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Abstract

In this paper we prove a general result on the Walsh Transform of an arbitrary Boolean
function. As a consequence, we obtain several divisibility results on the Walsh Transform of
correlation immune and resilient Boolean functions. This allows us to improve upper bounds
on the nonlinearity of correlation immune and resilient Boolean functions. Also we provide new
necessary conditions on the algebraic normal form of correlation immune/resilient functions
attaining the maximum possible nonlinearity.

1 Introduction

Boolean functions are extensively used in stream cipher systems. Some of the important properties
for a Boolean function to be used in stream cipher systems are balancedness, correlation immu-
nity (CI), algebraic degree and nonlinearity. Construction of Boolean functions possessing a good
combination of these properties have been proposed in [4, 10, 11, 13]. However, it is important to
study the exact nature of the relationship between the above mentioned properties. This topic has
received a lot of attention in recent times as evidenced by the papers [1, 10, 13, 15]. The most recent
paper to consider these relationships is by Carlet [1], where use is made of the numerical normal
form [2] to obtain certain divisibilty results which improve upon the divisibility results obtained

in [10].
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The Walsh Transform is an important tool for the analysis of Boolean functions. The Walsh
Transform can be seen as a map from the n-dimensional hypercube to the integers. Here we obtain
a general result relating the Walsh Transform at a point w to the Walsh Transfrom values at the
points in the subcube subtended by w. As a consequence, we obtain some new and important
divisibility results. Our technique clearly brings out the role played by McEliece’s theorem in this
setting. Moreover, the general result on Walsh Transform of Boolean functions that we obtain here
is important in its own right.

We use the divisibility results to obtain new upper bounds on the nonlinearities of CI and
resilient functions. The upper bound for resilient functions is a refinement on the one obtained by
Carlet [1]. Also we obtain new necessary conditions on the algebraic normal form of n-variable,
m-CI (resp. m-resilient) functions having maximum nonlinearity 2"~ — 2™ (resp. 2"~ —2m+1) We
show that for n-variable, m-CI functions to achieve nonlinearity of 2"~ — 2™ its algebraic normal
form (ANF) must have all terms of degree n — m. For resilient functions, this statement becomes
a bit weaker but is still stronger than the result obtained by Tarannikov [13] and Carlet [1]. See
Theorem 4.3 for the exact statement on resilient functions.

2 Preliminaries

In this section we introduce a few basic concepts. We denote the addition operator over GF(2) by
@. Let s, 51,52 be two binary strings of same length p.

1. The Hamming distance between sy, sy is denoted by d(sy, s3) and is the number of places s
and s, are unequal.

2. The Walsh Distance wd(sy, s3), between s; and sy, is denoted by wd(s1, s2) and is the number
of places s; and sy are equal minus the number of places s; and s, are unequal. The relation
between the Hamming and Walsh distances is the following: wd(s1, s2) = p — d(s1, $2).

3. the Hamming weight or simply the weight of s is the number of ones in s and is denoted by
wt(s).

Given a binary string s, its ¢th bit will be denoted by s;. An n-variable Boolean function f can be
considered to be represented by a binary string of length 2", with respect to a fixed truth table. The
weight of the function f is denoted by wt(f) and is the number of ones in its binary representation.
A function is balanced if wt(f) = 2"~1.

An n-variable Boolean function f(X,,...,Xi) can be uniquely represented by a multivariate
polynomial over GF(2).

Definition 2.1 Let f(X,,...,X1) be an n-variable function. We can write

f(Xn,...,Xl) = ao@(@a,X,)@( @ a,]X,X])@@alanleXn,



where the coefficients ag, a;j,...,a12.n € {0,1}. This representation of f is called the algebraic
normal form (ANF) of f. The number of variables in the highest order product term with nonzero
coefficient is called the algebraic degree, or simply degree of f.

Functions of degree at most one are called affine functions. An affine function with constant term
equal to zero is called a linear function. The set of all n-variable affine (resp. linear) functions is

denoted by A(n) (resp. L(n)).

