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Abstract

Here we provide a construction method for unbalanced, first order correlation im-
mune Boolean functions on even number of variables n > 6. These functions achieve
the currently best known nonlinearity 27! — 2% + 2272, Then we provide a simple
modification of these functions to get unbalanced correlation immune Boolean functions
on even number of variables n, with nonlinearity 27~ — 2% + 2772 — 2 and maximum
possible algebraic degree n — 1. Moreover, we present a detailed study on the Walsh
spectra of these functions.
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1 Introduction

Nonlinearity and correlation immunity are two challenging combinatorial properties of Boolean
functions. These properties are also important for cryptographic purposes. The concept of

correlation immune Boolean functions was introduced by Siegenthaler [25] and these func-

tions are used in stream cipher systems for resisting cryptanalytic attacks [26]. Construction

and enumeration of correlation immune Boolean functions have received a lot of attention

as evident from [12, 28, 13, 9].

Nonlinearity is also an important cryptographic criteria for Boolean functions. This is
also related to covering radius of first order Reed-Muller codes [8, Chapter 13]. It was shown
by Rothaus [19], that for even n, the maximum nonlinearity achievable for any Boolean
function is 2! — 22! and the functions having this nonlinearity are called bent functions.
However, bent functions are not balanced. Construction of balanced Boolean functions on
even number of variables with very high nonlinearity has been considered in [24, 4, 21].
Dobbertin [4] has conjectured that, for even n, nlb(n) = 2" + 2% + nlb(2), where nlb(n) is
the maximum possible nonlinearity for an n-variable balanced function.



The nonlinearity question is open for functions on odd number of variables. It is known
that [1, 14, 7] for odd n < 7, the maximum possible nonlinearity is 2" ! — 2" . The
question of maximum nonlinearity is open for n = 9,11,13 and the maximum possible
nonlinearity that can be achieved is 2"~! — 2"7. For odd n > 15, it is possible to construct
(both unbalanced and balanced) functions with nonlinearity strictly greater than 2"~! —
2" [17, 18, 21].

Recently, weight divisibility results on resilient and correlation immune functions have
been presented [22]. These results have direct consequence towards nontrivial upper bounds
on nonlinearity of such functions. Almost at the same time Tarannikov [27] and Zheng and
Zhang [29] independently got similar kinds of results. Very recently, Carlet [3] and Sarkar [20]
have proved weight divisibility results for correlation immune and resilient (balanced cor-
relation immune) Boolean functions involving algebraic degree of the functions and these
results have sharpened the upper bounds. The works [3] and [20] are independent and use
different kinds of techniques. Also, construction of resilient and correlation immune Boolean
functions achieving these upper bounds have been discussed in [22, 27, 16]. Thus, it is very
clear that a lot of interest have been generated in this direction.

Construction of resilient (balanced correlation immune) functions have direct application
as combining functions in certain models of stream ciphers and there are lot of results
available in this direction [2, 23, 5, 10, 21, 22, 27, 16]. However, construction results related
to unbalanced correlation immune functions has not yet received a lot of attention (though
there are some results available in recent papers [27, 16]). In this paper we provide a
construction of unbalanced correlation immune Boolean functions on even number of input
variables with very high nonlinearity. Unless otherwise mentioned, we will use n as an even
integer. The basic input to the construction is a 6-variable correlation immune function with
nonlinearity 26 and algebraic degree 5, which could be constructed very recently [16]. Using
this 6-variable function, for the first time we show the existence of an 8-variable correlation
immune function with nonlinearity 116 and algebraic degree 5. We extend our result to
construct correlation immune functions with nonlinearity 2"~! — 22 + 2272 and algebraic
degree 5. Moreover, we present a simple modification of these functions to get correlation
immune functions with nonlinearity 2" ' — 22 + 2272 — 2 and algebraic degree n — 1. Since
construction of unbalanced correlation immune functions with very high nonlinearity is not
known we will compare our results with the maximum possible nonlinearity achieved by
resilient Boolean functions [21] on even number of variables. This is given in Section 4.

Recent results show [22] that the Walsh spectra of mth order correlation immune Boolean
functions on n variables with maximum possible nonlinearity is three valued for m > 3 —1
and the spectral values are 0, £2™!. However, the situation is not so clear for m < 5 —1
and here we consider the case m = 1. Thus it is important to talk about the Walsh spectra
of such functions, which we take up in this initiative.

