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Abstract. Suppose that we wish to encrypt long messages with small over-

head by a public key encryption scheme which is secure against adaptive

chosen ciphertext attack (IND-CCA2). Then the previous schemes require

either a large size one-way trapdoor permutation (OAEP) or both a large

size symmetric encryption scheme and a small size asymmetric encryption

scheme (hybrid encryption). In this paper, we show a scheme which requires

only a small size asymmetric encryption scheme satisfying IND-CCA2 for

our purpose. Therefore, the proposed scheme is very e�cient. A hash func-

tion and a psuedorandom bit generator are used as random oracles.

Keywords: public key, chosen ciphertext attack, provable security, long

message, e�cient encryption/decryption.

1 Introduction

Suppose that we wish to encrypt long messages with small overhead by

a public key encryption scheme which is secure against adaptive chosen

ciphertext attack (IND-CCA2).

Bellare and Rogaway showed how to design a scheme satisfying IND-

CCA2 from any one-way trapdoor permutation [3]. The scheme is called

OAEP and it uses a hash function and a psuedorandom bit generator as

random oracles. For our purpose, however, this scheme requires a large size
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one-way trapdoor permutation because we wish to encrypt long messages

with small overhead.

On the other hand, a hybrid encryption scheme uses both a large size

symmetric encryption scheme and a small size asymmetric encryption scheme.

The small size asymmetric encryption scheme is used to send a secret key of

the large size symmetric encryption scheme and a long message is encrypted

by the large size symmetric encryption scheme.

Cramer and Shoup showed a public key encryption scheme which is se-

cure in the sense of IND-CCA2 in the standard model by assuming the de-

cision Di�e-Hellman assumption [4]. They brie
y mentioned in their work

that their scheme can be applied to hybrid usage with a secure symmetric

key encryption scheme [4].

Next, Abdalla, Bellre, and Rogaway presented a more e�cient hybrid

encryption scheme, called DHAES, and prove that hybrid usage is secure in

the IND-CCA2 sense in the random oracle model (or a strong assumption

in the standard (not random oracle) model) [1]. Their scheme depends on

the Di�e-Hellman key-distribution scheme.

Finally, Fujisaki and Okamoto showed a generic method to convert a

secure public key encryption scheme and a secure symmetric key encryp-

tion scheme into a hybrid encryption scheme which is secure in the sense

of IND-CCA2 in the random oracle model [5]. It is just required that the

underlying public encryption scheme is one-way and 
-uniform. (1) Their

scheme is more generic than the previous hybrid encryption schemes in a

sense that the previous ones depend on some speci�c cryptographic assump-

tions. (2) However, their scheme is not e�cient in decryption. Generally,

the decryption algorithm outputs the message m if and only if some validity

check of a ciphertext c succeeds. However, their validity check requires reen-

crypting the whole message m while m is usually long in hybrid encryption

schemes.

To summarize, the previous schemes require either a large size one-way

trapdoor permutation (OAEP) or both a large size symmetric encryption

scheme and a small size asymmetric encryption scheme (hybrid encryption)

if we wish to encrypt long messages with small overhead.

This paper shows that we can encrypt long messages with small overhead

by using only a small size asymmetric encryption scheme satisfying IND-

CCA2. Therefore, the proposed scheme is very e�cient. A hash function

and a psuedorandom bit generator are used as random oracles.

Our scheme is at least as generic as Fujisaki-Okamoto scheme because

we can use their scheme as the underlying asymmetric encryption scheme.
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Further, the decryption algorithm does not need to check that a long message

is encrypted correctly.

We �rst prove that the following encryption scheme is secure against

non-adaptive chosen ciphertext attack (IND-CCA1) if the public encryption

scheme E

0

pk

is secure in the sense of IND-CCA1.

E

pk

(m) = m�G(�)jjE

0

pk

(�);

where m is a plaintext, � is a random seed and G is a random bit generator.

