlinearity

x. By [n;m; d; x℄ we denote an n-variable unbalaned orrelation immune funtion of order m,

nonlinearity x and degree d. In the above notation a omponent is replaed by a '�' if we do

not speify it, e.g., (n;m;�; x), if we do not want to speify the degree. Further, given an aÆne

funtion l 2 A(n), by ndg(l) we denote the number of variables on whih l is nondegenerate.

3 Constrution of (7; 2; 4; 56) Funtions

From [20, 3, 14℄, it is lear that if an n-variable, m-resilient (m >

n

2

� 2) funtion ahieves the

maximum possible nonlinearity 2

n�1

� 2

m+1

then the funtion must have the maximum possible

algebrai degree n �m � 1. Putting n = 7;m = 2, we �nd that maximum possible nonlinearity

56 an be obtained only when the algebrai degree is n�m� 1 = 4. Thus, a (7; 2;�; 56) funtion

must be a (7; 2; 4; 56) funtion, i.e. of algebrai degree 4. Next we have the following result relating

a (7; 2; 4; 56) funtion with two (6; 1; 4; 24) funtions.

Proposition 3.1 Let f be a (7; 2; 4; 56) funtion. Then f an be represented as

f = (1 �X

7

)f

1

(X

6

; : : : ;X

1

) �X

7

f

2

(X

6

; : : : ;X

1

) where f

1

; f

2

2 


6

, and both f

1

; f

2

are (6; 1; 4; 24)

funtions. That is f an be expressed as onatenation of f

1

and f

2

.

Proof : The funtion f an be represented as f = (1 � X

i

)f

1

(X

7

; : : : ;X

i+1

;X

i�1

; : : : ;X

1

) �

X

i

f

2

(X

7

; : : : ;X

i+1

;X

i�1

; : : : ;X

1

) where f

1

; f

2

2 


6

. Sine degree of f is 4, we an selet at least

one term of degree 4 whih does not ontain some X

i

, 1 � i � 7. If we ondition on that variable

X

i

, then both f

1

; f

2

must be of degree 4. Thus, from Siegenthaler's inequality, f

1

; f

2

an have

resilieny of order at most 1. Also, sine f is 2-resilient, f

1

; f

2

must have resilieny of order at least

1. Thus, f

1

; f

2

are 1-resilient. Sine, nl(f) = 56, nl(f

1

); nl(f

2

) � 56 � 32 = 24. However, it is

known [13, 16℄ that the maximum possible nonlinearity of 1-resilient funtions on 6 variables is 24.

Now, it is easy to see that if we permute the input variables, then X

i

and X

7

an be interhanged.

Then the output olumn of f in the truth table an be written as onatenation of two (6; 1; 4; 24)

funtions.

The importane of this result is that if we an onstrut all the (6; 1; 4; 24) funtions, then

onatenating every pair of them either we will �nd (7; 2; 4; 56) funtions or if we do not get suh

a funtion then we an guarantee that (7; 2; 4; 56) funtion does not exist. Next we onsider the

results related to Walsh spetra of (6; 1; 4; 24) funtions f

1

; f

2

.

Proposition 3.2 Let f be a (7; 2; 4; 56) funtion made by onatenation of two (6; 1; 4; 24) fun-

tions f

1

; f

2

. Then we have the following results. (1) wd(f

i

; l) = 0, for ndg(l) � 1, 1 � i � 2.

(2) wd(f

i

; l) = 0 or � 8, for ndg(l) = 2, 1 � i � 2. (3) wd(f

i

; l) = �16 i� wd(f

j

; l) = 0 for

1 � i 6= j � 2. (4) wd(f

i

; l) = �8 i� wd(f

j

; l) = �8 for 1 � i 6= j � 2. (5). Let the number

of plaes where wd(f

i

; l) = �16 is x and the number of plaes where wd(f

i

; l) = �16 is y for

1 � i 6= j � 2. Then the number of plaes where wd(f; l) = �16 is 4x+ y = 64.
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Proof : Item 1 follows from the de�nition of 1-resilient funtions.