Definition 2.2 The nonlinearity nl(f) of an n-variable function f is defined as

nl(f) = min (d(f,9)),

g€A(n)

i.e. nl(f) is the distance of f from the set of all n-variable affine functions. The mazimum possible
nonlinearity for n-variable functions is denoted by nlmax(n).

An important tool for the analysis of Boolean function is its Walsh transform, which we define
next [3].

Definition 2.3 Let f(X) be an n-variable Boolean function. Let X = (X,,..., X)) and @ =
(Wny - . wi) both belong to {0,1}" and < X, @ >= X, w, @ ... DH Xjw;. Then the Walsh transform
of f(X) is a real valued function over {0,1}" which is defined as

Wi@) = 3 (-1,

Xe{o,1}7

The Walsh transform is sometimes called the spectral distribution or simply the spectrum of a
Boolean function.

A function f of 2k variables is called bent if W;(w) = 42" for all @ € {0,1}?*. These functions
are 1mportant in both cryptography and coding theory since they achieve the maximum possible
nonlinearity among all 2k-variable functions.

Correlation immune functions were introduced by Siegenthaler [12], to withstand a class of
”divide-and-conquer” attacks on certain models of stream ciphers. Xiao and Massey [5] provided
a spectral characterization of correlation immune functions. Here we state this characterization as
the definition of correlation immunity.

Definition 2.4 A function f(X,,...,X1) is m-th order correlation immune (CI) iff its Walsh
transform W; satisfies
Wi(w) =0, forl < wt(w) < m.

Further, if f is balanced then W;(0) = 0. Balanced m-th order correlation immune functions are
called m-resilient functions.



Thus, a function f(X,,...,X1) is m-resilient iff its Walsh transform W; satisfies

Wi(w) =0, for 0 < wt(@w) < m.
The relationship between Walsh transform and Walsh distance is [7] Wi (@) = wd(f, ®'ZF w; X;).
Siegenthaler [12] showed that an n-variable, mth order CI function can have maximum degree n —m

and if the function is balanced then the maximum degree possible is n — m — 1 (see also [5, 9]).
We next present a few notations for future convenience.

1. By H,, we denote the Hadamard matrix of order 2" defined recursively as.

leli _1] and forr > 1, H,=H,_; ® H;.

2. The inner product between two n-bit vectors x,y is denoted by < x,y >.

3. By an m-CI (resp. m-resilient) function we denote a function which is correlation immune
(resp. resilient) of order m.

4. By an (n,m,d, x)-CI (resp. (n,m,d, x)-resilient) function we mean an n-variable, m-CI (resp.
m-resilient) function having degree d and nonlinearity x. Note that an (n,m,d, x)-resilient
function is certainly (n,m,d, x)-CI but the opposite does not necessarily hold. In the above
notation, we may replace some component by — if we do not want to specify it.

We will also use the following consequence of McEliece’s theorem on cyclic codes (see [6]). If f is
an n-variable, degree d function then wt(f) = 0 mod ol=7].

3 Walsh Transform

In this section we prove an important result on the Walsh Transform of an arbitrary Boolean
function. The Walsh Transform can be interpreted as a function from the n-dimensional hypercube
to the set of integers. Let x,y € {0,1}", i.e., they are points on the n-dimensional hypercube. We
say * <y if x; <y, forall 1 <i¢ < n. Further # < y if « <y and @ # y. Let w be a point on the
n-dimensional hypercube. Then the subcube subtended by w is given by the set of all points # such
that § < w. We now present a result which relates the value of the Walsh transform at w to the
values of the Walsh transform at all the points in the subcube subtended by w. This is a crucial
result as it allows us to prove some general divisibility results as its consequences. We begin with
the following result.

Proposition 3.1 Let g(X,,...,X1) be an n-variable Boolean function and r be an integer in the
range 1 <r <n. For0<i<2" —1, let ¢;(Xyr,...,X1) be defined as follows

gi(Xn—r7 Ce ,Xl) = g(Xn = ir, Ce 74Xvn_,«_|_1 = ilaXn—ra Ce ,Xl),



where i, ...1y is the r-bit binary expansion of i. Let w; = wt(g;). Then
Hr[wo, ceey wzr_l]T = [Clo, ceey Clzr_l]T,

where H, is the Hadamard matriz of order 2" and

a0 = 2= Wel0). ai:—@forwo.

