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Abstra
t

In this paper we prove a general result on the Walsh Transform of an arbitrary Boolean

fun
tion. As a 
onsequen
e, we obtain several divisibility results on the Walsh Transform of


orrelation immune and resilient Boolean fun
tions. This allows us to improve upper bounds

on the nonlinearity of 
orrelation immune and resilient Boolean fun
tions. Also we provide new

ne
essary 
onditions on the algebrai
 normal form of 
orrelation immune/resilient fun
tions

attaining the maximum possible nonlinearity.

1 Introdu
tion

Boolean fun
tions are extensively used in stream 
ipher systems. Some of the important properties

for a Boolean fun
tion to be used in stream 
ipher systems are balan
edness, 
orrelation immu-

nity (CI), algebrai
 degree and nonlinearity. Constru
tion of Boolean fun
tions possessing a good


ombination of these properties have been proposed in [4, 10, 11, 13℄. However, it is important to

study the exa
t nature of the relationship between the above mentioned properties. This topi
 has

re
eived a lot of attention in re
ent times as eviden
ed by the papers [1, 10, 13, 15℄. The most re
ent

paper to 
onsider these relationships is by Carlet [1℄, where use is made of the numeri
al normal

form [2℄ to obtain 
ertain divisibilty results whi
h improve upon the divisibility results obtained

in [10℄.
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The Walsh Transform is an important tool for the analysis of Boolean fun
tions. The Walsh

Transform 
an be seen as a map from the n-dimensional hyper
ube to the integers. Here we obtain

a general result relating the Walsh Transform at a point ! to the Walsh Transfrom values at the

points in the sub
ube subtended by !. As a 
onsequen
e, we obtain some new and important

divisibility results. Our te
hnique 
learly brings out the role played by M
Elie
e's theorem in this

setting. Moreover, the general result on Walsh Transform of Boolean fun
tions that we obtain here

is important in its own right.

We use the divisibility results to obtain new upper bounds on the nonlinearities of CI and

resilient fun
tions. The upper bound for resilient fun
tions is a re�nement on the one obtained by

Carlet [1℄. Also we obtain new ne
essary 
onditions on the algebrai
 normal form of n-variable,

m-CI (resp. m-resilient) fun
tions having maximumnonlinearity 2

n�1

�2

m

(resp. 2

n�1

�2

m+1

). We

show that for n-variable, m-CI fun
tions to a
hieve nonlinearity of 2

n�1

� 2

m

, its algebrai
 normal

form (ANF) must have all terms of degree n �m. For resilient fun
tions, this statement be
omes

a bit weaker but is still stronger than the result obtained by Tarannikov [13℄ and Carlet [1℄. See

Theorem 4.3 for the exa
t statement on resilient fun
tions.

2 Preliminaries

In this se
tion we introdu
e a few basi
 
on
epts. We denote the addition operator over GF (2) by

�. Let s; s

1

; s

2

be two binary strings of same length p.

1. The Hamming distan
e between s

1

; s

2

is denoted by d(s

1

; s

2

) and is the number of pla
es s

1

and s

2

are unequal.

2. The Walsh Distan
e wd(s

1

; s

2

), between s

1

and s

2

, is denoted by wd(s

1

; s

2

) and is the number

of pla
es s

1

and s

2

are equal minus the number of pla
es s

1

and s

2

are unequal. The relation

between the Hamming and Walsh distan
es is the following: wd(s

1

; s

2

) = p� d(s

1

; s

2

).

3. the Hamming weight or simply the weight of s is the number of ones in s and is denoted by

wt(s).

Given a binary string s, its ith bit will be denoted by s

i

. An n-variable Boolean fun
tion f 
an be


onsidered to be represented by a binary string of length 2

n

, with respe
t to a �xed truth table. The

weight of the fun
tion f is denoted by wt(f) and is the number of ones in its binary representation.

A fun
tion is balan
ed if wt(f) = 2

n�1

.

An n-variable Boolean fun
tion f(X

n

; : : : ;X

1

) 
an be uniquely represented by a multivariate

polynomial over GF (2).

De�nition 2.1 Let f(X

n

; : : : ;X

1

) be an n-variable fun
tion. We 
an write

f(X

n

; : : : ;X

1

) = a

0

� (

i=n

M

i=1

a

i

X

i

)� (

M

1�i<j�n

a

ij

X

i

X

j

)� : : :� a

12:::n

X

1

X

2

: : :X

n

;
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where the 
oeÆ
ients a

0

; a

ij

; : : : ; a

12:::n

2 f0; 1g. This representation of f is 
alled the algebrai


normal form (ANF) of f . The number of variables in the highest order produ
t term with nonzero


oeÆ
ient is 
alled the algebrai
 degree, or simply degree of f .

