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Abstract

We use the recent results on the spectral structure of correlation immune and resilient

Boolean functions for the investigations of high order correlation immune functions. At

�rst, we give simple proofs of some theorems where only long proofs were known. Next, we

introduce the matrix of nonzero Walsh coe�cients and establish important properties of this

matrix. We use these properties to prove the nonexistence of some high order correlation

immune functions. Finally, we establish the order of magnitude for the number of (n� 4)th

order correlation immune / resilient functions of n variables.
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We consider F

n

2

, the vector space of n-tuples of elements from F

2

. An n-variable Boolean

function is a map from F

n

2

into F

2

. The weight of a vector x is the number of ones in x and is

denoted by jxj. The weight wt(f) of a function f on F

n

2

is the number of vectors x on F

n

2

such

that f(x) = 1. A function f is said to be balanced if wt(f) = wt(f � 1) = 2

n�1

. A subfunction

of the Boolean function f is a function f

0

obtained by substituting some constants for some

variables in f .

The following de�nitions and formulae are classical ones (see [5]). Let x = (x

1

; : : : ; x

n

) and

u = (u

1

; : : : ; u

n

) be n-tuples over F

2

. The scalar product of x and u is de�ned as

< x; u >=

n

X

i=1

x

i

u

i

:

The Walsh Transform of a Boolean function f is an integer-valued function over F

n

2

that can

be de�ned as

c

�

f

(u) =

X

x2F

n

2

(�1)

f(x)+<u;x>

:

For every u 2 F

n

2

the value

c

�

f

(u) is called the Walsh coe�cient. Frequently Walsh coe�cients

are called spectral coe�cients.

Walsh coe�cients satisfy the next formulae:

Inversion formula

(�1)

f(x)

= 2

�n

X

u2F

n

2

c

�

f

(u)(�1)

<u;x>

:

Parseval's equation

X

u2F

n

2

c

�

f

2

(u) = 2

2n

:
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In [7] the next important theorem was proved. Note that in [7] the proof of this theorem

takes up three pages. Here we give a simple proof of this theorem.

Theorem 1 (Sarkar, [7])

Let f be a Boolean function on F

n

2

. Then for every w 2 F

n

2

X

u2F

n

2

u�w

c

�

f

(u) = 2

n

� 2

jwj+1

wt(f

w

): (1)

where f

w

is the function obtained from f by substituting 0! x

i

for all i such that w

i

= 1.

Proof.

X

u2F

n

2

u�w

c

�

f

(u) =

X

u2F

n

2

u�w

X

x2F

n

2

(�1)

f(x)+<x;u>

=

X

x2F

n

2

(�1)

f(x)

X

u2F

n

2

u�w

(�1)

<x;u>

=

X

x2F

n

2

<x;w>=0

(�1)

f(x)

X

u2F

n

2

u�w

(�1)

<x;u>

+

X

x2F

n

2

<x;w>>0

(�1)

f(x)

X

u2F

n

2

u�w

(�1)

<x;u>

=

2

jwj

X

x2F

n

2

<x;w>=0

(�1)

f(x)

+

X

x2F

n

2

<x;w>>0

(�1)

f(x)

� 0 =

2

jwj

d

�

f

w

(0) = 2

jwj

(2

n�jwj

� 2wt(f

w

)) = 2

n

� 2

jwj+1

wt(f

w

):

ut

It is well known that a function f on F

n

2

can be uniquely represented by a polynomial on

F

2

whose degree in each variable is at most 1. Namely,

f(x

1

; : : : ; x

n

) =

M

(a

1

;:::;a

n

)2F

n

2

g(a

1

; : : : ; a

n

)x

a

1

1

: : : x

a

n

n

where g is also a function on F

n

2

. This polynomial representation of f is called the algebraic

normal form (brie
y, ANF) of the function and each x

a

1

1

: : : x

a

n

n

is called a term in ANF of

f . The algebraic degree of f , denoted by deg(f), is de�ned as the number of variables in the

longest term of f . The algebraic degree of variable x

i

in f , denoted by deg(f; x

i

), is the number

of variables in the longest term of f that contains x

i

. If deg(f; x

i

) = 1, we say that f depends

on x

i

linearly. If deg(f; x

i

) 6= 1, we say that f depends on x

i

nonlinearly. A term of length 1 is

called a linear term. If deg(f) � 1 then f is called an a�ne function. If f is an a�ne function

and f(0) = 0 then f is called a linear function.

