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Abstrat

The relationship between nonlinearity and resilieny for a funtion F :

F

n

2

7! F

m

2

is onsidered. We give a onstrution of resilient funtions with

high nonlinearity. The onstrution leads to the problem of �nding a set

of linear odes with a �xed minimum distane, having the property that the

intersetion between any two odes is the all zero odeword only. This problem

is onsidered, and existene results are provided. The onstruted funtions

obtain a nonlinearity superior to previous onstrution methods.

I Introdution

A lassial method for onstruting keystream generators is to ombine a set of lin-

ear feedbak shift registers with a nonlinear Boolean funtion. Then the Boolean

funtion f(x), f : F

n

2

7! F

2

must ful�ll ertain properties in order to inrease the

time/spae omplexity of di�erent attaks. Common attaks are Siegenthaler or-

relation attak [23℄, Berlekamp-Massey linearity synthesis attak [13℄ and di�erent

linear approximation attaks [8℄. There are at least four main riteria that f(x)

should ful�ll. These are: balanedness, high nonlinearity, high algebrai degree, and

some orrelation immunity (for balaned funtions, orrelation immunity is usually

referred to as reilieny).

In a modern design of a stream ipher, one might in many situations want to

onsider funtions mapping to a blok of output bits, i.e., funtions of the form

f : F

n

2

7! F

m

2

(n-input m-output funtions). In blok ipher design suh funtions

are referred to as S-boxes. S-boxes is a well studied subjet, and di�erent important

riteria have been onsidered. These inlude the propagation riterion (PC), the

strit avalanhe riterion (SAC), et. [17℄.

�

This work has been presented at ISIT 2000.
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For appliations in stream iphers, we turn our attention to the riteria mentioned

above for Boolean funtions. In partiular, we onsider the interesting relationship

between resilieny and nonlinearity for balaned funtions f : F

n

2

7! F

m

2

.

For the ase of Boolean funtions (m = 1), the results in [4℄ provide a simple

method of generating funtions, ffg : F

n

2

7! F

2

, with some �xed resilieny and high

nonlinearity. This onstrution has been used as a basis for further improvements in

e.g. [11, 19℄. We now have quite a lot of results for the ase m = 1. A nie summary

of the urrent situation an be found in [11℄.

Whenm > 1 the situation is di�erent. A few papers [10, 27℄ have appeared before,

providing nonlinear funtions with some resilieny. But, as will be demonstrated, it

is possible to signi�antly improve upon these results. We will in this paper present

a onstrution of highly nonlinear and resilient n-input m-output funtions, where

m � 1. The onstrution, whih for m = 1 is the same as [4℄, is based on a oding

theoreti problem, whih to our knowledge is new. We are interested in �nding

a set of linear odes with a �xed minimum distane d, suh that the intersetion

between any two odes is the all zero odeword only. This is referred to as a set

of noninterseting linear odes. The problem is to �nd the maximal ardinality of

suh a set. This is onsidered, and existene results are provided. The onstruted

funtions obtain a nonlinearity superior to previous onstrution methods.

The paper is organized as follows. Setion II provides basi de�nitions and nota-

tions both for 1-output and m-output funtions, m > 1. In Setion III we desribe

a new method for onstruting highly nonlinear n-input m-output t-resilient fun-

tions and brie�y disuss onstraints on the parameters n;m and t. In Setion IV, we

show how error orreting odes an be used in the onstrution, and in Setion V

we provide some existene bounds regarding the ardinality of a set of noninterset-

ing linear odes. Some numerial values for onstruted funtions and a omparison

with previous onstrutions [10, 27℄ are also presented.

II Preliminaries

We review some relevant notation, de�nitions and known results in the onsidered

area. Sine the funtion f(x), f : F

n

2

7! F

m

2

, an be regarded as omposed of m

Boolean funtions f = (f

1

; : : : ; f

m

), we �rst introdue some onepts for a Boolean

funtion f : F

n

2

7! F

2

[3, 4, 9℄. A Boolean funtion f(x) an be expressed in algebrai

normal form (ANF), i.e., there are unique onstants a

0

; a

1

; : : : ; a

12

; : : : ; a

12���n

2 F

2

suh that

f(x

1

; : : : ; x

n

) =a

0

+ a

1

x

1

+ � � �+ a

n

x

n

+

+ a

12

x

1

x

2

+ a

13

x

1

x

3

+ � � �+ a

12���n

x

1

x

2

� � �x

n

; (1)

where addition and multipliation are in F

2

.

De�nition 1 The algebrai degree of f(x), denoted deg(f), is de�ned to be the

maximum degree appearing in the ANF.

Many properties for Boolean funtions are studied through the Walsh transform (or

almost equivalently through the Walsh-Hadamard transform).
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De�nition 2 The Walsh transform of a Boolean funtion f(x) is de�ned to be the

real-valued funtion F(!) over the vetor spae F

n

2

given by

F(!) =

X

x

(�1)

f(x)

(�1)

!�x

; (2)

where the dot produt of vetors x and ! is de�ned as x � ! = x

1

!

