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Abstra
t

Here we provide a 
onstru
tion method for unbalan
ed, �rst order 
orrelation im-

mune Boolean fun
tions on even number of variables n � 6. These fun
tions a
hieve

the 
urrently best known nonlinearity 2

n�1

� 2

n

2

+ 2

n

2

�2

. Then we provide a simple

modi�
ation of these fun
tions to get unbalan
ed 
orrelation immune Boolean fun
tions

on even number of variables n, with nonlinearity 2

n�1

� 2

n

2

+ 2

n

2

�2

� 2 and maximum

possible algebrai
 degree n � 1. Moreover, we present a detailed study on the Walsh

spe
tra of these fun
tions.
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1 Introdu
tion

Nonlinearity and 
orrelation immunity are two 
hallenging 
ombinatorial properties of Boolean

fun
tions. These properties are also important for 
ryptographi
 purposes. The 
on
ept of


orrelation immune Boolean fun
tions was introdu
ed by Siegenthaler [25℄ and these fun
-

tions are used in stream 
ipher systems for resisting 
ryptanalyti
 atta
ks [26℄. Constru
tion

and enumeration of 
orrelation immune Boolean fun
tions have re
eived a lot of attention

as evident from [12, 28, 13, 9℄.

Nonlinearity is also an important 
ryptographi
 
riteria for Boolean fun
tions. This is

also related to 
overing radius of �rst order Reed-Muller 
odes [8, Chapter 13℄. It was shown

by Rothaus [19℄, that for even n, the maximum nonlinearity a
hievable for any Boolean

fun
tion is 2

n�1

� 2

n

2

�1

and the fun
tions having this nonlinearity are 
alled bent fun
tions.

However, bent fun
tions are not balan
ed. Constru
tion of balan
ed Boolean fun
tions on

even number of variables with very high nonlinearity has been 
onsidered in [24, 4, 21℄.

Dobbertin [4℄ has 
onje
tured that, for even n, nlb(n) = 2

n�1

+ 2

n

2

+ nlb(

n

2

), where nlb(n) is

the maximum possible nonlinearity for an n-variable balan
ed fun
tion.
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The nonlinearity question is open for fun
tions on odd number of variables. It is known

that [1, 14, 7℄ for odd n � 7, the maximum possible nonlinearity is 2

n�1

� 2

n�1

2

. The

question of maximum nonlinearity is open for n = 9; 11; 13 and the maximum possible

nonlinearity that 
an be a
hieved is 2

n�1

� 2

n�1

2

. For odd n � 15, it is possible to 
onstru
t

(both unbalan
ed and balan
ed) fun
tions with nonlinearity stri
tly greater than 2

n�1

�

2

n�1

2

[17, 18, 21℄.

Re
ently, weight divisibility results on resilient and 
orrelation immune fun
tions have

been presented [22℄. These results have dire
t 
onsequen
e towards nontrivial upper bounds

on nonlinearity of su
h fun
tions. Almost at the same time Tarannikov [27℄ and Zheng and

Zhang [29℄ independently got similar kinds of results. Very re
ently, Carlet [3℄ and Sarkar [20℄

have proved weight divisibility results for 
orrelation immune and resilient (balan
ed 
or-

relation immune) Boolean fun
tions involving algebrai
 degree of the fun
tions and these

results have sharpened the upper bounds. The works [3℄ and [20℄ are independent and use

di�erent kinds of te
hniques. Also, 
onstru
tion of resilient and 
orrelation immune Boolean

fun
tions a
hieving these upper bounds have been dis
ussed in [22, 27, 16℄. Thus, it is very


lear that a lot of interest have been generated in this dire
tion.

