
On the Security of Modular Exponentiation

with Application to the Construction of Pseudorandom Generators

�

Oded Goldreich

Department of Computer Science

and Applied Mathematics

Weizmann Institute of Science

Rehovot, Israel.

oded@wisdom.weizmann.ac.il

Vered Rosen

Department of Computer Science

and Applied Mathematics

Weizmann Institute of Science

Rehovot, Israel.

veredr@wisdom.weizmann.ac.il

December 5, 2000

Abstract

Assuming the inractability of factoring, we show that the output of the exponentiation

modulo a composite function f

N;g

(x) = g

x

mod N (where N = P � Q) is pseudorandom, even

when its input is restricted to be half the size. This result is equivalent to the simultaneous

hardness of the upper half of the bits of f

N;g

, proven by H�astad, Schrift and Shamir. Yet,

we supply a di�erent proof that is signi�cantly simpler than the original one. In addition, we

suggest a pseudorandom generator which is more e�cient than all previously known factoring

based pseudorandom generators.

Keywords: Modular exponentiation, discrete logarithm, hard core predicates, simultaneous se-

curity, pseudorandom generator, factoring assumption.

�

This write-up is based on the Master Thesis of the second author (supervised by the �rst author).

0

1 Introduction

One-way functions play an extremely important role in modern cryptography. Loosely speaking,

these are functions which are easy to evaluate but hard to invert. A number theoretic function which

is widely believed to be one-way, is the exponentiation function over a �nite �eld. Its inverse, the

discrete logarithm function, is the basis for numerous cryptographic applications. Most applications

use a �eld of prime cardinality, though many of them can be adapted to work in other algebraic

structures as well.

A concept tightly connected to one-way functions is the notion of hard-core predicates, intro-

duced by Blum and Micali [BM]. A polynomial-time predicate b is called a hard-core of a function

f , if all e�cient algorithm, given f(x), can guess b(x) with success probability only negligibly bet-

ter than half. Blum and Micali showed the importance of hard-core predicates in pseudorandom

bit generation. Speci�cally, they showed that the modular exponentiation function over a �eld of

prime cardinality, f

P;g

(x) = g

x

mod P , has a hard-core predicate, and used it in order to construct

a pseudorandom bit generator. The study of hard-core predicates of f

P;g

has culminated in the

work of H�astad and N�aslund [HN], showing that all bits of f

P;g

are individually secure.

1.1 Hard core functions

The concept of a hard-core function (or the simultaneous security of bits) is a generalization of

hard-core predicates. Intuitively, a sequence of bits associated to a one-way function f is said to be

simultaneously secure, if no e�cient algorithm can gain any information about the given sequence

of bits in x, given only f(x). Proving the simultaneous security of a sequence of bits (rather than

a single bit) in f

P;g

is a desirable result, enabling the construction of more e�cient pseudorandom

generators as well as improving other applications. However, the best known result regarding

the simultaneous security of bits in f

P;g

is due to Long and Wigderson [LW], Kalisky [Kal] and

Peralta [P], who showed that O(log n) bits are simultaneously secure, where n is the size of the

modulus P .

Stronger results were demonstrated when the modulus was taken to be a composite, thus al-

lowing to relate (simultaneous) hardness of bits to the factoring problem. Denote by f

N;g

the

exponentiation modulo a composite function, de�ned as f

N;g

(x) = g

x

mod N , where N is an n-bit

composite equal to the multiplication of two large primes and g is an element in the multiplicative

group mod N . H�astad, Schrift and Shamir showed that under the factoring intractability assump-

tion, all the bits in f

N;g

are individually hard, and that the upper d

n

2

e bits and lower d

n

2

e bits are

simultaneously hard [HSS].

In the same setting (and under the same assumption that factoring is hard), we show that no

e�cient algorithm can tell apart f

N;g

(r) from f

N;g

(R), where r is a random d

n

2

e-bit string and R is

a random n-bit string

1

. That is, one can work with an exponent x of half the size, and still obtain

an element which \seems random" to all e�cient algorithms. Note that all the cryptographic tools

that use exponentiation in Z

�

N

(and base their security on the discrete logarithm assumption) can

greatly bene�t from this fact, since the time consumed for exponentiation grows linearly with the

size of the exponent (and is thus cut by a factor of two). Our result is in fact equivalent to the result

of H�astad et.al. [HSS] on the simultaneous hardness of the upper d

n

2

e bits of f

N;g

. Nevertheless,

we give an alternative proof for it while using some of their ideas and techniques. Our approach

signi�cantly simpli�es the proof given in [HSS] and sheds a new light on it.

1

As a matter of fact, in the exact formulation of our result, R is uniformly distributed over the range of naturals

smaller than the order of g (in the group Z

�

N

). However, the above claim (with R uniformly distributed in f0; 1g

n

)

holds as well, as an implication of Lemma 3.3.

1

Another implication of our work (to be further discussed below) is the construction of a pseu-

dorandom bit generator based on the computational indistinguishability of f

N;g

(r) from f

N;g

(R).

Our generator is somewhat more e�cient than all previously known factoring based pseudorandom

generators.

1.2 An e�cient Pseudorandom generator

The notion of a pseudorandom bit generator, introduced by Blum and Micali [BM], plays a central

role in cryptography. It enables the user to expand a short random seed into a longer sequence of

bits, that can be used in any e�cient application instead of a truly random bit sequence. Blum and

Micali presented a pseudorandom bit generator based on the discrete log problem. Using the fact

that the exponentiation function over a �eld of prime cardinality has a hard-core predicate, they

suggested an iterative generator that yields one bit of output per each exponentiation. Furthermore,

they conceived a general paradigm that constructs an iterative pseudorandom generator, given any

length preserving one-way permutation f , and a hard-core predicate b for f .

The Blum-Blum-Shub pseudorandom generator [BBS], hereafter referred to as the \BBS gen-

erator", is based on the above paradigm, taking f to be the modular squaring function, where the

modulus N is a Blum integer.

2

Since, as shown by Rabin [R1], the problem of factoring N can be

reduced to the problem of extracting square roots in the multiplicative group mod N , the function

f is a one-way function assuming the intractability of factoring Blum integers. Additionally, Blum,

Blum and Shub showed that f induces a permutation over the set of quadratic residues in the

multiplicative group mod N , and using the results of Alexi et.al. [ACGS] and Vazirani and Vazi-

rani [VV], this implies that the least signi�cant bit constitutes a hard-core predicate for f . The

BBS generator is by far more e�cient than the Blum-Micali generator.

3

In particular, for every

polynomial P (�), the BBS generator stretches an n-bit seed into a P (n)-bit pseudorandom string

using P (n) modular multiplications.

Another generator whose pseudorandomness is based on factoring, was suggested by H�astad,

Schrift and Shamir [HSS] (and will be referred to as the \HSS generator"). The HSS generator relies

on the simultaneous hardness of half of the bits in the exponentiation modulo a composite function

f

N;g

. Loosely speaking, the HSS generator takes an n-bit random seed x (where n is the size of

the modulus N), and outputs f

N;g

(x) followed by the lower half of the bits of x.

4

Observe that

from an n-bit seed, the HSS generator obtains 1:5n bits of output, using n modular multiplications

on the worst case, and 0:5n modular multiplications on the average case (assuming that the terms

g

2

0

; : : : ; g

2

n

are pre-computed together with the other parameters of the generator).

Even though our main result is equivalent to the simultaneous hardness of half of the bits in

f

N;g

, our result gives rise to a pseudorandom generator that is (in a sense) more natural than the

HSS generator, as well as more e�cient than it. Informally, we suggest a generator that takes a

random seed x of size dn=2e, and outputs f

N;g

(x). Observe that our generator doubles the length

of its input. In particular, it obtains n bits of output from an 0:5n-bit seed using 0:5n modular

multiplications on the worst case, and 0:25n modular multiplications on the average case (once

again, we assume that the terms g

2

0

; : : : ; g

2

dn=2e

are pre-computed).

2

A Blum integer is equal to the multiplication of two primes of equal size, each congruent to 3 mod 4.

3

The Blum-Micali generator obtains each bit of output at the cost of one modular exponentiation that is imple-

mented by n modular multiplications, as opposed to one modular multiplication per output bit needed by the BBS

generator.

4

As a matter of fact, in order to achieve true pseudorandomness, universal hashing is applied. The actual con-

struction will be presented in Section 4.

2

The following table compares the three factoring based generators discussed above, each having

the same security parameter n (the size of the modulus N). Note that the \cost" column refers to

the average number of multiplications done in every application of the generator, and the \amortized

cost" column refers to the average number of multiplications divided by the number of additional

output bits of the generator (i.e., the amortized cost is the cost divided by the di�erence between

the output length and the seed length).

5

seed length output length cost amortized cost

BBS construction n P(n) (8P) P(n)

P (n)

P (n)�n

� 1

HSS construction n 1.5n 0.5n

0:5n

1:5n�n

= 1

Our construction 0.5n n 0.25n

0:25n

n�0:5n

= 0:5

An additional point is that our generator (as well as the HSS generator) has an e�cient parallel

implementation in time O(log n).

6

This is opposed to the BBS generator which is not known to

have a fast parallel implementation (i.e., any faster than the straightforward sequential implemen-

tation).

1.3 Organization

The rest of this work is organized as follows: Basic de�nitions and notations are given in Section 2.

In Section 3 we state and prove the main theorem (regarding the pseudorandomness of exponenti-

ation with a short exponent), show its equivalence to the [HSS] result (and discuss the di�erence

between the two proofs). In Section 4 we address the issue of constructing a pseudorandom gener-

ator based on results as ours and [HSS].

2 Preliminaries

Probability Ensembles: Let I be a countable index set. A probability ensemble indexed

by I is a sequence of random variables indexed by I. Namely, X = fX

i

g

i2I

, where the X

i

's are

random variables, is a probability ensemble indexed by I.