1.1 Definitions and Notations

By €, we mean the set of all Boolean functions. The addition operator over GF(2) is denoted
by . We sometimes interpret a Boolean function on n input variables by the output column



of its truth table, which is a binary string of length 2. For binary strings S, Sy of same
length s, we denote by #(S51 = S2) (respectively #(S; # S2)), the number of places where S
and Sy are equal (respectively unequal). The Hamming distance between Sy, S, is denoted by
d(S1,S2), i.e. d(S1,S2) = #(S1 # S2). The Walsh distance wd(S, Sy), between S} and S, is
defined as, wd(Sy, Sy) = #(S1 = S2) — #(S1 # S2). Note that, wd(Sy, Se) = s — 2d(Sy, Ss).
Also the Hamming weight or simply the weight of a binary string S is the number of ones in
S. This is denoted by wt(S). An n-variable function f is said to be balanced if its output
column in the truth table contains equal number of 0’s and 1’s (i.e. wt(f) =2""1). The ith
location of a binary string S is denoted by S|[i].

An n-variable Boolean function f(X,,...,X;) can be considered to be a multivariate
polynomial over GF(2). This polynomial can be expressed as a sum of products repre-
sentation of all distinct k-th order products (0 < k < n) of the variables. More pre-
cisely, f(Xy,...,X1) can be written as ap @ (B2} @i Xi) © (D1<izjcn aijXiX;) © ... D
a12.2.X1 X2 ... X;, where the coefficients ag, a;;,...,a12., € {0,1}. This representatlon of
f is called the algebraic normal form (ANF) of f. The number of variables in the highest
order product term with nonzero coefficient is called the algebraic degree, or simply degree

of f.

Functions of degree at most one are called affine functions. An affine function with
constant term equal to zero is called a linear function. For a linear function I, by ndg(l) we
denote the number of input variables on which [ is nondegenerate.

The set of all n-variable affine (respectively linear) functions is denoted by A(n) (respec—
tively L(n)). The nonlinearity of an n variable function f is nl(f) = mingcam)(d(f,g)), i
the distance from the set of all n-variable affine functions.

Walsh transform is an important tool in analysis of Boolean functions. Let X = (X,,..., X;)
and @ = (wy, . ..,w;) both belong to {0,1}" and X.w = X,w, ® ... Xjw;. Let f(X) be a
Boolean function on n variables. Then the Walsh transform of f(X) is a real valued function

over {0, 1}" that can be defined as Wy(w) = ) (—1)/®®XZ The relationship between
Xe{0,1}n
Walsh transform and Walsh distance is [11] W; (@) = wd(f, B} wiX;).

In [6], the following characterization of correlation immunity is provided. A function
f(Xn,...,X1) is m-th order correlation immune (CI) iff its Walsh transform W; satisfies
W;(w) =0, for 1 < wt(@) < m. If f is balanced then W;(0) = 0. Balanced m-th order cor-
relation immune functions are called m-resilient functions. Thus, a function f(X,,..., X))
is m-resilient iff its Walsh transform Wy satisfies W;(w) = 0, for 0 < wt(w) < m.

By [[n, m, d, z]] we denote an n-variable unbalanced correlation immune function of order
m, nonlinearity « and degree d.

2 Basic Construction
First we consider the generalized construction method.

Construction 2.1 Let h € §, be an [[n,1,d,z]] function, where n is even. Consider the
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Junction g(Xpyo,...,X1) = XpioXni1 @ h( Xy, ..., Xy), i.e. the truth table of g is of the
form hhhhe.

Then we have the following result.

Proposition 2.1 Let h € §, be an [[n,1,d, z]] function, where n is even and d > 2. Let
g € Q12 be generated from h as in Construction 2.1. Then

1. nl(g) = 2™ + 2z,

2. wd(g,X;) =0 for1 <i<n and

3. wd(g, Xpi2® X1) = wd(g, Xp1 & X1) =0.
4. The function g has algebraic degree d.

