
Graph-Based Authentication of Digital Streams

Sara Miner�

Dept. of Computer Science & Engineering
University of California, San Diego

9500 Gilman Drive, La Jolla, CA 92093, USA
sminer@cs.ucsd.edu

Jessica Staddony

Xerox Palo Alto Research Center
3333 Coyote Hill Road
Palo Alto, CA 94304

jstaddon@parc.xerox.com

Abstract

We consider the authentication of digital streams over a
lossy network. The overall approach taken is graph-based,
as this yields simple methods for controlling overhead, de-
lay, and the ability to authenticate, while serving to unify
many previously known hash- and MAC-based techniques.
The loss pattern of the network is defined probabilistically,
allowing both bursty and random packet loss to be mod-
eled. Our authentication schemes are customizable by the
sender of the stream; that is, within reasonable constraints
on the input parameters, we provide schemes that achieve
the desired authentication probability while meeting the in-
put upper bound on the overhead per packet. In addition,
we demonstrate that some of the shortcomings of previously
known schemes correspond to easily identifiable proper-
ties of a graph, and hence, may be more easily avoided by
taking a graph-based approach to designing authentication
schemes.

1 Introduction

We consider the authentication of digital streams sent
over a lossy network. Our model includes a single sender
and a set of entities who are the intended recipients of data
streams. For example, the recipients may be a multicast
group receiving a feed from a central news agency, or a set
of subscribers to a pay-per-view television service.

Although ensuring the privacy of the data sent in the
stream is an important problem for which many useful solu-
tions have been found (see, for example, [6, 1]), it is not the
focus of our work. Instead, we seek to provide mechanisms
for recipients to authenticate the data received. Specifi-
cally, they should be able to authenticate both the content

�The majority of this work was completed while the author was asum-
mer intern at Bell Labs Research Silicon Valley.

yThe majority of this work was completed while the author was em-
ployed by Bell Labs Research Silicon Valley.

itself and the source of the content. To make this possible,
the sender introduces additional information into the data
stream. We refer to this extra information as “authentica-
tion information”.

A first attempt at solving the authentication problem in-
volves one secret shared among all entities. The sender
could use the secret as a key for a message authentica-
tion code (MAC), then MAC the content in each packet
in the stream, and append the MAC to the corresponding
packet. This would allow the sender to generate the au-
thentication information quickly, and the recipients to ver-
ify the integrity of the content quickly. However, using this
method, there is no source authentication. Since all parties
share the same secret, any entity in the group can gener-
ate a stream that passes the authentication procedure. Fur-
thermore, our model accommodates a dynamic recipient set
in which users join and leave the group frequently. This
single-secret solution would require re-keying of the entire
group after each drop in membership, which is unaccept-
able.

A different method which provides source authentica-
tion and avoids frequent re-keying involves the use of a
public-key signature scheme. The sender registers a pub-
lic signing key with a certificate authority, signs the content
of each packet with the corresponding secret key, and ap-
pends the signature to the packet. For each packet, recip-
ients authenticate both packet content and source by exe-
cuting the signature verification algorithm with the sender’s
public key. This solution, however, is costly with respect to
both time (for signing and verifying) as well as bandwidth,
since public-key signatures are long. In a streaming data
application, signatures on each packet are too expensive to
be practical.

A related approach [10, 23, 11, 18, 17] requires that
the sender sign only one packet in the stream. This is the
method we employ in this work. The rest of the packets in
the stream are linked to that packet in a way that allows re-
cipients to verify that they were sent by the signer. In this
case, the time to run the public key signature and verifica-



tion algorithms and the bandwidth used in the transmission
of the signature are amortized over many packets. Assum-
ing this “linking” of packets to the signature can be both
generated by the sender and verified by recipients quickly,
and the amount of extra information introduced into the
stream is small, this method represents a reasonable solu-
tion.

We focus on a probabilistic model of packet loss within
the network. The parameters of the model may be set in
such a way that the resulting network tends to produce
bursty loss, meaning packets are lost in contiguous blocks.
According to several studies [5, 16], packet loss on the In-
ternet is often bursty in nature. In addition, we consider
a network model in which packets are lost independently
at random, as adaptive congestion control techniques may
modify the bursty loss pattern to be more random in na-
ture [9]. Note that in either type of network, it is crucial
to most of our schemes that the stream recipient actually
receive the signature packet.1 Otherwise, there may be no
way to connect any of the received packets with the actual
sender. For this reason, we assume that the signature packet
is received. This may be accomplished with high proba-
bility by transmitting it multiple times, or empowering re-
ceivers to request re-transmission of the signature packet
if it is not received. We emphasize however, that, in our
model, such re-transmission requests are not allowed for
other (non-signature) packets in the stream, as this might
overwhelm the sender.

We take a graph-based approach to the problem of au-
thenticating streams in a lossy network. Doing so makes
properties such as overhead, delay, and the probability of
authentication easier to measure and control. In particu-
lar, as explained in Section 2, overhead is correlated with
the degree of the graph, the packet corresponding to a node
may be authenticated when there is a path from it to the sig-
nature that only includes received nodes, and receiver de-
lay is measured by how far forward in the stream such a
path travels before it reaches the signature. Hence, graphs
can be used to generate authentication schemes, as well
as to determine the properties of schemes already in exis-
tence. With respect to the former case, we propose ran-
domized and deterministic constructions, the designs of
which are motivated by random and bursty network loss,
respectively. Within each network model, we demonstrate a
method for constructing authentication schemes that satisfy
sender-prescribed constraints on overhead and the proba-
bility of authentication. In the case of a random loss net-
work, this can be done in a tight sense by providing a formal
analysis of our randomized construction. This result makes

1The one exception to this statement is a construction discussed in Sec-
tion 6.1. In this construction, it is only necessary to receive a threshold
number of packets; no individual packet is necessary for authentication to
be possible.

strides toward answering a more general form of an open
problem posed in [18]. For the case of bursty packet loss,
our constructions keep overhead at a reasonable level by
correlating it with the number of bursts that must be toler-
ated, rather than the total amount of packet loss. In addition,
although each packet tolerates bursts of a certain size and
number occurring anywhere in the stream, our techniques
leverage off of the highest burst tolerance attained, so that
everypacket can tolerate large bursts in some portion of the
stream, with no additional overhead. Since the authentica-
tion probabilities are inputs to the scheme designs, it is pos-
sible to capture much of the priority structure that is induced
by an encoding method such as MPEG [12].2 This is advan-
tageous, because any reduction in the authentication proba-
bility of a packet can lead to a reduction in overhead. The
constructions in this paper are based on previously known
chaining techniques involving hashes and MACs; however,
we show the graph-based approach can make it easier to
avoid the shortcomings of previously known schemes, such
as low loss tolerance and the need for the sender and the
receiver to be time synchronized.

OVERVIEW. The rest of the paper is organized as follows.
We give details about the inputs to our schemes, as well
as definitions and notation in Section 2. Authentication
schemes built to tolerate random packet loss are given in
Section 3. Schemes which work well in the face of bursty
loss are described in Section 4. In Section 5, we discuss our
main constructions, then give variations of these techniques
in Section 6. Finally, we end with a review of related work
and a conclusion in Sections 7 and 8, respectively.

2 Preliminaries

In this section, we provide the notation, definitions and
underlying tools for graph-based authentication of digital
streams. In Section 2.1, we motivate and describe the graph-
based approach, provide the necessary definitions and jus-
tify the sender inputs. Section 2.2 defines the authentication
tools.