In this scheme, for checking the validity of a ciphertext E

pk

(m), it is enough

to check the validity of only E

0

pk

(�).

We next prove that the following encryption scheme is secure in the sense

of IND-CCA2 if the public encryption scheme E

0

pk

is secure in the sense of

IND-CCA2.

E

pk

(m) = (c

1

; c

2

);

where

c

1

= m�G(�); c

2

= E

0

pk

(� �H(c

1

))

and H is a random hash function. Note that only a small size asymmetric

encryption scheme E

0

pk

is used. Therefore, the proposed scheme is very

e�cient.

In particular, for checking the validity of a ciphertext E

pk

(m) = (c

1

; c

2

),

it is enough to check the validity of only c

2

= E

0

pk

(��H(c

1

)). Therefore, our

decryption algorithm is e�cient because m is not necessary in this check as

opposed to [5].

Finally, we show that the above scheme is secure in the sense of plaintext

awareness if we let c

1

= m0

k

�G(�). The notion of plaintext awareness was

introduced by [3]. We follow the de�nition of [2].

2 De�nitions of security [2]

2.1 Convention

De�nition 2.1 If A is a probabilistic algorithm, then A(x

1

; :::; r) is the

result of running A on inputs x

1

; x

2

; :::and coins r. We let y  A(x

1

; x

2

; :::)

denote the experiment of picking r at random and letting y be A(x

1

; :::; r). If

S is a �nite set then x S is the operation of picking an element uniformly

from S. If � is neither an algorithm nor a set then x  � is a simple

assignment statement. We say that y can be output by A(x

1

; x

2

; :::) if there

is some r such that A(x

1

; :::; r) = y.
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De�nition 2.2 An asymmetric (public key) encryption scheme is a triple

of algorithm, � = (K; E ;D), where

� K, the key genenation algorithm, is a probabilistic algorithm that takes

a security parameter k 2 N(provided in unary) and returns a pair

(pk,sk) of matching public and secret keys.

� E , the encryption algorithm, is a probabilistic algorithm that takes a

public key pk and a message x 2 f0; 1g

�

to produce a ciphertext y.

� D, the decryption algorithm, is a deterministic algorithm which takes a

secret key sk and ciphertext y to produce either a message x 2 f0; 1g

�

or a special symbol ? to indicate that the ciphertext was invalid.

We require that for all (pk,sk) which can be output by K(1

k

), for all x 2

f0; 1g

�

, and for all y that can be output by E

pk

(x), we have that D

sk

(y) = x.

We also require that K; E and D can be computed in polynomial time. As the

notation indecates, the keys are indicated as subscripts to the algorithms.

Recall that a function � : N! R is negligible if for every constant c � 0

there exists an integer k

c

such that �(k) � k

�c

for all k � k

c

.

2.2 Attack model

The goal of secure encryption is to preserve the privacy of messages: an

adversary should not be able to learn from a ciphertext information about

its plaintext beyond the length of that plaintext. We de�ne a version of this

notion, indistinguishability of encryptions(IND).

We consider an adversary A = (A

1

; A

2

) who runs in two stages. In the

�nd-stage A

1

is given an encryption algorithm E and outputs a pair x

0

; x

1

of messages. It also outputs a string c which could record, for example, its

history and its inputs. Now we pick at random either x

0

or x

1

(the choice

made according to a bit b) and encrypt it (under E) to get y. In the guess-

stage we provide A

2

the output x

0

; x

1

; c of the previous stage, and y, and

we ask it to guess b. (We assume wlog that E is include in c so that we don't

need to explicity provide it again.) Since even the algorithm which always

outputs a �xed bit will be right half of the time, we measure how well A is

doing by 1=2 less than the fraction of time that A correctly predicts b. We

call twice this quantity the advantage which A has in predicting b.

We consider three types of attacks under this setup.