Constru
tion of resilient (balan
ed 
orrelation immune) fun
tions have dire
t appli
ation

as 
ombining fun
tions in 
ertain models of stream 
iphers and there are lot of results

available in this dire
tion [2, 23, 5, 10, 21, 22, 27, 16℄. However, 
onstru
tion results related

to unbalan
ed 
orrelation immune fun
tions has not yet re
eived a lot of attention (though

there are some results available in re
ent papers [27, 16℄). In this paper we provide a


onstru
tion of unbalan
ed 
orrelation immune Boolean fun
tions on even number of input

variables with very high nonlinearity. Unless otherwise mentioned, we will use n as an even

integer. The basi
 input to the 
onstru
tion is a 6-variable 
orrelation immune fun
tion with

nonlinearity 26 and algebrai
 degree 5, whi
h 
ould be 
onstru
ted very re
ently [16℄. Using

this 6-variable fun
tion, for the �rst time we show the existen
e of an 8-variable 
orrelation

immune fun
tion with nonlinearity 116 and algebrai
 degree 5. We extend our result to


onstru
t 
orrelation immune fun
tions with nonlinearity 2

n�1

� 2

n

2

+ 2

n

2

�2

and algebrai


degree 5. Moreover, we present a simple modi�
ation of these fun
tions to get 
orrelation

immune fun
tions with nonlinearity 2

n�1

� 2

n

2

+ 2

n

2

�2

� 2 and algebrai
 degree n� 1. Sin
e


onstru
tion of unbalan
ed 
orrelation immune fun
tions with very high nonlinearity is not

known we will 
ompare our results with the maximum possible nonlinearity a
hieved by

resilient Boolean fun
tions [21℄ on even number of variables. This is given in Se
tion 4.

Re
ent results show [22℄ that the Walsh spe
tra ofmth order 
orrelation immune Boolean

fun
tions on n variables with maximum possible nonlinearity is three valued for m >

n

2

� 1

and the spe
tral values are 0;�2

m+1

. However, the situation is not so 
lear for m �

n

2

� 1

and here we 
onsider the 
ase m = 1. Thus it is important to talk about the Walsh spe
tra

of su
h fun
tions, whi
h we take up in this initiative.

1.1 De�nitions and Notations

By 


n

we mean the set of all Boolean fun
tions. The addition operator over GF (2) is denoted

by �. We sometimes interpret a Boolean fun
tion on n input variables by the output 
olumn
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of its truth table, whi
h is a binary string of length 2

n

. For binary strings S

1

; S

2

of same

length s, we denote by #(S

1

= S

2

) (respe
tively #(S

1

6= S

2

)), the number of pla
es where S

1

and S

2

are equal (respe
tively unequal). The Hamming distan
e between S

1

; S

2

is denoted by

d(S

1

; S

2

), i.e. d(S

1

; S

2

) = #(S

1

6= S

2

). The Walsh distan
e wd(S

1

; S

2

), between S

1

and S

2

, is

de�ned as, wd(S

1

; S

2

) = #(S

1

= S

2

)�#(S

1

6= S

2

). Note that, wd(S

1

; S

2

) = s� 2 d(S

1

; S

2

).

Also the Hamming weight or simply the weight of a binary string S is the number of ones in

S. This is denoted by wt(S). An n-variable fun
tion f is said to be balan
ed if its output


olumn in the truth table 
ontains equal number of 0's and 1's (i.e. wt(f) = 2

n�1

). The ith

lo
ation of a binary string S is denoted by S[i℄.

An n-variable Boolean fun
tion f(X

n

; : : : ; X

1

) 
an be 
onsidered to be a multivariate

polynomial over GF (2). This polynomial 
an be expressed as a sum of produ
ts repre-

sentation of all distin
t k-th order produ
ts (0 � k � n) of the variables. More pre-


isely, f(X

n

; : : : ; X

1

) 
an be written as a

0

� (

L

i=n

i=1

a

i

X

i

) � (

L

1�i 6=j�n

a

ij

X

i

X

j

) � : : : �

a

12:::n

X

1

X

2

: : :X

n

where the 
oeÆ
ients a

0

; a

ij

; : : : ; a

12:::n

2 f0; 1g. This representation of

f is 
alled the algebrai
 normal form (ANF) of f . The number of variables in the highest

order produ
t term with nonzero 
oeÆ
ient is 
alled the algebrai
 degree, or simply degree

of f .

Fun
tions of degree at most one are 
alled aÆne fun
tions. An aÆne fun
tion with


onstant term equal to zero is 
alled a linear fun
tion. For a linear fun
tion l, by ndg(l) we

denote the number of input variables on whi
h l is nondegenerate.