2.1 Definitions and Notation

Let fP
1

; :::; P

n

g denote a contiguous subset of packets
in a data stream. In this paper, an authentication scheme is
a directed graph with no loops andn nodes, each of which
corresponds to a packet. We denote a directed edge starting
at nodei and ending at nodej, by~e(i; j). If ~e(i; j) is present
in the graph, then the following relationship holds between
packetsP

i

andP
j

: if both the contents and source ofP
j

can be authenticated, then the receiver is capable of veri-
fying the contents and source ofP

i

. The tools for creating
2See Section 2 for more on the priority structure induced by MPEG.



this relationship are defined in Section 2.2; essentially, we
use hashes for leftward edges (i > j) and MACs for right-
ward edges (i < j). The final component of our authen-
tication schemes is a digital signature; one of the packets,
denoted byP

sig

, is signed with a public key signature algo-
rithm such as RSA [20]. Hence, packetP

i

can be authenti-
cated if and only if there is a path fromP

i

to the signature
packet that only includes nodes corresponding to received
packets. We denote the probability thatP

i

is linked toP
sig

via such a path byPr[P
i

! P

sig

℄.
We measure the efficiency of an authentication scheme

by the following parameters: overhead, delay and loss tol-
erance. To see how the parameters of an authentication
scheme may be easily measured when it is viewed in graph
form, consider the authentication scheme pictured in Fig-
ure 1.3 Since each node has in-degree 1, the amount of
overhead per packet is 1. There is no receiver delay in this
scheme, as a packet may be authenticated as soon as it is re-
ceived, but the sender delay (or sender buffering) is equal to
4, since the sender must buffer the contents of four packets
before it can send the first one. Finally, the scheme has no
loss tolerance, as the loss of a single packet makes it impos-
sible to authenticate any later packets (no path could exist
from a later packet to the signature packet,P

sig

= P

1

).
For every stream, we are interested in the value of

Pr[P

i

! P

sig

jP

i

is reeived℄ for i 2 f1; :::; ng. In par-
ticular, we allow the sender to input desired values for these
authentication probabilities. It is useful to allow a differ-
ent authentication probability for each packet, because the
packets in the stream may actually vary in priority. Conse-
quently, packets deemed more important will be more toler-
ant to loss (because redundant authentication information
will be included), and the less important packets will be
less tolerant of loss, in order to avoid unnecessary overhead.
As an example of how such a priority structure on packets
can naturally arise, consider MPEG-2 [12]. Some MPEG-2
frames (B- and P-frames) cannot be displayed without their
counterpart I-frames. When sending an MPEG-2 stream,
the sender would classify I-frames as having higher im-
portance, and our authentication schemes would then give
those frames higher loss tolerance. We note, however, that
while our techniques can be applied to an MPEG-2 encod-
ing to capture much of its priority structure, the structure
may not be capturedexactly. For example, in order to en-
sure sufficiently high authentication probabilities, the au-
thentication of a particular B-frame may depend on the re-
ceipt of an I-frame which MPEG does not need in order to
display the frame in question.

Note thatPr[P
i

! P

sig

jP

i

is reeived℄ is affected by
the loss pattern of the network. The following model of net-
work loss4 is motivated by ideas in the theory of error cor-

3The overall structure of this scheme is similar to one found in [10].
4The loss model studied here was introduced and suggested foruse

recting codes. (For background information on error cor-
recting codes, see, for example, [22, 7].):

Definition 1 Let q be a nonnegative fraction, andb � 1

an integer. In a (q, b)-network, for alli, a burst of length
b packets begins with packetP

i

(i.e. the loss includesP
i

)
with probabilityq.

In a (q, 1)-network, packets are lost independently at ran-
dom, whereas ifb > 1 then the losses in a (q, b)-network
are bursty in nature. Note that in Figure 1, the probability
that packetP

4

can be authenticated (given that it was re-
ceived) is,(1� q)

2 in a (q, 1)-network, since we assume
the signature packet,P

1

, is received.
For most applications, we assume the sender is capable

of buffering a large amount of data; hence, the most im-
portant parameters are the overhead per packet, the receiver
delay (i.e. the number of packets followingP

i

in the stream
that must be sent, although not necessarily received, before
P

i

can be authenticated), andPr[P
i

! P

sig

jP

i

is received℄
for each packetP

i

. As an example of the first two of
these concepts, note that in Figure 1, there is an overhead
of one hash per packet and no receiver delay. There is a
strong intuition for the pairwise dependence of these pa-
rameters in general, and such dependencies certainly hold
under the techniques of this paper. To make this more clear,
we present the following observations. To increase the au-
thentication probability, we may either add an edge between
P

i

andP
sig

or increase the number of paths fromP
i

toP
sig

through other means. Either approach increases overhead,
and the latter solution may increase receiver delay. Con-
versely, if we decrease overhead by removing edges from
the graph, this will tend to decrease the authentication prob-
ability and it may also decrease receiver delay. Finally,
note that a decrease in receiver delay implies a reduction
in the number of possible paths to the signature, which puts
downward pressure on the authentication probability and is
also likely to reduce the maximum overhead per packet.
Given these dependencies, we choose to accept the maxi-
mum overhead and the desired authentication probabilities
fp

i

g as inputs. Since, as we have argued, the maximum
overhead andfp

i

g are dependent, we are restricted some-
what in the parameter values for which we can offer solu-
tions (see Section 3.4 and Section 4.4). To manage receiver
delay, we sign the first packet,P

1

, in most of our construc-
tions, although this alone does not prevent receiver delay.In
Section 6.3, we discuss the issues surrounding moving the
signature to the end, an action that generally reduces sender
delay (i.e. buffering) and increases receiver delay. As a final
comment, we note that if there is any receiver delay then it
may be possible to mount a denial of service (DoS) attack

in this context by Mihir Bellare. Although it is different from previously
proposed models [24], we believe it is useful as it produces patterns of
bursty loss whenb > 1, and it is relatively simple to work with.



P

1

P

2

P

3

P

4

Data

1

Data

3

Data

4

Data

2

H(P

3

)

H(P

4

)

H(P

2

)

Sign(P

1

)

Figure 1. A simple authentication scheme using hashes.

on the receiver: when the authentication scheme is such that
a receiver is not generally able to authenticate each packet
upon receipt, then he may be forced to accept and/or store
a large number of “false” packets, since he is unable to im-
mediately determine whether or not they are valid.

2.2 Authentication Tools

THE HASH-BASED AUTHENTICATION TOOL. A public
hash function (e.g., [19, 15] may be used to link the pack-
ets in a multicast stream to a signature. As discussed in
Section 7, authentication schemes involving this technique
appear in [10, 21, 18, 11].

Recall from Section 2.1 that if~e(i; j) is present in a
graph, then in the corresponding authentication scheme, the
ability to authenticateP

j

implies the ability to authenticate
P

i

. If ~e(i; j) is a leftward edge, then we can accomplish
this by placing a hash ofP

i

in P

j

. P

i

may have a posi-
tive in-degree itself, indicating that hashes of other pack-
ets are included withinP

i

. In this case, the hash ofP
i

is
taken after all other hashes it requires are included in it.
We require strictly hash-based authentication graphs to be
acyclic, so as to avoid dependencies between packets which
can not be fulfilled. In addition, we note that, the strictly
hash-based schemes described here have the property of
non-repudiation as observed in [10, 18].

The graph in Figure 2 represents a particular hash-
based authentication scheme. In the notation of Golle and
Modadugu [11], it is aC

a

graph witha = 3.

THE MAC-BASED AUTHENTICATION TOOL. Work by
Perrig, et al [18, 17] makes use of message authentication
codes (MACs) to link packets to a single signature packet.
In the signature packet, the sender commits to a chain of
keys. During each time period, one particular key is used
to authenticate each packet sent out during that period. At
some time later, the key is revealed in a packet further down
in the stream. Hence, some time synchronization between
sender and receiver is necessary, so that if a packet MAC-ed
with a particular key is not received sufficiently before the
key itself is revealed, that packet is thrown out and not dis-
played. Specifically, it is required that receivers be aware

of an upper bound on the time synchronization error. This
“security condition” [18, 17] must be in place, because oth-
erwise an adversary who obtains both the MAC-ed packet
and the packet containing the MAC key, can modify the data
content of the former packet and then compute the correct
MAC so that the modification is undetectable. In addition,
we note that if the packet containing the MAC key is re-
ceived before the corresponding MAC-ed packet, then the
latter packet cannot be authenticated even though it has been
received. In [17], the authors make this event unlikely by
ensuring that the two packets in question occur far apart in
the stream, at a cost of more receiver delay.

In our constructions, if~e(i; j) is arightwardedge, mean-
ing j > i, then once all the content that will make up packet
P

i

has been amassed (i.e. including any hash values and
MAC keys) we append a MAC computed with keyk

i

of the
contents ofP

i

. For ease of exposition, we will then refer to
the content and the MAC as being packetP

i

. We include
the keyk

i

in packetP
j

. Hence, if the source and content
of packetP

j

can be authenticated, then the key it contains
can be used to authenticate the source and content ofP

i

.
We suggest the use of an efficient MAC function such as
HMAC [3, 2].