Now we prove Item 2. If wd(f

1

; l) = 16, for ndg(l) = 2, then wd(f

2

; l) = �16, sine wd(f; ll) = 0

as f is (7; 2; 4; 56) and ndg(ll) = 2. In that ase wd(f; ll



) = 32 and hene nl(f) = 48 whih is a

ontradition.

Item 3 follows similarly as otherwise nonlinearity of f will derease.

Item 4 follows as wd(f; l) must be divisible by 2

2+2

= 16 [16℄.

In item 5, the relation 4x + y = 64 follows from the Parseval's relation on square of Walsh

distanes.

Note that it is not lear whether a (7; 2; 4; 56) funtion f (if exists) an always be seen as

onatenation of two (6; 2; 3; 24) funtions f

1

; f

2

. However, we have the following result. The proof

is similar to the proof of Proposition 3.2.

Proposition 3.3 Let f be a (7; 2; 4; 56) funtion made by onatenation of two (6; 2; 3; 24) fun-

tions f

1

; f

2

. Then we have the following results. (1) wd(f

i

; l) = 0, for ndg(l) � 2, 1 � i � 2.

(2) wd(f

i

; l) = �16 i� wd(f

j

; l) = 0 for ndg(l) > 2, 1 � i 6= j � 2.

For a Boolean funtion f , we de�ne NZ(f) = f! j W

f

(!) 6= 0g, where W

f

is the Walsh

transform of f . If we an �nd two (6; 2; 3; 24) funtions f

1

; f

2

suh that NZ(f

1

) \ NZ(f

2

) = ;,

then f = (1�X

7

)f

1

�X

7

f

2

will be a (7; 2; 4; 56) funtion. Hene, if we an generate the database

of all (6; 2; 3; 24) funtions, then we an hek for onatenation of any two of them.

However, preparation of the database ontaining (6; 2; 3; 24) and (6; 1; 4; 24) funtions in turn

needs onatenation of 5 variable Boolean funtions. For this we onentrate on the Berlekamp-

Welh paper [1℄. All Boolean funtions on 5 variables are divided into 48 equivalene lasses (see [1℄),

where the funtions f and g are equivalent i� there exist an invertible 5� 5 binary matrix M , two

binary vetors a and b and a binary salar , suh that g(x) = f(Mx + a) + bx + . Note that f

and g have the same algebrai degree and nonlinearity.

Proposition 3.4 Let f be a (7; 2; 4; 56) funtion made by onatenation of four funtions

h

1

; h

2

; h

3

; h

4

on 5 variables. Then eah of the h

i

's are balaned and nl(h

i

) � 8 for i = 1; 2; 3; 4.

Now our algorithm is as follows. We denote by O(f) the linear transformation f(Mx+a)+bx+.

We take two representative Boolean funtions h

1

; h

2

and try all the onatenation of h

1

and O(h

2

)

(for all possible di�erent values of M;a; b; , M nonsingular) to generate the 6-variable funtions.

Then we hek for (6; 2; 3; 24) and (6; 1; 4; 24) funtions.

However, there are 21 equivalene lasses with nonlinearity greater than or equal to 8. It seems

omputationally infeasible to generate all the 5-variable funtions of those equivalene lasses by

neessary linear transformation and onatenate any two of them to generate 6 variable funtions

and then heking for (6; 2; 3; 24) and (6; 1; 4; 24) funtions. It is lear that we an disard some

of the ombinations onsidering the algebrai degree and weight distributions of the �ve variable

funtions. Still then the searh spae explodes.

At this point we take a alulated risk. There are only four equivalene lasses of 5-variable

funtions with nonlinearity 12. We onentrate on those only, leaving the other 17 equivalene

lasses with nonlinearity 8 and 10.