In a chosen-plaintext attack (CPA) the adversary can encrypt plaintext

of her choosing. Of course, a CPA is unavoidable in the public-key setting.
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In a non-adaptive chosen ciphertext attack (CCA1), we give A

1

(the

public key and) access to a decryption oracle, but we do not allow A

2

access

to a decryption oracle.

In an adaptive chosen ciphertext attack (CCA2), we continue to give A

1

(the public key and) access to a decryption oracle, but also give A

2

access to

the same decryption oracle, with the only restriction that she cannot query

the oracle on the challenge ciphertext y. This is an extremely strong attack

model.

2.3 Indistinguishabile security

De�nition 2.3 [IND-CPA, IND-CCA1, IND-CCA2] Let � = (K; E ;D) be

an encryption scheme and let A = (A

1

; A

2

) be an adversary. For atk 2

fcpa; cca1; cca2g and k 2 N, let Adv

ind�atk

A;�

(k)

4

=

2 � Pr

h

(pk; sk) K(1

k

); (x

0

; x

1

; s) A

O

1

1

(pk); b f0; 1g; y  E

pk

(x

b

) :

A

O

2

2

(x

0

; x

1

; s; y) = b

i

� 1

where

If atk=cpa then O

1

(�) = � and O

2

(�) = �

If atk=cca1 then O

1

(�) = D

sk

(�) and O

2

(�) = �

If atk=cca2 then O

1

(�) = D

sk

(�) and O

2

(�) = D

sk

(�).

We insist that A

2

does not ask its oracle to decrypt y. We say that � is

secure in the sense of IND-ATK if A being polynomial time implies that

Adv

ind�atk

A;�

(k) is negiligible.

De�nition 2.4 We say that A (t; �)-breaks � (1

k

) in the sense of ATK if

Adv

ind�atk

A;�

(k) � �

and A runs for at most t steps. We also say that � (1

k

) is (t; �)-secure in

the sense of ATK if there exists no A which (t; �)-breaks � (1

k

).

The random oracle version of this security notion is de�ned by allowing

A to make access to a random oracle G (or G and H), which depends on

� . The probability of Adv

ind�atk

A;�

(k) is taken over the random oracle G (or

G and H) as well.
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3 Proposed IND-CCA1 encryption scheme

3.1 Proposed scheme

Let �

0

= (G

0

; E

0

;D

0

) be an asymmetric encryption scheme. Let G : f0; 1g

k

!

f0; 1g

n

be a random bit generator. G is modeled as a random oracle.

Then we present a new asymmetric encryption scheme � = (G; E ;D)

which can encrypt long messages with small overhead. In the proposed

scheme, G = G

0

and:

� Encryption

E

pk

(m) = m�G(r)jjE

0

pk

(r);

where r is a random number.

� Decryption

D

sk

(c

1

jjc

2

) =

(

? if D

0

sk

(c

2

) =?

c

1

� G(D

0

sk

(c

2

)) otherwise:

We will prove that � is secure in the sense of IND-CCA1 if �

0

is secure

in the sense of IND-CCA1.

Let k denote the length of r and n denote the length of m.

Theorem 3.1 Suppose that there exists an adversary A = (A

1

; A

2

) that

(t; �)-breaks � (1

k

) in the sense of CCA1 with at most q

G

queries to G.

Then there exists an adversary B = (B

1

; B

2

) that (t

0

; �

0

)-breaks �

0

(1

k

) in

the sense of CCA1, where

t

0

� t+O(k); �

0

� ��

3q

G

2

k

:

3.2 Proof of Theorem 3.1

We �rst show how to construct B by using A as a blackbox.

(Find stage B

1

). On input a public key pk, B

1

gives pk to A

1

and runs A

1

.

After this, A

1

will make two kinds of oracle queries: \give me the value of

G on g"(G-query) or \give me the plaintext m for a ciphertext (�; �)".

To answer Q-query, B

1

makes the query-mapping set (Q;A) as follows.