HYBRID SCHEMES. Finally, we make some observations
on schemes in which both Hash-based and MAC-based
tools are used. As described above, a graph with both left-
ward and rightward edges can be used to construct an au-
thentication scheme using the leftward edges to determine
where to place hashes and the rightward edges to determine
where to place MACs and MAC keys. Proceeding in this
way we always construct an authentication scheme that is
well-defined. We note, however, that for some graphs it
may be possible to reduce the use of the MAC-based tool
and consequently, reduce the need for the security assump-
tion [18, 17]. In particular, if a nodei has a rightward edge,
~e(i; j), and is not involved in any cycles, then we can as-
sign meaning to~e(i; j) by placing a hash ofP

i

in P

j

and
still construct a well-defined authentication scheme. For a
specific example of this, see Section 3.2.



P

i

P

i+3

P

i+1

P

i+2

Data

i

Data

i+1

H(P

i+4

)

H(P

i+2

)

Data

i+2

H(P

i+5

)

H(P

i+3

)

Data

i+3

H(P

i+4

)

H(P

i+3

)

H(P

i+1

)

H(P

i+6

)

Figure 2. A C

a

graph witha = 3 [11]. The box below each packet represents the actual content of that packet.
Although not shown, the signature packet is the first packet in the stream.

3 Authentication Schemes Tolerant of Ran-
dom Loss

In this section we consider authentication schemes in a
(q, 1)-network. In such a network, each packet is lost inde-
pendently at random with probabilityq. First, we describe
an authentication scheme in which the degree of tolerance
to random loss monotonically increases with packet’s “dis-
tance” from the signature packet. We then prove a lower
bound on the probability that any received packet,P

i

, can
be authenticated in a (q, 1)-network, under this scheme.
This bound is tight for small values ofi and goes to 1 as
i goes to infinity. We note that this type of argument can
easily be applied to the static hash-based scheme (EMSS)
in [18]. Hence, the result represents a useful stride towards
answering a more general form of the open question posed
in [18].

Recall that we are most interested in applications in
which the sender has a priori knowledge of the content, as
is the case, for example, when the content is pre-recorded
news footage. Within this scenario, there is a simple tech-
nique for modifying our basic scheme so that, for every
packetP

i

, we can expectP
i

to be authenticated with a cer-
tain minimum probability. With this technique, we can en-
sure that the loss tolerance of each packet meets the sender
input.

3.1 p-Random Authentication Schemes

Perhaps unsurprisingly, employing randomness when
constructing authentication graphs can yield schemes with-
out data expansion that are resistant to randomly distributed
(as opposed to bursty) loss. In this section, we consider the
following simple construction of a random graph and the
authentication scheme it yields.

CONSTRUCTION. For a givenp, 0 < p � 1, we would like
then nodes in our graph to have average expected degree

p(n� 1) (where by degree we mean in-degree plus out-
degree). We number the nodes1; 2; :::; n. For all pairs of
nodes(i; j) wherej < i, we include a directed edge from
nodei to nodej with probabilityp. We call a graph con-
structed in this way ap-random graph. We demonstrate the
directed edges that may occur in ap-random graph in Fig-
ure 3.

To form the corresponding authentication scheme, we as-
sociate packetP

i

with nodei, and letP
1

denote the signa-
ture packet. Every edge,i! j, has the following meaning:
H(P

i

) 2 P

j

. We call an authentication scheme constructed
in this way ap-random authentication scheme.

Theorem 1 With a p-random authentication scheme and
no packet loss, a packetP

i

, i � 2, can be authenticated
with at least the probability:

Pr[P

i

! P

1

jP

i

is received℄ � 1� (1� p)(1� p

2

)

i�2

:

Proof We calculate the probability that nodei is con-
nected to node 1 in the correspondingp-random graph, as
follows. First, with probabilityp, ~e(i; 1) exists and so,
nodei is connected to the signature node. With probabil-
ity (1� p)p, ~e(i; 1) does not exist and~e(i; i� 1) does, soi
can connect to 1 via a path fromi � 1 to 1. Proceeding in
this way, we get the following expression:

Pr[P

i

! P

1

jP

i

℄ �

p+ (1� p)p Pr[P

i�1

! P

1

jP

i�1

℄ + � � �

+(1� p)

i�2

p Pr[P

2

! P

1

jP

2

℄:

For small values ofi it is easy to see that this expression
yields the statement of the theorem. We show by induction
that it holds in general. Applying the induction assumption
for 1; :::; i�1, to the right hand side of the inequality above,
we have:

p+ (1� p)p(1� (1� p)(1� p

2

)

i�3

) + � � �

+(1� p)

i�2

p(1� (1� p)):



::: :::

P

i

P

i+1

P

i+2

P

i+3

P

1

Figure 3. In ap-random graph, each edge indicated above occurs with probability p.

We simplify this expression by factoring out terms of the
form (1� p). As a first step, we have:

1� (1� p)[1� p+ (1� p)p(1� p

2

)

i�3

�(1� p)p+ (1� p)

2

p(1� p

2

)

i�4

� � � �

�(1� p)

i�2

p+ (1� p)

i�3

p(1� p

2

)

�(1� p)

i�3

p+ (1� p)

i�2

p℄:

Continuing to factor in this way, we eventually get:

1� (1� p)

i�1

�

p(1 + p)

i�3

+ p(1 + p)

i�4

+p(1 + p)

i�5

+ � � �+ p(1 + p) + 1 + p

�

= 1� (1� p)

i�1

�

p(

1� (1 + p)

i�2

1� (1 + p)

� 1) + 1 + p

�

:

This simplifies to:1� (1� p)((1� p

2

)

i�2

). 2

We can use Theorem 1 to determine the authentication
probabilities in a (q, 1)-network. The only change to the
argument above is due to the fact that packetsP

2

; :::; P

n

may be lost with probabilityq (since we assume that the
signature packetP

1

is always received).

Corollary 1 With a p-random authentication scheme in a
(q, 1)-network, packetP

i

, i � 2, can be authenticated with
the probability:

Pr[P

i

! P

1

jP

i

is received℄ �

1� (1� p)(1� (p(1� q))

2

)

i�2

:

Proof Because we are assuming thatP

1

is always re-
ceived, when we follow the same type of argument as used
in the proof of Theorem 1, we get:

Pr[P

i

! P

1

jP

i

℄ �

p+ (1� p)p(1� q) Pr[P

i�1

! P

1

jP

i�1

℄ + :::

+(1� p(1� q))

i�3

p(1� q) Pr[P

2

! P

1

jP

2

℄:

Let �
i

(p) = 1 � (1 � p)(1� p

2

)

i�2, the authentication
probability found in Theorem 1. From the equality above,
it follows that

Pr[P

i

! P

1

jP

i

℄ �

�

�

i

(p(1� q))� p

1� p

�

(1� p(1� q)) + p(1� q):

The statement of the theorem follows from substituting in
the expression for�

i

(p(1� q)). 2

3.2 Achieving a Threshold Loss Tolerance

From Theorem 1, we know that given� > 0, there ex-
ists i

0

such that8 i � i

0

, Pr[P
i

! P

1

℄ is at least1 � �,
for some� > 0. Hence, we can guarantee any desired au-
thentication probability for packets far enough away from
the signature. To ensure the same minimum authentication
probability for all packets, we can use the ideas of the previ-
ous section to increase the “effective distance” of the earlier
nodes from the signature. The following construction de-
scribes a method for modifying the construction of the pre-
vious section so that each node in the graph has at least the
effective distance of nodei

0

. As a result, every packet can
be authenticated, given that it is received, with probability
at least1� �.

CONSTRUCTION. Let G denote ap-random graph, onn
nodes, and let3 � i

0

� n. For every pair of distinct nodes
(i, j), 1 < i < j � i

0

, we add edge~e(i; j), with probabil-
ity p. To form the corresponding authentication scheme, we
associate packetP

i

with nodei, and letP
1

denote the signa-
ture packet. In such an authentication scheme theleftward
arrows have the meaning ascribed to them by thep-random
authentication scheme that forms the basis for this construc-
tion. The rightward edges have the following meaning:
there exists a keyk, such that a MAC with keyk of the
contents ofP

i

is appended toP
i

, andk 2 P

j

. We call such
an authentication scheme an(i

0

; p)-random authentication
scheme.

The following lemma describes how a threshold loss tol-
erance is achieved for all packets in an(i

0

; p)-random au-
thentication scheme.