Thus we have the following strategy. Consider the following four funtions [1, Table 1℄ presented

in terms of their algebrai normal forms (ANF) representing the four equivalene lasses. The weight

distributions are also presented here. This means, that for the funtion h

1

, and for l 2 L(5), there

are 12 suh l's so that d(h

1

; l) = 12; 20, there are 16 suh l's so that d(h

1

; l) = 14; 18, and there are

4 suh l's so that d(h

1

; l) = 16.
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ANF 12, 20 14, 18 16

h

1

= X

2

X

3

X

4

X

5

�X

1

X

2

X

3

�X

2

X

4

�X

3

X

5

12 16 4

h

2

= X

1

X

2

X

3

�X

1

X

4

�X

2

X

5

16 0 16

h

3

= X

1

X

2

X

3

�X

1

X

4

X

5

�X

2

X

3

�X

2

X

4

�X

3

X

5

16 0 16

h

4

= X

1

X

2

�X

3

X

4

16 0 16

Table 1. Representative funtions of 5 variables with nonlinearity 12.

Now the algorithm for generating the database of (6; 2; 3; 24) and (6; 1; 4; 24) funtions are as

follows. One again note that this database is not exhaustive as we onsider the �ve variable

funtions with nonlinearity 12 only.

1. For i = 1; 2; 3; 4 onatenate h

i

and O(h

j

), j = i to 4 for all possible linear transformations of

h

j

(all possible options for M;a; b; , M nonsingular). Thus their are total 10 pair of ases with

h

i

; h

j

to be heked using all possible linear transformation for h

j

.

2. Chek whether the funtion is a (6; 1; 4; 24) funtion. In this ase, store the funtion f in

database if wd(f; l) = 0 or � 8, for l 2 L(6), ndg(l) = 2 (see Proposition 3.2). Otherwise rejet it.

3. If the funtion is a (6; 2; 3; 24) funtion, then store it in the database.

4. Rejet all other funtions.

Moreover, it should be onsidered that the searh spae an be further redued keeping in mind

the following onstraints when we onsider the algorithm.

1. The funtion f = h

1

O(h

i

) (onatenation of h

1

;O(h

i

)), for i = 2; 3; 4, will not generate any

(6; 1; 4; 24) or (6; 2; 3; 24) funtion as the algebrai degree of f beomes 5. This ompletely disards

3 out of 10 ases and redues the searh spae to 70% of the original.

2. The funtion f = h

4

O(h

4

) will not generate any (6; 1; 4; 24) funtion as the algebrai degree of

f beomes at most 3. Here we only need to hek for (6; 2; 3; 24) funtions.

We started generating the funtions and storing the (6; 1; 4; 24) and (6; 2; 3; 24) funtions in two

separate databases. At the same time we have started onatenating any two of these six variable

funtions inside eah of the databases separately. Note that we did not wait for generating all

the funtions in the two databases. We started onstruting 7-variable funtions as soon as the 6-

variable funtions were generated. We estimated that the program will run for 30 days using a 500

MHz Pentium on Linux platform. Fortunately, in between half an hour, we found one (7; 2; 4; 56)

funtion, whih is generated from the onatenation of two (6; 2; 3; 24) funtions. We terminated

the program then. However, getting suh a funtion in a very short time gives the idea that there

are a lot of (7; 2; 4; 56) funtions available in the searh spae we have onentrated on. The truth

table of the funtion is as follows. Note that h

1

; h

2

; h

3

:h

4

are all 5-variable funtions.

h

1

= 01100110001111000101101010010110; h

2

= 10011001011010011010010111000011

h

3

= 00001011011101101011010111001000; h

4

= 11011100011000101010000100011111

Here h

1

h

2

; h

3

h

4

are both (6; 2; 3; 24) funtions. The funtion h

1

h

2

h

3

h

4

is a (7; 2; 4; 56) funtion.