The Hamming distance d(x

1

; x

2

) between two vectors x

1

and x

2

is the number of components

where vectors x

1

and x

2

di�er. For two Boolean functions f

1

and f

2

on F

n

2

, we de�ne the

distance between f

1

and f

2

by d(f

1

; f

2

) = #fx 2 F

n

2

jf

1

(x) 6= f

2

(x)g. It is easy to see that

d(f

1

; f

2

) = wt(f

1

� f

2

). The minimum distance between f and the set of all a�ne functions is

called the nonlinearity of f and denoted by nl(f).

It is easy to see that

c

�

f

(0) = 0 i� f is balanced.

A Boolean function f on F

n

2

is said to be correlation immune of order m, with 1 � m � n,

if the output of f and any m input variables are statistically independent. This concept was

introduced by Siegenthaler [8]. In equivalent non-probabilistic formulation the Boolean function

f is called correlation immune of order m if wt(f

0

) = wt(f)=2

m

for any its subfunction f

0

of

n � m variables. A balanced mth order correlation immune function is called an m-resilient

function. In other words the Boolean function f is called m-resilient if wt(f

0

) = 2

n�m�1

for any

its subfunction f

0

of n�m variables. In [4] a characterization of correlation immune functions

by means of Walsh coe�cients is given: A function f on F

n

2

is an mth order correlation immune

function i�

c

�

f

(u) = 0 for all u 2 F

n

2

with 1 � juj � m. In [6] it is proved that
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Theorem 2 [6] If f is an mth order correlation immune function on F

n

2

, m � n � 1, then

c

�

f

(u) � 0 (mod 2

m+1

). Moreover, if f is m-resilient, m � n�2, then

c

�

f

(u) � 0 (mod 2

m+2

).

Theorem 2 follows some upper bounds on the nonlinearity of correlation immune of order

m Boolean functions on F

n

2

. The similar upper bound were obtained independently in [12] and

[13].

In the next lemma we give a spectral characterization of the linear dependence of the function

f on the variable x

i

.

Lemma 1 The function f depends on the variable x

i

linearly i�

c

�

f

(u) = 0 for all u such that

u

i

= 0.

Proof. Suppose that the function f on F

n

2

depends on the variable x

i

linearly. Let u be a

vector on F

n

2

such that u

i

= 0. Consider arbitrary two vectors x

0

and x

00

such that d(x

0

; x

00

) = 1,

x

0

i

6= x

00

i

. Then f(x

0

) 6= f(x

00

) and (�1)

f(x

0

)+<u;x

0

>

+ (�1)

f(x

00

)+<u;x

00

>

= 0. We can combine all

vectors on F

n

2

into pairs so that any pair (x

0

; x

00

) contains vectors x

0

and x

00

that di�er in ith

component and coincide in all other components. Therefore,

c

�

f

(u) =

X

x2F

n

2

(�1)

f(x)+<u;x>

= 0:

On the other hand, suppose that

c

�

f

(u) = 0 for all u such that u

i

= 0. Consider arbitrary

two vectors x

0

and x

00

such that d(x

0

; x

00

) = 1, x

0

i

6= x

00

i

. Then by inversion formula

(�1)

f(x

0

)

+ (�1)

f(x

00

)

= 2

�n

X

u2F

n

2

u

i

=1

c

�

f

(u)

�

(�1)

<u;x

0

>

+ (�1)

<u;x

00

>

�

= 0:

Therefore f(x

0

) 6= f(x

00

). It follows that f depends on x

i

linearly. ut

In [9] (the results of this work are given in [11]) it is proved that

Theorem 3 ([9, 11]) For each positive integer k there exists a minimal nonnegative integer p

0

(k)

that any (n � k)th order correlation immune nonconstant function on F

n

2

depends nonlinearly

on at most p

0

(k) variables.

