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Abstrat

Here we provide a onstrution method for unbalaned, �rst order orrelation im-

mune Boolean funtions on even number of variables n � 6. These funtions ahieve

the urrently best known nonlinearity 2

n�1

� 2

n

2

+ 2

n

2

�2

. Then we provide a simple

modi�ation of these funtions to get unbalaned orrelation immune Boolean funtions

on even number of variables n, with nonlinearity 2

n�1

� 2

n

2

+ 2

n

2

�2

� 2 and maximum

possible algebrai degree n � 1. Moreover, we present a detailed study on the Walsh

spetra of these funtions.

Keywords : Cryptography, Correlation Immunity, Nonlinearity, Algebrai Degree,

Boolean Funtion, Walsh Spetra.

1 Introdution

Nonlinearity and orrelation immunity are two hallenging ombinatorial properties of Boolean

funtions. These properties are also important for ryptographi purposes. The onept of

orrelation immune Boolean funtions was introdued by Siegenthaler [25℄ and these fun-

tions are used in stream ipher systems for resisting ryptanalyti attaks [26℄. Constrution

and enumeration of orrelation immune Boolean funtions have reeived a lot of attention

as evident from [12, 28, 13, 9℄.

Nonlinearity is also an important ryptographi riteria for Boolean funtions. This is

also related to overing radius of �rst order Reed-Muller odes [8, Chapter 13℄. It was shown

by Rothaus [19℄, that for even n, the maximum nonlinearity ahievable for any Boolean

funtion is 2

n�1

� 2

n

2

�1

and the funtions having this nonlinearity are alled bent funtions.

However, bent funtions are not balaned. Constrution of balaned Boolean funtions on

even number of variables with very high nonlinearity has been onsidered in [24, 4, 21℄.

Dobbertin [4℄ has onjetured that, for even n, nlb(n) = 2

n�1

+ 2

n

2

+ nlb(

n

2

), where nlb(n) is

the maximum possible nonlinearity for an n-variable balaned funtion.
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The nonlinearity question is open for funtions on odd number of variables. It is known

that [1, 14, 7℄ for odd n � 7, the maximum possible nonlinearity is 2

n�1

� 2

n�1

2

. The

question of maximum nonlinearity is open for n = 9; 11; 13 and the maximum possible

nonlinearity that an be ahieved is 2

n�1

� 2

n�1

2

. For odd n � 15, it is possible to onstrut

(both unbalaned and balaned) funtions with nonlinearity stritly greater than 2

n�1

�

2

n�1

2

[17, 18, 21℄.

Reently, weight divisibility results on resilient and orrelation immune funtions have

been presented [22℄. These results have diret onsequene towards nontrivial upper bounds

on nonlinearity of suh funtions. Almost at the same time Tarannikov [27℄ and Zheng and

Zhang [29℄ independently got similar kinds of results. Very reently, Carlet [3℄ and Sarkar [20℄

have proved weight divisibility results for orrelation immune and resilient (balaned or-

relation immune) Boolean funtions involving algebrai degree of the funtions and these

results have sharpened the upper bounds. The works [3℄ and [20℄ are independent and use

di�erent kinds of tehniques. Also, onstrution of resilient and orrelation immune Boolean

funtions ahieving these upper bounds have been disussed in [22, 27, 16℄. Thus, it is very

lear that a lot of interest have been generated in this diretion.