Note that the funtion h

1

h

3

h

2

h

4

is also a (7; 2; 4; 56) funtion. This an be seen as a onatenation

of two (6; 1; 4; 24) funtions h

1

h

3

; h

2

h

4

.

From the above disussion we get the following theorem.

Theorem 3.1 It is possible to onstrut a (7; 2; 4; 56) funtion.

This ompletely solves the maximum nonlinearity issue of resilient funtions on 7 variables. The

following table shows the maximum nonlinearity orresponding to eah order of resilieny and note

that it is possible to onstrut suh funtions. Also it is very lear from [20, 3, 14℄ that all these

funtions possess the maximum possible algebrai degree (6�m) where m is the order of resilieny.
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order of resilieny 1 2 3 4 5

maximum ahievable nonlinearity 56 56 48 32 0

Table 2. Nonlinearity results for 7-variable Boolean funtions.

In the next setion we disuss about the reursive onstrutions whih will generate interesting

resilient funtions on higher number of variables.

3.1 Reursive Constrution

Here we use two general onstrution tehniques for generating resilient funtions on higher number

of variables from funtions on lower number of variables.

Constrution 1. [18, 2, 11, 16℄ Let f be an (n;m; n�m� 1; x) funtion. Let F 2 


n+1

be de�ned

as F (Y;X) = (1 � Y )f(X)� Y (a� f(X � �)). Now, (1) either � is an all zero vetor and a = 1

(2) or � is an all one vetor and a = m mod 2. Then F is an (n+1;m+1; n�m�1; 2x) funtion.

Next we present a modi�ation of Tarannikov's onstrution [20℄. In Tarannikov's onstrution

two funtions are required as inputs and the funtions must satisfy ertain properties. However,

this is a disadvantage in ertain situations. Here we modify the onstrution so that it requires only

one funtion as input and also the resulting onstrution beomes somewhat easier to understand.

In the modi�ed onstrution, the input funtion must be of ertain form for the onstrution to

work. It is easier in general to get funtions in this form than the property required in the original

Tarannikov's onstrution [20℄.

We say that an (n;m;�;�) funtion f is in the desired form if it is of the form f

1

f

2

, where

f

1

; f

2

are (n � 1;m;�;�) funtions. Here note that the (7; 2; 4; 56) funtion we have found an

be seen as onatenation of two (6; 2; 4; 24) funtions. Hene this (7; 2; 4; 56) funtion is in desired

form.

Construt(f) f /* Here f is an (n;m;�; x) funtion in the desired form f

1

f

2

, where f

1

; f

2

are both

(n� 1;m;�;�) funtions. */

1. F = ff



f



f .

2. g = f

1

f



1

and h = f

2

f



2

.

3. G = ghh



g



.

4. F

1

= FG.

5. Return the funtion F

1

.

g

Note that in the language of [20℄, the funtion G above is said to depend quasilinearly on the

pair of variables (X

n+2

;X

n+1

).

Theorem 3.2 The funtion F

1

in Construt(f) is an (n+3;m+ 2;�; 2

n+1

+4x) funtion in the

desired form.

Proof : In Step 1, the funtion F is learly an (n+ 2;m+ 2;�; 4x) funtion.

Claim : In Step 2, the funtion G is an (n+ 2;m+ 2;�; 4x) funtion.

Proof of Claim : Clearly both g and h are (n;m+1;�;�) funtions. The funtion gh is of the form

f

1

f



1

f

2

f



2

. If we interhange the variables X

n+1

and X

n

for the funtion gh, we get a funtion in

the form f

1

f

2

f



1

f



2

whih is atually ff



. Hene we have nl(gh) = 2nl(f) = 2x. Let � 2 L(n+ 2).