Fun
tions of degree at most one are 
alled aÆne fun
tions. An aÆne fun
tion with 
onstant term

equal to zero is 
alled a linear fun
tion. The set of all n-variable aÆne (resp. linear) fun
tions is

denoted by A(n) (resp. L(n)).

De�nition 2.2 The nonlinearity nl(f) of an n-variable fun
tion f is de�ned as

nl(f) = min

g2A(n)

(d(f; g));

i.e. nl(f) is the distan
e of f from the set of all n-variable aÆne fun
tions. The maximum possible

nonlinearity for n-variable fun
tions is denoted by nlmax(n).

An important tool for the analysis of Boolean fun
tion is its Walsh transform, whi
h we de�ne

next [3℄.

De�nition 2.3 Let f(X) be an n-variable Boolean fun
tion. Let X = (X

n

; : : : ;X

1

) and ! =

(!

n

; : : : ; !

1

) both belong to f0; 1g

n

and < X;! >= X

n

!

n

� : : :�X

1

!

1

. Then the Walsh transform

of f(X) is a real valued fun
tion over f0; 1g

n

whi
h is de�ned as

W

f

(!) =

X

X2f0;1g

n

(�1)

f(X)�<X;!>

:

The Walsh transform is sometimes 
alled the spe
tral distribution or simply the spe
trum of a

Boolean fun
tion.

A fun
tion f of 2k variables is 
alled bent if W

f

(!) = �2

k

for all ! 2 f0; 1g

2k

. These fun
tions

are important in both 
ryptography and 
oding theory sin
e they a
hieve the maximum possible

nonlinearity among all 2k-variable fun
tions.

Correlation immune fun
tions were introdu
ed by Siegenthaler [12℄, to withstand a 
lass of

"divide-and-
onquer" atta
ks on 
ertain models of stream 
iphers. Xiao and Massey [5℄ provided

a spe
tral 
hara
terization of 
orrelation immune fun
tions. Here we state this 
hara
terization as

the de�nition of 
orrelation immunity.

De�nition 2.4 A fun
tion f(X

n

; : : : ;X

1

) is m-th order 
orrelation immune (CI) i� its Walsh

transform W

f

satis�es

W

f

(!) = 0; for 1 � wt(!) � m:

Further, if f is balan
ed then W

f

(0) = 0. Balan
ed m-th order 
orrelation immune fun
tions are


alled m-resilient fun
tions.
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Thus, a fun
tion f(X

n

; : : : ;X

1

) is m-resilient i� its Walsh transform W

f

satis�es

W

f

(!) = 0; for 0 � wt(!) � m:

The relationship between Walsh transform and Walsh distan
e is [7℄ W

f

(!) = wd(f;

L

i=n

i=1

!

i

X

i

).

Siegenthaler [12℄ showed that an n-variable, mth order CI fun
tion 
an have maximumdegree n�m

and if the fun
tion is balan
ed then the maximum degree possible is n�m� 1 (see also [5, 9℄).

We next present a few notations for future 
onvenien
e.

1. By H

r

, we denote the Hadamard matrix of order 2

r

de�ned re
ursively as.

H

1

=

"

1 1

1 �1

#

and for r > 1; H

r

= H

r�1


H

1

:

2. The inner produ
t between two n-bit ve
tors x; y is denoted by < x; y >.

3. By an m-CI (resp. m-resilient) fun
tion we denote a fun
tion whi
h is 
orrelation immune

(resp. resilient) of order m.

4. By an (n;m; d; x)-CI (resp. (n;m; d; x)-resilient) fun
tion we mean an n-variable, m-CI (resp.

m-resilient) fun
tion having degree d and nonlinearity x. Note that an (n;m; d; x)-resilient

fun
tion is 
ertainly (n;m; d; x)-CI but the opposite does not ne
essarily hold. In the above

notation, we may repla
e some 
omponent by � if we do not want to spe
ify it.

We will also use the following 
onsequen
e of M
Elie
e's theorem on 
y
li
 
odes (see [6℄). If f is

an n-variable, degree d fun
tion then wt(f) � 0 mod 2

b

n�1

d




.

3 Walsh Transform

In this se
tion we prove an important result on the Walsh Transform of an arbitrary Boolean

fun
tion. The Walsh Transform 
an be interpreted as a fun
tion from the n-dimensional hyper
ube

to the set of integers. Let x; y 2 f0; 1g

n

, i.e., they are points on the n-dimensional hyper
ube. We

say x � y if x

i

� y

i

for all 1 � i � n. Further x < y if x � y and x 6= y. Let ! be a point on the

n-dimensional hyper
ube. Then the sub
ube subtended by ! is given by the set of all points � su
h

that � � !. We now present a result whi
h relates the value of the Walsh transform at ! to the

values of the Walsh transform at all the points in the sub
ube subtended by !. This is a 
ru
ial

result as it allows us to prove some general divisibility results as its 
onsequen
es. We begin with

the following result.