The set of all n-variable aÆne (respe
tively linear) fun
tions is denoted by A(n) (respe
-

tively L(n)). The nonlinearity of an n variable fun
tion f is nl(f) = min

g2A(n)

(d(f; g)), i.e.

the distan
e from the set of all n-variable aÆne fun
tions.

Walsh transform is an important tool in analysis of Boolean fun
tions. LetX = (X

n

; : : : ; X

1

)

and ! = (!

n

; : : : ; !

1

) both belong to f0; 1g

n

and X:! = X

n

!

n

� : : :�X

1

!

1

. Let f(X) be a

Boolean fun
tion on n variables. Then the Walsh transform of f(X) is a real valued fun
tion

over f0; 1g

n

that 
an be de�ned as W

f

(!) =

X

X2f0;1g

n

(�1)

f(X)�X:!

. The relationship between

Walsh transform and Walsh distan
e is [11℄ W

f

(!) = wd(f;

L

i=n

i=1

!

i

X

i

).

In [6℄, the following 
hara
terization of 
orrelation immunity is provided. A fun
tion

f(X

n

; : : : ; X

1

) is m-th order 
orrelation immune (CI) i� its Walsh transform W

f

satis�es

W

f

(!) = 0; for 1 � wt(!) � m: If f is balan
ed then W

f

(0) = 0. Balan
ed m-th order 
or-

relation immune fun
tions are 
alled m-resilient fun
tions. Thus, a fun
tion f(X

n

; : : : ; X

1

)

is m-resilient i� its Walsh transform W

f

satis�es W

f

(!) = 0; for 0 � wt(!) � m.

By [[n;m; d; x℄℄ we denote an n-variable unbalan
ed 
orrelation immune fun
tion of order

m, nonlinearity x and degree d.

2 Basi
 Constru
tion

First we 
onsider the generalized 
onstru
tion method.

Constru
tion 2.1 Let h 2 


n

be an [[n; 1; d; x℄℄ fun
tion, where n is even. Consider the
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fun
tion g(X

n+2

; : : : ; X

1

) = X

n+2

X

n+1

� h(X

n

; : : : ; X

1

), i.e. the truth table of g is of the

form hhhh




.

Then we have the following result.

Proposition 2.1 Let h 2 


n

be an [[n; 1; d; x℄℄ fun
tion, where n is even and d > 2. Let

g 2 


n+2

be generated from h as in Constru
tion 2.1. Then

1. nl(g) = 2

n

+ 2x,

2. wd(g;X

i

) = 0 for 1 � i � n and

3. wd(g;X

n+2

�X

1

) = wd(g;X

n+1

�X

1

) = 0.

4. The fun
tion g has algebrai
 degree d.

Proof : Note that for any aÆne fun
tion � 2 A(n + 2), we 
an write � in any one of

the forms llll; ll




ll




; lll




l




; ll




l




l, where l 2 A(n). Now 
onsider � = llll. Then, d(g; �) =

d(hhhh




; llll) = d(h; l) + d(h; l) + d(h; l) + d(h




; l) = 2d(h; l) + d(h; l) + d(h




; l) = 2x + 2

n

.

The result is similar for � of other forms also. This gives the nonlinearity result.

Note that g is of the form hhhh




and X

i

is the form llll, for 1 � i � n. Here by X

i

we

mean output 
olumn of a truth table 
onsidering the fun
tion X

i

, where X

i

is 
onsidered as

an (n+2)-variable fun
tion (Here X

i

is the output 
olumn of length 2

n+2

and l is the output


olumn of length 2

n

). Sin
e h is 
orrelation immune, wd(h; l) = 0 and hen
e, wd(g;X

i

) =

wd(h; l) + wd(h; l) + wd(h; l) + wd(h




; l) = 0 for 1 � i � n.

Sin
e, h is 1st order 
orrelation immune, we have wd(h;X

1

) = wd(h;X




1

) = 0. Note that

here by X

1

we mean the output 
olumn of a truth table 
onsidering the fun
tion X

1

, where

X

1

is 
onsidered as an n-variable fun
tion (output 
olumn of length 2

n

). Now, wd(g;X

n+2

�

X

1

) = wd(hhhh




; X

1

X

1

X




1

X




1

) = wd(h;X

1

) + wd(h;X

1

) + wd(h;X




1

) + wd(h




; X




1

) = 0.