1

+ � � �+ x

n

!

n

.

We say that the Boolean funtion f(x) is balaned if P (f(x) = 1) = P (f(x) =

0) = 0:5. Alternatively, using the Walsh transform, f(x) is balaned if and only if

F(0) = 0.

Let F

n

be the set of all Boolean funtions in n variables. For two funtions

f(x); g(x) 2 F

n

the Hamming distane between them is de�ned as,

d

H

(f; g) = jfxjf(x) 6= g(x); x 2 F

n

2

gj: (3)

De�nition 3 The nonlinearity of a Boolean funtion f(x), denoted by N

f

, is de-

�ned as

N

f

= min

g2A

n

d

H

(f; g); (4)

where A

n

= fa

0

+ a

1

x

1

+ � � � + a

n

x

n

ja

i

2 F

2

; 0 � i � ng is the set of all a�ne

funtions on n variables.

The nonlinearity of f(x) an be obtained through the Walsh transform as follows,

N

f

= 2

n�1

�

1

2

max

!2F

n

2

jF(!)j; ! 6= 0: (5)

Finding Boolean funtions with maximal nonlinearity is an important and well stud-

ied problem. For n even, maximal nonlinearity is obtained by the bent funtions

[12, 18℄. For n odd, maximal nonlinearity is only known for n < 9, and determin-

ing it for n � 9 is (probably) a very hard hallenge [16℄. Sine bent funtions are

not balaned, another hard open problem is to �nd the maximum nonlinearity for

balaned funtions when n is even [7, 12, 20℄

Continuing, the next de�nition onerns the funtion's ability not to leak infor-

mation to the output when a subset of the input variables is kept �xed.

De�nition 4 A Boolean funtion f(x) on n variables is said to be m-th order or-

relation immune (m-CI), if for any m-tuple of independent identially distributed

binary random variables X

i

1

; X

i

2

; : : : ; X

i

m

, we have

I(X

i

1

; X

i

2

; : : : ; X

i

m

;Z) = 0; 1 � i

1

< i

2

< � � � < i

m

� n; (6)

where Z = f(X

1

; X

2

; : : : ; X

n

), and I(X;Z) denotes the mutual information [6℄.

The following lemma was �rst proved by Siegenthaler [22℄, and haraterizes the

orrelation immunity in the Walsh transform domain.

Lemma 1 A Boolean funtion f(x

1

; : : : ; x

n

) is m-th order orrelation immune (m-

CI) if and only if

F(!) = 0; !j1 � w

H

(!) � m; (7)

where w

H

(!) denotes the Hamming weight of !, i.e., the number of ones in !.
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Finally, an m-th order orrelation immune Boolean funtion whih is balaned is

alled an m-th order resilient (m-resilient) funtion.

This paper will be direted towards the study of trade-o�s between resilieny and

nonlinearity. In the speial ase of Boolean funtions (as assumed above), a lot of

work has been done, see for example [4, 9, 11, 15, 19, 20, 26℄.

Now we generalize the notion above to funtions F : F

n

2

7! F

m

2

. Let F : F

n

2

7! F

m

2

be a funtion de�ned by F (x) = (f

1

(x); : : : ; f

m

(x)), where f

1

; : : : ; f

m

are Boolean

funtions mapping F

n

2

7! F

2

. We start with a formal de�nition of a resilient funtion.

De�nition 5 Let F = (f

1

; f

2

; : : : ; f

m

) be a funtion from F

n

2

to F

m

2

where 1 � m �

n, and let x = (x

1

; x

2

; : : : ; x

n

) 2 F

n

2

.

1. F is said to be unbiased w.r.t. a �xed subset T = fj

1

; : : : ; j

t

g of f1; : : : ; ng, if

for every (a

1

; : : : ; a

t

) 2 F

t

2

(f

1

(x); : : : ; f

m

(x))j

x

j

1

=a

1

;:::;x

j

t

=a

t

runs through all the vetors in F

m

2

, eah 2

n�m�t

times, when (x

i

1

; : : : ; x

i

n�t

)

runs through F

n�t

2

, where t � 0, fi

1

; : : : ; i

n�t

g = f1; : : : ; ng � fj

1

; : : : ; j

t

g and

i

1

< � � � < i

n�t

.

2. F is said to be an (n;m; t)-resilient funtion if F is unbiased w.r.t. every

T � F

n

2

with jT j = t. The parameter t is alled the resilieny of the funtion.

The following lemma (XOR Lemma) is well known and gives the relationship be-

tween a resilient funtion and its omponent funtions [21℄.

