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Abstrat. In this paper we develop a tehnique that allows to obtain

new e�etive onstrutions of highly resilient Boolean funtions with high

nonlinearity. In partiular, we prove that the upper bound 2

n�1

� 2

m+1

on nonlinearity of m-resilient n-variable Boolean funtions is ahieved

for 0:6n � 1 � m � n� 2.
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1 Introdution

One of the most general types of stream ipher systems is several Linear Feedbak

Shift Registers (LFSRs) ombined by nonlinear Boolean funtion. This funtion

must satisfy ertain riteria to resist di�erent attaks (in partiular, orrelation

attaks suggested by Siegenthaler [15℄ and di�erent types of linear attaks). The

following fators are onsidered as important properties of Boolean funtions for

using in stream ipher appliations.

1. Balanedness. A Boolean funtion must output zeroes and ones with the

same probabilities.

2. Good orrelation-immunity (of order m). The output of Boolean funtion

must be statistially independent of ombination of anym its inputs. A balaned

orrelation-immune of order m Boolean funtion is alled m-resilient.

3. Good nonlinearity. The Boolean funtion must be at the suÆiently high

distane from any aÆne funtion.

Other important fators are large algebrai degree and simple implementation

in hardware.

The variety of riteria and ompliated trade-o�s between them aused the

next approah: to �x one or two parameters and try to optimize others. The

most general model is when researhers �x the parameters n (number of vari-

ables) and m (order of orrelation-immunity) and try to optimize some other

ryptographially important parameters. Here we an all the works [13℄, [2℄,

[5℄, [4℄ [6℄, [7℄, [8℄, [9℄, [16℄.



The present paper ontinues the investigations in this diretion and gives new

results. In Setion 2 we give preliminary onepts and notions. In Setion 3 we

give a brief review of the investigations on the problem of maximal nonlinearity

for n-variablem-resilient Boolean funtion. In Setion 4 we disuss a onept of a

linear and a pair of quasilinear variables whih works in the following setions. In

Setion 5 we present our main onstrution method. This method is a generaliza-

tion of a method desribed in [16℄. This method allows to onstrut reursively

the funtions with good ryptographi properties using the funtions with good

ryptographi properties and smaller number of variables. The method is based

on the existene of a proper matrix with presribed properties. In Setion 6 we

give some examples of proper matries and obtain new results on the maximal

nonlinearity nlmax(n; l) of m-resilient funtions on V

n

. Namely, we prove that

nlmax(n;m) = 2

n�1

�2

m+1

for

5n�14

8

� m � n�2 and for 0:6n�1 � m � n�2.

In Setion 7 we give some remarks on the ombinatorial problem onneted with

proper matries and give a geometrial interpretations of proper matries.

2 Preliminary onepts and notions

We onsider V

n

, the vetor spae of n tuples of elements from GF (2). A Boolean

funtion is a funtion from V

n

to GF (2). The weight wt(f) of a funtion f on V

n

is the number of vetors e� on V

n

suh that f(e�) = 1. A funtion f is said to be

balaned if wt(f) = wt(f � 1). Obviously, if a funtion f on V

n

is balaned then

wt(f) = 2

n�1

. A subfuntion of the Boolean funtion f is a funtion f

0

obtained

by substitution some onstants for some variables in f . If we substitute in the

funtion f the onstants �

i

1

; : : : ; �

i

s

for the variables x

i

1

; : : : ; x

i

s

respetively

then the obtained subfuntion is denoted by f

�

i

1

;:::;�

i

s

x

i

1

;:::;x

i

s

. If a variable x

i

is not

substituted by onstant then x

i

is alled a free variable for f

0

.