Proposition 3.1 Let g(X

n

; : : : ;X

1

) be an n-variable Boolean fun
tion and r be an integer in the

range 1 � r � n. For 0 � i � 2

r

� 1, let g

i

(X

n�r

; : : : ;X

1

) be de�ned as follows

g

i

(X

n�r

; : : : ;X

1

) = g(X

n

= i

r

; : : : ;X

n�r+1

= i

1

;X

n�r

; : : : ;X

1

);
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where i

r

: : : i

1

is the r-bit binary expansion of i. Let w

i

= wt(g

i

). Then

H

r

[w

0

; : : : ; w

2

r

�1

℄

T

= [a

0

; : : : ; a

2

r

�1

℄

T

;

where H

r

is the Hadamard matrix of order 2

r

and

a

0

=

2

n

�W

g

(0)

2

; a

i

= �

W

g

(�

i

)

2

for i > 0:

Here �

i

is the n-bit ve
tor formed by appending (n� r) zeros to the end of i

r

: : : i

1

.

Proof : The �rst row of H

r

is the all one row and so

a

0

=

k=2

r

�1

X

k=0

w

i

= wt(g) = d(g; l

0

);

where l

0

is the all zero linear fun
tion. Using the relation W

f

(0) = wd(g; l

0

) = 2

n

� 2d(g; l

0

) we get

the result for a

0

. Now we 
onsider the 
ase i > 0. Consider

l

�

i

(X

n

; : : : ;X

1

) =< �

i

; (X

n

; : : : ;X

1

) >=< (i

r

; : : : ; i

1

; 0; : : : ; 0); (X

n

; : : : ;X

1

) > :

So W

g

(�

i

) = wd(g; l

�

i

). De�ne �

i

(Y

r

; : : : ; Y

1

) =< (i

r

; : : : ; i

1

); (Y

r

; : : : ; Y

1

) >. Then the ith row

R

i

= (R

i;0

; : : : ; R

i;2

r

�1

) of H

r

is given by R

i;j

= (�1)

�

i

(j

r

;:::;j

1

)

, where j

r

: : : j

1

is the r-bit binary

expansion of j. Note that a

i

=< (R

i;0

; : : : ; R

i;2

r

�1

); (w

0

; : : : ; w

2

r

�1

) >. For 0 � k � 2

r

� 1, de�ne

l

k

(X

n�r

; : : : ;X

1

) = l

�

i

(X

n

= k

r

; : : : ;X

n�r+1

= k

1

;X

n�r

; : : : ;X

1

);

where k

r

: : : k

1

is the r-bit binary expansion of k. Clearly,

wd(g; l

�

i

) =

k=2

r

�1

X

k=0

wd(g

k

; l

k

) =

k=2

r

�1

X

k=0

(2

n�r

� 2d(g

k

; l

k

)): (1)

The following 
omputation shows that ea
h l

k

is a 
onstant fun
tion.

l

k

(X

n�r

; : : : ;X

1

) = l

�

i

(X

n

= k

r

; : : : ;X

n�r+1

= k

1

;X

n�r

; : : : ;X

1

)

= < (i

r

; : : : ; i

1

; 0; : : : ; 0); (X

n

= k

r

; : : : ;X

n�r+1

= k

1

;X

n�r

; : : : ;X

1

) >

= < (i

r

; : : : ; i

1

); (k

r

; : : : ; k

1

) >

= �

i

(k

r

; : : : ; k

1

)

Sin
e l

k

is 
onstant the value of d(g

k

; l

k

) is wt(g

k

) or 2

n�r

� wt(g

k

) a

ording as �

i

(k

r

; : : : ; k

1

) is 0

or 1. This is expressed by writing

d(g

k

; l

k

) = 2

n�r

�

i

(k

r

; : : : ; k

1

) + (�1)

�

i

(k

r

;:::;k

1

)

wt(g

k

):
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We now 
ontinue the 
omputation of Equation 1.

wd(g; l

�

i

) =

k=2

r

�1

X

k=0

(2

n�r

� 2(2

n�r

�

i

(k

r

; : : : ; k

1

) + (�1)

�

i

(k

r

;:::;k

1

)

wt(g

k

))) (2)

= 2

n

� 2

n�r+1

k=2

r

�1

X

k=0

�

i

(k

r

; : : : ; k

1

)� 2

k=2

r

�1

X

k=0

(�1)

�

i

(k

r

;:::;k

1

)

wt(g

k

) (3)

Sin
e i > 0, the fun
tion �

i

(k

r

; : : : ; k

1

) is balan
ed and hen
e

k=2

r

�1

X

k=0

�

i

(k

r

; : : : ; k

1

) = 2

r�1

. Thus we

get

wd(g; l

�

i

) = �2

k=2

r

�1

X

k=0

(�1)

�

i

(k

r

;:::;k

1

)

wt(g

k

) (4)

= �2

k=2

r

�1

X

k=0

R

i;k

w

k

(5)

= �2 < (R

i;0

; : : : ; R

i;2

r

�1

); (w

0

; : : : ; w

2

r

�1

) > (6)

= �2a

i

: (7)

This gives the result.