Lemma 1 With an (i

0

; p)-random authentication scheme
in a (q; 1)-network, each packet can be authenticated with
probability at least1� (1� p)[1� (p(1� q))

2

℄

i

0

�2

:

Proof By Theorem 1, it suffices to show that any packet
P

i

, i < i

0

, can be authenticated with the same probability
asP

i

0

. Clearly, for any path connectingP
i

to the signature
packet, there is a corresponding path, that exists with



the same probability, connectingP
i

0

to the signature.
Hence, it remains to consider a path� = (P

i

0

; P

j

2

; :::; P

1

)

connectingP
i

0

to the signature, that occurs with positive
probability. If j

2

6= i then the following path has the same
probability as� and connectsP

i

to P

1

: (P

i

; P

j

2

; :::; P

j

r

),
j

r

= 1. Otherwise, ifj
2

= i, then the following path
has the same probability as� and connectsP

i

to P

1

:
(P

i

; P

i

0

; P

j

3

; ::; P

j

r�1

; P

j

r

). 2

A drawback of this scheme is that the security condition
employed in [18, 17] (see description in Section 2.2) must
hold. We can remove the security condition by adding the
hash of each packet that is at the origin of a rightward arrow,
to the signature packet. With this modification, a leftward
edge from the node to the signature may be added and the
initial rightward edge is unnecessary and may be removed.
Of course, such modifications cause the overhead ofP

i

to
increase. In addition, we note that unless a node is part
of a cycle it is possible to use hashes instead of MACs5,
and hence, it may be possible to remove the security condi-
tion altogether, by resorting to a solely hash-based scheme.
Finally, a more generally useful observation is that the se-
curity condition may only apply to a small portion of the
nodes. Hence, it is possible to spend sufficient time to en-
sure that this small set of packets are received before send-
ing subsequent packets at the usual higher rate. We demon-
strate this last point in the following lemma.

Lemma 2 Let 0 < r < 1. An (i

0

; p)-random authentica-
tion scheme in a(q; 1)-network requires the security condi-

tion ([18]) on the firsti
0

�

ln(

1�r

1�p

)

ln(1�(p(1�q))

2

)

+ 2 packets, to
guarantee that all packets can be authenticated with proba-
bility at leastr.

Proof Recall from Theorem 1:

Pr[P

i

! P

1

jP

i

is received℄ �

1� (1� p)[1� (1� (p(1� q))

2

)℄

i�2

:

Solving fori sufficiently large to ensure that this quantity is
at leastr yields the statement of the lemma.2

If a high authentication probability is required for all
packets in a highly lossy network, and no data expansion is
allowed (see Section 6.1), then the previous lemma demon-
strates that the (i

0

, p)-random authentication scheme is not
the best authentication mechanism. However, if any of these
conditions does not hold, then we believe it presents an in-
teresting alternative to known solutions. We discuss apply-
ing thep-random authentication scheme to streams in which
the desired authentication probability varies, in the follow-
ing section. For discussion of other applications to which it
is well suited, see Section 5.

5In this case only, rightward edges would indicate hashes instead of
MACs.

3.3 Preserving Authentication Probabilities,fp
i

g

In section 3.2, we demonstrated how to add edges to ap-
random graph in order to achieve an authentication scheme
with a minimum loss tolerance for all packets. As discussed
in Section 2.1, there are streams for which the input au-
thentication probabilities may cover a wide range of val-
ues. With such a stream, if we were to use the authentica-
tion methods of Section 3.2, some packets may achieve a
higher authentication probability than is required. Sincean
increase in authentication probability implies an increase in
overhead (due to the addition of edges), there is some ben-
efit to schemes that only guarantee the required authentica-
tion probability. The overhead is minimized by first finding
the minimum effective distance for each packet that gives it
the required authentication probability, and then using the
techniques of Section 3.2 to achieve these distances. We
emphasize that because the content of one packet may de-
pend on the content of later packets, these techniques are
only useful when the sender has a priori knowledge of the
content to be broadcast (e.g. pre-recorded news footage). In
the following construction, we make this more precise.

CONSTRUCTION.

1. LetÆ
r

1

� Æ

r

2

� : : : � Æ

r

n�1

, denote the necessary
effective distances for packetsP

r

1

,. . . ,P
r

n�1

(where
P

r

1

,. . . ,P
r

n�1

is some permutation ofP
2

,. . . ,P
n

) as
indicated by Lemma 1, namely,8 i,
1� (1� p)[1� (1� p(1� q))

2

℄

Æ

r

i

�2

� p

r

i

.

2. Construct ap-random graph onn nodes.

3. Associate packetP
r

i

with nodei+ 1 in ann node
graph (node 1 is reserved for the signature packet). If
Æ

r

i

> i+ 1, then add edges according to the
techniques of Section 3.2 to increase the effective
distance of nodei+ 1 to beÆ

r

i

. The signature packet
P

1

remains the first packet.

4. Reorder the nodes according to the order in which the
corresponding packets are to be sent. This may cause
some edges to become rightward edges. In the
associated authentication scheme, the meaning of the
edges is as in the construction of Section 3.2. That is,
leftward edges indicate the hash-based authentication
tool is to be used, and rightward edges indicate the
MAC-based authentication tool is to be used, as
described in Section 2.2.

In this construction, the security condition of [18] will ap-
ply whenever rightward edges appear in the corresponding
graph (as discussed in Section 3.2).



3.4 Input Constraints

As discussed in Section 2, the content distributor
(sender) may input the authentication probabilitiesfp

i

g,
and the overhead per packet. Using the techniques of Sec-
tion 3, there is a correlation between these two parameters.
Increasing the authentication probability of a packet, in-
creases the number of edges, and hence, increases overhead.
We require the sender to accept an overhead ofpn, as this is
the maximum expected overhead when ap-random authen-
tication scheme is used to authenticate a stream of lengthn,
wheren is determined byfp

i

g, p, andq as indicated by The-
orem 1. More precisely, in order to construct ap-random
authentication scheme in a (q, 1)-network with input au-
thentication probabilitiesfp

i

g, it is necessary that the maxi-

mum allowed overhead be at least

�

ln(

1�p

max

1�p

)

ln(1�(p(1�q))

2

)

+ 2

�

p,

wherep
max

= max

i

fp

i

g. In such a scheme, packetP
i

with input authentication probabilityp
i

, will experience an

authentication delay ofmax

�

ln(

1�p

i

1�p

)

ln(1�(p(1�q))

2

)

+ 2� i; 0

�

packets.

4 Authentication Schemes Tolerant of Bursty
Loss

In this section we present techniques for constructing de-
terministic, graph-based authentication schemes. The mo-
tivation behind the design of these schemes is resistance
to the loss of contiguous blocks (i.e. bursts) of packets.
Focusing on bursty loss can allow for significantly lower
overhead, as the overhead in these schemes grows with the
number of distinct bursts tolerated, rather than the number
of packets. We build on the techniques of [11] to construct
schemes that preserve a prioritization on the packets. The
result is that the more important a packet is, the greater its
burst tolerance, in terms of burst length and quantity. All of
the packets in the stream leverage off of the burst tolerance
of the most important packets, so that any packet has the
same high burst tolerance as the most important packets for
some portion of the stream, while being guaranteed a lower
degree of burst tolerance throughout the stream. We first
present constructions that are resistant to one burst only,and
then describe how to modify these schemes so that they are
tolerant of multiple bursts. Our descriptions are given for
a regular priority structure for ease of exposition, however,
the techniques may be applied to a stream with an irregu-
lar priority structure, as well. In order to determine how to
construct a scheme that is consistent with the sender’s au-
thentication probabilitiesfp

i

g, we analyze the performance
of these schemes in a (q, b)-network (b > 1).

4.1 Piggybacking

As discussed in Section 7, Golle and Modadugu [11] has
analyzed authentication schemes that are resistant to a sin-
gle burst of lost packets. An upper boundB on the burst tol-
erance of a stream with sender packet buffer size and sender
hash buffer size is given. Theburst tolerance of a streamis
the size of the maximum burst of loss such that every packet
which is actually received can still be authenticated. In ad-
dition, a scheme is given with almost-optimal tolerance to a
single burst.

In contrast, we consider theburst tolerance of each
packetP

i

in the stream. Here, we present schemes which
achieve “better-than-optimal” burst tolerance (with respect
to the bound given in [11]) for some packets, at the expense
of “worse-than-optimal” burst tolerance for others. We be-
gin by splitting the packets into priority classes, based on
the values of thep

i

’s specified by the sender. The first node
in the stream and those nodes for which the sender requests
highest tolerance are placed intoS

0

(the highest priority
class), those with the next highest level of requested tol-
erance go intoS

1

(the next highest class), and so on. To
simplify the exposition here, we require that each ofr pri-
ority classes be assigned the same number of nodes, and,
furthermore, that the nodes in the highest priority class be
spaced regularly throughout the stream.6

The intuition behind our piggybacking schemes is that
we can structure the graph in such a way that the nodes
in S

0

tolerate the greatest loss and do not require receipt
of any nodes from lower priority classes. Then, we add
edges to the graph which originate at lower priority nodes
and always terminate at (or “piggyback” onto) a node inS

0

.
This means the hashes of lower priority packets are placed
only into the nodes of the highest priority class. Note that
no edges terminate at nodes which are not in the highest
priority class.