Lemma 2 A funtion F = (f

1

; f

2

; : : : ; f

m

), where eah f

i

, 1 � i � m, is a fun-

tion F

n

2

7! F

2

, is uniformly distributed (unbiased) if and only if all nonzero linear

ombinations of f

1

; : : : ; f

m

are balaned.

Hene, an immediate onsequene of the previous lemma is the following.

Lemma 3 A funtion F = (f

1

; f

2

; : : : ; f

m

) is an (n;m; t)-resilient funtion if and

only if all nonzero linear ombinations of f

1

; f

2

; : : : ; f

m

are (n; 1; t)-resilient fun-

tions.

The de�nition of nonlinearity follows in a similar manner, taken from [14℄.

De�nition 6 The nonlinearity of F = (f

1

; f

2

; : : : ; f

m

), denoted by N

F

, is de�ned

as the minimum among the nonlinearities of all nonzero linear ombinations of the

omponent funtions of F , i.e.,

N

F

= min

^

f2

^

F

N

^

f

(8)

where

^

F = f

^

f j

^

f =

m

X

j=1



j

f

j

; 

j

2 f0; 1g; (

1

; : : : ; 

m

) 6= (0; : : : ; 0)g: (9)
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Similarly, the algebrai degree of F is de�ned as the minimum of degrees of all

nonzero linear ombinations of the omponent funtions of F , namely,

deg(F ) = min

^

f2

^

F

deg(

^

f); (10)

where

^

F is de�ned in (9).

Some work on resilient funtions have appeared. Important theoretial results

were obtained by Stinson and Massey [25℄ when disproving a onjeture in [1℄. They

showed that there exists an in�nite lass of nonlinear funtions with stritly higher

resilieny than what is possible to obtain using linear funtions with the same pa-

rameters. In [27℄ the onverse of the onjeture in [1℄ was demonstrated, that is, if

there exists a linear resilient funtion with ertain parameters, then there exists a

nonlinear resilient funtion with the same parameters. Thus, starting with a linear

resilient funtion and applying a highly nonlinear permutation to it, a large number

of distint nonlinear resilient funtions an be obtained.

The onnetion between linear resilient funtions and linear odes was established

in [1, 5℄, and the equivalene between resilient funtions and large set of orthog-

onal arrays was onsidered in [24℄. The main result an shortly be expressed as

follows. There exists a linear (n;m; t)-resilient funtion if and only if there exists a

linear [n;m; t+ 1℄ ode (equivalently, if there exists a large set of orthogonal arrays

LOA

2

n

�m�t

(t; n; 2) [2℄).

Previous work on high nonlinearity for resilient funtions is muh more limited.

Essentially, two onstrutions have appeared, see [10, 27℄. In [10℄, onatenation

of resilient funtions with bent funtions was used in order to obtain nonlinear

resilient funtions. In [27℄, a highly nonlinear permutation is applied to a linear

resilient funtion. We will ompare our results with these two onstrutions later

on.

Finally, we want to pay attention to the fat that funtions mapping F : F

n

2

7! F

m

2

have been extensively studied in the area of S-box design for blok iphers [13℄. Here,

e.g., the onept of nonlinearity appears. However, the tradeo� between nonlinearity

and resilieny has not been onsidered here.

III A onstrution of highly nonlinear (n;m; t)-

resilient funtions

In this setion, we present our onstrution of t-resilient funtions, fFg : F

n

2

7!

F

m

2

with high nonlinearity. We use the Walsh transform as a tool for proving the

properties of F . For m = 1 the onstrution will oinide with the one given in [4℄.

It is summarized by the following theorem.

Theorem 4 Let n;m; t and d be four positive integers with n � 4; 1 � t � n�3; 1 �

d � n� t;m � n� d.

For eah pair (y; i), where y 2 F

d

2

, i = 1; : : : ; m, let A

i

y

2 F

n�d

2

suh that w

H

(A

i

y

) �

t + 1, where w

H

() denotes the Hamming weight.
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For a 2 F

n�d

2

,  = (

1

; : : : ; 

m

) 2 F

m

2

, let

s

�

a;

= jfy 2 F

d

2

j

m

X

i=1



i

A

i

y

= agj:

Finally let s

�

= max

2F

m

2

max

a2F

n�d

2

s

�

a;

.

We now de�ne a funtion F : F

n

2

7! F

m

2

by

F (y; x) = (A

1

y

x;A

2

y

x; : : : ; A

m

y

x);

where y = (y

1

; : : : ; y

d

) 2 F

d

2

; x = (x

1

; : : : ; x

n�d

) 2 F

n�d

2

. Then the following holds:

1. F is uniformly distributed if

P

m

i=1



i

A

i

y

6= 0; for any  2 F

m

2

;  6= 0.

2. F is t-resilient if for any a 2 F

n�d

2

j 0 � wt(a) � t and  2 F

m

2

,  6= 0, it holds

that

P

m

i=1



i

A

i

y

6= a.

