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Abstra
t

We present the �rst 
omplete problem for SZK, the 
lass of (promise) problems possessing statisti
al

zero-knowledge proofs (against an honest veri�er). The problem, 
alled Statisti
al Differen
e,

is to de
ide whether two eÆ
iently samplable distributions are either statisti
ally 
lose or far apart.

This gives a new 
hara
terization of SZK that makes no referen
e to intera
tion or zero knowledge.

We propose the use of 
omplete problems to unify and extend the study of statisti
al zero knowl-

edge. To this end, we examine several 
onsequen
es of our Completeness Theorem and its proof,

su
h as:

� A way to make every (honest-veri�er) statisti
al zero-knowledge proof very 
ommuni
ation

eÆ
ient, with the prover sending only one bit to the veri�er (to a
hieve soundness error 1=2).

� Simpler proofs of many of the previously known results about statisti
al zero knowledge, su
h

as the Fortnow and Aiello{H�astad upper bounds on the 
omplexity of SZK and Okamoto's

result that SZK is 
losed under 
omplement.

� Strong 
losure properties of SZK whi
h amount to 
onstru
ting statisti
al zero-knowledge

proofs for 
omplex assertions built out of simpler assertions already shown to be in SZK.

� New results about the various measures of \knowledge 
omplexity," in
luding a 
ollapse in the

hierar
hy 
orresponding to knowledge 
omplexity in the \hint" sense.

� Algorithms for manipulating the statisti
al di�eren
e between eÆ
iently samplable distribu-

tions, in
luding transformations whi
h \polarize" and \reverse" the statisti
al relationship

between a pair of distributions.

�

Preliminary versions of this work appeared in the pro
eedings of the 38th Annual IEEE Symposium on the

Foundations of Computer S
ien
e [SV97℄ and the DIMACS Workshop on Randomization Methods in Algorithm

Design [SV99℄.

y

Department of Computer S
ien
e, Prin
eton University, Prin
eton, NJ 08544. Email: sahai�
s.prin
eton.edu.

URL: http://www.
s.prin
eton.edu/~sahai. This work was done when the author was at the MIT Laboratory for

Computer S
ien
e, supported by a DOD NDSEG Graduate Fellowship and partially by DARPA grant DABT63-96-

C-0018.

z

Division of Engineering and Applied S
ien
es, Harvard University, Cambridge, MA 02138. Email:

salil�deas.harvard.edu. URL: http://deas.harvard.edu/~salil. This work was done when the author was in

the MIT Department of Mathemati
s, supported by a DOD NDSEG Graduate Fellowship and partially by DARPA

grant DABT63-96-C-0018.



Contents

1 Introdu
tion 1

1.1 Statisti
al zero knowledge . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 The 
omplete problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Consequen
es . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Subsequent work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Preliminaries 6

2.1 Promise problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Probability distributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 The statisti
al di�eren
e metri
 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4 Zero-knowledge proofs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 The Completeness Theorem 10

3.1 The 
omplete problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 A polarization lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 A proto
ol for Statisti
al Differen
e . . . . . . . . . . . . . . . . . . . . . . . . 14

3.4 SZK-hardness of SD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.5 Proof of Lemma 3.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Appli
ations 20

4.1 EÆ
ient statisti
al zero-knowledge proofs . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 Closure properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.3 Knowledge 
omplexity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.4 Reversing statisti
al di�eren
e . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.5 Weak-SZK and expe
ted polynomial-time simulators . . . . . . . . . . . . . . . . . . 33

4.6 Perfe
t and 
omputational zero knowledge . . . . . . . . . . . . . . . . . . . . . . . . 35

4.7 Hard-on-average problems and one-way fun
tions . . . . . . . . . . . . . . . . . . . . 37

5 Extensions to 
heating-veri�er zero knowledge 39

A The Statisti
al Di�eren
e Metri
 48

B A Generi
 Complete Problem for PZK 49

C An Example for Graph Isomorphism 50



1 Introdu
tion

A revolution in theoreti
al 
omputer s
ien
e o

urred when it was dis
overed that NP has 
om-

plete problems [Coo71, Lev73, Kar72℄. Most often, these theorems and other 
ompleteness results

are viewed as negative statements, as they provide eviden
e of a problem's intra
tability. These

same results, viewed as positive statements, enable one to study an entire 
lass of problems by

fo
using on a single problem. For example, all languages in NP were shown to have 
omputational

zero-knowledge proofs when su
h a proof was exhibited for Graph 3-
olorability [GMW91℄.

Similarly, the result that IP = PSPACE was shown by giving an intera
tive proof for Quantified

Boolean Formula, whi
h is 
omplete for PSPACE [LFKN92, Sha92℄. More re
ently, the 
ele-

brated PCP theorem 
hara
terizing NP was proven by designing eÆ
ient probabilisti
ally 
he
kable

proofs for a spe
i�
 NP-
omplete language [ALM

+

98, AS98℄.

In this paper, we present a 
omplete problem for SZK, the 
lass of promise problems

1

possessing

statisti
al zero-knowledge proofs (against an honest veri�er). This problem provides a new and

simple 
hara
terization of SZK | one whi
h makes no referen
e to intera
tion or zero knowledge.

We propose the use of 
omplete problems as a tool to unify and extend the study of statisti
al zero

knowledge. To this end, we use our 
omplete problem to both establish a number of new results

about SZK and easily dedu
e nearly all previous results about SZK.

1.1 Statisti
al zero knowledge

Zero knowledge was introdu
ed in the seminal paper of Goldwasser, Mi
ali, and Ra
ko� [GMR89℄

within the 
ontext of their new notion of intera
tive proof systems. Informally, an intera
tive proof

is a proto
ol in whi
h a 
omputationally unbounded prover P attempts to 
onvin
e a probabilisti


polynomial-time veri�er V of an assertion, namely that a string x is a yes instan
e of some (promise)

problem. The zero knowledge property requires that, during this pro
ess, the veri�er learns nothing

beyond the validity of the assertion being proven! To formalize this seemingly impossible notion,

two probability distributions are 
onsidered:

1. The intera
tion of P and V from V 's point of view.

2. The output of a probabilisti
 polynomial-time ma
hine not intera
ting with anyone, 
alled

the simulator, on input x.

An intera
tive proof system (P; V ) is said to be zero knowledge if, for every yes instan
e x, the

two distributions above are \alike." Intuitively, the veri�er gains no knowledge by intera
ting

with the prover ex
ept that x is a yes instan
e, sin
e it 
ould have run the simulator instead.

The spe
i�
 variants of zero knowledge di�er by the interpretation given to \alike." The most

stri
t interpretation, leading to perfe
t zero knowledge, requires that the distributions be identi
al.

A slightly relaxed interpretation, leading to statisti
al zero knowledge (sometimes 
alled almost

perfe
t zero knowledge), requires that the distributions have negligible statisti
al di�eren
e from

one another. The most liberal interpretation, leading to 
omputational zero knowledge, requires

that samples from the two distributions be indistinguishable by any polynomial-time ma
hine.

In this work, we fo
us on the 
lass of problems possessing statisti
al zero-knowledge proof

systems, whi
h we denote SZK. We remark that we are restri
ting our attention to zero-knowledge

proofs against an honest veri�er, i.e. the veri�er that follows the spe
i�ed proto
ol. In 
ryptographi


1

A promise problem is a de
ision problem given by a pair of disjoint sets of strings, 
orresponding to yes and no

instan
es. In 
ontrast to languages, there may be strings whi
h are neither yes instan
es nor no instan
es. A formal

de�nition is given in Se
tion 2.
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appli
ations, one usually wants the zero-knowledge 
ondition to hold for all (even 
heating) veri�er

strategies. However, subsequent to this work, it has been shown that one 
an transform any proof

system that is statisti
al zero knowledge against an honest veri�er into one that is statisti
al zero

knowledge against all veri�ers [GSV98℄, so restri
ting to honest veri�ers 
auses no loss of generality.

SZK 
ontains a number of important problems, in
ludingGraph Nonisomorphism [GMW91℄,

a problem whi
h is not known to be in NP. It also 
ontains problems with 
ryptographi
 appli-


ation and signi�
an
e that are believed to be hard on average, su
h as Quadrati
 Residuos-

ity (and its 
omplement) [GMR89℄, a problem equivalent to the Dis
rete Logarithm prob-

lem [GK93℄, and approximate versions of the Shortest Ve
tor and Closest Ve
tor problems

in latti
es [GG00℄. At the same time, the statisti
al zero knowledge property has several strong


onsequen
es. Unlike a 
omputational zero-knowledge proto
ol, a statisti
al zero-knowledge pro-

to
ol remains zero knowledge even against a 
omputationally unbounded veri�er. In addition,

a problem whi
h has a statisti
al zero-knowledge proof must lie low in the polynomial-time hi-

erar
hy. In fa
t, su
h a problem 
annot be NP-
omplete unless the polynomial-time hierar
hy


ollapses [For89, AH91, BHZ87℄. Be
ause SZK 
ontains problems believed to be hard yet 
annot


ontain NP-
omplete problems, it holds an intriguing position in 
omplexity theory.

1.2 The 
omplete problem

The promise problem we show to be 
omplete for SZK is Statisti
al Differen
e. An instan
e of

Statisti
al Differen
e 
onsists of a pair of probability distributions, spe
i�ed by 
ir
uits whi
h

sample from them. Roughly speaking, the problem is to de
ide whether the distributions de�ned

by the two 
ir
uits are statisti
ally 
lose or far apart. (The gap between `
lose' and `far apart' is

what makes it a promise problem and not just a language.) Our main theorem is that Statisti
al

Differen
e is 
omplete for SZK. This Completeness Theorem gives a new 
hara
terization of

SZK. Informally, it says that the assertions that 
an be proven in statisti
al zero knowledge are

exa
tly those that 
an be 
ast as de
iding whether a pair of eÆ
iently samplable distributions are

statisti
ally 
lose or far apart.

The starting point for our proof of the Completeness Theorem is a powerful theorem of Okamoto [Oka00℄,

whi
h states that all languages in SZK have publi
-
oin (also known as Arthur-Merlin [BM88℄) sta-

tisti
al zero-knowledge proofs. Using the approa
h pioneered by Fortnow [For89℄, we analyze the

simulator of su
h a proof system and show that statisti
al properties of the simulator's output dis-

tribution 
an be used to distinguish between yes and no instan
es of the problem in 
onsideration.

Our key new observation is that, for a publi
-
oin proof system, these statisti
al properties 
an

be 
aptured by the statisti
al di�eren
e between eÆ
iently samplable distributions. We thereby


on
lude that every problem in SZK redu
es to Statisti
al Differen
e.

To show that Statisti
al Differen
e is in SZK, we exhibit a simple 2-message proof system

for it, generalizing the well-known proof systems for Quadrati
 Nonresiduosity [GMR89℄ and

Graph Nonisomorphism [GMW91℄. One ingredient in our proof system is a new \Polarization

Lemma" for statisti
al di�eren
e, whi
h may be of independent interest. Roughly speaking, this

lemma gives an eÆ
ient transformation whi
h takes as input a pair of probability distributions

(spe
i�ed by 
ir
uits whi
h sample from them) and produ
es a new pair of distributions su
h that

if the original pair is statisti
ally 
lose (resp., far apart), the new pair is statisti
ally mu
h 
loser

(resp., mu
h further apart).
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1.3 Consequen
es

We propose using 
omplete problems, su
h as Statisti
al Differen
e, to unify and extend

the study of SZK. We also use the 
onne
tion between SZK and statisti
al properties of samplable

distributions to establish new te
hniques for manipulating su
h distributions. The results we obtain

along these lines are summarized below.

The relationship between SZK and BPP. Our 
omplete problem illustrates that statisti
al

zero knowledge is a natural generalization of BPP. In the de�nition of Statisti
al Differen
e ,

the 
ir
uits 
an output strings of any length. If we restri
t the 
ir
uits to have output of logarithmi


length, the resulting problem is easily shown to be 
omplete for BPP.

EÆ
ient SZK proof systems. The zero-knowledge proof system we exhibit for Statisti
al

Differen
e has many attra
tive properties (whi
h we des
ribe shortly); by the Completeness

Theorem it follows that every problem in SZK also has a proof system with su
h properties. First,

the proto
ol is very 
ommuni
ation eÆ
ient | only two messages are ex
hanged between the prover

and veri�er, and the prover only sends one bit to the veri�er (to a
hieve soundness error 1=2). In

addition, we will show that when the input is a yes instan
e, the veri�er's view of the intera
tion


an be simulated by a polynomial-time simulator with exponentially small statisti
al deviation.

Moreover, we will show that this simulator deviation 
an be made to shrink exponentially fast as a

fun
tion of a separate \se
urity parameter" whi
h 
an be varied independently from the assertion

being proven. This is in 
ontrast to the de�nition of SZK, whi
h only requires that the veri�er be

able simulate the intera
tion with statisti
al deviation 1=n

!(1)

, where n is the the length of the

assertion being proven.

Closure properties. Using the 
omplete problem, we demonstrate that SZK has some very

strong 
losure properties. These 
an be informally des
ribed as asserting the existen
e of statisti
al

zero-knowledge proofs for 
omplex assertions built out simpler assertions already known to be in

SZK. These 
omplex assertions take the form of arbitrary propositional formulae whose atoms

are statements about membership in some problem in SZK, and the statisti
al zero-knowledge

proofs we exhibit have 
omplexity whi
h is polynomial in the size of these formulae. These results

generalize earlier ones of De Santis, Di Cres
enzo, Persiano, and Yung [DDPY94℄ and Damg�ard and

Cramer [DC96℄, whi
h held for monotone formulae and various sub
lasses of SZK, su
h as random

self-redu
ible problems.

By the Completeness Theorem, the 
losure properties we establish are equivalent to the ex-

isten
e of eÆ
ient transformations that manipulate the statisti
al di�eren
e between samplable

distributions in various ways. Indeed, it is by exhibiting su
h transformations that we prove the


losure properties of SZK. The transformations we give (and their appli
ation to 
losure properties)

are inspired by the te
hniques of De Santis, Di Cres
enzo, Persiano, and Yung [DDPY94℄.

Simpler proofs of previous results. Many of the previous results about SZK 
an be dedu
ed

as immediate 
orollaries of our Completeness Theorem and its proof. For example, the result of

Okamoto [Oka00℄ that SZK is 
losed under 
omplement follows dire
tly from our proof of the Com-

pleteness Theorem. Then, using the fa
t that our proof system for Statisti
al Differen
e is a


onstant-round one, we dedu
e that SZK � AM \ 
o-AM, as originally proven by Fortnow [For89℄

and Aiello and H�astad [AH91℄. In addition, the result of Ostrovsky [Ost91℄ that one-way fun
tions

3



exist if SZK 
ontains a hard-on-average problem follows immediately by 
ombining our Complete-

ness Theorem with a result of Goldrei
h [Gol90℄ on 
omputational indistinguishability.

Knowledge 
omplexity. In addition to introdu
ing zero-knowledge proofs, the 
onferen
e ver-

sion of the paper of Goldwasser, Mi
ali, and Ra
ko� [GMR89℄ proposed a more general idea of

measuring the amount of knowledge leaked in an intera
tive proof. Goldrei
h and Petrank [GP99℄

suggested several de�nitions of knowledge 
omplexity to a

omplish this, and relationships between

these various types of knowledge 
omplexity were explored in [GP99, BP92, GOP98, ABV95, PT96℄.

Loosely speaking, the de�nitions of (statisti
al) knowledge 
omplexity measure the \amount of

help" a veri�er needs to generate a distribution that is statisti
ally 
lose to its real intera
tion with

the prover. There are several ways of formalizing the \amount of help" the veri�er needs and ea
h

leads to a di�erent notion of knowledge 
omplexity.

Our work on SZK turns out to have 
onsequen
es for (non-zero) knowledge 
omplexity as well.

First, we show that for the weakest of the various measures of knowledge 
omplexity, namely statis-

ti
al knowledge 
omplexity in the \hint sense", the 
orresponding hierar
hy 
ollapses by logarithmi


additive fa
tors at all levels, and in parti
ular, knowledge 
omplexity logn equals statisti
al zero

knowledge. No 
ollapse was previously known for any of the variants of knowledge 
omplexity

suggested in [GP99℄. Our results are obtained by 
ombining our results on SZK with a general

lemma relating knowledge 
omplexity in the hint sense to zero knowledge for promise problems.

As with zero knowledge, perfe
t knowledge 
omplexity 
an also be de�ned. This measures the

number of bits of help the veri�er needs to simulate the intera
tion exa
tly, rather than statisti
ally


losely. Using our 
omplete problem for SZK, we improve some results of Aiello, Bellare, and

Venkatesan [ABV95℄ on the perfe
t knowledge 
omplexity of statisti
al zero knowledge.

Reversing statisti
al di�eren
e. One interesting result that follows from the 
ompleteness of

Statisti
al Differen
e and the 
losure of SZK under 
omplement is the existen
e of an eÆ
ient

mapping whi
h \reverses" statisti
al di�eren
e. That is, for every pair of eÆ
iently samplable

distributions, we 
an 
onstru
t another pair of eÆ
iently samplable distributions su
h that when

the former are statisti
ally 
lose, the latter are statisti
ally far apart, and when the former are far

apart, the latter are 
lose.

This motivated us to sear
h for a more expli
it des
ription of su
h a transformation. By

extra
ting ideas from the work of Okamoto [Oka00℄ and our proof of the Completeness Theorem,

we have obtained su
h a des
ription (whi
h we give in Se
tion 4.4).

Weak SZK and expe
ted polynomial-time simulators. The original de�nition of SZK in

[GMR89℄ allows the simulator to run in expe
ted polynomial time, whereas we insist on stri
t

polynomial time, following [Gol95℄. A
tually, our proof of the Completeness Theorem shows that

the two de�nitions are equivalent for publi
-
oin proof systems. That is, if a problem possesses a

publi
-
oin SZK proof system with an expe
ted polynomial-time simulator, then it also possesses

an SZK proof system with a stri
t polynomial-time simulator (whi
h 
an be made publi
 
oin by

[Oka00℄). In fa
t, the equivalen
e extends to an even weaker de�nition of SZK, in whi
h it is only

required that for every polynomial p(n), there exists a simulator a
hieving simulator deviation

1=p(n).

Perfe
t and 
omputational zero knowledge. Our te
hniques 
an also be used to analyze

publi
-
oin perfe
t and 
omputational zero-knowledge proofs. Although we do not obtain 
om-

plete problems in these 
ases, we do obtain some novel insights into the 
orresponding 
omplexity

4




lasses. Spe
i�
ally, in Se
tion 4.6 we show that every problem possessing a publi
-
oin perfe
t

zero-knowledge proof (essentially) redu
es to a restri
ted version of Statisti
al Differen
e.

We also show that for any problem possessing a publi
-
oin 
omputational zero-knowledge proof,

there exist ensembles of samplable distributions indexed by instan
es of the problem su
h that on

yes instan
es, the distributions are 
omputationally indistinguishable and on no instan
es, the

distributions are statisti
ally far apart.

Cheating-veri�er zero knowledge. While in this paper we primarily fo
us on honest-veri�er

statisti
al zero knowledge, there have been a number of works examining \
heating-veri�er" statis-

ti
al zero knowledge, and in parti
ular relating the honest and 
heating-veri�er de�nitions. Some

of these works exhibited transformations from honest-veri�er SZK proofs to 
heating-veri�er ones

under (su

essively weaker) 
omplexity assumptions ([BMO90℄, [OVY93℄, and [DGOW95, Part

2℄), and others gave un
onditional transformations for restri
ted sub
lasses of SZK ([Dam93℄ and

[DGOW95, Part 1℄). Finally, subsequent to our paper, it was proven in [GSV98℄ that honest-veri�er

and 
heating-veri�er SZK are the equal, un
onditionally and with no restri
tions.

Following the paradigm advo
ated in [BMO90℄, we use the above transformations to translate

our results about honest-veri�er SZK, namely the Completeness Theorem and its 
orollaries, to the


heating-veri�er 
lass. In Se
tion 5, we pre
isely state the results thereby obtained for 
heating-

veri�er statisti
al zero knowledge.