Here 8; is the n-bit vector formed by appending (n — r) zeros to the end of i, ...1;

Proof : The first row of H, is the all one row and so

k=2"-1

Z w; = wt(g) =d(g,lo),

where [ is the all zero linear function. Using the relation W;(0) = wd(g,lo) = 2" — 2d(g,lo) we get
the result for ag. Now we consider the case 7 > 0. Consider

lo,(Xny.. ., X1) =<6, (Xoy ..., X)) >=< (py oo, 01,0,...,0),( X0y oo, X)) >

So Wy(8;) = wd(g,lp,). Define \(Y,,..., Y1) =< (iy...,01),(Ys,..., Y1) >. Then the ith row
R, = (Rio,...,Ri9r—1) of H, is given by R;; = (—1)“” """ i) where j,...j; is the r-bit binary
expansion of j. Note that a; =< (R;0,..., Ri2r—1), (wo,...,wer_1) >. For 0 < k < 2" — 1, define

lk(Xn—r7 e ,Xl) — l@l(Xn — kr, e 74Xvn_,«_|_1 — klaXn—ra e ,Xl),

where k, ...k is the r-bit binary expansion of k. Clearly,

k=2"-1 k=2"-1

wd(g,lo;) = Y wd(ge,lk) = D (2" —2d(gx, lx))- (1)

k=0 k=0
The following computation shows that each [; is a constant function.
lk(Xn_,«,...,Xl) — l@ (Xn ...,Xn_,«_|_1 :kl,Xn_,«,...,Xl)
== <(l,«, 11,0,...,0),(Xn:k,«,...,Xn_,«+1:kl,Xn_r,...,X1)>
<(u

= Cryeeeytn)s (Bpyoonykp) >
= )\i(kr,...,kl)

Since i is constant the value of d(gx, ) is wt(gx) or 2"™" — wt(gx) according as A;(ky,..., k1) is 0
or 1. This is expressed by writing

(g, ) = 277 Nilkys k) + (DN E Rt (g,



We now continue the computation of Equation 1.

k=2"—-1

wd(gv l@i )
k=0

k=2"—-1

on 9T N Nk
k=0

k=2"-1

_22

.....

k=2"-1
Since ¢ > 0, the function A;(ky,..., k1) is balanced and hence Z Nilkpy oo k) =21
k=0
get
k=271
wd(g,lg,) = =2 Z """ 1)wt(gk)
k=271
= =2 Z R,’7kwk
k=0
= -2< (Rm,...,R,'72r_1),(w0,...,w2r_1) >
= —2@,'.

This gives the result.

Let f be an n-variable Boolean function and w be in {0, 1}" with wt(w) = r.
the (n — r)-variable Boolean function defined as follows. Let iy, ..
w;, =1 and w; =0 for 5 & {i1,...,
Jge{in, ..., i}

,1, be such

Theorem 3.1 Let f(X,,... ,Xl) be a Boolean function and w € {0,1}". Then
Wi(w) = 2" — 3" Wi(8) — 291t (f,).
O0<w
Proof : We first note that W(w) = wd(f,1,). Let wt(w) = r, and
lo(Xpy oo, X)) =< w,(X,,.... X1)>=X,,&...6X,,.
Let m be a permutation on the variables such that
(X, oo Xy)=lo(n(Xp,. ... X0) = X0 ® ... Xt

Let g(X,,...,X1) = f(7(X,,...,X1)). Then for any v € {0,1}" we have

Wy(v) = wd(g(Xa,....X1), (X0, ..., X))
= wd(f(r(Xa,...,X1)),<v,(Xn,..., X1) >)
= wd(f(r Y7 (X, ..., X1))), <y, 7 HX,, ..., X1) >)
= wd(f(Xa,....X1),<7(v), (X, ..., X1) >)
= Wi(m(v))

. Thus we

By f., we denote
that w;,

iy }. Then f, is formed from f by setting variable X; to 0 1ff



As a consequence we have Wi(w) = wd(f,l,) = wd(g,l) = Wy(0o), where o is the n-bit vector
having the first r bits as 1. Also wt(f,) = wt(g,). From this it follows that it is sufficient to prove
the result for Wy (o).