In our applications, we use IN as an index set, and let each X

n

(in an ensemble of the form

fX

n

g

n2IN

) range over strings of length n. In particular, we denote by U

n

the random variable that

is uniformly distributed over f0; 1g

n

.

Statistical Di�erence: A basic notion from probability theory is the statistical di�erence be-

tween probability ensembles fX

n

g

n2IN

and fY

n

g

n2IN

. The statistical di�erence measures the dis-

5

Even though the correct way to compare the above generators is with respect to the same security parameter,

one might consider a comparison with respect to the same seed length. In order to do that we must normalize the

input/output sizes of our generator so that its seed length will be n. Thus, the output produced by our generator

will be of length 2n, the cost will be 0:5n and the amortized cost will again be 0:5 multiplications per an additional

output bit. Note however, that the size of the security parameter in our construction will be twice its size in the BBS

and the HSS constructions. Thus, our construction will be safer. On the other hand, each multiplication will involve

twice as big numbers.

6

The parallel implementation uses dn=2e processors P

1

; : : : ; P

dn=2e

, where the input of each processor P

i

is the

i'th bit of the seed, s

i

, and the output is the multiplication of the values g

2

i�1

�s

i

contributed by each processor.

3

tance between distributions and is de�ned to be

SD(X

n

; Y

n

) =

1

2

�

X

�

jPr[X

n

= �]� Pr[Y

n

= �]j

Probability ensembles fX

n

g

n2IN

and fY

n

g

n2IN

are called statistically close if their statistical

di�erence is negligible in n (we say that a function � : IN! [0; 1] is negligible if for every positive

constant c and all su�ciently large n's, �(n) <

1

n

c

).

Computational Indistinguishability: A weaker notion of closeness between probability en-

sembles is the notion of indistinguishability by all e�cient algorithms. When no e�cient algorithm

(that may be probabilistic) can tell apart the two ensembles, we call them computationally indis-

tinguishable. Formally,

De�nition 2.1 We say that two ensembles fX

n

g

n2N

and fY

n

g

n2N

are computationally indis-

tinguishable, if for every probabilistic polynomial-time algorithm D, for every positive constant c

and for all su�ciently large n's

jPr[D(X

n

; 1

n

) = 1]� Pr[D(Y

n

; 1

n

) = 1]j <

1

n

c

A notation: Let A be a �nite set, then a 2

R

A denotes that the element a is uniformly chosen

from the set A (i.e. with probability

1

jAj

).

2.1 Pseudorandom Generators

Loosely speaking, a pseudorandom generator is a deterministic algorithm that stretches a random

seed (i.e. input) into a longer bit sequence which is \pseudorandom". A pseudorandom bit sequence

is de�ned as computationally indistinguishable from the uniform distribution (thus for all practical

purposes we can use the output of the generator instead of a truly random string).

De�nition 2.2 A pseudorandom generator is a deterministic polynomial-time algorithm, G,

satisfying the following two conditions:

1. There exists a function l(n) : n ! n satisfying that l(n) > n for all n 2 N , such that

jG(s)j = l(jsj) for all s 2 f0; 1g

�

.

2. The ensembles fG(U

n

)g

n2N

and fU

l(n)

g

n2N

are computationally indistinguishable.

2.2 The Factoring Assumption

We denote by N

n

the set of all n-bit integers N = P � Q, where P and Q are two odd primes of

equal size. The collection N

n

can be sampled e�ciently. Speci�cally, given input 1

n

, it is possible

to pick a random element in N

n

in polynomial time (using a polynomial number of coin tosses).

The problem of factoring integers is widely believed to be intractable. Integers belonging to the

set N

n

are considered to be particularly hard to factor. Note that N

n

is a non-negligible fraction

of all n-bit integers. Currently, the best algorithm known can factor an integer picked randomly

from N

n

in (heuristic) running-time of e

1:92n

1=3

log n

2=3

.

4

Assumption 1 [Factoring Assumption] Let A be a probabilistic polynomial-time algorithm. There

is no constant c > 0 such that for all su�ciently large n's

Pr [A(P �Q) = P] >

1

n

c

where N = P �Q is picked uniformly from N

n

.

2.3 The group Z

�

N

Denote by Z

�

N

the multiplicative group that consists of all the naturals which are smaller than N

and are relatively prime to it. We represent the elements in Z

�

N

by binary strings of size n = dlogNe.

Notations:

� Let x < N , and let 1 � j � i � n. We denote by x

i

the i'th bit in the binary representation

of x, and by x

i;j

the substring of x including the bits from position j to position i.

� Denote by ord

N

(g) the order of an element g in Z

�

N

, which is the minimal k � 1 for which

g

k

= 1 (mod N).

� Denote by hgi the subgroup of Z

�

N

generated by g. That is, hgi is the set of all elements of

the form g

x

mod N for some x < N .

� Denote by P

n

the set of pairs hN; gi where N 2 N

n

and g 2 Z

�

N

. Note that P

n

is e�ciently

samplable.

We now de�ne the exponentiation modulo a composite function and its inverse the discrete

logarithm modulo a composite function.

De�nition 2.3 Let hN; gi be a pair in P

n

. We de�ne he exponentiation modulo a composite

function f

N;g

: f0; 1g

�

! hgi to be f

N;g

(x) = g

x

mod N .

De�nition 2.4 Let hN; gi be a pair in P

n

. We de�ne the discrete log modulo a composite function

DL

N;g

: hgi ! [0; ord

N

(g)), where DL

N;g

(y) is de�ned to be the unique natural x < ord

N

(g) for

which f

N;g

(x) = y.

3 Exponentiation with a short exponent is pseudorandom

We introduce two probability ensembles, which we show to be computationally indistinguishable

assuming the intractability of factoring.

De�nition 3.1 Let hN; gi be a uniformly distributed pair in P

n

, let R be uniformly distributed in

[0; ord

N

(g)) and let r be uniformly distributed in f0; 1g

d

n

2

e

. We denote by Full

n

the distribution

hN; g; g

R

mod Ni and by Half

n

the distribution hN; g; g

r

mod Ni.

Theorem 3.2 The ensembles fHalf

n

g

n2N

and fFull

n

g

n2N

are computationally indistinguishable.

5

********************** (3)

(2)

(1)***************

i � n=2

m � n

n=2

Figure 1: We denote random bits by '*' and the length of the binary expansion of ord

N

(g) by m.

No. (1), (2), (3) show the exponents of Half

n

, Full

n

and the hybrid H

i

n

, respectively.

We use the hybrid technique in order to prove the indistinguishability of Full

n

and Half

n

. For

i's between d

n

2

e and n + !(log n) we de�ne a hybrid distribution in the following way: The i'th

hybrid, denoted H

i

n

, will consist of triplets of the form hN; g; g

x

mod Ni, where hN; gi is uniformly

distributed in P

n

and x is uniformly distributed in f0; 1g

i

(see Figure 1).

For a speci�c choice of a pair hN; gi in P

n

we denote by H

i

N;g

the distribution g

x

mod N where

x is uniformly distributed in f0; 1g

i

. (From now on we omit the expression \mod N" whenever it

is clear from the context).

Clearly, H

dn=2e

n

= Half

n

. Note that the distribution H

n+!(log n)

n

is statistically close to Full

n

,

as asserted by the following claim:

Claim 3.2.1 The distributions Full

n

and H

n+!(log n)

n

are statistically close.

Proof: Let M denote 2

n+!(log n)

. M can be written as k � ord

N

(g) + r where k is an integer and

0 � r < ord

N

(g). We now calculate the statistical di�erence between the distributions Full

n

and

H

n+!(log n)

n

. Note that the �rst equality is implied from the fact that in f

N;g

(x) the exponent x is

reduced modulo ord

N

(g).

SD(Full

n

;H

n+!(log n)

n

) =

1

2

h

r �

�

k+1

M

�

1

ord

N

(g)

�

+ (ord

N

(g) � r) �

�

1

ord

n

(g)

�

k

M

�i

=

1

2

h

(ord

N

(g) � 2r) �

�

1

ord

n

(g)

�

k

M

�

+

r

M

i

=

1

2

h

(ord

N

(g) � 2r) �

r

M �ord

N

(g)

+

r

M

i

�

r

M

Since

r

M

<

N

M

�

2

n

2

n+!(log n)

, we have that SD(Full

n

;H

n+!(log n)

n

) is negligible in n. 2

Consequently, if there exists a probabilistic polynomial-time algorithm D, that distinguishes

the ensemble Half

n

from Full

n

, then D distinguishes (almost) as well Half

n

from H

n+!(log n)

n

. As

the total number of hybrids is polynomial in n, a non-negligible gap between the extreme hybrids

translates into a non-negligible gap between a pair of neighboring hybrids. Taking advantage of

the structure of two neighboring hybrids, we use the distinguisher D in order to factor a composite

in N

n

, and thus contradict Assumption 1. In the following, let n be a su�ciently large natural and

let i belong to the set

f

d

n

2

e;:::;n+!(log n)

g

.

Lemma 3.3 (Main Lemma) Suppose that the gap between the acceptance probability of D on

the hybrids H

i

n

and H

i+1

n

is greater than

1

n

c

. Then, with probability at least

1

8n

c

we can factor a

composite N , uniformly distributed in N

n

.

6

3.1 Factoring vs Discrete Logarithm in Z

�

N

It turns out that there is a tight connection between factoring N and revealing the discrete logarithm

of a certain element in Z

�

N

. In order to factor a random integer N = P �Q in N

n

, it is su�cient to

�nd the discrete log of g

N

for a randomly chosen g 2 Z

�

N

. This is due to the following trivial fact:

Fact 1 Let hN; gi belong to P

n

(say that N = P �Q). Then, if ord

N

(g) > P + Q� 1, the discrete

logarithm S = DL

N;g

(g

N

) is equal to P +Q� 1.

Proof: Recall that the order of g divides the order of the group Z

�

N

, equal to '(N) = (P �1)(Q�1).