1.4 Subsequent work

Subsequent to the 
onferen
e version of this paper [SV97℄, there have a been a number of other

works improving our understanding of SZK, many of whi
h make use of the 
omplete problem

methodology advo
ated here. As mentioned above, Goldrei
h, Sahai, and Vadhan [GSV98℄ show

that honest-veri�er statisti
al zero knowledge equals 
heating-veri�er statisti
al zero knowledge.

Goldrei
h and Vadhan [GV99℄ use the 
omplete problem methodology to give a simpler proof of

Okamoto's theorem that private-
oin SZK equals publi
-
oin SZK (on whi
h our work relies). In

the pro
ess, they exhibit another 
omplete problem for SZK, 
alled Entropy Differen
e, whi
h

amounts to de
iding whi
h of two given distributions (spe
i�ed by 
ir
uits whi
h sample from them)

has noti
eably higher entropy than the other. Di Cres
enzo, Sakurai, and Yung [DSY00℄ 
onsider

two variants of (honest-veri�er) statisti
al zero-knowledge proofs, namely \proofs of de
ision power"

and \proofs of de
ision", and exhibit su
h proof systems for all of SZK. Their 
onstru
tion makes

use of the 
omplete problems for SZK given here and in [GV99℄ and spe
ial properties of their proof

systems.

De Santis, Di Cres
enzo, Persiano and Yung [DDPY98℄ extend the use of 
omplete problems to

study \nonintera
tive" statisti
al zero knowledge; they exhibit a 
omplete problem for the 
orre-

sponding 
omplexity 
lass NISZK and use it to prove some general results about the 
lass. Goldrei
h,

Sahai, and Vadhan [GSV99℄ exhibit two more 
omplete problems for NISZK. These problems are

natural restri
tions of the 
omplete problems for SZK given here and in [GV99℄, and thus they are

able to use the 
omplete problems to relate SZK and NISZK. Gutfreund and Ben-Or [GB00℄ exam-

ine weaker models of nonintera
tive zero knowledge proofs, and, using our 
omplete problem and

reversal mapping, show that every problem in SZK has a nonintera
tive statisti
al zero-knowledge

proof in one of their models.

Finally, Vadhan [Vad00℄ examines the blow-up in the prover's 
omplexity in
urred by trans-

formations from private-
oin proof systems to publi
-
oin proof systems, su
h as those in [GS89,

Oka00℄, and shows that this ineÆ
ien
y is inherent in the fa
t that the transformations use the

5



original prover and veri�er strategies as \bla
k boxes". In fa
t, it is shown that any bla
k-box trans-

formation whi
h preserves the prover's 
omplexity must fail on our proof system for Statisti
al

Differen
e.

Uni�ed presentations of many of the above results, together with the results in this paper, 
an

be found in the Ph.D. theses of the authors [Vad99, Sah00℄.

2 Preliminaries

2.1 Promise problems

The problem we prove to be 
omplete for SZK is not a language, but rather a promise prob-

lem [ESY84℄. Formally, a promise problem � 
onsists of two disjoint sets of strings �

Y

and �

N

,

where �

Y

is the set of yes instan
es and �

N

is the set of no instan
es. A promise problem � is

asso
iated with the following 
omputational problem: Given an input whi
h is \promised" to lie in

�

Y

[ �

N

, de
ide whether it 
omes from �

Y

or �

N

. The 
omplement of � is the promise problem

�, where �

Y

= �

N

and �

N

= �

Y

. Note that languages are a spe
ial 
ase of promise problems.

We say that promise problem � redu
es to promise problem � if there is a polynomial-time


omputable fun
tion f su
h that

x 2 �

Y

) f(x) 2 �

Y

x 2 �

N

) f(x) 2 �

N

If C is a 
lass of promise problems, we say that promise problem � is 
omplete for C if � 2 C and

every promise problem in C redu
es to �. As above, all redu
tions we 
onsider are polynomial-time

many-one (or Karp) redu
tions, unless otherwise spe
i�ed.

2.2 Probability distributions

If X is a probability distribution (or random variable), we write x  X to indi
ate that x is a

sample taken from X. If S is a set, we write x2

R

S to indi
ate that x is uniformly sele
ted from S.

In this paper, we will 
onsider probability distributions de�ned both by 
ir
uits and probabilisti


algorithms (i.e. Turing ma
hines). If A is a probabilisti
 algorithm, we use A(x) to denote the

output distribution of A on input x. A PPT algorithm (for \probabilisti
 polynomial time") is a

probabilisti
 algorithm whi
h runs in stri
t polynomial time. If C is a 
ir
uit mappingm-bit strings

to n-bit strings, then 
hoosing an input u uniformly at random from f0; 1g

m

de�nes a probability

distribution on f0; 1g

n

given by C(u). For notational 
onvenien
e, we also denote this probability

distribution by C. These de�nitions 
apture the idea of an \(eÆ
iently) samplable" distribution,

as to sample from the distribution one need only run the algorithm or evaluate the 
ir
uit.

2.3 The statisti
al di�eren
e metri


For probability distributions (or random variables) X and Y on a dis
rete set D, the statisti
al

di�eren
e between X and Y is de�ned to be

kX � Y k = max

S�D

jPr [X 2 S℄� Pr [Y 2 S℄ j: (1)

This is often also 
alled the variation distan
e between X and Y . Removing the absolute values

in (1) does not 
hange the de�nition be
ause repla
ing S by its 
omplement 
hanges the sign

6



(but not magnitude) of Pr [X 2 S℄ � Pr [Y 2 S℄. The maximum in (1) 
an be a
hieved by taking

S = fx : Pr [X = x℄ > Pr [Y = x℄g (or its 
omplement); this 
an be seen dire
tly or in the proof of

Fa
t 2.1 below.

There is an equivalent formulation of statisti
al di�eren
e in terms of the `

1

norm j�j

1

that will

sometimes be more 
onvenient for us. To every probability distribution X on a dis
rete set D, the

mass fun
tion of X is a ve
tor in R

D

whose x'th 
oordinate is Pr [X = x℄. For the sake of elegan
e,

we also denote this ve
tor by X. With this notation, we 
an state the following well-known fa
t.

Fa
t 2.1 kX � Y k =

1

2

jX � Y j

1

The proof of this fa
t and others in this se
tion are deferred to Appendix A. It is immediate

from this 
hara
terization of statisti
al di�eren
e that it is a metri
 (as long as we identify random

variables that are identi
ally distributed). In parti
ular, it satis�es the Triangle Inequality.

Fa
t 2.2 (Triangle Inequality) For any probability distributions X, Y , and Z,

kX � Y k � kX � Zk+ kZ � Y k

Re
all that for any two ve
tors v 2 R

m

and w 2 R

n

, their tensor produ
t v 
 w is the ve
tor

in R

nm

, whose (i; j)'th 
omponent is v

i

w

j

. Now, if we have a pair of random variables (X;Y ) (on

the same probability spa
e) taking values in D � E, then X is independent from Y i� the mass

fun
tion of (X;Y ) is the tensor produ
t of the mass fun
tions of X and Y (whi
h are elements of

R

D

and R

E

, respe
tively). For this reason, if we have random variables X and Y taking values in

sets D and E, respe
tively, we write X 
 Y for the random variable taking values in D �E whi
h


onsists of independent samples of X and Y . Similarly, 


k

X denotes the random variable taking

values in D

k


onsisting of k independent 
opies of X, i.e. X 
X 
 � � � 
X.

Now, for any two ve
tors v and w, jv 
 wj

1

= jvj

1

� jwj

1

. In addition, for any mass fun
tion X,

jXj

1

= 1. These fa
ts enable one to show that the statisti
al di�eren
e behaves well with respe
t

to independent random variables:

Fa
t 2.3 Suppose X

1

and X

2

are independent random variables on one probability spa
e and Y

1

and Y

2

are independent random variables on another probability spa
e. Then,

k(X

1

;X

2

)� (Y

1

; Y

2

)k � kX

1

� Y

1

k+ kX

2

� Y

2

k

One basi
 fa
t about statisti
al di�eren
e is that it 
annot be 
reated out of nothing. That is,

for any pro
edure A, even if it is randomized, the statisti
al di�eren
e between A(X) and A(Y ) is

no greater than the statisti
al di�eren
e between X and Y . Formally, if D is any set, a randomized

pro
edure on D is a a pair A = (f;R), where R is a probability distribution on some set E and f

is a fun
tion from D �E to any set F . Think of the distribution R as providing a \random seed"

to the pro
edure A. If X is a probability distribution on D, then A(X) denotes the probability

distribution on F obtained by sampling X 
R and applying f to the result. Note that applying a

fun
tion is a spe
ial 
ase of applying a randomized pro
edure.

Fa
t 2.4 If X and Y are random variables and A is any randomized pro
edure, then

kA(X) �A(Y )k � kX � Y k

The next fa
t is useful when arguing that the statisti
al di�eren
e between distributions is small.
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Fa
t 2.5 Suppose X = (X

1

;X

2

) and Y = (Y

1

; Y

2

) are probability distributions on a set D�E su
h

that

1. X

1

and Y

1

are identi
ally distributed, and

2. With probability greater than (1� �) over x X

1

(equivalently, x Y

1

),

kX

2

j

X

1

=x

� Y

2

j

Y

1

=x

k < Æ

(where Bj

A=a

denotes the 
onditional distribution of B given that A = a for jointly distributed

random variables A and B).

Then kX � Y k < �+ Æ.

The next fa
t says that if two distributions have small statisti
al di�eren
e, then their mass

fun
tions must be 
lose at most points.

Fa
t 2.6 If X and Y are any two distributions su
h that kX � Y k < �, then with probability

> 1� 2

p

� over x X,

�

1�

p

�

�

Pr [X = x℄ < Pr [Y = x℄ <

�

1 +

p

�

�

Pr [X = x℄

2.4 Zero-knowledge proofs

Before de�ning zero knowledge, we need to introdu
e some more terminology. Re
all that a PPT

algorithm is a probabilisti
 algorithm whi
h runs in stri
t polynomial time. A fun
tion f(n) is

negligible if for all polynomials p(n), f(n) �

1

p(n)

for all suÆ
iently large n.

We follow [GMR89℄ and [Gol95℄ in de�ning intera
tive proofs and zero-knowledge. The orig-

inal de�nitions in [GMR89℄ were given for languages. We generalize these de�nitions to promise

problems in the natural way, as previously done in [GK93℄. That is, 
onditions previously required

for inputs in the language are now required for yes instan
es of a promise problem and 
onditions

previously required for inputs not in the language are now required for no instan
es.

Informally, an intera
tive proof is a proto
ol in whi
h a 
omputationally unbounded prover

attempts to 
onvin
e a polynomial-time veri�er V that an assertion is true, i.e. that a string x

is a yes instan
e of a promise problem. More formally, an intera
tive proto
ol (P; V ) between a


omputationally unbounded prover P and a PPT veri�er V is said to be an intera
tive proof system

for a promise problem � with 
ompleteness error 
(n) and soundness error s(n) if

1. If x 2 �

Y

, then Pr [(P; V )(x) = a

ept℄ � 1� 
(jxj).

2. If x 2 �

N

, then for all P

�

, Pr [(P

�

; V )(x) = a

ept℄ � s(jxj).

We always require that 1�
(n) > s(n)+1=poly(n) and that both 
an be 
omputed in time poly(n);

under this assumption, parallel repetition 
an be used to obtain a new intera
tive proof for � with


ompleteness error and soundness error 2

�n

k

, for any 
onstant k. We say that (P; V ) ex
hanges at

m(n) messages if the prover and veri�er ex
hange at most m(n) messages on any input of length n.

An intera
tive proof system is said to be publi
 
oin if on every input, the veri�er's random 
oins

r 
an be written as a 
on
atenation of strings r

1

r

2

� � � r

l

su
h that the i'th message sent from the

veri�er to the prover is simply r

i

.

Roughly speaking, an intera
tive proof is said to be zero knowledge if, when the input is a

yes instan
e, the veri�er 
an simulate its view of the intera
tion on its own. To formalize this,

8



let (P; V ) be an intera
tive proof system (P; V ) for a promise problem �. Let View

P;V

(x) be a

random variable des
ribing the random 
oins of V and the messages ex
hanged between P and V

during their intera
tion on input x. (P; V ) is said to be a statisti
al zero-knowledge proof system

(against the honest veri�er) if there exists a PPT simulator S and a negligible fun
tion � (
alled

the simulator deviation) su
h that

If x 2 �

Y

, then kS(x)�View

P;V

(x)k � �(jxj). (2)

A perfe
t zero-knowledge proof system is de�ned in the same way, ex
ept that (2) is repla
ed

by kS(x)�View

P;V

(x)k = 0, where S is allowed to output `fail' with probability at most 1=2

and S(x) denotes the 
onditional distribution of S given that the output is not fail.

2

A 
om-

putational zero-knowledge proof system repla
es (2) with the requirement that fS(x)g

x2�

Y

and

fView

P;V

(x)g

x2�

Y

are 
omputationally indistinguishable [GM84, Yao82℄ ensembles of distributions.

That is, for every nonuniform polynomial-time algorithm D, there is a negligible fun
tion � su
h

that jPr [D(x; S(x)) = 1℄� Pr [D(x;View

P;V

(x))℄ j � �(jxj) for all x 2 �

Y

.

We let SZK (resp. PZK, CZK) denote the 
lass of promise problems with statisti
al (resp.

perfe
t, 
omputational) zero-knowledge proof systems against the honest veri�er.

Remarks on the de�nitions.

1. (Honest veri�ers) We only require that the zero-knowledge 
ondition to hold against the

honest veri�er, i.e. the veri�er that follows the proto
ol as spe
i�ed. The usual de�nition

requires the zero-knowledge property to hold against any polynomial-time veri�er strategy.

However, subsequent to this work, it has been shown that any proof system whi
h is statisti
al

zero knowledge against the honest veri�er 
an be transformed into one that is zero knowledge

against 
heating veri�ers [GSV98℄. Via this transformation, many of our results dire
tly

translate to the 
lass of promise problems possessing statisti
al zero-knowledge proofs against


heating veri�ers. This is dis
ussed in detail in Se
tion 5.

2. (Error probabilities) The 
ompleteness and soundness error probabilities 
an be made expo-

nentially small without in
reasing the number of rounds, be
ause zero-knowledge against an

honest veri�er is preserved under parallel repetition.

3. (Stri
t polynomial-time simulation) Following [Gol95℄, we work with the variant of zeroknowl-

edge in whi
h the simulator is required to run in stri
t polynomial time, with some probability

of failure in the perfe
t 
ase. The original de�nition in [GMR89℄ allows the simulator to run

in expe
ted polynomial time, but with zero probability of failure. Our 
hoi
e is not very

restri
tive, be
ause we are only dis
ussing honest-veri�er statisti
al zero-knowledge and we

do not know of any problems whi
h require an expe
ted polynomial time simulator for the

honest veri�er. In addition, as shown in Se
tion 4.5, our te
hniques 
an be used to prove

that expe
ted polynomial time simulators and stri
t polynomial time simulators are a
tually

equivalent for publi
-
oin statisti
al zero-knowledge proofs against an honest veri�er.

4. (Promise problems vs. languages) Our de�nitions above generalize the original de�nitions

of [GMR89℄ from languages to promise problems, and we fo
us on the \promise 
lass" SZK

rather than the 
lass of languages possessing statisti
al zero-knowledge proofs. A 
ouple of

justi�
ations 
an be given for this extension. First, for essentially all of our results, the fa
t

2

A failure probability 
an also be allowed in the de�nition of statisti
al zero-knowledge, but this 
an easily be

redu
ed to an 2

�n

k

for any 
onstant k by repeated trials and absorbed in to the simulator deviation.
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that we prove them for the promise 
lass only makes them stronger, by virtue of the fa
t that

the promise 
lass 
ontains the language 
lass. Se
ond, several of the most important natural

problems known to be in SZK, su
h as those in [GK93, GG98℄, are not languages, but promise

problems, so it may a
tually be preferable to study the promise 
lass.

Our only result whi
h requires new interpretation for the language 
lass is the Completeness

Theorem. As the 
omplete problem is a promise problem, it is not 
omplete for the language


lass in the usual sense. Nevertheless, it still gives a 
hara
terization of the language 
lass, in

that a language has a statisti
al zero-knowledge proof if and only if it redu
es to the 
omplete

problem.

We note that one must be a bit more 
areful in a 
omplexity-theoreti
 investigation of promise


lasses, parti
ularly when dis
ussing redu
tions that may violate the promise (
f., dis
ussions

in [ESY84, GG98℄), and it may be the 
ase that the language 
lass has some di�erent prop-

erties than the promise one.

3 The Completeness Theorem

3.1 The 
omplete problem

The main aim of this paper is to demonstrate that SZK 
onsists exa
tly of the problems that involve

de
iding whether two eÆ
iently samplable distributions are either far apart or 
lose together. This


an be formally 
aptured by the following promise problem Statisti
al Differen
e (abbreviated

SD):

SD

Y

=

�

(C

0

; C

1

) : kC

0

� C

1

k >

2

3

�

SD

N

=

�

(C

0

; C

1

) : kC

0

� C

1

k <

1

3

�

In the above de�nition, C

0

and C

1

are 
ir
uits; these de�ne probability distributions as dis
ussed

in Se
tion 2. The thresholds of 1=3 and 2=3 in this de�nition are not 
ompletely arbitrary; it is

important for the Polarization Lemma of Se
tion 3.2 that (2=3)

2

> 1=3.

We 
an now state the main theorem of the paper.

Theorem 3.1 (Completeness Theorem) Statisti
al Differen
e is 
omplete for SZK.

The most striking thing about Theorem 3.1 is that it 
hara
terizes statisti
al zeroknowledge

with no referen
e to intera
tion or zero knowledge. Future investigation of the 
lass SZK 
an fo
us

on the single problem SD, instead of dealing with arbitrarily 
ompli
ated proto
ols, problems, and

simulators.

We emphasize that the novelty of this result lies in the spe
i�
 
omplete problem we present and

not merely the existen
e of a 
omplete promise problem. It is fairly straightforward to 
onstru
t a


omplete promise problem for PZK involving des
riptions of Turing ma
hines for the veri�er and

simulator. (See Appendix B.) However, in 
ontrast to SD, a 
omplete problem 
onstru
ted in this

manner is essentially restatement of the de�nition of the 
lass and therefore does not simplify the

study of the 
lass at all.

The proof of Theorem 3.1 will 
ome in Se
tions 3.3 and 3.4 via two lemmas and a theorem of

Okamoto [Oka00℄. But �rst, we observe that a statement analogous to Theorem 3.1 
an be made

for BPP, if we generalize BPP to promise problems in the obvious way.
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Proposition 3.2 If SD

0

is the promise problem obtained by modifying the de�nition of SD so that

C

0

and C

1

only have 1 bit of output, then SD

0

is 
omplete for BPP.

Proof: To see that SD

0

is in BPP, �rst observe that for 
ir
uits C

0

and C

1

(or any random

variables) that just output 0 or 1,

kC

0

� C

1

k = jPr [C

0

= 1℄� Pr [C

1

= 1℄ j:

Thus, an estimate on kC

0

� C

1

k that is 
orre
t within an additive fa
tor of 1/3 
an be obtained

by sampling C

0

and C

1

polynomially many times and 
ounting the number of ones that o

ur for

ea
h. This is suÆ
ient to de
ide SD

0

.

Now we show that every promise problem � in BPP redu
es to SD

0

. Let A be the PPT ma
hine

whi
h outputs 1 with probability greater than 2=3 when x 2 �

Y

, but outputs 1 with probability

less than 1=3 when x 2 �

N

. Let p(n) be a polynomial bound on the running time of A. Given an

input x, we 
an, by standard te
hniques,

3

produ
e in polynomial time a 
ir
uit C

x

des
ribing the


omputation of A on x for p(jxj) steps. The input to C

x

is the �rst p(jxj) bits on the random tape

of A the output is the �rst bit on the output tape. Let D be a 
ir
uit that always outputs 0. Then

kC

x

�Dk = Pr [A(x) = 1℄, so x 7! (C

x

;D) is a polynomial-time redu
tion from � to SD

0

.

Proposition 3.2 remains true even if we allow C

0

and C

1

to output strings of logarithmi
 length.

Other 
lasses su
h as P and 
o-RP 
an be obtained by modifying the de�nition of SD in a similar

fashion (and 
hanging the thresholds). This demonstrates that SZK is a natural generalization of

these well-known 
lasses.