Similarly, it 
an be seen that wd(g;X

n+1

�X

1

) = 0.

Sin
e, g(X

n+2

; : : : ; X

1

) = X

n+2

X

n+1

� h(X

n

; : : : ; X

1

), and degree of h is d > 2, we get

the item 4.

Constru
tion of resilient Boolean fun
tions using linear transformation has been used

in [15℄. We use here a similar method for 
orrelation immune fun
tions. The method is as

follows.

Given a fun
tion f 2 


n

, we de�ne S

f

= f! 2 f0; 1g

n

j W

f

(!) = 0g, where W

f

is the

Walsh transform of f . If there exists n linearly independent ve
tors in S

f

, then we 
an


onstru
t a nonsingular n� n matrix B

f

whose rows are linearly independent ve
tors from

S

f

. Let, C

f

= B

�1

f

. Now if we 
onstru
t a fun
tion f

0

(X) = f(C

f

X), then both f

0

; f have

the same nonlinearity and algebrai
 degree. Moreover, W

f

0

(!) = 0 for wt(!) = 1, where W

f

0

is the Walsh Transform of f

0

. This ensures that f

0

is 1st order 
orrelation immune.

Let �

k

i

be an k-bit ve
tor with ith (1 � i � k) entry 1 and all other entries 0. For example

�

k

k

= (1; 0; : : : ; 0) and �

k

1

= (0; : : : ; 0; 1).

Now we 
on
entrate on (n + 2)-bit ve
tors. We de�ne, r

i

= �

n+2

i

; 1 � i � n and

r

i

= �

n+2

i

� �

n+2

1

for i = n + 1; n + 2. Here, the � means bitwise XOR of two binary

4



ve
tors. Note that ea
h ve
tor 
orresponds to a linear fun
tion. The ve
tors r

i

for 1 � i � n


orresponds to the linear fun
tions X

i

and the ve
tors r

i

for i = n+ 1; n+ 2 
orresponds to

X

n+1

� X

1

and X

n+2

�X

1

. It is important to note that the (n + 2) ve
tors r

i

are linearly

independent. Thus, if we 
onsider the fun
tion g as in Constru
tion 2.1, then B

g

is of the

following form. Note that B

g

is a nonsingular (invertible) matrix. Let us 
onsider the binary

matrix C

g

= B

�1

g

.

B

g

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 : : 0 0 1

0 0 0 : : 0 1 0

0 0 0 : : 1 0 0

: : : : : : : :

: : : : : : : :

0 0 1 : : 0 0 0

0 1 0 : : 0 0 1

1 0 0 : : 0 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, C

g

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 : : 0 0 1

1 0 0 : : 0 1 0

0 0 0 : : 1 0 0

: : : : : : : :

: : : : : : : :

0 0 1 : : 0 0 0

0 1 0 : : 0 0 0

1 0 0 : : 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Table 1.

Then we have the following theorem.

Theorem 2.1 Let h 2 


n

be an [[n; 1; d; x℄℄ fun
tion, where n is even. Then it is possible

to 
onstru
t a fun
tion g

0

, whi
h is [[n + 2; 1; d; 2

n

+ 2x℄℄.

Proof : We use Constru
tion 2.1 and the result of Proposition 2.1 here. From h, it is

possible to get a fun
tion g 2 


n+2

, su
h that nl(g) = 2

n

+ 2x and degree of g is d. Now

it is possible to get a nonsingular matrix B

g

. Thus we 
an get a binary matrix C

g

= B

�1

g

.

Consider X = (X

n+2

; : : : ; X

1

) and we interpret it as a 
olumn ve
tor here. Hen
e, the

fun
tion g

0

(X) = g(C

g

X) is an [[n + 2; 1; d; 2

n

+ 2x℄℄ fun
tion.