Therefore, g

N

= g

N�'(N)

= g

P+Q�1

(mod N). Consequently, if ord

N

(g) > P + Q � 1 then

S = P +Q� 1. 2

The following proposition, established by H�astad et al. [HSS], claims that an element picked

randomly in Z

�

N

is very likely to be of high order:

Proposition 3.4 (H�astad et al.) Let hN; gi be uniformly distributed in P

n

, where N = P � Q.

Then,

Pr

�

ord

N

(g) <

1

n

k

� (P � 1)(Q� 1)

�

� O

�

1

n

(k�4)=3

�

The only use we make of the above proposition, is to show that with very high probability, ord

N

(g)

cannot be too small. Speci�cally, Proposition 3.4 implies that with overwhelming probability

ord

N

(g) is greater than P +Q� 1. Therefore, as was �rst observed by Chor [Chor], we can solve

the two equations P +Q� 1 = S (according to Fact 1) and P �Q = N for the unknowns P and Q

and thus factor N .

3.2 Proof of Main Lemma

The proof of Lemma 3.3 is basically a reduction. We show how to use the algorithm D that

distinguishes H

i

n

and H

i+1

n

in order to calculate S and thus factor N .

3.2.1 Using D to discover the (i+ 1)

st

bit of the exponent

Let W

n

� P

n

be the set of pairs hN; gi in P

n

for which it holds that D distinguishes H

i

N;g

and

H

i+1

N;g

with advantage at least

1

2n

c

. A standard averaging argument shows that the probability that

a pair hN; gi chosen at random from P

n

is in the set W

n

is at least

1

2n

c

.

>From now on we consider the case where hN; gi belongs to the set W

n

, and therefore satis�es

�

�

�

Pr[D(N; g; g

x

) = 1jx 2

R

f0; 1g

i

]� Pr[D(N; g; g

x

) = 1jx 2

R

f0; 1g

i+1

]

�

�

�

�

1

2n

c

(1)

Observe that

Pr[D(N; g; g

x

) = 1jx 2

R

f0; 1g

i+1

] =

1

2

� Pr[D(N; g; g

x

) = 1jx 2

R

f0; 1g

i

] +

1

2

� Pr[D(N; g; g

2

i

+x

) = 1jx 2

R

f0; 1g

i

]

(2)

>From 1 and 2 we obtain the following:

�

�

�

Pr[D(N; g; g

x

) = 1jx 2

R

f0; 1g

i

]� Pr[D(N; g; g

2

i

+x

) = 1jx 2

R

f0; 1g

i

]

�

�

�

�

1

n

c

(3)

7

Denote by H

i

N;g

the distribution g

2

i

+x

where x is drawn uniformly from f0; 1g

i

. Another way

to state Inequality 3 is to say that the distinguisher D has advantage at least

1

n

c

in distinguishing

the distributions H

i

N;g

and H

i

N;g

. Let � and be the acceptance probabilities of D on input taken

from H

i

N;g

and H

i

N;g

, respectively. That is, let

�

def

= Pr[D(N; g; g

x

) = 1jx 2

R

f0; 1g

i

] (4)

and

def

= Pr[D(N; g; g

2

i

+x

) = 1jx 2

R

f0; 1g

i

] (5)

Without loss of generality assume that > �. Note that good approximations of � and can be

easily obtained (in polynomial-time) by performing a-priori tests on D, using samples taken from

H

i

N;g

and H

i

N;g

.

In the sequel we use the distinguisher D as an oracle, that enables us to \peek" into a 1-bit

window on the (i+ 1)

st

location of an unknown exponent of length (i+ 1). Speci�cally, we use D

in order to derive the (i+ 1)

st

bit of an (i+ 1)-bit string x, given g

x

.

3.2.2 Discovering S - a naive implementation

Suppose for a moment that we had a \perfect" oracle, that given input Z = g

x

, where x is of length

(i+ 1), would supply us, with success probability 1, the (i+ 1)

st

bit of x. It would then enable us

to extract x, using two simple operations:

Shifting to the left: By squaring Z we shift x by one position to the left.

Zeroing the j'th bit: By dividing Z by g

2

j�1

we zero the j'th position in x, in case it is known

to be 1.

Therefore, we extract x from the most signi�cant to the least signi�cant bit by \moving" it under

the (i+1)

st

window. Speci�cally, we query the oracle and determine the (i+1)

st

bit of x and zero

it in case it equals 1. Next we shift x by one position to the left, query again the oracle to discover

the next bit and so on.

As was explained earlier, we try to factor N by discovering S = DL

N;g

(g

N

). An important

property of S is that with overwhelming probability its length is dn=2e+1, and is therefore smaller

than i+ 1. We can thus manipulate Y = g

N

= g

S

(mod N) and discover S.

However, as the oracle might give us erroneous answers and all we are guaranteed is that there

is a �� gap (which is greater than

1

n

c

) between the probability to get a correct 1-answer and the

probability to get an erroneous 1-answer, our implementation needs to be more careful.

3.2.3 Discovering S - the actual implementation

We must randomize our queries to the oracle and learn the correct answer by comparing the

proportion of 1-answers with � and . A straightforward way to learn the (i + 1)

st

bit of x given

Z, would be to query the oracle on polynomially many random multiples Z � g

r

k

for known r

k

's

chosen uniformly from f0; 1g

i

, and based on the fraction of 1-answers to decide between 0 and 1.

However this approach fails, since despite our knowledge of r

k

, we cannot tell whether a carry from

the addition of the i least signi�cant bits of the known r

k

and the unknown x e�ects the (i+ 1)

st

bit of their sum. Thus we cannot gain any information on the (i+ 1)

st

bit of x from the answer of

the oracle on Z � g

r

k

.

8

We now give a rough description of a procedure that resolves this di�culty and computes S.

The procedure consists of dn=2e + 1 stages, where on the j'th stage we create a list L

j

which is a

subset of f0; : : : ; 2

j

� 1g. We want two invariants to hold for the list L

j

:

1. L

j

contains an element e such that S � e � 2

l(j)

belongs to the set f0;:::;2

l(j)

�1g, where l(j)

def

=

d

n

2

e+ 1� j. (In other words, we want e to be equal to S

d

n

2

e+1;l(j)

).

2. The size of L

j

is small, that is, it contains up to a polynomial number of values (where the

polynomial is set a-priori).

Thus, on the (dn=2e + 1)

st

stage, we will have a polynomial-size list that contains S.

The values in each list are kept sorted. The transition from the (j�1)

st

list to the j

th

list is done

as follows: We �rst let L

j

contain all the values v such that v = 2u or v = 2u+1 where u is in L

j�1

,

thus making the size of L

j

twice the size of L

j�1

. Obviously, by this we maintain the �rst invariant

speci�ed above. In case the size of L

j

exceeds the polynomial bound we �xed, we use repeatedly

the Trimming Rule in order to throw candidates out of L

j

until we are within the maximal size

allowed. The Trimming Rule never throws away the correct candidate (i.e. S

d

n

2

e+1;l(j)

).

3.2.4 Keeping the size of L

j

bounded

Suppose that we decide to trim L

j

whenever the di�erence between the largest candidate in it,

denoted by v

j

max

, and the smallest candidate in it, denoted by v

j

min

, exceeds a certain polynomial,

say n

�

(for some constant �). At least one of the values v

j

max

, v

j

min

is not the correct value

S

d

n

2

e+1;l(j)

. Therefore the trimming rule (to be de�ned in the sequel) may throw one of them out

of the list. For this purpose, we are going to de�ne a new secret S

0

, for which g

S

0

can be e�ciently

computed given Y = g

S

, v

j

max

and v

j

min

. We will examine a certain position in it (which is a

function of j), henceforth referred to as the crucial position (and shortly denoted cp). Essentially,

S

0

will have the following properties:

1. If v

j

min

is the correct candidate (i.e. S

d

n

2

e+1;l(j)

= v

j

min

) then the cp-bit in S

0

is 0, so are the

d� log ne bits to its right, and so are all the bits to its left.

2. If v

j

max

is the correct candidate (i.e. S

d

n

2

e+1;l(j)

= v

j

max

) then the cp-bit in S

0

is 1, the d� log ne

bits to its right are all 0's, and so are all the bits to its left.

Consequently, in these two situations we will be able to perform the randomization we wanted. We

�rst shift S

0

to the left until the cp-bit is placed in the (i + 1)

st

location (by repeated squaring).

We then multiply the result by g

r

for some randomly chosen r 2 f0; 1g

i

. The probability to have

a carry into the (i + 1)

st

location from the addition of r and the shifted S

0

, is no more than

1

n

�

(a carry might occur only when r

i;i�d� log ne

= 11 : : : 1). Hence, by using a polynomial number of

queries to the oracle (with independently chosen r's) we are able to deduce the value of the cp-bit

by comparing the fraction of 1-answers with � and .

As the value of the cp-bit is revealed, we can discard one of the candidates v

j

min

or v

j

max

from

the list: If cp = 1 we are guaranteed that v

j

min

is not correct, and if cp = 0 we are guaranteed that

v

j

max

is not correct.

Note that in case neither v

j

max

nor v

j

min

are correct, we cannot ensure that the d� log ne bits to

the right of the cp-bit in S

0

will be zeros, so a carry may reach the (i+ 1)

st

position. Thus we can

get the frequency of 1-answers altogether di�erent from � and . Yet in that case, it is ok for the

trimming rule to discard either one of the extreme values from the list.

We proceed with a formal presentation of the proof.

9

3.2.5 De�nition of S

0

and cp

Recall that l(j) = d

n

2

e + 1 � j. We de�ne the new secret S

0

(which is a function of j, S v

j

min

and

v

j

max

) to be

S

0

=

&

2

d� log ne+m

v

j

max

� v

j

min

'

� (S � v

j

min

� 2

l(j)

)

where m is a natural number. We will see that in the choice of m there is a tradeo� between the

running time and the probability of error: When m is large, the error probability is smaller. On

the other hand, when m is small, the running-time is shorter (we will see that choosing m to be

d� log ne will be adequate). Note that g

S

0

can be e�ciently evaluated given Y = g

S

, v

j

min

and v

j

max

.