3.2 A polarization lemma

In this se
tion, we exhibit a transformation whi
h \polarizes" the statisti
al relationship between

two distributions. That is, pairs of distributions whi
h are statisti
ally 
lose be
ome mu
h 
loser

and pairs of distributions whi
h are statisti
ally far apart be
ome mu
h further apart.

Lemma 3.3 (Polarization Lemma)

4

There is a polynomial-time 
omputable fun
tion that takes

a triple (C

0

; C

1

; 1

k

), where C

0

and C

1

are 
ir
uits, and outputs a pair of 
ir
uits (D

0

;D

1

) su
h that

kC

0

� C

1

k < 1=3 ) kD

0

�D

1

k < 2

�k

kC

0

� C

1

k > 2=3 ) kD

0

�D

1

k > 1� 2

�k

The usefulness of the Polarization Lemma 
omes from the fa
t that the two distributions it

produ
es 
an be treated almost as if they were identi
ally distributed or disjoint (i.e. statisti
al

di�eren
e 0 and 1, respe
tively). Indeed, it will be essential in proving that SD (with thresholds

of 2=3 and 1=3, as we've de�ned it) is in SZK and we will make further use of it in deriving


onsequen
es of Theorem 3.1.

Super�
ially, it may seem that a Cherno� bound argument is all that is needed to prove

Lemma 3.3. However, Cherno� bounds are primarily useful for distinguishing between two events.

This 
orresponds to in
reasing statisti
al di�eren
e, as formalized in the following \dire
t produ
t"

lemma:

3

See, for example, [Pap94, Thms. 8.1 and 8.2℄.

4

The Polarization Lemma stated here is 
alled the Ampli�
ation Lemma in [SV97℄. We 
hange the name here to

stress that the Polarization Lemma does not merely in
rease statisti
al di�eren
e.
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Lemma 3.4 (Dire
t Produ
t Lemma) Let X and Y be distributions su
h that kX � Y k = �.

Then for all k,

k� � k 


k

X �


k

Y k � 1� 2e

�k�

2

=2

Proof: The upper bound of k� follows immediately from Fa
t 2.3, so we pro
eed to the proof of

the lower bound. Re
all, from the de�nition of statisti
al di�eren
e, that there must exist a set S

su
h that

Pr [X 2 S℄� Pr [Y 2 S℄ = �:

Let p = Pr [Y 2 S℄, so Pr [X 2 S℄ = p + �. Hen
e, in k independent samples of X, the expe
ted

number of samples that lie in S is (p+ �)k, whereas in k independent samples of Y , the expe
ted

number of samples that lie in S is pk. The Cherno� bound

5

tells us that the probability that at

least (p+

�

2

)k 
omponents of 


k

Y lie in S is at most exp(�k�

2

=2), whereas the probability that at

most (p+

�

2

)k 
omponents of 


k

X lie in S is at most exp(�k�

2

=2). Let S

0

be the set of all k-tuples

that 
ontain more than (p+

�

2

)k 
omponents that lie in S. Then,

k 


k

X �


k

Y k � Pr

h




k

X 2 S

0

i

� Pr

h




k

Y 2 S

0

i

� 1� 2e

�k�

2

=2

:

Note the gap between the upper and lower bounds in Lemma 3.4; the lower bound says that

taking O(1=�

2

) 
opies is suÆ
ient to in
rease statisti
al di�eren
e from � to a 
onstant, while the

upper bound says that 
(1=�) 
opies are ne
essary. This gap is inherent, and essentially amounts

to the di�eren
e between 1-sided and 2-sided error: Taking X and Y to be distributions on f0; 1g

that are 1 with probability 1 and 1� �, respe
tively, we see that the statisti
al di�eren
e between




k

X and 


k

Y is exa
tly 1 � (1 � �)

k

, whi
h is a 
onstant for k = �(1=�). On the other hand,

when X and Y are 1 with probability (1 + �)=2 and (1 � �)=2, respe
tively, it 
an be shown that

k = �(1=�

2

) 
opies are ne
essary to in
rease the statisti
al di�eren
e to a 
onstant. Furthermore,

in this latter example, kX 
X � Y 
 Y k = � = kX � Y k, so we 
annot even hope to show that

statisti
al di�eren
e always in
reases for every k > 1 (as pointed out to us by Madhu Sudan).

Noti
e that the Dire
t Produ
t Lemma 3.4 is not suÆ
ient to prove the Polarization Lemma,

be
ause it always in
reases statisti
al di�eren
e, whereas we would like to in
rease statisti
al di�er-

en
e in some 
ases and de
rease it in others. However, it does drive larger values of the statisti
al

di�eren
e to 1 more qui
kly than it drives smaller values to 1, so it is a step in the right dire
tion.

The following lemma provides a 
omplementary te
hnique whi
h de
reases the statisti
al di�eren
e

to 0, with small values going to 0 faster than large values.

Lemma 3.5 (XOR Lemma) There is a polynomial-time 
omputable fun
tion that maps a triple

(C

0

; C

1

; 1

k

), where C

0

and C

1

are 
ir
uits, to a pair of 
ir
uits (D

0

;D

1

) su
h that kD

0

�D

1

k =

kC

0

� C

1

k

k

. Spe
i�
ally, D

0

and D

1

are de�ned as follows:

D

0

: Uniformly sele
t (b

1

; : : : ; b

k

) 2 f0; 1g

k

su
h that b

1

� � � � � b

k

= 0, and output a sample of

C

b

1


 � � � 
 C

b

k

.

D

1

: Uniformly sele
t (b

1

; : : : ; b

k

) 2 f0; 1g

k

su
h that b

1

� � � � � b

k

= 1, and output a sample of

C

b

1


 � � � 
 C

b

k

.

5

For the formulation of the Cherno� bound we use, see, for example, the formulation of Hoe�ding's inequality

in [Hof95, Se
. 7.2.1℄.
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In order to prove this lemma, we employ a generalization of the te
hnique used in [DDPY94℄ to

represent the logi
al AND of statements about Graph Nonisomorphism. This tool is des
ribed

in the following Proposition.

Proposition 3.6 Let X

0

;X

1

; Y

0

; Y

1

be any random variables, and de�ne the following pair of ran-

dom variables:

Z

0

: Choose a; b2

R

f0; 1g su
h that a� b = 0. Output a sample of X

a


 Y

b

.

Z

1

: Choose a; b2

R

f0; 1g su
h that a� b = 1. Output a sample of X

a


 Y

b

.

Then kZ

0

� Z

1

k = kX

0

�X

1

k � kY

0

� Y

1

k.

The statisti
al di�eren
e between X

0

and X

1

(or Y

0

and Y

1

) measures the advantage a 
ompu-

tationally unbounded party has, over random guessing, in guessing b given a sample from X

b

, where

b is sele
ted uniformly from f0; 1g. (This view of statisti
al di�eren
e will be
ome more apparent

in the subsequent se
tion.) Intuitively, the above Proposition says that the advantage one has in

guessing the XOR of two independent bits is the produ
t of the advantages one has for guessing

ea
h individual bit.

Proof:

kZ

0

� Z

1

k =

1

2

jZ

0

� Z

1

j

1

=

1

2

�

�

�

�

�

1

2

X

0


 Y

0

+

1

2

X

1


 Y

1

�

�

�

1

2

X

1


 Y

0

+

1

2

X

0


 Y

1

�

�

�

�

�

1

=

1

4

j(X

0

�X

1

)
 (Y

0

� Y

1

)j

1

=

�

1

2

jX

0

�X

1

j

1

�

�

�

1

2

jY

0

� Y

1

j

1

�

= kX

0

�X

1

k � kY

0

� Y

1

k

Proposition 3.6 and an indu
tion argument establish Lemma 3.5. Yao's XOR Lemma [Yao82℄

(
f., [GNW95℄) 
an be seen as an analogue of Lemma 3.5 in the 
omputational setting, where the

analysis is mu
h more diÆ
ult.

6

Now we 
ombine the Dire
t Produ
t and XOR 
onstru
tions of Lemmas 3.4 and 3.5 to prove

Lemma 3.3. The Dire
t Produ
t Lemma gives a way to in
rease statisti
al di�eren
e with large

values going to 1 faster than small values. Similarly, the XOR Lemma shows how to de
rease sta-

tisti
al di�eren
e with small values going to 0 faster than large values. Intuitively, alternating these

pro
edures should \polarize" large and small values of statisti
al di�eren
e, pushing them 
loser

to 1 and 0, respe
tively. A similar alternation between pro
edures with 
omplementary e�e
ts was

used by Ajtai and Ben-Or [AB84℄ to amplify the su

ess probability of randomized 
onstant-depth


ir
uits.

6

To see the analogy, re
all that Yao's XOR Lemma 
onsiders the maximum advantage an eÆ
ient algorithm has,

over random guessing, in 
omputing a bit b from string x when they are sele
ted a

ording to some distrbution

(b; x)  (B;X) (e.g., X is uniform and B is a hard
ore bit of f

�1

(X) for some one-way permutation f .). It states

that the maximum advantage an eÆ
ient algorithm has in 
omputing the XOR b

1

�� � ��b

k

from (x

1

; : : : ; x

k

) de
reases

exponentially with k when the pairs (b

i

; x

i

) are independentally distributed a

ording to (B;X).

13



Proof: Let ` = dlog

4=3

6ke. Apply Lemma 3.5 to the triple (C

0

; C

1

; 1

`

) to produ
e (C

0

0

; C

0

1

)

su
h that if

kC

0

� C

1

k < 1=3 )







C

0

0

� C

0

1







< (1=3)

`

kC

0

� C

1

k > 2=3 )







C

0

0

� C

0

1







> (2=3)

`

:

Let m = 3

`�1

. Let C

00

0

= 


m

C

0

0

and let C

00

1

= 


m

C

0

1

. Then, by Fa
t 2.3 and the Dire
t Produ
t

Lemma,

kC

0

� C

1

k < 1=3 )







C

00

0

� C

00

1







< 1=3

kC

0

� C

1

k > 2=3 )







C

00

0

� C

00

1







> 1� 2 exp(�3

`�1

(2=3)

2`

=2) > 1� 2e

�k

:

Finally, apply the transformation of Lemma 3.5 one more time to (C

00

0

; C

00

1

; 1

k

) to produ
e (D

0

;D

1

)

su
h that

kC

0

� C

1

k < 1=3 ) kD

0

�D

1

k < 3

�k

< 2

�k

kC

0

� C

1

k > 2=3 ) kD

0

�D

1

k > (1� 2e

�k

)

k

> 1� 2ke

�k

> 1� 2

�k

:

Noti
e that the above analysis relies on the fa
t that (2=3)

2

> (1=3), so it will not work if

2=3 and 1=3 are repla
ed by, say, :51 and :49. We do not know how to prove su
h a Polarization

Lemma for arbitrary 
onstant thresholds. We 
an however extend it to thresholds � and �, where

�

2

> �, and the running time will be polynomial in exp

�

�

1� log(�

2

)= log(�)

�

�1

�

along with the

input size. See [SV99℄ for more details.

3.3 A proto
ol for Statisti
al Differen
e

In this se
tion, we show that SD has a simple two-message statisti
al zero-knowledge proof system,

whi
h is a generalization of the standard proto
ols for for Quadrati
 Nonresiduosity [GMR89℄

andGraph Nonisomorphism [GMW91℄. Intuitively, if two distributions are statisti
ally far apart,

then, when given a random sample from one of the distributions, a 
omputationally unbounded

party should have a good 
han
e of guessing from whi
h distribution it 
ame. However, if the two

distributions are statisti
ally very 
lose, even a 
omputationally unbounded party should not have

mu
h better than a 50% 
han
e of guessing 
orre
tly. This suggests the following two-message

(private-
oin) proto
ol for SD:

Zero-knowledge Proof System for SD

Input: (C

0

; C

1

) (su
h that either kC

0

� C

1

k > 2=3 or kC

1

� C

1

k < 1=3)

1. V; P : Compute (D

0

;D

1

) = Polarize(C

0

; C

1

; 1

n

), where n = j(C

0

; C

1

)j.

2. V : Flip one random 
oin r 2 f0; 1g. Let z be a sample of D

r

. Send z to P .

3. P : If Pr [D

0

= z℄ > Pr [D

1

= z℄, answer 0, otherwise answer 1.

4. V : A

ept if P 's answer equals r, reje
t otherwise.

14



Lemma 3.7 The above is a statisti
al zero-knowledge proof system for SD, with soundness error

1

2

+ 2

�n

, and 
ompleteness error and simulator deviation both 2

�n

. Thus SD 2 SZK.

Proof: We will argue that the prover strategy given in the proto
ol is optimal (i.e. maximizes

the veri�er's a

eptan
e probability), and use this to bound both the soundness and 
ompleteness

error. The simulator deviation will then follow easily.

Consider any prover P

�

. Suppose for some z the prover P

�

fails to follow the strategy we

present. If Pr[D

0

= z℄ 6= Pr[D

1

= z℄, this means that with nonzero probability, P

�


hoses the

distribution in whi
h z is less likely to o

ur. Then, 
onditioned on z, the su

ess probability of

P

�

will 
ertainly be lower than that of the prover in our proto
ol. If Pr[D

0

= z℄ = Pr[D

1

= z℄, the

prover has no information about r, so no matter what strategy it uses, it has exa
tly even odds of

guessing 
orre
tly. Sin
e these observations hold for all z, the given prover is optimal.

We now analyze the probability of su

ess of the optimal prover. Re
all that kD

0

� D

1

k =

Pr[D

0

2 S℄� Pr[D

1

2 S℄ for S = fz : Pr[D

0

= z℄ > Pr[D

1

= z℄g. The probability that the optimal

prover guesses 
orre
tly is exa
tly

1

2

Pr [D

0

2 S℄ +

1

2

Pr [D

1

=2 S℄ =

1

2

(Pr [D

0

2 S℄ + 1� Pr [D

1

2 S℄)

=

1 + kD

0

�D

1

k

2

:

By Lemma 3.3, kD

0

�D

1

k > 1�2

�n

when (C

0

; C

1

) is a yes instan
e of SD, and kD

0

�D

1

k < 2

�n

when (C

0

; C

1

) is a no instan
e. Hen
e, the probability that the prover 
onvin
es the veri�er to

a

ept is greater than (1 + 1 � 2

�n

)=2 > 1 � 2

�n

for yes instan
es, and less than (1 + 2

�n

)=2 <

1=2 + 2

�n

for no instan
es. This immediately gives the 
ompleteness error; the soundness error

also follows be
ause we 
onsidered the optimal prover strategy.

Now, noti
e that when the prover answers 
orre
tly, all the veri�er re
eives from the prover

is the value of r, whi
h the veri�er already knew. Thus, sin
e we have shown that the prover

is answering 
orre
ty with all but exponentially small probability, intuitively the veri�er learns

nothing. To turn this intuition into a proof of statisti
al zero knowledge, we 
onsider the fol-

lowing probabilisti
 polynomial-time simulator: On input (C

0

; C

1

), the simulator �rst 
omputes

(D

0

;D

1

) = Polarize(C

0

; C

1

; 1

n

), where n = j(C

0

; C

1

)j. The simulator then 
ips one random 
oin

r 2 f0; 1g. If r = 0, it samples z from D

0

, otherwise it samples z from D

1

. The simulator then

outputs a 
onversation in whi
h the veri�er sends z to the prover, and the prover responds with

r. The simulator also outputs the random 
oins it used to generate r and z as the 
oins of the

veri�er. Thus, the simulator presented here always outputs 
onversations in whi
h the prover re-

sponds 
orre
tly. Ex
ept for the prover's response, all other 
omponents of the simulator's output

distribution are distributed identi
ally to the veri�er's view of the real intera
tion. Hen
e, the

simulator deviation is bounded by the probability that the prover responds in
orre
tly in the real

intera
tion, whi
h we have already argued is at most 2

�n

in the 
ase of yes instan
es.

Note that the above proof system remains 
omplete and sound even without polarization, but

for the zero-knowledge property, we need to make the statisti
al di�eren
e very 
lose to 1 on yes

instan
es.

By using a se
urity parameter k rather than n in the 
all to Polarize, both the 
ompleteness

error and simulator deviation 
an be redu
ed to 2

�k

. Thus, even very short assertions about

SD 
an be proven with with very high se
urity. Contrast this with the original de�nition of

SZK [GMR89℄, whi
h only requires that the simulator deviation vanish as an negligible fun
tion of
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the input length. This property has obvious 
ryptographi
 signi�
an
e, so we formulate it more

pre
isely in Se
tion 4.1.

3.4 SZK-hardness of SD

The other main lemma we prove to show that SD is 
omplete for SZK follows:

Lemma 3.8 Suppose promise problem � has a publi
 
oin statisti
al zero-knowledge proof system.

Then there exist PPT's A and B and a negligible fun
tion � su
h that

x 2 �

Y

) kA(x) �B(x)k � �(jxj); and

x 2 �

N

) kA(x) �B(x)k � 1� 2

�
(jxj)

:

We defer the proof of this lemma to Se
tion 3.5, and �rst observe how it gives a redu
tion to SD

for problems with publi
-
oin statisti
al zero-knowledge proofs.

Corollary 3.9 Suppose promise problem � has a publi
-
oin statisti
al zero-knowledge proof sys-

tem. Then � redu
es to SD. (Equivalently, � is redu
es to SD.)

Proof: First apply Lemma 3.8 to obtain A and B, with p(jxj) being a polynomial bound on the

running times of A(x) and B(x). Given a string x, we 
an, by standard te
hniques,

7

produ
e in

polynomial time 
ir
uits C

0

and C

1

des
ribing the 
omputation of A and B, respe
tively, on x for

p(jxj) steps. The inputs to C

0

and C

1

are the �rst p(jxj) bits on the random tapes of A and B and

the outputs are the �rst p(jxj) positions on the output tapes. Then kC

0

� C

1

k = kA(x)�B(x)k,

whi
h is at most �(jxj) < 1=3 if x 2 �

Y

and at least 1� 2

�jxj

> 2=3 if x 2 �

N

(for all suÆ
iently

long x). So x 7! (C

0

; C

1

) is a redu
tion from � to SD (for all but �nitely many x).

The �nal ingredient in the proof of Theorem 3.1 is a theorem of Okamoto [Oka00℄, whi
h we

state in terms of promise problems.

8

Theorem 3.10 ([Oka00, Thm. 1℄) If a promise problem � has a statisti
al zero-knowledge proof

system, then � has a publi
-
oin statisti
al zero-knowledge proof system.

Now it will be easy to show that SD is 
omplete for SZK.

Proof of Theorem 3.1: Lemma 3.7 tells us that SD 2 SZK, so we only need to show that

every problem in SZK redu
es to SD. Corollary 3.9 and Theorem 3.10 imply that every problem

� 2 SZK redu
es to SD. In parti
ular, SD redu
es to SD, or, equivalently, SD redu
es to SD.

Composing redu
tions, it follows that every problem � 2 SZK redu
es to SD.

3.5 Proof of Lemma 3.8

The 
onstru
tions in this lemma and the statisti
al zero-knowledge proof system for Statisti
al

Differen
e are 
arried out for the spe
i�
 example of Graph Isomorphism in Appendix C.

7

See, for example, [Pap94, Thms. 8.1 and 8.2℄.

8

Okamoto stated his result in terms of languages, but the proof readily extends to promise problems (
f., [GV99℄).
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Intuition. Re
all that we wish to 
onstru
t a pair of probabilisti
 polynomial-time ma
hines A

and B su
h that if x 2 �

Y

, the distributions A(x) and B(x) are statisti
ally very 
lose, but when

x 2 �

N

, A(x) and B(x) are far apart. We are given that � has a publi
-
oin statisti
al zero-

knowledge proof system. A natural pla
e to sear
h for the desired distributions is in the output

of the simulator for this proof system. We think of the simulator as des
ribing the moves of a

virtual prover and a virtual veri�er.

9

. We wish to �nd properties of the simulator's output that

(1) distinguish the 
ase x 2 �

Y

from x 2 �

N

, and (2) are 
aptured by the statisti
al di�eren
e

between samplable distributions. In the 
ase that x 2 �

Y

, we have strong guarantees on the

simulator's output. Namely, it outputs a

epting 
onversations with high probability and its output

distribution is statisti
ally very 
lose to the real intera
tion. When x 2 �

N

, there are two 
ases.