We an write � in one of the forms llll; ll



ll



; lll



l



; ll



l



l. We ompute

1. wd(G; llll) = wd(ghh



g



; llll) = wd(hh



; ll) + wd(gg



; ll) = 0 + 0 = 0:

2. wd(G; ll



ll



) = wd(ghh



g



; ll



ll



) = 2wd(gh; ll



):

3. wd(G; lll



l



) = wd(ghh



g



; lll



l



) = 2wd(gh; ll):

7



4. wd(G; ll



l



l) = wd(ghh



g



; ll



l



l) = 0:

If � is nondegenerate on at most (m + 2) variables, then l is nondegenerate on at most (m + 1)

variables. Hene wd(g; l) = wd(h; l) = wd(h; l



) = 0 and so wd(G;�) = 0. Thus G is (m + 2)-

resilient. Further, by the above alulation we have nl(G) = 2nl(gh) = 4nl(f) = 4x. This ompletes

the proof of the laim.

Sine F and G are both (n+2;m+2;�; 4x) funtions, the funtion F

1

is learly an (n+3;m+

2;�; y) funtion in the desired form. Thus it is suÆient to show that y = 2

n+1

+4x. This is proved

by showing that NZ(F )\NZ(G) = ;. Let � be in L(n+2), suh that wd(F;�) 6= 0. Then learly

� is of the form ll



l



l. Thus it is enough to show that for any suh �, wd(G;�) = 0. But this is

what has been shown in item 4 above.

Starting with a funtion f in the desired form Construt(f) is repeatedly used in the manner

while (true) ff = Construt(f)g. Thus we summarize the onstrution as follows.

Constrution 2. Let f be an (n;m; n � m � 1; x = 2

n�1

� 2

m+1

) funtion in desired form

and f = g

1

g

2

, where g

1

; g

2

2 


n�1

. Let F = g

1

g

2

g



1

g



2

g



1

g



2

g

1

g

2

g

1

g



1

g

2

g



2

g



2

g

2

g



1

g

1

. Then F is an

(n+ 3;m+ 2; n�m; 4x+ 2

n+1

= 2

n+2

� 2

m+3

) funtion in desired form.

In [16℄, an (n;m; n�m�1; 2

n�1

�2

m+1

) funtion is alled a saturated maximum degree funtion

and its spetrum is three valued. For suh a funtion we must neessarily have m > b

n

2

� 2. From

this a notion of a sequene of Boolean funtions, eah of whih is a saturated maximum degree

funtion with maximum possible nonlinearity was proposed in [16℄.

De�nition 3.1 For i � 0 we de�ne SS(i) as follows. An SS(0) is a sequene f

0;0

; f

0;1

; : : :, where

f

0;0

is a (3; 0; 2; 2) funtion and f

0;j

is a (3 + j; j; 2; 2

j+1

) funtion for j > 0. For i > 0, an SS(i)

is a sequene f

i;0

; f

i;1

; : : :, where f

i;0

is a (3 + 2i; i; 2 + i; 2

2+2i

� 2

1+i

) funtion. Also for j > 0, f

i;j

is a (3 + 2i+ j; i+ j; 2 + i; 2

2+2i+j

� 2

1+i+j

) funtion.

Note that all funtions in an SS(t) have the same degree 2 + t. It is also important to see that

given a funtion f of some SS(t), Constrution 1 generates all the onseutive funtions of SS(t).

However, given a funtion f of some SS(t), Constrution 2 generates one funtion eah of SS(t+ p)

for all p � 1. That is Constrution 2 generates funtions in di�erent saturated sequenes.

Constrution of SS(0) and SS(1) are already known [16℄. The initial funtions for an SS(i) for

i > 1 were not known earlier. Here the (7; 2; 4; 56) funtion is the initial funtion of SS(2). Thus,

from this funtion, using the Constrution 1, one an generate all the funtions of SS(2). Note that

this sequene was earlier known from the 2nd funtion onwards, where the seond funtion of SS(2)

is an (8; 3; 4; 112) funtion.

