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Abstrat

We present the �rst omplete problem for SZK, the lass of (promise) problems possessing statistial

zero-knowledge proofs (against an honest veri�er). The problem, alled Statistial Differene,

is to deide whether two eÆiently samplable distributions are either statistially lose or far apart.

This gives a new haraterization of SZK that makes no referene to interation or zero knowledge.

We propose the use of omplete problems to unify and extend the study of statistial zero knowl-

edge. To this end, we examine several onsequenes of our Completeness Theorem and its proof,

suh as:

� A way to make every (honest-veri�er) statistial zero-knowledge proof very ommuniation

eÆient, with the prover sending only one bit to the veri�er (to ahieve soundness error 1=2).

� Simpler proofs of many of the previously known results about statistial zero knowledge, suh

as the Fortnow and Aiello{H�astad upper bounds on the omplexity of SZK and Okamoto's

result that SZK is losed under omplement.

� Strong losure properties of SZK whih amount to onstruting statistial zero-knowledge

proofs for omplex assertions built out of simpler assertions already shown to be in SZK.

� New results about the various measures of \knowledge omplexity," inluding a ollapse in the

hierarhy orresponding to knowledge omplexity in the \hint" sense.

� Algorithms for manipulating the statistial di�erene between eÆiently samplable distribu-

tions, inluding transformations whih \polarize" and \reverse" the statistial relationship

between a pair of distributions.
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1 Introdution

A revolution in theoretial omputer siene ourred when it was disovered that NP has om-

plete problems [Coo71, Lev73, Kar72℄. Most often, these theorems and other ompleteness results

are viewed as negative statements, as they provide evidene of a problem's intratability. These

same results, viewed as positive statements, enable one to study an entire lass of problems by

fousing on a single problem. For example, all languages in NP were shown to have omputational

zero-knowledge proofs when suh a proof was exhibited for Graph 3-olorability [GMW91℄.

Similarly, the result that IP = PSPACE was shown by giving an interative proof for Quantified

Boolean Formula, whih is omplete for PSPACE [LFKN92, Sha92℄. More reently, the ele-

brated PCP theorem haraterizing NP was proven by designing eÆient probabilistially hekable

proofs for a spei� NP-omplete language [ALM

+

98, AS98℄.

In this paper, we present a omplete problem for SZK, the lass of promise problems

1

possessing

statistial zero-knowledge proofs (against an honest veri�er). This problem provides a new and

simple haraterization of SZK | one whih makes no referene to interation or zero knowledge.

We propose the use of omplete problems as a tool to unify and extend the study of statistial zero

knowledge. To this end, we use our omplete problem to both establish a number of new results

about SZK and easily dedue nearly all previous results about SZK.

1.1 Statistial zero knowledge

Zero knowledge was introdued in the seminal paper of Goldwasser, Miali, and Rako� [GMR89℄

within the ontext of their new notion of interative proof systems. Informally, an interative proof

is a protool in whih a omputationally unbounded prover P attempts to onvine a probabilisti

polynomial-time veri�er V of an assertion, namely that a string x is a yes instane of some (promise)

problem. The zero knowledge property requires that, during this proess, the veri�er learns nothing

beyond the validity of the assertion being proven! To formalize this seemingly impossible notion,

two probability distributions are onsidered:

1. The interation of P and V from V 's point of view.

2. The output of a probabilisti polynomial-time mahine not interating with anyone, alled

the simulator, on input x.

An interative proof system (P; V ) is said to be zero knowledge if, for every yes instane x, the

two distributions above are \alike." Intuitively, the veri�er gains no knowledge by interating

with the prover exept that x is a yes instane, sine it ould have run the simulator instead.

The spei� variants of zero knowledge di�er by the interpretation given to \alike." The most

strit interpretation, leading to perfet zero knowledge, requires that the distributions be idential.

A slightly relaxed interpretation, leading to statistial zero knowledge (sometimes alled almost

perfet zero knowledge), requires that the distributions have negligible statistial di�erene from

one another. The most liberal interpretation, leading to omputational zero knowledge, requires

that samples from the two distributions be indistinguishable by any polynomial-time mahine.

In this work, we fous on the lass of problems possessing statistial zero-knowledge proof

systems, whih we denote SZK. We remark that we are restriting our attention to zero-knowledge

proofs against an honest veri�er, i.e. the veri�er that follows the spei�ed protool. In ryptographi

1

A promise problem is a deision problem given by a pair of disjoint sets of strings, orresponding to yes and no

instanes. In ontrast to languages, there may be strings whih are neither yes instanes nor no instanes. A formal

de�nition is given in Setion 2.
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appliations, one usually wants the zero-knowledge ondition to hold for all (even heating) veri�er

strategies. However, subsequent to this work, it has been shown that one an transform any proof

system that is statistial zero knowledge against an honest veri�er into one that is statistial zero

knowledge against all veri�ers [GSV98℄, so restriting to honest veri�ers auses no loss of generality.

SZK ontains a number of important problems, inludingGraph Nonisomorphism [GMW91℄,

a problem whih is not known to be in NP. It also ontains problems with ryptographi appli-

ation and signi�ane that are believed to be hard on average, suh as Quadrati Residuos-

ity (and its omplement) [GMR89℄, a problem equivalent to the Disrete Logarithm prob-

lem [GK93℄, and approximate versions of the Shortest Vetor and Closest Vetor problems

in latties [GG00℄. At the same time, the statistial zero knowledge property has several strong

onsequenes. Unlike a omputational zero-knowledge protool, a statistial zero-knowledge pro-

tool remains zero knowledge even against a omputationally unbounded veri�er. In addition,

a problem whih has a statistial zero-knowledge proof must lie low in the polynomial-time hi-

erarhy. In fat, suh a problem annot be NP-omplete unless the polynomial-time hierarhy

ollapses [For89, AH91, BHZ87℄. Beause SZK ontains problems believed to be hard yet annot

ontain NP-omplete problems, it holds an intriguing position in omplexity theory.

1.2 The omplete problem

The promise problem we show to be omplete for SZK is Statistial Differene. An instane of

Statistial Differene onsists of a pair of probability distributions, spei�ed by iruits whih

sample from them. Roughly speaking, the problem is to deide whether the distributions de�ned

by the two iruits are statistially lose or far apart. (The gap between `lose' and `far apart' is

what makes it a promise problem and not just a language.) Our main theorem is that Statistial

Differene is omplete for SZK. This Completeness Theorem gives a new haraterization of

SZK. Informally, it says that the assertions that an be proven in statistial zero knowledge are

exatly those that an be ast as deiding whether a pair of eÆiently samplable distributions are

statistially lose or far apart.

The starting point for our proof of the Completeness Theorem is a powerful theorem of Okamoto [Oka00℄,

whih states that all languages in SZK have publi-oin (also known as Arthur-Merlin [BM88℄) sta-

tistial zero-knowledge proofs. Using the approah pioneered by Fortnow [For89℄, we analyze the

simulator of suh a proof system and show that statistial properties of the simulator's output dis-

tribution an be used to distinguish between yes and no instanes of the problem in onsideration.

Our key new observation is that, for a publi-oin proof system, these statistial properties an

be aptured by the statistial di�erene between eÆiently samplable distributions. We thereby

onlude that every problem in SZK redues to Statistial Differene.

To show that Statistial Differene is in SZK, we exhibit a simple 2-message proof system

for it, generalizing the well-known proof systems for Quadrati Nonresiduosity [GMR89℄ and

Graph Nonisomorphism [GMW91℄. One ingredient in our proof system is a new \Polarization

Lemma" for statistial di�erene, whih may be of independent interest. Roughly speaking, this

lemma gives an eÆient transformation whih takes as input a pair of probability distributions

(spei�ed by iruits whih sample from them) and produes a new pair of distributions suh that

if the original pair is statistially lose (resp., far apart), the new pair is statistially muh loser

(resp., muh further apart).
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1.3 Consequenes

We propose using omplete problems, suh as Statistial Differene, to unify and extend

the study of SZK. We also use the onnetion between SZK and statistial properties of samplable

distributions to establish new tehniques for manipulating suh distributions. The results we obtain

along these lines are summarized below.

The relationship between SZK and BPP. Our omplete problem illustrates that statistial

zero knowledge is a natural generalization of BPP. In the de�nition of Statistial Differene ,

the iruits an output strings of any length. If we restrit the iruits to have output of logarithmi

length, the resulting problem is easily shown to be omplete for BPP.

EÆient SZK proof systems. The zero-knowledge proof system we exhibit for Statistial

Differene has many attrative properties (whih we desribe shortly); by the Completeness

Theorem it follows that every problem in SZK also has a proof system with suh properties. First,

the protool is very ommuniation eÆient | only two messages are exhanged between the prover

and veri�er, and the prover only sends one bit to the veri�er (to ahieve soundness error 1=2). In

addition, we will show that when the input is a yes instane, the veri�er's view of the interation

an be simulated by a polynomial-time simulator with exponentially small statistial deviation.

Moreover, we will show that this simulator deviation an be made to shrink exponentially fast as a

funtion of a separate \seurity parameter" whih an be varied independently from the assertion

being proven. This is in ontrast to the de�nition of SZK, whih only requires that the veri�er be

able simulate the interation with statistial deviation 1=n

!(1)

, where n is the the length of the

assertion being proven.

Closure properties. Using the omplete problem, we demonstrate that SZK has some very

strong losure properties. These an be informally desribed as asserting the existene of statistial

zero-knowledge proofs for omplex assertions built out simpler assertions already known to be in

SZK. These omplex assertions take the form of arbitrary propositional formulae whose atoms

are statements about membership in some problem in SZK, and the statistial zero-knowledge

proofs we exhibit have omplexity whih is polynomial in the size of these formulae. These results

generalize earlier ones of De Santis, Di Cresenzo, Persiano, and Yung [DDPY94℄ and Damg�ard and

Cramer [DC96℄, whih held for monotone formulae and various sublasses of SZK, suh as random

self-reduible problems.

By the Completeness Theorem, the losure properties we establish are equivalent to the ex-

istene of eÆient transformations that manipulate the statistial di�erene between samplable

distributions in various ways. Indeed, it is by exhibiting suh transformations that we prove the

losure properties of SZK. The transformations we give (and their appliation to losure properties)

are inspired by the tehniques of De Santis, Di Cresenzo, Persiano, and Yung [DDPY94℄.

Simpler proofs of previous results. Many of the previous results about SZK an be dedued

as immediate orollaries of our Completeness Theorem and its proof. For example, the result of

Okamoto [Oka00℄ that SZK is losed under omplement follows diretly from our proof of the Com-

pleteness Theorem. Then, using the fat that our proof system for Statistial Differene is a

onstant-round one, we dedue that SZK � AM \ o-AM, as originally proven by Fortnow [For89℄

and Aiello and H�astad [AH91℄. In addition, the result of Ostrovsky [Ost91℄ that one-way funtions

3



exist if SZK ontains a hard-on-average problem follows immediately by ombining our Complete-

ness Theorem with a result of Goldreih [Gol90℄ on omputational indistinguishability.

Knowledge omplexity. In addition to introduing zero-knowledge proofs, the onferene ver-

sion of the paper of Goldwasser, Miali, and Rako� [GMR89℄ proposed a more general idea of

measuring the amount of knowledge leaked in an interative proof. Goldreih and Petrank [GP99℄

suggested several de�nitions of knowledge omplexity to aomplish this, and relationships between

these various types of knowledge omplexity were explored in [GP99, BP92, GOP98, ABV95, PT96℄.

Loosely speaking, the de�nitions of (statistial) knowledge omplexity measure the \amount of

help" a veri�er needs to generate a distribution that is statistially lose to its real interation with

the prover. There are several ways of formalizing the \amount of help" the veri�er needs and eah

leads to a di�erent notion of knowledge omplexity.

Our work on SZK turns out to have onsequenes for (non-zero) knowledge omplexity as well.

First, we show that for the weakest of the various measures of knowledge omplexity, namely statis-

tial knowledge omplexity in the \hint sense", the orresponding hierarhy ollapses by logarithmi

additive fators at all levels, and in partiular, knowledge omplexity logn equals statistial zero

knowledge. No ollapse was previously known for any of the variants of knowledge omplexity

suggested in [GP99℄. Our results are obtained by ombining our results on SZK with a general

lemma relating knowledge omplexity in the hint sense to zero knowledge for promise problems.

As with zero knowledge, perfet knowledge omplexity an also be de�ned. This measures the

number of bits of help the veri�er needs to simulate the interation exatly, rather than statistially

losely. Using our omplete problem for SZK, we improve some results of Aiello, Bellare, and

Venkatesan [ABV95℄ on the perfet knowledge omplexity of statistial zero knowledge.

Reversing statistial di�erene. One interesting result that follows from the ompleteness of

Statistial Differene and the losure of SZK under omplement is the existene of an eÆient

mapping whih \reverses" statistial di�erene. That is, for every pair of eÆiently samplable

distributions, we an onstrut another pair of eÆiently samplable distributions suh that when

the former are statistially lose, the latter are statistially far apart, and when the former are far

apart, the latter are lose.

This motivated us to searh for a more expliit desription of suh a transformation. By

extrating ideas from the work of Okamoto [Oka00℄ and our proof of the Completeness Theorem,

we have obtained suh a desription (whih we give in Setion 4.4).

Weak SZK and expeted polynomial-time simulators. The original de�nition of SZK in

[GMR89℄ allows the simulator to run in expeted polynomial time, whereas we insist on strit

polynomial time, following [Gol95℄. Atually, our proof of the Completeness Theorem shows that

the two de�nitions are equivalent for publi-oin proof systems. That is, if a problem possesses a

publi-oin SZK proof system with an expeted polynomial-time simulator, then it also possesses

an SZK proof system with a strit polynomial-time simulator (whih an be made publi oin by

[Oka00℄). In fat, the equivalene extends to an even weaker de�nition of SZK, in whih it is only

required that for every polynomial p(n), there exists a simulator ahieving simulator deviation

1=p(n).

Perfet and omputational zero knowledge. Our tehniques an also be used to analyze

publi-oin perfet and omputational zero-knowledge proofs. Although we do not obtain om-

plete problems in these ases, we do obtain some novel insights into the orresponding omplexity
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lasses. Spei�ally, in Setion 4.6 we show that every problem possessing a publi-oin perfet

zero-knowledge proof (essentially) redues to a restrited version of Statistial Differene.

We also show that for any problem possessing a publi-oin omputational zero-knowledge proof,

there exist ensembles of samplable distributions indexed by instanes of the problem suh that on

yes instanes, the distributions are omputationally indistinguishable and on no instanes, the

distributions are statistially far apart.

Cheating-veri�er zero knowledge. While in this paper we primarily fous on honest-veri�er

statistial zero knowledge, there have been a number of works examining \heating-veri�er" statis-

tial zero knowledge, and in partiular relating the honest and heating-veri�er de�nitions. Some

of these works exhibited transformations from honest-veri�er SZK proofs to heating-veri�er ones

under (suessively weaker) omplexity assumptions ([BMO90℄, [OVY93℄, and [DGOW95, Part

2℄), and others gave unonditional transformations for restrited sublasses of SZK ([Dam93℄ and

[DGOW95, Part 1℄). Finally, subsequent to our paper, it was proven in [GSV98℄ that honest-veri�er

and heating-veri�er SZK are the equal, unonditionally and with no restritions.

Following the paradigm advoated in [BMO90℄, we use the above transformations to translate

our results about honest-veri�er SZK, namely the Completeness Theorem and its orollaries, to the

heating-veri�er lass. In Setion 5, we preisely state the results thereby obtained for heating-

veri�er statistial zero knowledge.

1.4 Subsequent work

Subsequent to the onferene version of this paper [SV97℄, there have a been a number of other

works improving our understanding of SZK, many of whih make use of the omplete problem

methodology advoated here. As mentioned above, Goldreih, Sahai, and Vadhan [GSV98℄ show

that honest-veri�er statistial zero knowledge equals heating-veri�er statistial zero knowledge.

Goldreih and Vadhan [GV99℄ use the omplete problem methodology to give a simpler proof of

Okamoto's theorem that private-oin SZK equals publi-oin SZK (on whih our work relies). In

the proess, they exhibit another omplete problem for SZK, alled Entropy Differene, whih

amounts to deiding whih of two given distributions (spei�ed by iruits whih sample from them)

has notieably higher entropy than the other. Di Cresenzo, Sakurai, and Yung [DSY00℄ onsider

two variants of (honest-veri�er) statistial zero-knowledge proofs, namely \proofs of deision power"

and \proofs of deision", and exhibit suh proof systems for all of SZK. Their onstrution makes

use of the omplete problems for SZK given here and in [GV99℄ and speial properties of their proof

systems.

De Santis, Di Cresenzo, Persiano and Yung [DDPY98℄ extend the use of omplete problems to

study \noninterative" statistial zero knowledge; they exhibit a omplete problem for the orre-

sponding omplexity lass NISZK and use it to prove some general results about the lass. Goldreih,

Sahai, and Vadhan [GSV99℄ exhibit two more omplete problems for NISZK. These problems are

natural restritions of the omplete problems for SZK given here and in [GV99℄, and thus they are

able to use the omplete problems to relate SZK and NISZK. Gutfreund and Ben-Or [GB00℄ exam-

ine weaker models of noninterative zero knowledge proofs, and, using our omplete problem and

reversal mapping, show that every problem in SZK has a noninterative statistial zero-knowledge

proof in one of their models.

Finally, Vadhan [Vad00℄ examines the blow-up in the prover's omplexity inurred by trans-

formations from private-oin proof systems to publi-oin proof systems, suh as those in [GS89,

Oka00℄, and shows that this ineÆieny is inherent in the fat that the transformations use the

5



original prover and veri�er strategies as \blak boxes". In fat, it is shown that any blak-box trans-

formation whih preserves the prover's omplexity must fail on our proof system for Statistial

Differene.

Uni�ed presentations of many of the above results, together with the results in this paper, an

be found in the Ph.D. theses of the authors [Vad99, Sah00℄.

