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Abstra
t

The relationship between nonlinearity and resilien
y for a fun
tion F :

F

n

2

7! F

m

2

is 
onsidered. We give a 
onstru
tion of resilient fun
tions with

high nonlinearity. The 
onstru
tion leads to the problem of �nding a set

of linear 
odes with a �xed minimum distan
e, having the property that the

interse
tion between any two 
odes is the all zero 
odeword only. This problem

is 
onsidered, and existen
e results are provided. The 
onstru
ted fun
tions

obtain a nonlinearity superior to previous 
onstru
tion methods.

I Introdu
tion

A 
lassi
al method for 
onstru
ting keystream generators is to 
ombine a set of lin-

ear feedba
k shift registers with a nonlinear Boolean fun
tion. Then the Boolean

fun
tion f(x), f : F

n

2

7! F

2

must ful�ll 
ertain properties in order to in
rease the

time/spa
e 
omplexity of di�erent atta
ks. Common atta
ks are Siegenthaler 
or-

relation atta
k [23℄, Berlekamp-Massey linearity synthesis atta
k [13℄ and di�erent

linear approximation atta
ks [8℄. There are at least four main 
riteria that f(x)

should ful�ll. These are: balan
edness, high nonlinearity, high algebrai
 degree, and

some 
orrelation immunity (for balan
ed fun
tions, 
orrelation immunity is usually

referred to as re
ilien
y).

In a modern design of a stream 
ipher, one might in many situations want to


onsider fun
tions mapping to a blo
k of output bits, i.e., fun
tions of the form

f : F

n

2

7! F

m

2

(n-input m-output fun
tions). In blo
k 
ipher design su
h fun
tions

are referred to as S-boxes. S-boxes is a well studied subje
t, and di�erent important


riteria have been 
onsidered. These in
lude the propagation 
riterion (PC), the

stri
t avalan
he 
riterion (SAC), et
. [17℄.

�

This work has been presented at ISIT 2000.
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For appli
ations in stream 
iphers, we turn our attention to the 
riteria mentioned

above for Boolean fun
tions. In parti
ular, we 
onsider the interesting relationship

between resilien
y and nonlinearity for balan
ed fun
tions f : F

n

2

7! F

m

2

.

For the 
ase of Boolean fun
tions (m = 1), the results in [4℄ provide a simple

method of generating fun
tions, ffg : F

n

2

7! F

2

, with some �xed resilien
y and high

nonlinearity. This 
onstru
tion has been used as a basis for further improvements in

e.g. [11, 19℄. We now have quite a lot of results for the 
ase m = 1. A ni
e summary

of the 
urrent situation 
an be found in [11℄.

Whenm > 1 the situation is di�erent. A few papers [10, 27℄ have appeared before,

providing nonlinear fun
tions with some resilien
y. But, as will be demonstrated, it

is possible to signi�
antly improve upon these results. We will in this paper present

a 
onstru
tion of highly nonlinear and resilient n-input m-output fun
tions, where

m � 1. The 
onstru
tion, whi
h for m = 1 is the same as [4℄, is based on a 
oding

theoreti
 problem, whi
h to our knowledge is new. We are interested in �nding

a set of linear 
odes with a �xed minimum distan
e d, su
h that the interse
tion

between any two 
odes is the all zero 
odeword only. This is referred to as a set

of noninterse
ting linear 
odes. The problem is to �nd the maximal 
ardinality of

su
h a set. This is 
onsidered, and existen
e results are provided. The 
onstru
ted

fun
tions obtain a nonlinearity superior to previous 
onstru
tion methods.

The paper is organized as follows. Se
tion II provides basi
 de�nitions and nota-

tions both for 1-output and m-output fun
tions, m > 1. In Se
tion III we des
ribe

a new method for 
onstru
ting highly nonlinear n-input m-output t-resilient fun
-

tions and brie�y dis
uss 
onstraints on the parameters n;m and t. In Se
tion IV, we

show how error 
orre
ting 
odes 
an be used in the 
onstru
tion, and in Se
tion V

we provide some existen
e bounds regarding the 
ardinality of a set of noninterse
t-

ing linear 
odes. Some numeri
al values for 
onstru
ted fun
tions and a 
omparison

with previous 
onstru
tions [10, 27℄ are also presented.

II Preliminaries

We review some relevant notation, de�nitions and known results in the 
onsidered

area. Sin
e the fun
tion f(x), f : F

n

2

7! F

m

2

, 
an be regarded as 
omposed of m

Boolean fun
tions f = (f

1

; : : : ; f

m

), we �rst introdu
e some 
on
epts for a Boolean

fun
tion f : F

n

2

7! F

2

[3, 4, 9℄. A Boolean fun
tion f(x) 
an be expressed in algebrai


normal form (ANF), i.e., there are unique 
onstants a

0

; a

1

; : : : ; a

12

; : : : ; a

12���n

2 F

2

su
h that

f(x

1

; : : : ; x

n

) =a

0

+ a

1

x

1

+ � � �+ a

n

x

n

+

+ a

12

x

1

x

2

+ a

13

x

1

x

3

+ � � �+ a

12���n

x

1

x

2

� � �x

n

; (1)

where addition and multipli
ation are in F

2

.

