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Abstrat

In this paper we prove a general result on the Walsh Transform of an arbitrary Boolean

funtion. As a onsequene, we obtain several divisibility results on the Walsh Transform of

orrelation immune and resilient Boolean funtions. This allows us to improve upper bounds

on the nonlinearity of orrelation immune and resilient Boolean funtions. Also we provide new

neessary onditions on the algebrai normal form of orrelation immune/resilient funtions

attaining the maximum possible nonlinearity.

1 Introdution

Boolean funtions are extensively used in stream ipher systems. Some of the important properties

for a Boolean funtion to be used in stream ipher systems are balanedness, orrelation immu-

nity (CI), algebrai degree and nonlinearity. Constrution of Boolean funtions possessing a good

ombination of these properties have been proposed in [4, 10, 11, 13℄. However, it is important to

study the exat nature of the relationship between the above mentioned properties. This topi has

reeived a lot of attention in reent times as evidened by the papers [1, 10, 13, 15℄. The most reent

paper to onsider these relationships is by Carlet [1℄, where use is made of the numerial normal

form [2℄ to obtain ertain divisibilty results whih improve upon the divisibility results obtained

in [10℄.
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The Walsh Transform is an important tool for the analysis of Boolean funtions. The Walsh

Transform an be seen as a map from the n-dimensional hyperube to the integers. Here we obtain

a general result relating the Walsh Transform at a point ! to the Walsh Transfrom values at the

points in the subube subtended by !. As a onsequene, we obtain some new and important

divisibility results. Our tehnique learly brings out the role played by MEliee's theorem in this

setting. Moreover, the general result on Walsh Transform of Boolean funtions that we obtain here

is important in its own right.

We use the divisibility results to obtain new upper bounds on the nonlinearities of CI and

resilient funtions. The upper bound for resilient funtions is a re�nement on the one obtained by

Carlet [1℄. Also we obtain new neessary onditions on the algebrai normal form of n-variable,

m-CI (resp. m-resilient) funtions having maximumnonlinearity 2

n�1

�2

m

(resp. 2

n�1

�2

m+1

). We

show that for n-variable, m-CI funtions to ahieve nonlinearity of 2

n�1

� 2

m

, its algebrai normal

form (ANF) must have all terms of degree n �m. For resilient funtions, this statement beomes

a bit weaker but is still stronger than the result obtained by Tarannikov [13℄ and Carlet [1℄. See

Theorem 4.3 for the exat statement on resilient funtions.

2 Preliminaries

In this setion we introdue a few basi onepts. We denote the addition operator over GF (2) by

�. Let s; s

1

; s

2

be two binary strings of same length p.

1. The Hamming distane between s

1

; s

2

is denoted by d(s

1

; s

2

) and is the number of plaes s

1

and s

2

are unequal.

2. The Walsh Distane wd(s

1

; s

2

), between s

1

and s

2

, is denoted by wd(s

1

; s

2

) and is the number

of plaes s

1

and s

2

are equal minus the number of plaes s

1

and s

2

are unequal. The relation

between the Hamming and Walsh distanes is the following: wd(s

1

; s

2

) = p� d(s

1

; s

2

).

3. the Hamming weight or simply the weight of s is the number of ones in s and is denoted by

wt(s).

Given a binary string s, its ith bit will be denoted by s

i

. An n-variable Boolean funtion f an be

onsidered to be represented by a binary string of length 2

n

, with respet to a �xed truth table. The

weight of the funtion f is denoted by wt(f) and is the number of ones in its binary representation.

A funtion is balaned if wt(f) = 2

n�1

.

An n-variable Boolean funtion f(X

n

; : : : ;X

1

) an be uniquely represented by a multivariate

polynomial over GF (2).

De�nition 2.1 Let f(X

n

; : : : ;X

1

) be an n-variable funtion. We an write

f(X

n

; : : : ;X

1

) = a

0

� (

i=n

M

i=1

a

i

X

i

)� (

M

1�i<j�n

a

ij

X

i

X

j

)� : : :� a

12:::n

X

1

X

2

: : :X

n

;
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where the oeÆients a

0

; a

ij

; : : : ; a

12:::n

2 f0; 1g. This representation of f is alled the algebrai

normal form (ANF) of f . The number of variables in the highest order produt term with nonzero

oeÆient is alled the algebrai degree, or simply degree of f .

Funtions of degree at most one are alled aÆne funtions. An aÆne funtion with onstant term

equal to zero is alled a linear funtion. The set of all n-variable aÆne (resp. linear) funtions is

denoted by A(n) (resp. L(n)).