Define functions gg, ..., gor_1 as follows.
gi(Xn—r7 Ce ,Xl) = g(Xn = ir, Ce 74Xvn_,«_|_1 = ilaXn—ra Ce ,Xl),

where 1,,...,1; 1s the r-bit binary expansion of ;. Also for 0 < ¢ < 2" — 1, let 6; be formed by
concatenating (n — r) zeros to the end of 7,...7;. Then it is easy to see that each §; < o and
fyr_1 = 0. Also the 0,’s are exactly the points on the subcube subtended by o.

Let w; = wt(g;). Then wy = wt(g,) = wt(f,). Using Proposition 3.1 we write

Hr[wo, ceey wzr_l]T = [Clo, ceey Clzr_l]T7

where H, 1s the Hadamard matrix of order 2" and

2" — 6, ,
#(0), ai:—% for 7 > 0. (8)

g =

Since H, is a Hadamard matrix, it follows that H,H, = 2"I., where I, is the identity matrix of
order 2". Hence we get

QT[wo,...,wzr_l]T = Hr[ao,...,azr_l]T. (9)
The first row of H, is the all one row, hence equating the first component on both sides of Equation 9,

we get
Z a; = 2" wy.
0<i<2r—1

We substitute the «;’s using Equations 8 to get,

2" — Wg(o) + Z _Wg(ei) — 9w,

2 1<i<2r—1 2

Rearranging the terms and noting that o = #5-_; and the 6,’s are exactly the points on the subcube
subtended by o gives the required relation. [ ]

Remark 3.1 Note that Equation 9 shows something stronger than the statement of Theorem 3.1.
It shows that 2"t w; = 2" — < G, (W,(0), ..., W,(0)) >, where (;(j) = (—=1)4V) and [;(x) =< i,z >.
Thus using Equation 9 we can actually determine the w;’s. This is a partial inverse Walsh Transform
on a subcube and is a stronger result than Theorem 3.1. In fact, just Theorem 3.1 itself has a nice
small and direct proof and has been obtained by Yuriy Tarannikov [14].

We first use Theorem 3.1 to show that a bent function on 2k variables has maximum degree k,
which is a well known result on bent functions [§].



Corollary 3.1 /8] Let f be a bent function on 2k variables. Then the mazimum possible degree of
f s k.

Proof : Suppose the degree of fisr > k. Without loss of generality assume that the term X; ... X,

is present in the ANF of f. Choose w to be such that wy =...=w, =0 and w,y; = ... = wy = 1.
Clearly wt(w) = 2k — r. From Theorem 3.1, we have
ST I(6) = 2 — 2 ). (10)
0<w

Since f is bent for any w € {0,1}?*, we have W;(w) = £2*. Let the number of § < w such that
W;(#) = 2% be @ and then the number of § < w such that W;(#) = —2F is 22~ — 4. Thus the left
hand side of Equation 10 becomes 2%(2a — 2%~") = 21(q — 2%==1)  (Here we use r < 2k, since
if 7 = 2k, then the weight of f is odd and hence none of the Walsh Transform values can be 2.)
Thus the left hand side is congruent to 0 mod 2¥+!. Using the definition of f,,, we have that f, is an
r-variable function. From the choice of w the term X ... X, isin f, and hence the degree of f, isr.
Thus wt(f,,) is odd. Let S be the quantity on the right side of Equation 10. Then S = 0 mod 2%+-"+!
and since wt(f,) is odd S # 0 mod 22k=r+2 Gince r > k, we have 2k —r +1 < k 4+ 1. Therefore
S # 0 mod 2. But this is a contradiction and hence the result is proved. |

We now turn to the application of Theorem 3.1 to correlation immune functions. The following
is an important consequence of Theorem 3.1.