If the simulator outputs a

epting 
onversations with low probability, this easily distinguishes it

from the simulator output when x 2 �

Y

. However, it is possible that the simulator will output

a

epting 
onversations with high probability even when x 2 �

N

. This means that the virtual

prover is doing quite well in fooling the virtual veri�er. This naturally suggest a strategy for a real

prover | imitate the virtual prover's behavior. Su
h a prover, 
alled a simulation-based prover,

was introdu
ed by Fortnow [For89℄ and is a 
ru
ial 
onstru
t in our proof. The soundness of the

proof system tells us that the simulation-based prover 
annot hope to 
onvin
e the real veri�er

with high probability. There must be a reason for this dis
repan
y between the su

ess rates of the

virtual prover and the simulation-based prover. One possibility is that the virtual veri�er's 
oins in

the simulator's output are far from uniform, so that the simulation only 
aptures a small fra
tion

of possible veri�er states. However, this is not the only diÆ
ulty. A se
ond diÆ
ulty is that the

responses of the virtual prover may depend on future 
oin tosses of the virtual veri�er, whi
h is

impossible in a real publi
-
oin intera
tion. Note that this is equivalent to the virtual veri�er's


oin tosses being dependent on previous messages of the virtual prover. We will show that these

are the only two obsta
les the simulation-based prover fa
es in trying to fool the veri�er, and thus

they must be present when x 2 �

N

. In the 
ase that x 2 �

Y

, however, these diÆ
ulties 
annot

arise sin
e we are guaranteed that the simulator output distribution is very 
lose to that of the real

interation. If we 
ould measure the extent to whi
h these anomalies are present by the statisti
al

di�eren
e between samplable distributions, we would a
hieve our obje
tive. This is pre
isely what

we do.

Notation. Let (P; V ) be a publi
-
oin intera
tive proof system for a promise problem � whi
h is

(honest-veri�er) statisti
al zero knowledge and let S be a simulator for this proof system. Without

loss of generality, we may assume that the intera
tion of P and V on input x always has 2r(jxj)

ex
hanged messages, with V sending the �rst message and ea
h message 
onsisting of exa
tly q(jxj)

bits, for some polynomials q and r. Moreover, it may be assumed that S's output always 
onsists

of 2r(jxj) strings of length q(jxj). The output of S and the 
onversation between P and V on input

x will be written in the form S(x) = (


1

; p

1

; : : : ; 


r

; p

r

)

S

and (P; V )(x) = (


1

; p

1

; : : : ; 


r

; p

r

)

(P;V )

,

respe
tively, where 


1

; : : : ; 


r

represent the messages (equivalently 
oin tosses, sin
e we are in the

publi
-
oin setting) of V , p

1

; : : : ; p

r

represent the prover messages, and r = r(jxj). (Dependen
e on

x will often be omitted in this manner for notational 
onvenien
e.) We use notation su
h as (


i

)

S

for

the random variable obtained by running S on
e and taking the 


i

-
omponent of its output. More

generally, partial 
onversation trans
ripts will be written like (


1

; p

1

; 


2

; p

2

)

S

. We 
all a 
onversation

trans
ript (


1

; p

1

; : : : ; 


r

; p

r

) whi
h would make V a

ept (resp., reje
t) an a

epting 
onversation

9

This terminology is taken from [AH91℄. The 
ases we 
onsider are quite similar to those analyzed in [For89, AH91℄

Be
ause we fo
us on publi
-
oin proofs, many 
ompli
ations fa
ed in those works do not arise. This allows us to

make some new observations and rea
h a novel 
on
lusion (namely, the Completeness Theorem).
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(resp., reje
ting 
onversation). We denote by U(n) the uniform distribution on strings of length n.

The proof. In order to formalize the above intuition, a de�nition of the simulation-based prover

needs to be given. This is the prover P

�

that imitates the virtual prover, i.e. P

�

does the following

to 
ompute its next message when the 
urrent 
onversation trans
ript is (


1

; p

1

; : : : ; 


i

):

If S(x) outputs 
onversations that begin with (


1

; p

1

; : : : ; 


i

) with probability 0, then

output 0

q(jxj)

.

Else output y 2 f0; 1g

q(jxj)

with probability

p

y

= Pr[S(x) begins with (


1

; p

1

; : : : ; 


i

; y)jS(x) begins with (


1

; p

1

; : : : ; 


i

)℄:

In order to analyze the su

ess probability of P

�

, we �rst 
ompare the output of S to the a
tual


onversations between P

�

and V . Let �

i

be the statisti
al di�eren
e between (


1

; p

1

: : : ; 


i�1

; p

i�1

; 


i

)

S

and (


1

; p

1

: : : ; 


i�1

; p

i�1

)

S


U(q(jxj)). Thus �

i

measures how far from uniform the virtual veri�er's

i-th set of 
oins are and how far from independent they are from what 
omes before. The following


laim formalizes our intuition that P

�


an do as well as the virtual prover, as long as the virtual

veri�er's 
oins are near-uniform and near-independent from what pre
eeds them.

Claim 3.11 kS(x)� (P

�

; V )(x)k �

P

r

i=0

�

i

.

Proof of 
laim: Let C

S

i

= (


1

; p

1

; : : : ; 


i

)

S

be the random variable of partial simulator

trans
ripts ending with the i-th 
oins of the virtual veri�er. Let P

S

i

= (


1

; p

1

; : : : ; 


i

; p

i

)

S

be the random variable of partial trans
ripts ending with the i-th virtual prover re-

sponse. Similarly de�ne C

�

i

and P

�

i

as partial 
onversation trans
ripts of (P

�

; V ). The

aim is to show that at round k, the statisti
al di�eren
e grows by at most �

k

. Formally,

it will be shown by indu
tion on k that







P

S

k

� P

�

k







�

k

X

i=0

�

i

The 
ase k = 0 is trivial. For general k, �rst note that sin
e P

�

gives a response


hosen a

ording to the same distribution as the virtual prover, adding these responses

to the 
onversations 
annot in
rease the statisti
al di�eren
e (by Fa
t 2.4). That is,







P

S

k+1

� P

�

k+1







=







C

S

k+1

� C

�

k+1







:

The idea now is to extra
t the parts of kC

S

k+1

� C

�

k+1

k 
orresponding to �

k+1

and

observe that what is left is simply the error from the previous round. Note that C

�

k+1

=

P

�

k


 U(q(jxj)), sin
e the real veri�er's 
oins are always uniform and independent from

what 
ame before.

Then, applying Fa
t 2.3 and the Triangle Inequality,

kC

S

k+1

� C

�

k+1

k �







C

S

k+1

� P

S

k


 U(q(jxj))







+







P

S

k


 U(q(jxj)) � P

�

k


 U(q(jxj))







� �

k+1

+







P

S

k

� P

�

k







+ kU(q(jxj))� U(q(jxj))k

� �

k+1

+

k

X

i=0

�

i

:

This 
ompletes the indu
tion. Sin
e P

S

r

= S(x) and P

�

r

= (P

�

; V )(x), the Claim is

proved.
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Algorithm A Algorithm B

A

0

(x) Run S(x) for jxj repetitions. B

0

(x) Output 1.

Output `1' if the majority are

a

epting 
onversations and `0' otherwise.

A

i

(x) Run S(x) to output (


1

; p

1

; : : : ; 


i

)

S(x)

. B

i

(x) Run S(x) and 
ip q(jxj) more 
oins to output

(


1

; p

1

; : : : ; 


i�1

; p

i�1

)

S(x)


 U(q(jxj)).

Table 1: The 
omponents of A and B

We are now ready to 
onstru
t the distributions we seek. The two distributions A and B ea
h


onsist of r + 1 
omponents, shown in Table 1. A is the algorithm whose output on input

x is (A

0

(x); A

1

(x); : : : ; A

r

(x)), all run independently, and B is the algorithm whose output is

(B

0

(x); B

1

(x); : : : ; B

r

(x)), all run independently.

Here, A

i

is a sampling of a partial 
onversation trans
ript from S up to the virtual veri�er's

i-th set of 
oins, while B

i

is a sampling of a partial 
onversation trans
ript from S up to the virtual

prover's (i�1)-st response followed by q(jxj) independent random bits. So, for i � 1, the statisti
al

di�eren
e between A

i

and B

i

is �

i

.

We will show that the statisti
al di�eren
e between A and B is negligible if x 2 �

Y

and is

noti
eable if x 2 �

N

. Amplifying this gap by repetition will yield Lemma 3.8.

Claim 3.12 There exists a negligible fun
tion � su
h that if x 2 �

Y

, then kA(x)�B(x)k � �(jxj).

Proof of 
laim: The statisti
al di�eren
e between A(x) and B(x) is bounded above

by the sum of the statisti
al di�eren
es between A

i

(x) and B

i

(x) over i = 1; : : : ; r(jxj)

(by Fa
t 2.3). First, let's examine i = 0. Sin
e S(x) outputs a 
onversation whi
h

makes V a

ept with probability at least 2=3 � neg(jxj), the Cherno� bound implies

that Pr [A

0

(x) = 1℄ = 1 � 2

�
(jxj)

, so the statisti
al di�eren
e between A

0

and B

0

is

negligible. For i � 1, re
all that in the real 
onversations of P and V , the veri�er's


oins are truly uniform and independent from prior rounds, so kA

i

(x)� B

i

(x)k should

essentially be bounded by the statisti
al di�eren
e between the simulator's output and

the real intera
tion. This is in fa
t true, as (omitting x from the notation):

kA

i

�B

i

k � kA

i

� (


1

; p

1

; : : : ; 


i

)

P;V

k+ k(


1

; p

1

; : : : ; 


i

)

P;V

�B

i

k

� kS � (P; V )k+ kS � (P; V )k:

(The last inequality is by Fa
t 2.4.) Thus,

kA(x) �B(x)k � 2

�
(jxj)

+ 2r(jxj) � kS(x)� (P; V )(x)k;

whi
h is negligible sin
e kS(x)� (P; V )(x)k is negligible and r(x) is polynomial.

Claim 3.13 If x 2 �

N

then kA(x)�B(x)k � 1=12r(jxj).

Proof of 
laim: It suÆ
es to show that for some i, �

i

= kA

i

(x)�B

i

(x)k > 1=12r(jxj)

(by Fa
t 2.4). We deal with two 
ases depending on the probability that S outputs an

a

epting 
onversation.

Case 1: Pr [S(x) a

epts ℄ � 5=12. Then, by the Cherno� bound, Pr [A

0

(x) = 1℄ �
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2

�
(jxj)

, so the statisti
al di�eren
e between A

0

(x) and B

0

(x) is at least 1� 2

�
(jxj)

>

1=12r(jxj).

Case 2: Pr [S(x) a

epts ℄ > 5=12. Then, sin
e Pr [(P

�

; V )(x) a

epts ℄ is at most

1=3, we must have

r

X

i=0

�

i

� kS(x)� (P

�

; V )(x)k >

5

12

�

1

3

=

1

12

:

Thus, at least one �

i

must be greater than 1=12r(jxj).

Now 
onsider the samplable distributions

^

A(x) = 


s(jxj)

A(x) and

^

B(x) = 


s(jxj)

B(x), where s(n) =

n � r(n)

2

. If x 2 �

Y

, k

^

A(x) �

^

B(x)k � s(jxj) � kA(x) � B(x)k, whi
h is still negligible. If x 2 �

N

,

then by the Dire
t Produ
t Lemma (Lemma 3.4), k

^

A(x) �

^

B(x)k � 1 � 2

�
(jxj)

. This 
ompletes

the proof of Lemma 3.8.

4 Appli
ations

4.1 EÆ
ient statisti
al zero-knowledge proofs

The proof system for Statisti
al Differen
e given in Se
tion 3.3 has a number of desirable

features. It is very eÆ
ient in terms of 
ommuni
ation and intera
tion, and the simulator deviation


an be made exponentially small in a se
urity parameter (that 
an be varied independently of the

input length). By the Completeness Theorem, it follows that every problem in SZK also has a proof

system with these properties.

We begin by formalizing one of the properties of the SD proof system that was informally

dis
ussed in Se
tion 3.3.

De�nition 4.1 An intera
tive proto
ol (P; V ) is 
alled a se
urity-parametrized statisti
al zero-

knowledge proof system for a promise problem � if there exists a PPT simulator S, a negligible

fun
tion �(k) (
alled the simulator deviation), and 
ompleteness and soundness errors 
(k) and

s(k) su
h that for all strings x and all k 2 N,

1. If x 2 �

Y

, then Pr

�

(P; V )(x; 1

k

) = a

ept

�

� 1� 
(k).

2. If x 2 �

N

, then for all P

�

, Pr

�

(P

�

; V )(x; 1

k

) = a

ept

�

� s(k).

3. If x 2 �

Y

, then







S(x; 1

k

)�View

P;V

(x; 1

k

)







� �(k):

As usual, we require that 
(k) and s(k) are 
omputable in time poly(k) and 1 � 
(k) > s(k) +

1=poly(k)

We now des
ribe the eÆ
ient proof systems inherited by all of SZK.

Corollary 4.2 Every problem in SZK possesses a se
urity-parametrized statisti
al zero-knowledge

proof system with the following properties:

1. Simulator deviation 2

�k

, 
ompleteness error 2

�k

, and soundness error 1=2 + 2

�k

.

2. The prover and veri�er ex
hange only 2 messages.
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3. The prover sends only 1 bit to the veri�er.

4. The prover is deterministi
.

Proof: Let � be any promise problem in SZK. Let f be the redu
tion from � to SD guaranteed

by the Completeness Theorem. A proto
ol with the desired properties for � 
an be obtained as

follows: on input (x; 1

k

), exe
ute the proof system for SD, given in Se
tion 3.3, on input f(x) and

using k rather than n in the 
all to Polarize.

4.2 Closure properties

In this se
tion, we prove several 
losure properties of SZK. The �rst, 
losure under redu
tions,

is a dire
t 
onsequen
e of the \se
urity parametrization" property shown to hold for SZK in the

previous se
tion.

Corollary 4.3 SZK is 
losed under (Karp) redu
tions. That is, if � 2 SZK and � redu
es to �,

then � 2 SZK.

Proof: By Corollary 4.2, � has a se
urity-parameterized statisti
al zero-knowledge proof. A sta-

tisti
al zero-knowledge proof for � 
an be obtained as follows: On input x, the prover, veri�er, and

simulator run the se
urity-parametrized proof for � on input (f(x); 1

jxj

), where f is the redu
tion

from � to �.

The se
urity-parametrization property is essential in the above proof, be
ause an arbitrary re-

du
tion f 
ould potentially shrink string lengths dramati
ally, and we want the simulator deviation

to be negligible as a fun
tion of jxj, not jf(x)j.

Next, we show how Okamoto's result that SZK is 
losed under 
omplement follows immediately

from our proof of Completeness Theorem.

Corollary 4.4 ([Oka00, Thm. 2℄) SZK is 
losed under 
omplement, even for promise problems.

Proof: Let � be any problem in SZK. By Theorem 3.10 and Corollary 3.9, � redu
es to SD,

whi
h is in SZK. By Corollary 4.3, � 2 SZK.

Before moving on to additional 
losure properties, we dedu
e the upper bounds of Fortnow [For89℄

and Aiello and H�astad [AH91℄ on the 
omplexity of SZK.

Corollary 4.5 ([For89, AH91℄) SZK � AM \ 
o-AM, where AM denotes the 
lass of problems

possessing 
onstant-message intera
tive proofs.

Proof: Immediate from Corollaries 4.2 and 4.4.

Above, we have shown that SZK satis�es a 
omputational 
losure property (Corollary 4.3) and a

boolean 
losure property (Corollary 4.4). Now we will exhibit a stronger 
losure property, whi
h 
an

be viewed as both a 
omputational one and a boolean one: given an arbitrary boolean formula whose

atoms are statements about membership in any problem in SZK, one 
an eÆ
iently 
onstru
t a

statisti
al zero-knowledge intera
tive proof for its validity. Note that su
h a property does not follow

immediately from the fa
t that a 
lass is 
losed under interse
tion, union, and 
omplementation,

be
ause applying these more than a 
onstant number of times 
ould in
ur a superpolynomial 
ost in
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eÆ
ien
y, while we ask that the 
onstru
tion 
an be done eÆ
iently with respe
t to the size of the

formula. The pro
edure for doing this is based on work by De Santis, Di Cres
enzo, Persiano, and

Yung [DDPY94℄. They show how to 
onstru
t statisti
al zero-knowledge proofs for all monotone

boolean formulae whose atoms are statements about a random self-redu
ible language. Their

zero-knowledge proofs are 
onstru
ted by produ
ing two distributions whi
h are either disjoint or

identi
al, depending on whether or not the formula is true. Hen
e, their 
onstru
tion 
an be viewed

as a redu
tion to an extreme 
ase of SD, in whi
h the thresholds are 1 and 0.

Using the Dire
t Produ
t, XOR, and the Polarization Lemmas of Se
tion 3.2, we generalize

their result to monotone formulae whose atoms are statements about membership in Statisti
al

Differen
e. Then, using the 
ompleteness of SD (Theorem 3.1) and 
losure under 
omplement

(Corollary 4.4), we dedu
e the result for general (i.e. non-monotone) formulae and every promise

problem in SZK.

We begin with some de�nitions des
ribing pre
isely what kind of boolean 
losure properties we

will a
hieve. (Later, we will see how it 
an also be interpreted as 
losure under a 
ertain 
lass of

polynomial-time redu
tions.) In order to deal with instan
es of promise problems that violate the

promise, we will work with an extension of boolean algebra that in
ludes an additional\ambiguous"

value ?.

De�nition 4.6 A partial assignment to variables v

1

; : : : ; v

k

is a k-tuple a = (a

1

; : : : ; a

k

) 2 f0; 1; ?g

k

.

For a propositional formula (or 
ir
uit) � on variables v

1

; : : : ; v

k

, the evaluation �(a) is re
ursively

de�ned as follows:

v

i

(a) = a

i

(� ^  )(a) =

(

1 if �(a) = 1 and  (a) = 1

0 if �(a) = 0 or  (a) = 0

? otherwise

(:�)(a) =

8

<

:

1 if �(a) = 0

0 if �(a) = 1

? if �(a) = ?

(� _  )(a) =

(

1 if �(a) = 1 or  (a) = 1

0 if �(a) = 0 and  (a) = 0

? otherwise

Note that �(a) equals 1 (resp., 0) for some partial assignment a, then �(a

0

) also equals 1 (resp.,

0) for every boolean a

0

obtained by repla
ing every ? in a with either a 0 or 1. The 
onverse, however,

is not true: The formula � = v _:v evaluates to 1 on every boolean assignment, yet is not 1 when

evaluated at ?. Thus, the \law of ex
luded middle" � _ :� � 1 no longer holds in this setting.

However, other identities in boolean algebra su
h as De Morgan's laws (e.g. :(� _  ) � :� ^ : )

do remain true.

De�nition 4.7 For a promise problem �, the 
hara
teristi
 fun
tion of � is the map �

�

: f0; 1g

�

!

f0; 1; ?g given by

�

�

(x) =

(

1 if x 2 �

Y

0 if x 2 �

N

? otherwise

De�nition 4.8 For any promise problem �, we de�ne a new promise problem �(�) as follows: �

�(�)

Y

= f(�; x

1

; : : : ; x

k

) : �(�

�

(x

1

); : : : ; �

�

(x

k

)) = 1g

�(�)

N

= f(�; x

1

; : : : ; x

k

) : �(�

�

(x

1

); : : : ; �

�

(x

k

)) = 0g;

where � is a k-ary propositional formula. Mon(�) is de�ned analogously, ex
ept that only monotone

� are 
onsidered.

10

10

In [DDPY94℄, only monotone formulae are treated. What they 
all �(L) is what we 
all Mon(L).
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Sample( ; b)

If  = v

i

, sample z  D

i

b

.

If  = � _ �,

Sample z

1

 Sample(�; b);

Sample z

2

 Sample(�; b);

Let z = (z

1

; z

2

).

If  = � ^ �,

Choose 
; d2

R

f0; 1g subje
t to 
� d = b;

Sample z

1

 Sample(�; 
);

Sample z

2

 Sample(�; d);

Let z = (z

1

; z

2

).