Proof : Note that for any affine function A € A(n + 2), we can write A in any one of
the forms (111, 11°11¢,111°1¢,11°I°l, where | € A(n). Now consider A = [lll. Then, d(g,\) =
d(hhhhe UIl) = d(h,l) + d(h,l) + d(h,l) + d(h¢, 1) = 2d(h,1) + d(h,1) + d(h¢ 1) = 2z + 2™.
The result is similar for A of other forms also. This gives the nonlinearity result.

Note that ¢ is of the form hhhh® and X; is the form [l/l, for 1 < ¢ < n. Here by X; we
mean output column of a truth table considering the function X;, where X, is considered as
an (n+ 2)-variable function (Here X is the output column of length 2”2 and [ is the output

column of length 2™). Since h is correlation immune, wd(h,l) = 0 and hence, wd(g, X;) =
wd(h,l) +wd(h,l) + wd(h,l) +wd(h® 1) =0 for 1 <i < n.

Since, h is 1st order correlation immune, we have wd(h, X;) = wd(h, X¢) = 0. Note that
here by X; we mean the output column of a truth table considering the function X;, where
X is considered as an n-variable function (output column of length 2™). Now, wd(g, X, 12 ®
Xi) = wd(hhhh®, X; X1 XXE) = wd(h, X1) + wd(h, X1) + wd(h, X{) + wd(h®, X{) = 0.
Similarly, it can be seen that wd(g, X,,+1 ® X;) = 0.

Since, ¢(Xni2,---,X1) = Xp2Xpp1 ® h(Xy, ..., X1), and degree of h is d > 2, we get
the item 4. m

Construction of resilient Boolean functions using linear transformation has been used
in [15]. We use here a similar method for correlation immune functions. The method is as
follows.

Given a function f € Q,, we define Sy = {w € {0,1}" | W;(w) = 0}, where Wy is the
Walsh transform of f. If there exists n linearly independent vectors in Sy, then we can
construct a nonsingular n X n matrix By whose rows are linearly independent vectors from
Sy. Let, Cy = B;'. Now if we construct a function f'(X) = f(C;X), then both f', f have
the same nonlinearity and algebraic degree. Moreover, Wy (@) = 0 for wt(w) = 1, where W
is the Walsh Transform of f’. This ensures that f’ is 1st order correlation immune.

Let €F be an k-bit vector with ith (1 <4 < k) entry 1 and all other entries 0. For example
ev =(1,0,...,0) and €¥ = (0,...,0,1).

Now we concentrate on (n + 2)-bit vectors. We define, r; = €' 1 < i < n and

ri = 2@ for i = n+1,n + 2. Here, the @ means bitwise XOR of two binary
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vectors. Note that each vector corresponds to a linear function. The vectors r; for 1 <i <n
corresponds to the linear functions X; and the vectors r; for © = n + 1, n + 2 corresponds to
Xpi1 @ Xy and X0 @ X;. It is important to note that the (n + 2) vectors r; are linearly
independent. Thus, if we consider the function g as in Construction 2.1, then B, is of the
following form. Note that B, is a nonsingular (invertible) matrix. Let us consider the binary
matrix C, = B;l.

0 0 0 . .001} 1 0 0 . .001}
000..010 1 00 . .01
000..100 000..100
Bg: . . , Cg: .
0 1 0 00O 0 1 0 00O
010 . 0 01 010..00@0O0
1 0 0 . OOIJ 1.0 0 . .OOOJ
Table 1.

Then we have the following theorem.

Theorem 2.1 Let h € Q, be an [[n,1,d,z]] function, where n is even. Then it is possible
to construct a function g', which is [n +2,1,d, 2" + 2z]].

Proof : We use Construction 2.1 and the result of Proposition 2.1 here. From h, it is
possible to get a function g € 2,2, such that nl(g) = 2" + 2z and degree of g is d. Now
it is possible to get a nonsingular matrix B,. Thus we can get a binary matrix C, = Bg_l.
Consider X = (Xpn42,...,X1) and we interpret it as a column vector here. Hence, the
function ¢'(X) = ¢(C,X) is an [[n + 2,1, d, 2" + 2z]] function. ]