3. N

F

= 2

n�1

� s

�

2

n�d�1

.

Proof.

1. Let g



: F

n

2

7! F

2

be a funtion de�ned by g



(y; x) =

P

m

i=1



i

A

i

y

x for  2 F

m

2

,

 6= 0. Then

F

g



(0) =

X

y;x

(�1)

g



(y;x)

=

X

y

X

x

(�1)

(

1

A

1

y

+���+

m

A

m

y

)x

= 0;

sine by assumption

P

m

i=1



i

A

i

y

6= 0; for any  2 F

m

2

;  6= 0. Now F

g



(0) = 0

implies that g



is balaned and Lemma 2 then proves that F (y; x) is also

balaned.

2. We use Lemma 3 and show that all nonzero linear ombinations of the ompo-

nent funtions of F are (n; 1; t)-resilient funtions. Let g



(y; x) =

P

m

i=1



i

A

i

y

x

for some  2 F

m

2

;  6= 0. Then, for any (b; a) 2 F

n

2

with 1 � w

H

(b; a) � t, we

have

F

g



(b; a) =

X

y;x

(�1)

g



(y;x)

(�1)

(b;a)�(y;x)

=

X

y;x

(�1)

P

m

i=1



i

A

i

y

x

(�1)

b�y+a�x

=

X

y

(�1)

b�y

X

x

(�1)

(

1

A

1

y

+���+

m

A

m

y

+a)x

: (11)

Now

P

x

(�1)

(

1

A

1

y

+���+

m

A

m

y

+a)x

= 0 if

P

m

i=1



i

A

i

y

6= a. Sine 0 � w

H

(a) � t,

this always holds and then g



(y; x) is t-resilient for any  2 F

m

2

;  6= 0. Through

Lemma 3 we get that F (y; x) is t-resilient.
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3. Let g



(y; x) =

P

m

i=1



i

A

i

y

x for some  2 F

m

2

;  6= 0. Then, by (11),

F

g



(b; a) =

X

y

(�1)

b�y

X

x

(�1)

(

1

A

1

y

+���+

m

A

m

y

+a)x

= 2

n�d

X

fyj

P

m

i=1



i

A

i

y

=ag

(�1)

b�y

: (12)

Hene,

max

b;a

jF

g



(b; a)j � 2

n�d

max

2F

m

2

max

a

s

�

a;

(13)

= s

�

2

n�d

: (14)

If we let b = 0 in (12), we have

jF

g



(0; a)j = 2

n�d

jfyj

m

X

i=1



i

A

y

i

= agj = 2

n�d

s

�

a;

:

It follows that

max

b;a

jF

g



(b; a)j � max

a

jF

g

(0; a)j (15)

= 2

n�d

max

2F

m

2

max

a

s

�

a;

(16)

= s

�

2

n�d

: (17)

Therefore, max

b;a

jF

g



(b; a)j = s

�

2

n�d

. By eq. (5),

N

F

= 2

n�1

� s

�

2

n�d�1

: (18)

Note that in this onstrution the omponent funtions are atually a onate-

nation of 2

d

linear t-resilient funtions in n � d variables. Thus, y 2 F

d

2

an be

viewed as a spei� address to some linear funtion. Clearly, a large number of

distint funtions with same parameters an be obtained by permuting the values

of (A

1

y

; : : : ; A

m

y

). Let us for onveniene introdue the following notation,

A =

0

B

B

B

�

A

1

00���00

A

2

00���00

� � � A

m

00���00

A

1

00���01

A

2

00���01

� � � A

m

00���01

.

.

.

A

1

11���11

A

2

11���11

� � � A

m

11���11

1

C

C

C

A

:

By equation (18), the nonlinearity of F depends only on two parameters, namely,

s

�

whih is the maximum number of idential vetors appearing in any linear om-

bination of A's olumns, and d whih is to be maximized in order to obtain highest

nonlinearity. In our onstrution we fous on s

�

= 1. This leaves us with a maxi-

mization problem on d. We would like to �nd the smallest value of n� d under the

ondition that we an onstrut the matrix A with s

�

= 1.

7



This leads to ertain onditions on A. Our �rst observation is that if F is to be

t-resilient, the vetors ontained in eah row of the matrix A spans an [n�d;m; t+1℄

linear ode. This follows diretly from the ondition

w

H

(

m

X

i=1



i

A

i

y

) � t+ 1; 8 = (

1

; : : : ; 

m

) 6= 0;

in 2. of Theorem 4. The seond observation is that if the nonlinearity of F is to be

maximized for a �xed parameter d, i.e., we want to ahieve s

�

= 1, then

m

X

i=1



i

A

i

y

6=

m

X

i=1



i

A

i

y

0

; 8 = (

1

; : : : ; 

m

) 6= 0;

if y 6= y

0

. We will onsider these properties muh more in the next setion. But

before that, we provide the main results of two previously known onstrutions, and

show an example of our onstrution for omparison.