2 Preliminaries

2.1 Promise problems

The problem we prove to be omplete for SZK is not a language, but rather a promise prob-

lem [ESY84℄. Formally, a promise problem � onsists of two disjoint sets of strings �

Y

and �

N

,

where �

Y

is the set of yes instanes and �

N

is the set of no instanes. A promise problem � is

assoiated with the following omputational problem: Given an input whih is \promised" to lie in

�

Y

[ �

N

, deide whether it omes from �

Y

or �

N

. The omplement of � is the promise problem

�, where �

Y

= �

N

and �

N

= �

Y

. Note that languages are a speial ase of promise problems.

We say that promise problem � redues to promise problem � if there is a polynomial-time

omputable funtion f suh that

x 2 �

Y

) f(x) 2 �

Y

x 2 �

N

) f(x) 2 �

N

If C is a lass of promise problems, we say that promise problem � is omplete for C if � 2 C and

every promise problem in C redues to �. As above, all redutions we onsider are polynomial-time

many-one (or Karp) redutions, unless otherwise spei�ed.

2.2 Probability distributions

If X is a probability distribution (or random variable), we write x  X to indiate that x is a

sample taken from X. If S is a set, we write x2

R

S to indiate that x is uniformly seleted from S.

In this paper, we will onsider probability distributions de�ned both by iruits and probabilisti

algorithms (i.e. Turing mahines). If A is a probabilisti algorithm, we use A(x) to denote the

output distribution of A on input x. A PPT algorithm (for \probabilisti polynomial time") is a

probabilisti algorithm whih runs in strit polynomial time. If C is a iruit mappingm-bit strings

to n-bit strings, then hoosing an input u uniformly at random from f0; 1g

m

de�nes a probability

distribution on f0; 1g

n

given by C(u). For notational onveniene, we also denote this probability

distribution by C. These de�nitions apture the idea of an \(eÆiently) samplable" distribution,

as to sample from the distribution one need only run the algorithm or evaluate the iruit.

2.3 The statistial di�erene metri

For probability distributions (or random variables) X and Y on a disrete set D, the statistial

di�erene between X and Y is de�ned to be

kX � Y k = max

S�D

jPr [X 2 S℄� Pr [Y 2 S℄ j: (1)

This is often also alled the variation distane between X and Y . Removing the absolute values

in (1) does not hange the de�nition beause replaing S by its omplement hanges the sign

6



(but not magnitude) of Pr [X 2 S℄ � Pr [Y 2 S℄. The maximum in (1) an be ahieved by taking

S = fx : Pr [X = x℄ > Pr [Y = x℄g (or its omplement); this an be seen diretly or in the proof of

Fat 2.1 below.

There is an equivalent formulation of statistial di�erene in terms of the `

1

norm j�j

1

that will

sometimes be more onvenient for us. To every probability distribution X on a disrete set D, the

mass funtion of X is a vetor in R

D

whose x'th oordinate is Pr [X = x℄. For the sake of elegane,

we also denote this vetor by X. With this notation, we an state the following well-known fat.

Fat 2.1 kX � Y k =

1

2

jX � Y j

1

The proof of this fat and others in this setion are deferred to Appendix A. It is immediate

from this haraterization of statistial di�erene that it is a metri (as long as we identify random

variables that are identially distributed). In partiular, it satis�es the Triangle Inequality.

Fat 2.2 (Triangle Inequality) For any probability distributions X, Y , and Z,

kX � Y k � kX � Zk+ kZ � Y k

Reall that for any two vetors v 2 R

m

and w 2 R

n

, their tensor produt v 
 w is the vetor

in R

nm

, whose (i; j)'th omponent is v

i

w

j

. Now, if we have a pair of random variables (X;Y ) (on

the same probability spae) taking values in D � E, then X is independent from Y i� the mass

funtion of (X;Y ) is the tensor produt of the mass funtions of X and Y (whih are elements of

R

D

and R

E

, respetively). For this reason, if we have random variables X and Y taking values in

sets D and E, respetively, we write X 
 Y for the random variable taking values in D �E whih

onsists of independent samples of X and Y . Similarly, 


k

X denotes the random variable taking

values in D

k

onsisting of k independent opies of X, i.e. X 
X 
 � � � 
X.

Now, for any two vetors v and w, jv 
 wj

1

= jvj

1

� jwj

1

. In addition, for any mass funtion X,

jXj

1

= 1. These fats enable one to show that the statistial di�erene behaves well with respet

to independent random variables:

Fat 2.3 Suppose X

1

and X

2

are independent random variables on one probability spae and Y

1

and Y

2

are independent random variables on another probability spae. Then,

k(X

1

;X

2

)� (Y

1

; Y

2

)k � kX

1

� Y

1

k+ kX

2

� Y

2

k

One basi fat about statistial di�erene is that it annot be reated out of nothing. That is,

for any proedure A, even if it is randomized, the statistial di�erene between A(X) and A(Y ) is

no greater than the statistial di�erene between X and Y . Formally, if D is any set, a randomized

proedure on D is a a pair A = (f;R), where R is a probability distribution on some set E and f

is a funtion from D �E to any set F . Think of the distribution R as providing a \random seed"

to the proedure A. If X is a probability distribution on D, then A(X) denotes the probability

distribution on F obtained by sampling X 
R and applying f to the result. Note that applying a

funtion is a speial ase of applying a randomized proedure.

Fat 2.4 If X and Y are random variables and A is any randomized proedure, then

kA(X) �A(Y )k � kX � Y k

The next fat is useful when arguing that the statistial di�erene between distributions is small.
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Fat 2.5 Suppose X = (X

1

;X

2

) and Y = (Y

1

; Y

2

) are probability distributions on a set D�E suh

that

1. X

1

and Y

1

are identially distributed, and

2. With probability greater than (1� �) over x X

1

(equivalently, x Y

1

),

kX

2

j

X

1

=x

� Y

2

j

Y

1

=x

k < Æ

(where Bj

A=a

denotes the onditional distribution of B given that A = a for jointly distributed

random variables A and B).

Then kX � Y k < �+ Æ.

The next fat says that if two distributions have small statistial di�erene, then their mass

funtions must be lose at most points.

Fat 2.6 If X and Y are any two distributions suh that kX � Y k < �, then with probability

> 1� 2

p

� over x X,

�

1�

p

�

�

Pr [X = x℄ < Pr [Y = x℄ <

�

1 +

p

�

�

Pr [X = x℄

2.4 Zero-knowledge proofs

Before de�ning zero knowledge, we need to introdue some more terminology. Reall that a PPT

algorithm is a probabilisti algorithm whih runs in strit polynomial time. A funtion f(n) is

negligible if for all polynomials p(n), f(n) �

1

p(n)

for all suÆiently large n.

We follow [GMR89℄ and [Gol95℄ in de�ning interative proofs and zero-knowledge. The orig-

inal de�nitions in [GMR89℄ were given for languages. We generalize these de�nitions to promise

problems in the natural way, as previously done in [GK93℄. That is, onditions previously required

for inputs in the language are now required for yes instanes of a promise problem and onditions

previously required for inputs not in the language are now required for no instanes.

Informally, an interative proof is a protool in whih a omputationally unbounded prover

attempts to onvine a polynomial-time veri�er V that an assertion is true, i.e. that a string x

is a yes instane of a promise problem. More formally, an interative protool (P; V ) between a

omputationally unbounded prover P and a PPT veri�er V is said to be an interative proof system

for a promise problem � with ompleteness error (n) and soundness error s(n) if

1. If x 2 �

Y

, then Pr [(P; V )(x) = aept℄ � 1� (jxj).

2. If x 2 �

N

, then for all P

�

, Pr [(P

�

; V )(x) = aept℄ � s(jxj).

We always require that 1�(n) > s(n)+1=poly(n) and that both an be omputed in time poly(n);

under this assumption, parallel repetition an be used to obtain a new interative proof for � with

ompleteness error and soundness error 2

�n

k

, for any onstant k. We say that (P; V ) exhanges at

m(n) messages if the prover and veri�er exhange at most m(n) messages on any input of length n.

An interative proof system is said to be publi oin if on every input, the veri�er's random oins

r an be written as a onatenation of strings r

1

r

2

� � � r

l

suh that the i'th message sent from the

veri�er to the prover is simply r

i

.

Roughly speaking, an interative proof is said to be zero knowledge if, when the input is a

yes instane, the veri�er an simulate its view of the interation on its own. To formalize this,

8



let (P; V ) be an interative proof system (P; V ) for a promise problem �. Let View

P;V

(x) be a

random variable desribing the random oins of V and the messages exhanged between P and V

during their interation on input x. (P; V ) is said to be a statistial zero-knowledge proof system

(against the honest veri�er) if there exists a PPT simulator S and a negligible funtion � (alled

the simulator deviation) suh that

If x 2 �

Y

, then kS(x)�View

P;V

(x)k � �(jxj). (2)

A perfet zero-knowledge proof system is de�ned in the same way, exept that (2) is replaed

by kS(x)�View

P;V

(x)k = 0, where S is allowed to output `fail' with probability at most 1=2

and S(x) denotes the onditional distribution of S given that the output is not fail.

2

A om-

putational zero-knowledge proof system replaes (2) with the requirement that fS(x)g

x2�

Y

and

fView

P;V

(x)g

x2�

Y

are omputationally indistinguishable [GM84, Yao82℄ ensembles of distributions.

That is, for every nonuniform polynomial-time algorithm D, there is a negligible funtion � suh

that jPr [D(x; S(x)) = 1℄� Pr [D(x;View

P;V

(x))℄ j � �(jxj) for all x 2 �

Y

.

We let SZK (resp. PZK, CZK) denote the lass of promise problems with statistial (resp.

perfet, omputational) zero-knowledge proof systems against the honest veri�er.

Remarks on the de�nitions.

1. (Honest veri�ers) We only require that the zero-knowledge ondition to hold against the

honest veri�er, i.e. the veri�er that follows the protool as spei�ed. The usual de�nition

requires the zero-knowledge property to hold against any polynomial-time veri�er strategy.

However, subsequent to this work, it has been shown that any proof system whih is statistial

zero knowledge against the honest veri�er an be transformed into one that is zero knowledge

against heating veri�ers [GSV98℄. Via this transformation, many of our results diretly

translate to the lass of promise problems possessing statistial zero-knowledge proofs against

heating veri�ers. This is disussed in detail in Setion 5.

2. (Error probabilities) The ompleteness and soundness error probabilities an be made expo-

nentially small without inreasing the number of rounds, beause zero-knowledge against an

honest veri�er is preserved under parallel repetition.

3. (Strit polynomial-time simulation) Following [Gol95℄, we work with the variant of zeroknowl-

edge in whih the simulator is required to run in strit polynomial time, with some probability

of failure in the perfet ase. The original de�nition in [GMR89℄ allows the simulator to run

in expeted polynomial time, but with zero probability of failure. Our hoie is not very

restritive, beause we are only disussing honest-veri�er statistial zero-knowledge and we

do not know of any problems whih require an expeted polynomial time simulator for the

honest veri�er. In addition, as shown in Setion 4.5, our tehniques an be used to prove

that expeted polynomial time simulators and strit polynomial time simulators are atually

equivalent for publi-oin statistial zero-knowledge proofs against an honest veri�er.

4. (Promise problems vs. languages) Our de�nitions above generalize the original de�nitions

of [GMR89℄ from languages to promise problems, and we fous on the \promise lass" SZK

rather than the lass of languages possessing statistial zero-knowledge proofs. A ouple of

justi�ations an be given for this extension. First, for essentially all of our results, the fat

2

A failure probability an also be allowed in the de�nition of statistial zero-knowledge, but this an easily be

redued to an 2

�n

k

for any onstant k by repeated trials and absorbed in to the simulator deviation.

9



that we prove them for the promise lass only makes them stronger, by virtue of the fat that

the promise lass ontains the language lass. Seond, several of the most important natural

problems known to be in SZK, suh as those in [GK93, GG98℄, are not languages, but promise

problems, so it may atually be preferable to study the promise lass.

Our only result whih requires new interpretation for the language lass is the Completeness

Theorem. As the omplete problem is a promise problem, it is not omplete for the language

lass in the usual sense. Nevertheless, it still gives a haraterization of the language lass, in

that a language has a statistial zero-knowledge proof if and only if it redues to the omplete

problem.

We note that one must be a bit more areful in a omplexity-theoreti investigation of promise

lasses, partiularly when disussing redutions that may violate the promise (f., disussions

in [ESY84, GG98℄), and it may be the ase that the language lass has some di�erent prop-

erties than the promise one.

3 The Completeness Theorem

3.1 The omplete problem

The main aim of this paper is to demonstrate that SZK onsists exatly of the problems that involve

deiding whether two eÆiently samplable distributions are either far apart or lose together. This

an be formally aptured by the following promise problem Statistial Differene (abbreviated

SD):

SD

Y

=

�

(C

0

; C

1

) : kC

0

� C

1

k >

2

3

�

SD

N

=

�

(C

0

; C

1

) : kC

0

� C

1

k <

1

3

�

In the above de�nition, C

0

and C

1

are iruits; these de�ne probability distributions as disussed

in Setion 2. The thresholds of 1=3 and 2=3 in this de�nition are not ompletely arbitrary; it is

important for the Polarization Lemma of Setion 3.2 that (2=3)

2

> 1=3.

We an now state the main theorem of the paper.

Theorem 3.1 (Completeness Theorem) Statistial Differene is omplete for SZK.

The most striking thing about Theorem 3.1 is that it haraterizes statistial zeroknowledge

with no referene to interation or zero knowledge. Future investigation of the lass SZK an fous

on the single problem SD, instead of dealing with arbitrarily ompliated protools, problems, and

simulators.

We emphasize that the novelty of this result lies in the spei� omplete problem we present and

not merely the existene of a omplete promise problem. It is fairly straightforward to onstrut a

omplete promise problem for PZK involving desriptions of Turing mahines for the veri�er and

simulator. (See Appendix B.) However, in ontrast to SD, a omplete problem onstruted in this

manner is essentially restatement of the de�nition of the lass and therefore does not simplify the

study of the lass at all.

The proof of Theorem 3.1 will ome in Setions 3.3 and 3.4 via two lemmas and a theorem of

Okamoto [Oka00℄. But �rst, we observe that a statement analogous to Theorem 3.1 an be made

for BPP, if we generalize BPP to promise problems in the obvious way.
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Proposition 3.2 If SD

0

is the promise problem obtained by modifying the de�nition of SD so that

C

0

and C

1

only have 1 bit of output, then SD

0

is omplete for BPP.

Proof: To see that SD

0

is in BPP, �rst observe that for iruits C

0

and C

1

(or any random

variables) that just output 0 or 1,

kC

0

� C

1

k = jPr [C

0

= 1℄� Pr [C

1

= 1℄ j:

Thus, an estimate on kC

0

� C

1

k that is orret within an additive fator of 1/3 an be obtained

by sampling C

0

and C

1

polynomially many times and ounting the number of ones that our for

eah. This is suÆient to deide SD

0

.

Now we show that every promise problem � in BPP redues to SD

0

. Let A be the PPT mahine

whih outputs 1 with probability greater than 2=3 when x 2 �

Y

, but outputs 1 with probability

less than 1=3 when x 2 �

N

. Let p(n) be a polynomial bound on the running time of A. Given an

input x, we an, by standard tehniques,

3

produe in polynomial time a iruit C

x

desribing the

omputation of A on x for p(jxj) steps. The input to C

x

is the �rst p(jxj) bits on the random tape

of A the output is the �rst bit on the output tape. Let D be a iruit that always outputs 0. Then

kC

x

�Dk = Pr [A(x) = 1℄, so x 7! (C

x

;D) is a polynomial-time redution from � to SD

0

.

Proposition 3.2 remains true even if we allow C

0

and C

1

to output strings of logarithmi length.

Other lasses suh as P and o-RP an be obtained by modifying the de�nition of SD in a similar

fashion (and hanging the thresholds). This demonstrates that SZK is a natural generalization of

these well-known lasses.

3.2 A polarization lemma

In this setion, we exhibit a transformation whih \polarizes" the statistial relationship between

two distributions. That is, pairs of distributions whih are statistially lose beome muh loser

and pairs of distributions whih are statistially far apart beome muh further apart.

Lemma 3.3 (Polarization Lemma)

4

There is a polynomial-time omputable funtion that takes

a triple (C

0

; C

1

; 1

k

), where C

0

and C

1

are iruits, and outputs a pair of iruits (D

0

;D

1

) suh that

kC

0

� C

1

k < 1=3 ) kD

0

�D

1

k < 2

�k

kC

0

� C

1

k > 2=3 ) kD

0

�D

1

k > 1� 2

�k

The usefulness of the Polarization Lemma omes from the fat that the two distributions it

produes an be treated almost as if they were identially distributed or disjoint (i.e. statistial

di�erene 0 and 1, respetively). Indeed, it will be essential in proving that SD (with thresholds

of 2=3 and 1=3, as we've de�ned it) is in SZK and we will make further use of it in deriving

onsequenes of Theorem 3.1.

Super�ially, it may seem that a Cherno� bound argument is all that is needed to prove

Lemma 3.3. However, Cherno� bounds are primarily useful for distinguishing between two events.

This orresponds to inreasing statistial di�erene, as formalized in the following \diret produt"

lemma:

3

See, for example, [Pap94, Thms. 8.1 and 8.2℄.

4

The Polarization Lemma stated here is alled the Ampli�ation Lemma in [SV97℄. We hange the name here to

stress that the Polarization Lemma does not merely inrease statistial di�erene.
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Lemma 3.4 (Diret Produt Lemma) Let X and Y be distributions suh that kX � Y k = �.