It is well known that a funtion f on V

n

an be uniquely represented by a

polynomial on GF (2) whose degree is at most n. Namely,

f(x

1

; : : : ; x

n

) =

M

(a

1

;:::;a

n

)2V

n

g(a

1

; : : : ; a

n

)x

a

1

1

: : : x

a

n

n

where g is also a funtion on V

n

. This polynomial representation of f is alled

the algebrai normal form (briey, ANF) of the funtion and eah x

a

1

1

: : : x

a

n

n

is alled a term in ANF of f . The algebrai degree of f , denoted by deg(f), is

de�ned as the number of variables in the longest term of f . The algebrai degree

of variable x

i

in f , denoted by deg(f; x

i

), is the number of variables in the longest

term of f that ontains x

i

. If deg(f; x

i

) = 1, we say that x

i

is a linear variable

in f . The term of length 1 is alled a linear term. If deg(f) � 1 then f is alled

an aÆne funtion.

The Hamming distane d(e�

1

; e�

2

) between two vetors e�

1

and e�

2

is the number

of omponents where vetors e�

1

and e�

2

di�er. For two Boolean funtions f

1

and

f

2

on V

n

, we de�ne the distane between f

1

and f

2

by d(f

1

; f

2

) = #fe� 2

V

n

jf

1

(e�) 6= f

2

(e�)g. The minimum distane between f and the set of all aÆne

funtions is alled the nonlinearity of f and denoted by nl(f).



A Boolean funtion f on V

n

is said to be orrelation-immune of order m,

with 1 � m � n, if the output of f and any m input variables are statistially in-

dependent. This onept was introdued by Siegenthaler [14℄. In equivalent non-

probabilisti formulation the Boolean funtion f is alled orrelation-immune of

orderm if wt(f

0

) = wt(f)=2

m

for any its subfuntion f

0

of n�m variables. A bal-

aned mth order orrelation immune funtion is alled an m-resilient funtion.

In other words the Boolean funtion f is alled m-resilient if wt(f

0

) = 2

n�m�1

for any its subfuntion f

0

of n �m variables. From this point of view we an

onsider formally any balaned Boolean funtion as 0-resilient (this onvention

is aepted in [1℄, [7℄, [9℄) and an arbitrary Boolean funtion as (�1)-resilient.

The onept of an m-resilient funtion was introdued in [3℄.

Siegenthaler's Inequality [14℄ states that if the funtion f is a orrela-

tion-immune funtion of order m then deg(f) � n � m. Moreover, if f is an

m-resilient, m � n� 2, then deg(f) � n�m� 1.

The next lemma is well-known.

Lemma 1. Let f(x

1

; : : : ; x

n

) be a Boolean funtion represented in the form

f(x

1

; : : : ; x

n

) =

M

(�

1

;:::;�

l

)

(x

1

� �

1

) : : : (x

l

� �

l

)f(�

1

� 1; : : : ; �

l

� 1; x

l+1

; : : : ; x

n

):

Suppose that all 2

l

subfuntions f(�

1

�1; : : : ; �

l

�1; x

l+1

; : : : ; x

n

) are m-resilient.

Then the funtion f is an m-resilient too.

The Lemma 1 was proved in a lot of papers inluding (for l = 1) the pioneer-

ing paper of Siegenthaler (Theorem 2 in [14℄). General ase follows immediately

from the ase l = 1.

3 The problem of maximal nonlinearity for resilient

funtions

Let m and m be integers, �1 � m � n. Denote by nlmax(n;m) the maximal

possible nonlinearity of m-resilient Boolean funtion on V

n

. It is well-known

that the nonlinearity of a Boolean funtion does not exeed 2

n�1

� 2

n

2

�1

[12℄.

Thus, nlmax(n;�1) � 2

n�1

� 2

n

2

�1

, This value an be ahieved only for even

n. The funtions with suh nonlinearity are alled bent funtions. Thus, for even

n we have nlmax(n;�1) = 2

n�1

� 2

n

2

�1

. It is known [10, 11, 5℄ that for odd n,

n � 7, nlmax(n;�1) = 2

n�1

� 2

(n�1)=2

, and for odd n, n � 15, the inequality

nlmax(n;�1) > 2

n�1

� 2

(n�1)=2

holds. Bent funtions are nonbalaned always,

so, for balaned (0-resilient) n-variable funtion f we have nl(f) < 2

n�1

�2

n

2

�1

,

and nlmax(n;m) < 2

n�1

�2

n

2

�1

form � 0. If f is n-variablem-resilient funtion,

m � n�2, then by Siegenthaler's Inequality [14℄ deg(f) � 1, so nlmax(n;m) = 0.

