
Candidate One-Way Functions Based on Expander Graphs

Oded Goldreich

�

Department of Computer Science

Weizmann Institute of Science

Rehovot, Israel.

oded@wisdom.weizmann.ac.il

December 3, 2000

Abstract

We suggest a candidate one-way function using combinatorial constructs such as expander

graphs. These graphs are used to determine a sequence of small overlapping subsets of input

bits, to which a hard-wired random predicate is applied. Thus, the function is extremely easy

to evaluate: all that is needed is to take multiple projections of the input bits, and to use these

as entries to a look-up table. It is feasible for the adversary to scan the look-up table, but we

believe it would be infeasible to �nd an input that �ts a given sequence of values obtained for

these overlapping projections.

The conjectured di�culty of inverting the suggested function does not seem to follow from

any well-known assumption. Instead, we propose the study of the complexity of inverting

this function as an interesting open problem, with the hope that further research will provide

evidence to our belief that the inversion task is intractable.

�

Supported by MINERVA Foundation, Germany.

0

1 Introduction

In contrary to the present attempts to suggest a practical private-key encryption scheme in place

of the des, we believe that attempts should focus on suggesting practical one-way functions and

pseudorandom functions. Being a simpler object, one-way functions should be easier to construct,

and such constructions may later yield directly or indirectly a variety of other applications (including

private-key encryption schemes).

The current attempts to suggest a practical private-key encryption scheme in place of the

des seem quite ad-hoc: not only that they cannot be reduced to any well-known problem, but

(typically) they do not relate to a computational problem of natural appeal. Thus, the study of

these suggestions is of limited appeal (especially from a conceptual point of view).

In this manuscript, we propose a general scheme for constructing one-way functions. We do

not believe that the complexity of inverting the resulting function follows from some well-known

intractability assumptions. We believe that the complexity of inverting this function is a new

interesting open problem, and hope that other researcher will be able to obtain better understanding

of this problem.

In addition to the abstract presentation, we propose several concrete instantiations of our pro-

posal. It seems to us that a reasonable level of \security" (i.e., hardness to invert) may be achieved

at very modest input lengths. Speci�cally, on input length at the order of a couple of hundreds of

bits, inverting the function may require complexity (e.g., time) beyond 2

100

.

Style and Organization: This write-up is intended to two di�erent types of readers: researchers

in the the area of computational complexity as well as researchers interested in the practice of

cryptography. Consequently, we provide an asymptotic presentation coupled with suggestions for

concrete parameters. The basic suggestion is presented in Sections 2 and 3. Concrete instantiations

of this suggestion are proposed in Section 4. Concluding comments appear in Section 5.

2 The Basic Suggestion

We construct a (uniform) collection of functions ff

n

: f0; 1g

n

! f0; 1g

n

g

n2N

. Our construction

utilizes a collection of `(n)-subsets, S

1

; :::; S

n

� [n]

def

= f1; :::; ng, and a predicate P : f0; 1g

`(n)

!

f0; 1g. Jumping ahead, we hint that:

1. The function ` is relatively small: Theoretically speaking, ` = O(log n) or even ` = O(1).

In practice ` should be in the range f7; :::; 16g, whereas n should range between a couple of

hundreds and a couple of thousands.

2. We prefer to have P : f0; 1g

`

! f0; 1g be a random predicate. That is, it will be randomly

selected, �xed, and \hard-wired" into the function. For sure, P should not be linear, nor

depend on few of its bit locations.

3. The collection S

1

; :::; S

n

should be expanding: speci�cally, for some k, every k subsets should

cover at least k +
(n) elements of f1; :::; ng. The complexity of the inversion problem (for

f

n

constructed based on such a collection) seems to be exponential in the \net expansion" of

the collection (i.e., the cardinality of the union minus the number of subsets).