De�nition 1 The algebrai
 degree of f(x), denoted deg(f), is de�ned to be the

maximum degree appearing in the ANF.

Many properties for Boolean fun
tions are studied through the Walsh transform (or

almost equivalently through the Walsh-Hadamard transform).
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De�nition 2 The Walsh transform of a Boolean fun
tion f(x) is de�ned to be the

real-valued fun
tion F(!) over the ve
tor spa
e F

n

2

given by

F(!) =

X

x

(�1)

f(x)

(�1)

!�x

; (2)

where the dot produ
t of ve
tors x and ! is de�ned as x � ! = x

1

!

1

+ � � �+ x

n

!

n

.

We say that the Boolean fun
tion f(x) is balan
ed if P (f(x) = 1) = P (f(x) =

0) = 0:5. Alternatively, using the Walsh transform, f(x) is balan
ed if and only if

F(0) = 0.

Let F

n

be the set of all Boolean fun
tions in n variables. For two fun
tions

f(x); g(x) 2 F

n

the Hamming distan
e between them is de�ned as,

d

H

(f; g) = jfxjf(x) 6= g(x); x 2 F

n

2

gj: (3)

De�nition 3 The nonlinearity of a Boolean fun
tion f(x), denoted by N

f

, is de-

�ned as

N

f

= min

g2A

n

d

H

(f; g); (4)

where A

n

= fa

0

+ a

1

x

1

+ � � � + a

n

x

n

ja

i

2 F

2

; 0 � i � ng is the set of all a�ne

fun
tions on n variables.

The nonlinearity of f(x) 
an be obtained through the Walsh transform as follows,

N

f

= 2

n�1

�

1

2

max

!2F

n

2

jF(!)j; ! 6= 0: (5)

Finding Boolean fun
tions with maximal nonlinearity is an important and well stud-

ied problem. For n even, maximal nonlinearity is obtained by the bent fun
tions

[12, 18℄. For n odd, maximal nonlinearity is only known for n < 9, and determin-

ing it for n � 9 is (probably) a very hard 
hallenge [16℄. Sin
e bent fun
tions are

not balan
ed, another hard open problem is to �nd the maximum nonlinearity for

balan
ed fun
tions when n is even [7, 12, 20℄

Continuing, the next de�nition 
on
erns the fun
tion's ability not to leak infor-

mation to the output when a subset of the input variables is kept �xed.

De�nition 4 A Boolean fun
tion f(x) on n variables is said to be m-th order 
or-

relation immune (m-CI), if for any m-tuple of independent identi
ally distributed

binary random variables X

i

1

; X

i

2

; : : : ; X

i

m

, we have

I(X

i

1

; X

i

2

; : : : ; X

i

m

;Z) = 0; 1 � i

1

< i

2

< � � � < i

m

� n; (6)

where Z = f(X

1

; X

2

; : : : ; X

n

), and I(X;Z) denotes the mutual information [6℄.

The following lemma was �rst proved by Siegenthaler [22℄, and 
hara
terizes the


orrelation immunity in the Walsh transform domain.

Lemma 1 A Boolean fun
tion f(x

1

; : : : ; x

n

) is m-th order 
orrelation immune (m-

CI) if and only if

F(!) = 0; !j1 � w

H

(!) � m; (7)

where w

H

(!) denotes the Hamming weight of !, i.e., the number of ones in !.
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Finally, an m-th order 
orrelation immune Boolean fun
tion whi
h is balan
ed is


alled an m-th order resilient (m-resilient) fun
tion.

This paper will be dire
ted towards the study of trade-o�s between resilien
y and

nonlinearity. In the spe
ial 
ase of Boolean fun
tions (as assumed above), a lot of

work has been done, see for example [4, 9, 11, 15, 19, 20, 26℄.

Now we generalize the notion above to fun
tions F : F

n

2

7! F

m

2

. Let F : F

n

2

7! F

m

2

be a fun
tion de�ned by F (x) = (f

1

(x); : : : ; f

m

(x)), where f

1

; : : : ; f

m

are Boolean

fun
tions mapping F

n

2

7! F

2

. We start with a formal de�nition of a resilient fun
tion.

De�nition 5 Let F = (f

1

; f

2

; : : : ; f

m

) be a fun
tion from F

n

2

to F

m

2

where 1 � m �

n, and let x = (x

1

; x

2

; : : : ; x

n

) 2 F

n

2

.

1. F is said to be unbiased w.r.t. a �xed subset T = fj

1

; : : : ; j

t

g of f1; : : : ; ng, if

for every (a

1

; : : : ; a

t

) 2 F

t

2

(f

1

(x); : : : ; f

m

(x))j

x

j

1

=a

1

;:::;x

j

t

=a

t

runs through all the ve
tors in F

m

2

, ea
h 2

n�m�t

times, when (x

i

1

; : : : ; x

i

n�t

)

runs through F

n�t

2

, where t � 0, fi

1

; : : : ; i

n�t

g = f1; : : : ; ng � fj

1

; : : : ; j

t

g and

i

1

< � � � < i

n�t

.

2. F is said to be an (n;m; t)-resilient fun
tion if F is unbiased w.r.t. every

T � F

n

2

with jT j = t. The parameter t is 
alled the resilien
y of the fun
tion.

The following lemma (XOR Lemma) is well known and gives the relationship be-

tween a resilient fun
tion and its 
omponent fun
tions [21℄.