Start with Q = � and T = �. Suppose A

1

says \give me the value of G on

g".
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(a) If g =2 Q, then choose G

g

2 f0; 1g

n

randomly, set G(g) = G

g

and return

G

g

. Also, set Q = Q [ fgg and T = T [ (g;G

g

).

(b) If g 2 Q, then �nd (g;G

g

) 2 T and return G

g

.

Next suppose that A

1

says \give me the plaintext m for a ciphertext

(�; �)". Then B

1

sends � to his decryption oracle D

0

sk

.

(c) If D

0

sk

answer ?, then B

1

returns ? to A

1

.

(d) If D

0

sk

returns g 2 Q, then B

1

�nds (g;G

g

) 2 T and returns G

g

� � to

A

1

.

(e) If D

0

sk

returns g =2 Q, then B

1

chooses G

g

2 f0; 1g

n

randomly, sets

G(g) = G

g

and returns G

g

� � to A

1

. B

1

also sets Q = Q [ fgg and

T = T [ (g;G

g

).

Finally, A

1

outputs (m

0

;m

1

; info). Then B

1

chooses r

0

; r

1

2 f0; 1g

k

such that r

0

6= r

1

randomly and outputs (r

0

; r

1

; info

0

), where

info

0

= (m

0

;m

1

; info):

(Guess stage B

2

). B

2

is given (r

0

; r

1

; info

0

) and E

0

pk

(r

b

), where b is a random

bit.

(f) If r

0

2 Q and r

1

62 Q, then B

2

outputs b

0

= 0 and stops. If r

0

62 Q and

r

1

2 Q, then B

2

outputs b

0

= 1 and stops. If r

0

2 Q and r

1

2 Q, then

B

2

outputs a random bit b

0

and stops.

If r

0

62 Q and r

1

62 Q, then B

2

chooses

e

� 2 f0; 1g

n

randomly, sets

E

pk

(m

b

) = (

e

�; E

pk

(r

b

)). B

2

next gives (m

0

;m

1

; info) and E

pk

(m

b

) to A

2

and

runs A

2

. After this, A

2

will G-query ~r.

(g) If ~r = r

0

or r

1

, then B

2

outputs b

0

such that ~r = r

b

0

and stops.

(h) Otherwise, B

2

behaves as shown in (a) and (b). Finally A

2

outputs a

bit b

0

. B

2

then outputs b

0

and stops.

Next we will estimate Pr(b

0

= b). It is clear that B generates the view

of A correctly until B stops. Let

ASK

b

4

= A makes G-query r

b

in the real world.

ASK

1�b

4

= A makes G-query r

1�b

in the real world.
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Lemma 3.1

1. Pr[ASK

1�b

] � q

G

=2

k

.

2. Pr[ASK

b

] � �.

Lemma 3.2 For any events X and Y ,

Pr(X ^ Y ) � Pr(X)� Pr(:Y ):

The proofs are given in Appendix.

Now de�ne

ASK

4

= (f) or (g) happens.:

Then

Pr(b = b

0

) = Pr(b

0

= b ^ASK) + Pr(b

0

= b ^ :ASK) (1)

On the �rst term, note that if ASK

b

happens and ASK

1�b

never happens,

then ASK happens with b

0

= b. Therefore, we have

Pr(b

0

= b ^ASK) � Pr(ASK

b

^ :ASK

1�b

)

� Pr(ASK

b

)� Pr(ASK

1�b

)

On the second term, note that A has no information on r

b

if ASK never

happens. Therefore,

Pr(b

0

= b ^ :ASK) =

1

2

Pr(:ASK) =

1

2

(1� Pr(ASK))

�

1

2

(1� Pr(ASK

b

_ASK

1�b

))

�

1

2

(1� Pr(ASK

b

)� Pr(ASK

1�b

))

Hence,

Pr(b

0

= b) � Pr(ASK

b

)� Pr(ASK

1�b

)

+

1

2

(1� Pr(ASK

b

)� Pr(ASK

1�b

))