Starting from (7; 2; 4; 56) funtion (whih is in desired form), Constrution 2 generates one

funtion eah of SS(2 + p) (whih is again in desired form) for all p � 1. These are basially

(p + 1)th funtions of SS(2 + p). These funtions were not known earlier. For p = 1, we get the

(10; 4; 5; 480) funtion, whih was posed as an open problem in [16℄. Constrution 2, when used

reursively, generates an in�nite sequene of Boolean funtions on n = 7+3p variables (p � 0) with

order of resilieny m = 2 + 2p, algebrai degree 4 + p and nonlinearity 2

n�1

� 2

m+1

, whih were

not known earlier. These funtions are (7; 2; 4; 56); (10; 4; 5; 480); (13; 6; 6; 3968); (16; 8; 7; 32256); : : :

and so on. Note that all these funtions with moderate number of input variables have immediate

use in stream ipher systems as ombining Boolean funtions.

Tarannikov [20℄ has presented onstrution of n-variable, m-resilient funtions with nonlinearity

2

n�1

� 2

m+1

for

2n�7

3

� m � n � 2. Our 7-variable funtion an be taken as an initial funtion

when Constrution 2 will be used reursively. This gives that for n = 7 + 3p, m = 2 + 2p, we

an onstrut resilient funtions with nonlinearity 2

n�1

� 2

m+1

and algebrai degree n �m � 1.

This improves Tarannikov's bound on m as for n = 7 + 3p, it is possible to onstrut n-variable,

m-resilient funtions with nonlinearity 2

n�1

� 2

m+1

for

2n�7

3

� 1 � m � n� 2.
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Now we mention the issue regarding the 9-variable resilient funtions. We onentrate on the

initial funtion of SS(3), the (9; 3; 5; 240) funtion. The existene of this funtion is not yet known.

We are urrently searhing this funtion in the following manner using omputer program.

1. Construt an (8; 3; 4; 112) funtion f

1

= hh



, where h is a (7; 2; 4; 56) funtion. That is we apply

the Constrution 1 here.

2. Construt an (8; 3; 4; 112) funtion f

2

using Constrution 2 on a funtion g whih is a (5; 1; 3; 12)

funtion.

3. Construt F = f

1

f

2

.

4. If NZ(f

1

) \NZ(f

2

) = ;, then F will be a (9; 3; 5; 240) funtion.

In this situation we an update the table of interesting Boolean funtions on small number of

variables than what presented in [16℄. The

�

marked entries are the funtions whih we onstrut

here.

n

7 (7, 2, 4, 56)

�

8 (8, 1, �, 116)

9 (9, 1, �, 244), (9, 2, 6, 240), (9, 3, 5, 240)

10 (10, 1, �, 492), (10, 1, �, 488), (10, 2, �, 488), (10, 4, 5, 480)

�

Table 3. Constrution of these funtions were posed as open question in [16℄.

Also it is important to note that using the weight divisibility results of resilient funtions involv-

ing the algebrai degree [3, 14℄, it an be shown that the (8; 1;�; 116); (10; 1;�; 492); (10; 2;�; 488)

funtions, if at all exist, must be (8; 1; 6; 116); (10; 1; 8; 492); (10; 2; 7; 488) funtions.

4 Correlation Immune Funtions on 5 and 6 variables

In this setion we will partiularly onsider the [5; 2; 3; 12℄; [6; 3; 3; 24℄ and [6; 1; 5; 26℄ funtions.

These funtions provide the best possible trade-o� among the parameters order of orrelation

immunity, nonlinearity and algebrai degree.

First we will show the onstrution of [5; 2; 3; 12℄; [6; 3; 3; 24℄ funtions. Our tehnique is om-

pletely new whih is based on spetral analysis of suh funtions. The [5; 2; 3; 12℄; [6; 3; 3; 24℄ fun-

tions have also been onsidered earlier in [20℄. However, there only one example of [6; 3; 3; 24℄

funtion has been given and a [5; 2; 3; 12℄ funtion has been derived from the 6-variable one. We

will provide a systemati onstrution tehnique of [5; 2; 3; 12℄; [6; 3; 3; 24℄ funtions.