The Crucial Position in S

0

is de�ned to be

cp = d� log ne+m+ l(j) + 1

Since we decided to trim L

j

whenever the di�erence between the extreme values in it exceeds n

�

,

the trimming rule will be applied only for j's greater than d� log ne (for smaller j's v

j

max

and v

j

min

will not di�er by more than n

�

). Therefore, the maximal value for cp will be dn=2e+m+1. Thus,

for i's smaller than dn=2e + m it occurs that cp is greater than i + 1. For these i's we have to

guess the dn=2e +m � i � m most signi�cant bits of S (in order to keep the number of guesses

polynomial, we restrict m to be logarithmic in n and prefered as small as possible).

3.2.6 The actual algorithms and their analysis

We �rst describe the procedure \�nd S" that on input N 2 N

n

and i (the index of the hybrid for

which the acceptance probability of D on H

i

N;g

and H

i

N;g

di�ers by more than

1

n

c

), �nds S. We

proceed with an analysis of the procedure which leads us to the exact formulation of the trimming

rule.

Procedure \Find S":

On input N and i execute the following steps:

1. Let j

0

= max(dn=2e +m� i; 0)).

Recall that i � dn=2e, therefore j

0

2 f0; : : : ;mg.

2. If j

0

> 0 guess the j

0

most signi�cant bits of S, and let w 2 f0; : : : ; 2

j

0

� 1g denote the guess

(if j

0

= 0 let w

def

= 0).

For each of these polynomial number of guesses do the following stages:

3. Let L

j

0

= fwg.

4. For j = j

0

+ 1 to dn=2e + 1 do the following:

(a) Let L

j

def

= f2u; 2u+ 1 : u 2 L

j�1

g.

Order the resulting list from the largest element v

j

max

to the smallest element v

j

min

.

(b) If v

j

max

� v

j

min

> 2

d� log ne

(we are guaranteed that v

j

max

� v

j

min

� 2 � 2

d� log ne

by the

previous stage) use the trimming rule (to be speci�ed) repeatedly until the di�erence

between the largest element in the list and the smallest one is no more than 2

d� log ne

.

5. Check all values v 2 L

n

2

+1

and see whether g

v

equals Y . If such a value is found, then it is S.

10

Two facts: We turn to make two observations which lead us to the formulation of the rule by

which we trim L

j

(assuming that 2

d� log ne

< v

j

max

� v

j

min

� 2

d� log ne+1

):

Fact 2 Suppose that v

j

min

indeed equals S

dn=2e+1;l(j)

. Then, the cp-bit in S

0

is 0, all the bits to its

left are 0's, and the d� log ne bits to its right are 0's as well.

Fact 3 Suppose that v

j

max

indeed equals S

dn=2e+1;l(j)

. Then, the cp-bit in S

0

is 1, all the bits to its

left are 0's, and the l

def

= min(d� log ne;m�1)� 1 bits to its right are 0's as well.

Proof:(of Fact 2) Using v

j

max

� v

j

min

> 2

d� log ne

, observe that

S

0

=

�

2

d� logne+m

v

j

max

�v

j

min

�

�

�

v

j

min

� 2

l(j)

+ S

l(j);1

� v

j

min

� 2

l(j)

�

� 2

m

� S

l(j);1

� 2

m+l(j)

= 2

cp�d� logne�1

2

Proof:(of Fact 3) Observe that

S

0

=

�

2

d� log ne+m

v

j

max

�v

j

min

�

�

�

v

j

max

� 2

l(j)

+ S

l(j);1

� v

j

min

� 2

l(j)

�

=

�

2

d� log ne+m

v

j

max

�v

j

min

�

�

�

(v

j

max

� v

j

min

) � 2

l(j)

+ S

l(j);1

�

= 2

d� log ne+m+l(j)

+ � � (v

j

max

� v

j

min

) � 2

l(j)

+

�

2

d� log ne+m

v

j

max

�v

j

min

�

� S

l(j);1

where � =

�

2

d� log ne+m

v

j

max

�v

j

min

�

�

2

d� log ne+m

v

j

max

�v

j

min

2 [0; 1).

Let U

1

= � � (v

j

max

� v

j

min

) � 2

l(j)

and let U

2

=

�

2

d� logne+m

v

j

max

�v

j

min

�

� S

l(j);1

.

We can write S

0

as

S

0

= 2

cp�1

+ U

1

+ U

2

Recall that 2

d� log ne

< v

j

max

� v

j

min

� 2 � 2

d� log ne

. Therefore, U

1

� 2 � 2

d� log ne+l(j)

= 2

cp�m

and

U

2

� 2

m+l(j)

= 2

cp�d� log ne�1

. Also, both U

1

; U

2

� 0.

Consequently S

0

is of the following form:

� The cp-bit in S

0

is 1 and all the bits to its left are 0's.

� Let l = min(d� log ne;m�1)�1. Then the l bits to the right of the cp-bit in S

0

are 0's.

2

Fact 3 implies that we must choose m to be at least d� log ne, otherwise there wouldn't be

enough 0's to the right of the cp-bit to enable the randomization. On the other hand, the larger m

11

is, the more bits we have to guess in Step (1) of the procedure \Find S". We therefore set m to be

d� log ne, and respectively de�ne

S

0

=

&

2

2d� logne

v

j

max

� v

j

min

'

� (S � v

j

min

� 2

l(j)

)

and

cp = 2d� log ne+ l(j) + 1

We now formally state the trimming rule:

Trimming Rule:

1. Shift S

0

by i + 1 � cp bits to the left (by computing Y

0

= g

S

0

�2

i+1�cp

) therefore placing the

crucial position in S

0

on location i+ 1.

2. Pick t(n) = n

2c+4

random elements x

1

; : : : ; x

t(n)

2 f0; 1g

i

.

3. For each 1 � k � t(n) query the oracle on Y

0

� g

x

k

(mod N) and denote by b

k

its answer (i.e.

b

k

= D(g

S

0

�2

i+1�cp

+x

k

)). Denote by M the mean

P

t(n)

k=1

b

k

t(n)

.

4. If M � (� +

��

2

) discard the candidate value v

j

max

from the list L

j

. Otherwise (i.e. when

M > (� +

��

2

)) discard the candidate value v

j

min

.

Note that the trimming rule is applied only for j's that are greater than j

0

+ d� log ne. Thus, i+1

is always greater or equal to cp, making Step (1) in the trimming rule well de�ned.

Using Cherno� bound one can show that the error probability of the trimming rule (i.e. the

probability that the correct value will be discarded from the list) is exponentially small (for the

exact proof see Appendix A).

Claim 3.4.1 The Procedure \Find S" combined with the Trimming Rule above can factor integers

picked randomly from N

n

with probability greater than

1

8n

c

.

Proof: As previously mentioned, for a pair hN; gi uniformly chosen from P

n

(where N is equal to

P �Q), the following two facts hold:

1. With overwhelming probability ord

N

(g) > P +Q� 1.

2. With probability greater than

1

2n

c

the pair hN; gi belongs to the set W

n

.

Therefore, given a random N = P �Q in N

n

, we can pick g randomly in Z

�

N

and with probability

higher than

1

4n

c

both of the above conditions hold. Hence, S will be equal to P+Q�1 (according to

Fact 1) and the algorithm D will have advantage of at least

1

2n

c

in distinguishing the distributions

H

i

N;g

andH

i

N;g

(see Equation 3). Since the probability of error by the trimming rule is exponentially

small, and since the trimming rule is used polynomially many times throughout the procedure \Find

S", with probability greater than

1

8n

c

the value S will be found. 2

Note that the procedure \Find S" together with the Trimming Rule yields at most 2

j

0

�2

d� log ne

�

2

2d� log ne

= n

O(1)

possible values for S, and is therefore polynomial time. Thus Claim 3.4.1 �nishes

the proof of Lemma 3.3.

12

3.3 Proof of Main Theorem

We now go back to Theorem 3.2, and prove it using Lemma 3.3. Assume that the gap between the

acceptance probability of D on the extreme hybrids H

dn=2e

n

and H

n+!(log n)

n

is greater than

1

n

d

. We

construct an algorithm A that factors integers uniformly distributed in N

n

. On input N , algorithm

A picks a random i in fd

n

2

e;:::;n+!(log n)g and runs the procedure \Find S" on (N; i). By Lemma 3.3,

the probability that \Find S" indeed factors N , is greater than one eight of the gap between the

acceptance probabilities of D on H

i

n

and H

i+1

n

, for a random i as above. Denote the number of

hybrids, bn=2c + !(log n), by m(n). Then, we have that for all su�ciently large n's

Pr [A factors N] =

1

m(n)

n+!(log n)

X

i=dn=2e

Pr [\Find S" on input (N; i) factors N]

�

1

m(n)

n+!(log n)

X

i=dn=2e

1

8

�

�

�

�

Pr[D(H

i+1

n

) = 1]� Pr[D(H

i

n

) = 1]

�

�

�

�

1

m(n)

�

1

8

�

�

�

�

Pr[D(H

n+!(log n)

n

) = 1]� Pr[D(H

dn=2e

n

) = 1]

�

�

�

�

1

n

d+1

thus contradicting Assumption 1.

Remark: In fact, Theorem 3.2 holds even when the distribution Half

n

is de�ned to include

all triplets of the form hN; g; g

x

i where hN; gi 2

R

P

n

and x 2

R

f0; 1g

dn=2e�O(log n)

(rather than

x 2

R

f0; 1g

dn=2e

). The original proof should then be modi�ed so that in Step (1) of procedure

\Find S", the index j

0

may belong to the set f0;:::;m+O(log n)g (instead of being in f0;:::;mg). Thus,

we need to guess more bits from S (in Step (2) of procedure \Find S" the j

0

most signi�cant bits

of S are guessed), however the total number of possible guesses remains polynomial in n.