Lemma 2 A fun
tion F = (f

1

; f

2

; : : : ; f

m

), where ea
h f

i

, 1 � i � m, is a fun
-

tion F

n

2

7! F

2

, is uniformly distributed (unbiased) if and only if all nonzero linear


ombinations of f

1

; : : : ; f

m

are balan
ed.

Hen
e, an immediate 
onsequen
e of the previous lemma is the following.

Lemma 3 A fun
tion F = (f

1

; f

2

; : : : ; f

m

) is an (n;m; t)-resilient fun
tion if and

only if all nonzero linear 
ombinations of f

1

; f

2

; : : : ; f

m

are (n; 1; t)-resilient fun
-

tions.

The de�nition of nonlinearity follows in a similar manner, taken from [14℄.

De�nition 6 The nonlinearity of F = (f

1

; f

2

; : : : ; f

m

), denoted by N

F

, is de�ned

as the minimum among the nonlinearities of all nonzero linear 
ombinations of the


omponent fun
tions of F , i.e.,

N

F

= min

^

f2

^

F

N

^

f

(8)

where

^

F = f

^

f j

^

f =

m

X

j=1




j

f

j

; 


j

2 f0; 1g; (


1

; : : : ; 


m

) 6= (0; : : : ; 0)g: (9)
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Similarly, the algebrai
 degree of F is de�ned as the minimum of degrees of all

nonzero linear 
ombinations of the 
omponent fun
tions of F , namely,

deg(F ) = min

^

f2

^

F

deg(

^

f); (10)

where

^

F is de�ned in (9).

Some work on resilient fun
tions have appeared. Important theoreti
al results

were obtained by Stinson and Massey [25℄ when disproving a 
onje
ture in [1℄. They

showed that there exists an in�nite 
lass of nonlinear fun
tions with stri
tly higher

resilien
y than what is possible to obtain using linear fun
tions with the same pa-

rameters. In [27℄ the 
onverse of the 
onje
ture in [1℄ was demonstrated, that is, if

there exists a linear resilient fun
tion with 
ertain parameters, then there exists a

nonlinear resilient fun
tion with the same parameters. Thus, starting with a linear

resilient fun
tion and applying a highly nonlinear permutation to it, a large number

of distin
t nonlinear resilient fun
tions 
an be obtained.

The 
onne
tion between linear resilient fun
tions and linear 
odes was established

in [1, 5℄, and the equivalen
e between resilient fun
tions and large set of orthog-

onal arrays was 
onsidered in [24℄. The main result 
an shortly be expressed as

follows. There exists a linear (n;m; t)-resilient fun
tion if and only if there exists a

linear [n;m; t+ 1℄ 
ode (equivalently, if there exists a large set of orthogonal arrays

LOA

2

n

�m�t

(t; n; 2) [2℄).

Previous work on high nonlinearity for resilient fun
tions is mu
h more limited.

Essentially, two 
onstru
tions have appeared, see [10, 27℄. In [10℄, 
on
atenation

of resilient fun
tions with bent fun
tions was used in order to obtain nonlinear

resilient fun
tions. In [27℄, a highly nonlinear permutation is applied to a linear

resilient fun
tion. We will 
ompare our results with these two 
onstru
tions later

on.

Finally, we want to pay attention to the fa
t that fun
tions mapping F : F

n

2

7! F

m

2

have been extensively studied in the area of S-box design for blo
k 
iphers [13℄. Here,

e.g., the 
on
ept of nonlinearity appears. However, the tradeo� between nonlinearity

and resilien
y has not been 
onsidered here.

III A 
onstru
tion of highly nonlinear (n;m; t)-

resilient fun
tions

In this se
tion, we present our 
onstru
tion of t-resilient fun
tions, fFg : F

n

2

7!

F

m

2

with high nonlinearity. We use the Walsh transform as a tool for proving the

properties of F . For m = 1 the 
onstru
tion will 
oin
ide with the one given in [4℄.

It is summarized by the following theorem.

Theorem 4 Let n;m; t and d be four positive integers with n � 4; 1 � t � n�3; 1 �

d � n� t;m � n� d.

For ea
h pair (y; i), where y 2 F

d

2

, i = 1; : : : ; m, let A

i

y

2 F

n�d

2

su
h that w

H

(A

i

y

) �

t + 1, where w

H

() denotes the Hamming weight.
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For a 2 F

n�d

2

, 
 = (


1

; : : : ; 


m

) 2 F

m

2

, let

s

�

a;


= jfy 2 F

d

2

j

m

X

i=1




i

A

i

y

= agj:

Finally let s

�

= max


2F

m

2

max

a2F

n�d

2

s

�

a;


.

We now de�ne a fun
tion F : F

n

2

7! F

m

2

by

F (y; x) = (A

1

y

x;A

2

y

x; : : : ; A

m

y

x);

where y = (y

1

; : : : ; y

d

) 2 F

d

2

; x = (x

1

; : : : ; x

n�d

) 2 F

n�d

2

. Then the following holds:

1. F is uniformly distributed if

P

m

i=1




i

A

i

y

6= 0; for any 
 2 F

m

2

; 
 6= 0.