Corollary 3.2 Let f be an (n,m,d,—)-CI nonconstant function. Then for all w € {0,1}",
Wi(w) = 0 mod gL+

Proof : Choose w in Theorem 3.1 with wt(w) = m to get Wy(w) = 2" — g, Wy(0) — 2™ .
Since f is m-CI, W;(#) = 0 for all 1 < wt(8) < m. Thus W;(0) = 2" — 2™+ w,, where wy = wi(f,)
and f,, is an (n —m)-variable function with some degree dy < d. Note that dy must be greater than
0, since if dy = 0, then wo = 0 or 2"™™, in which case W;(0) = 2" or —2" respectively and hence
f is a constant function. By McEliece’s theorem, wt(f,) = 0 mod 2l Since dyp < d we get

n—m-—1 n—m-—1

nom=l n_:’;_l and hence wt(f,) = 0 mod 2L"=a—1. Thus W;(0) = 0 mod 2™+ =a—1. Since for

do

1 < wt(w) < m, we have that Wy(w) = 0, this proves the result for all 0 < wt(w) < m.

For wt(w) > m we proceed by induction on the weight of w. Let wt(w) = k > m. Then from
Theorem 3.1, Wy(w) = 2" — > W(8) — 2k 1wy, where wy = wt(f,) and f, is an (n — k)-variable

O<w
function with some degree dy < d. Again using Mceliece’s theorem and the fact that dy < d we get
n—k—1

w; = 0 mod 2= Tt is easy to check that for k > m, we have k+1+ L%J >m+1+ L%J

Thus 281w, = 0 mod 2m++1*=5=], For § < w, we have that wt(f) < wt(w) and hence by the

induction hypothesis we get W;(8) = 0 mod 2™+'1"=a—1 for all § < w. This gives us

n—m-—1

Wi(w) = 0 mod 2m 1+ ==,

which completes the induction step and the proof. [ ]
We can prove a stronger result than Corollary 3.2.

8



Theorem 3.2 Let f be an (n,m,d, —)-CI nonconstant function and w € {0,1}", with wt(w) =
m + 1, for some 1 > 1. Then

Wi(w) + 2:W(0) = 0 mod omA 2+ =G

i—1
where x1 =1 and fori>1, z;, =1 — Z (ZI;):L']
J=1

Proof : The proof is by induction on wt(w) for wt(w) > m + 1.
Base: wt(w) = m + 1. Using Theorem 3.1 and the fact that W;(8) = 0 for all 1 < wt(8) < m, we
get Wy(w) + Wy(0) = 2" — 2™+ 2, where wy = wt(f,) and f, is an (n —m — 1)-variable function.

n—m-—2

As in Corollary 3.2, we can show that wy = 0 mod 2L"=¢ 1. Thus we get

n—r(;z—ZJ

Wi(w) + 21 W5(0) = 0 mod om + 2+

Induction hypothesis: Assume the result is true for all w with m + 1 < wt(w) <m +1 — 1.
Inductive step: Let w be such that wt(w) = m + i. Again using Theorem 3.1, we have

Wi(w) =2" = > Wy(8) — 2"+ *

O<w

where w; = wt(f,), and f, is an (n — m — ¢)-variable function with some degree d; < d. Again
using McEliece’s theorem and an argument similar to that of Corollary 3.2, we get

Wi(w) + Z W;(6) = 0 mod oM +2 4+ Ln_:);_zJ

O<w

(11)

Among the W;(6)’s such that § < w, there are exactly (:Z_"I_';) many 6’s having wt(8) = m + j (for

1 <j <i—1). By the induction hypothesis, we have that for any such 6,

W(8) + 2;1V(0) = 0 mod 2™ T 2+ =47 (12)
Substituing Equation 12 in Equation 11, we get,
W)+ Wi (0)(1 = (74 Voo — o= () ar) = 0mod 27 2+ 1557
Using the definition of z;, we get,
W(w) + 275(0) = 0 mod 2 +2+ "4 ]
which is what we required to prove. [ ]

Some important consequences can be drawn from Theorem 3.2. A weaker version of the first
corollary has been obtained by Zheng and Zhang [15].