Output z.

Figure 1:

In [DDPY94℄, it is shown that Mon(L) 2 SZK for any language L whi
h is random self-redu
ible,

whose 
omplement is self-redu
ible, or whose 
omplement has a nonintera
tive statisti
al zero-

knowledge proof. They also give statisti
al zero-knowledge proofs for some simple statements

involving a random-self-redu
ible language and its 
omplement. Damg�ard and Cramer [DC96℄

extend these results by showing that Mon(L) 2 SZK as long as L or its 
omplement has a 3-

message publi
-
oin statisti
al zero-knowledge proof, and also treat a larger 
lass of monotone

fun
tions.

Our result holds for all of SZK and for all boolean formulae, not just monotone ones:

Theorem 4.9 For any promise problem � 2 SZK, �(�) 2 SZK.

This theorem 
an be generalized to work for all boolean formulae whose atoms are statements

about membership in any �nite set of languages in SZK, but we omit the notationally 
umbersome

formal statement sin
e it is immediate from the 
ompleteness of Statisti
al Differen
e.

The main step in proving Theorem 4.9 is the following Lemma, whi
h is based on the 
onstru
-

tion of [DDPY94℄ for Mon(Graph Nonisomorphism):

Lemma 4.10 Mon(SD) 2 SZK.

Proof: For intuition, 
onsider two instan
es of statisti
al di�eren
e (C

0

; C

1

) and (D

0

;D

1

), both

of whi
h have statisti
al di�eren
e very 
lose to 1 or very 
lose to 0 (whi
h 
an be a
hieved by the

Polarization Lemma). Then (C

0


D

0

; C

1


D

1

) will have statisti
al di�eren
e very 
lose to 1 if either

of the original statisti
al di�eren
es is very 
lose to 1 and will have statisti
al di�eren
e very 
lose to

0 otherwise. Thus, this Dire
t Produ
t operation represents OR. Similarly, the XOR operation in

Proposition 3.6 represents AND. We will re
ursively apply these 
onstru
tions to obtain a redu
tion

from Mon(SD) to SD. By 
losure under redu
tions (Corollary 4.3), Lemma 4.10 will follow.

Let w = (�; (C

1

0

; C

1

1

); : : : ; (C

k

0

; C

k

1

)) be an instan
e of Mon(SD) and let n = jwj. By ap-

plying the Polarization Lemma (Lemma 3.3), we 
an 
onstu
t in polynomial time pairs of 
ir
uits

(D

1

0

;D

1

1

); : : : ; (D

k

0

;D

k

1

) su
h that the statisti
al di�eren
e betweenD

i

0

andD

i

1

is greater than 1�2

�n

if (C

i

0

; C

i

1

) 2 SD

Y

and is less than 2

�n

if (C

i

0

; C

i

1

) 2 SD

N

.

Consider the randomized re
ursive pro
edure Sample( ; b) in Figure 1 whi
h takes a subformula

 of � = �(v

1

; : : : ; v

n

) and a bit b 2 f0; 1g as input. Exe
uting Sample(�; b) for b 2 f0; 1g takes
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time polynomial in n, be
ause the number of re
ursive 
alls is equal to the number of subformulas

of �. For a subformula  of �, de�ne

Dif( ) = kSample( ; 0) � Sample( ; 1)k:

Then we 
an prove the following about Dif:

Claim 4.11 Let a = (�

SD

(C

1

0

; C

1

1

); : : : ; �

SD

(C

k

0

; C

k

1

)). For every subformula  of �, we have:

 (a) = 1 ) Dif( ) > 1� j j2

�n

 (a) = 0 ) Dif( ) < j j2

�n

Note that nothing is 
laimed when  (a) = ?.

Proof of 
laim: The proof of the 
laim is by indu
tion on subformulae  of �. It

holds for atomi
 subformulae (i.e. the variables v

i

) by the properties of the D

i

b

's.

Case I:  = � _ �. If  (a) = 1, then either �(a) = 1 or �(a) = 1. Without loss of

generality, say �(a) = 1. Then, by Fa
t 2.4 and indu
tion,

Dif( ) � Dif(�) > 1� j� j2

�n

> 1� j j2

�n

:

If  (a) = 0, then �(a) = �(a) = 0. By Fa
t 2.3 and indu
tion,

Dif( ) � Dif(�) + Dif(�) < j� j2

�n

+ j�j2

�n

� j j2

�n

:

Case I:  = � ^ �. By Proposition 3.6, Dif( ) = Dif(�) �Dif(�). If  (a) = 1, then, by

indu
tion,

Dif( ) � (1� j� j2

�n

)(1 � j�j2

�n

) > 1� (j� j+ j�j)2

�n

� 1� j j2

�n

:

If  (a) = 0, then, without loss of generality, say �(a) = 0. By indu
tion,

Dif( ) � Dif(�) < j� j2

�n

� j j2

�n

:

Now, let A andB be the 
ir
uits whi
h sample from the distributions Sample(�; 0) and Sample(�; 1),

respe
tively. (The the random bits ea
h pro
edure uses are the inputs to the 
ir
uits). By the above


laim, kA � Bk > 1 � n2

�n

> 2=3 if �(a) = 1, and kA � Bk < n2

�n

< 1=3 if �(a) = 0. In other

words, the 
onstru
tion of A and B from w is a redu
tion from Mon(SD) to SD. This redu
tion 
an

be 
omputed in polynomial time be
ause Sample runs in polynomial time. Thus, by Corollary 4.3,

Mon(SD) 2 SZK.

Now it is straightforward to dedu
e Theorem 4.9.

Proof: Let � be any promise problem in SZK. By 
losure under 
omplement (Corollary 4.4)

and the 
ompleteness of SD (Theorem 3.1), both � and � redu
e to SD. Let f and g be these

redu
tions, respe
tively. Now, let (�; x

1

; : : : ; x

k

) be any instan
e of �(�), where � = �(v

1

; : : : ; v

k

).

Use De Morgan's laws to propagate all negations of � to its variables. Now repla
e all o

urren
es

of the literal :v

i

with a new variable w

i

. Let  (v

1

; : : : ; v

k

; w

1

; : : : ; w

k

) be the resulting (monotone)

formula. It is 
lear that

(�; x

1

; : : : ; x

k

) 7! ( ; f(x

1

); : : : ; f(x

k

); g(x

1

); : : : ; g(x

k

))
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is a redu
tion from �(�) to Mon(SD). Sin
e Mon(SD) 2 SZK (Lemma 4.10) and SZK is 
losed

under redu
tions (Corollary 4.3), Theorem 4.9 follows.

Theorem 4.9 
an be also viewed as demonstrating that SZK is 
losed under a type of polynomial-

time redu
ibility, whi
h is formalized by the following two de�nitions.

De�nition 4.12 (truth-table redu
tion [LLS75℄): We say a promise problem � truth-table redu
es

to a promise problem � if there exists a (deterministi
) polynomial-time 
omputable fun
tion f ,

whi
h on input x produ
es a tuple (y

1

; : : : ; y

k

) and a boolean 
ir
uit C (with k input gates) su
h

that

x 2 �

Y

) C(�

�

(y

1

); : : : ; �

�

(y

k

)) = 1

x 2 �

N

) C(�

�

(y

1

); : : : ; �

�

(y

k

)) = 0

In other words, a truth-table redu
tion for promise problems is a nonadaptive Cook redu
tion

whi
h is allowed to make queries whi
h violate the promise, but still must have an unambiguous

output (in the strong sense formalized by De�nition 4.6). We further 
onsider the 
ase where we

restri
t the 
omplexity of 
omputing the output of the redu
tion from the queries:

De�nition 4.13 (NC

1

truth-table redu
tions): A truth-table redu
tion f between promise problems

is an NC

1

truth-table redu
tion if the 
ir
uit C produ
ed by the redu
tion on input x has depth

bounded by 


f

log jxj, where 


f

is a 
onstant independent of x.

With these de�nitions, we 
an restate Theorem 4.9 as follows:

Corollary 4.14 SZK is 
losed under NC

1

truth-table redu
tions.

Proof: Any 
ir
uit of size s and depth d 
an be eÆ
iently \unrolled" into a formula of size

2

d

� s. Hen
e, an NC

1

truth-table redu
tion from � to � gives rise to a Karp redu
tion from � to

�(�). Sin
e SZK is 
losed under �(�) and Karp redu
tions, it is also 
losed under NC

1

truth-table

redu
tions.

It would be interesting to prove that SZK is 
losed under general truth-table redu
tions (or,

even better, adaptive Cook redu
tions), or give eviden
e that this is not the 
ase.

4.3 Knowledge 
omplexity

Knowledge 
omplexity [GMR89, GP99℄ is a generalization of zero knowledge whi
h attempts to

quantify how mu
h a veri�er learns from an intera
tive proof. A number of di�erent measures have

been proposed to a

omplish this, most of whi
h are based on the intuition that a veri�er gains at

most k bits of \knowledge" from an intera
tion if it 
an simulate the intera
tion with at most k bits

of \help". Below we give terse de�nitions of the variants we 
onsider. The �rst three de�nitions


ome from [GP99℄, and the last 
omes from [ABV95℄. Let (P; V ) be an intera
tive proof system

for a promise problem �. Then the knowledge 
omplexity of (P; V ) in various senses is de�ned as

follows:

� Hint sense: We say that (P; V ) has perfe
t (resp., statisti
al) knowledge 
omplexity k(n) in

the hint sense if there exists a PPT simulator S and a hint fun
tion h : �

Y

! f0; 1g

�

su
h

that for all x 2 �

Y

, jh(x)j = k(jxj) and kS(x; h(x)) �View

P;V

(x)k is 0 (resp., is bounded by

a negligible fun
tion of jxj.)
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� Stri
t ora
le sense: (P; V ) is said to have perfe
t (resp., statisti
al) knowledge 
omplexity

k(n) in the stri
t ora
le sense if there exists a PPT ora
le-ma
hine S and an ora
le O su
h

that on every input x 2 �

Y

, S queries O at most k(jxj) times and







S

O

(x)�View

P;V

(x)







is

0 (resp., is bounded by a negligible fun
tion of jxj.)

� Ora
le sense: (P; V ) is said to have perfe
t (resp., statisti
al) knowledge 
omplexity k(n)

in the ora
le sense if there exists a PPT ora
le-ma
hine S and an ora
le O su
h that on every

input x 2 �

Y

, S queries O at most k(jxj) times, S outputs `fail' with probability at most

1=2, and







S

O

(x)�View

P;V

(x)







is 0 (resp., is bounded by a negligible fun
tion of jxj), where

S

O

(x) denotes the output distribution of S 
onditioned on non-failure.

� Average ora
le sense: (P; V ) has perfe
t (resp., statisti
al) knowledge 
omplexity k(n) in

the average ora
le sense if there exists a PPT ora
le-ma
hine S and an ora
le O su
h that

for every input x 2 �

Y

, the average number of queries S makes to O is at most k(jxj) and







S

O

(x)�View

P;V

(x)







is 0 (resp., is bounded by a negligible fun
tion of jxj.)

� Entropy sense: (P; V ) has perfe
t (resp., statisti
al) knowledge 
omplexity k(n) in the

entropy sense if there exists a PPT ora
le-ma
hine S, an ora
le O, and a PPT ora
le-simulator

A su
h that for all x 2 �

Y

, E

R

[logP

x

(R)

�1

℄ � k(jxj), where P

x

(R) = Pr

�

[A(x;R; �) =

S

O

(x;R)℄ and







S

O

(x)�View

P;V

(x)







is 0 (resp., is bounded by a negligible fun
tion of jxj).

Here, the notation M(y; r) denotes the output of PPT M on input y and random 
oins r,

The knowledge 
omplexity (in some spe
i�ed sense) of a promise problem � is k(n) if there

exists an intera
tive proof system (P; V ) for � a
hieving negligible error probablity in both the


ompleteness and soundness 
onditions su
h that the knowledge 
omplexity of (P; V ) is k(n). The


lass of languages possessing perfe
t knowledge 
omplexity k(n) in the hint, stri
t ora
le, average

ora
le, and entropy senses are denoted by PKC

hint

, PKC

stri
t

, PKC

avg

, and PKC

ent

, respe
tively.

Statisti
al knowledge 
omplexity is denoted by SKC with the appropriate subs
ript.

A Collapse for the Hint Sense

Our �rst result about knowledge 
omplexity is that the SKC

hint

hierar
hy 
ollapses by logarithmi


additive fa
tors. Previously, Goldrei
h and Petrank [GP99℄ have shown that SKC

hint

(poly(n)) � AM

and SKC

hint

(O(log(n))) � 
o-AM; the se
ond of these results 
an be derived immediately from our

result and Fortnow's theorem [For89℄ that SZK � 
o-AM.

Theorem 4.15 For any polynomially bounded fun
tion k(n),

SKC

hint

(k(n) + log n) = SKC

hint

(k(n)):

For intuition, 
onsider the 
ase that k(n) = 0. Loosely speaking, if the veri�er is given the hint

along with the input (with the \promise" that the hint is 
orre
t), then the original proof system

be
omes zero knowledge, so we 
an apply the results of the previous se
tion. By the boolean 
losure

properties established in Theorem 4.9, we 
an take the \union over all possible hints" (there are

only polynomially many of them) without leaving SZK. The result is easily seen to be the original

problem.

In order to turn this intuition into a proof, we �rst show that knowledge 
omplexity in the hint

sense 
an be 
hara
terized in terms of zero-knowledge promise problems, so that questions about

the SKC

hint

hierar
hy are redu
ed to questions about statisti
al zero knowledge. This is equivalen
e

is obtained by providing the hint along with the input and \promising" that the hint is 
orre
t.
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Lemma 4.16 Let k(n) be any polynomially bounded fun
tion. Then � 2 SKC

hint

(k(n)) (resp.,

PKC

hint

(k(n))) i� there exists a promise problem � 2 SZK (resp., PZK) su
h that

1. x 2 �

Y

) there exists a su
h that jaj = k(jxj) and (x; a) 2 �

Y

, and

2. x 2 �

N

) for all a, (x; a) 2 �

N

.

Proof: We only give the proof for statisti
al knowledge 
omplexity and zero knowledge; the

perfe
t 
ase is identi
al.

) Let � be a promise problem in SKC

hint

(k(n)) and let h : �

Y

! f0; 1g

�

. be a hint fun
tion 
or-

responding to an appropriate intera
tive proof system and simulator for �. Consider the following

promise problem �:

�

Y

= f(x; h(x)) : x 2 �

Y

g

�

N

= f(x; a) : x 2 �

N

g

By using the proto
ol and simulator for �, we see that � 2 SZK (the veri�er and prover for �

should ignore the se
ond 
omponent, whereas the simulator uses it as a hint.) It is 
lear that �

satis�es the other 
onditions of Lemma 4.16.

( Let � 2 SZK be the promise problem satisfying the stated 
onditions. Let h : �

Y

! f0; 1g

�

be any fun
tion su
h that for all x 2 �

Y

,

1. jh(x)j = k(jxj),

2. (x; h(x)) 2 �

Y

.

(Su
h a fun
tion is guaranteed by Condition 1.) We now give a proof system for � of knowledge


omplexity k(n). On input x, the prover gives the veri�er h(x) in the �rst step, and then they

exe
ute the proto
ol for � on (x; h(x)). The 
ompleteness and soundness of this proto
ol follow

from the properties of the � proof system. This proof system is easily seen to have knowledge


omplexity k(n) in the hint sense, using the hint h(x) with the the zero-knowledge simulator for �.

We now prove Theorem 4.15.

Proof: Let � be a problem in SKC

hint

(k(n)+ log n) and let � be the promise problem guaranteed

by Lemma 4.16. By Theorem 4.9, �(�) 2 SZK. Now 
onsider a di�erent, but related promise

problem �

0

, de�ned by

�

0

Y

= f(x; a)) : there exists b su
h that jbj = log jxj and (x; ab) 2 �

Y

g

�

0

N

= f(x; a) : for all b, (x; ab) 2 �

N

g = f(x; a) : x 2 �

N

g:

For any string x, let b

1

; : : : ; b

n

be all strings of length log jxj, and let C be the 
ir
uit of depth

O(log jxj) 
omputing the fun
tion �(v

1

; : : : ; v

n

) =

W

i

v

i

. The relationship between � and �

0

above

implies that

(x; a) 7! (�; (x; ab

1

); : : : ; (x; ab

n

))
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is an NC

1

truth-table redu
tion from �

0

to �. Sin
e SZK is 
losed under su
h redu
tions (Corol-

lary 4.14), we 
on
lude that �

0

2 SZK.

Now, x 2 �

Y

, then there exists an a of length k(jxj) + log(jxj) su
h that (x; a) 2 �

Y

. Tak-

ing a

0

to be the �rst k(jxj) bits of a, we see that there exists an a

0

of length k(jxj) su
h that

(x; a

0

) 2 �

0

Y

. Moreover, if x 2 �

N

, then for all a, (x; a) 2 �

0

N

. Thus, by Lemma 4.16, we 
on
lude

that � 2 SKC

hint

(k(n)).

The Perfe
t Knowledge Complexity of SZK

The next theorem establishes tighter bounds on the perfe
t knowledge 
omplexity of SZK. Aiello,

Bellare, and Venkatesan [ABV95℄ have previously demonstrated that every language in SZK has

perfe
t knowledge 
omplexity n

�!(1)

(resp., 1+n

�!(1)

) in the entropy (resp. average ora
le) sense.

Our results improve on these bounds, although the results of [ABV95℄ also apply to 
heating-veri�er


lasses and ours do not. Goldrei
h, Ostrovsky, and Petrank [GOP98℄ show that SZK has logarithmi


perfe
t knowledge 
omplexity in the ora
le sense, so our results are in
omparable to theirs. Our

result for the stri
t ora
le sense is the �rst that we know of.

Theorem 4.17

11

1. For every polynomial-time 
omputable m(n) = !(log n), SZK � PKC

stri
t

(m(n)).

2. SZK � PKC

avg

(1 + 2

�n

).

3. SZK = PKC

ent

(2

�n

).

Corollary 4.2 tells us that every problem in SZK has a simple two-message proof system like

the SD proof system of Se
tion 3.3. Thus, in order to measure the perfe
t knowledge 
omplexity

of SZK and prove Theorem 4.17, it suÆ
es to analyze this proto
ol. Intuitively, sin
e the prover

is only sending the veri�er one bit and this bit is almost always a value the veri�er knows, the

knowledge 
omplexity of this proto
ol should be extremely small. However, this argument does

not suÆ
e, be
ause the knowledge 
omplexity of a problem � is determined only by proof systems

for � whi
h a
hieve negligible error probability in both the 
ompleteness and soundness 
onditions.

We 
an over
ome this diÆ
ulty by performing !(log n) parallel repetitions.

Proof: Let � be any problem in SZK and let (P; V ) be the proof system for � 
onstru
ted

in Corollary 4.2 (from the SD proof system of Se
tion 3.3) with the se
urity parameter set to

k = 4n (so the 
ompleteness error is 2

�4n

). Let m = m(n) be any fun
tion 
omputable in time

poly(n) su
h that !(log n) � m � n. Consider the proof system (P

0

; V

0

) obtained by m parallel

repetitions of (P; V ); this has negligible 
ompleteness and soundness errors. We now analyze its

perfe
t knowledge 
omplexity.

1. The prover sends at most m bits to the veri�er on inputs of length n, so the perfe
t knowledge


omplexity of this proto
ol in the stri
t ora
le sense is bounded by m.

2. A perfe
t simulator for (P

0

; V

0

) 
an be obtained as follows: On input x of length n, the

simulator runs V (x) for m times independently and queries the ora
le on
e to �nd out if

11

The 2

�
(n)

in these results 
an be improved to 2

�
(n

k

)

for any 
onstant k by polarizing with se
urity parameter

n

k

instead of n + 1 in the SD proof system of Se
tion 3.3.
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any of these runs would result in an in
orre
t prover response. If the ora
le replies yes,

the simulator queries the ora
le m more times to �nd out whi
h runs would result in an

in
orre
t response. The simulator then outputs the random 
oins used for running V and the

appropriate prover responses.

In ea
h subproto
ol, the prover gives an in
orre
t response with probability at most 2

�4n

.