For some small values of parameters n and m exat values of maximal nonlin-

earity are known. The latest olletion of suh values is given in [8℄. The upper

bound nlmax(n;m) � 2

n�1

� 2

m+1

for m � n � 1 was proven independently

in [8℄, [16℄ and [17℄, all three these manusripts were submitted to Crypto 2000



although only the �rst was aepted). In [16℄ an e�etive onstrution of m-

resilient funtion on V

n

with nonlinearity 2

n�1

� 2

m+1

was given. Therefore

nlmax(n;m) = 2

n�1

� 2

m+1

for

2n�7

3

� m � n � 2. In [8℄ it was proved that

the nonlinearity of m-resilient funtion on V

n

is divided by 2

m+1

. Also in [8℄ it

was proved that nlmax(n;m) � 2

n�1

� 2

n=2�1

� 2

m+1

for m < (n=2)� 2.

4 On linear and quasilinear variables

In this setion we reall the onepts of linear and quasilinear variables. The last

onept was introdued in [16℄.

Reall that a variable x

i

is alled a linear for a funtion f = f(x

1

; : : : ; x

i�1

,

x

i

, x

i+1

; : : : ; x

n

) if deg(f; x

i

) = 1. Also we say that a funtion f depends on a

variable x

i

linearly. If a variable x

i

is linear for a funtion f we an represent f

in the form

f(x

1

; : : : ; x

i�1

; x

i

; x

i+1

; : : : ; x

n

) = g(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

n

)� x

i

:

Other equivalent de�nition of a linear variable is that a variable x

i

is linear for

a funtion f if f(

e

Æ

1

) 6= f(

e

Æ

2

) for any two vetors

e

Æ

1

and

e

Æ

2

that di�er only in

ith omponent. By analogy with the last de�nition we give a new de�nition for

a pair of quasilinear variables.

De�nition 1. We say that a Boolean funtion f = f(x

1

; : : : ; x

n

) depends on a

pair of its variables (x

i

; x

j

) quasilinearly if f(

e

Æ

1

) 6= f(

e

Æ

2

) for any two vetors

e

Æ

1

and

e

Æ

2

of length n that di�er only in ith and jth omponents. A pair (x

i

; x

j

) in

this ase is alled a pair of quasilinear variables in f .

The proof of the next lemma is given in [16℄.

Lemma 2. Let f(x

1

; : : : ; x

n

) be a Boolean funtion. Then (x

i

; x

j

), i < j, is a

pair of quasilinear variables in f i� f an be represented in the form

f(x

1

; : : : ; x

n

) = g(x

1

; : : : ; x

i�1

; x

i+1

; : : : ; x

j�1

; x

j+1

; : : : ; x

n

; x

i

� x

j

)� x

i

: (1)

The next lemmas are obvious.

Lemma 3. Let f(x

1

; : : : ; x

n

) be a Boolean funtion. If f depends on some vari-

able x

i

linearly then f is balaned.

Lemma 4. f(x

1

; : : : ; x

n

) be a Boolean funtion. If f depends on some variables

x

i

1

, x

i

2

, . . . , x

i

s

linearly then f is (s� 1)-resilient.

Note that Lemma 4 agrees with our assumption that a balaned funtion is

0-resilient, and an arbitrary Boolean funtion is (�1)-resilient. (In the last ase

s = 0.)

Lemma 5. Let f(x

1

; : : : ; x

n

) be a Boolean funtion. If f depends on some pair

of variables (x

i

; x

j

) quasilinearly then f is balaned.



Lemma 6. Let f(x

1

; : : : ; x

n

; x

n+1

) = f(x

1

; : : : ; x

n

) � x

n+1

where  2 f0; 1g.