Corollary 3.3 Let f be an (n,m,d,—)-CI nonconstant function.

n—m-—2

1. Let w € {0,1}" with wt(w) =m + 1. Then W(w )_OmOde—I_Q—I_L J iff

n—m-—2
VV(O)_OmOde—I_Q—I_L ]

n—m-—2

2. If W,(0) = OmOde—I_Q—I_L d J then Wi(w) = OmOde—I_Q—I_L =] for all w €
{0,13.

For resilient functions Wy(0) = 0 and hence the result becomes stronger.

Corollary 3.4 [1] Let f be an (n,m,d, —)-resilient function. Then

n—m-=2
T/Vf()_Omonm—l_Q—l_L Jforalle{O 1}

This result has recently been obtained by Carlet [1] using the numerical normal form of a Boolean
function [2]. The next result improves upon the one obtained by Zheng and Zhang [15]. It shows
that in certain situations resilient and CI functions have the same sort of divisibility results.

Corollary 3.5 Let f be an (n,m,d,—)-CI nonconstant function and (mrj_l) > 9n—2m-2-2|B=g=t]
Then for all w € {0,1}", we have,

n—m-—2
Wi(w) EOmonm—I_Q—I_L d J

Proof : The proof uses a counting argument similar to the one employed by Zheng and Zhang [15].
Since f is m-CI for all w € {0,1}", we have by Corollary 3.2,

Wi(w) = 0 mod om+1+ =]

Thus if Wi(w) # 0, then Wy(w) > 2m "7 Let y be the number of w such that Wi(w) # 0.

Then by Parseval’s theorem we have that y < 92n=2m=2-2["=4=|  The pnumber of w such that

wt(w) = m +1 is exactly (mj—l) Thus by the given condition we get that there is at least one w of

weight m + 1 such that Wy(w) = 0. Using Corollary 3.3, the result then easily follows. ]
In fact, it is possible for CI and resilient functions to have the same sort of divisibility results

in other situations also.

Corollary 3.6 Let f be an (n,m,d,—)-CI nonconstant function and w € {0,1}", with wt(w) =

2

n—m-—

m —+ ¢, Wg(w) = 0 mod om +2+ =] and x; is odd. Then for all 9 € {0,1}",

n—m-—2
W;(8) = 0 mod 2™ T2+ =471

Proof : By Theorem 3.2, we have

n—m-—2
Wi(w) + 2W(0) = 0 mod 2 T2+ 15471

—m—2

Since W(w) = 0 mod om + 2+ (" d
n—m-—2
W (0) EOmonm—I_Q—I_L

J and z; is odd, it follows that

J. Hence using Corollary 3.3, the result follows. ]

10



Corollary 3.7 1. Let f be an (n,m,—, —)-CI function and w € {0,1}" be such that wt(w) = m.
Then f is balanced iff f., is balanced.

2. Let f be an (n,m,—,—)-resilient function and w € {0,1}" with wt(w) = m + 1. Then
Wi(w) =0 iff fo is balanced.

The next result shows that an (n — 2)-CI function must be balanced.
Proposition 3.2 Forn >4, let f be an (n,n — 2, —, —)-CI function. Then f must be balanced.

Proof : Write f as a concatenation of the form fy... fon—2_;, where each f; is a 2-variable function
and hence given by a 4-bit string. Since f is (n — 2)-CI, using Theorem 3.1 of [9], we have,

wt(fo) = ... = wt(fon—2_1).

Let this common weight be w. If w = 0,4, then f is a constant function. If w = 2, then f is clearly
balanced. Thus we have to only rule out the possibilities w = 1, 3. It is sufficient to consider w = 1,
since the case w = 3 can be tackled by considering the complement of f and thus reducing to the
case w = 1.