Zhang and Zheng [27℄ showed how to transform linear resilient funtions into

nonlinear resilient funtions based on the following result.

Lemma 5 [27℄ If there exists a linear (n;m; t)-resilient funtion, then there exists a

nonlinear (n;m; t)-resilient funtion F (x) whose nonlinearity satis�es N

F

� 2

n�1

�

2

n�

1

2

m

and whose algebrai degree is m� 1.

Another onstrution of nonlinear (n;m; t)-resilient funtions was examined in [10℄.

The performane is given as follows.

Lemma 6 [10℄ For any even l suh that l � 2m, if there exists an (n � l; m; t)-

resilient funtion  (x), then there exists an (n;m; t)-resilient funtion F (x) whose

nonlinearity satis�es N

F

> 2

n�1

� 2

n�

l

2

�1

.

The resilient funtions required in the above lemmas an be obtained through good

error orreting odes. As proved in [10℄, there is a tradeo� between the nonlinearity

and resilieny when the two onstrutions given above are ompared. Lemma 5

gives higher nonlinearity than Lemma 6, while the latter gives larger resilieny for

the same n and m.

In the following example we demonstrate our onstrution and show that it gives

better nonlinearity for a partiular hoie of parameters. Other hoies of the pa-

rameters n;m; t will be examined later.

Example 1 Consider a funtion F (y; x) : F

10

2

7! F

2

2

. Choose d = 4 in Theorem

1. Then the funtion de�ned by F (y; x) = (A

1

y

x;A

2

y

x) will be a (10; 2; 2)-resilient

funtion with nonlinearity N

F

= 480, provided s

�

= 1. The set of vetors A

1

y

and A

2

y

is given below in matrix form, where every entry in A spei�es a linear t-resilient

Boolean funtion on n� d variables.

8



A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

(100110) (111000)

(111000) (011110)

(011110) (100110)

(010011) (011100)

(011100) (001111)

(001111) (010011)

(101001) (001110)

(001110) (100111)

(100111) (101001)

(110100) (000111)

(000111) (110011)

(110011) (110100)

(011010) (100011)

(100011) (111001)

(111001) (011010)

(001101) (110001)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

It is easily veri�ed that the linear ombinations of the vetors in eah row of A yield

new vetors all having the weight greater than or equal to 3 (t + 1), as required.

Furthermore, none of the vetors appear more than one in eah olumn of A or in

any linear ombination of A's olumns, i.e., s

�

= 1. Thus, the funtion F (y; x) is

indeed 2-resilient and the nonlinearity is given by,

N

F

= 2

n�1

� 2

n�d�1

= 480:

Sine, m = 2 in the example above, it is not possible to obtain a nonlinear (10; 2; 2)-

resilient funtion or any nonlinear (n; 2; t)-resilient funtion using the Zhang and

Zheng onstrution.

Suppose, that we want to onstrut a (10; 2; 2)-resilient funtion using the on-

strution in Lemma 6. Sine m = 2, the requirement is that there must exist a

(10 � l; 2; 2)-resilient funtion in order to onstrut a (10; 2; 2)-resilient funtion.

Aording to Lemma 6, l is even and l � 2m. For l � 6 it is easily proved that a

(10 � l; 2; 2)-resilient funtion does not exist. Thus, the only possibility is to take

l = 4, whih gives a nonlinearity of,

N

F

> 2

n�1

� 2

n�

l

2

�1

= 384:

IV How to onstrut the matrix A

As mentioned before, the nonlinearity depends on the value of d. Hene, we �rst note

that for any given (n;m; t), n being the number of input variables, m the number of

output variables and t the order of resilieny, d must satisfy the following inequality,

�

n� d

t+ 1

�

+

�

n� d

t+ 2

�

+ � � �+

�

n� d

n� d

�

� 2

d

: (19)

The inequality is a simple onsequene of the fat that for any omponent funtion

of F we have to hoose the vetors in F

n�d

2

with weight greater than the order of

9



resilieny. Thus, for any n; t, let d

max

be the largest value of d suh that (19) holds.

An upper bound on the nonlinearity for this onstrution, denoted N

ub

F

, is obtained

as,

N

ub

F

� 2

n�1

� 2

n�d

max

�1

:

Computing the values of d

max

by using (19), Table 1 is obtained.

N

F

(d

max

) n

t 7 8 9 10 11 12

1 56 (3) 112 (3) 240 (4) 480 (4) 992(5) 1984(5)

2 48 (2) 112 (3) 240 (4) 480 (4) 992(5) 1984(5)

3 48 (2) 96 (2) 224 (3) 480 (4) 960(4) 1984(5)

4 32 (1) 96 (2) 192 (2) 448 (3) 960(4) 1920(4)

Table 1: Upper bound on N

F

for the onstrution.