If the function f depends linearly on some variable then, obviously, f is balanced. Therefore

Theorem 3 follows that

Theorem 4 ([9, 11]) For each positive integer k there exists a minimal nonnegative integer

p(k) that any (n� k)-resilient function on F

n

2

depends nonlinearly on at most p(k) variables.

Obviously, p

0

(k) � p(k). Constructions in [9] and [12] shows that p(k) � 3 � 2

k�2

� 2 [11].

The proof of Theorem 3 in [9] is very long and does not give e�ective upper bounds on the

values p

0

(k) and p(k). In the following theorem we give a simple proof of Theorem 3 and obtain

an e�ective upper bound on p(k).

Below we denote by M = M(f) the (0; 1) matrix with n columns that obtained by writing

in rows all vectors u such that

c

�

f

(u) 6= 0.

Theorem 5 p(k) � (k � 1)4

k�2

for k � 2.
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Proof. Let f be (m = n� k)-resilient function on F

n

2

. By Theorem 2 all Walsh coe�cients

of f are divisible by 2

m+2

. By Parseval's equation we have that the number of nonzero Walsh

coe�cients is at most 2

2n�2m�4

= 4

k�2

. For any vector u such that

c

�

f

(u) 6= 0 we have

juj � m + 1, thus, u contains at most k � 1 zero components. We form the (0; 1) matrix M

with n columns writing in rows all vectors u such that

c

�

f

(u) 6= 0. The matrix M contains at

most 4

k�2

rows, any row of M contains at most k � 1 zeroes, thus the matrix M has at most

(k � 1)4

k�2

columns with zeroes, all remained columns are all-ones. But if the ith column of

M is all-ones then

c

�

f

(u) = 0 for all u such that u

i

= 0. Therefore by Lemma 1 the function

f depends on the variable x

i

linearly. Thus, f depends nonlinearly on at most (k � 1)4

k�2

variables and p(k) � (k � 1)4

k�2

. ut

Concerning unbalanced nonconstant (n � k)th order correlation immune functions on F

n

2

we can point out that by means of Bierbrauer{Friedman bound for orthogonal arrays [1, 3] in

[9] it is proved that there do not exist such functions for n � (k� 1)2

k�1

+ k. Therefore taking

into account Theorem 5 we have that p

0

(k) � (k � 1)4

k�2

for k � 2. But it is possible to apply

spectral analysis for the study of unbalanced functions too.

Lemma 2 Let f be a Boolean function on F

n

2

. Let M =M(f) be the matrix of nonzero Walsh

coe�cients of f introduced above. If M contains a column with exactly one symbol 0 then f has

only one nonzero Walsh coe�cient and f is an a�ne function.

Proof. Suppose that the ith column of M contains exactly one symbol 0. Consider the

vector w on F

n

2

that contains zero in ith component and ones in all remained components. By

construction jwj = n � 1. By Theorem 1 the equation (1) holds. By hypothesis of lemma the

left side of (1) has exactly one nonzero term. The right side of (1) is divisible by 2

n

. Therefore

there exists a nonzero Walsh coe�cient that is divisible by 2

n

. Then by Parseval's equation this

coe�cient is the only nonzero Walsh coe�cient of f . It is clear that f is an a�ne function. ut

The Lemma 2 allows to use for unbalanced (n�k)th order correlation immune functions on

F

n

2

the same technique as in the Theorem 5. Indeed, in this case the matrix M contains one

all-zeroes row but each column of M must contain at least one symbol 0 more.