Thus, the simulator has to query the ora
le for more than one bit with probability at most

n2

�4n

. Thus, on average, the simulator queries the ora
le for at most 1 +mn2

�4n

< 1 + 2

�n

bits.

3. Let S be the simulator for (P

0

; V

0

) whi
h simply simulates V

0

and queries the ora
le O for

all prover responses. One possible ora
le simulator would assume that the prover is 
orre
t

in all subproto
ols. Unfortunately, this gives 1=P

x

(R) = 1 for some R and yields in�nite

knowledge 
omplexity. Thus, we instead have our ora
le simulator A assume that the prover

is right in ea
h subproto
ol independently with probability 1 � Æ, where Æ = 2

�2n

. Thus,

P

x

(R) = (1 � Æ)

k

Æ

m�k

, if R is a set of random 
oins for V

0

(equivalently S, sin
e S mimi
s

V

0

) whi
h would eli
it a 
orre
t prover response in exa
tly k of the subproto
ols. Let � be

the probability that the prover is in
orre
t in an individual subproto
ol. Then, � � Æ

2

, and

we have

E

R

�

log

1

P

x

(R)

�

=

m

X

k=0

�

m

k

�

�

m�k

(1� �)

k

log

�

1

(1� Æ)

k

Æ

m�k

�

=

�

log

1

Æ

m

�

m

X

k=0

�

m

k

�

�

m�k

(1� �)

k

+

�

log

Æ

1� Æ

�

m

X

k=0

�

m

k

�

�

m�k

(1� �)

k

k

= log

1

Æ

m

+m(1� �)

�

log

Æ

1� Æ

�

= m

�

log

1

1� Æ

+ � log

1� Æ

Æ

�

� m

�

log

1

1� Æ

+ Æ

2

log

1

Æ

�

� 2mÆ < 2

�n

for suÆ
iently large n.

The opposite in
lusion follows from the result of [ABV95℄ that PKC

ent

(neg(n)) � SZK for

any negligible fun
tion neg(n).

4.4 Reversing statisti
al di�eren
e

By the 
ompleteness of SD (Theorem 3.1) and SZK's 
losure under 
omplement (Corollary 4.4), it

follows that SD redu
es to SD. This is equivalent to the following surprising result:

Corollary 4.18 (Reversal Mapping) There is a polynomial-time 
omputable fun
tion that maps

pairs of 
ir
uits (C

0

; C

1

) to pairs of 
ir
uits (D

0

;D

1

) su
h that

kC

0

� C

1

k < 1=3 ) kD

0

�D

1

k > 2=3

kC

0

� C

1

k > 2=3 ) kD

0

�D

1

k < 1=3:
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That is, SD redu
es to SD.

This 
orollary motivated our sear
h for a more expli
it des
ription of su
h a mapping. By

extra
ting ideas used in the transformations of statisti
al zero-knowledge proofs given in [Oka00℄

and [SV97℄, we obtained the des
ription of this transformation given below.

The Constru
tion. Let (C

0

; C

1

) be any pair of 
ir
uits and let n = j(C

0

; C

1

)j. By the Polarization

Lemma (Lemma 3.3), we 
an produ
e in polynomial time a pair of 
ir
uits (C

0

0

; C

0

1

) su
h that

kC

0

� C

1

k < 1=3 )







C

0

0

� C

0

1







> 1� 2

�n

kC

0

� C

1

k > 2=3 )







C

0

0

� C

0

1







< 2

�n

Let q = poly(n) be the number of input gates of C

0

0

and C

0

1

(w.l.o.g. we may assume they have the

same number) and let ` = poly(n) be the number of output gates. For notational 
onvenien
e, let

R = f0; 1g

q

and L = f0; 1g

`

. Let m = n

3

q

2

and de�ne a new distribution

~

C: f0; 1g

m

� R

m

! L

m

as follows:

~

C(

~

b; ~r) = (C

0

b

1

(r

1

); : : : ; C

0

b

m

(r

m

)):

We use the notation ~z  

~

C to denote ~z 
hosen a

ording to

~

C, i.e. sele
t

~

b and ~r uniformly and

let ~z =

~

C(

~

b; ~r).

LetH be a 2-universal family of hash fun
tions from f0; 1g

m

�R

m

�L

m

to T = f0; 1g

(q+1)m�2��n

,

where � =

p

nmq

2

= m=n. We 
an now des
ribe the new distributions:

D

0

: Choose (

~

b; ~r)2

R

f0; 1g

m

� R

m

, ~y  

~

C, and h2

R

H. Output

(

~

C(

~

b; ~r);

~

b; h; h(

~

b; ~r; ~y)).

D

1

: Choose (

~

b; ~r)2

R

f0; 1g

m

� R

m

, h2

R

H, and t2

R

T . Output

(

~

C(

~

b; ~r);

~

b; h; t).

The important things to note about these distributions are that

~

b is part of the output, and that

D

0

and D

1

only di�er in the last 
omponent, where D

0

has the value of the hash fun
tion and D

1

has a truly random element of T . Also note that the size of T is 
hosen to be jf0; 1g

m

�R

m

j=2

2�+n

,

whi
h is essentially jf0; 1g

m

�R

m

j, s
aled down by a \sla
kness" fa
tor of 2

2�+n

. The introdu
tion

of the sample ~y in D

0

may at �rst seem super
uous; we explain below.

Intuition. For intuition, 
onsider the 
ase that

~

C is a 
at distribution; that is, for every ~z 2

range(

~

C), the size of the preimage set jf(

~

b; ~r):

~

C(

~

b; ~r) = ~zgj is the same value N . (It turns out that

~

C is a
tually \
lose enough" to being 
at for the following arguments to work.) Then the range of

~

C has size jf0; 1g

m

�R

m

j=N = 2

(q+1)m

=N . So, in D

0

, 
onditioned on a value for

~

C(

~

b; ~r), the triple

(

~

b; ~r; ~y) is sele
ted uniformly from a set of size 2

(q+1)m

. Sin
e this is mu
h greater than jT j, the

Leftover Hash Lemma of [HILL99℄ implies that 
onditioned on any value for the �rst 
omponent

of D

0

, the last two 
omponents (h; h(

~

b; ~r; ~y)) are distributed 
lose to the uniform distribution on

H � T , whi
h is the distribution that D

1

has in its last two 
omponents.

12

Thus, if their se
ond

12

Here we see the importan
e of ~y: Without ~y, 
onditioned on some value of

~

C(

~

b; ~r), the pair (

~

b; ~r) would be sele
ted

uniformly from a spa
e of size N . If we were only hashing this pair, for the distribution h(

~

b; ~r) to be uniform by the

Leftover Hash Lemma, T would have had to be 
hosen so that jT j � N . The value of N , however, depends on the

inner workings of the 
ir
uit C, and is in general unknown. By in
luding ~y, whi
h 
omes uniformly from a spa
e of

size 2

(q+1)m

=N , we balan
e the arguments to h so that they 
ome from a spa
e of size 2

(q+1)m

, a known quantity. This

use of \dummy" samples to form a spa
e whose size is known is the \
omplementary usage of messages" te
hnique

of Okamoto [Oka00℄.
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omponents were missing, D

0

and D

1

would be statisti
ally 
lose. Now, 
onsider the 
ase that

kC

0

0

�C

0

1

k � 1. Then

~

b is essentially \determined" by

~

C(

~

b; ~r). So the presen
e of

~

b 
an be ignored,

and the above argument says that D

0

and D

1

are statisti
ally very 
lose. Now, 
onsider the 
ase

that kC

0

0

�C

0

1

k � 0. Then

~

b is essentially \unrestri
ted" by

~

C(

~

b; ~r). Sin
e there are 2

m


hoi
es for

~

b, 
onditioning on

~

b in addition to

~

C(

~

b; ~r), 
uts the number of triples (

~

b; ~r; ~y) down from 2

m(q+1)

to

roughly 2

m(q+1)

=2

m

. Sin
e 2

m(q+1)

=2

m

is mu
h smaller than jT j, h(

~

b; ~r; ~y) will 
over only a small

fra
tion of jT j and thus will be far from uniform (
onditioned on values for

~

C(

~

b; ~r),

~

b, and h).

Dire
t Proof of Corollary 4.18. First we will argue that

~

C is 
lose to being 
at, so that we


an apply arguments like those given above. This is the 
ase be
ause

~

C is 
omposed of many

independent, identi
ally distributed random variables. For ~z 2 L

m

, we say the weight of ~z is the

logarithm of the size of the preimage set of ~z. Formally, let wt(~z) = log

2

jf(

~

b; ~r) :

~

C(

~

b; ~r) = ~zgj. Let

w be the expe
ted weight of an image, i.e. w = E

~z 

~

C

[wt(~z)℄. Then we 
an show the following:

Lemma 4.19 Pr

~z 

~

C

[jwt(~z)�wj > �℄ < 2

�
(n)

:

Proof: For z 2 L, let wt

0

(z) = log

2

jf(b; r) : C

b

(r) = zgj. Then, for ~z 2 L

m

, wt(~z) =

wt

0

(z

1

)+ � � �+wt

0

(z

m

). Observe that when ~z is sele
ted a

ording to

~

C, z

1

; : : : ; z

m

are independent

and identi
ally distributed. Moreover, for any z 2 L, 0 � wt

0

(z) � q. So, by the Hoe�ding

inequality [Hof95, Se
. 7.2.1℄, we have

Pr

~z 

~

C

[jwt(~z)� wj > �℄ < 2e

�2�

2

=mq

2

= 2e

�2n

:

It will be 
onvenient to eliminate those ~z 2 L

m

that have weight far above or below the mean.

Let G = f(

~

b; ~r) : jwt(

~

C(

~

b; ~r)) � wj � �g be the set of good pairs (

~

b; ~r). The above Lemma says

that jGj � (1� 2

�
(n)

)jf0; 1g

m

�R

m

j. Thus kG�f0; 1g

m

�R

m

k � 2

�
(n)

, where for simpli
ity of

notation, we let the name of a set also refer to the uniform distribution on the same set. De�ne

~

C

0

to be the distribution obtained by sele
ting (

~

b; ~r) G and outputting

~

C(

~

b; ~r). Then, sin
e

~

C is a

fun
tion, Fa
t 2.4 tells us that k

~

C �

~

C

0

k = 2

�
(n)

. Similarly, we de�ne variants of D

0

and D

1

that

sample from G instead of f0; 1g

m

�R

m

:

D

0

0

: Let (

~

b; ~r)2

R

G, ~y  

~

C

0

, and h2

R

H. Output

(

~

C

0

(

~

b; ~r);

~

b; h; h(

~

b; ~r; ~y)).

D

0

1

: Let (

~

b; ~r)2

R

G, h2

R

H, and t2

R

T . Output (

~

C

0

(

~

b; ~r);

~

b; h; t).

Sin
e D

0

0

(or D

0

1

) is a randomized pro
edure applied to two (or one) independent samplings

from G, Fa
t 2.4 tells us that kD

0

� D

0

0

k = 2

�
(n)

(and kD

1

�D

0

1

k = 2

�
(n)

). Hen
e, it suÆ
es

to prove that these modi�ed distributions have the properties we want in ea
h 
ase. For the 
ase

when C

0

and C

1

are statisti
ally far, we prove the following 
laim:

Claim 4.20 If kC

0

0

� C

0

1

k > 1� 2

�n

, then kD

0

0

�D

0

1

k < 2

�
(n)

.

Proof of 
laim: First we formalize the idea that

~

b is \determined" by

~

C. De�ne

f : L! f0; 1g by

f(z) =

�

0 if Pr [C

0

0

= z℄ > Pr [C

0

1

= z℄

1 otherwise
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In other words, f is exa
tly the prover strategy from the proof system for Statisti
al

Differen
e given in Se
tion 3.3. The 
ompleteness of that proof system (Lemma 3.7)

says that Pr

b;r

[f(C

0

b

(r)) = b℄ > 1 � 2

�n

. Now de�ne

~

f : L

m

! f0; 1g

m

by

~

f(~z) =

(f(z

1

); : : : ; f(z

m

)). Then

Pr

~

b;~r

[

~

f(

~

C(

~

b; ~r)) =

~

b℄ > (1� 2

�n

)

m

= 1� 2

�
(n)

:

Sin
e G is a 1� 2

�
(n)

fra
tion of f0; 1g

m

�R

m

, the same is true when (

~

b; ~r) is sele
ted

uniformly from G. Thus, if we de�ne:

D

00

0

: Let (

~

b; ~r)2

R

G, ~y  

~

C

0

, and h2

R

H. Output

(

~

C

0

(

~

b; ~r);

~

f(

~

C

0

(

~

b; ~r)); h; h(

~

b; ~r; ~y)).

D

00

1

: Let (

~

b; ~r)2

R

G, h2

R

H, and t2

R

T . Output (

~

C

0

(

~

b; ~r);

~

f(

~

C

0

(

~

b; ~r)); h; t).

Then, by Fa
t 2.5, kD

0

0

�D

00

0

k = 2

�
(n)

and kD

0

1

�D

00

1

k = 2

�
(n)

. So it suÆ
es to

show that kD

00

0

�D

00

1

k = 2

�
(n)

. Sin
e the �rst 
omponents of D

00

0

and D

00

1

are identi
ally

distributed and the se
ond 
omponents are determined by the �rst ones, it suÆ
es to

show (by Fa
t 2.5) that, 
onditioned on any value for the �rst 
oordinate, the third and

fourth 
omponents have statisti
al di�eren
e 2

�
(n)

. This will follow from the Leftover

Hash Lemma [HILL99℄:

Lemma 4.21 (Leftover Hash Lemma [HILL99℄) Let H be a family of 2-universal

hash fun
tions from D to T . Let X by a probability distribution on D su
h that for

all x 2 D, Pr [X = x℄ � �=jT j. Then the following two distributions have statisti
al

di�eren
e at most �

1=3

.

1. Choose x X, h2

R

H. Output (h; h(x)).

2. Choose h2

R

H, t2

R

T . Output (h; t).

By the above argument and the Leftover Hash Lemma, it suÆ
es to show that


onditioned on any value ~z for

~

C

0

(

~

b; ~r), no triple (

~

b; ~r; ~y) has probability more than

2

�
(n)

=jT j. The pair (

~

b; ~r) 
omes uniformly from a set of size 2

wt(~z)

� 2

w��

, and ~y

is sele
ted independently a

ording to

~

C

0

, so the probability of any triple (

~

b; ~r; ~y) is at

most

�

1

2

w��

��

2

w+�

jGj

�

�

2

2�

(1� 2

�
(n)

)2

(q+1)m

=

2

�
(n)

jT j

:

Thus, kD

00

0

�D

00

1

k � 2

�
(n)

, and the 
laim is established.

Now we treat the other 
ase, when C

0

and C

1

are statisti
ally 
lose.

Claim 4.22 If kC

0

0

� C

0

1

k < 2

�n

, then kD

0

0

�D

0

1

k > 1� 2

�
(n)

.

Proof of 
laim: First, we formalize the idea that

~

b is almost 
ompletely \undeter-

mined" by

~

C(

~

b; ~r). Sin
e kC

0

0

�C

0

1

k < 2

�n

, it follows from Fa
t 2.6 that with probability

1� 2

�
(n)

over z  C

0

0

,

(1� 2

�
(n)

) Pr

�

C

0

1

= z

�

� Pr

�

C

0

0

= z

�

� (1 + 2

�
(n)

) Pr

�

C

0

1

= z

�

:
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In other words,

1� 2

�
(n)

�

jfr : C

0

0

(r) = zgj

jfr : C

0

1

(r) = zgj

� 1 + 2

�
(n)

:

The same is true with probability 1� 2

�
(n)

when the roles of C

0

0

and C

0

1

are reversed.

Thus, with probability 1 �m2

�
(n)

= 1 � 2

�
(n)

over ~z  

~

C, we have for every pair

~

b;~
 2 f0; 1g

m

,

1� 2

�
(n)

= (1� 2


(n)

)

m

�

�

�

�

f~r :

~

C(

~

b; ~r) = ~zg

�

�

�

�

�

�

f~r :

~

C(~
; ~r) = ~zg

�

�

�

� (1 + 2

�
(n)

)

m

= 1 + 2

�
(n)

:

Sin
e there are 2

m


hoi
es for ~
, this, 
ombined with Lemma 4.19, implies that, with

probability 1� 2

�
(n)

over ~z  

~

C, the following holds for every

~

b 2 f0; 1g

m

:

�

�

�

f~r :

~

C(

~

b; ~r) = ~zg

�

�

�

� (1 + 2

�
(n)

) �

2

wt(~z)

2

m

� (1 + 2

�
(n)

) � 2

w+��m

:

Sin
e this is true with probability 1 � 2

�
(n)

for ~z sele
ted a

ording to

~

C, it is also

true with probability 1� 2

�
(n)

for ~z sele
ted a

ording to

~

C

0

. Fix any su
h ~z and �x

any

~

b 2 f0; 1g

m

and h 2 H. Then, in D

0

0

, 
onditioned on

~

C

0

(

~

b; ~r) = ~z,

~

b, and h, there

are at most

(1 + 2

�
(n)

) � 2

w+��m

�

jGj

2

w��

�

� (1 + 2

�
(n)

) � 2

2��m

� 2

m(q+1)

= (1 + 2

�
(n)

) � 2

4�+n�m

� jT j

= 2

�
(m)

� jT j

possible values for (~r; ~y). Thus, with probability 1 � 2

�
(n)

, 
onditioned on values for

the �rst three 
omponents of D

0

0

, the fourth 
omponent h(

~

b; ~r; ~y) 
an 
over at most a

2

�
(m)

� 2

�
(n)

fra
tion of T . In 
ontrast, 
onditioned on values for the �rst three


omponents of D

0

1

, the fourth 
omponent is uniformly distributed on T . Therefore,

kD

0

0

�D

0

1

k � 1� 2

�
(n)

.

In [Vad99℄, it is shown that this Reversal Mapping 
an be better understood as a 
omposition of two

redu
tions, going the two dire
tions between Statisti
al Differen
e and Entropy Differ-

en
e (the 
omplete problem for SZK given in [GV99℄, whi
h trivially redu
es to its 
omplement).

4.5 Weak-SZK and expe
ted polynomial-time simulators

Re
all that, in this paper, we de�ned statisti
al zero-knowledge with respe
t to stri
t polynomial-

time simulators. As noted in Se
tion 2, the original de�nition of statisti
al zero-knowledge permits

expe
ted polynomial-time simulators, but only allowing stri
t polynomial-time simulators is not

very restri
tive when dis
ussing honest-veri�er proofs, as we are.

However, our te
hniques do say something about expe
ted polynomial-time simulators, and in

parti
ular show that expe
ted polynomial-time simulators are no more powerful than stri
t ones

for publi
-
oin statisti
al zero-knowledge. This is the �rst general equivalen
e between stri
t and

expe
ted polynomial-time simulators for statisti
al zero knowledge that we know of.

Indeed, we are able to generalize further to an even weaker notion, that of weak statisti
al

zero knowledge (as previously 
onsidered in [DOY97℄, where it was referred to as \non-uniform

simulation"):
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De�nition 4.23 An intera
tive proof system (P; V ) for a promise problem � is weak statisti
al

zero knowledge if for all polynomials p, there exists an eÆ
ient probabilisti
 (stri
t) polynomial-time

algorithm S

p

su
h that

kS




(x)� (P; V )(x)k � 1=p(jxj);

for all suÆ
iently long x 2 �

Y

.

We denote by weak-SZK the 
lass of promise problems admitting weak statisti
al zero-knowledge

proofs, and by publi
-
oin weak-SZK the 
lass 
orresponding to su
h proofs whi
h are also publi



oin. Note that any proof system admitting an expe
ted polynomial-time simulator (in the usual

sense) 
ertainly also satis�es the requirements of weak statisti
al zero-knowledge. We show that

in fa
t any publi
-
oin weak statisti
al zero-knowledge proof system 
an be transformed into a

statisti
al zero-knowledge proof system with a stri
t polynomial-time simulator a
hieving negligible

(in fa
t, exponentially small) simulator deviation. In other words, publi
-
oin weak-SZK = SZK.

Proposition 4.24 publi
-
oin weak-SZK = SZK = publi
-
oin SZK.

