Efficient Algorithms for Computing Differential
Properties of Addition

Helger Lipmaé and Shiho Morig

1 Helsinki University of Technology, Department of CompuBaience and Engineering
P.O.Box 5400, FI-02015 HUT, Espoo, Finland
helger@tml.hut.fi
2 NTT Laboratories
1-1 Hikari-no-oka, Yokosuka, 239-0847 Japan
shiho@isl.ntt.co.jp

Abstract. In this paper we systematically study the differential gnties of ad-
dition modulo2™. We derive@(log n)-time algorithms for most of the properties,
including differential probability of addition. We alsogsent log-time algorithms
for finding good differentials. Despite the apparent siwipliof modular addi-
tion, the best known algorithms require naive exhaustivamdation. Our re-
sults represent a significant improvement over them. In thstrextreme case,
we present a complexity reduction frafi(2'") to ©(log n).

Keywords: modular addition, differential cryptanalysis, differeprobability, impos-
sible differentials, maximum differential probability.

1 Introduction

One of the most successful and influential attacks againskhdiphers is Differential
Cryptanalysis (DC), introduced by Biham and Shamir in 198%91a]. For many of
the block ciphers proposed since then, provable securainagDC (defined by Lai,
Massey and Murphy [LMM91] and firstimplemented by Nyberg &mdidsen [NK95])
has been one of the primary criteria used to confirm theirmiiztequality.

Unfortunately, few approaches to proving security havenbreally successful. The
original approach of [NK95] has been used in designing MISAnd its variant KA-
SUMI (the new 3GPP block cipher standard). Another inflldrdgpproach has been
the “wide trail” strategy proposed by Daemen [Dae95], aggpfor example in the pro-
posed AES, Rijndael. The main reason for the small numbenadfessful strategies is
the complex structure of modern ciphers, which makes exadtiation of their differ-
ential properties infeasible. This has, unfortunatelyttea situation where the security
against DC is often evaluated by heuristic methods.

We approach the above problem by using the bottom-up meltbggoarhat is, we
evaluate many sophisticated differential properties &f afithe most-used “non-trivial”
block cipher cornerstoneaddition modul®™ for n > 1. We hope that this will help
to evaluate the differential properties of larger commosipher parts like the Pseudo-
Hadamard Transform, with the entire cipher being the final gbhe algorithms pro-
posed here will enable the advanced cryptanalysis of blgakecs. We hope that our

results will facilitate cryptanalysis of such stream cighand hash functions that use
addition and XOR at the same time.

Importance of Differential Properties of Addition. Originally, DC was considered
with respect to XOR, and was generalized to DC with respeeint@rbitrary group
operation in [LMM91]. In 1992, Berson [Ber92] observed tFatmany primitive op-
erations, it is significantly more difficult to apply DC witlegpect to XOR than with
respect to addition modul®’2. Most interestingly, he classified DC of addition modulo
2" itself, with n. sufficiently big, with respect to XOR to be hard to analyzeggithe
(then) current state of theory.

Until now it has seemed that the problem of evaluating thieihtial properties of
addition with respect to XOR hard. Hereafter, we omit the “with respect to XOR” and
take the addition to be always mod@®. The fastest known algorithms for computing
the differential probability of additio®P* (a, B + 7):=P, ,[(z + 3) ® ((z ® a) +
(y ® B)) = v] is exponential im. The complexity of the algorithms for the maximum
differential probabilityDP.. (a, 8):= max, DP™(a, 3 ~ =), the double-maximum

max

differential probabilityDP3. _ (a):=maxs ., DP*(a, 8 + 7), and many other differ-
ential properties of addition are also exponentiatin

With smalln (e.g.,n = 8 or even withn = 16), exponential-ina computation is
feasible, as demonstrated in the cryptanalysis of FEAL bkiA¢obayashi and Moriai
in [AKM98]. However, this is not the case when> 32 as used in the recent 128-bit
block ciphers such as MARS, RC6 and Twofish. In practice, i 32, both cipher
designers and cryptanalysts have mostly made use of only difierential properties
of addition. (For example, lettingy be the least significant bit of, they often use
the property thatyy d 5y ® v = 0.) It means that block ciphers that employ both
XOR and addition modul@™ are hard to evaluate the security against DC due to the
lack of theory. This has led to the general concern that missedof XOR and modular
addition might add more confusion (in Shannon’s sense) iplgec but “none has yet
demonstrated to have a clear understanding of how to pradwyceroof nor convincing
arguments of the advantage of such an approach” [Knu99] cOulel say that they also
add more confusion to the cipher in the layman’s sense.

There has been significant ongoing work on evaluating therggof such “confus-
ing” block ciphers against differential attacks. Some efhpapers have also somewhat
focused on the specific problem of evaluating the diffeedptioperties of addition. The
full version of [BS91b] treated some differential prob@hek of addition modul®™
and included a few formulas useful to compiXB™, but did not include any concrete
algorithms nor estimations of their complexities. The s&rue for many later papers
that analyzed ciphers like RC5, SAFER, and IDEA. Miyano [BBY studied the sim-
pler case with one addend fixed and derived a linear-timeriéthgo for computing the
corresponding differential probability.