Let f be an n-variable Boolean fun
tion and ! be in f0; 1g

n

with wt(!) = r. By f

!

we denote

the (n � r)-variable Boolean fun
tion de�ned as follows. Let i

1

; : : : ; i

r

be su
h that !

i

1

= : : : =

!

i

r

= 1 and !

j

= 0 for j =2 fi

1

; : : : ; i

r

g. Then f

!

is formed from f by setting variable X

j

to 0 i�

j 2 fi

1

; : : : ; i

r

g.

Theorem 3.1 Let f(X

n

; : : : ;X

1

) be a Boolean fun
tion and ! 2 f0; 1g

n

. Then

W

f

(!) = 2

n

�

X

�<!

W

f

(�)� 2

wt(!)+1

wt(f

!

):

Proof : We �rst note that W

f

(!) = wd(f; l

!

). Let wt(!) = r, and

l

!

(X

n

; : : : ;X

1

) =< !; (X

n

; : : : ;X

1

) >= X

i

r

� : : :�X

i

1

:

Let � be a permutation on the variables su
h that

l(X

n

; : : : ;X

1

) = l

!

(�(X

n

; : : : ;X

1

)) = X

n

� : : :�X

n�r+1

:

Let g(X

n

; : : : ;X

1

) = f(�(X

n

; : : : ;X

1

)). Then for any 
 2 f0; 1g

n

we have

W

g

(
) = wd(g(X

n

; : : : ;X

1

); l




(X

n

; : : : ;X

1

))

= wd(f(�(X

n

; : : : ;X

1

)); < 
; (X

n

; : : : ;X

1

) >)

= wd(f(�

�1

(�(X

n

; : : : ;X

1

))); < 
; �

�1

(X

n

; : : : ;X

1

) >)

= wd(f(X

n

; : : : ;X

1

); < �(
); (X

n

; : : : ;X

1

) >)

= W

f

(�(
))
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As a 
onsequen
e we have W

f

(!) = wd(f; l

!

) = wd(g; l) = W

g

(�), where � is the n-bit ve
tor

having the �rst r bits as 1. Also wt(f

!

) = wt(g

�

). From this it follows that it is suÆ
ient to prove

the result for W

g

(�).

De�ne fun
tions g

0

; : : : ; g

2

r

�1

as follows.

g

i

(X

n�r

; : : : ;X

1

) = g(X

n

= i

r

; : : : ;X

n�r+1

= i

1

;X

n�r

; : : : ;X

1

);

where i

r

; : : : ; i

1

is the r-bit binary expansion of i. Also for 0 � i � 2

r

� 1, let �

i

be formed by


on
atenating (n � r) zeros to the end of i

r

: : : i

1

. Then it is easy to see that ea
h �

i

� � and

�

2

r

�1

= �. Also the �

i

's are exa
tly the points on the sub
ube subtended by �.

Let w

i

= wt(g

i

). Then w

0

= wt(g

�

) = wt(f

!

). Using Proposition 3.1 we write

H

r

[w

0

; : : : ; w

2

r

�1

℄

T

= [a

0

; : : : ; a

2

r

�1

℄

T

;

where H

r

is the Hadamard matrix of order 2

r

and

a

0

=

2

n

�W

g

(0)

2

; a

i

= �

W

g

(�

i

)

2

for i > 0: (8)

Sin
e H

r

is a Hadamard matrix, it follows that H

r

H

r

= 2

r

I

r

, where I

r

is the identity matrix of

order 2

r

. Hen
e we get

2

r

[w

0

; : : : ; w

2

r

�1

℄

T

= H

r

[a

0

; : : : ; a

2

r

�1

℄

T

: (9)

The �rst row ofH

r

is the all one row, hen
e equating the �rst 
omponent on both sides of Equation 9,

we get

X

0�i�2

r

�1

a

i

= 2

r

w

0

:

We substitute the a

i

's using Equations 8 to get,

2

n

�W

g

(0)

2

+

X

1�i�2

r

�1

�

W

g

(�

i

)

2

= 2

r

w

0

:

Rearranging the terms and noting that � = �

2

r

�1

and the �

i

's are exa
tly the points on the sub
ube

subtended by � gives the required relation.

Remark 3.1 Note that Equation 9 shows something stronger than the statement of Theorem 3.1.