Constrution of resilient (balaned orrelation immune) funtions have diret appliation

as ombining funtions in ertain models of stream iphers and there are lot of results

available in this diretion [2, 23, 5, 10, 21, 22, 27, 16℄. However, onstrution results related

to unbalaned orrelation immune funtions has not yet reeived a lot of attention (though

there are some results available in reent papers [27, 16℄). In this paper we provide a

onstrution of unbalaned orrelation immune Boolean funtions on even number of input

variables with very high nonlinearity. Unless otherwise mentioned, we will use n as an even

integer. The basi input to the onstrution is a 6-variable orrelation immune funtion with

nonlinearity 26 and algebrai degree 5, whih ould be onstruted very reently [16℄. Using

this 6-variable funtion, for the �rst time we show the existene of an 8-variable orrelation

immune funtion with nonlinearity 116 and algebrai degree 5. We extend our result to

onstrut orrelation immune funtions with nonlinearity 2

n�1

� 2

n

2

+ 2

n

2

�2

and algebrai

degree 5. Moreover, we present a simple modi�ation of these funtions to get orrelation

immune funtions with nonlinearity 2

n�1

� 2

n

2

+ 2

n

2

�2

� 2 and algebrai degree n� 1. Sine

onstrution of unbalaned orrelation immune funtions with very high nonlinearity is not

known we will ompare our results with the maximum possible nonlinearity ahieved by

resilient Boolean funtions [21℄ on even number of variables. This is given in Setion 4.

Reent results show [22℄ that the Walsh spetra ofmth order orrelation immune Boolean

funtions on n variables with maximum possible nonlinearity is three valued for m >

n

2

� 1

and the spetral values are 0;�2

m+1

. However, the situation is not so lear for m �

n

2

� 1

and here we onsider the ase m = 1. Thus it is important to talk about the Walsh spetra

of suh funtions, whih we take up in this initiative.

1.1 De�nitions and Notations

By 


n

we mean the set of all Boolean funtions. The addition operator over GF (2) is denoted

by �. We sometimes interpret a Boolean funtion on n input variables by the output olumn
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of its truth table, whih is a binary string of length 2

n

. For binary strings S

1

; S

2

of same

length s, we denote by #(S

1

= S

2

) (respetively #(S

1

6= S

2

)), the number of plaes where S

1

and S

2

are equal (respetively unequal). The Hamming distane between S

1

; S

2

is denoted by

d(S

1

; S

2

), i.e. d(S

1

; S

2

) = #(S

1

6= S

2

). The Walsh distane wd(S

1

; S

2

), between S

1

and S

2

, is

de�ned as, wd(S

1

; S

2

) = #(S

1

= S

2

)�#(S

1

6= S

2

). Note that, wd(S

1

; S

2

) = s� 2 d(S

1

; S

2

).

Also the Hamming weight or simply the weight of a binary string S is the number of ones in

S. This is denoted by wt(S). An n-variable funtion f is said to be balaned if its output

olumn in the truth table ontains equal number of 0's and 1's (i.e. wt(f) = 2

n�1

). The ith

loation of a binary string S is denoted by S[i℄.

An n-variable Boolean funtion f(X

n

; : : : ; X

1

) an be onsidered to be a multivariate

polynomial over GF (2). This polynomial an be expressed as a sum of produts repre-

sentation of all distint k-th order produts (0 � k � n) of the variables. More pre-

isely, f(X

n

; : : : ; X

1

) an be written as a

0

� (

L

i=n

i=1

a

i

X

i

) � (

L

1�i 6=j�n

a

ij

X

i

X

j

) � : : : �

a

12:::n

X

1

X

2

: : :X

n

where the oeÆients a

0

; a

ij

; : : : ; a

12:::n

2 f0; 1g. This representation of

f is alled the algebrai normal form (ANF) of f . The number of variables in the highest

order produt term with nonzero oeÆient is alled the algebrai degree, or simply degree

of f .

Funtions of degree at most one are alled aÆne funtions. An aÆne funtion with

onstant term equal to zero is alled a linear funtion. For a linear funtion l, by ndg(l) we

denote the number of input variables on whih l is nondegenerate.

The set of all n-variable aÆne (respetively linear) funtions is denoted by A(n) (respe-

tively L(n)). The nonlinearity of an n variable funtion f is nl(f) = min

g2A(n)

(d(f; g)), i.e.

the distane from the set of all n-variable aÆne funtions.