CONSTRUCTION. We start with a total ofn nodes repre-
sentingn packetsP

1

; P

2

; :::; P

n

, ordered from left to right
in the order the packets occur in the stream. These pack-
ets are then partitioned intor equal-sized priority classes
S

0

; S

1

; :::; S

r�1

. The size of each class isz = n=r. We
denote the particular nodes in a class with a lower-cases

whose first subscript denotes the class number, and a sec-
ond subscript denoting the node’s index within that class, so
that the nodes in classS

0

are denoteds
0;1

; s

0;2

; :::; s

0;z

. We
assume the nodes in this highest priority class are evenly
spaced throughout the stream, so that, for everyj > 0,
nodess

0;j

ands
0;j+1

are located exactlyr nodes apart in
the stream. No restrictions are placed on the spacing of

6In general, the structure of the stream and the size of priority classes
can be much more flexible, but it is always useful if (althoughnot not
required that) the highest priority nodes are spaced out in the stream. This
property seems quite reasonable in streams such as MPEG.



nodes in other priority classes.
Each priority classS

i

has associated with it a parameter
b

i

, indicating the maximum size of a burst that nodes in
the class should tolerate. This value is determined based
on the input of the sender, subject to constraints described
in Sections 4.3 and 4.4. For a sequence of burst tolerances
b

0

; b

1

; :::; b

r�1

we require that8i, 9k
i

such thatb
i

= k

i

� r

andb
0

= maxfb

i

g. We now explicitly state the edges which
exist in the graph, and then discuss the construction below.

1. Add edges originating at the high priority nodes as
follows:

(a) [First node in stream] For i = 0 andj = 1, there
are no edges originating ats

i;j

.

(b) [Nodes near beginning] For i = 0 and
j = 2; 3; ::; k

0

+ 1, add edge~e(s
0;j

; s

0;1

).

(c) [General case] For i = 0 and
j = k

0

+ 2; k

0

+ 3; :::; z, add edges
~e(s

i;j

; s

i;j�1

) and~e(s
i;j

; s

i;j�1�k

0

).

2. Add edges originating at remaining nodes as follows:

(a) [Nodes near beginning] For i = 1; 2; :::; r � 1

andj = 1; 2; :::; k

i

, add edge~e(s
i;j

; s

0;j

).

(b) [General case] For i = 1; 2; :::; r � 1 and
j = k

i

+ 1; k

i

+ 2; :::; z, add edges~e(s
i;j

; s

0;j

)

and~e(s
i;j

; s

0;j�k

i

).

In Step 1 above, we begin the construction by specifying
edges which originate at nodes inS

0

. For the nodes in this
highest priority set, the desired tolerance isk

0

� r. The node
designateds

0;1

is the first one in the stream, and it is also
the signature packet. Since we assume that the signature
packet is always received (see Section 1), we know that this
particular packet has authentication probability 1. In gen-
eral, however, for nodes

0;j

, (j 6= 1) to tolerate any one
burst of this size, two edges must originate in the node, and
terminate at leastk

o

� r nodes apart. Accordingly, in Step
1(c), we insert edges~e(s

0;j

; s

0;j�1

) and~e(s
0;j

; s

0;j�1�k

0

).
Note that, for nodess

0;j

, wherej = 2; 3; :::; k

0

+ 1, which
are high priority nodes close to the signature node, node
s

0;j�1�k

0

is not defined. In this case, according to Step
1(b), we only place the hash of each of these nodes directly
into the signature packet. Each of these nodes, if received,
can be authenticated with probability 1, since we assume
that the signature packet itself is always received.

For each of the remaining priority classesS

i

, the desired
tolerance is, for somek

i

, k
i

� r. Using the same ideas as
above, in order to tolerate one burst of that length, we need
two edges to originate at any nodes

i;j

, (i 6= 0), and to end
at nodes which arek

i

� r nodes apart. Our edges will always
terminate at nodes in the setS

0

. Specifically, as described
in Step 2(b), for nodes

i;j

, we insert edges which terminate

at the first high-priority node immediately to the left of node
s

i;j

(namely,s
0;j

) and the node exactlyk
i

� r nodes left of
s

0;j

.) As above, for nodes close to the signature packet,
we add edges directly to the signature instead (Step 2(a)).
Specifically, for nodess

i;j

, wherej�k

i

< 1, only the edge
~e(s

i;j

; s

0;1

), exists.
To form the corresponding authentication scheme from

this graph, we letP
1

, which is alsos
0;1

, be the signature
node. Each edge~e(i; j) in the graph impliesH(P

i

) 2 P

j

,
just as in Section 3.1.

A simple example of our scheme with only two different
priority classes (i.e.,r = 2) is shown in Figure 4. The
key observation about our scheme is that the endpoints of
two edges which originate at nodes

i;j

are exactlyk
i

� r

packets apart in the stream, so if a burst knocks out up to
b

i

consecutive packets (not including packets

i;j

itself, of
course), it cannot knock out both edges. Therefore, a path
is guaranteed to exist froms

i;j

to somes
0;j

, and some path
is guaranteed to exist from any packets

0;j

to the signature
(even for any burst of lengthb

0

> b

i

). Therefore, packets in
each of the priority classes are guaranteed to withstand one
burst of the desired length.7

In effect, the lower priority nodes “piggyback” on the
robust structure of edges built among the nodes inS

0

. This
means that if a burst that causes only nodes from classes
other fromS

0

to be lost, the receiver’s ability to authenticate
any packets that were not lost in that burst is not affected. It
is most damaging to the stream when nodes from the high
priority class are lost, since their loss may hinder the re-
ceiver’s ability to authenticate additional nodes. However,
nodes inS

0

are spaced throughout the stream specifically
to minimize the number of them lost in any one burst, and,
recall that the graph was built so that even in the face of
considerable loss, the receiver is still likely to be able toau-
thenticate them. Furthermore, because we have classified
the non-S

0

nodes as lower priority, if the loss of severalS

0

nodes causes the sender to be unable to authenticate some
of them, presumably it is not particularly detrimental to the
receiver’s use of the data in the rest of the stream.

4.2 Tolerating Multiple Bursts

The construction presented above tolerates single bursts.
We now extend the scheme to tolerate multiple bursts. In
order to toleratex

i

bursts of size at mostb
i

, packetP
i

in the
above scheme requires out-degree at leastx

i

+1. The length
of bursts the packet must tolerate determines the distance
between the endpoints of itsx

i

+ 1 out-edges. Note that, in
the original scheme above, the endpoints of the out-edges
are a distancek

i

� r apart to achieve tolerance of a single

7In fact, since all of the edges in the graph are directed toward the
signature packet, a particular packet in our stream can tolerate unrestricted
bursts after it in the stream.



:::

:::

P

m+1

P

m

s

0;i

s

1;j

s

0;i+1

P

m+2

P

m+2k

0

+1

s

1;j+m

P

m+2k

0

s

0;i+k

0

P

m+2(k

0

+1)

s

0;i+k

0

+1

Figure 4. A piggybacking scheme withr = 2. The highest priority class of nodes is white, and nodes in the other
class are shaded. The signature is on the first packet in the stream.

burst as long ask
i

� r packets. To tolerate multiple bursts,
then, we insert the edges described below. This construction
allows packetP

i;j

, when received, to tolerate up tox
i

bursts
of as many ask

i

� r = b

i

lost packets.

1. Add edges originating at the high priority nodes as
follows:

(a) [First node in stream] For i = 0 andj = 1, there
are no edges originating ats

i;j

.

(b) [Nodes near beginning] For i = 0 and
j = 2; 3; ::; x

0

k

0

+ 1, add edge~e(s
0;j

; s

0;1

).

(c) [General case] For i = 0 and
j = x

0

k

0

+ 2; x

0

k

0

+ 3; :::; z,
add edges~e(s

i;j

; s

i;j�1

), ~e(s
i;j

; s

i;j�1�k

0

),...,
~e(s

i;j

; s

i;j�1�k

0

x

0

).