1

For x = x

1

� � � x

n

2 f0; 1g

n

and S � [n], where S = fi

1

; i

2

; :::; i

t

g and i

j

< i

j+1

, we denote by x

S

the projection of x on S; that is, x

S

= x

i

1

x

i

2

� � � x

i

t

. Fixing P and S

1

; :::; S

n

as above, we de�ne

f

n

(x)

def

= P (x

S

1

)P (x

S

2

) � � �P (x

S

n

) (1)

Note that we think of ` as being relatively small (i.e., ` = O(log n)), and aim at having f

n

be

univertible within time 2

n=O(1)

. Thus, the hardness of inverting f

n

cannot be due to the hardness

of inverting P . Instead, the hardness of inverting f

n

is supposed to come from the combinatorial

properties of the collection of sets C = fS

1

; :::; S

n

g (as well as from the combinatorial properties of

predicate P).

2.1 The preferred implementation

Our preference is to have P be a �xed randomly chosen predicate, which is hard-wired into the

algorithm for evaluating f

n

. Actually, one better avoid some choices; see next section. (In case

` = �(log n) bad choices are rare enough.) In practice, we think of ` in the range f7; :::; 16g,

and so hard-wiring a (random) predicate de�ned on f0; 1g

`

is quite feasible. The `-subsets will be

determined by combinatorial constructions called expander graphs. At this point the reader may

think of them too as being hard-wired into the algorithm. On input x 2 f0; 1g

n

, the algorithm for

computing f

n

proceeds as follows:

1. For i = 1; ::; n, projects x on S

i

, forming the `-bit long string x

(i)

.

2. For i = 1; ::; n, by accessing a look-up table for P , determines the bit y

i

= P (x

(i)

).

The output is the n-bit long string y

1

y

2

� � � y

n

.

(Note that the n actions, in each of the above two steps, can be performed in parallel.)

2.2 An alternative implementation

An alternative to having P \hard-wired" to the algorithm (as above) is to have it appear as part

of the input (and output). That is, letting hP i denote the 2

`

-bit string that fully speci�es P , we

have

f

0

n

(hP i; x)

def

= (hP i; P (x

S

1

)P (x

S

2

) � � �P (x

S

n

)) (2)

Thus, P is essentially random since the inversion problem is considered with respect to a uniformly

chosen input. This implementation is more appealing from a theoretical point of view, and in such

a case one better let ` = log

2

n (rather than ` = O(1)).

2.3 Determining suitable collections

As hinted above, the collection of `-subsets, C = fS

1

; :::; S

n

g, is to be determined by a suitable

combinatorial construction known as expander graphs. The reason for this choice will become more

clear from the analysis of one obvious attack (presented in Section 3.2). The speci�c correspon-

dence (between expanders and subsets) depends on whether one uses the bipartite or non-bipartite

formulation of expander graphs:

Bipartite formulation: In this case one considers a bipartite graph B = ((U; V); E), where

(U; V) is a partition of the vertex set, with jU j = jV j, and E � U �V is typically sparse. The

expanding property of the graph provides, for every U

0

� U (of size at most jU j=2), a lower

bound on j�(U

0

)j � jU

0

j (in terms of jU

0

j), where �(U

0

) = fv : 9u 2 U

0

s.t. (u; v) 2 Eg.

Our collection of subsets will be de�ned as C = fS

u

g

u2U

, where S

u

= fv : (u; v) 2 Eg.

2

Non-bipartite formulation: In this case one considers a graph G = (V;E), so that for every

V

0

� V (of size at most jV j=2), a suitable lower bound on j�(V

0

) n V

0

j holds, where �(V

0

) =

fv : 9v

0

2 V

0

s.t. (v

0

; v) 2 Eg.

Our collection of subsets is de�ned as C = fS

v

g

v2V

, where S

v

= fw : (v; w) 2 Eg [fvg.

In both cases, the lower bound provided by the expansion property on the size of the neighbor

set is linear in the size of the vertex set; e.g., for the non-bipartite formulation it holds that

j�(V

0

) n V

0

j � c � jV

0

j for some constant c > 0 and every admissible V

0

.

3 Avoiding obvious weaknesses

Considering a few obvious attacks, we rule out some obviously bad choices of the predicate P and

the collection C.

3.1 The choice of the predicate

We start by discussing two bad choices (for the predicate P), which should be avoided.