Then for all k,

k� � k 


k

X �


k

Y k � 1� 2e

�k�

2

=2

Proof: The upper bound of k� follows immediately from Fat 2.3, so we proeed to the proof of

the lower bound. Reall, from the de�nition of statistial di�erene, that there must exist a set S

suh that

Pr [X 2 S℄� Pr [Y 2 S℄ = �:

Let p = Pr [Y 2 S℄, so Pr [X 2 S℄ = p + �. Hene, in k independent samples of X, the expeted

number of samples that lie in S is (p+ �)k, whereas in k independent samples of Y , the expeted

number of samples that lie in S is pk. The Cherno� bound

5

tells us that the probability that at

least (p+

�

2

)k omponents of 


k

Y lie in S is at most exp(�k�

2

=2), whereas the probability that at

most (p+

�

2

)k omponents of 


k

X lie in S is at most exp(�k�

2

=2). Let S

0

be the set of all k-tuples

that ontain more than (p+

�

2

)k omponents that lie in S. Then,

k 


k

X �


k

Y k � Pr

h




k

X 2 S

0

i

� Pr

h




k

Y 2 S

0

i

� 1� 2e

�k�

2

=2

:

Note the gap between the upper and lower bounds in Lemma 3.4; the lower bound says that

taking O(1=�

2

) opies is suÆient to inrease statistial di�erene from � to a onstant, while the

upper bound says that 
(1=�) opies are neessary. This gap is inherent, and essentially amounts

to the di�erene between 1-sided and 2-sided error: Taking X and Y to be distributions on f0; 1g

that are 1 with probability 1 and 1� �, respetively, we see that the statistial di�erene between




k

X and 


k

Y is exatly 1 � (1 � �)

k

, whih is a onstant for k = �(1=�). On the other hand,

when X and Y are 1 with probability (1 + �)=2 and (1 � �)=2, respetively, it an be shown that

k = �(1=�

2

) opies are neessary to inrease the statistial di�erene to a onstant. Furthermore,

in this latter example, kX 
X � Y 
 Y k = � = kX � Y k, so we annot even hope to show that

statistial di�erene always inreases for every k > 1 (as pointed out to us by Madhu Sudan).

Notie that the Diret Produt Lemma 3.4 is not suÆient to prove the Polarization Lemma,

beause it always inreases statistial di�erene, whereas we would like to inrease statistial di�er-

ene in some ases and derease it in others. However, it does drive larger values of the statistial

di�erene to 1 more quikly than it drives smaller values to 1, so it is a step in the right diretion.

The following lemma provides a omplementary tehnique whih dereases the statistial di�erene

to 0, with small values going to 0 faster than large values.

Lemma 3.5 (XOR Lemma) There is a polynomial-time omputable funtion that maps a triple

(C

0

; C

1

; 1

k

), where C

0

and C

1

are iruits, to a pair of iruits (D

0

;D

1

) suh that kD

0

�D

1

k =

kC

0

� C

1

k

k

. Spei�ally, D

0

and D

1

are de�ned as follows:

D

0

: Uniformly selet (b

1

; : : : ; b

k

) 2 f0; 1g

k

suh that b

1

� � � � � b

k

= 0, and output a sample of

C

b

1


 � � � 
 C

b

k

.

D

1

: Uniformly selet (b

1

; : : : ; b

k

) 2 f0; 1g

k

suh that b

1

� � � � � b

k

= 1, and output a sample of

C

b

1


 � � � 
 C

b

k

.

5

For the formulation of the Cherno� bound we use, see, for example, the formulation of Hoe�ding's inequality

in [Hof95, Se. 7.2.1℄.

12



In order to prove this lemma, we employ a generalization of the tehnique used in [DDPY94℄ to

represent the logial AND of statements about Graph Nonisomorphism. This tool is desribed

in the following Proposition.

Proposition 3.6 Let X

0

;X

1

; Y

0

; Y

1

be any random variables, and de�ne the following pair of ran-

dom variables:

Z

0

: Choose a; b2

R

f0; 1g suh that a� b = 0. Output a sample of X

a


 Y

b

.

Z

1

: Choose a; b2

R

f0; 1g suh that a� b = 1. Output a sample of X

a


 Y

b

.

Then kZ

0

� Z

1

k = kX

0

�X

1

k � kY

0

� Y

1

k.

The statistial di�erene between X

0

and X

1

(or Y

0

and Y

1

) measures the advantage a ompu-

tationally unbounded party has, over random guessing, in guessing b given a sample from X

b

, where

b is seleted uniformly from f0; 1g. (This view of statistial di�erene will beome more apparent

in the subsequent setion.) Intuitively, the above Proposition says that the advantage one has in

guessing the XOR of two independent bits is the produt of the advantages one has for guessing

eah individual bit.

Proof:

kZ

0

� Z

1

k =

1

2

jZ

0

� Z

1

j

1

=

1

2

�

�

�

�

�

1

2

X

0


 Y

0

+

1

2

X

1


 Y

1

�

�

�

1

2

X

1


 Y

0

+

1

2

X

0


 Y

1

�

�

�

�

�

1

=

1

4

j(X

0

�X

1

)
 (Y

0

� Y

1

)j

1

=

�

1

2

jX

0

�X

1

j

1

�

�

�

1

2

jY

0

� Y

1

j

1

�

= kX

0

�X

1

k � kY

0

� Y

1

k

Proposition 3.6 and an indution argument establish Lemma 3.5. Yao's XOR Lemma [Yao82℄

(f., [GNW95℄) an be seen as an analogue of Lemma 3.5 in the omputational setting, where the

analysis is muh more diÆult.

6

Now we ombine the Diret Produt and XOR onstrutions of Lemmas 3.4 and 3.5 to prove

Lemma 3.3. The Diret Produt Lemma gives a way to inrease statistial di�erene with large

values going to 1 faster than small values. Similarly, the XOR Lemma shows how to derease sta-

tistial di�erene with small values going to 0 faster than large values. Intuitively, alternating these

proedures should \polarize" large and small values of statistial di�erene, pushing them loser

to 1 and 0, respetively. A similar alternation between proedures with omplementary e�ets was

used by Ajtai and Ben-Or [AB84℄ to amplify the suess probability of randomized onstant-depth

iruits.

6

To see the analogy, reall that Yao's XOR Lemma onsiders the maximum advantage an eÆient algorithm has,

over random guessing, in omputing a bit b from string x when they are seleted aording to some distrbution

(b; x)  (B;X) (e.g., X is uniform and B is a hardore bit of f

�1

(X) for some one-way permutation f .). It states

that the maximum advantage an eÆient algorithm has in omputing the XOR b

1

�� � ��b

k

from (x

1

; : : : ; x

k

) dereases

exponentially with k when the pairs (b

i

; x

i

) are independentally distributed aording to (B;X).
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Proof: Let ` = dlog

4=3

6ke. Apply Lemma 3.5 to the triple (C

0

; C

1

; 1

`

) to produe (C

0

0

; C

0

1

)

suh that if

kC

0

� C

1

k < 1=3 )





C

0

0

� C

0

1





< (1=3)

`

kC

0

� C

1

k > 2=3 )





C

0

0

� C

0

1





> (2=3)

`

:

Let m = 3

`�1

. Let C

00

0

= 


m

C

0

0

and let C

00

1

= 


m

C

0

1

. Then, by Fat 2.3 and the Diret Produt

Lemma,

kC

0

� C

1

k < 1=3 )





C

00

0

� C

00

1





< 1=3

kC

0

� C

1

k > 2=3 )





C

00

0

� C

00

1





> 1� 2 exp(�3

`�1

(2=3)

2`

=2) > 1� 2e

�k

:

Finally, apply the transformation of Lemma 3.5 one more time to (C

00

0

; C

00

1

; 1

k

) to produe (D

0

;D

1

)

suh that

kC

0

� C

1

k < 1=3 ) kD

0

�D

1

k < 3

�k

< 2

�k

kC

0

� C

1

k > 2=3 ) kD

0

�D

1

k > (1� 2e

�k

)

k

> 1� 2ke

�k

> 1� 2

�k

:

Notie that the above analysis relies on the fat that (2=3)

2

> (1=3), so it will not work if

2=3 and 1=3 are replaed by, say, :51 and :49. We do not know how to prove suh a Polarization

Lemma for arbitrary onstant thresholds. We an however extend it to thresholds � and �, where

�

2

> �, and the running time will be polynomial in exp

�

�

1� log(�

2

)= log(�)

�

�1

�

along with the

input size. See [SV99℄ for more details.

3.3 A protool for Statistial Differene

In this setion, we show that SD has a simple two-message statistial zero-knowledge proof system,

whih is a generalization of the standard protools for for Quadrati Nonresiduosity [GMR89℄

andGraph Nonisomorphism [GMW91℄. Intuitively, if two distributions are statistially far apart,

then, when given a random sample from one of the distributions, a omputationally unbounded

party should have a good hane of guessing from whih distribution it ame. However, if the two

distributions are statistially very lose, even a omputationally unbounded party should not have

muh better than a 50% hane of guessing orretly. This suggests the following two-message

(private-oin) protool for SD:

Zero-knowledge Proof System for SD

Input: (C

0

; C

1

) (suh that either kC

0

� C

1

k > 2=3 or kC

1

� C

1

k < 1=3)

1. V; P : Compute (D

0

;D

1

) = Polarize(C

0

; C

1

; 1

n

), where n = j(C

0

; C

1

)j.

2. V : Flip one random oin r 2 f0; 1g. Let z be a sample of D

r

. Send z to P .

3. P : If Pr [D

0

= z℄ > Pr [D

1

= z℄, answer 0, otherwise answer 1.

4. V : Aept if P 's answer equals r, rejet otherwise.
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Lemma 3.7 The above is a statistial zero-knowledge proof system for SD, with soundness error

1

2

+ 2

�n

, and ompleteness error and simulator deviation both 2

�n

. Thus SD 2 SZK.

Proof: We will argue that the prover strategy given in the protool is optimal (i.e. maximizes

the veri�er's aeptane probability), and use this to bound both the soundness and ompleteness

error. The simulator deviation will then follow easily.

Consider any prover P

�

. Suppose for some z the prover P

�

fails to follow the strategy we

present. If Pr[D

0

= z℄ 6= Pr[D

1

= z℄, this means that with nonzero probability, P

�

hoses the

distribution in whih z is less likely to our. Then, onditioned on z, the suess probability of

P

�

will ertainly be lower than that of the prover in our protool. If Pr[D

0

= z℄ = Pr[D

1

= z℄, the

prover has no information about r, so no matter what strategy it uses, it has exatly even odds of

guessing orretly. Sine these observations hold for all z, the given prover is optimal.

We now analyze the probability of suess of the optimal prover. Reall that kD

0

� D

1

k =

Pr[D

0

2 S℄� Pr[D

1

2 S℄ for S = fz : Pr[D

0

= z℄ > Pr[D

1

= z℄g. The probability that the optimal

prover guesses orretly is exatly

1

2

Pr [D

0

2 S℄ +

1

2

Pr [D

1

=2 S℄ =

1

2

(Pr [D

0

2 S℄ + 1� Pr [D

1

2 S℄)

=

1 + kD

0

�D

1

k

2

:

By Lemma 3.3, kD

0

�D

1

k > 1�2

�n

when (C

0

; C

1

) is a yes instane of SD, and kD

0

�D

1

k < 2

�n

when (C

0

; C

1

) is a no instane. Hene, the probability that the prover onvines the veri�er to

aept is greater than (1 + 1 � 2

�n

)=2 > 1 � 2

�n

for yes instanes, and less than (1 + 2

�n

)=2 <

1=2 + 2

�n

for no instanes. This immediately gives the ompleteness error; the soundness error

also follows beause we onsidered the optimal prover strategy.

Now, notie that when the prover answers orretly, all the veri�er reeives from the prover

is the value of r, whih the veri�er already knew. Thus, sine we have shown that the prover

is answering orrety with all but exponentially small probability, intuitively the veri�er learns

nothing. To turn this intuition into a proof of statistial zero knowledge, we onsider the fol-

lowing probabilisti polynomial-time simulator: On input (C

0

; C

1

), the simulator �rst omputes

(D

0

;D

1

) = Polarize(C

0

; C

1

; 1

n

), where n = j(C

0

; C

1

)j. The simulator then ips one random oin

r 2 f0; 1g. If r = 0, it samples z from D

0

, otherwise it samples z from D

1

. The simulator then

outputs a onversation in whih the veri�er sends z to the prover, and the prover responds with

r. The simulator also outputs the random oins it used to generate r and z as the oins of the

veri�er. Thus, the simulator presented here always outputs onversations in whih the prover re-

sponds orretly. Exept for the prover's response, all other omponents of the simulator's output

distribution are distributed identially to the veri�er's view of the real interation. Hene, the

simulator deviation is bounded by the probability that the prover responds inorretly in the real

interation, whih we have already argued is at most 2

�n

in the ase of yes instanes.

Note that the above proof system remains omplete and sound even without polarization, but

for the zero-knowledge property, we need to make the statistial di�erene very lose to 1 on yes

instanes.

By using a seurity parameter k rather than n in the all to Polarize, both the ompleteness

error and simulator deviation an be redued to 2

�k

. Thus, even very short assertions about

SD an be proven with with very high seurity. Contrast this with the original de�nition of

SZK [GMR89℄, whih only requires that the simulator deviation vanish as an negligible funtion of
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the input length. This property has obvious ryptographi signi�ane, so we formulate it more

preisely in Setion 4.1.

3.4 SZK-hardness of SD

The other main lemma we prove to show that SD is omplete for SZK follows:

Lemma 3.8 Suppose promise problem � has a publi oin statistial zero-knowledge proof system.

Then there exist PPT's A and B and a negligible funtion � suh that

x 2 �

Y

) kA(x) �B(x)k � �(jxj); and

x 2 �

N

) kA(x) �B(x)k � 1� 2

�
(jxj)

:

We defer the proof of this lemma to Setion 3.5, and �rst observe how it gives a redution to SD

for problems with publi-oin statistial zero-knowledge proofs.

Corollary 3.9 Suppose promise problem � has a publi-oin statistial zero-knowledge proof sys-

tem. Then � redues to SD. (Equivalently, � is redues to SD.)

Proof: First apply Lemma 3.8 to obtain A and B, with p(jxj) being a polynomial bound on the

running times of A(x) and B(x). Given a string x, we an, by standard tehniques,

7

produe in

polynomial time iruits C

0

and C

1

desribing the omputation of A and B, respetively, on x for

p(jxj) steps. The inputs to C

0

and C

1

are the �rst p(jxj) bits on the random tapes of A and B and

the outputs are the �rst p(jxj) positions on the output tapes. Then kC

0

� C

1

k = kA(x)�B(x)k,

whih is at most �(jxj) < 1=3 if x 2 �

Y

and at least 1� 2

�jxj

> 2=3 if x 2 �

N

(for all suÆiently

long x). So x 7! (C

0

; C

1

) is a redution from � to SD (for all but �nitely many x).

The �nal ingredient in the proof of Theorem 3.1 is a theorem of Okamoto [Oka00℄, whih we

state in terms of promise problems.

8

Theorem 3.10 ([Oka00, Thm. 1℄) If a promise problem � has a statistial zero-knowledge proof

system, then � has a publi-oin statistial zero-knowledge proof system.

Now it will be easy to show that SD is omplete for SZK.

Proof of Theorem 3.1: Lemma 3.7 tells us that SD 2 SZK, so we only need to show that

every problem in SZK redues to SD. Corollary 3.9 and Theorem 3.10 imply that every problem

� 2 SZK redues to SD. In partiular, SD redues to SD, or, equivalently, SD redues to SD.

Composing redutions, it follows that every problem � 2 SZK redues to SD.

3.5 Proof of Lemma 3.8

The onstrutions in this lemma and the statistial zero-knowledge proof system for Statistial

Differene are arried out for the spei� example of Graph Isomorphism in Appendix C.

7

See, for example, [Pap94, Thms. 8.1 and 8.2℄.

8

Okamoto stated his result in terms of languages, but the proof readily extends to promise problems (f., [GV99℄).
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Intuition. Reall that we wish to onstrut a pair of probabilisti polynomial-time mahines A

and B suh that if x 2 �

Y

, the distributions A(x) and B(x) are statistially very lose, but when

x 2 �

N

, A(x) and B(x) are far apart. We are given that � has a publi-oin statistial zero-

knowledge proof system. A natural plae to searh for the desired distributions is in the output

of the simulator for this proof system. We think of the simulator as desribing the moves of a

virtual prover and a virtual veri�er.

9

. We wish to �nd properties of the simulator's output that

(1) distinguish the ase x 2 �

Y

from x 2 �

N

, and (2) are aptured by the statistial di�erene

between samplable distributions. In the ase that x 2 �

Y

, we have strong guarantees on the

simulator's output. Namely, it outputs aepting onversations with high probability and its output

distribution is statistially very lose to the real interation. When x 2 �

N

, there are two ases.

If the simulator outputs aepting onversations with low probability, this easily distinguishes it

from the simulator output when x 2 �

Y

. However, it is possible that the simulator will output

aepting onversations with high probability even when x 2 �

N

. This means that the virtual

prover is doing quite well in fooling the virtual veri�er. This naturally suggest a strategy for a real

prover | imitate the virtual prover's behavior. Suh a prover, alled a simulation-based prover,

was introdued by Fortnow [For89℄ and is a ruial onstrut in our proof. The soundness of the

proof system tells us that the simulation-based prover annot hope to onvine the real veri�er

with high probability. There must be a reason for this disrepany between the suess rates of the

virtual prover and the simulation-based prover. One possibility is that the virtual veri�er's oins in

the simulator's output are far from uniform, so that the simulation only aptures a small fration

of possible veri�er states. However, this is not the only diÆulty. A seond diÆulty is that the

responses of the virtual prover may depend on future oin tosses of the virtual veri�er, whih is

impossible in a real publi-oin interation. Note that this is equivalent to the virtual veri�er's

oin tosses being dependent on previous messages of the virtual prover. We will show that these

are the only two obstales the simulation-based prover faes in trying to fool the veri�er, and thus

they must be present when x 2 �

N

. In the ase that x 2 �

Y

, however, these diÆulties annot

arise sine we are guaranteed that the simulator output distribution is very lose to that of the real

interation. If we ould measure the extent to whih these anomalies are present by the statistial

di�erene between samplable distributions, we would ahieve our objetive. This is preisely what

we do.