Since w = 1, the function fy must be one of the form 1000, 0100,0010,0001. We consider only
the form 1000, the other cases being similar. The function fyf; is 1-CI and hence f; must be of
the form 0001. Again fof, must also be 1-CI and hence f; must also be of the form 0001. Also
f1fs must be 1-CI and this forces f3 to be of the form 1000. Thus the string fo f1 f2 f5 is of the form
1000000100011000. Now the function fofi fof3 must be 2-CI, but it is not since

wd(0110011001100110,1000000100011000) =4 — 12 = —8 #£ 0,

and the string 0110011001100110 represents a linear function which is nondegenerate on two vari-
ables.

Hence we get a contradiction which proves the result. |

4 Nonlinearity and Algebraic Degree

In this section we work out the consequences on the nonlinearity and algebraic degree of the divis-
ibility results of the previous section.

Theorem 4.1 Let f be an (n,m,d,x)-CI nonconstant unbalanced function, K; = m —|— |z (_1 L]
ond Ky = m + 75250, where D = {deg(fa) : w € {0,1}", wh(w) = m}, ™ = min(D) and

dmax

d?* = max(D). Then

1. Ifn is even and Ky > 2 — 1, then o < 271 — 281,

2. If n is even and Ky < 5§ — 1, then x < or—l _93-1 _ oKz

11



8. If n is odd and 2"~ — 281 < nlmax(n), then x < 2"~ — 281,

4. Ifn is odd and 2"~ — 251 > nlmaz(n), then x is less than or equal to the highest multiple of
252 which is not greater than nlmaz(n).

Proof : Let d™" = deg(f,). Using Theorem 3.1, we can write Wi(c) = 2" — Yoo, Wi(0) —
2™t wt(f,). Since f is m-CI, we have W;(#) = 0 for all 1 < wt(f) < m. Also by McEliece’s

n—m-—1
theorem, we have wt(f,) = 0 mod QLTIcm“—J. Since wt(o) = m, we get W;(0) = 0 mod 251+ and
hence d(f,lo) = 0 mod 251, Further since f is unbalanced d(f,ly) # 2" L.

From this we clearly have that « < 27"~' —251. However, if n is even and K; < 5 —1, then we can
improve upon the upper bound on the nonlinearity. A function whose all Walsh Transform values
are £27% is bent and a CI function cannot be bent. It can be shown in a way similar to Corollary 3.2
that for any w € {0,1}", we have Wy(w) = 0 mod 2m+1+Lnd_5“+;1J. Hence the nonlinearity must be
at least 252 less than the bent nonlinearity. Similar considerations hold for odd n. ]

Theorem 4.2 Let f be an (n,m,d, z)-resilient nonconstant function, Ly = m + 1 + |252=2| and

min
dr

Ly=m+1+ 2222 where D = {deg(f,) : Wi(w) # 0,w € {0,1}", wt(w) =m + 1},

max
dr

df“i“ = min(D) and d™* = max(D). Then

1. If n is even and Ly > 5 —1, then o < 277! — 20,

Ifn is even and Ly < 5 —1, then x < 2" — 251 _ol»,

RN

If n is odd and 2"~ — 21 < nlmax(n), then z < 271 — 201,

If n is odd and 2"~! — 281 > plmax(n
2L2 which is not greater than nlmaz(n).

then x is less than or equal to the highest multiple of

Proof : The proof is similar to that of Theorem 4.1. Again let d™" = deg(f,). Theorem 3.1

n—m-—2

then provides Wy(o) = 2" — Yy, Wi(8) — 2" 2wi(f,), where wi(f,) = 0 mod QLT?“”‘— . Since f
is m-resilient, W¢(8) = 0 for all 0 < wt(f) < m. Also wt(o) = m + 1 and thus we get Wy(o) =
0 mod 2%1*!. Further from the definition of d™" we have W;(o) # 0. Thus d(f,l,) = 0 mod 2
and d(f,l,) # 2""*. The rest of the details are similar to Theorem 4.1. [ |

Theorem 4.2 refines the divisibility result obtained by Carlet [1]. We can now obtain the following
result which is a stronger version of the result obtained by Tarannikov [13] and Carlet [1].