Walsh transform is an important tool in analysis of Boolean funtions. LetX = (X

n

; : : : ; X

1

)

and ! = (!

n

; : : : ; !

1

) both belong to f0; 1g

n

and X:! = X

n

!

n

� : : :�X

1

!

1

. Let f(X) be a

Boolean funtion on n variables. Then the Walsh transform of f(X) is a real valued funtion

over f0; 1g

n

that an be de�ned as W

f

(!) =

X

X2f0;1g

n

(�1)

f(X)�X:!

. The relationship between

Walsh transform and Walsh distane is [11℄ W

f

(!) = wd(f;

L

i=n

i=1

!

i

X

i

).

In [6℄, the following haraterization of orrelation immunity is provided. A funtion

f(X

n

; : : : ; X

1

) is m-th order orrelation immune (CI) i� its Walsh transform W

f

satis�es

W

f

(!) = 0; for 1 � wt(!) � m: If f is balaned then W

f

(0) = 0. Balaned m-th order or-

relation immune funtions are alled m-resilient funtions. Thus, a funtion f(X

n

; : : : ; X

1

)

is m-resilient i� its Walsh transform W

f

satis�es W

f

(!) = 0; for 0 � wt(!) � m.

By [[n;m; d; x℄℄ we denote an n-variable unbalaned orrelation immune funtion of order

m, nonlinearity x and degree d.

2 Basi Constrution

First we onsider the generalized onstrution method.

Constrution 2.1 Let h 2 


n

be an [[n; 1; d; x℄℄ funtion, where n is even. Consider the
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funtion g(X

n+2

; : : : ; X

1

) = X

n+2

X

n+1

� h(X

n

; : : : ; X

1

), i.e. the truth table of g is of the

form hhhh



.

Then we have the following result.

Proposition 2.1 Let h 2 


n

be an [[n; 1; d; x℄℄ funtion, where n is even and d > 2. Let

g 2 


n+2

be generated from h as in Constrution 2.1. Then

1. nl(g) = 2

n

+ 2x,

2. wd(g;X

i

) = 0 for 1 � i � n and

3. wd(g;X

n+2

�X

1

) = wd(g;X

n+1

�X

1

) = 0.

4. The funtion g has algebrai degree d.

Proof : Note that for any aÆne funtion � 2 A(n + 2), we an write � in any one of

the forms llll; ll



ll



; lll



l



; ll



l



l, where l 2 A(n). Now onsider � = llll. Then, d(g; �) =

d(hhhh



; llll) = d(h; l) + d(h; l) + d(h; l) + d(h



; l) = 2d(h; l) + d(h; l) + d(h



; l) = 2x + 2

n

.

The result is similar for � of other forms also. This gives the nonlinearity result.

Note that g is of the form hhhh



and X

i

is the form llll, for 1 � i � n. Here by X

i

we

mean output olumn of a truth table onsidering the funtion X

i

, where X

i

is onsidered as

an (n+2)-variable funtion (Here X

i

is the output olumn of length 2

n+2

and l is the output

olumn of length 2

n

). Sine h is orrelation immune, wd(h; l) = 0 and hene, wd(g;X

i

) =

wd(h; l) + wd(h; l) + wd(h; l) + wd(h



; l) = 0 for 1 � i � n.

Sine, h is 1st order orrelation immune, we have wd(h;X

1

) = wd(h;X



1

) = 0. Note that

here by X

1

we mean the output olumn of a truth table onsidering the funtion X

1

, where

X

1

is onsidered as an n-variable funtion (output olumn of length 2

n

). Now, wd(g;X

n+2

�

X

1

) = wd(hhhh



; X

1

X

1

X



1

X



1

) = wd(h;X

1

) + wd(h;X

1

) + wd(h;X



1

) + wd(h



; X



1

) = 0.

Similarly, it an be seen that wd(g;X

n+1

�X

1

) = 0.