Then nl(f) = 2nl(g).

Lemma 7. Let f(x

1

; : : : ; x

n

) be a Boolean funtion on V

n

and f depends on

some pair of variables (x

i

; x

j

) quasilinearly. Then nl(f) = 2nl(g) where g is a

funtion used in the representation of f in Lemma 2.

Lemma 8. Let f

1

and f

2

be two Boolean funtions on V

n

. Moreover, there

exist variables x

i

and x

j

suh that f

1

depends on a pair of variables (x

i

; x

j

)

quasilinearly whereas f

2

depends on the variables x

i

and x

j

linearly. Let l be an

arbitrary aÆne funtion on V

n

. Then at least one of two funtions f

1

� l and

f

2

� l is balaned.

Proof. Let l =

n

L

r=1

u

r

x

r

�u

0

, u

r

2 f0; 1g, r = 0; 1; : : : ; n. If u

i

= 0 (orrespon-

dently, u

j

= 0) then f

2

� l depends on the variable x

i

(x

j

) linearly, therefore

the funtion f

2

� l is balaned. The remained ase is u

i

= u

j

= 1. But here

it is easy to see that the funtion f

1

� l depends on a pair of variables (x

i

; x

j

)

quasilinearly, therefore f

1

� l is balaned. ut

5 A method of onstruting

Suppose that f

0

; f

1

; : : : ; f

2

k

�1

are Boolean funtions on V

n

. We denote f

r

also

as f

�

1

:::�

k

where �

1

: : : �

k

is a binary representation of the number r. Suppose

that  = (

1

; : : : ; 

k

) is an arbitrary binary vetor. Put s =

k

P

i=1



i

. We denote

X = fx

i

j i = 1; : : : ; ng, Y = fy

i

j i = 1; : : : ; kg, Z = fz

i

j 

i

= 1; i = 1; : : : ; kg.

We de�ne

f(X;Y; Z) =

0

�

M

(�

1

;:::;�

k

)2V

k

 

k

Y

i=1

(y

i

� 

i

z

i

� �

i

)

!

f

�

1

:::�

k

(X)

1

A

�

k

M

i=1



i

z

i

: (2)

By onstrution the funtion f in (2) depends on n+ k + s variables. Below we

formulate some properties of onstrution (2).

Remark. Some details of onstrution (2) an be understood more easily if

we put 

1

= : : : = 

s

= 1, 

s+1

= : : : = 

k

= 0. But for an e�etive implementa-

tion it is important in some ases to vary the vetor .

Lemma 9. Suppose that all 2

k

Boolean funtions f

0

, f

1

, . . . , f

2

k

�1

in (2) are

m-resilient. Then the funtion f(X;Y; Z) is (m+ s)-resilient.

Proof. Substitute in (2) arbitrarym+s onstants for arbitrarym+s variables.

We obtain some (n + k �m)-variable subfuntion f

0

. If 

i

= 1 for some i and

if both variables y

i

and z

i

are free in f

0

then the pair of variables (y

i

; z

i

is a

quasilinear pair in f

0

therefore by Lemma 5 the subfuntion f

0

is balaned). Thus,

we an assume that for eah i suh that 

i

= 1 at least one of two variables y

i

and



z

i

is substituted by onstant. Then at most m variables from X are substituted

by onstants in (2). All funtions f

0

; f

1

; : : : ; f

2

k

�1

are balaned, therefore the

funtion f(X;Y; Z) is balaned too. We have proved that an arbitrary (n+k�m)-

variable subfuntion of f(X;Y; Z) is balaned. ut

Lemma 10. Suppose that the nonlinearity of all 2

k

Boolean funtions f

0

; f

1

; : : : ; f

2

k

�1

in (2) is at least N

0

. Moreover, for any two funtions f

r

1

and f

r

2

, 0 � r

1

6= r

2

�

2

k

�1, there exists a pair of variables (x

i

; x

j

) suh that one of these two funtions,

say f

r

1

depends linearly on the variables x

i

and x

j

whereas another funtion f

r

2

depends quasilinearly on the pair (x

i

; x

j

). Then nl(f) � 2

s

(2

n�1

(2

k

� 1) +N

0

).