3.4 Equivalence to the HSS result

Theorem 3.2 is actually equivalent to the result by [HSS] on the simultaneous hardness of the upper

dn=2e bits in the exponentiation function f

N;g

. In order to show that, we discuss �rst an alternative

version of Theorem 3.2. Recall the hybridH

n+!(log n)

n

de�ned in the proof of Theorem 3.2, including

triplets hN; g; g

R

i, where hN; gi is uniformly distributed in P

n

and R is uniformly distributed in

f0; 1g

n+!(log n)

. Let us denote it by

g

Full

n

. The following is a corollary from Theorem 3.2 and from

Claim 3.2.1.

Corollary 3.5 The probability ensembles fHalf

n

g

n2N

and f

g

Full

n

g

n2N

are computationally in-

distinguishable.

We show that Corollary 3.5 is equivalent to the result of [HSS]. But �rst, let us give the exact

formulation of their result.

De�nition 3.6 Let hN; gi be uniformly distributed in P

n

, let x be uniformly distributed in f0; 1g

n

and let r be uniformly distributed in f0; 1g

d

n

2

e

. We de�ne the following probability distributions:

X

n

def

= hN; g; f

N;g

(x); x

n;dn=2e

i

13

and

Y

n

def

= hN; g; f

N;g

(x); ri

Theorem 3.7 (H�astad et al.) The probability ensembles fX

n

g

n2N

and fY

n

g

n2N

are computa-

tionally indistinguishable.

7

3.4.1 The Equivalence

Theorem 3.8 Theorem 3.7 holds if and only if Corollary 3.5 holds.

Proof: We show how to transform a probabilistic polynomial-time algorithm D that distinguishes

the ensemble fX

n

g from fY

n

g into a probabilistic polynomial-time algorithm D

0

that distinguishes

the ensemble fHalf

n

g from f

g

Full

n

g, and vice versa.

Transforming D into D

0

: On input hN; g; yi, pick z uniformly from f0; 1g

dn=2e

and run D on

hN; g; y � g

z�2

dn=2e

; zi. Return D's answer as output. Observe that

1. If hN; g; yi is taken from Half

n

, then y = g

r

where r 2 f0; 1g

dn=2e

. Therefore, we have

that hN; g; g

z�2

dn=2e

+r

; zi is distributed as X

n

.

2. If hN; g; yi is taken from

g

Full

n

, then y = g

R

, where R 2 f0; 1g

n+!(log n)

.

Let � denote statistical closeness. Note that

(U

n+!(log n)

+ z � 2

dn=2e

) mod ord

N

(g) � U

n+!(log n)

mod ord

N

(g)

� U

n

mod ord

N

(g)

(the proof of each of the above transitions is similar to the proof of Claim 3.2.1). There-

fore, hN; g; g

z�2

dn=2e

+R

; zi is statistically close to Y

n

.

Thus, Theorem 3.7 is implied by Corollary 3.5.

Transforming D

0

into D: On input hN; g; y; zi, run D

0

on hN; g; y=g

z�2

dn=2e

i and output D

0

's

answer. Observe that

1. If hN; g; y; zi is taken from X

n

, then y = f

N;g

(x) = g

x

and z = x

n;dn=2e

. Therefore,

y=g

z�2

dn=2e

= g

x

dn=2e;1

and thus hN; g; y=g

z�2

dn=2e

i is uniformly distributed in Half

n

.

2. If hN; g; y; zi is taken from Y

n

, then y = f

N;g

(x) = g

x

and z is independent of x. Note

that

(U

n

� z � 2

dn=2e

) mod ord

N

(g) = U

n

mod ord

N

(g) � z � 2

dn=2e

mod ord

N

(g)

� U

n+!(log n)

mod ord

N

(g) � z � 2

dn=2e

mod ord

N

(g)

= (U

n+!(log n)

� z � 2

dn=2e

) mod ord

N

(g)

� U

n+!(log n)

mod ord

N

(g)

Therefore, hN; g; y=g

z�2

dn=2e

i is statistically close to

g

Full

n

.

Thus, Theorem 3.7 implies Corollary 3.5.

7

Actually, the simultaneous hardness of the upper d

n

2

e in f

N;g

was de�ned di�erently by [HSS]. Their de�nition

states that the two distributions h~x

n;dn=2e

; Zi and hr; Zi are computationally indistinguishable, where Z = g

x

(for

x 2

R

Z

�

N

), ~x = DL

N;g

(Z) and r 2

R

f0; 1g

dn=2e

. However, this de�nition is problematic: At least the most signi�cant

bit in the �rst distribution, ~x

n

, will be always 0, since ord

N

(g) is always smaller than N=2. Hence the above two

distributions can be easily distinguished.

14

3.4.2 Discussion

Our proof of Theorem 3.2 simpli�es to a great extent the proof given by [HSS] to Theorem 3.7.

Basically, this is due to the following reasons:

1. Unlike in [HSS], we do not require that the order of g in Z

�

N

will be very high (i.e. greater

than

1

n

k

� (P � 1)(Q � 1)). It su�ces that the order of g will be greater than P +Q� 1.

2. We do not need to consider separately the O(log n) most signi�cant bits as done in [HSS]

(where a very complex proof is given for these bits).

3. As a consequence from the di�erent nature of the oracles, the randomization conducted

by us (randomizing the bottom i bits) is di�erent from the randomization done in [HSS]

(randomizing the full range [0; ord

N

(g))). Therefore many of the di�culties encountered in

the work of [HSS] are not relevant in our proof. For example, we do not need to avoid a wrap

around the order of g.

Further discussion of the above equivalence is given in [R, Sec. 3.3.3].

4 Application to Pseudorandom Generators

An immediate application of Theorem 3.2 is an e�cient factoring-based pseudorandom generator

which nearly doubles the length of its input. The key tool used is a construction by Goldreich and

Wigderson of a tiny family of functions which has good extraction properties [GW]. We also discuss

how the parameters of the generator (a composite N 2 N

n

and an element g 2 Z

�

N

) can be chosen

in a randomness-e�cient way (which is polynomial-time). In particular, we present a method of

choosing a random n-bit prime using only a linear number of random bits. This translates to a

hitting problem which can be solved e�ciently using methods described in [G2].

4.1 Our construction vs. the HSS construction

Looking at Theorem 3.2, the �rst construction that comes to mind is a \pseudorandom generator"

that takes a seed r of length dn=2e and outputs g

r

mod N (for a �xed pair hN; gi in P

n

). However,

the output of the above so-called "pseudorandom generator" is not really pseudorandom. Even

though it is computationally infeasible to distinguish between it and the distribution g

R

mod N

(for a random R in [0; ord

N

(g))), we are not guaranteed that it cannot be easily told apart from the

uniform distribution on n-bit strings. The same applies for a "pseudorandom generator" implied

directly by Theorem 3.7 (of [HSS]), which takes a seed x of length n, and outputs g

x

mod N followed

by x

dn=2e;1

(again, for �xed hN; gi in P

n

).

Denote by Half

N;g

the distribution g

r

mod N , where r is uniformly distributed over strings of

length dn=2e, and by Full

N;g

the distribution g

R

mod N , where R is uniformly distributed over

[0; ord

N

(g)). Observe that the \amount of randomness" that Full

N;g

encapsulates in it is high,

in the sense that it does not assign a too large probability mass to any value. More formally, we

measure the \amount of randomness" in terms of min-entropy.

De�nition 4.1 Let X be a random variable. We say that X has min-entropy k, if for every x we

have that Pr(X = x) � 2

�k

.

The distribution Full

N;g

has min-entropy greater than �, where

�

def

= �(N; g)

def

= blog(ord

N

(g))c

15

The following fact is an immediate consequence of Proposition 3.4:

Fact 4 Let hN; gi be uniformly distributed in P

n

, then � � n�

1

2

log

2

n with negligible probability.

Using hash functions which have good extracting properties, we are able to \smoothen" the

distribution Full

N;g

, and extract from it an almost uniform distribution over strings of length

n � log

2

n. To be more formal, we use a family of functions F having an extraction property,

satisfying that for all but an � fraction of the functions in F , a distribution over strings of length

n having min-entropy n �

1

2

log

2

n is mapped to a distribution over strings of length n � log

2

n

which is �-close to uniform (we refer to �, which is generally taken to be negligible in n, as the

quality-parameter of the extraction property achieved by F). The price we pay for the use in

extractors, hides in a lower expansion factor of the pseudorandom generators. Speci�cally, we need

to use a part of the random seed in order to choose a random function in the family F we are

using. Additionally, we lose a small quantity of pseudorandom bits when applying the extracting

function.

H�astad et.al. [HSS] used a universal family of hash functions [CW] in their construction of a

pseudorandom generator. The quality parameter achieved by this family of functions is exponen-

tially small in n (and therefore has the best possible quality). However, a universal family of hash

functions has to be large: exponential in n. Thus the number of random bits needed to generate

(and represent) a function in this family is polynomial in n, resulting in a considerably large loss

in the expansion factor of their generator.

Instead, we use an explicit construction due to Goldreich and Wigderson [GW] of a family of

functions, which exhibits a trade-o� between the size of the family and the quality parameter �

of the extraction property it achieves. Speci�cally, they demonstrate a construction of a family of

functions of size poly(n=�) achieving the extraction property with quality �. Taking, for example,

� = n

� log n

, yields a family of functions of very good quality (not exponentially small in n but still

negligible in n), where each function in the family can be represented using O(log

2

n) bits.

4.1.1 The HSS construction

We present now the construction of the HSS pseudorandom generator. Even though the expansion

factor of the HSS-generator can be increased using the function families of [GW], we present the

original construction that uses universal hashing.

Construction 4.2 ([HSS]): Let H

��log

2

n

n

be a universal family of hash functions which maps n-bit

strings to (�� log

2

n)-bit strings, and suppose that every h 2 H

��log

2

n

n

is represented using 2n bits.