The next lemma is a sequence of results from [13].

Lemma 3 [13] Let f be an mth order correlation immune function on F

n

2

. If there exist u 2 F

n

2

such that

c

�

f

(u) � 2

m+1

(mod 2

m+2

) then m < 0:6n� 0:4.

Corollary 1 If for n � 2:5k � 1 there exists unbalanced nonconstant (m = n � k)th order

correlation immune functions f on F

n

2

then

c

�

f

(u) � 0 (mod 2

m+2

) for each u 2 F

n

2

.

Let f be an mth order correlation immune nona�ne function on F

n

2

such that

c

�

f

(u) � 0

(mod 2

m+2

) for each u 2 F

n

2

. The fact that f is nona�ne follows that n�m � 2. Decompose

the matrix M = M(f) into the matrices M

1

;M

2

; : : : where the matrix M

i

contains all rows

of M that correspond to vectors u such that

c

�

f

(u) � 2

m+1+i

(mod 2

m+2+i

). Let r

i

be the

number of rows in M

i

. Parseval's equation follows that r

1

+ 4r

2

+ 16r

3

+ : : : � 4

n�m�2

.

Theorem 6 In the matrix M

1

inside of any h columns, h � n�m� 2, every possible h-tuple

occurs in even number of rows.

Proof. Take an arbitrary set S of h columns in the matrix M

1

, 0 � h � n�m � 2. Let w

be a vector on F

n

2

such that w

i

= 0 if ith column belongs to S and w

i

= 1 in opposite case.

It is clear that jwj = n � h � m + 2. By Theorem 1 the equality (1) holds. The right side of

(1) is divisible by 2

m+3

. By assumption all terms in the left side of (1) are divisible by 2

m+2

.

Therefore the number of terms in the left side of (1) that equivalent to 2

m+2

by modulo 2

m+3

is

4



even. Thus, in chosen h columns all-zeroes h-tuple occurs in even number of rows. Notice that

the possibility h = 0 demonstrates that M

1

contains even number of rows. It follows easily that

in M

1

inside of any h columns, h � n�m� 2, every h-tuple occurs in even number of rows. ut

The next theorem is a generalization of Theorem 6.

Theorem 7 In the matrix M

i

inside of any h columns, 0 < h � n�m� i�1, that are all-ones

in the matrices M

1

, M

2

, . . . , M

i�1

, all-zeroes h-tuple occurs in even number of rows.

Proof. The proof is analogous to the proof of Theorem 6. Take an arbitrary set S of h

columns in the matrix M

i

, 0 < h � n�m� i� 1, such that each of these columns are all-ones

in the matrices M

1

, M

2

, . . . , M

i�1

. Let w be a vector on F

n

2

such that w

i

= 0 if ith column

belongs to S and w

i

= 1 in opposite case. It is clear that jwj = n� h � m+ i+1. By Theorem

1 the equation (1) holds. The right side of (1) is divisible by 2

m+i+2

. By assumption all terms

in the left side of (1) are divisible by 2

m+i+1

. Therefore the number of terms in the left side of

(1) that equivalent to 2

m+i+1

by modulo 2

m+i+2

is even. Thus, in chosen h columns all-zeroes

h-tuple occurs in even number of rows. ut

Theorem 8 For n � 7 there does not exist unbalanced nonconstant (n� 3)th order correlation

immune function on F

n

2

.

Proof. Let f be an unbalanced nonconstant (m = n�3)th order correlation immune function

on F

n

2

. If

c

�

f

(u) � 2

m+1

(mod 2

m+2

) for some u 2 F

n

2

then by Corollary 1 we have n � 6.