It shows that 2

r+1

w

i

= 2

n

� < �

i

; (W

g

(0); : : : ;W

g

(�)) >, where �

i

(j) = (�1)

l

i

(j)

and l

i

(x) =< i; x >.

Thus using Equation 9 we 
an a
tually determine the w

i

's. This is a partial inverse Walsh Transform

on a sub
ube and is a stronger result than Theorem 3.1. In fa
t, just Theorem 3.1 itself has a ni
e

small and dire
t proof and has been obtained by Yuriy Tarannikov [14℄.

We �rst use Theorem 3.1 to show that a bent fun
tion on 2k variables has maximum degree k,

whi
h is a well known result on bent fun
tions [8℄.
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Corollary 3.1 [8℄ Let f be a bent fun
tion on 2k variables. Then the maximum possible degree of

f is k.

Proof : Suppose the degree of f is r > k. Without loss of generality assume that the termX

1

: : :X

r

is present in the ANF of f . Choose ! to be su
h that !

1

= : : : = !

r

= 0 and !

r+1

= : : : = !

2k

= 1.

Clearly wt(!) = 2k � r. From Theorem 3.1, we have

X

��!

W

f

(�) = 2

n

� 2

wt(!)+1

wt(f

!

): (10)

Sin
e f is bent for any ! 2 f0; 1g

2k

, we have W

f

(!) = �2

k

. Let the number of � � ! su
h that

W

f

(�) = 2

k

be a and then the number of � � ! su
h that W

f

(�) = �2

k

is 2

2k�r

� a. Thus the left

hand side of Equation 10 be
omes 2

k

(2a � 2

2k�r

) = 2

k+1

(a� 2

2k�r�1

). (Here we use r < 2k, sin
e

if r = 2k, then the weight of f is odd and hen
e none of the Walsh Transform values 
an be 2

k

.)

Thus the left hand side is 
ongruent to 0 mod 2

k+1

. Using the de�nition of f

!

, we have that f

!

is an

r-variable fun
tion. From the 
hoi
e of ! the term X

1

: : :X

r

is in f

!

and hen
e the degree of f

!

is r.

Thus wt(f

!

) is odd. Let S be the quantity on the right side of Equation 10. Then S � 0 mod 2

2k�r+1

and sin
e wt(f

!

) is odd S 6� 0 mod 2

2k�r+2

. Sin
e r > k, we have 2k � r + 1 < k + 1. Therefore

S 6� 0 mod 2

k+1

. But this is a 
ontradi
tion and hen
e the result is proved.

We now turn to the appli
ation of Theorem 3.1 to 
orrelation immune fun
tions. The following

is an important 
onsequen
e of Theorem 3.1.

Corollary 3.2 Let f be an (n;m; d;�)-CI non
onstant fun
tion. Then for all ! 2 f0; 1g

n

,

W

f

(!) � 0 mod 2

m+1+b

n�m�1

d




:

Proof : Choose ! in Theorem 3.1 with wt(!) = m to get W

f

(!) = 2

n

�

P

�<!

W

f

(�) � 2

m+1

w

0

:

Sin
e f is m-CI, W

f

(�) = 0 for all 1 � wt(�) � m. Thus W

f

(0) = 2

n

� 2

m+1

w

0

; where w

0

= wt(f

!

)

and f

!

is an (n�m)-variable fun
tion with some degree d

0

� d. Note that d

0

must be greater than

0, sin
e if d

0

= 0, then w

0

= 0 or 2

n�m

, in whi
h 
ase W

f

(0) = 2

n

or �2

n

respe
tively and hen
e

f is a 
onstant fun
tion. By M
Elie
e's theorem, wt(f

!

) � 0 mod 2

b

n�m�1

d

0




: Sin
e d

0

� d we get

n�m�1

d

0

>

n�m�1

d

and hen
e wt(f

!

) � 0 mod 2

b

n�m�1

d




: Thus W

f

(0) � 0 mod 2

m+1+b

n�m�1

d




: Sin
e for

1 � wt(!) � m, we have that W

f

(!) = 0, this proves the result for all 0 � wt(!) � m.

For wt(!) > m we pro
eed by indu
tion on the weight of !. Let wt(!) = k > m. Then from

Theorem 3.1, W

f

(!) = 2

n

�

X

�<!

W

f

(�)� 2

k+1

w

1

; where w

1

= wt(f

!