De�nition 2.2 The nonlinearity nl(f) of an n-variable funtion f is de�ned as

nl(f) = min

g2A(n)

(d(f; g));

i.e. nl(f) is the distane of f from the set of all n-variable aÆne funtions. The maximum possible

nonlinearity for n-variable funtions is denoted by nlmax(n).

An important tool for the analysis of Boolean funtion is its Walsh transform, whih we de�ne

next [3℄.

De�nition 2.3 Let f(X) be an n-variable Boolean funtion. Let X = (X

n

; : : : ;X

1

) and ! =

(!

n

; : : : ; !

1

) both belong to f0; 1g

n

and < X;! >= X

n

!

n

� : : :�X

1

!

1

. Then the Walsh transform

of f(X) is a real valued funtion over f0; 1g

n

whih is de�ned as

W

f

(!) =

X

X2f0;1g

n

(�1)

f(X)�<X;!>

:

The Walsh transform is sometimes alled the spetral distribution or simply the spetrum of a

Boolean funtion.

A funtion f of 2k variables is alled bent if W

f

(!) = �2

k

for all ! 2 f0; 1g

2k

. These funtions

are important in both ryptography and oding theory sine they ahieve the maximum possible

nonlinearity among all 2k-variable funtions.

Correlation immune funtions were introdued by Siegenthaler [12℄, to withstand a lass of

"divide-and-onquer" attaks on ertain models of stream iphers. Xiao and Massey [5℄ provided

a spetral haraterization of orrelation immune funtions. Here we state this haraterization as

the de�nition of orrelation immunity.

De�nition 2.4 A funtion f(X

n

; : : : ;X

1

) is m-th order orrelation immune (CI) i� its Walsh

transform W

f

satis�es

W

f

(!) = 0; for 1 � wt(!) � m:

Further, if f is balaned then W

f

(0) = 0. Balaned m-th order orrelation immune funtions are

alled m-resilient funtions.
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Thus, a funtion f(X

n

; : : : ;X

1

) is m-resilient i� its Walsh transform W

f

satis�es

W

f

(!) = 0; for 0 � wt(!) � m:

The relationship between Walsh transform and Walsh distane is [7℄ W

f

(!) = wd(f;

L

i=n

i=1

!

i

X

i

).

Siegenthaler [12℄ showed that an n-variable, mth order CI funtion an have maximumdegree n�m

and if the funtion is balaned then the maximum degree possible is n�m� 1 (see also [5, 9℄).

We next present a few notations for future onveniene.

1. By H

r

, we denote the Hadamard matrix of order 2

r

de�ned reursively as.

H

1

=

"

1 1

1 �1

#

and for r > 1; H

r

= H

r�1


H

1

:

2. The inner produt between two n-bit vetors x; y is denoted by < x; y >.

3. By an m-CI (resp. m-resilient) funtion we denote a funtion whih is orrelation immune

(resp. resilient) of order m.

4. By an (n;m; d; x)-CI (resp. (n;m; d; x)-resilient) funtion we mean an n-variable, m-CI (resp.

m-resilient) funtion having degree d and nonlinearity x. Note that an (n;m; d; x)-resilient

funtion is ertainly (n;m; d; x)-CI but the opposite does not neessarily hold. In the above

notation, we may replae some omponent by � if we do not want to speify it.

We will also use the following onsequene of MEliee's theorem on yli odes (see [6℄). If f is

an n-variable, degree d funtion then wt(f) � 0 mod 2

b

n�1

d



.

3 Walsh Transform

In this setion we prove an important result on the Walsh Transform of an arbitrary Boolean

funtion. The Walsh Transform an be interpreted as a funtion from the n-dimensional hyperube

to the set of integers. Let x; y 2 f0; 1g

n

, i.e., they are points on the n-dimensional hyperube. We

say x � y if x

i

� y

i

for all 1 � i � n. Further x < y if x � y and x 6= y. Let ! be a point on the

n-dimensional hyperube. Then the subube subtended by ! is given by the set of all points � suh

that � � !. We now present a result whih relates the value of the Walsh transform at ! to the

values of the Walsh transform at all the points in the subube subtended by !. This is a ruial

result as it allows us to prove some general divisibility results as its onsequenes. We begin with

the following result.