Notation. Let (P; V ) be a publi-oin interative proof system for a promise problem � whih is

(honest-veri�er) statistial zero knowledge and let S be a simulator for this proof system. Without

loss of generality, we may assume that the interation of P and V on input x always has 2r(jxj)

exhanged messages, with V sending the �rst message and eah message onsisting of exatly q(jxj)

bits, for some polynomials q and r. Moreover, it may be assumed that S's output always onsists

of 2r(jxj) strings of length q(jxj). The output of S and the onversation between P and V on input

x will be written in the form S(x) = (

1

; p

1

; : : : ; 

r

; p

r

)

S

and (P; V )(x) = (

1

; p

1

; : : : ; 

r

; p

r

)

(P;V )

,

respetively, where 

1

; : : : ; 

r

represent the messages (equivalently oin tosses, sine we are in the

publi-oin setting) of V , p

1

; : : : ; p

r

represent the prover messages, and r = r(jxj). (Dependene on

x will often be omitted in this manner for notational onveniene.) We use notation suh as (

i

)

S

for

the random variable obtained by running S one and taking the 

i

-omponent of its output. More

generally, partial onversation transripts will be written like (

1

; p

1

; 

2

; p

2

)

S

. We all a onversation

transript (

1

; p

1

; : : : ; 

r

; p

r

) whih would make V aept (resp., rejet) an aepting onversation

9

This terminology is taken from [AH91℄. The ases we onsider are quite similar to those analyzed in [For89, AH91℄

Beause we fous on publi-oin proofs, many ompliations faed in those works do not arise. This allows us to

make some new observations and reah a novel onlusion (namely, the Completeness Theorem).
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(resp., rejeting onversation). We denote by U(n) the uniform distribution on strings of length n.

The proof. In order to formalize the above intuition, a de�nition of the simulation-based prover

needs to be given. This is the prover P

�

that imitates the virtual prover, i.e. P

�

does the following

to ompute its next message when the urrent onversation transript is (

1

; p

1

; : : : ; 

i

):

If S(x) outputs onversations that begin with (

1

; p

1

; : : : ; 

i

) with probability 0, then

output 0

q(jxj)

.

Else output y 2 f0; 1g

q(jxj)

with probability

p

y

= Pr[S(x) begins with (

1

; p

1

; : : : ; 

i

; y)jS(x) begins with (

1

; p

1

; : : : ; 

i

)℄:

In order to analyze the suess probability of P

�

, we �rst ompare the output of S to the atual

onversations between P

�

and V . Let �

i

be the statistial di�erene between (

1

; p

1

: : : ; 

i�1

; p

i�1

; 

i

)

S

and (

1

; p

1

: : : ; 

i�1

; p

i�1

)

S


U(q(jxj)). Thus �

i

measures how far from uniform the virtual veri�er's

i-th set of oins are and how far from independent they are from what omes before. The following

laim formalizes our intuition that P

�

an do as well as the virtual prover, as long as the virtual

veri�er's oins are near-uniform and near-independent from what preeeds them.

Claim 3.11 kS(x)� (P

�

; V )(x)k �

P

r

i=0

�

i

.

Proof of laim: Let C

S

i

= (

1

; p

1

; : : : ; 

i

)

S

be the random variable of partial simulator

transripts ending with the i-th oins of the virtual veri�er. Let P

S

i

= (

1

; p

1

; : : : ; 

i

; p

i

)

S

be the random variable of partial transripts ending with the i-th virtual prover re-

sponse. Similarly de�ne C

�

i

and P

�

i

as partial onversation transripts of (P

�

; V ). The

aim is to show that at round k, the statistial di�erene grows by at most �

k

. Formally,

it will be shown by indution on k that





P

S

k

� P

�

k





�

k

X

i=0

�

i

The ase k = 0 is trivial. For general k, �rst note that sine P

�

gives a response

hosen aording to the same distribution as the virtual prover, adding these responses

to the onversations annot inrease the statistial di�erene (by Fat 2.4). That is,





P

S

k+1

� P

�

k+1





=





C

S

k+1

� C

�

k+1





:

The idea now is to extrat the parts of kC

S

k+1

� C

�

k+1

k orresponding to �

k+1

and

observe that what is left is simply the error from the previous round. Note that C

�

k+1

=

P

�

k


 U(q(jxj)), sine the real veri�er's oins are always uniform and independent from

what ame before.

Then, applying Fat 2.3 and the Triangle Inequality,

kC

S

k+1

� C

�

k+1

k �





C

S

k+1

� P

S

k


 U(q(jxj))





+





P

S

k


 U(q(jxj)) � P

�

k


 U(q(jxj))





� �

k+1

+





P

S

k

� P

�

k





+ kU(q(jxj))� U(q(jxj))k

� �

k+1

+

k

X

i=0

�

i

:

This ompletes the indution. Sine P

S

r

= S(x) and P

�

r

= (P

�

; V )(x), the Claim is

proved.
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Algorithm A Algorithm B

A

0

(x) Run S(x) for jxj repetitions. B

0

(x) Output 1.

Output `1' if the majority are

aepting onversations and `0' otherwise.

A

i

(x) Run S(x) to output (

1

; p

1

; : : : ; 

i

)

S(x)

. B

i

(x) Run S(x) and ip q(jxj) more oins to output

(

1

; p

1

; : : : ; 

i�1

; p

i�1

)

S(x)


 U(q(jxj)).

Table 1: The omponents of A and B

We are now ready to onstrut the distributions we seek. The two distributions A and B eah

onsist of r + 1 omponents, shown in Table 1. A is the algorithm whose output on input

x is (A

0

(x); A

1

(x); : : : ; A

r

(x)), all run independently, and B is the algorithm whose output is

(B

0

(x); B

1

(x); : : : ; B

r

(x)), all run independently.

Here, A

i

is a sampling of a partial onversation transript from S up to the virtual veri�er's

i-th set of oins, while B

i

is a sampling of a partial onversation transript from S up to the virtual

prover's (i�1)-st response followed by q(jxj) independent random bits. So, for i � 1, the statistial

di�erene between A

i

and B

i

is �

i

.

We will show that the statistial di�erene between A and B is negligible if x 2 �

Y

and is

notieable if x 2 �

N

. Amplifying this gap by repetition will yield Lemma 3.8.

Claim 3.12 There exists a negligible funtion � suh that if x 2 �

Y

, then kA(x)�B(x)k � �(jxj).

Proof of laim: The statistial di�erene between A(x) and B(x) is bounded above

by the sum of the statistial di�erenes between A

i

(x) and B

i

(x) over i = 1; : : : ; r(jxj)

(by Fat 2.3). First, let's examine i = 0. Sine S(x) outputs a onversation whih

makes V aept with probability at least 2=3 � neg(jxj), the Cherno� bound implies

that Pr [A

0

(x) = 1℄ = 1 � 2

�
(jxj)

, so the statistial di�erene between A

0

and B

0

is

negligible. For i � 1, reall that in the real onversations of P and V , the veri�er's

oins are truly uniform and independent from prior rounds, so kA

i

(x)� B

i

(x)k should

essentially be bounded by the statistial di�erene between the simulator's output and

the real interation. This is in fat true, as (omitting x from the notation):

kA

i

�B

i

k � kA

i

� (

1

; p

1

; : : : ; 

i

)

P;V

k+ k(

1

; p

1

; : : : ; 

i

)

P;V

�B

i

k

� kS � (P; V )k+ kS � (P; V )k:

(The last inequality is by Fat 2.4.) Thus,

kA(x) �B(x)k � 2

�
(jxj)

+ 2r(jxj) � kS(x)� (P; V )(x)k;

whih is negligible sine kS(x)� (P; V )(x)k is negligible and r(x) is polynomial.

Claim 3.13 If x 2 �

N

then kA(x)�B(x)k � 1=12r(jxj).

Proof of laim: It suÆes to show that for some i, �

i

= kA

i

(x)�B

i

(x)k > 1=12r(jxj)

(by Fat 2.4). We deal with two ases depending on the probability that S outputs an

aepting onversation.

Case 1: Pr [S(x) aepts ℄ � 5=12. Then, by the Cherno� bound, Pr [A

0

(x) = 1℄ �
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2

�
(jxj)

, so the statistial di�erene between A

0

(x) and B

0

(x) is at least 1� 2

�
(jxj)

>

1=12r(jxj).

Case 2: Pr [S(x) aepts ℄ > 5=12. Then, sine Pr [(P

�

; V )(x) aepts ℄ is at most

1=3, we must have

r

X

i=0

�

i

� kS(x)� (P

�

; V )(x)k >

5

12

�

1

3

=

1

12

:

Thus, at least one �

i

must be greater than 1=12r(jxj).

Now onsider the samplable distributions

^

A(x) = 


s(jxj)

A(x) and

^

B(x) = 


s(jxj)

B(x), where s(n) =

n � r(n)

2

. If x 2 �

Y

, k

^

A(x) �

^

B(x)k � s(jxj) � kA(x) � B(x)k, whih is still negligible. If x 2 �

N

,

then by the Diret Produt Lemma (Lemma 3.4), k

^

A(x) �

^

B(x)k � 1 � 2

�
(jxj)

. This ompletes

the proof of Lemma 3.8.

4 Appliations

4.1 EÆient statistial zero-knowledge proofs

The proof system for Statistial Differene given in Setion 3.3 has a number of desirable

features. It is very eÆient in terms of ommuniation and interation, and the simulator deviation

an be made exponentially small in a seurity parameter (that an be varied independently of the

input length). By the Completeness Theorem, it follows that every problem in SZK also has a proof

system with these properties.

We begin by formalizing one of the properties of the SD proof system that was informally

disussed in Setion 3.3.

De�nition 4.1 An interative protool (P; V ) is alled a seurity-parametrized statistial zero-

knowledge proof system for a promise problem � if there exists a PPT simulator S, a negligible

funtion �(k) (alled the simulator deviation), and ompleteness and soundness errors (k) and

s(k) suh that for all strings x and all k 2 N,

1. If x 2 �

Y

, then Pr

�

(P; V )(x; 1

k

) = aept

�

� 1� (k).

2. If x 2 �

N

, then for all P

�

, Pr

�

(P

�

; V )(x; 1

k

) = aept

�

� s(k).

3. If x 2 �

Y

, then





S(x; 1

k

)�View

P;V

(x; 1

k

)





� �(k):

As usual, we require that (k) and s(k) are omputable in time poly(k) and 1 � (k) > s(k) +

1=poly(k)

We now desribe the eÆient proof systems inherited by all of SZK.

Corollary 4.2 Every problem in SZK possesses a seurity-parametrized statistial zero-knowledge

proof system with the following properties:

1. Simulator deviation 2

�k

, ompleteness error 2

�k

, and soundness error 1=2 + 2

�k

.

2. The prover and veri�er exhange only 2 messages.
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3. The prover sends only 1 bit to the veri�er.

4. The prover is deterministi.

Proof: Let � be any promise problem in SZK. Let f be the redution from � to SD guaranteed

by the Completeness Theorem. A protool with the desired properties for � an be obtained as

follows: on input (x; 1

k

), exeute the proof system for SD, given in Setion 3.3, on input f(x) and

using k rather than n in the all to Polarize.

4.2 Closure properties

In this setion, we prove several losure properties of SZK. The �rst, losure under redutions,

is a diret onsequene of the \seurity parametrization" property shown to hold for SZK in the

previous setion.

Corollary 4.3 SZK is losed under (Karp) redutions. That is, if � 2 SZK and � redues to �,

then � 2 SZK.

Proof: By Corollary 4.2, � has a seurity-parameterized statistial zero-knowledge proof. A sta-

tistial zero-knowledge proof for � an be obtained as follows: On input x, the prover, veri�er, and

simulator run the seurity-parametrized proof for � on input (f(x); 1

jxj

), where f is the redution

from � to �.

The seurity-parametrization property is essential in the above proof, beause an arbitrary re-

dution f ould potentially shrink string lengths dramatially, and we want the simulator deviation

to be negligible as a funtion of jxj, not jf(x)j.

Next, we show how Okamoto's result that SZK is losed under omplement follows immediately

from our proof of Completeness Theorem.

Corollary 4.4 ([Oka00, Thm. 2℄) SZK is losed under omplement, even for promise problems.

Proof: Let � be any problem in SZK. By Theorem 3.10 and Corollary 3.9, � redues to SD,

whih is in SZK. By Corollary 4.3, � 2 SZK.

Before moving on to additional losure properties, we dedue the upper bounds of Fortnow [For89℄

and Aiello and H�astad [AH91℄ on the omplexity of SZK.

Corollary 4.5 ([For89, AH91℄) SZK � AM \ o-AM, where AM denotes the lass of problems

possessing onstant-message interative proofs.

Proof: Immediate from Corollaries 4.2 and 4.4.

Above, we have shown that SZK satis�es a omputational losure property (Corollary 4.3) and a

boolean losure property (Corollary 4.4). Now we will exhibit a stronger losure property, whih an

be viewed as both a omputational one and a boolean one: given an arbitrary boolean formula whose

atoms are statements about membership in any problem in SZK, one an eÆiently onstrut a

statistial zero-knowledge interative proof for its validity. Note that suh a property does not follow

immediately from the fat that a lass is losed under intersetion, union, and omplementation,

beause applying these more than a onstant number of times ould inur a superpolynomial ost in
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eÆieny, while we ask that the onstrution an be done eÆiently with respet to the size of the

formula. The proedure for doing this is based on work by De Santis, Di Cresenzo, Persiano, and

Yung [DDPY94℄. They show how to onstrut statistial zero-knowledge proofs for all monotone

boolean formulae whose atoms are statements about a random self-reduible language. Their

zero-knowledge proofs are onstruted by produing two distributions whih are either disjoint or

idential, depending on whether or not the formula is true. Hene, their onstrution an be viewed

as a redution to an extreme ase of SD, in whih the thresholds are 1 and 0.

Using the Diret Produt, XOR, and the Polarization Lemmas of Setion 3.2, we generalize

their result to monotone formulae whose atoms are statements about membership in Statistial

Differene. Then, using the ompleteness of SD (Theorem 3.1) and losure under omplement

(Corollary 4.4), we dedue the result for general (i.e. non-monotone) formulae and every promise

problem in SZK.

We begin with some de�nitions desribing preisely what kind of boolean losure properties we

will ahieve. (Later, we will see how it an also be interpreted as losure under a ertain lass of

polynomial-time redutions.) In order to deal with instanes of promise problems that violate the

promise, we will work with an extension of boolean algebra that inludes an additional\ambiguous"

value ?.

De�nition 4.6 A partial assignment to variables v

1

; : : : ; v

k

is a k-tuple a = (a

1

; : : : ; a

k

) 2 f0; 1; ?g

k

.

For a propositional formula (or iruit) � on variables v

1

; : : : ; v

k

, the evaluation �(a) is reursively

de�ned as follows:

v

i

(a) = a

i

(� ^  )(a) =

(

1 if �(a) = 1 and  (a) = 1

0 if �(a) = 0 or  (a) = 0

? otherwise

(:�)(a) =

8

<

:

1 if �(a) = 0

0 if �(a) = 1

? if �(a) = ?

(� _  )(a) =

(

1 if �(a) = 1 or  (a) = 1

0 if �(a) = 0 and  (a) = 0

? otherwise

Note that �(a) equals 1 (resp., 0) for some partial assignment a, then �(a

0

) also equals 1 (resp.,

0) for every boolean a

0

obtained by replaing every ? in a with either a 0 or 1. The onverse, however,

is not true: The formula � = v _:v evaluates to 1 on every boolean assignment, yet is not 1 when

evaluated at ?. Thus, the \law of exluded middle" � _ :� � 1 no longer holds in this setting.

However, other identities in boolean algebra suh as De Morgan's laws (e.g. :(� _  ) � :� ^ : )

do remain true.

De�nition 4.7 For a promise problem �, the harateristi funtion of � is the map �

�

: f0; 1g

�

!

f0; 1; ?g given by

�

�

(x) =

(

1 if x 2 �

Y

0 if x 2 �

N

? otherwise

De�nition 4.8 For any promise problem �, we de�ne a new promise problem �(�) as follows: �

�(�)

Y

= f(�; x

1

; : : : ; x

k

) : �(�

�

(x

1

); : : : ; �

�

(x

k

)) = 1g

�(�)

N

= f(�; x

1

; : : : ; x

k

) : �(�

�

(x

1

); : : : ; �

�

(x

k

)) = 0g;

where � is a k-ary propositional formula. Mon(�) is de�ned analogously, exept that only monotone

� are onsidered.

10

10

In [DDPY94℄, only monotone formulae are treated. What they all �(L) is what we all Mon(L).
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Sample( ; b)

If  = v

i

, sample z  D

i

b

.

If  = � _ �,

Sample z

1

 Sample(�; b);

Sample z

2

 Sample(�; b);

Let z = (z

1

; z

2

).

If  = � ^ �,

Choose ; d2

R

f0; 1g subjet to � d = b;

Sample z

1

 Sample(�; );

Sample z

2

 Sample(�; d);

Let z = (z

1

; z

2

).

Output z.

Figure 1:

In [DDPY94℄, it is shown that Mon(L) 2 SZK for any language L whih is random self-reduible,

whose omplement is self-reduible, or whose omplement has a noninterative statistial zero-

knowledge proof. They also give statistial zero-knowledge proofs for some simple statements

involving a random-self-reduible language and its omplement. Damg�ard and Cramer [DC96℄

extend these results by showing that Mon(L) 2 SZK as long as L or its omplement has a 3-

message publi-oin statistial zero-knowledge proof, and also treat a larger lass of monotone

funtions.

Our result holds for all of SZK and for all boolean formulae, not just monotone ones:

Theorem 4.9 For any promise problem � 2 SZK, �(�) 2 SZK.

This theorem an be generalized to work for all boolean formulae whose atoms are statements

about membership in any �nite set of languages in SZK, but we omit the notationally umbersome

formal statement sine it is immediate from the ompleteness of Statistial Differene.

The main step in proving Theorem 4.9 is the following Lemma, whih is based on the onstru-

tion of [DDPY94℄ for Mon(Graph Nonisomorphism):

Lemma 4.10 Mon(SD) 2 SZK.

Proof: For intuition, onsider two instanes of statistial di�erene (C

0

; C

1

) and (D

0

;D

1

), both

of whih have statistial di�erene very lose to 1 or very lose to 0 (whih an be ahieved by the

Polarization Lemma). Then (C

0


D

0

; C

1


D

1

) will have statistial di�erene very lose to 1 if either

of the original statistial di�erenes is very lose to 1 and will have statistial di�erene very lose to

0 otherwise. Thus, this Diret Produt operation represents OR. Similarly, the XOR operation in

Proposition 3.6 represents AND. We will reursively apply these onstrutions to obtain a redution

from Mon(SD) to SD. By losure under redutions (Corollary 4.3), Lemma 4.10 will follow.