Next we 
onsider the initial fun
tion for this 
onstru
tion. Constru
tion of [[6; 1; 5; 26℄℄

Boolean fun
tion has been proposed in [16℄. The following is a 64 bit truth table of the

[[6; 1; 5; 26℄℄ Boolean fun
tion that we use here

0000010110101001010100111111000110101111110000101100010000101001. From this we 
an


onstru
t an [[8; 1; 5; 116℄℄ fun
tion using Theorem 2.1. Note that this is the �rst time when a


orrelation immune fun
tion with nonlinearity greater than 112 gets reported. Also in [3, 20℄,

it has been reported that the maximum possible nonlinearity of an [[n;m; d; x℄℄ fun
tion is

2

n�1

�2

n

2

�1

�2

m+b

n�m�1

d




for n even. Putting n = 8; m = 1; d = 5, we get that the maximum

possible nonlinearity of an [[8; 1; 5; 116℄℄ fun
tion is 2

8�1

� 2

8

2

�1

� 2

1+b

8�1�1

5




= 116. Thus

this fun
tion a
hieves the maximum possible nonlinearity and in turn shows the tightness of

the bound [3, 20℄ in this 
ase.

In general we have the following theorem.

Theorem 2.2 It is possible to 
onstru
t [[n; 1; 5; 2

n�1

� 2

n

2

+ 2

n

2

�2

℄℄ fun
tions.

Proof : Note that it is possible to 
onstru
t a [[6; 1; 5; 26℄℄ fun
tion. Now 26 = 2

6�1

� 2

6

2

+

2

6

2

�2

, whi
h is the base 
ase of indu
tion. Let it is possible to 
onstru
t an [[m; 1; 5; 2

m�1

�

5



2

m

2

+ 2

m

2

�2

℄℄ fun
tion for even m > 6. From this, using Theorem 2.1 we 
an 
onstru
t an

[[m + 2; 1; 5; 2

m

+ 2(2

m�1

� 2

m

2

+ 2

m

2

�2

)℄℄ fun
tion. Now, 2

m

+ 2(2

m�1

� 2

m

2

+ 2

m

2

�2

) =

2

(m+2)�1

� 2

m+2

2

+ 2

m+2

2

�2

. Thus the proof.

Now we talk about the Walsh spe
tra of the fun
tion g

0

. Sin
e g

0

(X) = g(C

g

X), the

Walsh spe
tra of g; g

0

are same. Note that any linear fun
tion � of n + 2 variables 
an be

written as any of the following four forms, llll; ll




ll




; lll




l




; ll




l




l, where l is a linear fun
tion

of n variables. Note that, wd(g; �) = wd(hhhh




; llll) or wd(hhhh




; ll




ll




) or wd(hhhh




; lll




l




)

or wd(hhhh




; ll




l




l). Thus, wd(g; �) = �2wd(h; l). The Walsh spe
tra of the [[6; 1; 5; 26℄℄

fun
tion

0000010110101001010100111111000110101111110000101100010000101001 
ontains 7 di�er-

ent values 0;�4;�8;�12. Thus, the [[n = 6 + 2i; 1; 5; 2

n�1

� 2

n

2

+ 2

n

2

�2

℄℄ fun
tions have the

Walsh spe
tra 0;�4 � 2

i

;�8 � 2

i

;�12 � 2

i

. Hen
e we have the following results.

Corollary 2.1 It is possible to 
onstru
t [[n; 1; 5; 2

n�1

� 2

n

2

+ 2

n

2

�2

℄℄ fun
tions with seven

valued Walsh spe
tra 0;�4 � 2

n

2

�3

;�8 � 2

n

2

�3

;�12 � 2

n

2

�3

.

Now we talk some more interesting results on the Walsh spe
tra of these fun
tions. We

have earlier mentioned that for a linear fun
tion l, by ndg(l) we denote the number of input

variables on whi
h l is nondegenerate. It 
an be 
he
ked that for the [[6; 1; 5; 26℄℄ fun
tion f

mentioned above, we �nd wd(f; l) = 0;�8, when ndg(l) is odd and wd(f; l) = �4;�12, when

ndg(l) is even for l 2 L(6). It 
an also be observed that [[8; 1; 5; 116℄℄ fun
tion F , 
onstru
ted

by using the fun
tion f , gives the Walsh spe
tra as follows : wd(F; �) = 0;�16, when ndg(�)

is odd and wd(f; �) = �8;�24, when ndg(�) is even for � 2 L(8). We generalize this result.