We interpret the entries in the table as follows. Consider the partiular values

of n = 10 and t = 2. The maximum nonlinearity equals N

F

= 480 and d

max

= 4.

Sine the upper bound is met with equality for m = 1, it also re�ets the results

obtained in [4℄. Note that this onstrution is not optimal for m = 1. In a few ases

improvements have been found, e.g., for n = 10; t = 1, N

F

= 484 was obtained in

[11℄

An interesting question is how many additional output variables we an have,

while keeping the same maximal value for the nonlinearity N

F

. In the example in

the previous setion we veri�ed that for m = 2, n = 10, and t = 2 we were able to

�ll up 16 rows of the matrix A without violating the onstraints given in Theorem

1, getting the same nonlinearity N

F

= 480 as in the ase m = 1.

In order to onstrut the matrix A, we rely �rst on the following lemma.

Lemma 7 Let 

0

; : : : ; 

m�1

be a basis of a binary [n�d;m; t+1℄ linear ode C. Let

� be a primitive element in F

2

m

and (1; �; : : : ; �

m�1

) be a polynomial basis of F

2

m

.

De�ne a bijetion � : F

2

m

7! C by

�(a

0

+ a

1

� + � � �a

m�1

�

m�1

) = a

0



0

+ a

1



1

+ � � �a

m�1



m�1

:

Consider the matrix

A

�

=

0

B

B

B

�

�(1) �(�) : : : �(�

m�1

)

�(�) �(�

2

) : : : �(�

m

)

.

.

.

.

.

.

.

.

.

.

.

.

�(�

2

m

�2

) �(1) : : : �(�

m�2

)

1

C

C

C

A

:

For any linear ombination of olumns (not all zero) of the matrix A

�

, eah nonzero

odeword of C will appear exatly one.

10



Proof. Sine � is a bijetion, it is enough to show that the matrix

0

B

B

B

�

1 � : : : �

m�1

� �

2

: : : �

m

.

.

.

.

.

.

.

.

.

.

.

.

�

2

m

�2

1 : : : �

m�2

1

C

C

C

A

has the property that eah element in F

�

2

m

will appear one in any nonzero linear

ombination of olumns of the above matrix.

Any nonzero linear ombination of olumns an be written as

(

0

+ 

1

� + � � �+ 

m�1

�

m�1

)

0

B

B

B

�

1

�

.

.

.

�

2

m

�2

1

C

C

C

A

;

for some 

0

; 

1

: : : ; 

m�1

2 F

2

, and the statement is obvious.

The onlusion from the lemma is that by using a linear [n� d;m; t+ 1℄ ode we

an �ll 2

m

� 1 out of the 2

d

rows of matrix A. Eah nonzero odeword will then

appear exatly one in eah olumn and row. Then we an selet another linear

[n� d;m; t+1℄ ode and �ll another 2

m

� 1 rows of matrix A. In order to maximize

the nonlinearity, no vetor in A should appear more than one in eah olumn (or

row). Hene, the intersetion between the two odes should be the all zero word.

Continuing to selet more odes to �ll the matrix A, the intersetion with any other

previously seleted ode must again be only the all zero word. This leads us to the

following de�nition.

De�nition 7 A set of linear [n

0

; m; t + 1℄ odes fC

1

; C

2

; : : : ; C

s

g suh that

C

i

\ C

j

= f0g; 1 � i < j � s

is alled a set of linear [n

0

; m; t+ 1℄ noninterseting odes.

For �xed values n

0

; m; t + 1, we are interested in the maximal ardinality of a set

of linear [n

0

; m; t+ 1℄ noninterseting odes. Combining the idea of noninterseting

odes with the previous onstrution we an summarize in the following result.

Theorem 8 If there exists a set of linear [n�d;m; t+1℄ noninterseting odes with

ardinality d2

d

=(2

m

� 1)e then there exists a t-resilient funtion F : F

n

2

7! F

m

2

with

nonlinearity

N

F

= 2

n�1

� 2

n�d�1

:

Example 2 Continuing with the same numerial values as in the previous example,

i.e., n = 10, t = 2, m = 2, we hoose d = 4. The requirement is now to �nd

d2

d

=(2

m

� 1)e = 6 noninterseting linear [n� d;m; t+1℄ = [6; 2; 3℄ odes in order to

maximize the nonlinearity to N

F

= 2

n�1

� 2

n�d�1

= 480. By omputer searh, we

veri�ed that ardinality 6 was indeed possible, and the matrix A given in the previous

example was atually onstruted through these 6 odes.

Now onsider the same problem but for m = 3. Again, seleting d = 4 we must

now have d2

d

=(2

m

� 1)e = 3 noninterseting linear [6; 3; 3℄ odes. This ould not

be found by omputer searh. Hene, we must derease d by one, d = 3. This will

result in a nonlinearity of N

F

= 448.