Sine, g(X

n+2

; : : : ; X

1

) = X

n+2

X

n+1

� h(X

n

; : : : ; X

1

), and degree of h is d > 2, we get

the item 4.

Constrution of resilient Boolean funtions using linear transformation has been used

in [15℄. We use here a similar method for orrelation immune funtions. The method is as

follows.

Given a funtion f 2 


n

, we de�ne S

f

= f! 2 f0; 1g

n

j W

f

(!) = 0g, where W

f

is the

Walsh transform of f . If there exists n linearly independent vetors in S

f

, then we an

onstrut a nonsingular n� n matrix B

f

whose rows are linearly independent vetors from

S

f

. Let, C

f

= B

�1

f

. Now if we onstrut a funtion f

0

(X) = f(C

f

X), then both f

0

; f have

the same nonlinearity and algebrai degree. Moreover, W

f

0

(!) = 0 for wt(!) = 1, where W

f

0

is the Walsh Transform of f

0

. This ensures that f

0

is 1st order orrelation immune.

Let �

k

i

be an k-bit vetor with ith (1 � i � k) entry 1 and all other entries 0. For example

�

k

k

= (1; 0; : : : ; 0) and �

k

1

= (0; : : : ; 0; 1).

Now we onentrate on (n + 2)-bit vetors. We de�ne, r

i

= �

n+2

i

; 1 � i � n and

r

i

= �

n+2

i

� �

n+2

1

for i = n + 1; n + 2. Here, the � means bitwise XOR of two binary

4



vetors. Note that eah vetor orresponds to a linear funtion. The vetors r

i

for 1 � i � n

orresponds to the linear funtions X

i

and the vetors r

i

for i = n+ 1; n+ 2 orresponds to

X

n+1

� X

1

and X

n+2

�X

1

. It is important to note that the (n + 2) vetors r

i

are linearly

independent. Thus, if we onsider the funtion g as in Constrution 2.1, then B

g

is of the

following form. Note that B

g

is a nonsingular (invertible) matrix. Let us onsider the binary

matrix C

g

= B

�1

g

.

B

g

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

0 0 0 : : 0 0 1

0 0 0 : : 0 1 0

0 0 0 : : 1 0 0

: : : : : : : :

: : : : : : : :

0 0 1 : : 0 0 0

0 1 0 : : 0 0 1

1 0 0 : : 0 0 1

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

, C

g

=

2

6

6

6

6

6

6

6

6

6

6

6

6

6

4

1 0 0 : : 0 0 1

1 0 0 : : 0 1 0

0 0 0 : : 1 0 0

: : : : : : : :

: : : : : : : :

0 0 1 : : 0 0 0

0 1 0 : : 0 0 0

1 0 0 : : 0 0 0

3

7

7

7

7

7

7

7

7

7

7

7

7

7

5

Table 1.

Then we have the following theorem.

Theorem 2.1 Let h 2 


n

be an [[n; 1; d; x℄℄ funtion, where n is even. Then it is possible

to onstrut a funtion g

0

, whih is [[n + 2; 1; d; 2

n

+ 2x℄℄.

Proof : We use Constrution 2.1 and the result of Proposition 2.1 here. From h, it is

possible to get a funtion g 2 


n+2

, suh that nl(g) = 2

n

+ 2x and degree of g is d. Now

it is possible to get a nonsingular matrix B

g

. Thus we an get a binary matrix C

g

= B

�1

g

.

Consider X = (X

n+2

; : : : ; X

1

) and we interpret it as a olumn vetor here. Hene, the

funtion g

0

(X) = g(C

g

X) is an [[n + 2; 1; d; 2

n

+ 2x℄℄ funtion.