The mapping G

HSS

N;g

: f0; 1g

3n

! f0; 1g

3:5n�O(log

2

n)

is de�ned as follows:

8

Let x 2 f0; 1g

n

and let h 2 H

��log

2

n

n

. Then,

G

HSS

N;g

(h; x)

def

=

�

h; h(g

x

); x

dn=2e;1

�

Note that applying the hash function causes a loss of O(log

2

n) bits in the length of the output.

Therefore, the fact that dn=2e bits are simultaneously hard in f

N;g

(and not just O(log

2

n)) is

essential for the construction of G

HSS

N;g

, since the addition of the dn=2e least signi�cant bits to the

output of the generator more than compensates for the loss of O(log

2

n) bits. Observe that the

expansion factor obtained by the HSS-construction is approximately

7

6

(whereas using the [GW]

construction one can improve it to approximately

3

2

).

8

In fact, in the HSS construction, N is restricted to be the multiplication of two safe primes, see [HSS].

16

4.1.2 Our construction

We now present our construction of a pseudorandom generator achieving an expansion factor of

nearly 2. But �rst we give the exact formulation of the relevant result of [GW] (the construction

itself is presented in Appendix C).

Theorem 4.3 (Extractors for High Min-Entropy [GW]): Let k < n and m < n � k be integers,

and � > maxf2

�(m�O(k))=O(1)

; 2

�(n�m�O(k)=O(1))

g. (In particular, m < n � O(k).) There exists a

family of functions, each mapping f0; 1g

n

to f0; 1g

m

, satisfying the following:

� each function is represented by a unique string of length O(k + log(

1

�

)).

� there exists a logspace algorithm that, on input a description of a function f and a string x,

returns f(x).

� for every random variable X 2 f0; 1g

n

of min-entropy n � k, all but an �-fraction of the

functions f in the family satisfy

SD(f(X); U

m

) � �

In particular, taking k =

1

2

log

2

n, m = n � log

2

n and � = n

� log n

, Theorem 4.3 implies the

existence of a family of functions F , mapping f0; 1g

n

to f0; 1g

m

, where each function f 2 F can

be represented by a string of length O(log

2

n). We are now ready to exhibit our construction of a

pseudorandom generator which uses the family F .

Construction 4.4 We de�ne the mapping G

N;g

: f0; 1g

d

n

2

e+O(log

2

n)

! f0; 1g

n

as follows:

Let x 2 f0; 1g

d

n

2

e

and let f 2 F . Then,

G

N;g

(f; x)

def

= (f; f(g

x

))

Theorem 4.5 G

N;g

is a pseudorandom generator.

Proof: Obviously G

N;g

is e�ciently computable (since every f 2 F can be evaluated in polynomial

time). Let F denote the random variable obtained by selecting uniformly a function f from the

family F (although bearing the same name, it will be clear from the context whether we mean the

random variable F or the function family F). Observe that

G

N;g

(U

d

n

2

e+O(log

2

n)

) � (F; F (Half

N;g

))

U

n

� (F;U

m

)

Consider now the hybrid (F; F (Full

N;g

)). The theorem is directly implied from the following two

claims:

Claim 4.5.1 The ensembles

f(F; F (Half

N;g

))g

n2N

and

f(F; F (Full

N;g

))g

n2N

are computationally indistinguishable.

17

Proof: The existence of an e�cient distinguisher D between the above ensembles implies the exis-

tence of an e�cient distinguisher D

0

between the ensembles Half

n

and Full

n

: On input hN; g; yi,

the distinguisher D

0

picks an extractor f uniformly from F and outputs D's answer on input

(f; f(y)). 2

Claim 4.5.2 The ensembles

f(F; F (Full

N;g

))g

n2N

and

f(F;U

m

)g

n2N

are statistically close.

Proof: The third property of Theorem 4.3, ensures that for all but an �-fraction of the functions f

in F , the statistical di�erence between the ensembles F (Full

N;g

) and U

m

is bounded from above by

�. Thus, the statistical di�erence between (F; F (Full

N;g

)) and (F;U

m

) is no more than 2�. Since �

was taken to be n

� logn

, we have that the ensembles (F; F (Full

N;g

)) and (F;U

m

) are statistically

close. 2

4.1.3 Increasing the expansion factor of the generator

The pseudorandom generator described above almost doubles the length of its input. However,

such a small expansion factor has limited value in practice. Still, it is well known that even

a pseudorandom generator G producing n + 1 bits from an n-bit seed can be used in order to

construct a pseudorandom generator G

0

having any arbitrary polynomial expansion factor (see e.g.

[G, Sec. 3.3 Thm. 3.3.3]). Unfortunately, the cost of the latter transformation is rather high:

Producing each bit in G

0

's output requires one evaluation of G. Nevertheless, since our generator

G

N;g

has an expansion factor of nearly 2 to start with, we can do better than that: G

N;g

can be

used to construct a generator G

0

N;g

having an arbitrary polynomial expansion factor, such that

for every n=2 � O(log

2

n) bits of output, one evaluation of G

N;g

is required. We remark that the

issue of increasing the expansion factor of G

N;g

is relevant mostly due to the need to randomly pick

the parameters N and g, which requires O(n) additional random bits (as will be explained in the

subsequent subsection). Our suggestion is to pick randomly N and g, set them once and for all,

and construct a pseudorandom generator having a large expansion factor using this speci�c G

N;g

.

This way the cost of picking N and g becomes negligible (compared to our \pro�t" from the new

generator).

We describe now how in general one uses a generator G : f0; 1g

n

! f0; 1g

n+l(n)

(for an integer

function l) to construct a generator G

0

: f0; 1g

n

! f0; 1g

l(n)�p(n)

, for any arbitrary polynomial p(�).

Construction 4.6 Let l : N ! N be an integer function satisfying l(n) > 0 for every n 2 N , let

p(�) be a polynomial and let G : f0; 1g

n

! f0; 1g

n+l(n)

be a deterministic polynomial-time algorithm.

De�ne G

0

(s) = �

1

: : : �

p(n)

, where s

0

def

= s, the string s

i

is the n-bit long su�x of G(s

i�1

) and �

i

is

the l(n)-bit long pre�x of G(s

i�1

), for every 1 � i � p(n) (i.e., �

i

s

i

= G(s

i�1

)).

Theorem 4.7 If G is a pseudorandom generator then so is G

0

.

18

Theorem 4.7 is a generalization of Theorem 3.3.3 proven in [G] (regarding a generator producing

n+1 bits from an n bit seed). Observe that for every l(n) output bits of G

0

, one evaluation of G is

required. Using our generator G

N;g

as the building block, we obtain a generator G

0

N;g

that expands

input of size n=2 + O(log

2

n) to output of size n

c

using approximately

n

c

n=2

applications of G

N;g

.

Since evaluating G

N;g

costs approximately

n

4

modular multiplications, we have that G

0

N;g

can be

evaluated using approximately

n

c

2

modular multiplications.

4.2 An e�cient choice of the parameters (N and g)

In order to use in practice the generator G

N;g

we need to generate the parameters N and g from a

primary seed in an \e�cient" way, where by \e�cient" we mean that both the running time and

the amount of randomness used should be as small as possible. The major challenge is to generate

e�ciently two uniformly distributed primes P and Q, in order to obtain a random N = P �Q in N

n

.

A random element g in Z

�

N

can be chosen using O(n) random coins by picking a random number in

f0; 1g

n+log

2

n

and reducing it modulo N (only with negligible probability the element obtained will

not be relatively prime to N). We describe now a general method by which we can pick a random

n-bit prime in polynomial time, using only a linear number of random coins.

4.2.1 Picking a random n-bit prime using O(n) random bits

The trivial algorithm to choose a random n-bit prime is to repeat the following two stages until a

prime x is output.

1. Choose a random integer x in f0; 1g

n

.

2. Test whether x is a prime. If it is, stop and output x.

Since the density of primes in f0; 1g

n

is approximately

1

n

, the expected number of times that the

above loop is performed is approximately n. Even assuming that we have a deterministic primality

test, the above algorithm requires an expected O(n

2

) random bits. We now show how to perform

poly(n) dependent iterations of the loop using only O(n) random bits (rather than doing O(n)

independent iterations using O(n

2

) random bits). We will use, however, a probabilistic primality

tester of Bach [Bach], which is a randomness-e�cient version of the Miller-Rabin [M, R2] primality

tester.

Theorem 4.8 (randomness e�cient primality tester [Bach]): There exists a probabilistic polyno-

mial time algorithm that on input P uses jP j random bits so that if P is a prime then the algorithm

always accepts, and otherwise (i.e. P is a composite) the algorithm accepts with probability at most

1

p

P

.

Combining the above procedures, we have

Corollary 4.9 There exists a probabilistic polynomial-time algorithm that uses 2n random coins

such that

1. with probability �(

1

n

) outputs an n-bit prime. Furthermore, the probability to output a speci�c

prime is 2

�n

.

2. with probability 1��(

1

n

)� exp(�n) outputs a special failure sign, denoted ?.

3. with probability at most 2

�n=2

outputs a composite.

19

4.2.2 A hitting problem

We refer to the algorithm guaranteed from Corollary 4.9 as a black-box. We associate every string

s 2 f0; 1g

2n

with the output of the black-box given s as its random coins. Denote by W the set of

strings in f0; 1g

2n

which are associated with an n-bit prime. Corollary 4.9 implies that the density

of W within f0; 1g

2n

is �(

1

n

). The problem of uniformly picking an n-bit prime translates to a

hitting problem, where we need to �nd a string s 2W (which is subsequently used as random input

for the black-box in order to yield a prime). An additional requirement is that the distribution of

primes obtained in this way will be very close to uniform. Our goal now is to �nd an algorithm

that hits W , whose randomness complexity is linear in n. The methods we use are described in the

survey of Goldreich [G2] on samplers and will be adapted to (and analyzed in) our speci�c setting.