=

1

2

+

1

2

Pr(ASK

b

)�

3

2

Pr(ASK

1�b

)

2Pr(b

0

= b)� 1 � Pr(ASK

b

)� 3Pr(ASK

1�b

)

� ��

3q

G

2

k

Consequently, �

0

� ��

3q

G

2

k

. Finally, it is clear that t

0

� t+O(k).
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4 Proposed IND-CCA2 encryption scheme

4.1 Proposed scheme

Let �

0

= (G

0

; E

0

;D

0

) be an asymmetric encryption scheme. Let G : f0; 1g

k

!

f0; 1g

n

be a random bit generator and H : f0; 1g

n

! f0; 1g

k

be a hash

function.

Then we present a new asymmetric encryption scheme � = (G; E ;D)

which can encrypt long messages with small overhead.

In the propposed scheme, G = G

0

and:

� Encryption: E

pk

(m) = (c

1

; c

2

),

where

c

1

= m�G(r); c

2

= E

0

pk

(r �H(c

1

))

and r is a random number.

� Decryption

D

sk

(c

1

jjc

2

) =

(

? if D

0

sk

(c

2

) =?

c

1

�G(r̂) otherwise;

where r̂ = D

sk

(c

2

)�H(c

1

).

We will prove that � is secure in the sense of IND-CCA2 if �

0

is secure

in the sense of IND-CCA2.

Let k denote the length of r and n denote the length of m.

Theorem 4.1 Suppose that there exists an adversary A = (A

1

; A

2

) that

(t; �)-breaks � (1

k

) in the sense of CCA2 with at most q

G

queries to G and

with at most q

D

queries to D

sk

. Then there exists an adversary B = (B

1

; B

2

)

that (t

0

; �

0

)-breaks �

0

(1

k

) in the sense of CCA2, where

t

0

� t+O(k); �

0

� ��

5q

G

2

k

�

q

G

q

D

2

k�2

:

4.2 Proof of Theorem 4.1

We �rst show how to construct B by using A as a blackbox. In what follows,

B simulates H randomly.

(Find stage B

1

).
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B

1

behaves similarly to Sec.3.2. Finally, A

1

outputs (m

0

;m

1

; info).

Then B

1

chooses u

0

; u

1

2 f0; 1g

k

such that u

0

6= u

1

randomly and outputs

(u

0

; u

1

; info

0

), where

info

0

= (m

0

;m

1

; info):

(Guess stage B

2

).

B

2

is given (u

0

; u

1

; info

0

) and E

0

pk

(u

b

), where b is a random bit. Then

B

2

chooses

e

� 2 f0; 1g

n

randomly and sets E

pk

(m

b

) = (

e

�; E

pk

(u

b

)). Let

r

0

= u

0

�H(

e

�); r

1

= u

1

�H(

e

�):

If r

0

2 Q and r

1

62 Q, then B

2

outputs b

0

= 0 and stops. If r

0

62 Q and

r

1

2 Q, then B

2

outputs b

0

= 1 and stops. If r

0

2 Q and r

1

2 Q, then B

2

outputs a random bit b

0

and stops.

If r

0

62 Q and r

1

62 Q, then B

2

gives (m

0

;m

1

; info) and E

pk

(m

b

) to A

2

and runs A

2

. Suppose that A

2

makes G-query ~r. If ~r = r

0

or r

1

, then B

2

outputs b

0

such that ~r = r

b

0

and stops. Otherwise, B

2

behaves as shown in

(a) and (b) of Sec.3.2.

Next suppose that A

2

says \give me the plaintext m for a ciphertext

(�; �)". If � 6= E

0

pk

(u

b

), then B

2

behaves similarly to (c),(d) and (e) of

Sec.3.2 and can give E

pk

(�jj�) to A

2

.

(1) If � 6= ~� and � = E

0

pk

(u

b

), then B

2

cannot send � to the decryption

oracle D

0

sk

. In this case, B

2

behaves as follows. Let X = empty and




0

= u

0

�H(�); 


1

= u

1

�H(�): (2)

(2) If 


0

2 Q or 


1

2 Q, then B

2

outputs a random bit b

0

and stops.