Suppose that

c

�

f

(u) � 0 (mod 2

m+2

) for every u 2 F

n

2

. If

c

�

f

(u) = �2

n

for some u 2 F

n

2

then

f is an a�ne function, so, it can not be unbalanced nonconstant. Thus,

c

�

f

(u) = �2

n�1

for

exactly four vectors u 2 F

n

2

and

c

�

f

(u) = 0 for all remained vectors. In this case the matrix

M = M(f) is the matrix M

1

. This matrix contains four rows. One of these rows is all-zeroes

row, and each of another three rows contains at most two zeroes by spectral characterization

[4]. By Lemma 2 each column of M must contain at least two zeroes. Therefore M contains at

most 6 columns. ut

Note that there exist unbalanced nonconstant (6� 3)th order correlation immune functions

on F

6

2

.

Lemma 4 Let f be an (m = n � 4)th order correlation immune function on F

n

2

such that

c

�

f

(u) � 0 (mod 2

m+2

) for all u 2 F

n

2

and the matrix M

1

=M

1

(f) does not contain all-zeroes

row. Then if some column of M

1

contains at least one symbol 0 then this column contains at

least four zeroes.

Proof. Suppose that f is an (m = n � 4)th order correlation immune function on F

n

2

such

that

c

�

f

(u) � 0 (mod 2

m+2

) and the matrix M

1

= M

1

(f) does not contain all-zeroes row.

Consider an arbitrary (say, ith) column of M

1

that contains a zero. Then by Theorem 6 the ith

column contains at least two zeroes. The matrix M

1

does not contain the same rows, therefore

some row contains zeroes in ith and some other (say, jth) positions. Then by Theorem 6 there

exist at least two rows in M

1

that contain zeroes in ith and jth components. The matrix M

1

does not contain the same rows, therefore the row l

1

contains zeroes in ith, jth and some other

(say, kth) positions whereas the row l

2

contains zeroes in ith and jth positions and does not

contain zero in kth position. But by Theorem 6 even number of rows contain zeroes in the ith

and kth columns simultaneously. Therefore there exists the row l

3

in M

1

that contains zeroes

in ith and kth columns. Thus, we have at least three rows that contain zero in the ith column.

Then by Theorem 6 the ith column must contain at least four zeroes. ut

Theorem 9 For n � 10 there does not exist unbalanced nonconstant (n�4)th order correlation

immune function on F

n

2

.

5



Proof. Let f be an unbalanced nonconstant (m = n�4)th order correlation immune function

on F

n

2

. If

c

�

f

(u) � 2

m+1

(mod 2

m+2

) for some u 2 F

n

2

then by Corollary 1 we have n < 9. So,

we can assume that

c

�

f

(u) � 0 (mod 2

m+2

) for every u 2 F

n

2

. If

c

�

f

(u) = �2

n

for some u 2 F

n

2

then f is an a�ne function, so, it can not be unbalanced nonconstant. Thus,

c

�

f

(u) � 2

n�2

(mod 2

n�1

) for r

1

vectors u 2 F

n

2

,

c

�

f

(u) = �2

n�1

for r

2

vectors u 2 F

n

2

, and

c

�

f

(u) = 0

for all remained vectors. By Parseval's equation r

1

+ 4r

2

� 16. We decompose the matrix

M = M(f) into the matrix M

1

with r

1

rows and the matrix M

2

with r

2

rows. One of two

matrices M

1

and M

2

contains all-zeroes row. Suppose that M

1

contains all-zeroes row. Then

by Theorem 6 any two columns in M

1

must have zeroes simultaneously in some other row.

Each row in M

1

with ones contains at most three zeroes, therefore r

1

� 1 rows give at most

3(r

1

� 1) combinations of two zeroes in one row. It follows that

n(n�1)

2

� 3(r

1

� 1) � 45. Thus,

n � 10. But if n = 10 then r

1

� 1 = 15 and 15 rows of M

1

give Steiner triple system. It is

well-known that there does not exist Steiner triple system for even n. Therefore in this case

n � 9. Now suppose that M

2

contains all-zeroes row. Then M

1

does not contain all-zeroes

row. By Lemma 4 we have that each column with zeroes in M

1

contains at least 4 zeroes. It

follows that the number of columns with zeroes in M

1

is at most (3=4)r

1

. Note that r

2

� 1. By

Lemma 2 the matrix M

2

contains at most 3(r

2

� 1) additional columns with zeroes. We have

n � (3=4)r

1

+ 3(r

2

� 1) � (3=4)(16 � 4r

2

) + 3(r

2

� 1) = 9. Thus, in any case n � 9. ut

Note that there exists unbalanced nonconstant (9� 4)th order correlation immune function

on F

9

2

(see [10]).