Proof. It is obvious that if we replae 

i

= 0 by 

i

= 1 then we multiplate

the nonlinearity by 2 (adding new variable). Thus we an assume that s = 0.

Consider an arbitrary aÆne funtion l. Denote l

r

= l

�

1

�1;

y

1

;

:::;

:::;

�

k

�1

y

k

where �

1

: : : �

k

is a binary representation of the number r. Note that for any r = 0; : : : ; 2

k

� 1,

we have l

r

= l

0

or l

r

= l

0

� 1. Then d(f; l) =

2

k

�1

P

r=0

d(f

r

; l

r

). By Lemma 8 and the

hypothesis of this lemma we have that d(f

r

; l

r

) 6= 2

n�1

for at most one value of

r. Thus d(f; l) � 2

n�1

(2

k

� 1) +N

0

. An aÆne funtion l was hosen arbitrary.

Therefore nl(f) � 2

n�1

(2

k

� 1) +N

0

. ut

The onstrution (2) is a generalization of the onstrution in [16℄ where only

the ase k = 1 is onsidered.

The problem is to �nd the funtions f

0

; f

1

; : : : ; f

2

k

�1

with desirable distribu-

tion of linear and quasilinear variables. Below we give some approah that allows

to onstrut suh systems of funtions.

De�nition 2. Let B = (b

ij

) be (2

k

� p) matrix of 2

k

rows and p olumns with

entries from the set f1; 2; �g. Let k

0

and t be positive integers. We assume that

(i) for every two rows i

1

and i

2

there exist a olumn j suh that b

i

1

j

= 1,

b

i

2

j

= 2 or b

i

1

j

= 2, b

i

2

j

= 1.

(ii) for every row i the inequality

p

P

j=1

b

ij

� t holds (a sign � does not give an

inuene to these sums).

(iii) in every row the number of ones does not exeed k

0

.

If the matrix B satis�es all properties (i), (ii), (iii) we say that B is a proper

(k

0

; k; p; t)-matrix.

De�nition 3. Let F be a set of Boolean funtions suh that for every s, 0 � s �

k, the set F ontains an (m+ s)-resilient funtion on V

n+s

with nonlinearity at

least 2

s

(2

n�1

� 2

m+�

) (� is not neessary integer) that ontains s disjoint pairs

of quasilinear variables. Then we say that F is a S

n;m;k

0

;�

-system of Boolean

funtions.

Remark. To provide an existene of a S

n;m;k;�

-system of Boolean funtions

it is suÆiently to have only (m + k)-resilient funtion f on V

n+k

with non-

linearity at least 2

k

(2

n�1

� 2

m+�

) that ontains k disjoint pairs of quasilinear

variables. All other neessary funtions of S

n;m;k;�

-system an be obtained from



f by substitutions of onstants for the variables from di�erent disjoint pairs

of quasilinear variables. But note that the last way is not e�etive from the

implementation point of view.

Lemma 11. There exists an S

2;�1;2;1

-system of Boolean funtions.

Proof. Put f

0

0

= x

1

x

2

, f

0

1

= (x

1

�x

2

)x

3

�x

1

, f

0

2

= (x

1

�x

2

)(x

3

�x

4

)�x

1

�x

3

.

It is easy to verify that f

0

s

, s = 0; 1; 2, is a (�1 + s)-resilient funtion on V

2+s

with nonlinearity 2

s

(2

2�1

� 2

�1+1

), moreover, f

0

s

ontains s disjoint pairs of

quasilinear variables. ut

Theorem 1. Suppose that there exists an S

n;m;k

0

;�

-system of Boolean funtions

F and there exists a proper (k

0

; k; p; t)-matrix B, n � 2p� t. Then there exists

an S

n+k+t;m+t;k;�

-system of Boolean funtions.