2. F is t-resilient if for any a 2 F

n�d

2

j 0 � wt(a) � t and 
 2 F

m

2

, 
 6= 0, it holds

that

P

m

i=1




i

A

i

y

6= a.

3. N

F

= 2

n�1

� s

�

2

n�d�1

.

Proof.

1. Let g




: F

n

2

7! F

2

be a fun
tion de�ned by g




(y; x) =

P

m

i=1




i

A

i

y

x for 
 2 F

m

2

,


 6= 0. Then

F

g




(0) =

X

y;x

(�1)

g




(y;x)

=

X

y

X

x

(�1)

(


1

A

1

y

+���+


m

A

m

y

)x

= 0;

sin
e by assumption

P

m

i=1




i

A

i

y

6= 0; for any 
 2 F

m

2

; 
 6= 0. Now F

g




(0) = 0

implies that g




is balan
ed and Lemma 2 then proves that F (y; x) is also

balan
ed.

2. We use Lemma 3 and show that all nonzero linear 
ombinations of the 
ompo-

nent fun
tions of F are (n; 1; t)-resilient fun
tions. Let g




(y; x) =

P

m

i=1




i

A

i

y

x

for some 
 2 F

m

2

; 
 6= 0. Then, for any (b; a) 2 F

n

2

with 1 � w

H

(b; a) � t, we

have

F

g




(b; a) =

X

y;x

(�1)

g




(y;x)

(�1)

(b;a)�(y;x)

=

X

y;x

(�1)

P

m

i=1




i

A

i

y

x

(�1)

b�y+a�x

=

X

y

(�1)

b�y

X

x

(�1)

(


1

A

1

y

+���+


m

A

m

y

+a)x

: (11)

Now

P

x

(�1)

(


1

A

1

y

+���+


m

A

m

y

+a)x

= 0 if

P

m

i=1




i

A

i

y

6= a. Sin
e 0 � w

H

(a) � t,

this always holds and then g




(y; x) is t-resilient for any 
 2 F

m

2

; 
 6= 0. Through

Lemma 3 we get that F (y; x) is t-resilient.
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3. Let g




(y; x) =

P

m

i=1




i

A

i

y

x for some 
 2 F

m

2

; 
 6= 0. Then, by (11),

F

g




(b; a) =

X

y

(�1)

b�y

X

x

(�1)

(


1

A

1

y

+���+


m

A

m

y

+a)x

= 2

n�d

X

fyj

P

m

i=1




i

A

i

y

=ag

(�1)

b�y

: (12)

Hen
e,

max

b;a

jF

g




(b; a)j � 2

n�d

max


2F

m

2

max

a

s

�

a;


(13)

= s

�

2

n�d

: (14)

If we let b = 0 in (12), we have

jF

g




(0; a)j = 2

n�d

jfyj

m

X

i=1




i

A

y

i

= agj = 2

n�d

s

�

a;


:

It follows that

max

b;a

jF

g




(b; a)j � max

a

jF

g

(0; a)j (15)

= 2

n�d

max


2F

m

2

max

a

s

�

a;


(16)

= s

�

2

n�d

: (17)

Therefore, max

b;a

jF

g




(b; a)j = s

�

2

n�d

. By eq. (5),

N

F

= 2

n�1

� s

�

2

n�d�1

: (18)

Note that in this 
onstru
tion the 
omponent fun
tions are a
tually a 
on
ate-

nation of 2

d

linear t-resilient fun
tions in n � d variables. Thus, y 2 F

d

2


an be

viewed as a spe
i�
 address to some linear fun
tion. Clearly, a large number of

distin
t fun
tions with same parameters 
an be obtained by permuting the values

of (A

1

y

; : : : ; A

m

y

). Let us for 
onvenien
e introdu
e the following notation,

A =

0

B

B

B

�

A

1

00���00

A

2

00���00

� � � A

m

00���00

A

1

00���01

A

2

00���01

� � � A

m

00���01

.

.

.

A

1

11���11

A

2

11���11

� � � A

m

11���11

1

C

C

C

A

:

By equation (18), the nonlinearity of F depends only on two parameters, namely,

s

�

whi
h is the maximum number of identi
al ve
tors appearing in any linear 
om-

bination of A's 
olumns, and d whi
h is to be maximized in order to obtain highest

nonlinearity. In our 
onstru
tion we fo
us on s

�

= 1. This leaves us with a maxi-

mization problem on d. We would like to �nd the smallest value of n� d under the


ondition that we 
an 
onstru
t the matrix A with s

�

= 1.
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This leads to 
ertain 
onditions on A. Our �rst observation is that if F is to be

t-resilient, the ve
tors 
ontained in ea
h row of the matrix A spans an [n�d;m; t+1℄

linear 
ode. This follows dire
tly from the 
ondition

w

H

(

m

X

i=1




i

A

i

y

) � t+ 1; 8
 = (


1

; : : : ; 


m

) 6= 0;

in 2. of Theorem 4. The se
ond observation is that if the nonlinearity of F is to be

maximized for a �xed parameter d, i.e., we want to a
hieve s

�

= 1, then

m

X

i=1




i

A

i

y

6=

m

X

i=1




i

A

i

y

0

; 8
 = (


1

; : : : ; 


m

) 6= 0;

if y 6= y

0

. We will 
onsider these properties mu
h more in the next se
tion. But

before that, we provide the main results of two previously known 
onstru
tions, and

show an example of our 
onstru
tion for 
omparison.