Linear predicates. It is certainly bad to use a linear predicate P (i.e., P (�

1

� � � �

`

) = p

0

+

P

`

i=1

p

i

�

i

, for some p

0

; p

1

; :::; p

`

). Under a linear P , the question of inverting f

n

, regardless of what

collection of subsets C is used, boils down to solving a linear system (of n equations in n variables),

which is easy. Having a predicate P that is close to a linear predicate is dangerous too.

Horn predicates. Likewise, one should avoid having any predicate that will make the system

of equations (or conditions) solvable in polynomial-time. The only other type of easily solvable

equations are these arising from Horn formulae (e.g., an OR of all variables).

Degenerate predicates. The rest of our analysis refers to the collection of sets that determine

the inputs to which the predicate P is applied. For this analysis to be meaningful, the predicate

should actually depend on all bits in its input (i.e., be non-degenerated).

Good predicates. We believe that most predicates are good for our purpose. In particular, we

suggest to use a uniformly chosen predicate.

3.2 The choice of the collection

Since the inverting algorithm can a�ord to consider all preimages of the predicate P , it is important

that the inversion of f

n

cannot be performed by interactively inverting P . To demonstrate this

point, consider the case ` = 1 and the collection fS

1

; :::; S

n

g such that S

i

= fig. In this case the

S

i

's are disjoint and we can recover the preimage by inverting P on each of the bits of the image,

separately from the others. For a less trivial example, consider the case where the collection C

consists of n=2` sub-collections, each having 2` subsets of some distinct set of 2` elements. In this

case, inversion can be performed in time O(n � 2

2`

) by considering each of these disjoint sets (of 2`

elements) separately. Recall that we wish the complexity of inversion to be exponential in n (and

not in `, which may be a constant).

In general, a natural inverting algorithm that should be defeated is the following: On input

y = f

n

(x), the algorithm proceeds in n steps, maintaining a list of partially speci�ed preimages of

3

y under f

n

. Initially, the list consists of the unique fully-undetermined string �

n

. In the �rst step,

depending on the �rst bit of y = y

1

� � � y

n

, we form the list L

1

of strings over f�; 0; 1g so that for

every z 2 L

1

it holds that P (z

S

1

) = y

1

and z

[n]nS

1

= �

n�`

, where [m]

def

= f1; :::;mg. In the i + 1

st

step, we extend L

i

to L

i+1

in the natural manner:

� Let U

0

= [

i

j=1

S

j

and U = [

i+1

j=1

S

j

.

� For every z

0

2 L

i

, we consider all 2

jUnU

0

j

strings z 2 f�; 0; 1g

n

satisfying

1. z

U

0

= z

0

U

0

,

2. z

UnU

0
2 f0; 1g

jUnU

0

j

, and

3. z

[n]nU

= �

n�jU j

.

The string z is added to L

i+1

if and only if P (z

S

i+1

) = y

i+1

.

Thus, for every i,

L

i

=

8

>

<

>

:

z 2 f�; 0; 1g

n

:

z

k

= � if and only if k 2 [n] n [

i

j=1

S

j

and

P (z

S

j

) = y

j

for j = 1; :::; i

9

>

=

>

;

:

The average running-time of this algorithm is determined by the expected size of the list at step i,

for the worst possible i. Letting U = [

i

j=1

S

j

,

A

�

1

����

i

def

=

8

>

<

>

:

z 2 f�; 0; 1g

n

:

z

k

= � if and only if k 2 [n] n U

and

P (z

S

j

) = �

j

for j = 1; :::; i

9

>

=

>

;

;

and X be uniformly distributed over f0; 1g

n

, the expected size of L

i

equals

X

�2f0;1g

i

Pr[f(X)

[i]

= �] � jA

�

j =

X

�2f0;1g

i

Pr[9z2A

�

s.t. X

U

= z

U

] � jA

�

j

=

X

�2f0;1g

i

jA

�

j

2

jU j

� jA

�

j = 2

�jU j

�

X

�2f0;1g

i

jA

�

j

2

� 2

�jU j

�

�

2

jU j

�

2

2

i

= 2

jU j�i

where the inequality is due to the fact that the minimum value of

P

i

z

2

i

, taken over M (= 2

i

)

non-negative z

i

's summing to N (= 2

jU j

), is obtained when the z

i

's are equal, and the value itself

is M � (N=M)

2

= N

2

=M .