Proof. Consider the ith row of the matrix B, i = 0; 1; : : : ; 2

k

�1. Suppose that

this row ontains s = s(i) ones. The matrix B is a proper, therefore s � k

0

, s � t.

By assumption there exists an (m+s)-resilient funtion f

0

i

on V

n+s

that ontains

s disjoint pairs of quasilinear variables with nonlinearity at least 2

s

(2

n�1

�2

m+�

).

Add t � s new linear variables to the funtion f

0

i

. As a result we obtain the

funtion f

00

i

on V

n+t

. It is easy to see that the funtion f

00

i

is an (m+ t)-resilient

funtion with nonlinearity at least 2

t

(2

n�1

� 2

m+�

), moreover f

00

i

ontains s

disjoint pairs of quasilinear variables and besides t�s linear variables. Note that

by the property (ii) of a proper matrix the value t�s is not less than the number

of 2's in ith row of B multiplied by 2. By this way we onstrut the funtions f

00

i

on V

n+t

for every i, i = 0; 1; : : : ; 2

k

�1. By assumption n+t � 2p. Next, for every

i, i = 0; 1; : : : ; 2

k

�1, we permute the variables in f

00

i

(x

1

; : : : ; x

n+t

) obtaining the

funtion f

i

suh that the funtion f

i

depends on a pair of variables (x

2j�1

; x

2j

)

quasilinearly if b

ij

= 1, and the funtion f

i

depends on the variables x

2j�1

and

x

2j

linearly if b

ij

= 2. By the arguments given above we have suÆient numbers

of quasilinear and linear variables for this proedure. Now we are ready to apply

the onstrution (2). By means of this onstrution varying the number of ones

in the vetor (

1

; : : : ; 

k

) we obtain the funtions f(X;Y; Z

s

), s = 0; 1; : : : ; k.

The funtion f(X;Y; Z

s

) by lemmas 9 and 10 is an (m+ t+ s)-resilient funtion

on V

n+k+t+s

with the nonlinearity at least 2

s

(2

n+k+t�1

� 2

m+t+�

). Moreover,

the funtion f(X;Y; Z

s

) ontains s disjoint pairs of quasilinear variables. Thus,

we have onstruted an S

n+k+t;m+t;k;�

-system of Boolean funtions. ut

An appliation of the onstrution given in Theorem 1 we denote by

S

n;m;k

0

;�

T

k

0

;k;p;t

= S

n+k+t;m+t;k;�

:

If we add new linear variable to an m-resilient funtion f on V

n

then we

obtain (m+1)-resilient funtion f on V

n+1

with nonlinearity 2nl(f). We denote

this proedure by

S

n;m;0;�

T

0;0;0;1

= S

n+1;m+1;0;�

:



6 Examples of proper matries e�etive for our

onstrution and new resilient Boolean funtions with

maximal nonlinearity

At �rst, we give some examples of proper matries e�etive for the onstrution

of Boolean funtions with good ombination of parameters. We denote a proper

(k

0

; k; p; t)-matrix by B

k

0

;k;p;t

.

B

1;1;1;2

=

�

2

1

�

; B

2;2;2;4

=

0

B

�

2 2

2 1

1 2

1 1

1

C

A

; B

3;2;3;3

=

0

B

�

2 1 �

� 2 1

1 � 2

1 1 1

1

C

A

;

B

2;3;5;6

=

0

B

B

B

B

B

B

B

B

B

�

2 2 1 1 �

2 1 1 2 �

2 1 � 1 2

2 1 2 � 1

1 1 � 2 2

1 2 1 � 2

1 � 2 1 2

1 � 2 2 1

1

C

C

C

C

C

C

C

C

C

A

; B

3;3;4;5

=

0

B

B

B

B

B

B

B

B

B

�

� 1 2 2

2 � 1 2

2 2 � 1

1 2 2 �

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

1

C

C

C

C

C

C

C

C

C

A

;