) and f

!

is an (n � k)-variable

fun
tion with some degree d

1

� d. Again using M
elie
e's theorem and the fa
t that d

1

� d we get

w

1

� 0 mod 2

b

n�k�1

d




: It is easy to 
he
k that for k > m, we have k+1+b

n�k�1

d


 > m+1+b

n�m�1

d


:

Thus 2

k+1

w

1

� 0 mod 2

m+1+b

n�m�1

d




. For � < !, we have that wt(�) < wt(!) and hen
e by the

indu
tion hypothesis we get W

f

(�) � 0 mod 2

m+1b

n�m�1

d




for all � < !. This gives us

W

f

(!) � 0 mod 2

m+1+b

n�m�1

d




;

whi
h 
ompletes the indu
tion step and the proof.

We 
an prove a stronger result than Corollary 3.2.
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Theorem 3.2 Let f be an (n;m; d;�)-CI non
onstant fun
tion and ! 2 f0; 1g

n

, with wt(!) =

m+ i, for some i � 1. Then

W

f

(!) + x

i

W

f

(0) � 0 mod 2

m+2+b

n�m�2

d




;

where x

1

= 1 and for i > 1, x

i

= 1 �

i�1

X

j=1

�

m+i

m+j

�

x

j

.

Proof : The proof is by indu
tion on wt(!) for wt(!) � m+ 1.

Base: wt(!) = m + 1. Using Theorem 3.1 and the fa
t that W

f

(�) = 0 for all 1 � wt(�) � m, we

get W

f

(!) +W

f

(0) = 2

n

� 2

m+2

w

0

; where w

0

= wt(f

!

) and f

!

is an (n�m� 1)-variable fun
tion.

As in Corollary 3.2, we 
an show that w

0

� 0 mod 2

b

n�m�2

d




. Thus we get

W

f

(!) + x

1

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d




:

Indu
tion hypothesis: Assume the result is true for all ! with m+ 1 � wt(!) � m+ i� 1.

Indu
tive step: Let ! be su
h that wt(!) = m+ i. Again using Theorem 3.1, we have

W

f

(!) = 2

n

�

X

�<!

W

f

(�) � 2

m+i+1

w

1

;

where w

1

= wt(f

!

), and f

!

is an (n � m � i)-variable fun
tion with some degree d

1

� d. Again

using M
Elie
e's theorem and an argument similar to that of Corollary 3.2, we get

W

f

(!) +

X

�<!

W

f

(�) � 0 mod 2

m+ 2 + b

n�m�2

d




: (11)

Among the W

f

(�)'s su
h that � < !, there are exa
tly

�

m+i

m+j

�

many �'s having wt(�) = m+ j (for

1 � j � i� 1). By the indu
tion hypothesis, we have that for any su
h �,

W

f

(�) + x

j

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d




: (12)

Substituing Equation 12 in Equation 11, we get,

W

f

(!) +W

f

(0)(1 �

�

m+i

m+i�1

�

x

i�1

� : : :�

�

m+i

m+1

�

x

1

) � 0 mod 2

m + 2 + b

n�m�2

d




:

Using the de�nition of x

i

, we get,

W

f

(!) + x

i

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d




;

whi
h is what we required to prove.

Some important 
onsequen
es 
an be drawn from Theorem 3.2. A weaker version of the �rst


orollary has been obtained by Zheng and Zhang [15℄.
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Corollary 3.3 Let f be an (n;m; d;�)-CI non
onstant fun
tion.

1. Let ! 2 f0; 1g

n

with wt(!) = m+ 1. Then W

f

(!) � 0 mod 2

m+ 2 + b

n�m�2

d




i�

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d




.

2. If W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d




, then W

f

(!) � 0 mod 2

m+ 2 + b

n�m�2

d




for all ! 2

f0; 1g

n

.

For resilient fun
tions W

f

(0) = 0 and hen
e the result be
omes stronger.

Corollary 3.4 [1℄ Let f be an (n;m; d;�)-resilient fun
tion. Then

W

f

(!) � 0 mod 2

m + 2 + b

n�m�2

d




for all ! 2 f0; 1g

n

.

This result has re
ently been obtained by Carlet [1℄ using the numeri
al normal form of a Boolean

fun
tion [2℄. The next result improves upon the one obtained by Zheng and Zhang [15℄. It shows

that in 
ertain situations resilient and CI fun
tions have the same sort of divisibility results.

Corollary 3.5 Let f be an (n;m; d;�)-CI non
onstant fun
tion and

�

n

m+1

�

> 2

2n�2m�2�2b

n�m�1

d




.

Then for all ! 2 f0; 1g

n

, we have,

W

f

(!) � 0 mod 2

m+ 2 + b

n�m�2

d




:

Proof : The proof uses a 
ounting argument similar to the one employed by Zheng and Zhang [15℄.

Sin
e f is m-CI for all ! 2 f0; 1g

n

, we have by Corollary 3.2,

W

f

(!) � 0 mod 2

m+1+b

n�m�1

d




:

Thus if W

f

(!) 6= 0, then W

f

(!) � 2

m+1+b

n�m�1

d




: Let y be the number of ! su
h that W

f

(!) 6= 0.