Next we onsider the initial funtion for this onstrution. Constrution of [[6; 1; 5; 26℄℄

Boolean funtion has been proposed in [16℄. The following is a 64 bit truth table of the

[[6; 1; 5; 26℄℄ Boolean funtion that we use here

0000010110101001010100111111000110101111110000101100010000101001. From this we an

onstrut an [[8; 1; 5; 116℄℄ funtion using Theorem 2.1. Note that this is the �rst time when a

orrelation immune funtion with nonlinearity greater than 112 gets reported. Also in [3, 20℄,

it has been reported that the maximum possible nonlinearity of an [[n;m; d; x℄℄ funtion is

2

n�1

�2

n

2

�1

�2

m+b

n�m�1

d



for n even. Putting n = 8; m = 1; d = 5, we get that the maximum

possible nonlinearity of an [[8; 1; 5; 116℄℄ funtion is 2

8�1

� 2

8

2

�1

� 2

1+b

8�1�1

5



= 116. Thus

this funtion ahieves the maximum possible nonlinearity and in turn shows the tightness of

the bound [3, 20℄ in this ase.

In general we have the following theorem.

Theorem 2.2 It is possible to onstrut [[n; 1; 5; 2

n�1

� 2

n

2

+ 2

n

2

�2

℄℄ funtions.

Proof : Note that it is possible to onstrut a [[6; 1; 5; 26℄℄ funtion. Now 26 = 2

6�1

� 2

6

2

+

2

6

2

�2

, whih is the base ase of indution. Let it is possible to onstrut an [[m; 1; 5; 2

m�1

�

5



2

m

2

+ 2

m

2

�2

℄℄ funtion for even m > 6. From this, using Theorem 2.1 we an onstrut an

[[m + 2; 1; 5; 2

m

+ 2(2

m�1

� 2

m

2

+ 2

m

2

�2

)℄℄ funtion. Now, 2

m

+ 2(2

m�1

� 2

m

2

+ 2

m

2

�2

) =

2

(m+2)�1

� 2

m+2

2

+ 2

m+2

2

�2

. Thus the proof.

Now we talk about the Walsh spetra of the funtion g

0

. Sine g

0

(X) = g(C

g

X), the

Walsh spetra of g; g

0

are same. Note that any linear funtion � of n + 2 variables an be

written as any of the following four forms, llll; ll



ll



; lll



l



; ll



l



l, where l is a linear funtion

of n variables. Note that, wd(g; �) = wd(hhhh



; llll) or wd(hhhh



; ll



ll



) or wd(hhhh



; lll



l



)

or wd(hhhh



; ll



l



l). Thus, wd(g; �) = �2wd(h; l). The Walsh spetra of the [[6; 1; 5; 26℄℄

funtion

0000010110101001010100111111000110101111110000101100010000101001 ontains 7 di�er-

ent values 0;�4;�8;�12. Thus, the [[n = 6 + 2i; 1; 5; 2

n�1

� 2

n

2

+ 2

n

2

�2

℄℄ funtions have the

Walsh spetra 0;�4 � 2

i

;�8 � 2

i

;�12 � 2

i

. Hene we have the following results.

Corollary 2.1 It is possible to onstrut [[n; 1; 5; 2

n�1

� 2

n

2

+ 2

n

2

�2

℄℄ funtions with seven

valued Walsh spetra 0;�4 � 2

n

2

�3

;�8 � 2

n

2

�3

;�12 � 2

n

2

�3

.

Now we talk some more interesting results on the Walsh spetra of these funtions. We

have earlier mentioned that for a linear funtion l, by ndg(l) we denote the number of input

variables on whih l is nondegenerate. It an be heked that for the [[6; 1; 5; 26℄℄ funtion f

mentioned above, we �nd wd(f; l) = 0;�8, when ndg(l) is odd and wd(f; l) = �4;�12, when

ndg(l) is even for l 2 L(6). It an also be observed that [[8; 1; 5; 116℄℄ funtion F , onstruted

by using the funtion f , gives the Walsh spetra as follows : wd(F; �) = 0;�16, when ndg(�)

is odd and wd(f; �) = �8;�24, when ndg(�) is even for � 2 L(8). We generalize this result.