Proposition 3.1 Let g(X

n

; : : : ;X

1

) be an n-variable Boolean funtion and r be an integer in the

range 1 � r � n. For 0 � i � 2

r

� 1, let g

i

(X

n�r

; : : : ;X

1

) be de�ned as follows

g

i

(X

n�r

; : : : ;X

1

) = g(X

n

= i

r

; : : : ;X

n�r+1

= i

1

;X

n�r

; : : : ;X

1

);
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where i

r

: : : i

1

is the r-bit binary expansion of i. Let w

i

= wt(g

i

). Then

H

r

[w

0

; : : : ; w

2

r

�1

℄

T

= [a

0

; : : : ; a

2

r

�1

℄

T

;

where H

r

is the Hadamard matrix of order 2

r

and

a

0

=

2

n

�W

g

(0)

2

; a

i

= �

W

g

(�

i

)

2

for i > 0:

Here �

i

is the n-bit vetor formed by appending (n� r) zeros to the end of i

r

: : : i

1

.

Proof : The �rst row of H

r

is the all one row and so

a

0

=

k=2

r

�1

X

k=0

w

i

= wt(g) = d(g; l

0

);

where l

0

is the all zero linear funtion. Using the relation W

f

(0) = wd(g; l

0

) = 2

n

� 2d(g; l

0

) we get

the result for a

0

. Now we onsider the ase i > 0. Consider

l

�

i

(X

n

; : : : ;X

1

) =< �

i

; (X

n

; : : : ;X

1

) >=< (i

r

; : : : ; i

1

; 0; : : : ; 0); (X

n

; : : : ;X

1

) > :

So W

g

(�

i

) = wd(g; l

�

i

). De�ne �

i

(Y

r

; : : : ; Y

1

) =< (i

r

; : : : ; i

1

); (Y

r

; : : : ; Y

1

) >. Then the ith row

R

i

= (R

i;0

; : : : ; R

i;2

r

�1

) of H

r

is given by R

i;j

= (�1)

�

i

(j

r

;:::;j

1

)

, where j

r

: : : j

1

is the r-bit binary

expansion of j. Note that a

i

=< (R

i;0

; : : : ; R

i;2

r

�1

); (w

0

; : : : ; w

2

r

�1

) >. For 0 � k � 2

r

� 1, de�ne

l

k

(X

n�r

; : : : ;X

1

) = l

�

i

(X

n

= k

r

; : : : ;X

n�r+1

= k

1

;X

n�r

; : : : ;X

1

);

where k

r

: : : k

1

is the r-bit binary expansion of k. Clearly,

wd(g; l

�

i

) =

k=2

r

�1

X

k=0

wd(g

k

; l

k

) =

k=2

r

�1

X

k=0

(2

n�r

� 2d(g

k

; l

k

)): (1)

The following omputation shows that eah l

k

is a onstant funtion.

l

k

(X

n�r

; : : : ;X

1

) = l

�

i

(X

n

= k

r

; : : : ;X

n�r+1

= k

1

;X

n�r

; : : : ;X

1

)

= < (i

r

; : : : ; i

1

; 0; : : : ; 0); (X

n

= k

r

; : : : ;X

n�r+1

= k

1

;X

n�r

; : : : ;X

1

) >

= < (i

r

; : : : ; i

1

); (k

r

; : : : ; k

1

) >

= �

i

(k

r

; : : : ; k

1

)

Sine l

k

is onstant the value of d(g

k

; l

k

) is wt(g

k

) or 2

n�r

� wt(g

k

) aording as �

i

(k

r

; : : : ; k

1

) is 0

or 1. This is expressed by writing

d(g

k

; l

k

) = 2

n�r

�

i

(k

r

; : : : ; k

1

) + (�1)

�

i

(k

r

;:::;k

1

)

wt(g

k

):
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We now ontinue the omputation of Equation 1.

wd(g; l

�

i

) =

k=2

r

�1

X

k=0

(2

n�r

� 2(2

n�r

�

i

(k

r

; : : : ; k

1

) + (�1)

�

i

(k

r

;:::;k

1

)

wt(g

k

))) (2)

= 2

n

� 2

n�r+1

k=2

r

�1

X

k=0

�

i

(k

r

; : : : ; k

1

)� 2

k=2

r

�1

X

k=0

(�1)

�

i

(k

r

;:::;k

1

)

wt(g

k

) (3)

Sine i > 0, the funtion �

i

(k

r

; : : : ; k

1

) is balaned and hene

k=2

r

�1

X

k=0

�

i

(k

r

; : : : ; k

1

) = 2

r�1

. Thus we

get

wd(g; l

�

i

) = �2

k=2

r

�1

X

k=0

(�1)

�

i

(k

r

;:::;k

1

)

wt(g

k

) (4)

= �2

k=2

r

�1

X

k=0

R

i;k

w

k

(5)

= �2 < (R

i;0

; : : : ; R

i;2

r

�1

); (w

0

; : : : ; w

2

r

�1

) > (6)

= �2a

i

: (7)

This gives the result.