Let w = (�; (C

1

0

; C

1

1

); : : : ; (C

k

0

; C

k

1

)) be an instane of Mon(SD) and let n = jwj. By ap-

plying the Polarization Lemma (Lemma 3.3), we an onstut in polynomial time pairs of iruits

(D

1

0

;D

1

1

); : : : ; (D

k

0

;D

k

1

) suh that the statistial di�erene betweenD

i

0

andD

i

1

is greater than 1�2

�n

if (C

i

0

; C

i

1

) 2 SD

Y

and is less than 2

�n

if (C

i

0

; C

i

1

) 2 SD

N

.

Consider the randomized reursive proedure Sample( ; b) in Figure 1 whih takes a subformula

 of � = �(v

1

; : : : ; v

n

) and a bit b 2 f0; 1g as input. Exeuting Sample(�; b) for b 2 f0; 1g takes
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time polynomial in n, beause the number of reursive alls is equal to the number of subformulas

of �. For a subformula  of �, de�ne

Dif( ) = kSample( ; 0) � Sample( ; 1)k:

Then we an prove the following about Dif:

Claim 4.11 Let a = (�

SD

(C

1

0

; C

1

1

); : : : ; �

SD

(C

k

0

; C

k

1

)). For every subformula  of �, we have:

 (a) = 1 ) Dif( ) > 1� j j2

�n

 (a) = 0 ) Dif( ) < j j2

�n

Note that nothing is laimed when  (a) = ?.

Proof of laim: The proof of the laim is by indution on subformulae  of �. It

holds for atomi subformulae (i.e. the variables v

i

) by the properties of the D

i

b

's.

Case I:  = � _ �. If  (a) = 1, then either �(a) = 1 or �(a) = 1. Without loss of

generality, say �(a) = 1. Then, by Fat 2.4 and indution,

Dif( ) � Dif(�) > 1� j� j2

�n

> 1� j j2

�n

:

If  (a) = 0, then �(a) = �(a) = 0. By Fat 2.3 and indution,

Dif( ) � Dif(�) + Dif(�) < j� j2

�n

+ j�j2

�n

� j j2

�n

:

Case I:  = � ^ �. By Proposition 3.6, Dif( ) = Dif(�) �Dif(�). If  (a) = 1, then, by

indution,

Dif( ) � (1� j� j2

�n

)(1 � j�j2

�n

) > 1� (j� j+ j�j)2

�n

� 1� j j2

�n

:

If  (a) = 0, then, without loss of generality, say �(a) = 0. By indution,

Dif( ) � Dif(�) < j� j2

�n

� j j2

�n

:

Now, let A andB be the iruits whih sample from the distributions Sample(�; 0) and Sample(�; 1),

respetively. (The the random bits eah proedure uses are the inputs to the iruits). By the above

laim, kA � Bk > 1 � n2

�n

> 2=3 if �(a) = 1, and kA � Bk < n2

�n

< 1=3 if �(a) = 0. In other

words, the onstrution of A and B from w is a redution from Mon(SD) to SD. This redution an

be omputed in polynomial time beause Sample runs in polynomial time. Thus, by Corollary 4.3,

Mon(SD) 2 SZK.

Now it is straightforward to dedue Theorem 4.9.

Proof: Let � be any promise problem in SZK. By losure under omplement (Corollary 4.4)

and the ompleteness of SD (Theorem 3.1), both � and � redue to SD. Let f and g be these

redutions, respetively. Now, let (�; x

1

; : : : ; x

k

) be any instane of �(�), where � = �(v

1

; : : : ; v

k

).

Use De Morgan's laws to propagate all negations of � to its variables. Now replae all ourrenes

of the literal :v

i

with a new variable w

i

. Let  (v

1

; : : : ; v

k

; w

1

; : : : ; w

k

) be the resulting (monotone)

formula. It is lear that

(�; x

1

; : : : ; x

k

) 7! ( ; f(x

1

); : : : ; f(x

k

); g(x

1

); : : : ; g(x

k

))
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is a redution from �(�) to Mon(SD). Sine Mon(SD) 2 SZK (Lemma 4.10) and SZK is losed

under redutions (Corollary 4.3), Theorem 4.9 follows.

Theorem 4.9 an be also viewed as demonstrating that SZK is losed under a type of polynomial-

time reduibility, whih is formalized by the following two de�nitions.

De�nition 4.12 (truth-table redution [LLS75℄): We say a promise problem � truth-table redues

to a promise problem � if there exists a (deterministi) polynomial-time omputable funtion f ,

whih on input x produes a tuple (y

1

; : : : ; y

k

) and a boolean iruit C (with k input gates) suh

that

x 2 �

Y

) C(�

�

(y

1

); : : : ; �

�

(y

k

)) = 1

x 2 �

N

) C(�

�

(y

1

); : : : ; �

�

(y

k

)) = 0

In other words, a truth-table redution for promise problems is a nonadaptive Cook redution

whih is allowed to make queries whih violate the promise, but still must have an unambiguous

output (in the strong sense formalized by De�nition 4.6). We further onsider the ase where we

restrit the omplexity of omputing the output of the redution from the queries:

De�nition 4.13 (NC

1

truth-table redutions): A truth-table redution f between promise problems

is an NC

1

truth-table redution if the iruit C produed by the redution on input x has depth

bounded by 

f

log jxj, where 

f

is a onstant independent of x.

With these de�nitions, we an restate Theorem 4.9 as follows:

Corollary 4.14 SZK is losed under NC

1

truth-table redutions.

Proof: Any iruit of size s and depth d an be eÆiently \unrolled" into a formula of size

2

d

� s. Hene, an NC

1

truth-table redution from � to � gives rise to a Karp redution from � to

�(�). Sine SZK is losed under �(�) and Karp redutions, it is also losed under NC

1

truth-table

redutions.

It would be interesting to prove that SZK is losed under general truth-table redutions (or,

even better, adaptive Cook redutions), or give evidene that this is not the ase.

4.3 Knowledge omplexity

Knowledge omplexity [GMR89, GP99℄ is a generalization of zero knowledge whih attempts to

quantify how muh a veri�er learns from an interative proof. A number of di�erent measures have

been proposed to aomplish this, most of whih are based on the intuition that a veri�er gains at

most k bits of \knowledge" from an interation if it an simulate the interation with at most k bits

of \help". Below we give terse de�nitions of the variants we onsider. The �rst three de�nitions

ome from [GP99℄, and the last omes from [ABV95℄. Let (P; V ) be an interative proof system

for a promise problem �. Then the knowledge omplexity of (P; V ) in various senses is de�ned as

follows:

� Hint sense: We say that (P; V ) has perfet (resp., statistial) knowledge omplexity k(n) in

the hint sense if there exists a PPT simulator S and a hint funtion h : �

Y

! f0; 1g

�

suh

that for all x 2 �

Y

, jh(x)j = k(jxj) and kS(x; h(x)) �View

P;V

(x)k is 0 (resp., is bounded by

a negligible funtion of jxj.)
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� Strit orale sense: (P; V ) is said to have perfet (resp., statistial) knowledge omplexity

k(n) in the strit orale sense if there exists a PPT orale-mahine S and an orale O suh

that on every input x 2 �

Y

, S queries O at most k(jxj) times and





S

O

(x)�View

P;V

(x)





is

0 (resp., is bounded by a negligible funtion of jxj.)

� Orale sense: (P; V ) is said to have perfet (resp., statistial) knowledge omplexity k(n)

in the orale sense if there exists a PPT orale-mahine S and an orale O suh that on every

input x 2 �

Y

, S queries O at most k(jxj) times, S outputs `fail' with probability at most

1=2, and





S

O

(x)�View

P;V

(x)





is 0 (resp., is bounded by a negligible funtion of jxj), where

S

O

(x) denotes the output distribution of S onditioned on non-failure.

� Average orale sense: (P; V ) has perfet (resp., statistial) knowledge omplexity k(n) in

the average orale sense if there exists a PPT orale-mahine S and an orale O suh that

for every input x 2 �

Y

, the average number of queries S makes to O is at most k(jxj) and





S

O

(x)�View

P;V

(x)





is 0 (resp., is bounded by a negligible funtion of jxj.)

� Entropy sense: (P; V ) has perfet (resp., statistial) knowledge omplexity k(n) in the

entropy sense if there exists a PPT orale-mahine S, an orale O, and a PPT orale-simulator

A suh that for all x 2 �

Y

, E

R

[logP

x

(R)

�1

℄ � k(jxj), where P

x

(R) = Pr

�

[A(x;R; �) =

S

O

(x;R)℄ and





S

O

(x)�View

P;V

(x)





is 0 (resp., is bounded by a negligible funtion of jxj).

Here, the notation M(y; r) denotes the output of PPT M on input y and random oins r,

The knowledge omplexity (in some spei�ed sense) of a promise problem � is k(n) if there

exists an interative proof system (P; V ) for � ahieving negligible error probablity in both the

ompleteness and soundness onditions suh that the knowledge omplexity of (P; V ) is k(n). The

lass of languages possessing perfet knowledge omplexity k(n) in the hint, strit orale, average

orale, and entropy senses are denoted by PKC

hint

, PKC

strit

, PKC

avg

, and PKC

ent

, respetively.

Statistial knowledge omplexity is denoted by SKC with the appropriate subsript.

A Collapse for the Hint Sense

Our �rst result about knowledge omplexity is that the SKC

hint

hierarhy ollapses by logarithmi

additive fators. Previously, Goldreih and Petrank [GP99℄ have shown that SKC

hint

(poly(n)) � AM

and SKC

hint

(O(log(n))) � o-AM; the seond of these results an be derived immediately from our

result and Fortnow's theorem [For89℄ that SZK � o-AM.

Theorem 4.15 For any polynomially bounded funtion k(n),

SKC

hint

(k(n) + log n) = SKC

hint

(k(n)):

For intuition, onsider the ase that k(n) = 0. Loosely speaking, if the veri�er is given the hint

along with the input (with the \promise" that the hint is orret), then the original proof system

beomes zero knowledge, so we an apply the results of the previous setion. By the boolean losure

properties established in Theorem 4.9, we an take the \union over all possible hints" (there are

only polynomially many of them) without leaving SZK. The result is easily seen to be the original

problem.

In order to turn this intuition into a proof, we �rst show that knowledge omplexity in the hint

sense an be haraterized in terms of zero-knowledge promise problems, so that questions about

the SKC

hint

hierarhy are redued to questions about statistial zero knowledge. This is equivalene

is obtained by providing the hint along with the input and \promising" that the hint is orret.
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Lemma 4.16 Let k(n) be any polynomially bounded funtion. Then � 2 SKC

hint

(k(n)) (resp.,

PKC

hint

(k(n))) i� there exists a promise problem � 2 SZK (resp., PZK) suh that

1. x 2 �

Y

) there exists a suh that jaj = k(jxj) and (x; a) 2 �

Y

, and

2. x 2 �

N

) for all a, (x; a) 2 �

N

.

Proof: We only give the proof for statistial knowledge omplexity and zero knowledge; the

perfet ase is idential.

) Let � be a promise problem in SKC

hint

(k(n)) and let h : �

Y

! f0; 1g

�

. be a hint funtion or-

responding to an appropriate interative proof system and simulator for �. Consider the following

promise problem �:

�

Y

= f(x; h(x)) : x 2 �

Y

g

�

N

= f(x; a) : x 2 �

N

g

By using the protool and simulator for �, we see that � 2 SZK (the veri�er and prover for �

should ignore the seond omponent, whereas the simulator uses it as a hint.) It is lear that �

satis�es the other onditions of Lemma 4.16.

( Let � 2 SZK be the promise problem satisfying the stated onditions. Let h : �

Y

! f0; 1g

�

be any funtion suh that for all x 2 �

Y

,

1. jh(x)j = k(jxj),

2. (x; h(x)) 2 �

Y

.

(Suh a funtion is guaranteed by Condition 1.) We now give a proof system for � of knowledge

omplexity k(n). On input x, the prover gives the veri�er h(x) in the �rst step, and then they

exeute the protool for � on (x; h(x)). The ompleteness and soundness of this protool follow

from the properties of the � proof system. This proof system is easily seen to have knowledge

omplexity k(n) in the hint sense, using the hint h(x) with the the zero-knowledge simulator for �.

We now prove Theorem 4.15.

Proof: Let � be a problem in SKC

hint

(k(n)+ log n) and let � be the promise problem guaranteed

by Lemma 4.16. By Theorem 4.9, �(�) 2 SZK. Now onsider a di�erent, but related promise

problem �

0

, de�ned by

�

0

Y

= f(x; a)) : there exists b suh that jbj = log jxj and (x; ab) 2 �

Y

g

�

0

N

= f(x; a) : for all b, (x; ab) 2 �

N

g = f(x; a) : x 2 �

N

g:

For any string x, let b

1

; : : : ; b

n

be all strings of length log jxj, and let C be the iruit of depth

O(log jxj) omputing the funtion �(v

1

; : : : ; v

n

) =

W

i

v

i

. The relationship between � and �

0

above

implies that

(x; a) 7! (�; (x; ab

1

); : : : ; (x; ab

n

))
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is an NC

1

truth-table redution from �

0

to �. Sine SZK is losed under suh redutions (Corol-

lary 4.14), we onlude that �

0

2 SZK.

Now, x 2 �

Y

, then there exists an a of length k(jxj) + log(jxj) suh that (x; a) 2 �

Y

. Tak-

ing a

0

to be the �rst k(jxj) bits of a, we see that there exists an a

0

of length k(jxj) suh that

(x; a

0

) 2 �

0

Y

. Moreover, if x 2 �

N

, then for all a, (x; a) 2 �

0

N

. Thus, by Lemma 4.16, we onlude

that � 2 SKC

hint

(k(n)).

The Perfet Knowledge Complexity of SZK

The next theorem establishes tighter bounds on the perfet knowledge omplexity of SZK. Aiello,

Bellare, and Venkatesan [ABV95℄ have previously demonstrated that every language in SZK has

perfet knowledge omplexity n

�!(1)

(resp., 1+n

�!(1)

) in the entropy (resp. average orale) sense.

Our results improve on these bounds, although the results of [ABV95℄ also apply to heating-veri�er

lasses and ours do not. Goldreih, Ostrovsky, and Petrank [GOP98℄ show that SZK has logarithmi

perfet knowledge omplexity in the orale sense, so our results are inomparable to theirs. Our

result for the strit orale sense is the �rst that we know of.

Theorem 4.17

11

1. For every polynomial-time omputable m(n) = !(log n), SZK � PKC

strit

(m(n)).

2. SZK � PKC

avg

(1 + 2

�n

).

3. SZK = PKC

ent

(2

�n

).

Corollary 4.2 tells us that every problem in SZK has a simple two-message proof system like

the SD proof system of Setion 3.3. Thus, in order to measure the perfet knowledge omplexity

of SZK and prove Theorem 4.17, it suÆes to analyze this protool. Intuitively, sine the prover

is only sending the veri�er one bit and this bit is almost always a value the veri�er knows, the

knowledge omplexity of this protool should be extremely small. However, this argument does

not suÆe, beause the knowledge omplexity of a problem � is determined only by proof systems

for � whih ahieve negligible error probability in both the ompleteness and soundness onditions.

We an overome this diÆulty by performing !(log n) parallel repetitions.

Proof: Let � be any problem in SZK and let (P; V ) be the proof system for � onstruted

in Corollary 4.2 (from the SD proof system of Setion 3.3) with the seurity parameter set to

k = 4n (so the ompleteness error is 2

�4n

). Let m = m(n) be any funtion omputable in time

poly(n) suh that !(log n) � m � n. Consider the proof system (P

0

; V

0

) obtained by m parallel

repetitions of (P; V ); this has negligible ompleteness and soundness errors. We now analyze its

perfet knowledge omplexity.

1. The prover sends at most m bits to the veri�er on inputs of length n, so the perfet knowledge

omplexity of this protool in the strit orale sense is bounded by m.

2. A perfet simulator for (P

0

; V

0

) an be obtained as follows: On input x of length n, the

simulator runs V (x) for m times independently and queries the orale one to �nd out if

11

The 2

�
(n)

in these results an be improved to 2

�
(n

k

)

for any onstant k by polarizing with seurity parameter

n

k

instead of n + 1 in the SD proof system of Setion 3.3.
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any of these runs would result in an inorret prover response. If the orale replies yes,

the simulator queries the orale m more times to �nd out whih runs would result in an

inorret response. The simulator then outputs the random oins used for running V and the

appropriate prover responses.

In eah subprotool, the prover gives an inorret response with probability at most 2

�4n

.

Thus, the simulator has to query the orale for more than one bit with probability at most

n2

�4n

. Thus, on average, the simulator queries the orale for at most 1 +mn2

�4n

< 1 + 2

�n

bits.

3. Let S be the simulator for (P

0

; V

0

) whih simply simulates V

0

and queries the orale O for

all prover responses. One possible orale simulator would assume that the prover is orret

in all subprotools. Unfortunately, this gives 1=P

x

(R) = 1 for some R and yields in�nite

knowledge omplexity. Thus, we instead have our orale simulator A assume that the prover

is right in eah subprotool independently with probability 1 � Æ, where Æ = 2

�2n

. Thus,

P

x

(R) = (1 � Æ)

k

Æ

m�k

, if R is a set of random oins for V

0

(equivalently S, sine S mimis

V

0

) whih would eliit a orret prover response in exatly k of the subprotools. Let � be

the probability that the prover is inorret in an individual subprotool. Then, � � Æ

2

, and

we have

E

R

�

log

1

P

x

(R)

�

=

m

X

k=0

�

m

k

�

�

m�k

(1� �)

k

log

�

1

(1� Æ)

k

Æ

m�k

�

=

�

log

1

Æ

m

�

m

X

k=0

�

m

k

�

�

m�k

(1� �)

k

+

�

log

Æ

1� Æ

�

m

X

k=0

�

m

k

�

�

m�k

(1� �)

k

k

= log

1

Æ

m

+m(1� �)

�

log

Æ

1� Æ

�

= m

�

log

1

1� Æ

+ � log

1� Æ

Æ

�

� m

�

log

1

1� Æ

+ Æ

2

log

1

Æ

�

� 2mÆ < 2

�n

for suÆiently large n.