Note that the algorithm needs not proceed by the above given order of sets. In general, for

every 1-1 permutation � over [n], we may proceed by considering in the ith step the set S

�(i)

. Still,

the complexity of this (generalized) algorithm is at least exponential in

min

�

�

max

i

n

�

�

�

[

i

j=1

S

�(j)

�

�

�

� i

o

�

(3)

We should thus use a collection such that Eq. (3) is big (i.e., bounded below by
(n)).

4

Bad collections. It is a bad idea to have S

j

= fj + 1; :::; j + `g, since in this case we have

j [

i

j=1

S

j

j � i � `� 1 for every i. It also follows that we cannot use ` � 2, since in this case one can

always �nd an order � so that Eq. (3) is bounded above by `� 1.

Good collections. An obvious lower bound on Eq. (3) is obtained by the expansion property of

the collection C = fS

j

g, where the expansion of C is de�ned as

max

k

min

I: jIj=k

fj[

j2I

S

j

j � kjg (4)

A natural suggestion is to determine the collection C according to the neighborhood sets of an

expander graph. Loosely speaking, known constructions of expander graphs allow to let ` be a

small constant (in the range f7; :::; 16g), while guaranteeing that Eq. (4) is a constant fraction of

n.

4 Concrete parameters for practical use

If we go for random predicates, then we should keep ` relatively small (say, ` � 16), since our

implementation of the function must contain a 2

`

-size table look-up for P . (Indeed, ` = 8 poses no

di�culty, and ` = 16 requires a table of 64K bits which seems reasonable.) For concrete security we

will be satis�ed with time complexities such as 2

80

or so. Our aim is to have n as small as possible

(e.g., a couple of hundreds).

The issue addressed below is which expander to use. It is somewhat \disappointing" that for

some speci�c parameters we aim for, we cannot use the \best" known explicit constructions.

Below we use the bipartite formulation of expanders. By expansion we mean a lower bound

established on the quantity in Eq. (4). Recall that the time complexity is exponential in this bound.

Random construction. This yields the best results, but the \cost" is that with small probability

we may select a bad construction. (The fact that we need to hard-wire the construction into

the function description is of little practical concern, since we are merely talking of hard-wiring

n � ` � log

2

n bits, which for the biggest n and ` considered below merely means hard-wiring 20K

bits.) Alternatively, one may incorporate the speci�cation of the construction in the input of the

one-way function, at the cost of augmenting the input by n � ` � log

2

n (where the original input is

n-bit long). Speci�c values that may be used are tabulated below.

1

degree (i.e., `) #vertices (i.e., n) expansion error prob.

10 256 77 2

�81

12 256 90 2

�101

14 256 103 2

�104

16 256 105 2

�152

8 384 93 2

�83

10 384 116 2

�121

12 384 139 2

�141

8 512 130 2

�101

10 512 159 2

�151

12 512 180 2

�202

1

The expansion was computed in a straightforward manner; the key component is to provide for any �xed k and

h an upper bound on the probability that a speci�c set of k vertices has less than h neighbors.

5

The last column (i.e., error prob.) states the probability that a random construction (with given

n and `) does not achieve the stated expansion. Actually, we only provide upper bounds on these

probabilities.

Alon's Geometric Expanders [2]. These constructions do not allow ` = O(log n), but rather

` is polynomially related to n. Still for our small numbers we get meaningful results, when using

` = q + 1 and n = q

2

+ q + 1, where q is a prime power. Speci�c values that may be used are

tabulated below.

2

degree (i.e., `) #vertices (i.e., n) expansion comment

10 91 49 expansion too low

12 133 76 quite good

14 183 109 very good

Note that these are all the suitable values for Alon's construction (with ` � 16); in particular, `

uniquely determines n and `� 1 must be a prime power.

The Ramanujan Expanders of Lubotzky, Phillips, and Sarnak [6]. Until one plays with

the parameters governing this construction, one may not realize how annoying these may be with

respect to an actual use: The di�culty is that there are severe restrictions regarding the degree

and the number of vertices,

3

making n � 2000 the smallest suitable choice. Admissible values are

tabulated below.