Zhang and Zheng [27℄ showed how to transform linear resilient fun
tions into

nonlinear resilient fun
tions based on the following result.

Lemma 5 [27℄ If there exists a linear (n;m; t)-resilient fun
tion, then there exists a

nonlinear (n;m; t)-resilient fun
tion F (x) whose nonlinearity satis�es N

F

� 2

n�1

�

2

n�

1

2

m

and whose algebrai
 degree is m� 1.

Another 
onstru
tion of nonlinear (n;m; t)-resilient fun
tions was examined in [10℄.

The performan
e is given as follows.

Lemma 6 [10℄ For any even l su
h that l � 2m, if there exists an (n � l; m; t)-

resilient fun
tion  (x), then there exists an (n;m; t)-resilient fun
tion F (x) whose

nonlinearity satis�es N

F

> 2

n�1

� 2

n�

l

2

�1

.

The resilient fun
tions required in the above lemmas 
an be obtained through good

error 
orre
ting 
odes. As proved in [10℄, there is a tradeo� between the nonlinearity

and resilien
y when the two 
onstru
tions given above are 
ompared. Lemma 5

gives higher nonlinearity than Lemma 6, while the latter gives larger resilien
y for

the same n and m.

In the following example we demonstrate our 
onstru
tion and show that it gives

better nonlinearity for a parti
ular 
hoi
e of parameters. Other 
hoi
es of the pa-

rameters n;m; t will be examined later.

Example 1 Consider a fun
tion F (y; x) : F

10

2

7! F

2

2

. Choose d = 4 in Theorem

1. Then the fun
tion de�ned by F (y; x) = (A

1

y

x;A

2

y

x) will be a (10; 2; 2)-resilient

fun
tion with nonlinearity N

F

= 480, provided s

�

= 1. The set of ve
tors A

1

y

and A

2

y

is given below in matrix form, where every entry in A spe
i�es a linear t-resilient

Boolean fun
tion on n� d variables.

8



A =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

(100110) (111000)

(111000) (011110)

(011110) (100110)

(010011) (011100)

(011100) (001111)

(001111) (010011)

(101001) (001110)

(001110) (100111)

(100111) (101001)

(110100) (000111)

(000111) (110011)

(110011) (110100)

(011010) (100011)

(100011) (111001)

(111001) (011010)

(001101) (110001)

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

It is easily veri�ed that the linear 
ombinations of the ve
tors in ea
h row of A yield

new ve
tors all having the weight greater than or equal to 3 (t + 1), as required.

Furthermore, none of the ve
tors appear more than on
e in ea
h 
olumn of A or in

any linear 
ombination of A's 
olumns, i.e., s

�

= 1. Thus, the fun
tion F (y; x) is

indeed 2-resilient and the nonlinearity is given by,

N

F

= 2

n�1

� 2

n�d�1

= 480:

Sin
e, m = 2 in the example above, it is not possible to obtain a nonlinear (10; 2; 2)-

resilient fun
tion or any nonlinear (n; 2; t)-resilient fun
tion using the Zhang and

Zheng 
onstru
tion.

Suppose, that we want to 
onstru
t a (10; 2; 2)-resilient fun
tion using the 
on-

stru
tion in Lemma 6. Sin
e m = 2, the requirement is that there must exist a

(10 � l; 2; 2)-resilient fun
tion in order to 
onstru
t a (10; 2; 2)-resilient fun
tion.

A

ording to Lemma 6, l is even and l � 2m. For l � 6 it is easily proved that a

(10 � l; 2; 2)-resilient fun
tion does not exist. Thus, the only possibility is to take

l = 4, whi
h gives a nonlinearity of,

N

F

> 2

n�1

� 2

n�

l

2

�1

= 384:

IV How to 
onstru
t the matrix A

As mentioned before, the nonlinearity depends on the value of d. Hen
e, we �rst note

that for any given (n;m; t), n being the number of input variables, m the number of

output variables and t the order of resilien
y, d must satisfy the following inequality,

�

n� d

t+ 1

�

+

�

n� d

t+ 2

�

+ � � �+

�

n� d

n� d

�

� 2

d

: (19)

The inequality is a simple 
onsequen
e of the fa
t that for any 
omponent fun
tion

of F we have to 
hoose the ve
tors in F

n�d

2

with weight greater than the order of

9



resilien
y. Thus, for any n; t, let d

max

be the largest value of d su
h that (19) holds.

An upper bound on the nonlinearity for this 
onstru
tion, denoted N

ub

F

, is obtained

as,

N

ub

F

� 2

n�1

� 2

n�d

max

�1

:

Computing the values of d

max

by using (19), Table 1 is obtained.

N

F

(d

max

) n

t 7 8 9 10 11 12

1 56 (3) 112 (3) 240 (4) 480 (4) 992(5) 1984(5)

2 48 (2) 112 (3) 240 (4) 480 (4) 992(5) 1984(5)

3 48 (2) 96 (2) 224 (3) 480 (4) 960(4) 1984(5)

4 32 (1) 96 (2) 192 (2) 448 (3) 960(4) 1920(4)

Table 1: Upper bound on N

F

for the 
onstru
tion.