Then by Parseval's theorem we have that y � 2

2n�2m�2�2b

n�m�1

d




. The number of ! su
h that

wt(!) = m+1 is exa
tly

�

n

m+1

�

. Thus by the given 
ondition we get that there is at least one ! of

weight m+ 1 su
h that W

f

(!) = 0. Using Corollary 3.3, the result then easily follows.

In fa
t, it is possible for CI and resilient fun
tions to have the same sort of divisibility results

in other situations also.

Corollary 3.6 Let f be an (n;m; d;�)-CI non
onstant fun
tion and ! 2 f0; 1g

n

, with wt(!) =

m+ i, W

f

(!) � 0 mod 2

m+ 2 + b

n�m�2

d




and x

i

is odd. Then for all � 2 f0; 1g

n

,

W

f

(�) � 0 mod 2

m+ 2 + b

n�m�2

d




:

Proof : By Theorem 3.2, we have

W

f

(!) + x

i

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d




:

Sin
e W

f

(!) � 0 mod 2

m+ 2 + b

n�m�2

d




and x

i

is odd, it follows that

W

f

(0) � 0 mod 2

m+ 2 + b

n�m�2

d




. Hen
e using Corollary 3.3, the result follows.
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Corollary 3.7 1. Let f be an (n;m;�;�)-CI fun
tion and ! 2 f0; 1g

n

be su
h that wt(!) = m.

Then f is balan
ed i� f

!

is balan
ed.

2. Let f be an (n;m;�;�)-resilient fun
tion and ! 2 f0; 1g

n

with wt(!) = m + 1. Then

W

f

(!) = 0 i� f

!

is balan
ed.

The next result shows that an (n� 2)-CI fun
tion must be balan
ed.

Proposition 3.2 For n � 4, let f be an (n; n� 2;�;�)-CI fun
tion. Then f must be balan
ed.

Proof : Write f as a 
on
atenation of the form f

0

: : : f

2

n�2

�1

, where ea
h f

i

is a 2-variable fun
tion

and hen
e given by a 4-bit string. Sin
e f is (n� 2)-CI, using Theorem 3.1 of [9℄, we have,

wt(f

0

) = : : : = wt(f

2

n�2

�1

):

Let this 
ommon weight be w. If w = 0; 4, then f is a 
onstant fun
tion. If w = 2, then f is 
learly

balan
ed. Thus we have to only rule out the possibilities w = 1; 3. It is suÆ
ient to 
onsider w = 1,

sin
e the 
ase w = 3 
an be ta
kled by 
onsidering the 
omplement of f and thus redu
ing to the


ase w = 1.

Sin
e w = 1, the fun
tion f

0

must be one of the form 1000; 0100; 0010; 0001. We 
onsider only

the form 1000, the other 
ases being similar. The fun
tion f

0

f

1

is 1-CI and hen
e f

1

must be of

the form 0001. Again f

0

f

2

must also be 1-CI and hen
e f

2

must also be of the form 0001. Also

f

1

f

3

must be 1-CI and this for
es f

3

to be of the form 1000. Thus the string f

0

f

1

f

2

f

3

is of the form

1000000100011000. Now the fun
tion f

0

f

1

f

2

f

3

must be 2-CI, but it is not sin
e

wd(0110011001100110; 1000000100011000) = 4 � 12 = �8 6= 0;

and the string 0110011001100110 represents a linear fun
tion whi
h is nondegenerate on two vari-

ables.

Hen
e we get a 
ontradi
tion whi
h proves the result.

4 Nonlinearity and Algebrai
 Degree

In this se
tion we work out the 
onsequen
es on the nonlinearity and algebrai
 degree of the divis-

ibility results of the previous se
tion.

Theorem 4.1 Let f be an (n;m; d; x)-CI non
onstant unbalan
ed fun
tion, K

1

= m + b

n�m�1

d

min







and K

2

= m + b

n�m�1

d

max





, where D = fdeg(f

!

) : ! 2 f0; 1g

n

; wt(!) = mg, d

min




= min(D) and

d

max




= max(D). Then

1. If n is even and K

1

>

n

2

� 1, then x � 2

n�1

� 2

K

1

.

2. If n is even and K

1

�

n

2

� 1, then x � 2

n�1

� 2

n

2

�1

� 2

K

2

.
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3. If n is odd and 2

n�1

� 2

K

1

� nlmax(n), then x � 2

n�1

� 2

K

1

.

4. If n is odd and 2

n�1

� 2

K

1

> nlmax(n), then x is less than or equal to the highest multiple of

2

K

2

whi
h is not greater than nlmax(n).