The only obsta
le in generalizing Proposition 4.24 to all weak statisti
al zero-knowledge proofs

(instead of just publi
-
oin ones) is that Okamoto's private to publi
-
oin transformation in [Oka00℄

is only given for stri
t polynomial-time simulators a
hieving negligible simulator deviation. In fa
t,

this generalization was a

omplished in work (subsequent to ours) by Goldrei
h and Vadhan [GV99℄.

In order to establish Proposition 4.24, it suÆ
es to show that every problem in publi
-
oin weak-SZK

redu
es to SD, as the proposition follows by 
losure under redu
tions (Corollary 4.3) and Okamoto's

theorem that SZK = publi
-
oin SZK (Theorem 3.10). Therefore, we need only establish the fol-

lowing generalization of Lemma 3.8:

Lemma 4.25 Suppose promise problem � has a publi
-
oin weak statisti
al zero-knowledge proof.

Then there exist probabilisti
 (stri
t) polynomial time ma
hines A and B su
h that

x 2 �

Y

) kA(x)�B(x)k <

1

3

; and

x 2 �

N

) kA(x)�B(x)k >

2

3

:

Proof: The proof is identi
al to the proof of Lemma 3.8, ex
ept that wherever the simulator S is

used in that proof, we repla
e it with S

p

, a simulator with deviation 1=p(n), where p(n) = 7n�r(n)

3

.

Then we repla
e Claim 3.12 with the following:

Claim 4.26 If x 2 �

Y

, then kA(x)�B(x)k � 1=(3jxj � r(jxj)

2

).

Proof of 
laim: The proof is identi
al to the proof of Claim 3.12, ex
ept that now,

we have

kA(x) �B(x)k � 2

�
(jxj)

+ 2r(jxj) � kS

p

(x)� (P; V )(x)k <

1

3jxj � r(jxj

2

:

On the other hand, Claim 3.13 remains true, i.e. x 2 �

N

implies kA(x)�B(x)k � 1=12r(n). Then,

as in the original proof, we 
onsider the samplable distributions

^

A(x) = 


s(jxj)

A(x) and

^

B(x) =




s(jxj)

B(x), where s(n) = n � r(n)

2

. If x 2 �

Y

, k

^

A(x)�

^

B(x)k � s(jxj)kA(x)�B(x)k < 1=3, as de-

sired. If x 2 �

N

, then by the Dire
t Produ
t Lemma (Lemma 3.4), k

^

A(x)�

^

B(x)k � 1�2

�
(jxj)

.
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4.6 Perfe
t and 
omputational zero knowledge

Although the fo
us of this paper is statisti
al zero knowledge, some of the te
hniques also apply to

perfe
t and 
omputational zero knowledge. In parti
ular, for publi
-
oin proof systems we obtain

variants of Lemma 3.8 for both perfe
t and 
omputational zero knowledge. In addition, a restri
ted

version of Statisti
al Differen
e 
an be shown to have perfe
t zero-knowledge proof.

First, we de�ne some variants of SD. For any two 
onstants � and � with � > �, de�ne:

SD

�;�

Y

= f(C

0

; C

1

) : kC

0

� C

1

k � �g

SD

�;�

N

= f(C

0

; C

1

) : kC

0

� C

1

k � �g

SD

�;�

is interredu
ible with SD and hen
e 
omplete for SZK whenever 1 > �

2

> � > 0, sin
e the

Polarization Lemma generalizes to su
h thresholds. (See dis
ussion at the end of Se
tion 3.2).

We 
an almost show that every problem whi
h has a publi
-
oin perfe
t zero-knowledge proof

redu
es to SD

1=2;0

. The 
aveats are that either the original proof system must have perfe
t 
om-

pleteness, or we obtain distributions that are samplable in expe
ted polynomial time rather than


ir
uits.

Proposition 4.27 Every promise problem having a publi
-
oin perfe
t zero-knowledge proof with

perfe
t 
ompleteness redu
es to SD

1=2;0

.

Proof: It suÆ
es to show that the distributions A(x) and B(x) 
onstru
ted in the proof of

Lemma 3.8 have statisti
al di�eren
e 0 on yes instan
es, when the original proof system has per-

fe
t 
ompleteness and the simulator deviation is 0. Indeed, for i � 1, the distributions A

i

(x) and

B

i

(x) are identi
al if the simulator deviation is 0, and the distributions A

0

(x) and B

0

(x) are iden-

ti
al under the additional assumption that the proof system has perfe
t 
ompleteness.

Proposition 4.28 Suppose promise problem � has a publi
-
oin perfe
t zero-knowledge proof.

Then there exist probabilisti
 expe
ted polynomial time ma
hines A and B su
h that

x 2 �

Y

) kA(x) �B(x)k = 0; and

x 2 �

N

) kA(x) �B(x)k � 1� 2

�
(jxj)

:

Proof: The proof is nearly identi
al to that of Proposition 4.27, ex
ept that we must modify

A

0

(x) and B

0

(x) to have statisti
al di�eren
e 0 (at the pri
e of B

0

(x) be
oming expe
ted polyno-

mial time). Let 
(n) be a polynomial bound on the number of random 
oins S uses on inputs of

length n. Then we de�ne A

0

and B

0

as follows (in both des
riptions, n = jxj):

A

0

(x): Run S(x) for n � 
(n) repetitions. Output `1' if the majority are a

epting 
onversations

and `0' otherwise.

B

0

(x): With probability 1 � 2

�
(n)

, output `1'. Otherwise, 
al
ulate the probability � that S(x)

outputs an a

epting 
onversation (by exhaustive sear
h over all 2


(n)

random seeds). Now 
al
ulate

� =

b

n
(n)

2




X

i=0

�

n
(n)

i

�

�

i

(1� �)

n
(n)�i

:
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If � > 2

�
(n)

, output '1.' Otherwise, output `0' with probability �=2

�
(n)

, and `1' otherwise.

Note that B

0

(x) runs in expe
ted polynomial time, sin
e with probability 2

�
(n)

it runs in time

poly(n)2


(n)

and otherwise it runs in time poly(n). Also observe that � is the probability that

A

0

(x) outputs `0'.

Now we argue that, when x 2 �

Y

, A

0

(x) and B

0

(x) have statisti
al di�eren
e 0,i.e. output `1'

with the same probability. Sin
e S(x) outputs a 
onversation whi
h makes V a

ept with proba-

bility at least 2=3� neg(n), the Cherno� bound implies that Pr [A

0

(x) = 1℄ = 1� 2

�
(n
(n))

. This

means that � will always be less than 2

�
(n)

(for suÆ
iently large n), so B

0

will output `0' with

probability 2

�
(n)

(�=2

�
(n)

) = � , whi
h is the probability that A

0

outputs `0'.

Now, if we 
ould show that SD

1=2;0

(or its 
omplement) has a perfe
t zero-knowledge proof

system, we would have something like a 
ompleteness result for PZK. Although we do not know

how to do this, we 
an instead show that SD

1;1=2

2 PZK. Indeed, 
onsider the proto
ol of Se
-

tion 3.3 with the modi�
ation that the two parties use the XOR Lemma (Lemma 3.5) instead of

the Polarization Lemma. Then the proof of Lemma 3.7 tells us that this proto
ol, when used for

SD

1;1=2

has 
ompleteness error 0, simulator deviation 0, and soundness error 1=2 + 2

�n

. Thus we

have:

Proposition 4.29 SD

1;1=2

2 PZK:

For 
omputational zero knowledge, the te
hniques of Lemma 3.8 give us the following:

Proposition 4.30 Suppose promise problem � has a publi
-
oin 
omputational zero-knowledge

proof. Then there exist probabilisti
 polynomial time ma
hines A and B su
h that

1. x 2 �

N

) kA(x)�B(x)k � 1� 2

�
(jxj)

, and

2. fA(x)g

x2�

Y

and fB(x)g

x2�

Y

are 
omputationally indistinguishable ensembles of probability

distributions.

Note that, in 
ontrast to perfe
t and statisti
al zero knowledge, the 
onditions given in Propo-

sition 4.30 do not give a way to distinguish yes and no instan
es; it is possible for A(x) and B(x)

to have statisti
al di�eren
e greater than 1�2

�
(jxj)

even for x 2 �

Y

. We also remark that Propo-

sition 4.30 holds even when the simulator for the proof system runs in expe
ted polynomial-time,

ex
ept that A and B will also run in expe
ted polynomial-time.

Proof: The proof follows Lemma 3.8 exa
tly, ex
ept for Claim 3.12, whi
h should be repla
ed

with the following:

Claim 4.31 fA(x)g

x2�

Y

and fB(x)g

x2�

Y

are 
omputationally indistinguishable ensembles of prob-

ability distributions.

We omit x from the notation for readability; below all probability distributions a
tually refer

to ensembles indexed by x 2 �

Y

. The proof in Claim 3.12 that A

0

and B

0

have exponentially small

statisti
al di�eren
e still holds. Thus it suÆ
es to show that the distributions A

0

and B

0

obtained

by removing the 0'th 
omponents of A and B, respe
tively, are 
omputationally indistinguishable.
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To prove this, we �rst note that a hybrid argument shows that the distributions 


r

(P; V ) and 


r

S

are 
omputationally indistinguishable, sin
e (P; V ) and S are 
omputationally indistinguishable.

13

Now we introdu
e a new distribution C. De�ne C

i

= (


1

; p

1

; : : : ; 


i

)

(P;V )

for 1 � i � r, and let

C = C

1


� � �
C

r

. Then C and A

0

are 
omputationally indistinguishable sin
e a distinguisherD be-

tween them 
ould be used to make a distinguisherD

0

between 


r

(P; V ) and 


r

S: Given a sequen
e

of r trans
ripts (t

1

; : : : ; t

r

), D

0

trun
ates t

i

= (


1

; p

1

; : : : ; 


r

; p

r

) to produ
e t

0

i

= (


1

; p

1

; : : : ; 


i

) and

feeds (t

0

1

; : : : ; t

0

r

) to D. When fed with 


r

S, D

0

gives D a sample of A

0

, and when fed with 


r

(P; V ),

D

0

gives D a sample of C.

Similarly, C and B

0

are also 
omputationally indistinguishable be
ause a distinguisher between

them 
ould be to make a distinguisher D

0

between 


r

(P; V ) and 


r

S: Given a sequen
e of r

trans
ripts (t

1

; : : : ; t

r

), D

0

trun
ates t

i

= (


1

; p

1

; : : : ; 


r

; p

r

) and sele
ts u

i

a

ording to the uniform

distribution on strings of length r(jxj) to produ
e t

0

i

= (


1

; p

1

; : : : ; p

i�1

; u) and feeds (t

0

1

; : : : ; t

0

r

) to

D. When fed with 


r

S, D

0

gives D a sample of B

0

, and when fed with 


r

(P; V ), D

0

gives D a

sample of C.

Now, be
ause both A

0

and B

0

are 
omputationally indistinguishable from C, they must be 
om-

putationally indistinguishable from ea
h other, 
ompleting the proof.

4.7 Hard-on-average problems and one-way fun
tions

Most, if not all, of 
ryptography relies on the existen
e of 
omputational problems whi
h are hard-

on-average. However, the mere exiten
e of a hard-on-average problem, even in NP, is not known to

imply even the most basi
 
ryptographi
 primitive, namely a one-way fun
tion. Ostrovsky [Ost91℄,

however, showed that the existen
e of a hard-on-average problem in SZK does imply the exis-

ten
e of one-way fun
tions. This result was subsequently generalized to CZK by Ostrovsky and

Wigderson [OW93℄.

In this se
tion, we show how Ostrovsky's result follows readily from our Completeness Theorem

and a result of Goldrei
h [Gol90℄ on 
omputational indistinguishability. Using the generalization

of our te
hniques to CZK des
ribed in the previous se
tion, we also obtain a simpler proof of the

the Ostrovksy{Wigderson theorem restri
ted to publi
-
oin proof systems.

In order to state these theorems pre
isely, we need to de�ne what we mean for a problem �

to be \hard." Informally, we require that membership in � is (very) hard to de
ide under some

samplable distribution of instan
es.

De�nition 4.32 An ensemble of distributions fD

n

g

n2N

is said to be samplable if there is a prob-

abilisti
 polynomial-time algorithm that, on input 1

n

outputs a string distributed a

ording to D

n

.

De�nition 4.33 A promise problem � is hard-on-average if there exists a samplable ensemble of

distributions fD

n

g

n2N

su
h that the following holds: For every nonuniform probabilisti
 polynomial-

time algorithm M , there exists a negligible fun
tion � : N ! [0; 1℄ su
h that

Pr [M(x) 
orre
tly de
ides whether x is a yes or no instan
e of �℄ �

1

2

+ �(n) 8n 2 N;

where the probability is taken over x D

n

and the 
oins of M . (If x violates the promise, then M

is 
onsidered to be 
orre
t no matter what it outputs.)

13

A
tually this step uses the fa
t that our de�nition of 
omputational indistinguishability is with respe
t to nonuni-

form distinguishers, be
ause (P; V ) is not a samplable distribution.
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In this se
tion, we will give new proofs of the following results.

Theorem 4.34 ([Ost91℄) If there is a hard-on-average promise problem in SZK, then one-way

fun
tions exist.

Theorem 4.35 ([OW93℄ for publi
-
oin proofs) If a hard-on-average promise problem pos-

sesses a publi
-
oin 
omputational zero-knowledge proof system, then one-way fun
tions exist.

We will only prove Theorem 4.35 as Theorem 4.34 then follows via Theorem 3.10. Our proof

will make use of Proposition 4.30 in 
onju
tion with the following result of Goldrei
h [Gol90℄:

Proposition 4.36 ([Gol90℄) Suppose there exist two samplable ensembles of distributions, fA

n

g

n2N

and fB

n

g

n2N

, su
h that

1. fA

n

g and fB

n

g are 
omputationally indistinguishable.

2. There is a polynomial p : N ! N su
h that for all n, kA

n

�B

n

k � 1=p(n).

Then one-way fun
tions exist.

Proof of Theorem 4.34: Suppose � is a hard-on-average problem with a publi
-
oin 
omputa-

tional zero-knowledge proof and let fD

n

g be the ensemble of distributions under whi
h � is hard.

By Proposition 4.30 there are probabilisti
 polynomial-time algorithms A and B su
h that

1. x 2 �

N

) kA(x) �B(x)k � 1� 2

�
(jxj)

, and

2. fA(x)g

x2�

Y

and fB(x)g

x2�

Y

are 
omputationally indistinguishable.

(Note that if � 2 SZK, the Completeness Theorem and Polarization Lemma yield su
h A and B

with the 
omputational indistinguishability repla
ed by statisti
al di�eren
e 2

�jxj

.)

We will show that the following ensembles fA

n

g and fB

n

g meet the requirements of Proposi-

tion 4.36:

A

n

: Sample x a

ording to D

n

. Sample z from A(x). Output (x; z).

B

n

: Sample x a

ording to D

n

. Sample z from B(x). Output (x; z).

The statisti
al farness of these ensembles will follow from the farness of A(x) and B(x) on

no instan
es. The 
omputational indistinguishability will follow from the 
omputational indistin-

guishability of A(x) and B(x) on yes instan
es, together with the fa
t that it is hard to distinguish

yes instan
es of � from no instan
es.

To formalize this intuition, we make some observations whi
h follow from the fa
t that �

is hard-on-average (where here and throughout this proof, we write neg(n) to denote negligible

fun
tions):

1. Pr [D

n

=2 �

Y

[�

N

℄ = neg(n).

2.

�

�

Pr [D

n

2 �

Y

℄�

1

2

�

�

= neg(n) and

�

�

Pr [D

n

2 �

Y

℄�

1

2

�

�

= neg(n).

3. The ensembles fD

Y

n

g

n2N

and fD

N

n

g

n2N

obtained by 
onditioning D

n

on being a yes or no

instan
e, respe
tively, are 
omputationally indistinguishable.
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Items 1 and 2 hold be
ause otherwise the trivial algorithm that always outputs yes or the one that

always outputs no would de
ide � 
orre
tly with nonnegligible advantage. Item 3 holds be
ause a

distinguisher between fD

Y

n

g and fD

N

n

g 
ould be used to de
ide � with nonnegligible advantage.

Claim 4.37 kA

n

�B

n

k � 1=2 � neg(n).

Proof of 
laim: Sin
e D

n

must produ
e a no instan
e of � with probability at least

1=2 � neg(n), kA

n

�B

n

k � (1=2� neg(n)) � (1� 2

�
(n)

) = 1=2� neg(n).

Claim 4.38 fA

n

g

n2N

and fB

n

g

n2N

are 
omputationally indistinguishable.

Proof of 
laim: Let M be any probabilisti
 polynomial-time algorithm. From the

fa
t that A(x) and B(x) are 
omputationally indistinguishable for yes instan
es, it

follows that

jPr [M(x;A(x)) = 1jx 2 �

Y

℄� Pr [M(x;B(x)) = 1jx 2 �

Y

℄j = neg(n); (3)

where these probabilities (and all those to follow) are taken over x D

n

and the 
oins

of all algorithms (M , A, and B). By the 
omputational indistinguishability of fD

Y

n

g

and fD

N

n

g, we also have

jPr [M(x;A(x)) = 1jx 2 �

Y

℄� Pr [M(x;A(x)) = 1jx 2 �

N

℄j = neg(n)

jPr [M(x;B(x)) = 1jx 2 �

Y

℄� Pr [M(x;B(x)) = 1jx 2 �

N

℄j = neg(n):

Combining these with Equation 3, we see that all four 
onditional probabilities di�er

only by negligible amounts. Therefore,

Pr [M(x;A(x)) = 1℄� Pr [M(x;B(x)) = 1℄

� jPr [M(x;A(x)) = 1jx 2 �

Y

℄� Pr [M(x;B(x)) = 1jx 2 �

Y

℄j

+ jPr [M(x;A(x)) = 1jx 2 �

N

℄� Pr [M(x;B(x)) = 1jx 2 �

N

℄j

+2Pr [x =2 �

Y

[�

N

℄

= neg(n):

This establishes the 
omputational indistinguishability of fA

n

g and fB

n

g.

Given these 
laims, the result now follows from Proposition 4.36.

5 Extensions to 
heating-veri�er zero knowledge

The fo
us of study in this paper has been the 
lass of languages (or promise problems) possessing

statisti
al zero-knowledge proofs against an honest veri�er. However, in 
ryptographi
 appli
ations,

one usually wants the zero-knowledge 
ondition to hold even against 
heating veri�er strategies that

deviate arbitrarily from the spe
i�ed proto
ol. There have been a number of results showing how

to transform proof system whi
h are statisti
al zero knowledge against the honest-veri�er into ones

that are statisti
al zero knowledge against 
heating veri�er strategies [BMO90, OVY93, Dam93,

DGOW95, GSV98℄. As advo
ated in [BMO90℄, one 
an use su
h transformations to translate results

like ours about honest-veri�er statisti
al zero knowledge to to the 
heating-veri�er de�nition. In
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this se
tion, we dis
uss whi
h of our results apply to the 
heating-veri�er 
lass and the appropriate

formulations in ea
h 
ase.

Of the transformations mentioned above, the result of [GSV98℄ is the only un
onditional and

unrestri
ted one; all the others use 
omputational assumptions su
h as the existen
e of one-way

fun
tions or only apply to a restri
ted 
lass of statisti
al zero-knowledge proofs. Sin
e most of our

results assert properties of the 
lass SZK, mu
h of their translation to the 
heating-veri�er 
lass will

immediately follow from [GSV98℄, sin
e that transformation gives an equality between the honest-

veri�er and 
heating-veri�er 
lasses. However, in order to translate results whi
h assert the existen
e

of honest-veri�er proof systems with various properties, we must 
he
k that the transformation

preserves those properties. Thus, in one instan
e, we will use transformation of [BMO90℄ instead,

whi
h will require making a 
omplexity assumption.

Now, we give a formal de�nition of 
heating-veri�er statisti
al zero knowledge.

De�nition 5.1 An intera
tive proto
ol between a 
omputationally unbounded prover P and a PPT

veri�er V is said to be a (bla
k-box) 
heating-veri�er statisti
al zero-knowledge proof system for a

promise problem � if there exists a PPT simulator S and a negligible fun
tion � su
h that

1. If x 2 �

Y

, then Pr [(P; V )(x) = a

ept℄ � 1� 
(jxj).