Let f be an n-variable Boolean funtion and ! be in f0; 1g

n

with wt(!) = r. By f

!

we denote

the (n � r)-variable Boolean funtion de�ned as follows. Let i

1

; : : : ; i

r

be suh that !

i

1

= : : : =

!

i

r

= 1 and !

j

= 0 for j =2 fi

1

; : : : ; i

r

g. Then f

!

is formed from f by setting variable X

j

to 0 i�

j 2 fi

1

; : : : ; i

r

g.

Theorem 3.1 Let f(X

n

; : : : ;X

1

) be a Boolean funtion and ! 2 f0; 1g

n

. Then

W

f

(!) = 2

n

�

X

�<!

W

f

(�)� 2

wt(!)+1

wt(f

!

):

Proof : We �rst note that W

f

(!) = wd(f; l

!

). Let wt(!) = r, and

l

!

(X

n

; : : : ;X

1

) =< !; (X

n

; : : : ;X

1

) >= X

i

r

� : : :�X

i

1

:

Let � be a permutation on the variables suh that

l(X

n

; : : : ;X

1

) = l

!

(�(X

n

; : : : ;X

1

)) = X

n

� : : :�X

n�r+1

:

Let g(X

n

; : : : ;X

1

) = f(�(X

n

; : : : ;X

1

)). Then for any  2 f0; 1g

n

we have

W

g

() = wd(g(X

n

; : : : ;X

1

); l



(X

n

; : : : ;X

1

))

= wd(f(�(X

n

; : : : ;X

1

)); < ; (X

n

; : : : ;X

1

) >)

= wd(f(�

�1

(�(X

n

; : : : ;X

1

))); < ; �

�1

(X

n

; : : : ;X

1

) >)

= wd(f(X

n

; : : : ;X

1

); < �(); (X

n

; : : : ;X

1

) >)

= W

f

(�())
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As a onsequene we have W

f

(!) = wd(f; l

!

) = wd(g; l) = W

g

(�), where � is the n-bit vetor

having the �rst r bits as 1. Also wt(f

!

) = wt(g

�

). From this it follows that it is suÆient to prove

the result for W

g

(�).

De�ne funtions g

0

; : : : ; g

2

r

�1

as follows.

g

i

(X

n�r

; : : : ;X

1

) = g(X

n

= i

r

; : : : ;X

n�r+1

= i

1

;X

n�r

; : : : ;X

1

);

where i

r

; : : : ; i

1

is the r-bit binary expansion of i. Also for 0 � i � 2

r

� 1, let �

i

be formed by

onatenating (n � r) zeros to the end of i

r

: : : i

1

. Then it is easy to see that eah �

i

� � and

�

2

r

�1

= �. Also the �

i

's are exatly the points on the subube subtended by �.

Let w

i

= wt(g

i

). Then w

0

= wt(g

�

) = wt(f

!

). Using Proposition 3.1 we write

H

r

[w

0

; : : : ; w

2

r

�1

℄

T

= [a

0

; : : : ; a

2

r

�1

℄

T

;

where H

r

is the Hadamard matrix of order 2

r

and

a

0

=

2

n

�W

g

(0)

2

; a

i

= �

W

g

(�

i

)

2

for i > 0: (8)

Sine H

r

is a Hadamard matrix, it follows that H

r

H

r

= 2

r

I

r

, where I

r

is the identity matrix of

order 2

r

. Hene we get

2

r

[w

0

; : : : ; w

2

r

�1

℄

T

= H

r

[a

0

; : : : ; a

2

r

�1

℄

T

: (9)

The �rst row ofH

r

is the all one row, hene equating the �rst omponent on both sides of Equation 9,

we get

X

0�i�2

r

�1

a

i

= 2

r

w

0

:

We substitute the a

i

's using Equations 8 to get,

2

n

�W

g

(0)

2

+

X

1�i�2

r

�1

�

W

g

(�

i

)

2

= 2

r

w

0

:

Rearranging the terms and noting that � = �

2

r

�1

and the �

i

's are exatly the points on the subube

subtended by � gives the required relation.

Remark 3.1 Note that Equation 9 shows something stronger than the statement of Theorem 3.1.