First we update the Constru
tion 2.1.

Constru
tion 2.2 Let h 2 


n

be an [[n; 1; d; x℄℄ fun
tion, where n is even. Also, wd(h; l) =

0;�x, when ndg(l) is odd and wd(h; l) = �y;�z, when ndg(l) is even for l 2 L(n). Then

Consider the fun
tion g(X

n+2

; : : : ; X

1

) = X

n+2

X

n+1

� h(X

n

; : : : ; X

1

), i.e. the truth table

of g is of the form hhhh




. Consider the binary matrix C

g

mentioned in Table 1. Let X =

(X

n+2

; : : : ; X

1

). Interpret X as a 
olumn ve
tor. Constru
t the fun
tion g

0

(X) = g(C

g

X).

We have already proved that the fun
tion g

0

(X) is an [[n+ 2; 1; d; 2

n

+ 2x℄℄ one. Now we

prove the result on Walsh spe
tra of the fun
tion g

0

.

Lemma 2.1 Let g

0

2 


n+2

be the fun
tion as mentioned in Constru
tion 2.2. Then wd(g

0

; �) =

0;�2 � x, when ndg(�) is odd and wd(g

0

; �) = �2 � y;�2 � z, when ndg(�) is even for

� 2 L(n+ 2).

Proof : Note that � is any of the following four forms : X

n+2

�X

n+1

� l, X

n+2

� l, X

n+1

� l,

l, where l 2 L(n). Now, wd(g(X

n+2

; : : : ; X

1

); �) = 0; or � 2x when ndg(l) is odd and

wd(g(X

n+2

; : : : ; X

1

); �) = �2y; or � 2z when ndg(l) is even. It is important to see that

ndg(�) is odd when (i) � is of the form X

n+2

� X

n+1

� l, or l and ndg(l) is odd, (ii) � is

of the form X

n+2

� l, or X

n+1

� l and ndg(l) is even. Similarly, ndg(�) is even when (i) �

is of the form X

n+2

� X

n+1

� l, or l and ndg(l) is even, (ii) � is of the form X

n+2

� l, or

X

n+1

� l and ndg(l) is odd. Then the proof follows from the result that g

0

(X) = g(C

g

X)

and the form of the matrix C

g

.

6



Theorem 2.3 It is possible to 
onstru
t [[n; 1; 5; 2

n�1

� 2

n

2

+ 2

n

2

�2

℄℄ fun
tions f with

1. W

f

(!) = 0;�8 � 2

n

2

�3

, for wt(!) odd and

2. W

f

(!) = �4 � 2

n

2

�3

;�12 � 2

n

2

�3

, for wt(!) even.

Proof : The proof follows from Constru
tion 2.2, Lemma 2.1 and the Walsh spe
tra of the

initial [[6; 1; 5; 26℄℄ fun
tion mentioned above.

3 Modi�ed Constru
tion for Maximum Possible Alge-

brai
 Degree

Note that all the fun
tions we have 
onstru
ted so far are of algebrai
 degree 5. However,

it is known [25℄, that the maximum possible algebrai
 degree of an [[n;m; d; x℄℄ fun
tion is

d = n �m. Thus, here for m = 1, we need to a
hieve the algebrai
 degree n � 1. This we

a
hieve using the following te
hnique whi
h has earlier been used in [10℄.

De�nition 3.1 Let f; g 2 


n

and there exists i

0

; i

1

with i

0

+ i

1

= 2

n

� 1, su
h that

1. f [i

0

℄ = f [i

1

℄ = a, a 2 f0; 1g,

2. g[i

0

℄ = g[i

1

℄ = 1� a and

3. f [j℄ = g[j℄ if j 6= i

0

; i

1

.

Then we say that f; g are palindromi
ally related.

Note that values of just a spe
i�
 pair of positions are 
omplemented and the positions

are at the same distan
es from top and bottom of the fun
tion. The following result shows

the importan
e of De�nition 3.1.

Proposition 3.1 Let f; g 2 


n

be palindromi
ally related. Then

1. f is 
orrelation immune of order 1 i� g is 
orrelation immune of order 1.

2. nl(g) � nl(f)� 2.