4

Parameters Results

p q bipartite? ` n expansion (+ comment)

13 5 NO 15 120 20 (unacceptable)

5 13 NO 7 2184 160 (better than needed)

13 17 YES 14 2448 392 (better than needed)

Note that p = 5 and p = 13 are the only admissible choices for ` � 16. Larger values of q may be

used, but this will only yield larger value of n.

Using the simple expander of Gaber{Galil [4]. Another nasty surprise is that the easy to

handle expander of Gaber{Galil performs very poorly on our range of parameters. This expander

has degree 7 (i.e., ` = 7), and can be constructed for any n = m

2

, where m is an integer. But its

expansion is (c=2) � n, where c = 1�

p

3=4 � 0:1339746, and so to achieve expansion above 80 we

need to use n = 1225. See table below:

2

The expansion is computed from the eigenvalues, as in [3]. Actually, we use the stronger bound provided by [2,

Thm. 2.3] rather than the simpler (and better known) bound. Speci�cally, the lower bounds in [2, Thm. 2.3] are on

the size of the neighborhood of x-subsets, and so we should subtract x from them, and maximize over all possible x's.

(We use the stronger lower bound of n �

(n�x)(`n+1)

`n+1+(n�`�2)x

, rather than the simpler bound of n �

n

3=2

x

, both provided

in [2, Thm. 2.3].)

3

Speci�cally, ` = p+ 1 and n = (q

3

� q)=2, where p and q are di�erent primes, both congruent to 1 mod 4, and p

is a square mod q. For the non-bipartite case, p is a non-square mod q, and n = q

3

� q. Recall that for non-bipartite

graphs ` equals the degree plus 1 (rather than the degree).

4

Again, the expansion is computed from the eigenvalues, as in [3].

6

degree (i.e., `) #vertices (i.e., n) expansion comment

7 400 27 expansion way too low

7 1225 83 good

7 1600 108 very good

7 2500 168 beyond our requirements

A second thought. In some applications having n on the magnitude of a couple of thousands

may be acceptable. In such a case, the explicit constructions of Lubotzky, Phillips, and Sarnak [6]

and of Gaber and Galil [4] become relevant. In view of the lower degree and greater
exibility, we

would prefer the construction of Gaber{Galil.

5 Concluding remarks

5.1 Variations

One variation is to use either a speci�c predicate or predicates selected at random from a small

domain, rather than using a truly random predicate (as in the presentation above). The advantage

of these suggestions is that the description of the predicate is shorter, and so one may use larger

values of `. Two speci�c suggestions follow:

1. Use the predicate that partitions its input into two equal length strings and takes their inner

product modulo 2. That is, P (z

1

; :::; z

2t

) =

P

t

i=1

z

i

z

t+i

mod 2.

In this case, the predicate is described without reference to `, and so any value of ` can be

used (in practice). This suggestion is due to Adi Shamir.

2. Use a random low-degree `-variant polynomial as a predicate. Speci�cally, we think of a

random `-variant polynomial of degree d 2 f2; 3g over the �nite �eld of two elements, and

such a polynomial can be described by

�

`

d

�

bits.

In practice, even for d = 3, we may use ` = 32 (since the description length in this case is

less than 6K bits).

On the other extreme, for sake of simplifying the analysis, one may use di�erent predicates in each

application (rather than using the same predicate in all applications).

5.2 Directions for investigation

1. The combinatorial properties of the function f

n

. Here we refer to issues such as under what

conditions is f

n

1-to-1 or merely \looses little information"; that is, how is f

n

(X

n

) distributed,

when X

n

is uniformly selected in f0; 1g

n

. One can show that if the collection (S

1

; :::; S

n

) is

su�ciently expending (as de�ned above) then the former distribution has min-entropy
(n);

i.e., Pr[f

n

(X

n

) = �] < 2

�
(n)

, for every � 2 f0; 1g

n

. We seek min-entropy bounds of the

form n�O(log n).

2. What happens when f

n

is iterated? Assuming that f

n

\looses little information", iterating it

may make the inverting task even harder, as well as serves as a starting point for the next

item.