First we update the Constrution 2.1.

Constrution 2.2 Let h 2 


n

be an [[n; 1; d; x℄℄ funtion, where n is even. Also, wd(h; l) =

0;�x, when ndg(l) is odd and wd(h; l) = �y;�z, when ndg(l) is even for l 2 L(n). Then

Consider the funtion g(X

n+2

; : : : ; X

1

) = X

n+2

X

n+1

� h(X

n

; : : : ; X

1

), i.e. the truth table

of g is of the form hhhh



. Consider the binary matrix C

g

mentioned in Table 1. Let X =

(X

n+2

; : : : ; X

1

). Interpret X as a olumn vetor. Construt the funtion g

0

(X) = g(C

g

X).

We have already proved that the funtion g

0

(X) is an [[n+ 2; 1; d; 2

n

+ 2x℄℄ one. Now we

prove the result on Walsh spetra of the funtion g

0

.

Lemma 2.1 Let g

0

2 


n+2

be the funtion as mentioned in Constrution 2.2. Then wd(g

0

; �) =

0;�2 � x, when ndg(�) is odd and wd(g

0

; �) = �2 � y;�2 � z, when ndg(�) is even for

� 2 L(n+ 2).

Proof : Note that � is any of the following four forms : X

n+2

�X

n+1

� l, X

n+2

� l, X

n+1

� l,

l, where l 2 L(n). Now, wd(g(X

n+2

; : : : ; X

1

); �) = 0; or � 2x when ndg(l) is odd and

wd(g(X

n+2

; : : : ; X

1

); �) = �2y; or � 2z when ndg(l) is even. It is important to see that

ndg(�) is odd when (i) � is of the form X

n+2

� X

n+1

� l, or l and ndg(l) is odd, (ii) � is

of the form X

n+2

� l, or X

n+1

� l and ndg(l) is even. Similarly, ndg(�) is even when (i) �

is of the form X

n+2

� X

n+1

� l, or l and ndg(l) is even, (ii) � is of the form X

n+2

� l, or

X

n+1

� l and ndg(l) is odd. Then the proof follows from the result that g

0

(X) = g(C

g

X)

and the form of the matrix C

g

.
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Theorem 2.3 It is possible to onstrut [[n; 1; 5; 2

n�1

� 2

n

2

+ 2

n

2

�2

℄℄ funtions f with

1. W

f

(!) = 0;�8 � 2

n

2

�3

, for wt(!) odd and

2. W

f

(!) = �4 � 2

n

2

�3

;�12 � 2

n

2

�3

, for wt(!) even.

Proof : The proof follows from Constrution 2.2, Lemma 2.1 and the Walsh spetra of the

initial [[6; 1; 5; 26℄℄ funtion mentioned above.

3 Modi�ed Constrution for Maximum Possible Alge-

brai Degree

Note that all the funtions we have onstruted so far are of algebrai degree 5. However,

it is known [25℄, that the maximum possible algebrai degree of an [[n;m; d; x℄℄ funtion is

d = n �m. Thus, here for m = 1, we need to ahieve the algebrai degree n � 1. This we

ahieve using the following tehnique whih has earlier been used in [10℄.

De�nition 3.1 Let f; g 2 


n

and there exists i

0

; i

1

with i

0

+ i

1

= 2

n

� 1, suh that

1. f [i

0

℄ = f [i

1

℄ = a, a 2 f0; 1g,

2. g[i

0

℄ = g[i

1

℄ = 1� a and

3. f [j℄ = g[j℄ if j 6= i

0

; i

1

.

Then we say that f; g are palindromially related.

Note that values of just a spei� pair of positions are omplemented and the positions

are at the same distanes from top and bottom of the funtion. The following result shows

the importane of De�nition 3.1.