2. Add edges originating at remaining nodes as follows:

(a) [Nodes near beginning] For i = 1; 2; :::; r � 1

andj = 1; 2; :::; x

i

k

i

, add edge~e(s
i;j

; s

0;j

).

(b) [General case] For i = 1; 2; :::; r � 1 and
j = x

i

k

i

+ 1; x

i

k

i

+ 2; :::; z,
add edges~e(s

i;j

; s

0;j

), ~e(s
i;j

; s

0;j�k

i

),...,
~e(s

i;j

; s

0;j�x

i

k

i

).

4.3 Preserving Authentication Probabilities,fp
i

g

In a scheme constructed as in Section 4.2, there are two
parameters associated with each packetP

i

: the number of
bursts,x

i

, thatP
i

can tolerate, and the size of each burst,
b

i

. We need to determine the values ofx

i

andb
i

such that
Pr[P

i

can be authenticatedjP
i

is received℄ � p

i

. If P
i

is
received but cannot be authenticated, then it must be that,
within the nodes between the signature andP

i

itself, either
a burst of length greater thanb

i

has occurred, or more than
x

i

bursts of size at mostb
i

have occurred. If neither of these
events occurs, then the largest number of places where the
(q; b)-network loss model could have indicated that a block

of lost nodes of lengthb should start can be expressed by
y = minfx

i

; b

b

i

b

g. 8

Therefore, the probability thaty or fewer coin flips re-
sult in losses, lower bounds the expression we want when
i � 1 � b > y, and wheni � 1 � b � y, P

i

must share
an edge with the signature packet, so we know its authen-
tication probability is 1. We take into account the fact that
none of thesey flips can happen in theb � 1 nodes im-
mediately precedingP

i

itself, since we know thatP
i

was
received. Therefore, the probability thatP

i

can be authenti-
cated, given that it is received, is

�

y

X

s=0

h

�

i� 1� b

s

�

q

s

(1 � q)

i�1�b�s

i

= (1 � q)

i�1�b�y

h

�

i� 1� b

0

�

q

0

(1 � q)

y

+

�

i� 1� b

1

�

q

1

(1� q)

y�1

+ :::

+

�

i� 1� b

y

�

q

y

(1� q)

0

i

� (1 � q)

i�1�b�y

h

�

y

0

�

q

0

(1� q)

y

+

�

y

1

�

q

1

(1� q)

y�1

+ :::+

�

y

y

�

q

y

(1 � q)

0

i

� (1 � q)

i�1�b�y

Solving(1� q)

i�1�b�y

� p

i

yields

y � i� 1� b�

ln(p

i

)

ln(1� q)

This indicates that, given appropriate overhead allowances,
the sender’s inputs can be satisfied if eitherx

i

� i � 1 �

b �

ln(p

i

)

ln(1�q)

and b
i

� b

�

i� 1� b�

ln(p

i

)

ln(1�q)

�

hold. We

note that these bounds function as a guide only, as for some
values of the parameters, the proven bounds are sufficient
but not necessary.

8Here, we do not necessarily mean thaty distinct bursts of lengthb
occur in the stream; instead, we are counting each node where, in our loss
model, the flip of aq-biased coin indicated that the next block ofb nodes
was lost. This is independent of coin flips associated with any other nodes
in the stream.



4.4 Input Constraints

We additionally constrain the sender’s input so that the
overhead requirement is consistent with the required param-
etersx

i

and b
i

as determined in Section 4.3. In our pig-
gybacking scheme tolerating multiple bursts (Section 4.2),
overhead contributed by each node is directly correlated
with x

i

, the number of bursts that each node must tolerate.
The number of edges in the graph is at most

P

n

i=2

(x

i

+ 1).
Each of these edges represents a hash placed in one of the
z nodes in the highest priority set. So the high priority
nodes must tolerate1

z

P

n

i=2

(x

i

+ 1) hashes on average.9

The other nodes in the stream incur no overhead. Note that
increasing the sizes of the burst that nodes tolerate does not
increase the total overhead in the system. The longer the
bursts tolerated, though, the more nodes which must have
hashes placed in the signature packet itself.

5 Discussion

In this section we consider the merits of the two classes
of authentication schemes studied in this paper. Variations
on these basic methods are discussed in Section 6.

ON THE RANDOMIZED APPROACH. As mentioned earlier,
the randomized construction is most efficient when either
it is unnecessary for all authentication probabilities to be
high, or the network over which the data is streamed is not
highly lossy (i.e.q is relatively small). The first condition
may naturally arise due to the type of data being streamed
(e.g. MPEG files), also it may be achieved by adding redun-
dancy to the stream prior to the authentication structure (see
Section 6.1), as this allows the authentication probabilities
for each packet to be reduced. The goals of our randomized
schemes are most similar to those of the hash-based con-
struction (EMSS) of [18]. However, it is difficult to com-
pare the performance of our constructions with those of [18]
because, although simulation data was collected for the lat-
ter, no formal analysis was completed. Also, ourp-random
authentication scheme can be viewed as a generalization of
EMSS, as in EMSS, the number of packets in which the
hash of a packet may be included is fixed, with the actual
choice of the “carrier” packets (i.e. endpoints of edges) be-
ing made either deterministically or randomly.

If it is decided to augment the authentication proba-
bilities in thep-random authentication scheme and create
a (i

0

, p)-random authentication scheme, then we can no
longer claim non-repudiation in general and, consequently,
the authentication scheme becomes somewhat similar to the
MAC-based scheme, TESLA, of [18, 17]. As mentioned

9The overhead of the signature packet is determined slightlydifferently,
due to the nearby nodes who each have one hash included in it. Depending
on thex

i

andb
i

values associated with these nodes, the overhead placed
into the signature packet will vary.

earlier, TESLA achieves essentially unbounded loss toler-
ance with very low overhead at the cost of a security condi-
tion (see Section 2.2) that holds for all packets. Although,
our construction certainly cannot compete with TESLA in
terms of overhead and overall loss tolerance, we believe
that it is an interesting alternative for some applicationsas a
high authentication probability can be guaranteed for many
of the packets in the stream, while the security condition
may only be applicable to a small portion of the stream.
For example, if we consider a stream of 100 packets in
which the packet size is 512 bytes, and network loss is
10% (q = :1), we can use a (50, .2)-random authentication
scheme to achieve an authentication probability of at least
80% for all the packets, while requiring a security condition
on at most the first half of the packets in the stream. The au-
thentication probability rises to more than 90% for at least
35% of the stream. The overhead we incur is expected to be
no more than 200 bytes per packet (< 50%), and it is ex-
pected to be significantly less for most of the packets. For
example, packetP

i

, i � 51 is expected to incur no more
than2(100� i) bytes of overhead.

ON THE DETERMINISTIC APPROACH. In our piggybacking
schemes, we leverage on the concept of prioritized packets
in order to reduce the overall authentication overhead in the
stream. The schemes are straightforward to implement, and,
when the signature is on the first packet in the stream, they
provide non-repudiation. This scheme is particularly attrac-
tive when the sender wants significant control over the tol-
erance that each packet has. Furthermore, even those pack-
ets which are given low priority have, for most instances of
loss, tolerance as high as the highest priority packets in the
stream. This is due to the fact that, in a nodes

i;j

’s path to
the signature node, the first hop always leads to a node in
the high priority setS

0

. The path from any high-priority
node to the signature includes only on high-priority nodes.
This means that, assuming that at least one out-edge exists
from s

i;j

, a path from it to the signature will exist even if up
to x

0

bursts of size at mostb
0

occur.
Finally, we briefly mention that in the case whereb = 1

the constructions resulting from the approach of Section 4
may be significantly less efficient than the correspond-
ing randomized constructions, largely because the lower
bounds proven in Section 4.3 are less tight. However, in a
network where losses are bursty (b >> 1), the overhead re-
quired from our piggybacking schemes will be significantly
less than the randomized schemes.

6 Variations on Our Schemes

In this section, we discuss some variations on the au-
thentication methods of this paper. We begin by consider-
ing how redundancy can be combined with the known au-
thentication techniques, then we consider a variation of the



piggybacking method that is most useful in the case of a
single burst, and a technique for shifting between receiver
and sender delay.