(3) Otherwise, B

2

chooses x 2 f0; 1g

n

randomly, sets G(


0

) = G(


1

) = x

and return m = � � x. B

2

also sets Q = Q [ f


0

g [ f


1

g, T =

T [ (


0

; x) [ (


1

; x) and X = X [ (


0

; 


1

).

Finally, A

2

outputs b

0

. Then B

2

outputs b

0

.

Now the advantage �

0

of B is computed similarly to Sec.3.2 except for (1).

First, if (2) happens, then B

2

cannot output b correctly. This probability is

estimated as follows because H(�) is random in eq.(2).

Pr(


0

2 Q or 


1

2 Q) � Pr(


0

2 Q) + Pr(


1

2 Q) � 2q

G

=2

k

= q

G

=2

k�1

:

Pr((2) happens ) � q

G

q

D

=2

k�1

:
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Second, on (3), B fails to generates the view of A correctly if A makes G-

queries both 


0

and 


1

for some (


0

; 


1

) 2 X. This probability is at most

q

G

=2

k

because A has no information on u

1�b

. Hence, we have

�

0

� ��

3q

G

2

k

�

q

G

q

D

2

k�2

�

2q

G

2

k

= ��

5q

G

2

k

�

q

G

q

D

2

k�2

:

Finally, it is easy to see that t

0

� t+O(k).

5 Plaintext awareness encryption scheme

5.1 Plaintext awareness

An adversary B for plaintext awareness is given a public key pk and access

to the random oracle G and H. We also provide B with an oracle for E

G;H

pk

.

The adversary outputs a ciphertext y. To be plaintext aware the adversary

B should necessarily \know" the decryption x of its output y.

Let T

G

denote the set of all pairs of B's queries and the correspond-

ing answers from G, T

H

denote the set of all pairs of B's queries and the

corresponding answers from H, Y denote the set of all answers received

as ciphertexts from E

G;H

pk

(�). y (output of B) is not in Y. We write the

experiment above as (T

G

;T

H

;Y; y) B

G;H;E

pk

(pk).

De�nition 5.1 Let � = (K; E ;D) be an encryption scheme, let B be an

adversary, and let K be an algorithm (the \knoeledge extractor"). For any

k 2 N let Succ

pa

K;B;�

(k)

4

=

Pr

h

G;H  
 ; (pk; sk) K(1

k

); (T

G

;T

H

;Y; y) B

G;H;E

pk

(pk) :

K(T

G

;T

H

;Y; y; pk) = D

sk

(y)] ;

where 
 is the map family from an appropriate domain to an appropriate

range. We insist that y =2 Y; that is, B never outputs a string y which

coincides with the value returned from some E

G;H

pk

-query.

We say that K is a �(k)-extractor if K has running time polynomial in

the length of its imputs and for every adversary B, Succ

pa

K;B;�

(k) � �(k).

We say that � is secure in the sense of PA if � is secure in the sense of

IND-CPA and there exists a �(k)-extractor K where 1� �(k) is negligible.
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5.2 Proposed scheme

Let �

0

= (G

0

; E

0

;D

0

) be an asymmetric encryption scheme. Let G : f0; 1g

k

!

f0; 1g

n

be a random bit generator and H : f0; 1g

n

! f0; 1g

k

be a hash func-

tion. Then we present a new asymmetric encryption scheme � = (G; E ;D).

In the propposed scheme, G = G

0

and:

� Encryption: E

pk

(m) = (c

1

; c

2

),

where

c

1

= m0

k

�G(r); c

2

= E

0

pk

(r �H(c

1

))

and r is a random number.

� Decryption.

D

sk

(c

1

jjc

2

) =

8

>

<

>

:

m̂ if D

0

sk

(c

2

) 6=? and

c

1

�G(r̂) = m̂0

k

for some m̂;

? otherwise;

where r̂ = D

sk

(c

2

)�H(c

1

).