2. If x 2 �

N

, then for all P

�

, Pr [(P

�

; V )(x) = a

ept℄ � s(jxj).

3. For all (even 
omputationally unbounded) V

�

and all x 2 �

Y

,







S

V

�

(x)�View

P;V

�

(x)







�

�(jxj); where S

V

�

(x) denotes the output distribution of S with ora
le a

ess to V

�

.

As usual, �(�) is 
alled the simulator deviation, 
(�) the 
ompleteness error, and s(�) the soundness

error. 
heating-ver SZK denotes the 
lass of promise problems possessing 
heating-veri�er statisti
al

zero-knowledge proofs.

The above de�nition is more stringent than the original de�nition in [GMR89℄ in several re-

spe
ts. The most important di�eren
e is that we require simulability for all veri�er strategies, not

just polynomial-time 
omputable strategies. We also use a bla
k-box notion of simulation, as intro-

du
ed by [GO94℄. That is, we say there should be a single simulator whi
h works for all veri�ers,

given ora
le a

ess to that veri�er, whereas the original de�nition in [GMR89℄ only asks that for

every PPT veri�er strategy, there exists a PPT simulator.

14

We also require that the simulator

deviation is bounded by the same negligible fun
tion for all veri�er strategies, instead of allowing a

di�erent negligible fun
tion for ea
h veri�er. Finally, we require that the simulator operate in stri
t

polynomial time, whereas [GMR89℄ allows expe
ted polynomial time. The main result of [GSV98℄

follows.

Theorem 5.2 ([GSV98℄) 
heating-ver SZK = SZK.

Theorem 5.2 is proven by transforming publi
-
oin statisti
al zero-knowledge proofs against the

honest veri�er into publi
-
oin statisti
al zero-knowledge proofs against 
heating veri�ers. By

the private- to publi
-
oin transformation of Okamoto (Theorem 3.10), this suÆ
es to prove the

theorem.

As one would expe
t, the 
onditional results of [BMO90℄, [OVY93℄, and [DGOW95, Part 2℄ do

not meet our strong de�nition of 
heating-veri�er statisti
al zero knowledge. In the proof systems

14

The notion of bla
k-box zero knowledge is needed to make sense of a PPT ma
hine simulating the behavior of a


omputationally unbounded veri�er strategy.
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that result from their transformations, the zero-knowledge 
ondition only holds for PPT veri�ers

V

�

, and the simulator deviation 
an depend on the veri�er V

�

. We will 
all a proof system meeting

this weaker requirement an 
heating-PPT-veri�er statisti
al zero-knowledge proof system.

Now we examine whi
h of our results are preserved under these two transformations.

The Completeness Theorem. Of 
ourse, sin
e Theorem 5.2 gives an equality of 
lasses, the

Completeness Theorem extends to the 
heating-veri�er 
lass:

Proposition 5.3 Statisti
al Differen
e is 
omplete for 
heating-ver SZK.

We now look at the appli
ations of the Completeness Theorem, beginning with our results on

eÆ
ient SZK proof systems in Corollary 4.2.

Simulator deviation and se
urity parametrization. Both the transformations of [Oka00℄

and [GSV98℄ 
an be made to preserve a simulator deviation of 2

�
(n)

. Applying these transfor-

mations to Corollary 4.2, we see that every language in SZK has a 
heating-veri�er statisti
al

zero-knowledge proof with simulator deviation 2

�
(n)

.

We 
an also 
onsider a se
urity-parametrized variant of 
heating-veri�er zero knowledge, analo-

gous to the honest-veri�er 
ase (De�nition 4.1): the proto
ol takes an extra parameter k (in unary)

and the zero-knowledge 
ondition demands that, for any veri�er, the simulator deviation is less

than �(k) for some negligible fun
tion �. The transformations of [Oka00, GSV98℄ both preserve

the se
urity-parametrization property, so we obtain:

Proposition 5.4 Any promise problem in SZK has a 
heating-veri�er se
urity-parametrized sta-

tisti
al zero-knowledge proof with simulator deviation 2

�k

.

Message 
omplexity. Corollary 4.2 shows that every promise problem in SZK has a 2-message

honest-veri�er statisti
al zero-knowledge proof. Although the transformation of [GSV98℄ only mul-

tiplies the number of messages by a fa
tor of two when applied to publi
-
oin proof systems, the

private- to publi
-
oin transformation of [Oka00℄ in
reases the number of messages to polynomial

even when applied to a 
onstant-message proto
ol. However, if one is willing to make a 
ompu-

tational assumption, then the transformation of [BMO90℄ applies and this transformation does

preserve the message 
omplexity up to a 
onstant fa
tor.

Proposition 5.5 If the Dis
rete Logarithm problem is hard,

15

then every promise problem

in SZK has a 
onstant-message 
heating-PPT-verifer statisti
al zero-knowledge proof system with

soundness and 
ompleteness errors 2

�n

.

Proof: Let � be any promise problem in SZK. From Corollary 4.2, we know that � has a

2-message (honest-veri�er) statisti
al zero-knowledge proof system. Repeating this proto
ol in par-

allel O(n) times gives a 
onstant-message proof system with soundness and 
ompleteness errors

2

�n

. Note that parallel repetition preserves honest-veri�er statisti
al zero knowledge. Now, apply

the transformation of [BMO90℄, whi
h yields a 
onstant-message 
heating-veri�er statisti
al zero-

knowledge proof system for �, under the assumption that the dis
rete logarithm is hard. This

transformation only in
reases the number of messages by a 
onstant fa
tor and preserves the 
om-

pleteness and soundness errors.

15

See [BMO90℄ for a pre
ise formulation of this assumption.
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It is still open whether one 
an un
onditionally prove that all of SZK has 
onstant-message


heating-veri�er proofs. We note that Goldrei
h and Kraw
yzk [GK96℄ have shown some limitations

on the message 
omplexity of 
heating-veri�er zero-knowledge proofs (for problems outside BPP): If

the proof system has negligible soundness error and is zero knowledge under bla
k-box simulation,

then it 
annot 
onsist of fewer than 4 messages. If, in addition, it is publi
 
oin, then it 
annot


onsist of any 
onstant number of messages.

Communi
ation. Corollary 4.2 shows that every promise problem in SZK has a very 
ommuni
ation-

eÆ
ient honest-veri�er statisti
al zero-knowledge proof, in that the prover only sends one bit to

a
hieve 
ompleteness error 1 � 2

�n

and soundness error 1=2 + 2

�n

. Unfortunately, none of the

known transformations to 
heating-veri�er statisti
al zero knowledge preserve the amount of 
om-

muni
ation, so this result does not translate to 
heating-veri�er statisti
al zero knowledge.

Deterministi
 Prover. We note that the fa
t that the prover is deterministi
 in Corollary 4.2


annot extend to 
heating-ver SZK (unless SZK = BPP) [GO94℄.

Closure properties. Sin
e Theorem 5.2 gives an equality of 
lasses, any 
losure properties of

the honest-veri�er 
lass (namely, Corollaries 4.3, 4.4, and 4.14, and Theorem 4.9) also hold for the


heating-veri�er 
lasss. So we immediately obtain the following:

Proposition 5.6 
heating-ver SZK is 
losed under Karp redu
tions, 
omplement, �(�), and NC

1

truth-table redu
tions.

Knowledge 
omplexity. Cheating-veri�er analogues of all the knowledge 
omplexity 
lasses

dis
ussed in Se
tion 4.3 
an be de�ned just as we have done for statisti
al zero knowledge. We

adopt the same 
onventions as in De�nition 5.1 | bla
k-box stri
t polynomial-time simulation for

all (not just PPT) veri�er strategies, with the simulator deviation a negligible fun
tion independent

of the veri�er. We denote the 
heating-veri�er variant of a 
lass C with 
heating-ver C.

First, we show that honest-veri�er and 
heating-veri�er statisti
al knowledge 
omplexity in the

hint sense 
oin
ide. To prove this, we observe one dire
tion of the 
hara
terization of knowledge


omplexity in the hint sense given by Lemma 4.16 also holds for the 
heating-veri�er 
lasses:

Lemma 5.7 Let � be any language and let k(n) be any polynomially bounded fun
tion. Suppose

there exists a promise problem � 2 
heating-ver SZK (resp., 
heating-ver PZK) su
h that

1. x 2 �

Y

) there exists a su
h that jaj = k(jxj) and (x; a) 2 �

Y

, and

2. x 2 �

N

L) for all a, (x; a) 2 �

N

.

Then � 2 
heating-ver SKC

hint

(k(n)) (resp., 
heating-ver PKC

hint

(k(n)))

The proof of Lemma 5.7 is the same as the 
orresponding dire
tion of Lemma 4.16. The reason

the other dire
tion of Lemma 4.16 does not immediately apply to the 
heating-veri�er 
ase is that

the hint fun
tion may be di�erent for ea
h veri�er. However, it will follow from the following:

Proposition 5.8 For every polynomially-bounded fun
tion k(n),

SKC

hint

(k(n)) = 
heating-ver SKC

hint

(k(n)):

42



Proof: Clearly, 
heating-ver SKC

hint

(k(n)) � SKC

hint

(k(n)). Now suppose � is any language in

SKC

hint

(k(n)), and let � 2 SZK be the promise problem guaranteed by Lemma 4.16. Then, by The-

orem 5.2, � 2 
heating-ver SZK. Applying Lemma 5.7, we see that � 2 
heating-ver SKC

hint

(k(n)).

Observe that we have a
tually proved something stronger: if � 2 SKC

hint

(k(n)), then there

is an proof system for � with 
heating-veri�er statisti
al knowledge 
omplexity k(n) for whi
h

the same hint fun
tion 
an be used for every veri�er. Also note that analogous results for the

other variants of knowledge 
omplexity do not appear to follow immediately from the fa
t that

SZK = 
heating-ver SZK.

Given Proposition 5.8, it follows immediately that Theorem 4.15 also holds for the 
heating-

veri�er 
lasses:

Proposition 5.9 For any polynomially bounded fun
tion k(n),


heating-ver SKC

hint

(k(n) + log n) = 
heating-ver SKC

hint

(k(n)):

In 
ontrast, we do not know whether our results on the perfe
t knowledge 
omplexity of SZK

hold for the analogous 
heating-veri�er 
lasses. To apply the same approa
h, one would have to

analyze the (
heating-veri�er) perfe
t knowledge 
omplexity of the proto
ols obtained by performing

the transformations of [Oka00℄ and [GSV98℄ on the proto
ol for SD. These transformations 
ould


on
eivably in
rease the perfe
t knowledge 
omplexity dramati
ally.

Hard-on-average problems and one-way fun
tions. These results are stronger for the

honest-veri�er 
lass, be
ause the existen
e of a hard-on-average problem in the 
heating-veri�er


lass implies the existen
e of one in the 
heating-veri�er 
lass (even without Theorem 5.2).
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e Metri


Proof of Fa
t 2.1: For any set S � D,

2 jPr [X 2 S℄� Pr [Y 2 S℄j = jPr [X 2 S℄� Pr [Y 2 S℄j+ jPr [X =2 S℄� Pr [Y =2 S℄j

=

�

�

�

�

�

X

x2S

(Pr [X = x℄� Pr [Y = x℄)

�

�

�

�

�

+

�

�

�

�

�

X

x=2S

(Pr [X = x℄� Pr [Y = x℄)

�

�

�

�

�

�

X

x2S

jPr [X = x℄� Pr [Y = x℄j+

X

x=2S

jPr [X = x℄� Pr [Y = x℄j

= jX � Y j

1

:

Equality is a
hieved by taking S = fx : Pr [X = x℄ > Pr [Y = x℄g.

Proof of Fa
t 2.3:
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; Y
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+
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+
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=
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+
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j

1
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1

� Y
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2
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Proof of Fa
t 2.4: Let A = (f;R) be any randomized pro
edure. Then, for any set S � F ,

jPr [A(X) 2 S℄� Pr [A(Y ) 2 S℄j = jPr [f(X 
R) 2 S℄� Pr [f(Y 
R) 2 S℄j

=

�

�

Pr

�

X 
R 2 f

�1

(S)

�

� Pr

�

Y 
R 2 f

�1

(S)

�

�

�

� kX 
R� Y 
Rk

� kX � Y k+ kR�Rk (by Fa
t 2.3)

= kX � Y k:

Taking the maximum over all sets S 
ompletes the proof.

Proof of Fa
t 2.5: Let T � D be the set of x's for whi
h kX

2

j

X

1

=x

� Y

2

j

Y

1

=x

k < Æ. Now, let S

be an arbitrary subset of D �E and, for every x 2 D, de�ne S

x

= fy 2 E : (x; y) 2 Sg. Then,

Pr [X 2 S℄ � Pr [X

1

=2 T ℄ +

X

x2T

Pr [X

2

2 S

x

jX

1

= x℄ � Pr [X

1

= x℄

< �+

X

x2T

(Pr [Y

2

2 S

x

jY

1

= x℄ + Æ) � Pr [Y

1

= x℄

� �+ Æ + Pr [Y 2 S℄ :
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By symmetry, we also have Pr [Y 2 S℄ < �+Æ+Pr [X 2 S℄. Sin
e S was arbitrary, kX�Y k < �+Æ.

Proof of Fa
t 2.6: Let S = fx : (1�

p

�) Pr [X = x℄ � Pr [Y = x℄g, i.e. the set of x's for whi
h

the left-hand inequality in Fa
t 2.6 is violated. Then,

Pr [Y 2 S℄ �

�

1�

p

�

�

Pr [X 2 S℄

= Pr [X 2 S℄�

p

� � Pr [X 2 S℄ :

Thus,

p

� � Pr [X 2 S℄ � kX � Y k < �,so we must have Pr [X 2 S℄ <

p

�. A similar argument show

that the right-hand inequality in Fa
t 2.6 is violated with probability less than

p

�:

B A Generi
 Complete Problem for PZK

In this se
tion, we show how to obtain a 
omplete promise problem for PZK dire
tly from the

de�nition of the 
lass. However, in 
ontrast to Statisti
al Differen
e, this problem will be

essentially a restatement of the de�nition of the 
lass and therefore of little use.

The 
omplete promise problem for PZK is PZK-Generi
, whi
h we now de�ne. An instan
e of

PZK-Generi
 is a quadruple (V; S; x; 1

t

), where V is a des
ription of an intera
tive probabilisti


Turing ma
hine and S is a des
ription of a (nonintera
tive) probabilisti
 Turing ma
hine. A yes

instan
e is su
h a quadruple for whi
h there exists a prover strategy P su
h that

1. The intera
tion between P and V on x takes at most t steps (in
luding the 
omputation time

for V ) and V a

epts in this intera
tion.

2. The running time of S on input x is at most t.

3. S outputs fail with probability at most 1=2, and 
onditioned on not failing, the output

distribution of S is identi
al to V 's view of the intera
tion with P on x.

A no instan
e is a quadruple su
h that for all prover strategies P ,

1. The intera
tion between P and V on x takes at most t steps (in
luding the 
omputation time

for V ) and V reje
ts in this intera
tion.

2. The running time of S on input x is at most t.

Proposition B.1 PZK-Generi
 is 
omplete for PZK.

Proof: First we show that every promise problem � in PZK redu
es to PZK-Generi
. Let (P; V )

be the perfe
t zero-knowledge proof system for � with simulator S. Let t(n) be a (polynomial)

upper bound on both the running time of S and the number of steps of the intera
tion of P and V

on inputs of length n. Then

x 7! (V; S; x; 1

t(jxj)

)

is a polynomial-time redu
tion from � to PZK-Generi
.

Now we argue that PZK-Generi
 2 PZK. Consider the following des
riptions of a veri�er V ,

a prover P , and a simulator S:

V (V; S; x; 1

t

): When intera
ting with any ma
hine, simulate V on input x.
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P (V; S; x; 1

t

): Exhaustively sear
h for a prover strategy P for whi
h V 's view of (P; V )(x) is iden-

ti
al to the output distribution of S(x) (
onditioned on S(x) 6= fail.) If one exists, follow

that strategy, otherwise output fail.

16

S(V; S; x; 1

t

): Simulate S on input x.

It is easy to see that these de�nitions provide a perfe
t zero-knowledge proof system for

PZK-Generi
.

The problem with extending this example to SZK is Condition 3 for yes instan
es. \Identi
al"

needs to be repla
ed by \negligible statisti
al di�eren
e," but it is not 
lear what negligible fun
tion

to put there. We do not know how to get around this diÆ
ulty without using our Completeness

Theorem, whi
h implies that every problem in SZK has a statisti
al zero-knowledge proof with the

same simulator deviation 2

�n

(
f., Corollary 4.2).

17

Another observation worth mentioning, pointed out to us by Bellare, Goldrei
h, and Sudan,

is that PZK-Generi
 
an be modi�ed to obtain 
omplete promise problems for 
heating-ver PZK

(as long as we restri
t to \bla
k-box" simulation) and also the various forms of PKC.

C An Example for Graph Isomorphism

For illustrative purposes, here we expli
itly des
ribe what happens when the redu
tion to and

proof system for Statisti
al Differen
e are applied to the well-known publi
-
oin perfe
t zero-

knowledge proof system for Graph Isomorphism [GMW91℄:

Perfe
t zero-knowledge proof system for Graph Isomorphism.

Input: (G

0

; G

1

).

1. P sends V a random isomorphi
 
opy H of G

0

.

2. V pi
ks b 2 f0; 1g at random and sends it to P .

3. P sends V a random isomorphism � between G

b

and H, if one exists.

4. V 
he
ks that �G

b

= H.

Simulator S, on input (G

0

; G

1

):

1. Pi
k random b 2 f0; 1g and a random permutation �.

2. Output (�G

b

; b; �).

Noti
e that the 
onversations output by S always make V a

ept.

If the redu
tion to SD from the proof of Lemma 3.8 is applied to the above proto
ol, the fol-

lowing distributions are obtained:

16

Alternatively, P 
an a
t as the simulation-based prover (see Se
tion 3.5).

17

Note that the diÆ
ulty 
annot be solved by the result of Bellare [Bel97℄, whi
h states that any 
ountable set of

negligible fun
tions is \dominated" by a single negligible fun
tion. The reason is that there are un
ountably many

problems in the promise-
lass SZK.
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A

0

(G

0

; G

1

): Always output 1.

B

0

(G

0

; G

1

): Always output 1.

A

1

(G

0

; G

1

): Output (�G

b

; b) for a random permutation � and b 2 f0; 1g 
hosen at random.

B

1

(G

0

; G

1

): Output (�G

b

; 
) for a random permutation � and b and 
 
hosen uniformly and inde-

pendently from f0; 1g.

Thus, kA

0

(x)�B

0

(x)k always equals 0. kA

1

(x)�B

1

(x)k is easily seen to be 0 if G

0

�

=

G

1

and 1=2

if G

0

6

�

=

G

1

. For the rest of this se
tion, we ignore A

0

and B

0

sin
e they are irrelevant.

If we now apply the proto
ol for SD from Se
tion 3.3 to the distributions A

1

and B

1

(without

�rst applying the Polarization Lemma), we obtain the following proof system (P

0

; V

0

) for Graph

Nonisomorphism:

1. V

0

pi
ks a random bit d 2 f0; 1g. If d = 0, V

0


hooses a random bit b 2 f0; 1g and a random

permutation � and sends (�G

b

; b) to P

0

. If d = 1, V

0


hooses random bits b; 
 2 f0; 1g and a

random permutation � and sends (�G

b

; 
) to P

0

.

2. P

0

re
eives message (H; b) from V

0

. P attempts to guess d as follows: If H is isomorphi
 to

G

b

, then P

0

guesses 0, else P

0

guesses 1.

3. V

0

a

epts if the P

0

guesses d 
orre
tly.

Now, if G

0

is not isomorphi
 to G

1

, then P

0

will guess 
orre
tly with probability 3/4. However,

if G

0

is isomorphi
 to G

1

, then no prover 
an guess 
orre
tly with probability greater than 1/2. The

above proto
ol is of the same spirit as the standard Graph Nonisomorphism proto
ol [GMW91℄.

In both 
ases, the veri�er randomly permutes one of the graphs to obtain a graph H and in order

for the prover to su

eed with probability greater than 1/2, the prover needs to be able to tell

whi
h graph H 
ame from.
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