6.1 Using Redundancy

We consider two methods for constructing authentica-
tion schemes with redundancy encoding10 by redundantly
encoding one of the previously discussed authentication
schemes, and by redundantly encoding the stream itself be-
fore adding authentication information. In either case, we
propose to use Tornado codes [13] for the redundancy en-
coding as they are efficient in terms of computation and ex-
pansion. Specifically, for a stream ofn packets, Tornado
codes increase the number of of packets that are transferred
to n

1�p(1+�)

, wherep and � are positive fractions, in ex-
change for the property that if anyp fraction of the ex-
panded set of packets are lost, then then original packets
may be reconstructed in time proportional ton ln(1=�).

As discussed below, there are advantages and disadvan-
tages to either approach. We stress, however, that in either
case, any authenticated packet is as useful as any other in
terms of authenticating the stream. This is to be contrasted
with all the previous (no expansion) schemes, in which the
signature packet is absolutely necessary for the authentica-
tion of the stream.

AUTHENTICATION STRUCTURE FIRST, REDUNDANCY

ENCODING SECOND. Here we consider the following ap-
proach to combining authentication with redundancy en-
coding: construct an authentication scheme as described in
the previous sections, and then redundantly encode the re-
sulting packets and transmit this expanded set of packets.
When the receiver obtains a threshold number of the pack-
ets, she will be able to reconstruct the entire stream and
authenticate it as before. The advantage of this approach is
that we may utilize a low overhead authentication scheme
because packet loss is less of an issue. For example, we
may employ a simple hash-based authentication scheme as
shown in Figure 1. A drawback to this scheme is that it in-
troduces significant receiver delay, as the receiver must now
receive slightly more thann packets (provided the encoding
is done with Tornado codes) before a single packet can be
displayed. In addition, the scheme is vulnerable to denial
of service (DoS) attacks because there is no way to authen-
ticate packets as they are received, and so, an attacker may
flood the receiver with many packets before the receiver is
capable of determining that the packets are bogus.

REDUNDANCY ENCODING FIRST, AUTHENTICATION

STRUCTURE SECOND. An alternate approach is to ap-

10We point out that Perrig, et al [17] make use of redundancy in an
extension of the EMSS scheme, redundantly encoding on a hash-by-hash
basis.

ply redundancy to the stream first. Then the authentication
problem is similar to before, namely, how to add authen-
tication information to the packets in a manner that is has
a tolerable level of overhead and delay. The importance
of resistance to loss is somewhat lessened because of the
packet expansion. As above, this approach adds to receiver
delay because it is necessary to receive slightly more than
n “good” packets before the original stream can be recov-
ered and displayed. This method does yield a scheme that is
resistant to DoS provided the authentication structure used
does not incur significant receiver authentication delay.

6.2 Bidirectional Piggybacking

Consider the simple piggybacking construction de-
scribed in Section 4.1, which tolerates only a single burst.
When the signature is at the beginning of the stream, the two
edges that originate at any packetP

i;j

which is not a mem-
ber of the highest priority class both terminate at packets
which come before it in the stream. In a model in which we
assume no more than one burst, any packet which is not lost
in the burst itself must either be before the entire burst or
after the entire burst. For this reason, it is useful to modify
the piggybacking idea slightly, so that one edge terminates
earlier in the stream, and the other terminates later in the
stream. In Figure 5, we give an example of a bidirectional
piggybacking graph . In this way, at most one of the packets
which contains the hash of the packet in question will be lost
in a burst. If the burst occurs after the packet in question,
the path to the signature will proceed directly leftward, to-
ward the signature. On the other hand, if the burst is before
the packet in question so that the immediate leftward path is
knocked out, the path will be forced to move rightward first.
Then the burst tolerance of the packet in question is deter-
mined by the tolerance of the one packet to its right which
contains its hash. We note that our construction contains no
cycles, so all edges in our graph represent hashes.

6.3 Reversing Any Authentication Graph

In any hash-based authentication scheme like those we
have described, the option exists to place the signature
packet at the end of the stream or at the beginning. The
tradeoff involves where buffering occurs and how quickly
full authentication occurs for each packet. To illustrate,we
consider two extreme examples. First, in the schemes pre-
sented in this paper, the signature is computed on the first
packet in the stream and all edges are directed leftward. As
a result, the sender must have access to the entire content for
the stream before the first packet is sent, because hashes of
packets that come later in the stream must be included in the
signature packet. This could be a drawback when the data
to be sent is generated in real-time, and immediate dissem-



P

1;j

P

1;j+m

P

0;i+k

0

+1

P

0;i+1

P

0;i

P

0;i+k

0

:::

:::

Figure 5. Bidirectional piggybacking withr = 2, and the signature on the first packet in the stream.

ination of it is crucial. On the other hand, the benefit of this
approach is that receivers, upon getting a packet, can im-
mediately authenticate the content, and confirm the sender
(i.e., check the hashes that link this packet to the signature
packet, which was received earlier in the stream). It is not
necessary for the receiver to delay the use of any packet
(except while its hash is checked against values the receiver
alreadyhas).

In contrast, consider the other extreme, where the sig-
nature is computed on the last packet in the stream, and
all edges are directed rightward. This is useful in settings
where data is generated in real-time, since senders can send
a packet immediately after the data becomes ready. How-
ever, receivers, upon getting a packet, will be unable to con-
firm the sender’s identity until the signature packet, the last
packet in the stream, is received. This may cause the re-
ceiver to delay his usage or display of the data, resulting in
the need for a large buffer to store the entire stream until
transmission is complete.

Clearly, there is a tradeoff here, and distributors of dif-
ferent applications may select different options. We chose
to present our schemes in such a way that receiver authenti-
cation delay is minimized, which we believe to be desirable
in most cases.

In addition, we sketch here how a particular scheme may
be changed from one extreme to the other. Any graph which
represents a valid authentication scheme with the signa-
ture packet at one end can be “reversed”, so that the sig-
nature is computed on the packet at the other end of the
stream. The new graph will consist of the samen nodes, but
the signature packet is moved to the other end. Addition-
ally, edges are reversed in such a way that, for every path
(P

i

1

; :::; P

i

r

; P

sig

) existing in the original graph, the fol-
lowing is a path in the “reversed” graph:(P

i

r

; :::; P

i

1

; P

sig

).
We remark that in graphs where both leftward and rightward
edges exist, our technique will not eliminate sender buffer-
ing altogether.

7 Related Work

The problem of authenticating digital streams with com-
putational security was initially studied by Gennaro and Ro-
hatgi [10], who proposed a model in which the sender signs

the first block of a message, then ties in subsequent blocks
in a way that guarantees the property of non-repudiation.
For a stream which is finite and known in advance, the
sender inserts the hash of each block into the block that pre-
cedes it. In the case of an infinite stream, multiple instances
of a one-time signature scheme are used. One-time signa-
tures are advantageous because they are more efficient than
regular public key schemes. The solutions in [10], how-
ever, do not tolerate packet loss, and the size of one-time
signature keys and signatures, themselves (both of which
contribute to overhead) is quite large.

In a later paper [21], Rohatgi extends the work of [10],
by making use ofk-time signature schemes, where one pair
of keys can be used ink signatures instead of just one,
but signing and verifying can still be performed relatively
quickly. Further speedup is achieved by having the keys
computed and certified off-line. Thek-time keys are sent in
more than one packet, addressing the reliability concerns of
the earlier scheme. Other optimizations address efficiency
concerns.

Within the same model, Wong and Lam [23], use ideas
from [14] to form a tree-based authentication scheme. The
packets of the stream form the leaf nodes and parent nodes
are computed as the hashes of their children, with a signa-
ture at the root. Extra information is sent with each packet
to allow authentication of the entire chain before all pack-
ets whose hashes are in the tree arrive, and caching is used
to make the verification process more efficient. The Wong-
Lam scheme has no receiver authentication delay, and the
size of the packet to be signed is relatively small, however
the scheme suffers from a high amount of overhead on the
non-signature packets, asO(logn) extra pieces of informa-
tion are appended, wheren is the number of packets in the
stream.