Next we provide a onstrution to show that the [6; 1; 5; 26℄ funtion exists. It was the last

important question that was unanswered for 6-variable orrelation immune funtions. This result

also shows that the upper bound on nonlinearity of orrelation immune funtions [16℄ is tight in

this ase.

4.1 [5; 2; 3; 12℄; [6; 3; 3; 24℄ Funtions

Here we �rst provide a onstrution method for [5; 2; 3; 12℄ funtions. The neessary onditions

for the existene of a [5; 2; 3; 12℄ funtions are best viewed in terms of the Walsh spetra of the

funtion. Clearly, the funtion F must have at least 15 zeros in its Walsh spetra sine W

F

(!) = 0

for wt(!) = 1; 2. Note that ! 2 f0; 1g

5

. Furthermore, the maximum absolute value in the Walsh

spetra must be equal to 8. There are just 2 equivalene lasses in [1℄ satisfying these riteria

and with algebrai degree 3. These are h

2

; h

3

in Table 1. Eah of these 2 lasses have the same

distribution of Walsh oeÆients up to omplementation, that is the spetra will always be given
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either as W

F

1

(!) or W

F

2

(!), whih is shown in the table below. Note that the spetra given

by W

F

1

(!) is the inversion of W

F

2

(!) whih orresponds to the omplementation of the Boolean

funtion's truth table.

W

F

1

(!) #fW

F

1

(!)g W

F

2

(!) #fW

F

2

(!)g

0 16 0 16

8 10 8 6

-8 6 -8 10

Table 4. Walsh transform values.

We onsider the ase where the Walsh spetra ontains 16 zero values, 10 values of +8 and six

values of �8 as in W

F

1

. We �x 15 zero values in the spetra at the plaes where wt(!) = 1; 2.

Also we �x W

F

(0) = �8. Now there are 16 plaes left and we an plae another zero at any one

of these plaes in 16 ways. Now we have 15 more plaes left and we hoose 5 plaes and put �8,

the remaining 10 plaes are �lled with +8. Similarly we have to hek for W

F

2

. Thus the total

number of ases we hek is N

per

, will be N

per

= 2 � 16 �

�

15

5

�

. Thus, instead of doing an exhaustive

searh for [5; 2; 3; 12℄ funtions we simply reate all permitted permutations, N

per

in number, and

hek if the Walsh spetra is a valid spetra of a Boolean funtion. If the spetra is valid, then we

get the Boolean funtion bak using inverse Walsh transform and the funtion must be orrelation

immune of order 2. We obtain in total 384 distint [5; 2; 3; 12℄ funtions in this way.

Next we provide the following result.

Proposition 4.1 Let F be an [n;m; d; x℄ funtion where m is even. Then FF

r

(onatenation of

the truth table of the funtion F and its reverse) will be an [n+ 1;m+ 1; d; 2x℄ funtion.

Proof : It is very lear that FF

r

is an [n+1;m; d; 2x℄ funtion. That it is also orrelation immune

of order m+1 follows from the result that for any linear funtion l whih is nondegenerate on odd

number of variables, l

r

= l



. Here m+ 1 is odd.

Hene given a [5; 2; 3; 12℄ funtion F , we an get a [6; 3; 3; 24℄ funtion FF

r

.

4.2 [6; 1; 5; 26℄ Funtion

In this setion we provide a onstrution of [6; 1; 5; 26℄ funtion. First we need the following result.

Proposition 4.2 Any [6; 1;�; 26℄ funtion must be a [6; 1; 5; 26℄ funtion.