The opposite inlusion follows from the result of [ABV95℄ that PKC

ent

(neg(n)) � SZK for

any negligible funtion neg(n).

4.4 Reversing statistial di�erene

By the ompleteness of SD (Theorem 3.1) and SZK's losure under omplement (Corollary 4.4), it

follows that SD redues to SD. This is equivalent to the following surprising result:

Corollary 4.18 (Reversal Mapping) There is a polynomial-time omputable funtion that maps

pairs of iruits (C

0

; C

1

) to pairs of iruits (D

0

;D

1

) suh that

kC

0

� C

1

k < 1=3 ) kD

0

�D

1

k > 2=3

kC

0

� C

1

k > 2=3 ) kD

0

�D

1

k < 1=3:
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That is, SD redues to SD.

This orollary motivated our searh for a more expliit desription of suh a mapping. By

extrating ideas used in the transformations of statistial zero-knowledge proofs given in [Oka00℄

and [SV97℄, we obtained the desription of this transformation given below.

The Constrution. Let (C

0

; C

1

) be any pair of iruits and let n = j(C

0

; C

1

)j. By the Polarization

Lemma (Lemma 3.3), we an produe in polynomial time a pair of iruits (C

0

0

; C

0

1

) suh that

kC

0

� C

1

k < 1=3 )





C

0

0

� C

0

1





> 1� 2

�n

kC

0

� C

1

k > 2=3 )





C

0

0

� C

0

1





< 2

�n

Let q = poly(n) be the number of input gates of C

0

0

and C

0

1

(w.l.o.g. we may assume they have the

same number) and let ` = poly(n) be the number of output gates. For notational onveniene, let

R = f0; 1g

q

and L = f0; 1g

`

. Let m = n

3

q

2

and de�ne a new distribution

~

C: f0; 1g

m

� R

m

! L

m

as follows:

~

C(

~

b; ~r) = (C

0

b

1

(r

1

); : : : ; C

0

b

m

(r

m

)):

We use the notation ~z  

~

C to denote ~z hosen aording to

~

C, i.e. selet

~

b and ~r uniformly and

let ~z =

~

C(

~

b; ~r).

LetH be a 2-universal family of hash funtions from f0; 1g

m

�R

m

�L

m

to T = f0; 1g

(q+1)m�2��n

,

where � =

p

nmq

2

= m=n. We an now desribe the new distributions:

D

0

: Choose (

~

b; ~r)2

R

f0; 1g

m

� R

m

, ~y  

~

C, and h2

R

H. Output

(

~

C(

~

b; ~r);

~

b; h; h(

~

b; ~r; ~y)).

D

1

: Choose (

~

b; ~r)2

R

f0; 1g

m

� R

m

, h2

R

H, and t2

R

T . Output

(

~

C(

~

b; ~r);

~

b; h; t).

The important things to note about these distributions are that

~

b is part of the output, and that

D

0

and D

1

only di�er in the last omponent, where D

0

has the value of the hash funtion and D

1

has a truly random element of T . Also note that the size of T is hosen to be jf0; 1g

m

�R

m

j=2

2�+n

,

whih is essentially jf0; 1g

m

�R

m

j, saled down by a \slakness" fator of 2

2�+n

. The introdution

of the sample ~y in D

0

may at �rst seem superuous; we explain below.

Intuition. For intuition, onsider the ase that

~

C is a at distribution; that is, for every ~z 2

range(

~

C), the size of the preimage set jf(

~

b; ~r):

~

C(

~

b; ~r) = ~zgj is the same value N . (It turns out that

~

C is atually \lose enough" to being at for the following arguments to work.) Then the range of

~

C has size jf0; 1g

m

�R

m

j=N = 2

(q+1)m

=N . So, in D

0

, onditioned on a value for

~

C(

~

b; ~r), the triple

(

~

b; ~r; ~y) is seleted uniformly from a set of size 2

(q+1)m

. Sine this is muh greater than jT j, the

Leftover Hash Lemma of [HILL99℄ implies that onditioned on any value for the �rst omponent

of D

0

, the last two omponents (h; h(

~

b; ~r; ~y)) are distributed lose to the uniform distribution on

H � T , whih is the distribution that D

1

has in its last two omponents.

12

Thus, if their seond

12

Here we see the importane of ~y: Without ~y, onditioned on some value of

~

C(

~

b; ~r), the pair (

~

b; ~r) would be seleted

uniformly from a spae of size N . If we were only hashing this pair, for the distribution h(

~

b; ~r) to be uniform by the

Leftover Hash Lemma, T would have had to be hosen so that jT j � N . The value of N , however, depends on the

inner workings of the iruit C, and is in general unknown. By inluding ~y, whih omes uniformly from a spae of

size 2

(q+1)m

=N , we balane the arguments to h so that they ome from a spae of size 2

(q+1)m

, a known quantity. This

use of \dummy" samples to form a spae whose size is known is the \omplementary usage of messages" tehnique

of Okamoto [Oka00℄.
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omponents were missing, D

0

and D

1

would be statistially lose. Now, onsider the ase that

kC

0

0

�C

0

1

k � 1. Then

~

b is essentially \determined" by

~

C(

~

b; ~r). So the presene of

~

b an be ignored,

and the above argument says that D

0

and D

1

are statistially very lose. Now, onsider the ase

that kC

0

0

�C

0

1

k � 0. Then

~

b is essentially \unrestrited" by

~

C(

~

b; ~r). Sine there are 2

m

hoies for

~

b, onditioning on

~

b in addition to

~

C(

~

b; ~r), uts the number of triples (

~

b; ~r; ~y) down from 2

m(q+1)

to

roughly 2

m(q+1)

=2

m

. Sine 2

m(q+1)

=2

m

is muh smaller than jT j, h(

~

b; ~r; ~y) will over only a small

fration of jT j and thus will be far from uniform (onditioned on values for

~

C(

~

b; ~r),

~

b, and h).

Diret Proof of Corollary 4.18. First we will argue that

~

C is lose to being at, so that we

an apply arguments like those given above. This is the ase beause

~

C is omposed of many

independent, identially distributed random variables. For ~z 2 L

m

, we say the weight of ~z is the

logarithm of the size of the preimage set of ~z. Formally, let wt(~z) = log

2

jf(

~

b; ~r) :

~

C(

~

b; ~r) = ~zgj. Let

w be the expeted weight of an image, i.e. w = E

~z 

~

C

[wt(~z)℄. Then we an show the following:

Lemma 4.19 Pr

~z 

~

C

[jwt(~z)�wj > �℄ < 2

�
(n)

:

Proof: For z 2 L, let wt

0

(z) = log

2

jf(b; r) : C

b

(r) = zgj. Then, for ~z 2 L

m

, wt(~z) =

wt

0

(z

1

)+ � � �+wt

0

(z

m

). Observe that when ~z is seleted aording to

~

C, z

1

; : : : ; z

m

are independent

and identially distributed. Moreover, for any z 2 L, 0 � wt

0

(z) � q. So, by the Hoe�ding

inequality [Hof95, Se. 7.2.1℄, we have

Pr

~z 

~

C

[jwt(~z)� wj > �℄ < 2e

�2�

2

=mq

2

= 2e

�2n

:

It will be onvenient to eliminate those ~z 2 L

m

that have weight far above or below the mean.

Let G = f(

~

b; ~r) : jwt(

~

C(

~

b; ~r)) � wj � �g be the set of good pairs (

~

b; ~r). The above Lemma says

that jGj � (1� 2

�
(n)

)jf0; 1g

m

�R

m

j. Thus kG�f0; 1g

m

�R

m

k � 2

�
(n)

, where for simpliity of

notation, we let the name of a set also refer to the uniform distribution on the same set. De�ne

~

C

0

to be the distribution obtained by seleting (

~

b; ~r) G and outputting

~

C(

~

b; ~r). Then, sine

~

C is a

funtion, Fat 2.4 tells us that k

~

C �

~

C

0

k = 2

�
(n)

. Similarly, we de�ne variants of D

0

and D

1

that

sample from G instead of f0; 1g

m

�R

m

:

D

0

0

: Let (

~

b; ~r)2

R

G, ~y  

~

C

0

, and h2

R

H. Output

(

~

C

0

(

~

b; ~r);

~

b; h; h(

~

b; ~r; ~y)).

D

0

1

: Let (

~

b; ~r)2

R

G, h2

R

H, and t2

R

T . Output (

~

C

0

(

~

b; ~r);

~

b; h; t).

Sine D

0

0

(or D

0

1

) is a randomized proedure applied to two (or one) independent samplings

from G, Fat 2.4 tells us that kD

0

� D

0

0

k = 2

�
(n)

(and kD

1

�D

0

1

k = 2

�
(n)

). Hene, it suÆes

to prove that these modi�ed distributions have the properties we want in eah ase. For the ase

when C

0

and C

1

are statistially far, we prove the following laim:

Claim 4.20 If kC

0

0

� C

0

1

k > 1� 2

�n

, then kD

0

0

�D

0

1

k < 2

�
(n)

.

Proof of laim: First we formalize the idea that

~

b is \determined" by

~

C. De�ne

f : L! f0; 1g by

f(z) =

�

0 if Pr [C

0

0

= z℄ > Pr [C

0

1

= z℄

1 otherwise
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In other words, f is exatly the prover strategy from the proof system for Statistial

Differene given in Setion 3.3. The ompleteness of that proof system (Lemma 3.7)

says that Pr

b;r

[f(C

0

b

(r)) = b℄ > 1 � 2

�n

. Now de�ne

~

f : L

m

! f0; 1g

m

by

~

f(~z) =

(f(z

1

); : : : ; f(z

m

)). Then

Pr

~

b;~r

[

~

f(

~

C(

~

b; ~r)) =

~

b℄ > (1� 2

�n

)

m

= 1� 2

�
(n)

:

Sine G is a 1� 2

�
(n)

fration of f0; 1g

m

�R

m

, the same is true when (

~

b; ~r) is seleted

uniformly from G. Thus, if we de�ne:

D

00

0

: Let (

~

b; ~r)2

R

G, ~y  

~

C

0

, and h2

R

H. Output

(

~

C

0

(

~

b; ~r);

~

f(

~

C

0

(

~

b; ~r)); h; h(

~

b; ~r; ~y)).

D

00

1

: Let (

~

b; ~r)2

R

G, h2

R

H, and t2

R

T . Output (

~

C

0

(

~

b; ~r);

~

f(

~

C

0

(

~

b; ~r)); h; t).

Then, by Fat 2.5, kD

0

0

�D

00

0

k = 2

�
(n)

and kD

0

1

�D

00

1

k = 2

�
(n)

. So it suÆes to

show that kD

00

0

�D

00

1

k = 2

�
(n)

. Sine the �rst omponents of D

00

0

and D

00

1

are identially

distributed and the seond omponents are determined by the �rst ones, it suÆes to

show (by Fat 2.5) that, onditioned on any value for the �rst oordinate, the third and

fourth omponents have statistial di�erene 2

�
(n)

. This will follow from the Leftover

Hash Lemma [HILL99℄:

Lemma 4.21 (Leftover Hash Lemma [HILL99℄) Let H be a family of 2-universal

hash funtions from D to T . Let X by a probability distribution on D suh that for

all x 2 D, Pr [X = x℄ � �=jT j. Then the following two distributions have statistial

di�erene at most �

1=3

.

1. Choose x X, h2

R

H. Output (h; h(x)).

2. Choose h2

R

H, t2

R

T . Output (h; t).

By the above argument and the Leftover Hash Lemma, it suÆes to show that

onditioned on any value ~z for

~

C

0

(

~

b; ~r), no triple (

~

b; ~r; ~y) has probability more than

2

�
(n)

=jT j. The pair (

~

b; ~r) omes uniformly from a set of size 2

wt(~z)

� 2

w��

, and ~y

is seleted independently aording to

~

C

0

, so the probability of any triple (

~

b; ~r; ~y) is at

most

�

1

2

w��

��

2

w+�

jGj

�

�

2

2�

(1� 2

�
(n)

)2

(q+1)m

=

2

�
(n)

jT j

:

Thus, kD

00

0

�D

00

1

k � 2

�
(n)

, and the laim is established.

Now we treat the other ase, when C

0

and C

1

are statistially lose.

Claim 4.22 If kC

0

0

� C

0

1

k < 2

�n

, then kD

0

0

�D

0

1

k > 1� 2

�
(n)

.

Proof of laim: First, we formalize the idea that

~

b is almost ompletely \undeter-

mined" by

~

C(

~

b; ~r). Sine kC

0

0

�C

0

1

k < 2

�n

, it follows from Fat 2.6 that with probability

1� 2

�
(n)

over z  C

0

0

,

(1� 2

�
(n)

) Pr

�

C

0

1

= z

�

� Pr

�

C

0

0

= z

�

� (1 + 2

�
(n)

) Pr

�

C

0

1

= z

�

:

32



In other words,

1� 2

�
(n)

�

jfr : C

0

0

(r) = zgj

jfr : C

0

1

(r) = zgj

� 1 + 2

�
(n)

:

The same is true with probability 1� 2

�
(n)

when the roles of C

0

0

and C

0

1

are reversed.

Thus, with probability 1 �m2

�
(n)

= 1 � 2

�
(n)

over ~z  

~

C, we have for every pair

~

b;~ 2 f0; 1g

m

,

1� 2

�
(n)

= (1� 2


(n)

)

m

�

�

�

�

f~r :

~

C(

~

b; ~r) = ~zg

�

�

�

�

�

�

f~r :

~

C(~; ~r) = ~zg

�

�

�

� (1 + 2

�
(n)

)

m

= 1 + 2

�
(n)

:

Sine there are 2

m

hoies for ~, this, ombined with Lemma 4.19, implies that, with

probability 1� 2

�
(n)

over ~z  

~

C, the following holds for every

~

b 2 f0; 1g

m

:

�

�

�

f~r :

~

C(

~

b; ~r) = ~zg

�

�

�

� (1 + 2

�
(n)

) �

2

wt(~z)

2

m

� (1 + 2

�
(n)

) � 2

w+��m

:

Sine this is true with probability 1 � 2

�
(n)

for ~z seleted aording to

~

C, it is also

true with probability 1� 2

�
(n)

for ~z seleted aording to

~

C

0

. Fix any suh ~z and �x

any

~

b 2 f0; 1g

m

and h 2 H. Then, in D

0

0

, onditioned on

~

C

0

(

~

b; ~r) = ~z,

~

b, and h, there

are at most

(1 + 2

�
(n)

) � 2

w+��m

�

jGj

2

w��

�

� (1 + 2

�
(n)

) � 2

2��m

� 2

m(q+1)

= (1 + 2

�
(n)

) � 2

4�+n�m

� jT j

= 2

�
(m)

� jT j

possible values for (~r; ~y). Thus, with probability 1 � 2

�
(n)

, onditioned on values for

the �rst three omponents of D

0

0

, the fourth omponent h(

~

b; ~r; ~y) an over at most a

2

�
(m)

� 2

�
(n)

fration of T . In ontrast, onditioned on values for the �rst three

omponents of D

0

1

, the fourth omponent is uniformly distributed on T . Therefore,

kD

0

0

�D

0

1

k � 1� 2

�
(n)

.

In [Vad99℄, it is shown that this Reversal Mapping an be better understood as a omposition of two

redutions, going the two diretions between Statistial Differene and Entropy Differ-

ene (the omplete problem for SZK given in [GV99℄, whih trivially redues to its omplement).

4.5 Weak-SZK and expeted polynomial-time simulators

Reall that, in this paper, we de�ned statistial zero-knowledge with respet to strit polynomial-

time simulators. As noted in Setion 2, the original de�nition of statistial zero-knowledge permits

expeted polynomial-time simulators, but only allowing strit polynomial-time simulators is not

very restritive when disussing honest-veri�er proofs, as we are.

However, our tehniques do say something about expeted polynomial-time simulators, and in

partiular show that expeted polynomial-time simulators are no more powerful than strit ones

for publi-oin statistial zero-knowledge. This is the �rst general equivalene between strit and

expeted polynomial-time simulators for statistial zero knowledge that we know of.

Indeed, we are able to generalize further to an even weaker notion, that of weak statistial

zero knowledge (as previously onsidered in [DOY97℄, where it was referred to as \non-uniform

simulation"):
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De�nition 4.23 An interative proof system (P; V ) for a promise problem � is weak statistial

zero knowledge if for all polynomials p, there exists an eÆient probabilisti (strit) polynomial-time

algorithm S

p

suh that

kS



(x)� (P; V )(x)k � 1=p(jxj);

for all suÆiently long x 2 �

Y

.

We denote by weak-SZK the lass of promise problems admitting weak statistial zero-knowledge

proofs, and by publi-oin weak-SZK the lass orresponding to suh proofs whih are also publi

oin. Note that any proof system admitting an expeted polynomial-time simulator (in the usual

sense) ertainly also satis�es the requirements of weak statistial zero-knowledge. We show that

in fat any publi-oin weak statistial zero-knowledge proof system an be transformed into a

statistial zero-knowledge proof system with a strit polynomial-time simulator ahieving negligible

(in fat, exponentially small) simulator deviation. In other words, publi-oin weak-SZK = SZK.

Proposition 4.24 publi-oin weak-SZK = SZK = publi-oin SZK.

The only obstale in generalizing Proposition 4.24 to all weak statistial zero-knowledge proofs

(instead of just publi-oin ones) is that Okamoto's private to publi-oin transformation in [Oka00℄

is only given for strit polynomial-time simulators ahieving negligible simulator deviation. In fat,

this generalization was aomplished in work (subsequent to ours) by Goldreih and Vadhan [GV99℄.

In order to establish Proposition 4.24, it suÆes to show that every problem in publi-oin weak-SZK

redues to SD, as the proposition follows by losure under redutions (Corollary 4.3) and Okamoto's

theorem that SZK = publi-oin SZK (Theorem 3.10). Therefore, we need only establish the fol-

lowing generalization of Lemma 3.8:

Lemma 4.25 Suppose promise problem � has a publi-oin weak statistial zero-knowledge proof.