A pairwise-independent hitter Our �rst attempt uses a pairwise independent sequence of m

uniformly distributed strings in f0; 1g

2n

. Such a sequence can be generated in the following way:

We associate f0; 1g

2n

with F

def

= GF (2

2n

), and select independently and uniformly s; r 2 F . We

let the i'th element in the sequence be e

i

= s + i � r (with the arithmetic of F).

9

It can be easily

seen that the generated sequence is indeed pairwise-independent.

Theorem 4.10 (A pairwise-independent hitter): Let � be an error parameter satisfying that 1=�

is polynomial in n. There exists an e�cient algorithm that uses 4n random coins for which the

following holds:

� The probability to output a prime is at least 1� �.

� The probability to output a composite is at most exp(�n).

(With probability � � exp(�n) a failure sign ? is output.)

� The probability to output a speci�c prime is at least 2

�n

and at most

n

�

� 2

�n

.

Proof: We generate m

def

=

n

�

pairwise-independent samples e

1

; : : : ; e

m

each uniformly distributed

in f0; 1g

2n

, and run the black-box using each of the e

i

's as random bits. Clearly, this procedure is

e�cient, since m is polynomial in n. Let

�

i

def

=

(

1 if the black-box (using e

i

as random bits) outputs a prime

0 otherwise

Corollary 4.9 implies that the expectation of �

i

is

1

n

. Using Chebishev's Inequality we have

Pr

m

X

i=1

�

i

= 0

!

� Pr

�

�

�

�

�

m

n

�

m

X

i=1

�

i

�

�

�

�

�

�

m

n

!

�

m �

1

n

(1�

1

n

)

(

m

n

)

2

� �

Regarding the probability to output a composite, using a union bound we get

Pr [a composite is output] = Pr[9i s.t. e

i

yields a composite]

9

Note that the number of pairwise independent strings one can generate in this way is limited to 2

2n

� 1.

20

�

m

X

i=1

�Pr[e

i

yields a composite]

�

n

�

� exp(�n) = exp(�n)

where the last inequality follows from the third item of Corollary 4.9 and from the fact that for

every i the point e

i

is uniformly distributed over f0; 1g

2n

.

As for the probability that a speci�c prime p is output, the �rst item of Corollary 4.9 implies

that for every i, the probability that p is output using e

i

as random coins is exactly 2

�n

(since e

i

is uniformly distributed). Thus,

Pr[p is output] � Pr[e

1

yields p] = 2

�n

On the other hand, using a union bound,

Pr[p is output] �

m

X

i=1

�Pr[e

i

yields p] =

n

�

� 2

�n

If we were willing to settle with a polynomially small error � (i.e., � =

1

poly(n)

) then the above

algorithm would be su�cient for us. However, in order to achieve an overwhelming probability of

success (i.e., � = 2

�n

) we must take a somewhat more complex approach, which involves random

walks on expander graphs (for de�nition and construction of expanders as well as the major theorem

concerning random walks on expanders see Appendix B).

A combined hitter >From the pairwise independent hitter emerges another hitting problem:

Let W

0

be the set of strings in f0; 1g

4n

, that when supplied to the pairwise-independent hitter

(with a constant error parameter �) as a random seed, makes it hit W (i.e. yield a prime). >From

the �rst item of Theorem 4.10 we get that the density of W

0

within f0; 1g

4n

is greater than 1� �.

Our new goal is to hit W

0

with an overwhelming probability of success.

In order to do that, we generate a random walk on an expander with vertex set f0; 1g

4n

, and use

each of the vertices along the path as a seed for the pairwise-independent hitter. Taking advantage

of the hitting property of expanders (see appendix B), we will have that a random walk of linear

length (in n) will be su�cient in order to hit W

0

. Details follow.

Theorem 4.11 There exists an e�cient algorithm which uses O(n) random coins such that the

following holds:

� The probability that no prime is output is exp(�n).

� The probability that a composite is output is exp(�n).

� The probability that a speci�c prime is output is at least 2

�n

and at most O(n

2

) � 2

�n

.

Proof: We use an explicit construction of expander graphs with vertex set f0; 1g

4n

, degree d and

second eigenvalue � such that �=d < 0:1. We generate a random walk of (edge) length n on this

expander using O(n) random coin ips (4n bits are used to generate the initial vertex and log d

bits are used to obtain each additional vertex on the path). We use each of the vertices s

1

; : : : ; s

n

along the path as random coins for the pairwise-independent hitter which makes m = 3n trials

21

(i.e., for every 1 � i � n we generate a pairwise-independent sequence e

i

1

; : : : ; e

i

m

from s

i

and run

the black-box using each one of the e

i

j

's as random bits). Recall that W

0

was de�ned to be the

set of coin tosses which make the pairwise-independent hitter output a prime. >From Item 1 of

Theorem 4.10 (with � = 1=3) we have that jW

0

j=2

4n

�

2

3

. Using Theorem B.2, the probability that

all vertices of a random path reside outside of W

0

is bounded from above by (0:34 + 0:1)

n

< 2

�n

.

Thus,

Pr[no prime is output] < 2

�n

Let us now compute the probability to output a composite.

Pr [a composite is output] = Pr[9i s.t. s

i

yields a composite]

�

n

X

i=1

�Pr[s

i

yields a composite]

� n � exp(�n)

where the last inequality follows from the second item of Theorem 4.10 and from the fact that, for

every i, the seed s

i

is uniformly distributed.

In order to bound the probability that a speci�c prime p is output, observe that for every i

and j, the point e

i

j

(i.e., the j'th point in the sequence of pairwise-independent strings generated

from s

i

) is uniformly distributed in f0; 1g

n

. Thus,

Pr[p is output] � Pr[e

1

1

yields p] = 2

�n

On the other hand, applying a union bound we get

Pr[p is output] �

n

X

i=1

m

X

j=1

Pr[e

i

j

yields p] = n �m � 2

�n

= 3n

2

� 2

�n

4.2.3 Using almost uniformly distributed primes

Although the algorithm guaranteed from Theorem 4.11 does not yield uniformly distributed n-bit

primes, the distribution of the primes it outputs is close to being uniform, in a sense that is quite

su�cient for our needs: Denote by D

n

the distribution of composites N = P �Q in N

n

obtained by

picking the primes P and Q using the algorithm of Theorem 4.11, and consider a slightly di�erent

factoring assumption, in which N is distributed according to D

n

. Observe that the revised factoring

assumption holds if and only if the original factoring assumption (with N uniformly distributed in

N

n

) holds: Let A be a probabilistic polynomial-time algorithm. Then, according to the third item

of Theorem 4.11,

P

N2N

n

Pr[A factors N]

2

n

� Pr[A factors N jN � D

n

] �

P

N2N

n

Pr[A factors N]

2

n

=poly(n)

(6)

where N � D

n

means that N is drawn according to the distribution D

n

.

Note that the size of N

n

is approximately

2

n

n

2

. Therefore,

Pr[A factors N jN 2

R

N

n

] =

n

2

2

n

X

N2N

n

Pr[A factors N] (7)

22

>From 6 and 7 we have that

Pr[A factors N jN 2

R

N

n

]

n

2

� Pr[A factors N jN � D

n

] �

Pr[A factors N jN 2

R

N

n

]

n

2

=poly(n)

(8)

Thus, A does not violate the original factoring assumption if and only if it does not violate the

revised factoring assumption.

Another important observation is that in all our theorems (and in particular, in Theorem 3.2),

the values N and g are �xed throughout the whole proof. Thus, these theorems still hold when

considering any distribution whatsoever of N (and g), provided that factoring is intractable for

such a distribution.

Therefore, we have that under the standard factoring assumption (with N uniformly distributed

inN

n

), all our theorems hold even when the distribution of N is taken to beD

n

, and the distribution

of g is uniform over Z

�

N

.

23

References

[ACGS] W. B. Alexi, B. Chor, O. Goldreich and C. P. Schnorr, RSA and Rabin functions: certain parts

are as hard as the whole, SIAM J. Comput., vol. 17(2), 1988, pp. 194-209.

[AKS] M. Ajtai, J. Komlos and E. Szemer�edi, Deterministic simulation in LogSpace, 19th ACM Sympo-

sium on the Theory of Computing, 1987, pp. 132-140.

[Bach] E. Bach, How to generate factored random numbers, SIAM J. Comput., vol. 17(2), 1988, pp. 179-

193.

[BBS] L. Blum, M. Blum and M. Shub, A Simple Secure Unpredictable Pseudo-Random Number Gen-

erator, SIAM J. Comput., vol. 15, 1984, pp. 364-383.

[BM] M. Blum and S. Micali, How to generate cryptographically strong sequence of pseudo-random bits,

SIAM J. Comput., vol. 13, 1984, pp. 850-864.

[Chor] B. Chor, Two issues in public key cryptography: RSA bit security and a new knapsack type

system, MIT press, 1986.

[CW] L. Carter and M. Wegman, Universal Hash Functions, Journal of Computer and System Science,

Vol. 18, 1979, pp. 143-154.

[CoWi] A. Cohen and A. Wigderson, Dispensers, Deterministic Ampli�cation, and Weak Random Sources,

30th FOCS, 1989, pp. 14{19.

[G] O. Goldreich, Foundations of Cryptography Fragments of a Book, 1995. publicized at

http://www.eccc.uni-trier.de/eccc-local/ECCC-Books/eccc-books.html (Electronic Collo-

quium on Computational Complexity).

[G2] O. Goldreich, A sample of samplers: A computational perspective on sampling, ECCC 4(020),

1997.

[GG] O. Gaber and Z. Galil, Explicit constructions of linear size superconcentrators, Journal of Com-

puter and System Science, Vol. 22, 1981, pp.407-420.

[GILVZ] O. Goldreich, R. Impagliazzo, L.A. Levin, R. Venkatesan, and D. Zuckerman, Security Preserving

Ampli�cation of Hardness, Proc. of the 31st IEEE Symp. on Foundation of Computer Science

(FOCS), 31st FOCS, pp. 318{326, 1990.