Proof : The maximum nonlinearity of a six variable funtion is 28 (bent funtion). Consider an 1-

i funtion F on 6 variables. A orrelation immune funtion F an not be bent. Hene, nl(F ) < 28.

It is known [14℄ that for an n variable, m-i, degree d funtion f , the weights of f � l, (l 2 L(n)),

are always divisible by 2

m+b

n�m�1

d



. Here n = 6;m = 1 and hene nl(F ) � 28� 2

1+b

4

d



. Note that,

if F has nonlinearity 26, then d must be 5. If d < 5, then nonlinearity of F will derease further,

and it an be at most 24. Thus, F must be of degree 5.

Lemma 4.1 Let if possible F be a [6; 1; 5; 26℄ funtion. Then it is possible to write F = (1 �

X

6

)f

1

�X

6

f

2

, where f

1

and f

2

are 5-variable funtions eah having nonlinearity 11 and degree 5.

Proof : The degree of F is 5. Without loss of generality we onsider X

5

: : : X

1

is a degree 5

term in the ANF of F . This is beause we an permute the input variables to do this. We put

f

1

(X

5

; : : : ;X

1

) = F (X

6

= 0;X

5

; : : : ;X

1

) and f

2

(X

5

; : : : ;X

1

) = F (X

6

= 1;X

5

; : : : ;X

1

). Thus both
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f

1

; f

2

are of degree 5 and hene of odd weight and so nl(f

1

); nl(f

2

) � 11. It an be proved that if

any of nl(f

1

) or nl(f

2

) is < 11, then nl(F ) < 26.

The importane of this result is that, given a [6; 1; 5; 26℄ funtion F , we an always permute

the input variables so that the term X

5

: : : X

1

of degree 5 stays in F and then we an onsider

it as onatenation of two 5-variable funtions with nonlinearity 11. Hene if we onatenate all

pairs of suh 5-variable funtions, either we will �nd a [6; 1; 5; 26℄ funtion, or we an onlude that

suh a funtion does not exist. A loser inspetion of the Berlekamp's paper leaves just 4 out of 49

equivalene lasses with nonlinearity 11 whose funtions may be onatenated to possibly obtain a

[6; 1; 5; 26℄ funtion. The following table provides the algebrai normal form of the representative

funtions with their weight distribution. This means, that for the funtion h

1

, and for l 2 L(5),

there are 6 suh l's so that d(h

1

; l) = 11; 21, there are 10 suh l's so that d(h

1

; l) = 13; 19, and there

are 16 suh l's so that d(h

1

; l) = 15; 17. Note that A = X

1

X

2

X

3

X

4

X

5

.

ANF 11, 21 13, 19 15,17

h

1

= A�X

1

X

2

�X

3

X

4

6 10 16

h

2

= A�X

1

X

2

X

3

�X

1

X

4

�X

2

X

5

6 10 16

h

3

= A�X

1

X

2

X

3

�X

1

X

4

X

5

�X

3

X

5

�X

2

X

4

�X

2

X

3

6 10 16

h

4

= A�X

1

X

2

X

3

�X

1

X

4

X

5

�X

4

X

5

�X

3

X

5

�X

2

X

4

�X

2

X

3

4 16 12

Table 5. Representative funtions of 5 variables with nonlinearity 11.

Thus, onatenating eah representative of the i-th lass, i = 1; : : : ; 4, with all nonsingular aÆne

transformations applied to a representant of the j-th lass, j = i; : : : ; 4 and �nally heking the

possibility of obtaining a orrelation immune funtion with nonlinearity 26 will answer the question

if there exists a [6; 1; 5; 26℄ funtion. We ran this omputer program and found a [6; 1; 5; 26℄ funtion.

The funtion is the onatenation of h

1

and h

2

where h

1

= 01001001110100001010100101000101

and h

2

= 10000010101001110011100110000001 are both of nonlinearity 11.

Theorem 4.1 It is possible to onstrut a [6; 1; 5; 26℄ funtion.
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