Then there exist probabilisti (strit) polynomial time mahines A and B suh that

x 2 �

Y

) kA(x)�B(x)k <

1

3

; and

x 2 �

N

) kA(x)�B(x)k >

2

3

:

Proof: The proof is idential to the proof of Lemma 3.8, exept that wherever the simulator S is

used in that proof, we replae it with S

p

, a simulator with deviation 1=p(n), where p(n) = 7n�r(n)

3

.

Then we replae Claim 3.12 with the following:

Claim 4.26 If x 2 �

Y

, then kA(x)�B(x)k � 1=(3jxj � r(jxj)

2

).

Proof of laim: The proof is idential to the proof of Claim 3.12, exept that now,

we have

kA(x) �B(x)k � 2

�
(jxj)

+ 2r(jxj) � kS

p

(x)� (P; V )(x)k <

1

3jxj � r(jxj

2

:

On the other hand, Claim 3.13 remains true, i.e. x 2 �

N

implies kA(x)�B(x)k � 1=12r(n). Then,

as in the original proof, we onsider the samplable distributions

^

A(x) = 


s(jxj)

A(x) and

^

B(x) =




s(jxj)

B(x), where s(n) = n � r(n)

2

. If x 2 �

Y

, k

^

A(x)�

^

B(x)k � s(jxj)kA(x)�B(x)k < 1=3, as de-

sired. If x 2 �

N

, then by the Diret Produt Lemma (Lemma 3.4), k

^

A(x)�

^

B(x)k � 1�2

�
(jxj)

.
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4.6 Perfet and omputational zero knowledge

Although the fous of this paper is statistial zero knowledge, some of the tehniques also apply to

perfet and omputational zero knowledge. In partiular, for publi-oin proof systems we obtain

variants of Lemma 3.8 for both perfet and omputational zero knowledge. In addition, a restrited

version of Statistial Differene an be shown to have perfet zero-knowledge proof.

First, we de�ne some variants of SD. For any two onstants � and � with � > �, de�ne:

SD

�;�

Y

= f(C

0

; C

1

) : kC

0

� C

1

k � �g

SD

�;�

N

= f(C

0

; C

1

) : kC

0

� C

1

k � �g

SD

�;�

is interreduible with SD and hene omplete for SZK whenever 1 > �

2

> � > 0, sine the

Polarization Lemma generalizes to suh thresholds. (See disussion at the end of Setion 3.2).

We an almost show that every problem whih has a publi-oin perfet zero-knowledge proof

redues to SD

1=2;0

. The aveats are that either the original proof system must have perfet om-

pleteness, or we obtain distributions that are samplable in expeted polynomial time rather than

iruits.

Proposition 4.27 Every promise problem having a publi-oin perfet zero-knowledge proof with

perfet ompleteness redues to SD

1=2;0

.

Proof: It suÆes to show that the distributions A(x) and B(x) onstruted in the proof of

Lemma 3.8 have statistial di�erene 0 on yes instanes, when the original proof system has per-

fet ompleteness and the simulator deviation is 0. Indeed, for i � 1, the distributions A

i

(x) and

B

i

(x) are idential if the simulator deviation is 0, and the distributions A

0

(x) and B

0

(x) are iden-

tial under the additional assumption that the proof system has perfet ompleteness.

Proposition 4.28 Suppose promise problem � has a publi-oin perfet zero-knowledge proof.

Then there exist probabilisti expeted polynomial time mahines A and B suh that

x 2 �

Y

) kA(x) �B(x)k = 0; and

x 2 �

N

) kA(x) �B(x)k � 1� 2

�
(jxj)

:

Proof: The proof is nearly idential to that of Proposition 4.27, exept that we must modify

A

0

(x) and B

0

(x) to have statistial di�erene 0 (at the prie of B

0

(x) beoming expeted polyno-

mial time). Let (n) be a polynomial bound on the number of random oins S uses on inputs of

length n. Then we de�ne A

0

and B

0

as follows (in both desriptions, n = jxj):

A

0

(x): Run S(x) for n � (n) repetitions. Output `1' if the majority are aepting onversations

and `0' otherwise.

B

0

(x): With probability 1 � 2

�(n)

, output `1'. Otherwise, alulate the probability � that S(x)

outputs an aepting onversation (by exhaustive searh over all 2

(n)

random seeds). Now alulate

� =

b

n(n)

2



X

i=0

�

n(n)

i

�

�

i

(1� �)

n(n)�i

:
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If � > 2

�(n)

, output '1.' Otherwise, output `0' with probability �=2

�(n)

, and `1' otherwise.

Note that B

0

(x) runs in expeted polynomial time, sine with probability 2

�(n)

it runs in time

poly(n)2

(n)

and otherwise it runs in time poly(n). Also observe that � is the probability that

A

0

(x) outputs `0'.

Now we argue that, when x 2 �

Y

, A

0

(x) and B

0

(x) have statistial di�erene 0,i.e. output `1'

with the same probability. Sine S(x) outputs a onversation whih makes V aept with proba-

bility at least 2=3� neg(n), the Cherno� bound implies that Pr [A

0

(x) = 1℄ = 1� 2

�
(n(n))

. This

means that � will always be less than 2

�(n)

(for suÆiently large n), so B

0

will output `0' with

probability 2

�(n)

(�=2

�(n)

) = � , whih is the probability that A

0

outputs `0'.

Now, if we ould show that SD

1=2;0

(or its omplement) has a perfet zero-knowledge proof

system, we would have something like a ompleteness result for PZK. Although we do not know

how to do this, we an instead show that SD

1;1=2

2 PZK. Indeed, onsider the protool of Se-

tion 3.3 with the modi�ation that the two parties use the XOR Lemma (Lemma 3.5) instead of

the Polarization Lemma. Then the proof of Lemma 3.7 tells us that this protool, when used for

SD

1;1=2

has ompleteness error 0, simulator deviation 0, and soundness error 1=2 + 2

�n

. Thus we

have:

Proposition 4.29 SD

1;1=2

2 PZK:

For omputational zero knowledge, the tehniques of Lemma 3.8 give us the following:

Proposition 4.30 Suppose promise problem � has a publi-oin omputational zero-knowledge

proof. Then there exist probabilisti polynomial time mahines A and B suh that

1. x 2 �

N

) kA(x)�B(x)k � 1� 2

�
(jxj)

, and

2. fA(x)g

x2�

Y

and fB(x)g

x2�

Y

are omputationally indistinguishable ensembles of probability

distributions.

Note that, in ontrast to perfet and statistial zero knowledge, the onditions given in Propo-

sition 4.30 do not give a way to distinguish yes and no instanes; it is possible for A(x) and B(x)

to have statistial di�erene greater than 1�2

�
(jxj)

even for x 2 �

Y

. We also remark that Propo-

sition 4.30 holds even when the simulator for the proof system runs in expeted polynomial-time,

exept that A and B will also run in expeted polynomial-time.

Proof: The proof follows Lemma 3.8 exatly, exept for Claim 3.12, whih should be replaed

with the following:

Claim 4.31 fA(x)g

x2�

Y

and fB(x)g

x2�

Y

are omputationally indistinguishable ensembles of prob-

ability distributions.

We omit x from the notation for readability; below all probability distributions atually refer

to ensembles indexed by x 2 �

Y

. The proof in Claim 3.12 that A

0

and B

0

have exponentially small

statistial di�erene still holds. Thus it suÆes to show that the distributions A

0

and B

0

obtained

by removing the 0'th omponents of A and B, respetively, are omputationally indistinguishable.
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To prove this, we �rst note that a hybrid argument shows that the distributions 


r

(P; V ) and 


r

S

are omputationally indistinguishable, sine (P; V ) and S are omputationally indistinguishable.

13

Now we introdue a new distribution C. De�ne C

i

= (

1

; p

1

; : : : ; 

i

)

(P;V )

for 1 � i � r, and let

C = C

1


� � �
C

r

. Then C and A

0

are omputationally indistinguishable sine a distinguisherD be-

tween them ould be used to make a distinguisherD

0

between 


r

(P; V ) and 


r

S: Given a sequene

of r transripts (t

1

; : : : ; t

r

), D

0

trunates t

i

= (

1

; p

1

; : : : ; 

r

; p

r

) to produe t

0

i

= (

1

; p

1

; : : : ; 

i

) and

feeds (t

0

1

; : : : ; t

0

r

) to D. When fed with 


r

S, D

0

gives D a sample of A

0

, and when fed with 


r

(P; V ),

D

0

gives D a sample of C.

Similarly, C and B

0

are also omputationally indistinguishable beause a distinguisher between

them ould be to make a distinguisher D

0

between 


r

(P; V ) and 


r

S: Given a sequene of r

transripts (t

1

; : : : ; t

r

), D

0

trunates t

i

= (

1

; p

1

; : : : ; 

r

; p

r

) and selets u

i

aording to the uniform

distribution on strings of length r(jxj) to produe t

0

i

= (

1

; p

1

; : : : ; p

i�1

; u) and feeds (t

0

1

; : : : ; t

0

r

) to

D. When fed with 


r

S, D

0

gives D a sample of B

0

, and when fed with 


r

(P; V ), D

0

gives D a

sample of C.

Now, beause both A

0

and B

0

are omputationally indistinguishable from C, they must be om-

putationally indistinguishable from eah other, ompleting the proof.

4.7 Hard-on-average problems and one-way funtions

Most, if not all, of ryptography relies on the existene of omputational problems whih are hard-

on-average. However, the mere exitene of a hard-on-average problem, even in NP, is not known to

imply even the most basi ryptographi primitive, namely a one-way funtion. Ostrovsky [Ost91℄,

however, showed that the existene of a hard-on-average problem in SZK does imply the exis-

tene of one-way funtions. This result was subsequently generalized to CZK by Ostrovsky and

Wigderson [OW93℄.

In this setion, we show how Ostrovsky's result follows readily from our Completeness Theorem

and a result of Goldreih [Gol90℄ on omputational indistinguishability. Using the generalization

of our tehniques to CZK desribed in the previous setion, we also obtain a simpler proof of the

the Ostrovksy{Wigderson theorem restrited to publi-oin proof systems.

In order to state these theorems preisely, we need to de�ne what we mean for a problem �

to be \hard." Informally, we require that membership in � is (very) hard to deide under some

samplable distribution of instanes.

De�nition 4.32 An ensemble of distributions fD

n

g

n2N

is said to be samplable if there is a prob-

abilisti polynomial-time algorithm that, on input 1

n

outputs a string distributed aording to D

n

.

De�nition 4.33 A promise problem � is hard-on-average if there exists a samplable ensemble of

distributions fD

n

g

n2N

suh that the following holds: For every nonuniform probabilisti polynomial-

time algorithm M , there exists a negligible funtion � : N ! [0; 1℄ suh that

Pr [M(x) orretly deides whether x is a yes or no instane of �℄ �

1

2

+ �(n) 8n 2 N;

where the probability is taken over x D

n

and the oins of M . (If x violates the promise, then M

is onsidered to be orret no matter what it outputs.)

13

Atually this step uses the fat that our de�nition of omputational indistinguishability is with respet to nonuni-

form distinguishers, beause (P; V ) is not a samplable distribution.
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In this setion, we will give new proofs of the following results.

Theorem 4.34 ([Ost91℄) If there is a hard-on-average promise problem in SZK, then one-way

funtions exist.

Theorem 4.35 ([OW93℄ for publi-oin proofs) If a hard-on-average promise problem pos-

sesses a publi-oin omputational zero-knowledge proof system, then one-way funtions exist.

We will only prove Theorem 4.35 as Theorem 4.34 then follows via Theorem 3.10. Our proof

will make use of Proposition 4.30 in onjution with the following result of Goldreih [Gol90℄:

Proposition 4.36 ([Gol90℄) Suppose there exist two samplable ensembles of distributions, fA

n

g

n2N

and fB

n

g

n2N

, suh that

1. fA

n

g and fB

n

g are omputationally indistinguishable.

2. There is a polynomial p : N ! N suh that for all n, kA

n

�B

n

k � 1=p(n).

Then one-way funtions exist.

Proof of Theorem 4.34: Suppose � is a hard-on-average problem with a publi-oin omputa-

tional zero-knowledge proof and let fD

n

g be the ensemble of distributions under whih � is hard.

By Proposition 4.30 there are probabilisti polynomial-time algorithms A and B suh that

1. x 2 �

N

) kA(x) �B(x)k � 1� 2

�
(jxj)

, and

2. fA(x)g

x2�

Y

and fB(x)g

x2�

Y

are omputationally indistinguishable.

(Note that if � 2 SZK, the Completeness Theorem and Polarization Lemma yield suh A and B

with the omputational indistinguishability replaed by statistial di�erene 2

�jxj

.)

We will show that the following ensembles fA

n

g and fB

n

g meet the requirements of Proposi-

tion 4.36:

A

n

: Sample x aording to D

n

. Sample z from A(x). Output (x; z).

B

n

: Sample x aording to D

n

. Sample z from B(x). Output (x; z).

The statistial farness of these ensembles will follow from the farness of A(x) and B(x) on

no instanes. The omputational indistinguishability will follow from the omputational indistin-

guishability of A(x) and B(x) on yes instanes, together with the fat that it is hard to distinguish

yes instanes of � from no instanes.

To formalize this intuition, we make some observations whih follow from the fat that �

is hard-on-average (where here and throughout this proof, we write neg(n) to denote negligible

funtions):

1. Pr [D

n

=2 �

Y

[�

N

℄ = neg(n).

2.

�

�

Pr [D

n

2 �

Y

℄�

1

2

�

�

= neg(n) and

�

�

Pr [D

n

2 �

Y

℄�

1

2

�

�

= neg(n).

3. The ensembles fD

Y

n

g

n2N

and fD

N

n

g

n2N

obtained by onditioning D

n

on being a yes or no

instane, respetively, are omputationally indistinguishable.
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Items 1 and 2 hold beause otherwise the trivial algorithm that always outputs yes or the one that

always outputs no would deide � orretly with nonnegligible advantage. Item 3 holds beause a

distinguisher between fD

Y

n

g and fD

N

n

g ould be used to deide � with nonnegligible advantage.

Claim 4.37 kA

n

�B

n

k � 1=2 � neg(n).

Proof of laim: Sine D

n

must produe a no instane of � with probability at least

1=2 � neg(n), kA

n

�B

n

k � (1=2� neg(n)) � (1� 2

�
(n)

) = 1=2� neg(n).

Claim 4.38 fA

n

g

n2N

and fB

n

g

n2N

are omputationally indistinguishable.

Proof of laim: Let M be any probabilisti polynomial-time algorithm. From the

fat that A(x) and B(x) are omputationally indistinguishable for yes instanes, it

follows that

jPr [M(x;A(x)) = 1jx 2 �

Y

℄� Pr [M(x;B(x)) = 1jx 2 �

Y

℄j = neg(n); (3)

where these probabilities (and all those to follow) are taken over x D

n

and the oins

of all algorithms (M , A, and B). By the omputational indistinguishability of fD

Y

n

g

and fD

N

n

g, we also have

jPr [M(x;A(x)) = 1jx 2 �

Y

℄� Pr [M(x;A(x)) = 1jx 2 �

N

℄j = neg(n)

jPr [M(x;B(x)) = 1jx 2 �

Y

℄� Pr [M(x;B(x)) = 1jx 2 �

N

℄j = neg(n):

Combining these with Equation 3, we see that all four onditional probabilities di�er

only by negligible amounts. Therefore,

Pr [M(x;A(x)) = 1℄� Pr [M(x;B(x)) = 1℄

� jPr [M(x;A(x)) = 1jx 2 �

Y

℄� Pr [M(x;B(x)) = 1jx 2 �

Y

℄j

+ jPr [M(x;A(x)) = 1jx 2 �

N

℄� Pr [M(x;B(x)) = 1jx 2 �

N

℄j

+2Pr [x =2 �

Y

[�

N

℄

= neg(n):

This establishes the omputational indistinguishability of fA

n

g and fB

n

g.

Given these laims, the result now follows from Proposition 4.36.

5 Extensions to heating-veri�er zero knowledge

The fous of study in this paper has been the lass of languages (or promise problems) possessing

statistial zero-knowledge proofs against an honest veri�er. However, in ryptographi appliations,

one usually wants the zero-knowledge ondition to hold even against heating veri�er strategies that

deviate arbitrarily from the spei�ed protool. There have been a number of results showing how

to transform proof system whih are statistial zero knowledge against the honest-veri�er into ones

that are statistial zero knowledge against heating veri�er strategies [BMO90, OVY93, Dam93,

DGOW95, GSV98℄. As advoated in [BMO90℄, one an use suh transformations to translate results

like ours about honest-veri�er statistial zero knowledge to to the heating-veri�er de�nition. In
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this setion, we disuss whih of our results apply to the heating-veri�er lass and the appropriate

formulations in eah ase.

Of the transformations mentioned above, the result of [GSV98℄ is the only unonditional and

unrestrited one; all the others use omputational assumptions suh as the existene of one-way

funtions or only apply to a restrited lass of statistial zero-knowledge proofs. Sine most of our

results assert properties of the lass SZK, muh of their translation to the heating-veri�er lass will

immediately follow from [GSV98℄, sine that transformation gives an equality between the honest-

veri�er and heating-veri�er lasses. However, in order to translate results whih assert the existene

of honest-veri�er proof systems with various properties, we must hek that the transformation

preserves those properties. Thus, in one instane, we will use transformation of [BMO90℄ instead,

whih will require making a omplexity assumption.

Now, we give a formal de�nition of heating-veri�er statistial zero knowledge.

De�nition 5.1 An interative protool between a omputationally unbounded prover P and a PPT

veri�er V is said to be a (blak-box) heating-veri�er statistial zero-knowledge proof system for a

promise problem � if there exists a PPT simulator S and a negligible funtion � suh that

1. If x 2 �

Y

, then Pr [(P; V )(x) = aept℄ � 1� (jxj).

2. If x 2 �

N

, then for all P

�

, Pr [(P

�

; V )(x) = aept℄ � s(jxj).

3. For all (even omputationally unbounded) V

�

and all x 2 �

Y

,





S

V

�

(x)�View

P;V

�

(x)





�

�(jxj); where S

V

�

(x) denotes the output distribution of S with orale aess to V

�

.