We interpret the entries in the table as follows. Consider the parti
ular values

of n = 10 and t = 2. The maximum nonlinearity equals N

F

= 480 and d

max

= 4.

Sin
e the upper bound is met with equality for m = 1, it also re�e
ts the results

obtained in [4℄. Note that this 
onstru
tion is not optimal for m = 1. In a few 
ases

improvements have been found, e.g., for n = 10; t = 1, N

F

= 484 was obtained in

[11℄

An interesting question is how many additional output variables we 
an have,

while keeping the same maximal value for the nonlinearity N

F

. In the example in

the previous se
tion we veri�ed that for m = 2, n = 10, and t = 2 we were able to

�ll up 16 rows of the matrix A without violating the 
onstraints given in Theorem

1, getting the same nonlinearity N

F

= 480 as in the 
ase m = 1.

In order to 
onstru
t the matrix A, we rely �rst on the following lemma.

Lemma 7 Let 


0

; : : : ; 


m�1

be a basis of a binary [n�d;m; t+1℄ linear 
ode C. Let

� be a primitive element in F

2

m

and (1; �; : : : ; �

m�1

) be a polynomial basis of F

2

m

.

De�ne a bije
tion � : F

2

m

7! C by

�(a

0

+ a

1

� + � � �a

m�1

�

m�1

) = a

0




0

+ a

1




1

+ � � �a

m�1




m�1

:

Consider the matrix

A

�

=

0

B

B

B

�

�(1) �(�) : : : �(�

m�1

)

�(�) �(�

2

) : : : �(�

m

)

.

.

.

.

.

.

.

.

.

.

.

.

�(�

2

m

�2

) �(1) : : : �(�

m�2

)

1

C

C

C

A

:

For any linear 
ombination of 
olumns (not all zero) of the matrix A

�

, ea
h nonzero


odeword of C will appear exa
tly on
e.

10



Proof. Sin
e � is a bije
tion, it is enough to show that the matrix

0

B

B

B

�

1 � : : : �

m�1

� �

2

: : : �

m

.

.

.

.

.

.

.

.

.

.

.

.

�

2

m

�2

1 : : : �

m�2

1

C

C

C

A

has the property that ea
h element in F

�

2

m

will appear on
e in any nonzero linear


ombination of 
olumns of the above matrix.

Any nonzero linear 
ombination of 
olumns 
an be written as

(


0

+ 


1

� + � � �+ 


m�1

�

m�1

)

0

B

B

B

�

1

�

.

.

.

�

2

m

�2

1

C

C

C

A

;

for some 


0

; 


1

: : : ; 


m�1

2 F

2

, and the statement is obvious.

The 
on
lusion from the lemma is that by using a linear [n� d;m; t+ 1℄ 
ode we


an �ll 2

m

� 1 out of the 2

d

rows of matrix A. Ea
h nonzero 
odeword will then

appear exa
tly on
e in ea
h 
olumn and row. Then we 
an sele
t another linear

[n� d;m; t+1℄ 
ode and �ll another 2

m

� 1 rows of matrix A. In order to maximize

the nonlinearity, no ve
tor in A should appear more than on
e in ea
h 
olumn (or

row). Hen
e, the interse
tion between the two 
odes should be the all zero word.

Continuing to sele
t more 
odes to �ll the matrix A, the interse
tion with any other

previously sele
ted 
ode must again be only the all zero word. This leads us to the

following de�nition.

De�nition 7 A set of linear [n

0

; m; t + 1℄ 
odes fC

1

; C

2

; : : : ; C

s

g su
h that

C

i

\ C

j

= f0g; 1 � i < j � s

is 
alled a set of linear [n

0

; m; t+ 1℄ noninterse
ting 
odes.

For �xed values n

0

; m; t + 1, we are interested in the maximal 
ardinality of a set

of linear [n

0

; m; t+ 1℄ noninterse
ting 
odes. Combining the idea of noninterse
ting


odes with the previous 
onstru
tion we 
an summarize in the following result.

Theorem 8 If there exists a set of linear [n�d;m; t+1℄ noninterse
ting 
odes with


ardinality d2

d

=(2

m

� 1)e then there exists a t-resilient fun
tion F : F

n

2

7! F

m

2

with

nonlinearity

N

F

= 2

n�1

� 2

n�d�1

:

Example 2 Continuing with the same numeri
al values as in the previous example,

i.e., n = 10, t = 2, m = 2, we 
hoose d = 4. The requirement is now to �nd

d2

d

=(2

m

� 1)e = 6 noninterse
ting linear [n� d;m; t+1℄ = [6; 2; 3℄ 
odes in order to

maximize the nonlinearity to N

F

= 2

n�1

� 2

n�d�1

= 480. By 
omputer sear
h, we

veri�ed that 
ardinality 6 was indeed possible, and the matrix A given in the previous

example was a
tually 
onstru
ted through these 6 
odes.

Now 
onsider the same problem but for m = 3. Again, sele
ting d = 4 we must

now have d2

d

=(2

m

� 1)e = 3 noninterse
ting linear [6; 3; 3℄ 
odes. This 
ould not

be found by 
omputer sear
h. Hen
e, we must de
rease d by one, d = 3. This will

result in a nonlinearity of N

F

= 448.