B

2;4;7;8

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

1 1 � � 2 2 2

� 2 1 1 � 2 2

� � 2 2 1 1 2

1 � � 2 2 2 1

2 1 1 � � 2 2

� � 2 1 1 2 2

� � 2 2 2 1 1

1 2 2 1 2 � �

� 1 2 2 1 2 �

� � 1 2 2 1 2

2 � � 1 2 2 1

1 2 � 2 1 2 �

� 1 2 � 2 1 2

2 � 1 2 � 2 1

2 2 � 1 � 1 2

2 2 2 � 1 � 1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

; B

4;4;6;6

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

2 2 2 � � �

1 2 � 1 2 �

1 2 � � 1 2

1 2 � 2 � 1

� 1 2 1 2 �

� 1 2 � 1 2

� 1 2 2 � 1

2 � 1 1 2 �

2 � 1 � 1 2

2 � 1 2 � 1

2 � 1 1 1 1

1 2 � 1 1 1

� 1 2 1 1 1

1 1 1 2 � 1

1 1 1 1 2 �

1 1 1 � 1 2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

It is easy to verify that all matries given above are proper matries with

orrespondent parameters.

The simplest example of a proper matrix is the matrix B

1;1;1;2

. If

2n�7

3

� m �

n� 3 then the numbers n and m an be represented in the form n = 3r+ s+2,

m = 2r + s � 1, where r and s are nonnegative integers (an existene of this

representation as well as an existene of the representations in Theorems 2 and

3 an be proved by the arguments from the elementary arithmeti). By Lemma

11 there exists a system S

2;�1;2;1

. We apply

S

2;�1;2;1

(T

1;1;1;2

)

r

(T

0;0;0;1

)

s

= S

n;m;0;1

:



Therefore nlmax(n;m) � 2

n�1

�2

m+1

form �

2n�7

3

. In Setion 3 it was pointed

out that nlmax(n;m) � 2

n�1

� 2

m+1

for m � n� 2. Therefore nlmax(n;m) =

2

n�1

� 2

m+1

for

2n�7

3

� m � n� 2. The above onstrution was given in [16℄.

Theorem 2. nlmax(n;m) = 2

n�1

� 2

m+1

for

5n�14

8

� m � n� 2.

Proof. Let n, m be integers. Note that d

5n�14

8

e � d

2n�7

3

e for n < 17. If

n � 17, m > n � 8, then m �

2n�7

3

. If n � 17,

5n�13

8

� m � n � 8, then

the numbers n and m an be represented in the form n = 8r

1

+ 3r

2

+ s + 17,

m = 5r

1

+ 2r

2

+ s+ 9, where r

1

, r

2

and s are nonnegative integers. We apply

S

2;�1;2;1

T

2;2;2;4

T

2;3;5;6

(T

3;3;4;5

)

r

1

(T

1;1;1;2

)

r

2

(T

0;0;0;1

)

s

= S

n;m;0;1

:

If n � 17,

5n�14

8

= m, then the numbers n and m an be represented in the form

n = 8r+ 22, m = 5r + 12, where r is nonnegative integer. In this ase we apply

S

2;�1;2;1

T

2;2;2;4

T

2;3;5;6

(T

3;3;4;5

)

r

T

3;2;3;3

= S

n;m;2;1

:

ut

Theorem 3. nlmax(n;m) = 2

n�1

� 2

m+1

for 0:6n� 1 � m � n� 2.