Proposition 3.1 Let f; g 2 


n

be palindromially related. Then

1. f is orrelation immune of order 1 i� g is orrelation immune of order 1.

2. nl(g) � nl(f)� 2.

3. If algebrai degree of f is less than n� 1, then g is of algebrai degree n� 1.

Proof : Item 1 and 2 are proved in [10℄ and in [11℄ respetively. Now we prove item

3. Consider f = f

1

f

2

, where f

1

; f

2

2 


n�1

, that is, the truth table of f an be seen as

onatenation of truth tables of the funtions f

1

and f

2

. Similarly, onsider g = g

1

g

2

, where

g

1

; g

2

2 


n�1

. Sine, f is of algebrai degree less than n� 1, we have wt(f

1

) and wt(f

2

) are

both even. Thus, wt(g

1

) and wt(g

2

) are both odd. Hene degree of g is n� 1.
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Theorem 3.1 It is possible to onstrut [[n; 1; n� 1; 2

n�1

� 2

n

2

+ 2

n

2

�2

� 2℄℄ funtions.

Proof : We know from Theorem 2.2, that it is possible to onstrut an [[n; 1; 5; 2

n�1

� 2

n

2

+

2

n

2

�2

℄℄ funtion. We onsider suh a funtion f . Now this funtion is unbalaned and hene

it annot be of the form hh



, for h 2 


n�1

. Thus, there will be at least one loation i suh

that f [i℄ = f [2

n

� 1 � i℄. From f we onstrut a palindromially related funtion g 2 


n

.

From Proposition 3.1, it is lear that g is an [[n; 1; n� 1; 2

n�1

� 2

n

2

+ 2

n

2

�2

� 2℄℄ funtion.

Thus from an [[8; 1; 5; 116℄℄ funtion we an onstrut an [[8; 1; 7; 114℄℄ funtion.

Now we analyze the Walsh spetra of [[n; 1; n� 1; 2

n�1

� 2

n

2

+2

n

2

�2

� 2℄℄ funtions. From

Corollary 2.1 we get that the Walsh spetra of the [[n; 1; 5; 2

n�1

� 2

n

2

+2

n

2

�2

℄℄ funtions have

seven valued Walsh spetra 0;�4 � 2

n

2

�3

;�8 � 2

n

2

�3

;�12 � 2

n

2

�3

.

Proposition 3.2 Let f; g 2 


n

be palindromially related and l 2 L(n). Then

1. wd(f; l) = wd(g; l), if l is nondegenerate on odd number of variables.

2. wd(f; l) = wd(g; l)� 4, if l is nondegenerate on even number of variables.

Proof : Let ndg(l) be odd. If we onsider the truth table of l, then l[i℄ 6= l[2

n

� 1� i℄. Note

that, f [i℄ = f [2

n

� 1� i℄ and g[i℄ = g[2

n

� 1� i℄. Thus, though f [i℄ 6= g[i℄, the ontribution

to Walsh distane for both the funtions f; g will be same for the points i; 2

n

� 1� i, whih

is 0.

On the other hand, if ndg(l) is even, the truth table of l has the property l[i℄ = l[2

n

�1�i℄.

Here f [i℄ = f [2

n

� 1 � i℄, g[i℄ = g[2

n

� 1 � i℄. Also f [i℄ 6= g[i℄. Thus the ontribution to

Walsh distane for both the funtions f; g will di�er for the points i; 2

n

� 1� i, whih is �4.

Hene we get the following result related to the Walsh spetra of the funtions whih are

optimized with respet to the algebrai degree.

Theorem 3.2 It is possible to onstrut [[n; 1; n� 1; 2

n�1

� 2

n

2

+2

n

2

�2

� 2℄℄ funtions f with

the 11-valued Walsh spetra as follows.

1. W

f

(!) = 0;�8 � 2

n

2

�3

, for wt(!) odd and

2. W

f

(!) = �4 � 2

n

2

�3

� 4;�12 � 2

n

2

�3

� 4, for wt(!) even.