3. If algebrai
 degree of f is less than n� 1, then g is of algebrai
 degree n� 1.

Proof : Item 1 and 2 are proved in [10℄ and in [11℄ respe
tively. Now we prove item

3. Consider f = f

1

f

2

, where f

1

; f

2

2 


n�1

, that is, the truth table of f 
an be seen as


on
atenation of truth tables of the fun
tions f

1

and f

2

. Similarly, 
onsider g = g

1

g

2

, where

g

1

; g

2

2 


n�1

. Sin
e, f is of algebrai
 degree less than n� 1, we have wt(f

1

) and wt(f

2

) are

both even. Thus, wt(g

1

) and wt(g

2

) are both odd. Hen
e degree of g is n� 1.
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Theorem 3.1 It is possible to 
onstru
t [[n; 1; n� 1; 2

n�1

� 2

n

2

+ 2

n

2

�2

� 2℄℄ fun
tions.

Proof : We know from Theorem 2.2, that it is possible to 
onstru
t an [[n; 1; 5; 2

n�1

� 2

n

2

+

2

n

2

�2

℄℄ fun
tion. We 
onsider su
h a fun
tion f . Now this fun
tion is unbalan
ed and hen
e

it 
annot be of the form hh




, for h 2 


n�1

. Thus, there will be at least one lo
ation i su
h

that f [i℄ = f [2

n

� 1 � i℄. From f we 
onstru
t a palindromi
ally related fun
tion g 2 


n

.

From Proposition 3.1, it is 
lear that g is an [[n; 1; n� 1; 2

n�1

� 2

n

2

+ 2

n

2

�2

� 2℄℄ fun
tion.

Thus from an [[8; 1; 5; 116℄℄ fun
tion we 
an 
onstru
t an [[8; 1; 7; 114℄℄ fun
tion.

Now we analyze the Walsh spe
tra of [[n; 1; n� 1; 2

n�1

� 2

n

2

+2

n

2

�2

� 2℄℄ fun
tions. From

Corollary 2.1 we get that the Walsh spe
tra of the [[n; 1; 5; 2

n�1

� 2

n

2

+2

n

2

�2

℄℄ fun
tions have

seven valued Walsh spe
tra 0;�4 � 2

n

2

�3

;�8 � 2

n

2

�3

;�12 � 2

n

2

�3

.

Proposition 3.2 Let f; g 2 


n

be palindromi
ally related and l 2 L(n). Then

1. wd(f; l) = wd(g; l), if l is nondegenerate on odd number of variables.

2. wd(f; l) = wd(g; l)� 4, if l is nondegenerate on even number of variables.

Proof : Let ndg(l) be odd. If we 
onsider the truth table of l, then l[i℄ 6= l[2

n

� 1� i℄. Note

that, f [i℄ = f [2

n

� 1� i℄ and g[i℄ = g[2

n

� 1� i℄. Thus, though f [i℄ 6= g[i℄, the 
ontribution

to Walsh distan
e for both the fun
tions f; g will be same for the points i; 2

n

� 1� i, whi
h

is 0.

On the other hand, if ndg(l) is even, the truth table of l has the property l[i℄ = l[2

n

�1�i℄.

Here f [i℄ = f [2

n

� 1 � i℄, g[i℄ = g[2

n

� 1 � i℄. Also f [i℄ 6= g[i℄. Thus the 
ontribution to

Walsh distan
e for both the fun
tions f; g will di�er for the points i; 2

n

� 1� i, whi
h is �4.

Hen
e we get the following result related to the Walsh spe
tra of the fun
tions whi
h are

optimized with respe
t to the algebrai
 degree.

Theorem 3.2 It is possible to 
onstru
t [[n; 1; n� 1; 2

n�1

� 2

n

2

+2

n

2

�2

� 2℄℄ fun
tions f with

the 11-valued Walsh spe
tra as follows.

1. W

f

(!) = 0;�8 � 2

n

2

�3

, for wt(!) odd and

2. W

f

(!) = �4 � 2

n

2

�3

� 4;�12 � 2

n

2

�3

� 4, for wt(!) even.