As usual, �(�) is alled the simulator deviation, (�) the ompleteness error, and s(�) the soundness

error. heating-ver SZK denotes the lass of promise problems possessing heating-veri�er statistial

zero-knowledge proofs.

The above de�nition is more stringent than the original de�nition in [GMR89℄ in several re-

spets. The most important di�erene is that we require simulability for all veri�er strategies, not

just polynomial-time omputable strategies. We also use a blak-box notion of simulation, as intro-

dued by [GO94℄. That is, we say there should be a single simulator whih works for all veri�ers,

given orale aess to that veri�er, whereas the original de�nition in [GMR89℄ only asks that for

every PPT veri�er strategy, there exists a PPT simulator.

14

We also require that the simulator

deviation is bounded by the same negligible funtion for all veri�er strategies, instead of allowing a

di�erent negligible funtion for eah veri�er. Finally, we require that the simulator operate in strit

polynomial time, whereas [GMR89℄ allows expeted polynomial time. The main result of [GSV98℄

follows.

Theorem 5.2 ([GSV98℄) heating-ver SZK = SZK.

Theorem 5.2 is proven by transforming publi-oin statistial zero-knowledge proofs against the

honest veri�er into publi-oin statistial zero-knowledge proofs against heating veri�ers. By

the private- to publi-oin transformation of Okamoto (Theorem 3.10), this suÆes to prove the

theorem.

As one would expet, the onditional results of [BMO90℄, [OVY93℄, and [DGOW95, Part 2℄ do

not meet our strong de�nition of heating-veri�er statistial zero knowledge. In the proof systems

14

The notion of blak-box zero knowledge is needed to make sense of a PPT mahine simulating the behavior of a

omputationally unbounded veri�er strategy.
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that result from their transformations, the zero-knowledge ondition only holds for PPT veri�ers

V

�

, and the simulator deviation an depend on the veri�er V

�

. We will all a proof system meeting

this weaker requirement an heating-PPT-veri�er statistial zero-knowledge proof system.

Now we examine whih of our results are preserved under these two transformations.

The Completeness Theorem. Of ourse, sine Theorem 5.2 gives an equality of lasses, the

Completeness Theorem extends to the heating-veri�er lass:

Proposition 5.3 Statistial Differene is omplete for heating-ver SZK.

We now look at the appliations of the Completeness Theorem, beginning with our results on

eÆient SZK proof systems in Corollary 4.2.

Simulator deviation and seurity parametrization. Both the transformations of [Oka00℄

and [GSV98℄ an be made to preserve a simulator deviation of 2

�
(n)

. Applying these transfor-

mations to Corollary 4.2, we see that every language in SZK has a heating-veri�er statistial

zero-knowledge proof with simulator deviation 2

�
(n)

.

We an also onsider a seurity-parametrized variant of heating-veri�er zero knowledge, analo-

gous to the honest-veri�er ase (De�nition 4.1): the protool takes an extra parameter k (in unary)

and the zero-knowledge ondition demands that, for any veri�er, the simulator deviation is less

than �(k) for some negligible funtion �. The transformations of [Oka00, GSV98℄ both preserve

the seurity-parametrization property, so we obtain:

Proposition 5.4 Any promise problem in SZK has a heating-veri�er seurity-parametrized sta-

tistial zero-knowledge proof with simulator deviation 2

�k

.

Message omplexity. Corollary 4.2 shows that every promise problem in SZK has a 2-message

honest-veri�er statistial zero-knowledge proof. Although the transformation of [GSV98℄ only mul-

tiplies the number of messages by a fator of two when applied to publi-oin proof systems, the

private- to publi-oin transformation of [Oka00℄ inreases the number of messages to polynomial

even when applied to a onstant-message protool. However, if one is willing to make a ompu-

tational assumption, then the transformation of [BMO90℄ applies and this transformation does

preserve the message omplexity up to a onstant fator.

Proposition 5.5 If the Disrete Logarithm problem is hard,

15

then every promise problem

in SZK has a onstant-message heating-PPT-verifer statistial zero-knowledge proof system with

soundness and ompleteness errors 2

�n

.

Proof: Let � be any promise problem in SZK. From Corollary 4.2, we know that � has a

2-message (honest-veri�er) statistial zero-knowledge proof system. Repeating this protool in par-

allel O(n) times gives a onstant-message proof system with soundness and ompleteness errors

2

�n

. Note that parallel repetition preserves honest-veri�er statistial zero knowledge. Now, apply

the transformation of [BMO90℄, whih yields a onstant-message heating-veri�er statistial zero-

knowledge proof system for �, under the assumption that the disrete logarithm is hard. This

transformation only inreases the number of messages by a onstant fator and preserves the om-

pleteness and soundness errors.

15

See [BMO90℄ for a preise formulation of this assumption.
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It is still open whether one an unonditionally prove that all of SZK has onstant-message

heating-veri�er proofs. We note that Goldreih and Krawyzk [GK96℄ have shown some limitations

on the message omplexity of heating-veri�er zero-knowledge proofs (for problems outside BPP): If

the proof system has negligible soundness error and is zero knowledge under blak-box simulation,

then it annot onsist of fewer than 4 messages. If, in addition, it is publi oin, then it annot

onsist of any onstant number of messages.

Communiation. Corollary 4.2 shows that every promise problem in SZK has a very ommuniation-

eÆient honest-veri�er statistial zero-knowledge proof, in that the prover only sends one bit to

ahieve ompleteness error 1 � 2

�n

and soundness error 1=2 + 2

�n

. Unfortunately, none of the

known transformations to heating-veri�er statistial zero knowledge preserve the amount of om-

muniation, so this result does not translate to heating-veri�er statistial zero knowledge.

Deterministi Prover. We note that the fat that the prover is deterministi in Corollary 4.2

annot extend to heating-ver SZK (unless SZK = BPP) [GO94℄.

Closure properties. Sine Theorem 5.2 gives an equality of lasses, any losure properties of

the honest-veri�er lass (namely, Corollaries 4.3, 4.4, and 4.14, and Theorem 4.9) also hold for the

heating-veri�er lasss. So we immediately obtain the following:

Proposition 5.6 heating-ver SZK is losed under Karp redutions, omplement, �(�), and NC

1

truth-table redutions.

Knowledge omplexity. Cheating-veri�er analogues of all the knowledge omplexity lasses

disussed in Setion 4.3 an be de�ned just as we have done for statistial zero knowledge. We

adopt the same onventions as in De�nition 5.1 | blak-box strit polynomial-time simulation for

all (not just PPT) veri�er strategies, with the simulator deviation a negligible funtion independent

of the veri�er. We denote the heating-veri�er variant of a lass C with heating-ver C.

First, we show that honest-veri�er and heating-veri�er statistial knowledge omplexity in the

hint sense oinide. To prove this, we observe one diretion of the haraterization of knowledge

omplexity in the hint sense given by Lemma 4.16 also holds for the heating-veri�er lasses:

Lemma 5.7 Let � be any language and let k(n) be any polynomially bounded funtion. Suppose

there exists a promise problem � 2 heating-ver SZK (resp., heating-ver PZK) suh that

1. x 2 �

Y

) there exists a suh that jaj = k(jxj) and (x; a) 2 �

Y

, and

2. x 2 �

N

L) for all a, (x; a) 2 �

N

.

Then � 2 heating-ver SKC

hint

(k(n)) (resp., heating-ver PKC

hint

(k(n)))

The proof of Lemma 5.7 is the same as the orresponding diretion of Lemma 4.16. The reason

the other diretion of Lemma 4.16 does not immediately apply to the heating-veri�er ase is that

the hint funtion may be di�erent for eah veri�er. However, it will follow from the following:

Proposition 5.8 For every polynomially-bounded funtion k(n),

SKC

hint

(k(n)) = heating-ver SKC

hint

(k(n)):
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Proof: Clearly, heating-ver SKC

hint

(k(n)) � SKC

hint

(k(n)). Now suppose � is any language in

SKC

hint

(k(n)), and let � 2 SZK be the promise problem guaranteed by Lemma 4.16. Then, by The-

orem 5.2, � 2 heating-ver SZK. Applying Lemma 5.7, we see that � 2 heating-ver SKC

hint

(k(n)).

Observe that we have atually proved something stronger: if � 2 SKC

hint

(k(n)), then there

is an proof system for � with heating-veri�er statistial knowledge omplexity k(n) for whih

the same hint funtion an be used for every veri�er. Also note that analogous results for the

other variants of knowledge omplexity do not appear to follow immediately from the fat that

SZK = heating-ver SZK.

Given Proposition 5.8, it follows immediately that Theorem 4.15 also holds for the heating-

veri�er lasses:

Proposition 5.9 For any polynomially bounded funtion k(n),

heating-ver SKC

hint

(k(n) + log n) = heating-ver SKC

hint

(k(n)):

In ontrast, we do not know whether our results on the perfet knowledge omplexity of SZK

hold for the analogous heating-veri�er lasses. To apply the same approah, one would have to

analyze the (heating-veri�er) perfet knowledge omplexity of the protools obtained by performing

the transformations of [Oka00℄ and [GSV98℄ on the protool for SD. These transformations ould

oneivably inrease the perfet knowledge omplexity dramatially.

Hard-on-average problems and one-way funtions. These results are stronger for the

honest-veri�er lass, beause the existene of a hard-on-average problem in the heating-veri�er

lass implies the existene of one in the heating-veri�er lass (even without Theorem 5.2).
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A The Statistial Di�erene Metri

Proof of Fat 2.1: For any set S � D,
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:

Equality is ahieved by taking S = fx : Pr [X = x℄ > Pr [Y = x℄g.

Proof of Fat 2.3:

k(X

1

;X

2

)� (Y

1

; Y

2

)k � k(X

1

;X

2

)� (Y

1

;X

2

)k + k(Y

1

;X

2

)� (Y

1

; Y

2

)k

=

1

2

jX

1


X

2

� Y

1


X

2

j

1

+

1

2

jY

1


X

2

� Y

1


 Y

2

j

1

=

1

2

j(X

1

� Y

1

)
X

2

j

1

+

1

2

jY

1


 (X

2

� Y

2

)j

1

=

1

2

jX

1

� Y

1

j

1

� jX

2

j

1

+

1

2

jY

1

j

1

� jX

2

� Y

2

j

1

= kX

1

� Y

1

k+ kX

2

� Y

2

k

Proof of Fat 2.4: Let A = (f;R) be any randomized proedure. Then, for any set S � F ,

jPr [A(X) 2 S℄� Pr [A(Y ) 2 S℄j = jPr [f(X 
R) 2 S℄� Pr [f(Y 
R) 2 S℄j

=

�

�

Pr

�

X 
R 2 f

�1

(S)

�

� Pr

�

Y 
R 2 f

�1

(S)

�

�

�

� kX 
R� Y 
Rk

� kX � Y k+ kR�Rk (by Fat 2.3)

= kX � Y k:

Taking the maximum over all sets S ompletes the proof.

Proof of Fat 2.5: Let T � D be the set of x's for whih kX

2

j

X

1

=x

� Y

2

j

Y

1

=x

k < Æ. Now, let S

be an arbitrary subset of D �E and, for every x 2 D, de�ne S

x

= fy 2 E : (x; y) 2 Sg. Then,

Pr [X 2 S℄ � Pr [X

1

=2 T ℄ +

X

x2T

Pr [X

2

2 S

x

jX

1

= x℄ � Pr [X

1

= x℄

< �+

X

x2T

(Pr [Y

2

2 S

x

jY

1

= x℄ + Æ) � Pr [Y

1

= x℄

� �+ Æ + Pr [Y 2 S℄ :
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By symmetry, we also have Pr [Y 2 S℄ < �+Æ+Pr [X 2 S℄. Sine S was arbitrary, kX�Y k < �+Æ.

Proof of Fat 2.6: Let S = fx : (1�

p

�) Pr [X = x℄ � Pr [Y = x℄g, i.e. the set of x's for whih

the left-hand inequality in Fat 2.6 is violated. Then,

Pr [Y 2 S℄ �

�

1�

p

�

�

Pr [X 2 S℄

= Pr [X 2 S℄�

p

� � Pr [X 2 S℄ :

Thus,

p

� � Pr [X 2 S℄ � kX � Y k < �,so we must have Pr [X 2 S℄ <

p

�. A similar argument show

that the right-hand inequality in Fat 2.6 is violated with probability less than

p

�:

B A Generi Complete Problem for PZK

In this setion, we show how to obtain a omplete promise problem for PZK diretly from the

de�nition of the lass. However, in ontrast to Statistial Differene, this problem will be

essentially a restatement of the de�nition of the lass and therefore of little use.

The omplete promise problem for PZK is PZK-Generi, whih we now de�ne. An instane of

PZK-Generi is a quadruple (V; S; x; 1

t

), where V is a desription of an interative probabilisti

Turing mahine and S is a desription of a (noninterative) probabilisti Turing mahine. A yes

instane is suh a quadruple for whih there exists a prover strategy P suh that

1. The interation between P and V on x takes at most t steps (inluding the omputation time

for V ) and V aepts in this interation.

2. The running time of S on input x is at most t.

3. S outputs fail with probability at most 1=2, and onditioned on not failing, the output

distribution of S is idential to V 's view of the interation with P on x.

A no instane is a quadruple suh that for all prover strategies P ,

1. The interation between P and V on x takes at most t steps (inluding the omputation time

for V ) and V rejets in this interation.

2. The running time of S on input x is at most t.

Proposition B.1 PZK-Generi is omplete for PZK.

Proof: First we show that every promise problem � in PZK redues to PZK-Generi. Let (P; V )

be the perfet zero-knowledge proof system for � with simulator S. Let t(n) be a (polynomial)

upper bound on both the running time of S and the number of steps of the interation of P and V

on inputs of length n. Then

x 7! (V; S; x; 1

t(jxj)

)

is a polynomial-time redution from � to PZK-Generi.

Now we argue that PZK-Generi 2 PZK. Consider the following desriptions of a veri�er V ,

a prover P , and a simulator S:

V (V; S; x; 1

t

): When interating with any mahine, simulate V on input x.
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P (V; S; x; 1

t

): Exhaustively searh for a prover strategy P for whih V 's view of (P; V )(x) is iden-

tial to the output distribution of S(x) (onditioned on S(x) 6= fail.) If one exists, follow

that strategy, otherwise output fail.

16

S(V; S; x; 1

t

): Simulate S on input x.

It is easy to see that these de�nitions provide a perfet zero-knowledge proof system for

PZK-Generi.

The problem with extending this example to SZK is Condition 3 for yes instanes. \Idential"

needs to be replaed by \negligible statistial di�erene," but it is not lear what negligible funtion

to put there. We do not know how to get around this diÆulty without using our Completeness

Theorem, whih implies that every problem in SZK has a statistial zero-knowledge proof with the

same simulator deviation 2

�n

(f., Corollary 4.2).

17

Another observation worth mentioning, pointed out to us by Bellare, Goldreih, and Sudan,

is that PZK-Generi an be modi�ed to obtain omplete promise problems for heating-ver PZK

(as long as we restrit to \blak-box" simulation) and also the various forms of PKC.

C An Example for Graph Isomorphism

For illustrative purposes, here we expliitly desribe what happens when the redution to and

proof system for Statistial Differene are applied to the well-known publi-oin perfet zero-

knowledge proof system for Graph Isomorphism [GMW91℄:

Perfet zero-knowledge proof system for Graph Isomorphism.

Input: (G

0

; G

1

).

1. P sends V a random isomorphi opy H of G

0

.

2. V piks b 2 f0; 1g at random and sends it to P .

3. P sends V a random isomorphism � between G

b

and H, if one exists.

4. V heks that �G

b

= H.

Simulator S, on input (G

0

; G

1

):

1. Pik random b 2 f0; 1g and a random permutation �.

2. Output (�G

b

; b; �).

Notie that the onversations output by S always make V aept.

If the redution to SD from the proof of Lemma 3.8 is applied to the above protool, the fol-

lowing distributions are obtained:

16

Alternatively, P an at as the simulation-based prover (see Setion 3.5).

17

Note that the diÆulty annot be solved by the result of Bellare [Bel97℄, whih states that any ountable set of

negligible funtions is \dominated" by a single negligible funtion. The reason is that there are unountably many

problems in the promise-lass SZK.
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A

0

(G

0

; G

1

): Always output 1.

B

0

(G

0

; G

1

): Always output 1.

A

1

(G

0

; G

1

): Output (�G

b

; b) for a random permutation � and b 2 f0; 1g hosen at random.

B

1

(G

0

; G

1

): Output (�G

b

; ) for a random permutation � and b and  hosen uniformly and inde-

pendently from f0; 1g.

Thus, kA

0

(x)�B

0

(x)k always equals 0. kA

1

(x)�B

1

(x)k is easily seen to be 0 if G

0

�

=

G

1

and 1=2

if G

0

6

�

=

G

1

. For the rest of this setion, we ignore A

0

and B

0

sine they are irrelevant.

If we now apply the protool for SD from Setion 3.3 to the distributions A

1

and B

1

(without

�rst applying the Polarization Lemma), we obtain the following proof system (P

0

; V

0

) for Graph

Nonisomorphism:

1. V

0

piks a random bit d 2 f0; 1g. If d = 0, V

0

hooses a random bit b 2 f0; 1g and a random

permutation � and sends (�G

b

; b) to P

0

. If d = 1, V

0

hooses random bits b;  2 f0; 1g and a

random permutation � and sends (�G

b

; ) to P

0

.

2. P

0

reeives message (H; b) from V

0

. P attempts to guess d as follows: If H is isomorphi to

G

b

, then P

0

guesses 0, else P

0

guesses 1.

3. V

0

aepts if the P

0

guesses d orretly.

Now, if G

0

is not isomorphi to G

1

, then P

0

will guess orretly with probability 3/4. However,

if G

0

is isomorphi to G

1

, then no prover an guess orretly with probability greater than 1/2. The

above protool is of the same spirit as the standard Graph Nonisomorphism protool [GMW91℄.

In both ases, the veri�er randomly permutes one of the graphs to obtain a graph H and in order

for the prover to sueed with probability greater than 1/2, the prover needs to be able to tell

whih graph H ame from.
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