Theorem 4.3 1. Let f be an (n,m,d,z)-CI function. If x £ 0 mod 2™*' then d = n —m.
Further, if v = 271 — 2™ then the ANF for f has all terms of degree n — m.

2. Let f be an (n,m,d, x)-resilient function. If v #Z 0 mod 2™%? then d = n —m — 1. Further,
ifx =271 —2m* then d=n—m —1 and for any w € {0,1}" of weight m + 1 we have that
either Wi(w) = 0 (and hence f, is balanced) or deg(f,) =n—m — 1.

12



Proof : We only prove (1), the proof of (2) being similar. From the proof of Theorem 4.1, we

get that = = 0 mod o U] T if o % 0 mod 2™*! then clearly d™* = n — m. Since
dmax < d < n —m, it follows that d = n — m. If 2 = 2"7! — 2™ we must have f to be unbalanced.
Further in Theorem 4.1 we must have d™" = n —m. But this means that any subfunction obtained
from f by setting exactly m variables to 0 has degree n — m. Again this is possible iff the ANF for
f has all terms of degree n — m. |

The upper bound on nonlinearity for CI functions is more than the upper bound on nonlinearity
for resilient functions. However, using Corollaries 3.5 and 3.6 it can be shown that in certain cases
the upper bound for nonlinearity of CI functions is same as that of resilient functions. We do not
provide the details here. Instead we will provide them in the full version of the paper.

References

[1] C. Carlet. On the coset weight divisibility and nonlinearity of resilient and correlation-immune
functions. Preprint, 2000.

[2] C. Carlet, P. Guillot. A new representation of Boolean functions. In Proceedings of AAECC’13,
LNCS 1719, pages 1-14. 1999.

[3] C. Ding, G. Xiao, and W. Shan. The Stability Theory of Stream Ciphers. Number 561 in
Lecture Notes in Computer Science. Springer-Verlag, 1991.

[4] E. Filiol, C. Fontaine. Highly nonlinear balanced Boolean functions with a good correlation
immunity. In Proceedings of Eurocrypt’99, LNCS 1592 | pages 475-488. 1998.

[5] X. Guo-Zhen and J. Massey. A spectral characterization of correlation immune combining

functions. IEEE Transactions on Information Theory, 34(3):569-571, May 1988.

[6] F.J. MacWillams and N. J. A. Sloane. The Theory of Error Correcting Codes. North Holland,
1977.

[7] S. Maitra and P. Sarkar. Highly nonlinear resilient functions optimizing Siegenthaler’s inequal-
ity. In Advances in Cryptology - CRYPT(0’99, number 1666 in Lecture Notes in Computer
Science, pages 198-215. Springer Verlag, August 1999.

[8] O. S. Rothaus. On bent functions. Journal of Combinatorial Theory, Series A, 20:300-305,
1976.

[9] P. Sarkar. A note on the spectral characterization of correlation immune Boolean functions.
Information Processing Letters, 74(5-6), pp. 191-195. 2000.

[10] P. Sarkar and S. Maitra. Nonlinearity bounds and constructions of resilient Boolean functions.

In Advances in Cryptology - CRYPTO 2000.

13



[11] P. Sarkar and S. Maitra. Construction of nonlinear Boolean functions with important crypto-
graphic properties. In Advances in Cryptology - EUROCRYPT 2000, number 1807 in Lecture
Notes in Computer Science, pages 491-512. Springer Verlag, 2000.

[12] T. Siegenthaler. Correlation-immunity of nonlinear combining functions for cryptographic

applications. IEEE Transactions on Information Theory, IT-30(5):776-780, September 1984.

[13] Y. V. Tarannikov. On resilient Boolean functions with maximum possible nonlinearity. Cryp-

tology ePrint Archive, eprint.iacr.org, No. 2000/005, 2000.
[14] Y. V. Tarannikov. Personal communication.

15] Y. Zheng, X.-M. Zhang. Improved upper bound on the nonlinearity of high order correlation
g g g
immune functions. In Proceedings of SAC 2000.

14