Proof. Let n, m be integers. Note that 0:6n�1 �

2n�7

3

for n � 20. If n � 20,

m > n� 9, then m �

2n�7

3

. If n � 20, 0:6n� 1 � m � n� 9, exepting the ase

m = 0:6n� 1, n � 5 (mod 10), then the numbers n and m an be represented

in the form n = 10r

1

+ 8r

2

+ 3r

3

+ s+ 20, m = 6r

1

+ 5r

2

+ 2r

3

+ s+ 11, where

r

1

, r

2

,r

3

and s are nonnegative integers. We apply

S

2;�1;2;1

T

2;2;2;4

T

2;4;7;8

(T

4;4;6;6

)

r

1

(T

3;3;4;5

)

r

2

(T

1;1;1;2

)

r

3

(T

0;0;0;1

)

s

= S

n;m;0;1

:

In the ase n = 10r+25, m = 6r+14, where r is a nonnegative integer we apply

S

2;�1;2;1

T

2;2;2;4

T

2;4;7;8

(T

4;4;6;6

)

r

T

3;2;3;3

= S

n;m;2;1

:

ut

7 Some remarks on ombinatorial problem and

geometrial interpretations

If there exists a proper (k; k; p; t)-matrix then using the tehnique desribed in

the previous setion we an prove that nlmax(n;m) = 2

n�1

� 2

m+1

for m >

t

t+k

n� 

0

where 

0

is a some onstant. Note that the onstrution in [2℄ allows to

ahieve suh nonlinearity only form � 

00

n

4

(1+o(1)). Therefore we are interesting

to �nd a proper (k; k; p; t)-matrix where the ratio

t

k

is as small as possible.

For given positive integer k we denote by t(k) the minimal positive integer

t suh that for some p there exists a proper (k; k; p; t)-matrix. It is lear that

we an onsider only matries without all-� olumns. Then obviously p � t � 2

k

.

There exists a proper (k; k; k; 2k)-matrix (all rows are di�erent and without �).

Thus, to �nd t(k) it is suÆiently to onsider only a �nite set of matries.



Proposition 1. Let k

1

and k

2

be positive integers. Then t(k

1

+ k

2

) � t(k

1

) +

t(k

2

).

Proof. By de�nition for some p

1

and p

2

there exist a proper (k

1

; k

1

; p

1

; t(k

1

))-

matrix B

0

and a proper (k

2

; k

2

; p

2

; t(k

2

))-matrix B

00

. Compose a (2

k

1

+k

2

� (p

1

+

p

2

)) matrix B where the rows of B are all possible onatenations of rows of

matries B

0

and B

00

. It is easy to see that B is a proper (k

1

+ k

2

; k

1

+ k

2

; p

1

+

p

2

; t(k

1

) + t(k

2

))-matrix. Therefore t(k

1

+ k

2

) � t(k

1

) + t(k

2

). ut

It is quite obvious that

Proposition 2. t(k) � k.

Propositions 1 and 2 follow that there exists the limit lim

k!1

t(k)

k

.

A proper (k

0

; k; p; t)-matrix B an be interpreted as a olletion of 2

k

disjoint

sububes in Boolean ube f1; 2g

p

. Indeed, a row of B an be interpreted as a

subube where the omponents with � are free whereas the omponents with 1

or 2 are substituted by orrespondent onstant. We illustrate this at the example

of the matrix B

3;3;4;5

:

row of B

3345

points of a subube

�122 f(1; 1; 2; 2); (2; 1; 2; 2)g

2 � 12 f(2; 1; 1; 2); (2; 2; 1; 2)g

22 � 1 f(2; 2; 1; 1); (2; 2; 2; 1)g

122� f(1; 2; 2; 1); (1; 2; 2; 2)g

2111 f(2; 1; 1; 1)g

1211 f(1; 2; 1; 1)g

1121 f(1; 1; 2; 1)g

1112 f(1; 1; 1; 2)g

The property (i) of a proper matrix provides that sububes are disjoint. The

properties (ii) and (iii) haraterize the loation of sububes in a ube and the

size of sububes.

Estimating the numbers of points at di�erent levels of Boolean ube that

belong to some disjoint sububes we are able to prove that

Proposition 3. t(1) = 2, t(2) = 4, t(3) = 5, t(4) = 6, t(5) = 8, t(6) = 9,

t(7) = 11, t(8) = 12, t(10) = 15.

The author is grateful to Claude Carlet, Oktay Kasim-Zadeh and Maria

Fedorova for helpful disussions.
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