5

5

An additional motivation for iterating f

n

is to increase the dependence of each output bit on the input bits.

A dependency of each output bit on all output bits is considered by some researchers to be a requirement from a

one-way function; we beg to di�er.

7

3. Modifying the construction to obtained a \keyed"-function with the hope that the result is

a pseudorandom function (cf. [5]). The idea is to let the key specify the (random) predicate

P . We stress that this modi�cation is applied to the iterated function, not to the basic one.

6

We suggest using �(log n) iteration; in practice 3{5 iterations should su�ce.

Our construction is similar to a construction that was developed by Alekhnovich et. al. [1] in the

context of proof complexity. Their results may be applicable to show that certain search method

that are related to resolution will require exponential-time to invert our function [Avi Wigderson,

private communication]. This direction requires further investogation.

5.3 Inspiration

Our construction was inspired by the construction of Nisan and Wigderson [7]; however, we deviate

from the latter in two important aspects:

1. Nisan and Wigderson reduce the security of their construction to the hardness of the predicate

in use. In our construction, the predicate is not complex at all (and our hope that the function

is hard to invert can not arise from the complexity of the predicate). That is, we hope that

the function is harder to invert than the predicate is to compute.

7

2. The set system used by Nisan and Wigderson has di�erent combinatorial properties than the

systems used by us. Speci�cally, Nisan and Wigderson ask for small intersections of each pair

of sets, whereas we seek expansion properties (of a type that cannot be satis�ed by pairs of

sets).

Our construction is also reminiscent of a sub-structure of of the des; that is, the mapping from

32-bit long strings to 32-bit long strings induced by the eight S-boxes. However, the connection

within input bits and output bits is far more complex in our case. Speci�cally, in the des, each

of the 8 (4-bit) output strings is a function (computed by an S-box) of 6 (out of the 32) input

bits. The corresponding 8 subsets have a very simple structure; the i

th

subset holds bit locations

f4(i � 1) + j : j = 0; :::; 5g, where i = 1; :::; 8 and 32 is identi�ed with 0. Indeed, inverting the

mapping induced on 32-bit strings is very easy.

8

In contrast, the complex relation between the

input bits corresponding to certain output bits in our case, defeat such a simple inversion attack.

We stress that this complex (or rather expanding) property of the sets of input bits is the heart of

our suggestion.

Acknowledgments

We are grateful to Noga Alon, Adi Shamir, Luca Trevisan and Avi Wigderson for useful discussions.

References

[1] M. Alekhnovich, E. Ben-Sasson, A. Razborov, and A. Wigderson. Pseudoran-

dom Generators in Propositional Proof Complexity. In 41st FOCS, pages 43{53, 2000.

6

We note that applying this idea to the original function will de�nitely fail. In that case, by using 2

`

queries (and

inspecting only one bit of the answers) we can easily retrieve the key P .

7

We comment that it is not clear whether the Nisan and Wigderson construction can be broken within time

comparable to that of computing the predicate; their paper only shows that it cannot be broken substantially faster.

8

In an asymptotic generalization of the scheme, inversion takes time linear in the number of bits.

8

[2] N. Alon. Eigenvalues, Geometric Expanders, Sorting in Rounds, and Ramsey Theory.

Combinatorica, Vol. 6, pages 207{219, 1986.

[3] N. Alon and V.D. Milman. �

1

, Isoperimetric Inequalities for Graphs and Supercon-

centrators, J. Combinatorial Theory, Ser. B, Vol. 38, pages 73{88, 1985.

[4] O. Gaber and Z. Galil. Explicit Constructions of Linear Size Superconcentrators.

JCSS, Vol. 22, pages 407{420, 1981.

[5] O. Goldreich, S. Goldwasser, and S. Micali. How to Construct Random Functions.

JACM, Vol. 33, No. 4, pages 792{807, 1986.

[6] A. Lubotzky, R. Phillips, P. Sarnak. Ramanujan Graphs. Combinatorica, Vol. 8,

pages 261{277, 1988.

[7] N. Nisan and A. Wigderson. Hardness vs Randomness. JCSS, Vol. 49, No. 2, pages

149{167, 1994.

9