Next we consider the initial function for this construction. Construction of [[6,1, 5, 26
Boolean function has been proposed in [16]. The following is a 64 bit truth table of the
[[6,1,5,26]] Boolean function that we use here
0000010110101001010100111111000110101111110000101100010000101001. From this we can
construct an [[8, 1, 5, 116]] function using Theorem 2.1. Note that this is the first time when a
correlation immune function with nonlinearity greater than 112 gets reported. Also in [3, 20],
it has been reported that the maximum possible nonlinearity of an [[n,m,d, z]] function is
o=l _ 95 -1 _om+"=¢="] fo1  even. Puttingn = 8,m = 1,d = 5, we get that the maximum
possible nonlinearity of an [[8,1,5,116]] function is 257 — 23-1 — 21+1%5] = 116. Thus
this function achieves the maximum possible nonlinearity and in turn shows the tightness of

the bound [3, 20] in this case.

In general we have the following theorem.

Theorem 2.2 It is possible to construct [[n,1,5,2" 1 — 22 + 22 72]] functions.

Proof : Note that it is possible to construct a [[6, 1,5, 26]] function. Now 26 = 26— — 25 +
232 which is the base case of induction. Let it is possible to construct an [[m,1,5,2m "+ —
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2% + 2% 72| function for even m > 6. From this, using Theorem 2.1 we can construct an
[[m +2,1,5,2™ + 2(2m~! — 2% + 22 72)]] function. Now, 2™ + 2(2™! — 2% +2272) =

m—+42

o(m+2)=1 _ 9™32 | 9™F2—-2 Thus the proof. u

Now we talk about the Walsh spectra of the function ¢’. Since ¢'(X) = g(C,X), the
Walsh spectra of g, ¢’ are same. Note that any linear function A of n + 2 variables can be
written as any of the following four forms, (Ill, [[°11¢, [1I€I¢, [I°I°l, where [ is a linear function
of n variables. Note that, wd(g, \) = wd(hhhh, ) or wd(hhhhe, 1) or wd(hhhh, I€1°)
or wd(hhhh® 11€1°l). Thus, wd(g, \) = +£2wd(h,l). The Walsh spectra of the [[6,1,5,26]]
function
0000010110101001010100111111000110101111110000101100010000101001 contains 7 differ-
ent values 0, +4, +£8, +12. Thus, the [[n = 6 4+ 2i,1,5,2""! — 2% + 25~2]] functions have the
Walsh spectra 0, £4 - 2/, £8 - 2/, £12 - 2°. Hence we have the following results.

Corollary 2.1 [t is possible to construct [[n,1,5,2" 1 — 25 + 2572]] functions with seven
valued Walsh spectra 0,44 - 2273 £8.2373 £12.2573,

Now we talk some more interesting results on the Walsh spectra of these functions. We
have earlier mentioned that for a linear function [, by ndg(l) we denote the number of input
variables on which [ is nondegenerate. It can be checked that for the [[6,1, 5, 26]] function f
mentioned above, we find wd(f,[) = 0, £8, when ndg(l) is odd and wd(f,l) = £4,£12, when
ndg(l) is even for [ € L(6). It can also be observed that [[8, 1,5, 116]] function F', constructed
by using the function f, gives the Walsh spectra as follows : wd(F, \) = 0, £16, when ndg(\)
is odd and wd(f, \) = £8, 424, when ndg()) is even for A € L(8). We generalize this result.
First we update the Construction 2.1.

Construction 2.2 Let h € , be an [[n, 1, d, z]] function, where n is even. Also, wd(h,l) =
0, +x, when ndg(l) is odd and wd(h,l) = +y, £z, when ndg(l) is even for l € L(n). Then
Consider the function g(Xpyo,...,X1) = Xpnio X1 @ W( Xy, ..., X4), i.e. the truth table
of g is of the form hhhh. Consider the binary matriz C, mentioned in Table 1. Let X =
(Xnt2,- .., X1). Interpret X as a column vector. Construct the function ¢'(X) = g(CyX).

We have already proved that the function ¢'(X) is an [[n + 2,1, d, 2" + 2z]] one. Now we
prove the result on Walsh spectra of the function ¢'.

Lemma 2.1 Let ¢’ € Q19 be the function as mentioned in Construction 2.2. Then wd(g', \) =
0,+2 -z, when ndg(A) is odd and wd(g',\) = £2 - y,£2 - 2, when ndg(\) is even for
A€ L(n+2).