11



V Lower bounds on the 
ardinality of a set of linear

noninterse
ting 
odes

In this se
tion we prove two lower (existen
e) bounds on the 
ardinality of a set of

noninterse
ting linear 
odes. Using these bounds we are able to prove that there

exist resilient fun
tions having higher nonlinearity than obtained using previous


onstru
tions, i.e. [10, 27℄. We do not dis
uss a pra
ti
al 
onstru
tion of su
h

fun
tions, but it should be pointed out that the te
hnique used in obtaining the

bounds to be presented may be modi�ed into a sear
h algorithm. Firstly, we give a

general lower bound on the 
ardinality of a set of noninterse
ting linear 
odes using

Gilbert-Varshamov type of arguments. We need an well-known lemma stated here

without proof (for a proof see e.g. [28℄).

Lemma 9 Let F

n

2

be an n-dimensional ve
tor spa
e over F

2

and 0 � k � m � n. Let

N(m;n) denote the number of m-dimensional ve
tor subspa
es of F

n

2

. Furthermore,

let N

0

(k;m; n) denote the number of m-dimensional ve
tor subspa
es 
ontaining a

given k-dimensional ve
tor subspa
e of F

n

2

. Then the following is valid,

N(m;n) =

Q

n

i=n�m+1

(2

i

� 1)

Q

m

i=1

(2

i

� 1)

; (20)

N

0

(k;m; n) = N(m� k; n� k): (21)

LetM(n;m; d

min

) denote the maximal 
ardinality of a set of noninterse
ting linear


odes for any given 
ode parameters n;m; d

min

. Using the Lemma 9 above we are

able to obtain the following existen
e bound on M(n;m; d

min

).

Theorem 10 Let the 
odes in the set have parameters [n;m; d

min

℄ and let S = fx 2

F

n

2

j1 � w

H

(x) � d

min

� 1g. Then M(n;m; d

min

) is lower-bounded by

M(n;m; d

min

) �

�

N(m;n)� jSjN(m� 1; n� 1)

(2

m

� 1)(N(m� 1; n� 1)� 1)

�

: (22)

Proof. Sin
e the minimum distan
e of all the 
odes is d

min

; none of them is allowed

to interse
t the sphere S. Let C denote the set of all linear 
odes of length n and

dimension m. A

ording to Lemma 9, the total number of 
odes is N(m;n).

Any element (ve
tor) in S is a 1-dimensional ve
tor spa
e. The number of 
odes


ontaining an arbitrary word x 2 S is N(m � 1; n � 1). Removing all 
odes in C

interse
ting an element in S, i.e. all 
odes having too low minimum distan
e, leaves

us with at least

N(m;n)�N(m� 1; n� 1)jSj (23)


odes in C. In general, some 
odes will 
ontain more than one 
odeword from S,

and hen
e (23) is an upper bound on the number of 
odes interse
ting the sphere S.

Now we 
an 
hose any 
ode, say C

1

, of the remaining 
odes in C. An upper bound

on the number of 
odes interse
ting C

1

in more than the zero word is now derived.

jfC 2 CjC \ C

1

6= f0ggj � (2

m

� 1)(N(m� 1; n� 1)� 1):

12



This inequality is a 
onsequen
e of the simple fa
t that any of 2

m

� 1 nonzero


odewords of C

1


an be in at most N(m� 1; n� 1)� 1 
odes.

We now 
ontinue to sele
t a new 
ode C

2

and remove all 
odes that interse
t C

2

,

et
. It then follows that an Mth 
ode 
an be added to the set of noninterse
ting


odes if the following inequality holds,

N(m;n)� jSjN(m� 1; n� 1)� (M � 1)(2

m

� 1)(N(m� 1; n� 1)� 1) � 0: (24)

From (24) one obtain (22) as stated.

A se
ond lower bound on the 
ardinality of a set of noninterse
ting linear 
odes

is obtained by 
onsidering the set of all possible permutations on the 
odewords

(i.e. 
olumn permutations) for a given linear 
ode C. Thus, the 
ondition for this

lower bound is the existen
e of a linear [n;m; d

min

℄ 
ode C together with its weight

distribution. On
e we know one su
h 
ode, we are able to 
ompute a lower bound

on M(n;m; d

min

) whi
h will depend on the weight distribution.

Theorem 11 (Permutation bound) Let C be a given [n;m; d

min

℄ linear 
ode

spe
i�ed by its weight distribution T (D) =

P

n

i=d

min

w

i

D

i

. Then

M(n;m; d

min

) �

�

n!

P

n

i=d

min

w

2

i

i!(n� i)!

�

(25)

Proof. Let A = f1; 2; : : : ; ng and let S

n

= f� : A 7! Ag be a set of all permutations

on n letters a
ting on C with 
ardinality n!. Furthermore, let C

w

i

= f
 2 C :

w

H

(
) = ig be a set of 
ardinality jC

w

i

j = w

i

. If �

w

i

is the set of all permutations

that map any 
odeword in C

w

i

to some 
odeword 
ontained in C

w

i

, i.e.,

�

w

i

= f� 2 S

n

: �(
) 2 C

w

i

; for some 
 2 C

w

i

g;

then we have j�

w

i

j = w

2

i

i!(n� i)!.