Proof : Consider the Walsh spe
tra of the [[n; 1; 5; 2

n�1

� 2

n

2

+ 2

n

2

�2

℄℄ fun
tion f as in

Theorem 2.3. W

f

(!) = 0;�8 � 2

n

2

�3

, for wt(!) odd and W

f

(!) = �4 � 2

n

2

�3

;�12 � 2

n

2

�3

, for

wt(!) even. Then the result follows from Proposition 3.2.

4 Comparison with Existing Results

Currently there is no 
onstru
tion whi
h 
an provide unbalan
ed 
orrelation immune fun
-

tions with as good nonlinearity as ours. In fa
t, as far as we know, there is no existing
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onstru
tion whi
h 
an dis
uss about a generalized 
onstru
tion of �rst order 
orrelation

immune fun
tions with very high nonlinearity. That is the reason we 
ompare our result

with the maximum known nonlinearity of 1-resilient fun
tions [21℄.

First we provide a table for fun
tions on small number of variables. Column A presents

the nonlinearity a
hieved by 1st order 
orrelation immune fun
tions with algebrai
 degree 5

and 
olumn B presents the nonlinearity a
hieved by 1st order 
orrelation immune fun
tions

with maximum possible algebrai
 degree (n � 1). Column C provides the 
urrently best

known nonlinearity a
hieved by 1st order balan
ed 
orrelation immune fun
tions [21℄ with

maximum possible algebrai
 degree (n�2) and 
olumn D provides the 
urrently best known

nonlinearity a
hieved by 1st order balan
ed 
orrelation immune fun
tions [21℄ with maximum

possible algebrai
 degree less than (n � 2). For 
omparison we also present the 
urrently

best known nonlinearity for balan
ed Boolean fun
tions in 
olumn E.

n A B C [21℄ D [21℄ E

6 26 26 24 24 26

8 116 114 112 112 116

10 488 486 484 480 492

Table 2.

It should be noted that for n � 12, the 
urrently best known nonlinearity a
hieved by 1st

order balan
ed 
orrelation immune fun
tions [21, Theorem 7℄ with algebrai
 degree

n

2

+ 2 is

2

n�1

� 2

n

2

+2

n

2

�2

. However, the maximum possible algebrai
 degree of n-variable, 1-resilient

fun
tion is n � 2. For n � 12, the 
urrently best known nonlinearity a
hieved by 1st order

balan
ed 
orrelation immune fun
tions [21, Theorem 8℄ with maximum possible algebrai


degree (n� 2) is 2

n�1

� 2

n

2

+ y, where y is the maximum possible nonlinearity of an (

n

2

� 1)-

variable balan
ed 1st order 
orrelation immune fun
tion with algebrai
 degree (

n

2

� 3). We

estimate y as 2

n

2

�2

� 2

n

4

�2

� 4 [22℄, the upper bound of nonlinearity for an (

n

2

� 1)-variable

fun
tion whi
h is balan
ed and 1st order 
orrelation immune. So, the 
urrently best known

nonlinearity a
hieved by 1st order balan
ed 
orrelation immune fun
tions [21℄ with maximum

possible algebrai
 degree (n� 2) is 2

n�1

� 2

n

2

+ 2

n

2

�2

� 2

n

4

�2

� 4.

We here a
hieve the nonlinearity 2

n�1

� 2

n

2

+ 2

n

2

�2

for 1st order unbalan
ed 
orrelation

immune fun
tions with algebrai
 degree 5. Moreover, we a
hieve the nonlinearity 2

n�1

�

2

n

2

+ 2

n

2

�2

� 2 for 1st order 
orrelation immune fun
tions with maximum possible algebrai


degree (n� 1).

Hen
e, 
onsidering the fun
tions with maximum possible algebrai
 degree, we �nd that

for n � 12 the nonlinearity a
hieved in this paper for 1st order 
orrelation immune Boolean

fun
tion (algebrai
 degree n�1) is 2

n�1

�2

n

2

+2

n

2

�2

�2, whi
h is greater than the nonlinearity

2

n�1

� 2

n

2

+ 2

n

2

�2

� 2

n

4

�2

� 4 a
hieved in [21℄ for 1st order resilient (balan
ed 
orrelation

immune) Boolean fun
tion (algebrai
 degree n� 2).
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