Proof : Note that A is any of the following four forms : X, 1o ® X,,11 B, X, 0D, X, 11 DL,
[, where [ € L(n). Now, wd(g(Xni2,...,X1),A) = 0, or £ 2z when ndg(l) is odd and
wd(g(Xpa2,--.,X1),\) = 2y, or + 2z when ndg(l) is even. It is important to see that
ndg(\) is odd when (i) A is of the form X, ® X,,11 @&, or [ and ndg(l) is odd, (ii) A is
of the form X, @ [, or X,,;1 ® [ and ndg(l) is even. Similarly, ndg()\) is even when (i) A
is of the form X, o ® X,,41 @[, or [ and ndg(l) is even, (ii) A is of the form X, o ® [, or
Xn+1 @1 and ndg(l) is odd. Then the proof follows from the result that ¢'(X) = ¢(C,X)
and the form of the matrix C,. |



Theorem 2.3 It is possible to construct [[n,1,5,2" ' — 25 + 2572]] functions f with
1. Wy(@) = 0,4£8-2373, for wt(w) odd and
2. Wi(@) = £4-2573,£12. 2573 for wt(w) even.

Proof : The proof follows from Construction 2.2, Lemma 2.1 and the Walsh spectra of the
initial [[6, 1, 5, 26]] function mentioned above. u

3 Modified Construction for Maximum Possible Alge-
braic Degree

Note that all the functions we have constructed so far are of algebraic degree 5. However,
it is known [25], that the maximum possible algebraic degree of an [[n, m,d, z|] function is
d = n — m. Thus, here for m = 1, we need to achieve the algebraic degree n — 1. This we
achieve using the following technique which has earlier been used in [10].

Definition 3.1 Let f,g € ), and there exists i, 11 with 19 + 11 = 2™ — 1, such that
1. flig) = fli] = a, a € {0, 1},
2. glio) = glir]) =1 —a and
3. flil =gl if J # io,ia.

Then we say that f, g are palindromically related.

Note that values of just a specific pair of positions are complemented and the positions
are at the same distances from top and bottom of the function. The following result shows
the importance of Definition 3.1.

Proposition 3.1 Let f,g € Q,, be palindromically related. Then

1. f s correlation tmmune of order 1 iff g is correlation immune of order 1.
2. nl(g) > nl(f) — 2.

3. If algebraic degree of f is less than n — 1, then g is of algebraic degree n — 1.

Proof : Item 1 and 2 are proved in [10] and in [11] respectively. Now we prove item
3. Consider f = fifs, where fi1, fo € Q,_1, that is, the truth table of f can be seen as
concatenation of truth tables of the functions f; and f,. Similarly, consider g = g,g9, where
g1, 92 € £, 1. Since, f is of algebraic degree less than n — 1, we have wt(f,) and wt(fs) are
both even. Thus, wt(g;) and wt(gs) are both odd. Hence degree of g is n — 1. u



Theorem 3.1 It is possible to construct [[n,1,n —1,2""1 — 25 + 2572 — 2]] functions.

Proof : We know from Theorem 2.2, that it is possible to construct an [[n,1,5,2" ! —2% +
222]] function. We consider such a function f. Now this function is unbalanced and hence
it cannot be of the form hh¢, for h € €,,_;. Thus, there will be at least one location ¢ such
that f[i] = f[2" — 1 —d]. From f we construct a palindromically related function g € Q,,.
From Proposition 3.1, it is clear that ¢ is an [[n,1,n — 1,277t — 25 + 252 — 2]] function. m

Thus from an [[8, 1,5, 116]] function we can construct an [[8,1,7,114]] function.

Now we analyze the Walsh spectra of [[n,1,n — 1,27~ —2% 4252 — 2|] functions. From
Corollary 2.1 we get that the Walsh spectra of the [[n, 1,5,2" ! —22 4 2% ~2]] functions have
seven valued Walsh spectra 0, £4 - 2273 4+8.2573 +£12. 2373,

Proposition 3.2 Let f, g € Q, be palindromically related and | € L(n). Then

1. wd(f,l) =wd(g,l), if | is nondegenerate on odd number of variables.

2. wd(f,1)

wd(g,l) £ 4, if | is nondegenerate on even number of variables.