Proof : Consider the Walsh spetra of the [[n; 1; 5; 2

n�1

� 2

n

2

+ 2

n

2

�2

℄℄ funtion f as in

Theorem 2.3. W

f

(!) = 0;�8 � 2

n

2

�3

, for wt(!) odd and W

f

(!) = �4 � 2

n

2

�3

;�12 � 2

n

2

�3

, for

wt(!) even. Then the result follows from Proposition 3.2.

4 Comparison with Existing Results

Currently there is no onstrution whih an provide unbalaned orrelation immune fun-

tions with as good nonlinearity as ours. In fat, as far as we know, there is no existing
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onstrution whih an disuss about a generalized onstrution of �rst order orrelation

immune funtions with very high nonlinearity. That is the reason we ompare our result

with the maximum known nonlinearity of 1-resilient funtions [21℄.

First we provide a table for funtions on small number of variables. Column A presents

the nonlinearity ahieved by 1st order orrelation immune funtions with algebrai degree 5

and olumn B presents the nonlinearity ahieved by 1st order orrelation immune funtions

with maximum possible algebrai degree (n � 1). Column C provides the urrently best

known nonlinearity ahieved by 1st order balaned orrelation immune funtions [21℄ with

maximum possible algebrai degree (n�2) and olumn D provides the urrently best known

nonlinearity ahieved by 1st order balaned orrelation immune funtions [21℄ with maximum

possible algebrai degree less than (n � 2). For omparison we also present the urrently

best known nonlinearity for balaned Boolean funtions in olumn E.

n A B C [21℄ D [21℄ E

6 26 26 24 24 26

8 116 114 112 112 116

10 488 486 484 480 492

Table 2.

It should be noted that for n � 12, the urrently best known nonlinearity ahieved by 1st

order balaned orrelation immune funtions [21, Theorem 7℄ with algebrai degree

n

2

+ 2 is

2

n�1

� 2

n

2

+2

n

2

�2

. However, the maximum possible algebrai degree of n-variable, 1-resilient

funtion is n � 2. For n � 12, the urrently best known nonlinearity ahieved by 1st order

balaned orrelation immune funtions [21, Theorem 8℄ with maximum possible algebrai

degree (n� 2) is 2

n�1

� 2

n

2

+ y, where y is the maximum possible nonlinearity of an (

n

2

� 1)-

variable balaned 1st order orrelation immune funtion with algebrai degree (

n

2

� 3). We

estimate y as 2

n

2

�2

� 2

n

4

�2

� 4 [22℄, the upper bound of nonlinearity for an (

n

2

� 1)-variable

funtion whih is balaned and 1st order orrelation immune. So, the urrently best known

nonlinearity ahieved by 1st order balaned orrelation immune funtions [21℄ with maximum

possible algebrai degree (n� 2) is 2

n�1

� 2

n

2

+ 2

n

2

�2

� 2

n

4

�2

� 4.

We here ahieve the nonlinearity 2

n�1

� 2

n

2

+ 2

n

2

�2

for 1st order unbalaned orrelation

immune funtions with algebrai degree 5. Moreover, we ahieve the nonlinearity 2

n�1

�

2

n

2

+ 2

n

2

�2

� 2 for 1st order orrelation immune funtions with maximum possible algebrai

degree (n� 1).

Hene, onsidering the funtions with maximum possible algebrai degree, we �nd that

for n � 12 the nonlinearity ahieved in this paper for 1st order orrelation immune Boolean

funtion (algebrai degree n�1) is 2

n�1

�2

n

2

+2

n

2

�2

�2, whih is greater than the nonlinearity

2

n�1

� 2

n

2

+ 2

n

2

�2

� 2

n

4

�2

� 4 ahieved in [21℄ for 1st order resilient (balaned orrelation

immune) Boolean funtion (algebrai degree n� 2).
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