Based on the observation that a significant amount of the
packet loss on the Internet occurs in bursts [5, 16], Golle
and Modadugu [11] constructs a hash-based scheme whose
goal is the authentication of received packets in the face of
a single burst of loss . The scheme includes a signature on
the final packet in the stream, and the hash of each of the
other packets is placed in several packets in the stream. He
presents bounds on the overall burst tolerance possible in
this model given particular efficiency resources, and shows



his scheme to be optimal in that respect.
TESLA11, a scheme developed by Perrig, et al [18, 17]

is a MAC-based stream authentication scheme which toler-
ates essentially unbounded, random loss. The first packet in
the scheme is signed by the sender, and includes a commit-
ment to a chain of MAC keys. Each subsequent packetP

i

is MAC-ed with a keyK
i

, and eachK
i

is revealed in some
packet later in the stream. A drawback of the scheme is
that it requires time synchronization between the sender and
each receiver, as the receiver must be assured that packetP

i

is received before packetP
i+1

is sent (see the security con-
dition described in Section 2.2). We use techniques found
in TESLA to increase the authentication probability of ap-
random authentication scheme. However, we are able to
reduce the number of packets over which the security con-
dition applies while maintaining a high probability of au-
thentication. The cost of this is a higher overhead than that
incurred in TESLA.

In addition, [18] studies some interesting hash-based au-
thentication schemes, all of which are easily represented
in the graph-based framework. Ourp-random construction
can be viewed as a generalization of EMSS. In EMSS, it is
decided a priori how many packets will containH(P

i

), for
eachi. The actual location of these packets is then chosen
either deterministically or randomly. No formal analysis of
EMSS is provided in [18], however the technique used in
Theorem 1 of this paper can be applied to the static form of
EMSS. Hence, Theorem 1 makes strides toward answering
a more general form of an open question posed in [18].

Finally, using a different model, Canetti et al [6] give a
scheme suitable for authenticating multicast streams, where
each packet is independently verifiable. Each receiver is
given a different subset ofk out of the universe ofK MAC
keys, and the sender sends each packet in the stream along
with its MAC computed under each of theK keys. A re-
ceiver verifies thek MACs for which it has the correspond-
ing key. If any of the checks fail, the receiver rejects the
packet. Otherwise, the receiver is assured of the authen-
ticity of the content assuming that there are no receiver
coalitions of more than some bounded size. This scheme
has the desirable property that each packet can be verified
upon receipt, independently of any other packets, however
the authentication overhead per packet may be large. If we
seek to guarantee that no set ofw users can cause another
user to incorrectly believe a packet is authentic, the the au-
thentication overhead roughly grows asO(m

w=k

) MACs,
whenw � k, wherem is the number of receivers andw is
the maximum coalition size. This bound on the overhead
follows from the fact that the scheme in [6] requires that
MAC keys be allocated according to a “cover-free family”
[8] to achieve such a security guarantee. We note that graph

11TESLA cannot be naturally represented in the graph-based model we
study here.

based techniques do not appear to be useful in analyzing
schemes of this type, as authentication information is not
shared amongst the packets. Boneh et al [4], have recently
made strides in analyzing schemes of this type through al-
ternate methods.

8 Conclusion

Our work unifies many of the ideas in [10, 21, 11, 18, 17]
in that we present a framework within which many of these
constructions can be represented. In addition, we allow pri-
orities to be placed on packets, a desirable feature, as this
is often a consequence of the encoding methods used for
digital streams. We demonstrate that these priorities may
be preserved by the construction in a tight sense when the
network loss pattern is random. For bursty networks, we
provide burst-tolerant authentication schemes that minimize
overhead by tightly correlating it with the number of bursts
that must be tolerated, rather than with the total amount of
loss. In addition, these schemes take maximal advantage of
the high burst tolerance that must be guaranteed for some
packets, by using “piggybacking” techniques to allowall
packets to have a high burst tolerance over some portion of
the stream, with no additional overhead. These construc-
tions for the bursty case, as well as thep-random construc-
tions for the random loss case, incur no receiver delay, mak-
ing them resistant to denial of service attacks.

There is still much to be done towards forming a compre-
hensive theory of graph-based authentication schemes. For
example, tight lower bounds relating the scheme parame-
ters in either the bursty or random network loss cases are
unknown, to the best of our knowledge.

9 Acknowledgments

The authors would like to thank Martı́n Abadi, Mihir
Bellare, Adrian Perrig, and the anonymous referees for
helpful comments on this work. More specifically, we ac-
knowledge Mihir Bellare for suggesting the network loss
model we describe in Section 2.1.

Sara Miner was supported in part by Mihir Bellare’s
1996 Packard Foundation Fellowship in Science and Engi-
neering.

References

[1] M. Abdalla, Y. Shavitt, and A. Wool.Key Management
for Restricted Multicast Using Broadcast Encryption. In
IEEE/ACM Transactions on Networking8 (2000), pp 443–
454.

[2] M. Bellare, R. Canetti, and H. Krawczyk.Keying Hash
Functions for Message Authentication.In Advances in



Cryptology - Crypto 96, Lecture Notes in Computer Science
Vol. 1109(1996).

[3] M. Bellare, R. Canetti, and H. Krawczyk.HMAC: Keyed-
Hashing for Message Authentication.IETF Internet Request
for Comments 2104, February 1997.

[4] D. Boneh, G. Durfee and M. Franklin.Lower Bounds for
Multicast Message Authentication. To appear in the proceed-
ings of Eurocrypt 2001.

[5] M. Borella, D. Swider, S. Uludag and G. Brewster.Internet
Packet Loss: Measurement and Implications for End-to-End
QoS. In Proceedings, International Conference on Parallel
Processing, August 1998.

[6] R. Canetti, J. Garay, G. Itkis, D. Micciancio, M. Naor and
B. Pinkas.Multicast Security: A Taxonomy and Some Effi-
cient Constructions. In IEEE Infocom,2 (March 1999), pp
708–716.

[7] T. Cover and J. Thomas.Elements of Information Theory.
John Wiley and Sons, Inc., 1991.

[8] P. Erdös, P. Frankl and Z. Füredi.Families of Finite Sets in
which No Set is Covered by the Union of r Others. Israel
Journal of Mathematics51 (1985), pp 75–89.

[9] S. Floyd and V. Paxson.Why We Don’t Know How to Simu-
late the Internet. In Proceedings of the 1997 Winter Simula-
tion Conference. Atlanta, Georgia, 1997.

[10] R. Gennaro and P. Rohatgi.How to Sign Digital Streams. In
Advances in Cryptology - CRYPTO ‘97, Lecture Notes in
Computer Science1294(1997), pp 180–197.

[11] P. Golle and N. Modadugu.Authenticating Streamed Data
in the Presence of Random Packet Loss. ISOC Network and
Distributed System Security Symposium (2001), pp 13–22.

[12] ISO/IEC International Standard 13818, Parts 1-9.Informa-
tion technology - Generic coding of moving pictures and as-
sociated audio information.

[13] M. Luby, M. Mitzenmacher, M.A. Shokrollahi, D. Spielman
and V. Stemann.Practical Loss-Resilient Codes. 29th Sym-
posium on the Theory of Computing, ACM (1997), pp 150–
159.

[14] R. Merkle. A Certified Digital Signature. In Advances in
Cryptology - CRYPTO ‘89, Lecture Notes in Computer Sci-
ence293(1990), pp 218–238.

[15] National Institute of Standards and Technology.The Secure
Hash Standard. NIST FIPS Pub 180-1, 1995.

[16] V. Paxson. End-to-End Internet Packet Dynamics. In
IEEE/ACM Transactions on Networking7 (1999), pp 277–
292.

[17] A. Perrig, R. Canetti, D. Song and J.D. Tygar.Efficient and
Secure Source Authentication for Multicast. ISOC Network
and Distributed System Security Symposium (2001), pp 35–
46.

[18] A. Perrig, R. Canetti, J.D. Tygar and D. Song.Effi-
cient Authentication and Signing of Multicast Streams over
Lossy Channels. IEEE Symposium on Security and Privacy
(2000), pp 56–73.

[19] R. Rivest.The MD5 Message Digest Algorithm. Internet Re-
quest for Comments, April 1992.

[20] R. Rivest, A. Shamir and L. Adleman.A Method for Obtain-
ing Signatures and Public-Key Cryptosystems. Communica-
tions of the ACM, (1978), pp 120–126.

[21] P. Rohatgi.A Compact and Fast Hybrid Signature Scheme
for Multicast Packet Authentication. 6th ACM Conference
on Computer and Communications Security (1999), pp 93–
100.

[22] J. H. van Lint.Introduction to Coding Theory. Third Edition,
Springer-Verlag, 1998.

[23] C. K. Wong and S. Lam.Digital Signatures for Flows and
Multicasts. In IEEE/ACM Transactions on Networking7
(1999), pp 502–513.

[24] M. Yajnik, S. Moon, J. Kurose and D. Towsley.Measure-
ment and Modelling of the Temporal Dependence in Packet
Loss. In IEEE Infocom ‘99.