Theorem 5.1 If �

0

is secure in the sense of PA, then � is secure in the

sense of PA.

5.3 Proof of Theorem 5.1

We can show that � is secure in the sense of IND-CPA if �

0

is secure in

the sense of IND-CPA. (The details will be given in the �nal paper.)

Next suppose that there exists an extractor K

0

for �

0

. Then we will

show that there exists an extractor K for � . Let A be an adversary for � .

Suppose that

(T

G

;T

H

;T

X

;Y; y) A

G;H;X;E

pk

(pk);

where X is the random oracle for �

0

and T

X

is the list of (query, answer)

pairs on X made by A. Let y = (c

1

; c

2

) and

Y = ((y

11

; y

12

); (y

21

; y

22

); � � � ; ):

We can consider an adversary B for �

0

such that

(T

X

;Y

0

; c

2

) B

X;E

0

pk

(pk);

12



where Y

0

= (y

12

; y

22

; � � � ; ). Indeed, B can compute y = (c

1

; c

2

) in the same

way as A does by simulating G and H by himself. For Y

0

, suppose that A

makes a query m

i

to E

pk

and obtains (y

i1

; yi2). Since y

i2

= E

0

pk

(r

i

�H(y

i2

))

for a random number r

i

, y

i2

is a ciphertext of a random plaintext u

i

4

=

r

i

� H(y

i2

) regardless of m

i

. Therefore, B sends a random number u

i

to

the encryption oracle E

0

pk

as a plaintext and can obtain a ciphertext y

i2

.

Then from our assumption, it holds that K

0

(T

X

;Y

0

; c

2

; pk) = D

0

sk

(c

2

) with

overwhelming probability.

NowK behaves as follows. K(T

G

;T

H

;T

X

;Y; y; pk) �rst runsK

0

(T

X

;Y

0

; c

2

; pk)

and obtains D

0

sk

(c

2

) with overwhelming probability. If D

0

sk

(c

2

) =?, then K

outputs ?. Otherwise, K obtains (c

1

;D

0

sk

(c

2

)). Then since (c

1

;D

0

sk

(c

2

)) are

written as

c

1

= � �G(r) and D

0

sk

(c

2

) = r �H(c

1

)

for some r and �, we can show that K can output D

sk

(c

1

jjc

2

) with over-

whelming probability similarly to [3]. (The details will be given in the �nal

paper.)
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A Proof of lemma 3.1

1. It is clear that A has no information on r

1�b

. Further, r

1�b

is cho-

sen by B

1

randomly. Therefore, the probability that B

1

chooses r

1�b

which is queried by A is at most q

G

=2

k

. This probability is equal to

Pr[ASK

1�b

].

2. Since A (t; �)-break � (1

n

), we have

Pr[A quesses b correctly] �

1

2

+

1

2

�

On the other hand, A has no information on b if A never makes G-

query r

b

. Therefore,

Pr[A quesses b correctly]

= Pr[A quesses b correctlyjASK

b

] Pr[ASK

b

]

+Pr[A quesses b correctlyj:ASK

b

] Pr[:ASK

b

]

� Pr[ASK

b

] + Pr[A quesses b correctlyj:ASK

b

]Pr[:ASK

b

]

= Pr[ASK

b

] +

1

2

�

1� Pr[ASK

b

]

�

=

1

2

Pr[ASK

b

] +

1

2

:

Hence,

1

2

+

1

2

� �

1

2

Pr[ASK

b

] +

1

2

Pr[ASK

b

] � �:

Q.E.D.

B Proof of lemma 3.2

Pr(X ^ Y ) = Pr(X) � Pr(Y jX)

= Pr(X)(1 � Pr(:Y jX))

= Pr(X) � Pr(:Y ^X)

� Pr(X) � Pr(:Y )

Q.E.D.
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