It shows that 2

r+1

w

i

= 2

n

� < �

i

; (W

g

(0); : : : ;W

g

(�)) >, where �

i

(j) = (�1)

l

i

(j)

and l

i

(x) =< i; x >.

Thus using Equation 9 we an atually determine the w

i

's. This is a partial inverse Walsh Transform

on a subube and is a stronger result than Theorem 3.1. In fat, just Theorem 3.1 itself has a nie

small and diret proof and has been obtained by Yuriy Tarannikov [14℄.

We �rst use Theorem 3.1 to show that a bent funtion on 2k variables has maximum degree k,

whih is a well known result on bent funtions [8℄.
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Corollary 3.1 [8℄ Let f be a bent funtion on 2k variables. Then the maximum possible degree of

f is k.

Proof : Suppose the degree of f is r > k. Without loss of generality assume that the termX

1

: : :X

r

is present in the ANF of f . Choose ! to be suh that !

1

= : : : = !

r

= 0 and !

r+1

= : : : = !

2k

= 1.

Clearly wt(!) = 2k � r. From Theorem 3.1, we have

X

��!

W

f

(�) = 2

n

� 2

wt(!)+1

wt(f

!

): (10)

Sine f is bent for any ! 2 f0; 1g

2k

, we have W

f

(!) = �2

k

. Let the number of � � ! suh that

W

f

(�) = 2

k

be a and then the number of � � ! suh that W

f

(�) = �2

k

is 2

2k�r

� a. Thus the left

hand side of Equation 10 beomes 2

k

(2a � 2

2k�r

) = 2

k+1

(a� 2

2k�r�1

). (Here we use r < 2k, sine

if r = 2k, then the weight of f is odd and hene none of the Walsh Transform values an be 2

k

.)

Thus the left hand side is ongruent to 0 mod 2

k+1

. Using the de�nition of f

!

, we have that f

!

is an

r-variable funtion. From the hoie of ! the term X

1

: : :X

r

is in f

!

and hene the degree of f

!

is r.

Thus wt(f

!

) is odd. Let S be the quantity on the right side of Equation 10. Then S � 0 mod 2

2k�r+1

and sine wt(f

!

) is odd S 6� 0 mod 2

2k�r+2

. Sine r > k, we have 2k � r + 1 < k + 1. Therefore

S 6� 0 mod 2

k+1

. But this is a ontradition and hene the result is proved.

We now turn to the appliation of Theorem 3.1 to orrelation immune funtions. The following

is an important onsequene of Theorem 3.1.

Corollary 3.2 Let f be an (n;m; d;�)-CI nononstant funtion. Then for all ! 2 f0; 1g

n

,

W

f

(!) � 0 mod 2

m+1+b

n�m�1

d



:

Proof : Choose ! in Theorem 3.1 with wt(!) = m to get W

f

(!) = 2

n

�

P

�<!

W

f

(�) � 2

m+1

w

0

:

Sine f is m-CI, W

f

(�) = 0 for all 1 � wt(�) � m. Thus W

f

(0) = 2

n

� 2

m+1

w

0

; where w

0

= wt(f

!

)

and f

!

is an (n�m)-variable funtion with some degree d

0

� d. Note that d

0

must be greater than

0, sine if d

0

= 0, then w

0

= 0 or 2

n�m

, in whih ase W

f

(0) = 2

n

or �2

n

respetively and hene

f is a onstant funtion. By MEliee's theorem, wt(f

!

) � 0 mod 2

b

n�m�1

d

0



: Sine d

0

� d we get

n�m�1

d

0

>

n�m�1

d

and hene wt(f

!

) � 0 mod 2

b

n�m�1

d



: Thus W

f

(0) � 0 mod 2

m+1+b

n�m�1

d



: Sine for

1 � wt(!) � m, we have that W

f

(!) = 0, this proves the result for all 0 � wt(!) � m.

For wt(!) > m we proeed by indution on the weight of !. Let wt(!) = k > m. Then from

Theorem 3.1, W

f

(!) = 2

n

�

X

�<!

W

f

(�)� 2

k+1

w

1

; where w

1

= wt(f

!

) and f

!

is an (n � k)-variable

funtion with some degree d

1

� d. Again using Meliee's theorem and the fat that d

1

� d we get

w

1

� 0 mod 2

b

n�k�1

d



: It is easy to hek that for k > m, we have k+1+b

n�k�1

d

 > m+1+b

n�m�1

d

:

Thus 2

k+1

w

1

� 0 mod 2

m+1+b

n�m�1

d



. For � < !, we have that wt(�) < wt(!) and hene by the

indution hypothesis we get W

f

(�) � 0 mod 2

m+1b

n�m�1

d



for all � < !. This gives us

W

f

(!) � 0 mod 2

m+1+b

n�m�1

d



;

whih ompletes the indution step and the proof.