Proof : Let ndg(l) be odd. If we consider the truth table of [, then {[i] # ([2" — 1 —i]. Note
that, f[i] = f[2" — 1 —i] and g[i] = ¢g[2" — 1 — i]. Thus, though f[i] # g[i], the contribution
to Walsh distance for both the functions f, g will be same for the points 7, 2" — 1 — ¢, which
is 0.

On the other hand, if ndg(l) is even, the truth table of [ has the property [[i] = [[2" —1—1].
Here f[i] = f[2" — 1 — |, g[i] = g[2" — 1 —i]. Also f[i] # g[i]. Thus the contribution to
Walsh distance for both the functions f, g will differ for the points 7, 2" — 1 — ¢, which is +4.
u

Hence we get the following result related to the Walsh spectra of the functions which are
optimized with respect to the algebraic degree.

Theorem 3.2 It is possible to construct [[n,1,n—1,2""' —2% + 2372 - 2|] functions f with
the 11-valued Walsh spectra as follows.

1. Wy(@) = 0,4£8-2373, for wt(w) odd and
2. Wi(@) =44-25"3 44,412 253 £ 4, for wt(@) even.

n n

Proof : Consider the Walsh spectra of the [[n,1,5,2"7! — 2> + 22>~2]] function f as in
Theorem 2.3. W;(@) = 0,48 - 2573, for wt(w) odd and W, (@) = +4 2573, £12. 2273, for
wt(w) even. Then the result follows from Proposition 3.2. n

4 Comparison with Existing Results

Currently there is no construction which can provide unbalanced correlation immune func-
tions with as good nonlinearity as ours. In fact, as far as we know, there is no existing
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construction which can discuss about a generalized construction of first order correlation
immune functions with very high nonlinearity. That is the reason we compare our result
with the maximum known nonlinearity of 1-resilient functions [21].

First we provide a table for functions on small number of variables. Column A presents
the nonlinearity achieved by 1st order correlation immune functions with algebraic degree 5
and column B presents the nonlinearity achieved by 1st order correlation immune functions
with maximum possible algebraic degree (n — 1). Column C provides the currently best
known nonlinearity achieved by 1st order balanced correlation immune functions [21] with
maximum possible algebraic degree (n —2) and column D provides the currently best known
nonlinearity achieved by 1st order balanced correlation immune functions [21] with maximum
possible algebraic degree less than (n — 2). For comparison we also present the currently
best known nonlinearity for balanced Boolean functions in column E.

S

A B|CR|DRI] E
26 | 26 24 24 26
& || 116 | 114 112 112 116
10 || 488 | 486 | 484 480 | 492

Table 2.

(o}

It should be noted that for n > 12, the currently best known nonlinearity achieved by 1st
order balanced correlation immune functions 21, Theorem 7] with algebraic degree § + 2 is
27=1 _ 2% 4232, However, the maximum possible algebraic degree of n-variable, 1-resilient
function is n — 2. For n > 12, the currently best known nonlinearity achieved by 1st order
balanced correlation immune functions [21, Theorem 8] with maximum possible algebraic
degree (n—2)is 2" ' — 2% 4y, where y is the maximum possible nonlinearity of an (% — 1)-
variable balanced 1st order correlation immune function with algebraic degree (3 — 3). We
estimate y as 222 — 272 — 4 [22], the upper bound of nonlinearity for an (% — 1)-variable
function which is balanced and 1st order correlation immune. So, the currently best known
nonlinearity achieved by 1st order balanced correlation immune functions [21] with maximum

possible algebraic degree (n — 2) is 2"t —22 +2272 - 2172 — 4,

We here achieve the nonlinearity 2"~! — 2% + 22~2 for 1st order unbalanced correlation
immune functions with algebraic degree 5. Moreover, we achieve the nonlinearity 2" ! —
2% 42272 — 2 for 1st order correlation immune functions with maximum possible algebraic
degree (n —1).

Hence, considering the functions with maximum possible algebraic degree, we find that
for n > 12 the nonlinearity achieved in this paper for 1st order correlation immune Boolean
function (algebraic degree n—1) is 2"~ —2% +2572 -2 which is greater than the nonlinearity
2nt — 25 42572 — 2972 — 4 qachieved in [21] for st order resilient (balanced correlation
immune) Boolean function (algebraic degree n — 2).
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