11



V Lower bounds on the ardinality of a set of linear

noninterseting odes

In this setion we prove two lower (existene) bounds on the ardinality of a set of

noninterseting linear odes. Using these bounds we are able to prove that there

exist resilient funtions having higher nonlinearity than obtained using previous

onstrutions, i.e. [10, 27℄. We do not disuss a pratial onstrution of suh

funtions, but it should be pointed out that the tehnique used in obtaining the

bounds to be presented may be modi�ed into a searh algorithm. Firstly, we give a

general lower bound on the ardinality of a set of noninterseting linear odes using

Gilbert-Varshamov type of arguments. We need an well-known lemma stated here

without proof (for a proof see e.g. [28℄).

Lemma 9 Let F

n

2

be an n-dimensional vetor spae over F

2

and 0 � k � m � n. Let

N(m;n) denote the number of m-dimensional vetor subspaes of F

n

2

. Furthermore,

let N

0

(k;m; n) denote the number of m-dimensional vetor subspaes ontaining a

given k-dimensional vetor subspae of F

n

2

. Then the following is valid,

N(m;n) =

Q

n

i=n�m+1

(2

i

� 1)

Q

m

i=1

(2

i

� 1)

; (20)

N

0

(k;m; n) = N(m� k; n� k): (21)

LetM(n;m; d

min

) denote the maximal ardinality of a set of noninterseting linear

odes for any given ode parameters n;m; d

min

. Using the Lemma 9 above we are

able to obtain the following existene bound on M(n;m; d

min

).

Theorem 10 Let the odes in the set have parameters [n;m; d

min

℄ and let S = fx 2

F

n

2

j1 � w

H

(x) � d

min

� 1g. Then M(n;m; d

min

) is lower-bounded by

M(n;m; d

min

) �

�

N(m;n)� jSjN(m� 1; n� 1)

(2

m

� 1)(N(m� 1; n� 1)� 1)

�

: (22)

Proof. Sine the minimum distane of all the odes is d

min

; none of them is allowed

to interset the sphere S. Let C denote the set of all linear odes of length n and

dimension m. Aording to Lemma 9, the total number of odes is N(m;n).

Any element (vetor) in S is a 1-dimensional vetor spae. The number of odes

ontaining an arbitrary word x 2 S is N(m � 1; n � 1). Removing all odes in C

interseting an element in S, i.e. all odes having too low minimum distane, leaves

us with at least

N(m;n)�N(m� 1; n� 1)jSj (23)

odes in C. In general, some odes will ontain more than one odeword from S,

and hene (23) is an upper bound on the number of odes interseting the sphere S.

Now we an hose any ode, say C

1

, of the remaining odes in C. An upper bound

on the number of odes interseting C

1

in more than the zero word is now derived.

jfC 2 CjC \ C

1

6= f0ggj � (2

m

� 1)(N(m� 1; n� 1)� 1):

12



This inequality is a onsequene of the simple fat that any of 2

m

� 1 nonzero

odewords of C

1

an be in at most N(m� 1; n� 1)� 1 odes.

We now ontinue to selet a new ode C

2

and remove all odes that interset C

2

,

et. It then follows that an Mth ode an be added to the set of noninterseting

odes if the following inequality holds,

N(m;n)� jSjN(m� 1; n� 1)� (M � 1)(2

m

� 1)(N(m� 1; n� 1)� 1) � 0: (24)

From (24) one obtain (22) as stated.

A seond lower bound on the ardinality of a set of noninterseting linear odes

is obtained by onsidering the set of all possible permutations on the odewords

(i.e. olumn permutations) for a given linear ode C. Thus, the ondition for this

lower bound is the existene of a linear [n;m; d

min

℄ ode C together with its weight

distribution. One we know one suh ode, we are able to ompute a lower bound

on M(n;m; d

min

) whih will depend on the weight distribution.

Theorem 11 (Permutation bound) Let C be a given [n;m; d

min

℄ linear ode

spei�ed by its weight distribution T (D) =

P

n

i=d

min

w

i

D

i

. Then

M(n;m; d

min

) �

�

n!

P

n

i=d

min

w

2

i

i!(n� i)!

�

(25)

Proof. Let A = f1; 2; : : : ; ng and let S

n

= f� : A 7! Ag be a set of all permutations

on n letters ating on C with ardinality n!. Furthermore, let C

w

i

= f 2 C :

w

H

() = ig be a set of ardinality jC

w

i

j = w

i

. If �

w

i

is the set of all permutations

that map any odeword in C

w

i

to some odeword ontained in C

w

i

, i.e.,

�

w

i

= f� 2 S

n

: �() 2 C

w

i

; for some  2 C

w

i

g;

then we have j�

w

i

j = w

2

i

i!(n� i)!.