We an prove a stronger result than Corollary 3.2.
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Theorem 3.2 Let f be an (n;m; d;�)-CI nononstant funtion and ! 2 f0; 1g

n

, with wt(!) =

m+ i, for some i � 1. Then

W

f

(!) + x

i

W

f

(0) � 0 mod 2

m+2+b

n�m�2

d



;

where x

1

= 1 and for i > 1, x

i

= 1 �

i�1

X

j=1

�

m+i

m+j

�

x

j

.

Proof : The proof is by indution on wt(!) for wt(!) � m+ 1.

Base: wt(!) = m + 1. Using Theorem 3.1 and the fat that W

f

(�) = 0 for all 1 � wt(�) � m, we

get W

f

(!) +W

f

(0) = 2

n

� 2

m+2

w

0

; where w

0

= wt(f

!

) and f

!

is an (n�m� 1)-variable funtion.

As in Corollary 3.2, we an show that w

0

� 0 mod 2

b

n�m�2

d



. Thus we get

W

f

(!) + x

1

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d



:

Indution hypothesis: Assume the result is true for all ! with m+ 1 � wt(!) � m+ i� 1.

Indutive step: Let ! be suh that wt(!) = m+ i. Again using Theorem 3.1, we have

W

f

(!) = 2

n

�

X

�<!

W

f

(�) � 2

m+i+1

w

1

;

where w

1

= wt(f

!

), and f

!

is an (n � m � i)-variable funtion with some degree d

1

� d. Again

using MEliee's theorem and an argument similar to that of Corollary 3.2, we get

W

f

(!) +

X

�<!

W

f

(�) � 0 mod 2

m+ 2 + b

n�m�2

d



: (11)

Among the W

f

(�)'s suh that � < !, there are exatly

�

m+i

m+j

�

many �'s having wt(�) = m+ j (for

1 � j � i� 1). By the indution hypothesis, we have that for any suh �,

W

f

(�) + x

j

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d



: (12)

Substituing Equation 12 in Equation 11, we get,

W

f

(!) +W

f

(0)(1 �

�

m+i

m+i�1

�

x

i�1

� : : :�

�

m+i

m+1

�

x

1

) � 0 mod 2

m + 2 + b

n�m�2

d



:

Using the de�nition of x

i

, we get,

W

f

(!) + x

i

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d



;

whih is what we required to prove.

Some important onsequenes an be drawn from Theorem 3.2. A weaker version of the �rst

orollary has been obtained by Zheng and Zhang [15℄.
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Corollary 3.3 Let f be an (n;m; d;�)-CI nononstant funtion.

1. Let ! 2 f0; 1g

n

with wt(!) = m+ 1. Then W

f

(!) � 0 mod 2

m+ 2 + b

n�m�2

d



i�

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d



.

2. If W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d



, then W

f

(!) � 0 mod 2

m+ 2 + b

n�m�2

d



for all ! 2

f0; 1g

n

.

For resilient funtions W

f

(0) = 0 and hene the result beomes stronger.

Corollary 3.4 [1℄ Let f be an (n;m; d;�)-resilient funtion. Then

W

f

(!) � 0 mod 2

m + 2 + b

n�m�2

d



for all ! 2 f0; 1g

n

.

This result has reently been obtained by Carlet [1℄ using the numerial normal form of a Boolean

funtion [2℄. The next result improves upon the one obtained by Zheng and Zhang [15℄. It shows

that in ertain situations resilient and CI funtions have the same sort of divisibility results.

Corollary 3.5 Let f be an (n;m; d;�)-CI nononstant funtion and

�

n

m+1

�

> 2

2n�2m�2�2b

n�m�1

d



.

Then for all ! 2 f0; 1g

n

, we have,

W

f

(!) � 0 mod 2

m+ 2 + b

n�m�2

d



:

Proof : The proof uses a ounting argument similar to the one employed by Zheng and Zhang [15℄.

Sine f is m-CI for all ! 2 f0; 1g

n

, we have by Corollary 3.2,

W

f

(!) � 0 mod 2

m+1+b

n�m�1

d



:

Thus if W

f

(!) 6= 0, then W

f

(!) � 2

m+1+b

n�m�1

d



: Let y be the number of ! suh that W

f

(!) 6= 0.