Proof : Let d

min




= deg(f

�

). Using Theorem 3.1, we 
an write W

f

(�) = 2

n

�

P

�<�

W

f

(�) �

2

m+1

wt(f

�

): Sin
e f is m-CI, we have W

f

(�) = 0 for all 1 � wt(�) � m. Also by M
Elie
e's

theorem, we have wt(f

�

) � 0 mod 2

b

n�m�1

d

min







. Sin
e wt(�) = m, we get W

f

(0) � 0 mod 2

K

1

+1

and

hen
e d(f; l

0

) � 0 mod 2

K

1

. Further sin
e f is unbalan
ed d(f; l

0

) 6= 2

n�1

.

From this we 
learly have that x � 2

n�1

�2

K

1

. However, if n is even and K

1

�

n

2

�1, then we 
an

improve upon the upper bound on the nonlinearity. A fun
tion whose all Walsh Transform values

are �2

n

2

is bent and a CI fun
tion 
annot be bent. It 
an be shown in a way similar to Corollary 3.2

that for any ! 2 f0; 1g

n

, we have W

f

(!) � 0 mod 2

m+1+b

n�m�1

d

max







. Hen
e the nonlinearity must be

at least 2

K

2

less than the bent nonlinearity. Similar 
onsiderations hold for odd n.

Theorem 4.2 Let f be an (n;m; d; x)-resilient non
onstant fun
tion, L

1

= m + 1 + b

n�m�2

d

min

r


 and

L

2

= m+ 1 + b

n�m�2

d

max

r


, where D = fdeg(f

!

) :W

f

(!) 6= 0; ! 2 f0; 1g

n

; wt(!) = m+ 1g,

d

min

r

= min(D) and d

max

r

= max(D). Then

1. If n is even and L

1

>

n

2

� 1, then x � 2

n�1

� 2

L

1

.

2. If n is even and L

1

�

n

2

� 1, then x � 2

n�1

� 2

n

2

�1

� 2

L

2

.

3. If n is odd and 2

n�1

� 2

L

1

� nlmax(n), then x � 2

n�1

� 2

L

1

.

4. If n is odd and 2

n�1

� 2

L

1

> nlmax(n), then x is less than or equal to the highest multiple of

2

L

2

whi
h is not greater than nlmax(n).

Proof : The proof is similar to that of Theorem 4.1. Again let d

min

r

= deg(f

�

). Theorem 3.1

then provides W

f

(�) = 2

n

�

P

�<�

W

f

(�) � 2

m+2

wt(f

�

); where wt(f

�

) � 0 mod 2

b

n�m�2

d

min

r




. Sin
e f

is m-resilient, W

f

(�) = 0 for all 0 � wt(�) � m. Also wt(�) = m + 1 and thus we get W

f

(�) �

0 mod 2

L

1

+1

. Further from the de�nition of d

min

r

we have W

f

(�) 6= 0. Thus d(f; l

�

) � 0 mod 2

L

1

and d(f; l

�

) 6= 2

n�1

. The rest of the details are similar to Theorem 4.1.

Theorem 4.2 re�nes the divisibility result obtained by Carlet [1℄. We 
an now obtain the following

result whi
h is a stronger version of the result obtained by Tarannikov [13℄ and Carlet [1℄.

Theorem 4.3 1. Let f be an (n;m; d; x)-CI fun
tion. If x 6� 0 mod 2

m+1

, then d = n � m.

Further, if x = 2

n�1

� 2

m

, then the ANF for f has all terms of degree n�m.

2. Let f be an (n;m; d; x)-resilient fun
tion. If x 6� 0 mod 2

m+2

, then d = n �m � 1. Further,

if x = 2

n�1

� 2

m+1

, then d = n�m� 1 and for any ! 2 f0; 1g

n

of weight m+1 we have that

either W

f

(!) = 0 (and hen
e f

!

is balan
ed) or deg(f

!

) = n�m� 1.
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Proof : We only prove (1), the proof of (2) being similar. From the proof of Theorem 4.1, we

get that x � 0 mod 2

m+b

n�m�1

d

max







. Thus if x 6� 0 mod 2

m+1

, then 
learly d

max




= n � m. Sin
e

d

max




� d � n�m, it follows that d = n�m. If x = 2

n�1

� 2

m

, we must have f to be unbalan
ed.

Further in Theorem 4.1 we must have d

min




= n�m. But this means that any subfun
tion obtained

from f by setting exa
tly m variables to 0 has degree n�m. Again this is possible i� the ANF for

f has all terms of degree n �m.

The upper bound on nonlinearity for CI fun
tions is more than the upper bound on nonlinearity

for resilient fun
tions. However, using Corollaries 3.5 and 3.6 it 
an be shown that in 
ertain 
ases

the upper bound for nonlinearity of CI fun
tions is same as that of resilient fun
tions. We do not

provide the details here. Instead we will provide them in the full version of the paper.
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