The idea is to remove all permutations � whi
h maps any nonzero 
odeword of

C into C. Thus, the number of permutations to be dis
arded in order to obtain a


ode �(C) whi
h does not interse
t C in more than the zero word is given by

n

X

i=d

min

w

2

i

i!(n� i)!; (26)

and the 
ondition for a se
ond 
ode will be n! >

P

n

i=d

min

w

2

i

i!(n� i)!. Clearly we 
an

pro
eed in the same manner, dis
arding all permutations whi
h maps any nonzero


odeword of C into �(C), as long as we have remaining permutations.

Thus, the M -th 
ode 
an be added provided

n!� (M � 1)

n

X

i=dmin

w

2

i

i!(n� i)! � 0: (27)

Rearranging (27) we obtain (25) as 
laimed.

In the next se
tion these two bounds will be applied to prove the existen
e of

resilient fun
tions with higher nonlinearity than those obtained in [10, 27℄.
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VI Numeri
al results on the nonlinearity for re-

silient fun
tions

The purpose of this se
tion is to 
ombine all the results given sofar in order to give

numeri
al values on the parameters that we 
an a
hieve.

In [10℄ the author 
onsidered the 
onstru
tion of [36; 8; t℄ nonlinear resilient fun
-

tions for di�erent orders of resilien
y t. In the table below we show through our


onstru
tion that there exist fun
tions with higher nonlinearity, or in other words,

the lower bound on the nonlinearity is shifted upwards. The existen
e of fun
tions

with parameters as in Table 2 is obtained using the sphere bound in Theorem 10

together with Theorem 8, ex
ept for the boldfa
e entry whi
h is 
omputed using

the permutation bound in Theorem 11. For this spe
i�
 entry, we started with a

[24; 12; 8℄ Golay 
ode and modi�ed it into a [23; 8; 8℄ 
ode. Thus, with parameter

d = 13 we had to �nd at least 33 noninterse
ting linear 
odes in order to �ll 8192

rows of matrix A. Using the weight distribution of [23; 8; 8℄ and the equation (25)

we 
ould prove that there exist at least 34 noninterse
ting linear 
odes, whi
h yields

the lower bound on nonlinearity as given in Table 2.

t 7 5 4 3 2 1

Bound [10℄ 2

35

� 2

27

2

35

� 2

26

2

35

� 2

25

2

35

� 2

24

2

35

� 2

23

2

35

� 2

22

New bound 2

35

� 2

22

2

35

� 2

23

2

35

� 2

22

2

35

� 2

22

2

35

� 2

21

2

35

� 2

21

Table 2: Lower bounds on N

F

for [36; 8; t℄-resilient fun
tions

Sin
e the 
ardinality of the set of noninterse
ting linear 
odes to be found depends

on the size of input parameters, i.e. n;m; t, we 
an 
al
ulate the lower bound on

the number of these 
odes for arbitrary values of n. But for moderate n, one 
an

also 
onsider sear
h algorithms based on the ideas behind the lower bounds. Su
h a


omputer sear
h has also been implemented, and the obtained results are presented

in the tables below.

N

F

n = 9 n = 10 n = 11 n = 12

m Th. 8 [10℄ Th. 8 [10℄ Th. 8 [10℄ Th. 8 [10℄

2 240 224 480 448 992 960 1984 1920

3 224 � 480 448 992 896 1984 1920

4 224 � 448 � 960 � 1920 �

5 224 � 448 � 960 � 1920 �

6 192 � 448 � 960 � 1920 �

Table 3: Highest a
hieved N

F

for 1-resilient fun
tions.
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N

F

n = 9 n = 10 n = 11 n = 12

m Th. 8 [10℄Th. 8 [10℄ Th. 8 [10℄ Th. 8 [10℄

2 240 192 480 384 992 896 1984 1792

3 192 � 448 � 960 � 1984 1792

4 128 � 384 � 896 � 1920 �

5 0 � 256 � 768 � 1792 �

6 0 � 0 � 512 � 1536 �

Table 4: Highest a
hieved N

F

for 2-resilient fun
tions.

N

F

n = 9 n = 10 n = 11 n = 12

m Th. 8 [10℄ Th. 8 [10℄ Th. 8 [10℄ Th. 8 [10℄

2 192 � 448 384 960 768 1984 1792

3 192 � 384 � 896 � 1920 �

4 128 � 256 � 768 � 1792 �

5 0 � 0 � 512 � 1536 �

6 0 � 0 � 512 � 1024 �

Table 5: Highest a
hieved N

F

for 3-resilient fun
tions.

VII Con
lusion

A new 
onstru
tion of highly nonlinear (n;m; t)-resilient fun
tions has been pre-

sented. The 
onstru
tion leads to interesting 
oding theoreti
 questions regarding

the maximal 
ardinality of a set of [n;m; d

min

℄ 
odes with the property that the

interse
tion of any two 
odes is the all zero 
odeword. We have found no previous

work that has 
onsidered this subje
t, although we have noted some similarities in


onjun
tion with the Griesmer bound as well as to 
odes for unequal error prote
tion.

Comparing with the two di�erent designs presented in [10, 27℄, the proposed


onstru
tion gives a mu
h better nonlinearity for the same value of resilien
y. Still,

further improvements 
ould be possible in some 
ases, possibly through 
onstru
tion

methods presented in [19℄.
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