Then by Parseval's theorem we have that y � 2

2n�2m�2�2b

n�m�1

d



. The number of ! suh that

wt(!) = m+1 is exatly

�

n

m+1

�

. Thus by the given ondition we get that there is at least one ! of

weight m+ 1 suh that W

f

(!) = 0. Using Corollary 3.3, the result then easily follows.

In fat, it is possible for CI and resilient funtions to have the same sort of divisibility results

in other situations also.

Corollary 3.6 Let f be an (n;m; d;�)-CI nononstant funtion and ! 2 f0; 1g

n

, with wt(!) =

m+ i, W

f

(!) � 0 mod 2

m+ 2 + b

n�m�2

d



and x

i

is odd. Then for all � 2 f0; 1g

n

,

W

f

(�) � 0 mod 2

m+ 2 + b

n�m�2

d



:

Proof : By Theorem 3.2, we have

W

f

(!) + x

i

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d



:

Sine W

f

(!) � 0 mod 2

m+ 2 + b

n�m�2

d



and x

i

is odd, it follows that

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d



. Hene using Corollary 3.3, the result follows.
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Corollary 3.7 1. Let f be an (n;m;�;�)-CI funtion and ! 2 f0; 1g

n

be suh that wt(!) = m.

Then f is balaned i� f

!

is balaned.

2. Let f be an (n;m;�;�)-resilient funtion and ! 2 f0; 1g

n

with wt(!) = m + 1. Then

W

f

(!) = 0 i� f

!

is balaned.

The next result shows that an (n� 2)-CI funtion must be balaned.

Proposition 3.2 For n � 4, let f be an (n; n� 2;�;�)-CI funtion. Then f must be balaned.

Proof : Write f as a onatenation of the form f

0

: : : f

2

n�2

�1

, where eah f

i

is a 2-variable funtion

and hene given by a 4-bit string. Sine f is (n� 2)-CI, using Theorem 3.1 of [9℄, we have,

wt(f

0

) = : : : = wt(f

2

n�2

�1

):

Let this ommon weight be w. If w = 0; 4, then f is a onstant funtion. If w = 2, then f is learly

balaned. Thus we have to only rule out the possibilities w = 1; 3. It is suÆient to onsider w = 1,

sine the ase w = 3 an be takled by onsidering the omplement of f and thus reduing to the

ase w = 1.

Sine w = 1, the funtion f

0

must be one of the form 1000; 0100; 0010; 0001. We onsider only

the form 1000, the other ases being similar. The funtion f

0

f

1

is 1-CI and hene f

1

must be of

the form 0001. Again f

0

f

2

must also be 1-CI and hene f

2

must also be of the form 0001. Also

f

1

f

3

must be 1-CI and this fores f

3

to be of the form 1000. Thus the string f

0

f

1

f

2

f

3

is of the form

1000000100011000. Now the funtion f

0

f

1

f

2

f

3

must be 2-CI, but it is not sine

wd(0110011001100110; 1000000100011000) = 4 � 12 = �8 6= 0;

and the string 0110011001100110 represents a linear funtion whih is nondegenerate on two vari-

ables.

Hene we get a ontradition whih proves the result.

4 Nonlinearity and Algebrai Degree

In this setion we work out the onsequenes on the nonlinearity and algebrai degree of the divis-

ibility results of the previous setion.

Theorem 4.1 Let f be an (n;m; d; x)-CI nononstant unbalaned funtion, K

1

= m + b

n�m�1

d

min





and K

2

= m + b

n�m�1

d

max



, where D = fdeg(f

!

) : ! 2 f0; 1g

n

; wt(!) = mg, d

min



= min(D) and

d

max



= max(D). Then

1. If n is even and K

1

>

n

2

� 1, then x � 2

n�1

� 2

K

1

.

2. If n is even and K

1

�

n

2

� 1, then x � 2

n�1

� 2

n

2

�1

� 2

K

2

.
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3. If n is odd and 2

n�1

� 2

K

1

� nlmax(n), then x � 2

n�1

� 2

K

1

.

4. If n is odd and 2

n�1

� 2

K

1

> nlmax(n), then x is less than or equal to the highest multiple of

2

K

2

whih is not greater than nlmax(n).