[GW] O. Goldreich and A. Wigderson, Tiny families of functions with random properties: A quality-

size trade-o� for hashing, Proceedings of the 26th Annual ACM Symposium on the Theory of

Computing, ACM, 1994, pp. 574-583.

[HN] J. H�astad, M. N�aslund: The security of idividual RSA bits. Proc. of IEEE Symp. on Foundations

of Computer science, 1998.

[HSS] J. H�astad, A.W. Schrift and A. Shamir, The discrete logarithm modulo a composite hides O(n)

bits, J. of Computer and System Sciences, vol. 47, 1993, pp. 376-404.

[Kah] N. Kahale, Eigenvalues and expansionsof regular graphs, Journal of the ACM 42(5), 1995, pp.

1091-1106.

[Kal] B. Kaliski, Jr. A pseudo-random bit generatorbased on elliptic logarithms. In A. Odlyzko, editor,

Advances in Cryptology: Proceedings of CRYPTO '86, 1987, pp. 84-103.

[LW] D.L. Long and A. Wigderson, The discrete logarithm Hides O(log n) bits, SIAM J. Computing,

Vol. 17, No. 2, 1988, pp. 363-372.

24

[M] G. L .Miller, Riemann's hypothesis and tests for priamlity, JCSS, Vol. 13, 1976, pp. 300-317.

[P] R. Peralta, Simultaneous security of bits in the discrete log, Advances in Cryptology - EURO-

CRYPT '85 (LNCS 219), 1986, pp. 62-72.

[R1] M. O. Rabin, Digitalized signatures and public-key functions as intractable as factorization, Tech-

nical Report, TR-212, MIT Laboratory for Computer Science, 1979.

[R2] M. O. Rabin, Probabilistic algorithm for testing primality, Jour. of Number Theory, Vol. 12, 1980,

pp.128-138.

[R] V. Rosen, On the security of modular exponentiation, technical report MCS00-20, Faculty of

Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, Israel, 2000.

[VV] U. V. Vazirani and V. V. Vazirani, E�cient and secure pseudo-random number generators, Pro-

ceeding of 25'th FOCS, 1984, pp.458-463.

25

Appendix A: Exact Analysis of Theorem 1

We show that the probability of error by the trimming rule is exponentially small. Suppose we

want to trim the list L

j

and that v

j

min

is the correct value S

d

n

2

e+1;l(j)

(the analysis in the case where

v

j

max

is the correct value is analogous). Let � denote S

0

shifted by i+ 1 � cp positions to the left,

that is, let � = S

0

� 2

i+1�cp

. By Fact 2 we have that � � 2

i�d� log ne

(since S

0

� 2

cp�d� log ne�1

).

Recall that b

k

is the oracle answer on the query g

�+x

k

(see Step (3) of the trimming rule). Let us

bound the expectation of b

k

:

E(b

k

) = Pr

h

D(g

x

k

+�

) = 1j0 � x

k

� 2

i

� 1

i

= Pr

h

D(g

x

k

+�

) = 1j0 � x

k

� 2

i

� 1� �

i

� Pr

�

0 � x

k

� 2

i

� 1� �

�

+

Pr

h

D(g

x

k

+�

) = 1j2

i

� 1� � < x

k

� 2

i

� 1

i

� Pr

�

2

i

� 1� � < x

k

� 2

i

� 1

�

Let y

k

= x

k

+ �. Then,

Pr

h

D(g

x

k

+�

) = 1j0 � x

k

� 2

i

� 1� �

i

= Pr

�

D(g

y

k

) = 1j� � y

k

� 2

i

� 1

�

�

2

i

2

i

��

� Pr

�

D(g

y

k

) = 1j0 � y

k

� 2

i

� 1

�

=

��2

i

2

i

��

and therefore

E(b

k

) �

��2

i

2

i

��

�

2

i

��

2

i

+ 1 �

�

2

i

= � +

�

2

i

A standard application of Cherno� bound yields:

Pr

h

discard v

j

min

i

= Pr

h

P

t

k=1

b

k

> (� +

��

2

) � t

i

� Pr

h

j

P

b

k

�E(

P

b

k

)j > (� +

��

2

) � t�E(

P

b

k

)

i

= Pr [j

P

b

k

�E(

P

b

k

)j > � �E(

P

b

k

)]

for � =

(�+

��

2

)t�E(

P

b

k

)

E(

P

b

k

)

.

Since

�

2

E(

P

b

k

)

6

=

[

(�+

��

2

)t�E(

P

b

k

)

]

2

6�E(

P

b

k

)

�

�

(�+

��

2

)t�(�+

�

2

i

)t

�

2

6�(�+

�

2

i

)t

=

(

��

2

�

�

2

i

)

2

6(�+

�

2

i

)

� t �

(

1

2n

c

�

1

n

�

)

2

6(�+

1

n

�

)

� t � n

for � = c+ 1 and for t � n

2c+4

.

Therefore, the probability of discarding v

j

min

from the list L

j

is smaller than 2

�n

. As mentioned

above, a similar argument holds for the second case, where the correct candidate is v

j

max

. Since for

every j

0

� j � n=2 + 1 we use repeatedly the trimming rule for no more than n

�

times, the overall

probability of error is exponentially small.

Appendix B: Expanders and Random Walks

We now de�ne expander graphs and families of expander graphs and describe an explicit construc-

tion of expanders due to Gabber and Galil [GG]. We also state the major theorem concerning

random walks on expanders. Our exposition follows that of Goldreich in [G2].

26

B.1 Expanders

An (N; d; �)-expander is a d-regular graph with N vertices so that the absolute value of all eigenval-

ues (except the biggest one) of its adjacency matrix is bounded by �. A (d; �)-family is an in�nite

sequence of graphs so that the n

th

graph is a (2

n

; d; �)-expander. We are interested in explicit

constructions of such families of graphs, which are e�ciently constructible, by which we mean that

there exists a polynomial-time algorithm that on input n (in binary), a vertex v and an index

i 2 f1; : : : ; dg, returns the i'th neighbor of v.

Gaber and Galil presented such a construction of a (d; �)-family of expanders, for d = 8 and

for some � < 8 [GG]. Their expanders, however, are de�ned only for graph sizes which are perfect

squares (i.e., only for even n's).

Construction B.1 [Gaber-Galil] Let n = 2m. The graph G

n

is de�ned as follows: The vertex

set includes all pairs in Z

m

� Z

m

, and each node (x; y) is connected to the four nodes (x + y; y),

(x+ y + 1; y), (x; x+ y) and (x; x+ y + 1).

In our applications we use (parameterized) expanders satisfying

�

d

< � and d = poly(1=�),

where � is an application-speci�c parameter. Such (parameterized) expanders are also e�ciently

constructible. For example, we may obtain them by taking paths of length O(log 1=�) on an

expander as in construction B.1. Speci�cally, given a parameter � > 0, we obtain an e�ciently

constructible (D;�)-family satisfying

�

D

< � and D = poly(1=�) as follows. We start with a

constructible (8; �)-family, set k

def

= log

8=�

(1=�) = O(log 1=�) and consider the paths of length k

in each graph. This yields a constructible (8

k

; �

k

)-family, and both

�

k

8

k

< � and 8

k

= poly(1=�)

indeed hold.

B.2 Random walks on Expanders

A fundamental discovery of Ajtai, Komlos, and Szemer�edi [AKS] is that random walks on expander

graphs provide a good approximation to repeated independent attempts to hit any arbitrary �xed

subset of su�cient density (within the vertex set). The importance of this discovery stems from

the fact that a random walk on an expander can be generated using much fewer random coins

than required for generating independent samples in the vertex set. Precise formulations of the

above discovery were given in [AKS, CoWi, GILVZ] culminating in Kahale's optimal analysis [Kah,

Sec. 6].

Theorem B.2 (Expander Random Walk Theorem [Kah, Cor. 6.1]): Let G = (V;E) be an ex-

pander graph of degree d and � be an upper bound on the absolute value of all eigenvalues, save the

biggest one, of the adjacency matrix of the graph. Let V

0

be a subset of V and �

def

= jV

0

j=jV j. Then

the fraction of random walks (in G) of (edge) length ` which stay within V

0

is at most

� �

�

�+ (1� �) �

�

d

�

`

Appendix C: Tiny Families of Functions

We now present the explicit construction of Goldreich and Wigderson of tiny families of functions

designed for random variables with high min-entropy. Our exposition is taken from [GW].

27

We describe a construction of a family of functions, each mapping f0; 1g

n

to f0; 1g

m

, such that

all but an �-fraction of them, map random-variables having min-entropy n � k to a distribution

whose distance from the uniform distribution is bounded by �.

The construction uses an e�ciently constructible expander graph, G, of degree d (power of two),

second eigenvalue �, and vertex set f0; 1g

m

, so that

�

d

�

�

2

4�2

k=2

(and d = poly(2

k

=�)). For every

i 2 [d]

def

= f1; 2:::; dg and v 2 f0; 1g

m

, denote by g

i

(v) the vertex reached by moving along the i

th

edge of the vertex v. The construction uses as well a universal hashing family, denoted H, that

contains hash functions each mapping (n�m)-bit long strings to [d].

Construction C.1 The family of functions, denoted F , is as follows: For each hashing function

h 2 H, we introduce a function f 2 F de�ned by

f(x)

def

= g

h(lsb(x))

(msb(x))

where lsb(x) returns the n�m least signi�cant bits of x 2 f0; 1g

n

, and msb(x) returns the m most

signi�cant bits of x.

Namely, f(x) is the vertex reached from the vertex v

def

= msb(x) by following the i

th

edge of v,

where i is the image of the n�m least signi�cant bits of x under the function h.

As proven in [GW], Construction C.1 above satis�es the requirements of Theorem 4.3 (stated in

Section 4).

28