The idea is to remove all permutations � whih maps any nonzero odeword of

C into C. Thus, the number of permutations to be disarded in order to obtain a

ode �(C) whih does not interset C in more than the zero word is given by

n

X

i=d

min

w

2

i

i!(n� i)!; (26)

and the ondition for a seond ode will be n! >

P

n

i=d

min

w

2

i

i!(n� i)!. Clearly we an

proeed in the same manner, disarding all permutations whih maps any nonzero

odeword of C into �(C), as long as we have remaining permutations.

Thus, the M -th ode an be added provided

n!� (M � 1)

n

X

i=dmin

w

2

i

i!(n� i)! � 0: (27)

Rearranging (27) we obtain (25) as laimed.

In the next setion these two bounds will be applied to prove the existene of

resilient funtions with higher nonlinearity than those obtained in [10, 27℄.
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VI Numerial results on the nonlinearity for re-

silient funtions

The purpose of this setion is to ombine all the results given sofar in order to give

numerial values on the parameters that we an ahieve.

In [10℄ the author onsidered the onstrution of [36; 8; t℄ nonlinear resilient fun-

tions for di�erent orders of resilieny t. In the table below we show through our

onstrution that there exist funtions with higher nonlinearity, or in other words,

the lower bound on the nonlinearity is shifted upwards. The existene of funtions

with parameters as in Table 2 is obtained using the sphere bound in Theorem 10

together with Theorem 8, exept for the boldfae entry whih is omputed using

the permutation bound in Theorem 11. For this spei� entry, we started with a

[24; 12; 8℄ Golay ode and modi�ed it into a [23; 8; 8℄ ode. Thus, with parameter

d = 13 we had to �nd at least 33 noninterseting linear odes in order to �ll 8192

rows of matrix A. Using the weight distribution of [23; 8; 8℄ and the equation (25)

we ould prove that there exist at least 34 noninterseting linear odes, whih yields

the lower bound on nonlinearity as given in Table 2.

t 7 5 4 3 2 1

Bound [10℄ 2

35

� 2

27

2

35

� 2

26

2

35

� 2

25

2

35

� 2

24

2

35

� 2

23

2

35

� 2

22

New bound 2

35

� 2

22

2

35

� 2

23

2

35

� 2

22

2

35

� 2

22

2

35

� 2

21

2

35

� 2

21

Table 2: Lower bounds on N

F

for [36; 8; t℄-resilient funtions

Sine the ardinality of the set of noninterseting linear odes to be found depends

on the size of input parameters, i.e. n;m; t, we an alulate the lower bound on

the number of these odes for arbitrary values of n. But for moderate n, one an

also onsider searh algorithms based on the ideas behind the lower bounds. Suh a

omputer searh has also been implemented, and the obtained results are presented

in the tables below.

N

F

n = 9 n = 10 n = 11 n = 12

m Th. 8 [10℄ Th. 8 [10℄ Th. 8 [10℄ Th. 8 [10℄

2 240 224 480 448 992 960 1984 1920

3 224 � 480 448 992 896 1984 1920

4 224 � 448 � 960 � 1920 �

5 224 � 448 � 960 � 1920 �

6 192 � 448 � 960 � 1920 �

Table 3: Highest ahieved N

F

for 1-resilient funtions.
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N

F

n = 9 n = 10 n = 11 n = 12

m Th. 8 [10℄Th. 8 [10℄ Th. 8 [10℄ Th. 8 [10℄

2 240 192 480 384 992 896 1984 1792

3 192 � 448 � 960 � 1984 1792

4 128 � 384 � 896 � 1920 �

5 0 � 256 � 768 � 1792 �

6 0 � 0 � 512 � 1536 �

Table 4: Highest ahieved N

F

for 2-resilient funtions.

N

F

n = 9 n = 10 n = 11 n = 12

m Th. 8 [10℄ Th. 8 [10℄ Th. 8 [10℄ Th. 8 [10℄

2 192 � 448 384 960 768 1984 1792

3 192 � 384 � 896 � 1920 �

4 128 � 256 � 768 � 1792 �

5 0 � 0 � 512 � 1536 �

6 0 � 0 � 512 � 1024 �

Table 5: Highest ahieved N

F

for 3-resilient funtions.

VII Conlusion

A new onstrution of highly nonlinear (n;m; t)-resilient funtions has been pre-

sented. The onstrution leads to interesting oding theoreti questions regarding

the maximal ardinality of a set of [n;m; d

min

℄ odes with the property that the

intersetion of any two odes is the all zero odeword. We have found no previous

work that has onsidered this subjet, although we have noted some similarities in

onjuntion with the Griesmer bound as well as to odes for unequal error protetion.

Comparing with the two di�erent designs presented in [10, 27℄, the proposed

onstrution gives a muh better nonlinearity for the same value of resilieny. Still,

further improvements ould be possible in some ases, possibly through onstrution

methods presented in [19℄.
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