Proof : Let d

min



= deg(f

�

). Using Theorem 3.1, we an write W

f

(�) = 2

n

�

P

�<�

W

f

(�) �

2

m+1

wt(f

�

): Sine f is m-CI, we have W

f

(�) = 0 for all 1 � wt(�) � m. Also by MEliee's

theorem, we have wt(f

�

) � 0 mod 2

b

n�m�1

d

min





. Sine wt(�) = m, we get W

f

(0) � 0 mod 2

K

1

+1

and

hene d(f; l

0

) � 0 mod 2

K

1

. Further sine f is unbalaned d(f; l

0

) 6= 2

n�1

.

From this we learly have that x � 2

n�1

�2

K

1

. However, if n is even and K

1

�

n

2

�1, then we an

improve upon the upper bound on the nonlinearity. A funtion whose all Walsh Transform values

are �2

n

2

is bent and a CI funtion annot be bent. It an be shown in a way similar to Corollary 3.2

that for any ! 2 f0; 1g

n

, we have W

f

(!) � 0 mod 2

m+1+b

n�m�1

d

max





. Hene the nonlinearity must be

at least 2

K

2

less than the bent nonlinearity. Similar onsiderations hold for odd n.

Theorem 4.2 Let f be an (n;m; d; x)-resilient nononstant funtion, L

1

= m + 1 + b

n�m�2

d

min

r

 and

L

2

= m+ 1 + b

n�m�2

d

max

r

, where D = fdeg(f

!

) :W

f

(!) 6= 0; ! 2 f0; 1g

n

; wt(!) = m+ 1g,

d

min

r

= min(D) and d

max

r

= max(D). Then

1. If n is even and L

1

>

n

2

� 1, then x � 2

n�1

� 2

L

1

.

2. If n is even and L

1

�

n

2

� 1, then x � 2

n�1

� 2

n

2

�1

� 2

L

2

.

3. If n is odd and 2

n�1

� 2

L

1

� nlmax(n), then x � 2

n�1

� 2

L

1

.

4. If n is odd and 2

n�1

� 2

L

1

> nlmax(n), then x is less than or equal to the highest multiple of

2

L

2

whih is not greater than nlmax(n).

Proof : The proof is similar to that of Theorem 4.1. Again let d

min

r

= deg(f

�

). Theorem 3.1

then provides W

f

(�) = 2

n

�

P

�<�

W

f

(�) � 2

m+2

wt(f

�

); where wt(f

�

) � 0 mod 2

b

n�m�2

d

min

r



. Sine f

is m-resilient, W

f

(�) = 0 for all 0 � wt(�) � m. Also wt(�) = m + 1 and thus we get W

f

(�) �

0 mod 2

L

1

+1

. Further from the de�nition of d

min

r

we have W

f

(�) 6= 0. Thus d(f; l

�

) � 0 mod 2

L

1

and d(f; l

�

) 6= 2

n�1

. The rest of the details are similar to Theorem 4.1.

Theorem 4.2 re�nes the divisibility result obtained by Carlet [1℄. We an now obtain the following

result whih is a stronger version of the result obtained by Tarannikov [13℄ and Carlet [1℄.

Theorem 4.3 1. Let f be an (n;m; d; x)-CI funtion. If x 6� 0 mod 2

m+1

, then d = n � m.

Further, if x = 2

n�1

� 2

m

, then the ANF for f has all terms of degree n�m.

2. Let f be an (n;m; d; x)-resilient funtion. If x 6� 0 mod 2

m+2

, then d = n �m � 1. Further,

if x = 2

n�1

� 2

m+1

, then d = n�m� 1 and for any ! 2 f0; 1g

n

of weight m+1 we have that

either W

f

(!) = 0 (and hene f

!

is balaned) or deg(f

!

) = n�m� 1.
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Proof : We only prove (1), the proof of (2) being similar. From the proof of Theorem 4.1, we

get that x � 0 mod 2

m+b

n�m�1

d

max





. Thus if x 6� 0 mod 2

m+1

, then learly d

max



= n � m. Sine

d

max



� d � n�m, it follows that d = n�m. If x = 2

n�1

� 2

m

, we must have f to be unbalaned.

Further in Theorem 4.1 we must have d

min



= n�m. But this means that any subfuntion obtained

from f by setting exatly m variables to 0 has degree n�m. Again this is possible i� the ANF for

f has all terms of degree n �m.

The upper bound on nonlinearity for CI funtions is more than the upper bound on nonlinearity

for resilient funtions. However, using Corollaries 3.5 and 3.6 it an be shown that in ertain ases

the upper bound for nonlinearity of CI funtions is same as that of resilient funtions. We do not

provide the details here. Instead we will provide them in the full version of the paper.
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