In [2] it is proved that p(3) = 4. In this work we establish the value p(4).

Theorem 10 For n � 11 there does not exist (n � 4)-resilient function on F

n

2

that depends

nonlinearly on all its n variables.

Proof. Let f be an (m = n�4)-resilient function on F

n

2

that depends nonlinearly on all its n

variables. It follows that the matrixM =M(f) does not contain all-ones columns. By Theorem

2 we have that

c

�

f

(u) � 0 (mod 2

m+2

) for every u 2 F

n

2

. If

c

�

f

(u) = �2

n

for some u 2 F

n

2

then f is an a�ne function, so, it depends linearly on some variables. Thus,

c

�

f

(u) � 2

n�2

(mod 2

n�1

) for r

1

vectors u 2 F

n

2

,

c

�

f

(u) = �2

n�1

for r

2

vectors u 2 F

n

2

, and

c

�

f

(u) = 0 for all

remained vectors. By Parseval's equation r

1

+4r

2

� 16. We decompose the matrix M =M(f)

into the matrix M

1

with r

1

rows and the matrix M

2

with r

2

rows. By Lemma 4 we have that

each column with zeroes inM

1

contains at least 4 zeroes. It follows that the number of columns

with zeroes in M

1

is at most (3=4)r

1

. If r

2

= 1 then the matrix M

1

contains at most 9 columns

with zeroes, and by Lemma 2 the matrix M

2

does not contain additional columns with zeroes.

If r

2

= 2 then the matrix M

1

contains at most 6 columns with zeroes, and by Lemma 2 the

matrix M

2

contains at most 2 additional columns with zeroes. If r

2

= 3 then the matrix M

1

contains at most 3 columns with zeroes, and by Lemma 2 the matrix M

2

contains at most 4

additional columns with zeroes. If r

2

= 4 then the matrix M

1

is empty, and by Lemma 2 the

matrix M

2

contains at most 6 additional columns with zeroes. Thus, if r

2

� 1 then n � 9.

The only remained case is r

2

= 0. Therefore we can assume that the matrix M

2

is empty. If

j

c

�

f

(u)j = 3 � 2

n�2

for some u 2 F

n

2

then M

1

contains at most 8 rows. It follows that n � 6. So,

we assume that all nonzero Walsh coe�cients are �2

n�2

and M

1

contains exactly 16 rows. It

follows that n � 12. For n = 11; 12 we have found by means of computer search all nonequivalent

(0; 1) matrices of size (16� n) without the same rows, all-ones columns and with at most three

zeroes in each row that contain even number of appearances for every possible 2-tuple inside

of any two columns. For each of such matrices we have checked all 2

16

possible distributions of

� signs for nonzero Walsh coe�cients and tried to calculate the values of Boolean function via

inversion formula. But in all cases for some x 2 F

n

2

the value 2

�n

P

u2F

n

2

c

�

f

(u)(�1)

<u;x>

was not

equal to �1. Thus, we conclude that n � 10. ut

6



Note that there exists (10� 4)-resilient function on F

10

2

that depends nonlinearly on all its

10 variables (see constructions in [10, 12]). Thus, Theorems 9 and 10 follow that

Theorem 11 p'(4)=p(4)=10.

Theorem 11 together with results of [9, 11] follows that

Theorem 12 The number of (n�4)th order correlation immune functions as well as the number

of (n� 4)-resilient functions on F

n

2

is �(n

10

).
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