Our Results. We develop a framework that allows the extremely efficiersteation
of many interesting differential properties of modular gidd. In particular, most of
the algorithms described herein run in time, sublinear.i8ince this would be impos-
sible in the Turing machine model, we chose to use a realigsitecost RAM Random

Access Machinemodel, which executes basicbit operations like Boolean operations
and addition modul@™ in unit time, as almost all contemporary microprocessors do

The choice of this model is clearly motivated by the poptyasf such micropro-
cessors. Still, for several problems (although sometimgdicitly) we also describe
linear-time algorithms that might run faster in hardwatdofeover, the linear-time
algorithms are usually easier to understand and hence aareducational purpose.)
Nevertheless, the RAM model was chosen to be “minimal”, sihelt the described
algorithms would be directly usable on as many platformsa@ssiple. On the other
hand, we immediately demonstrate the power of this modeldsgiibing some useful
log-time algorithms (namely, for the Hamming weight, atleoparity and common al-
ternation parity). They become very useful later when wegtigate other differential
properties. One of them (for the common alternation panityght be interesting by
itself; we have not met this algorithm in the literature.

After describing the model and the necessary tools, we shatD®+ can be com-
puted in time®(logn) in the worst-case. The corresponding algorithm has twacprin
pal steps. The first step checks in constant-time whetheliffeeentialé = (o, 5 — =)
is impossible (i.e., whethdP™ (§) = 0). The second step, executed only i possi-
ble, computes the Hamming weight of arbit string in time©@(logn). As a corollary,
we prove an open conjecture from [AKM98].

The structure of the described algorithm raises an immedjaestion of what is
the density of the possible differentials. We show that theneDP*(5) # 0 oc-
curs with the negligible probabilitii - (%)W1 (This proves an open conjecture stated
in [AKM98)). That is, the density of possible differentiatsnegligible, sdP™ can be
computed in time9(1) in the average-case. These results can be further used for im
possible differential cryptanalysis, since the best pmesly known general algorithm
to find non-trivial impossible differentials was by exhaussearch. Moreover, the high
density of impossible differentials makes differentiglmanalysis more efficient; most
of the wrong pairs can be filtered out [BS91a,0’C95].

Furthermore, we compute the explicit probabiligDP ™ (§) = i] for anyi, 0 <
i < 1. This helps us to compute the distribution of the randomaldei X : ¢ —
DP*(4), and to create formulas for the expected value and variahtieeorandom
variable X. Based on this knowledge, one can easily compute the prgkebthat
P[X > i] foranyi.

For the practical success of differential attacks it is neegs sufficient to pick a
random differential hoping it will be “good” with reasonabprobability. It would be
nice to find good differentials efficiently in a deterministvay. Both cipher designers
and cryptanalysts are especially interested in finding tipdifhal” differentials that re-
sult in the maximum differential probabilities and themefin the best possible attacks.
For this purpose we describe a log-time algorithm for conmgubP;! . (o, 5) and ay
that achieves this probability. Both the structure of trgoathm (which makes use of
the all-one parity) and its proof of correctness are noiatiWWe also describe a log-
time algorithm that finds a paff3,) that maximizes the double-maximum differential
probabilityDP}.__ (a). We show that for many nonzerss, DPJ__ (a) is very close

2max 2max

to one. A summary of some of our results is presented in Table 1

| [DP* [DPfiax [DPa

Previous resulk2 (2°") 2 (2°") |2 (2™)
Ourresult [|©(log n) (worst-case)@(1) (average)?(log n)|O(log n)

Table 1. Summary of the efficiency of our main algorithms

Road map. We give some preliminaries in Sect. 2. Section 3 describesitacast
RAM model, and introduces the reader to several efficierarélyns that are crucial
for the later sections. In Sect. 4 we describe a log-timerityo for DPT. Section 5
gives formulas for the density of impossible differentiatal other statistical properties
of DP™. Algorithms for maximum differential probability and rééal problems are
described in Sect. 6.

2 Preliminaries

Let ¥ = {0,1} be the binary alphabet. For amybit stringz € X", letz; € ¥
be thei-th coordinate of: (i.e.,z = 2;‘;01 7;2%). We always assume that = 0 if
i € [0,n —1]. (Thatis,z = 5. x;2%.)

Let @, Vv, A and - denoten-bit bitwise “XOR”, “OR”, “AND” and “negation”,
respectively. Let: > i (resp.z < i) denote the right (resp. the left) shift Byositions
(i.e.,z>>i:=|z/2'| andz < i:=2'z mod 2"). Addition is always performed modulo
2", if not stated otherwise. For anyy andz we definesq(z, y, 2):=(—z®y) A(~zd2)
(i.e.eq(z,y,2); =1 < xz; =y; = z;) andxor(z,y,2):=z & y ® z. For anyn, let
mask(n):=2" — 1. For example((—=0) < 1)o = 0.

Addition modulo 2™. Thecarry, carry(z,y):=c € X", z,y € X", of additionz +y is
defined recursively as follows. Firgt,:=0. Secondg; 1 :=(z;Ay;) B (ziAc;) D (yi Acs),
for everyi > 0. Equivalentlyc;11 =1 < =z; +y; + ¢; > 2. (That s, the carry bit
ci+1 IS a function of thesumz; + y; + ¢;.) The following is a basic property of addition
modulo2™.

Property 1.If (z,y) € ™ x X", thenz +y = = ® y ® carry(z,y).

Differential Probability of Addition. We define thaifferential of addition modulo
2™ as a triplet of two input and one output differences, denat&@, 5 — +), where
a, B,y € X Thedifferential probability of additioris defined as follows:

DP*(8) =DP¥ (e, = 7)=Psyllz +y) & (B a) + (y®) =] .

Thatis,DPT(8):=t{z,y : (z +) ® ((x © a) + (y ® B)) = 7}/2>". We say thab is
impossibléf DPT(§) = 0. Otherwise we say thatis possible It follows directly from
Property 1 that one can rewrite the definition?™* as follows:

Lemma 1. DP*(a, 3 = 7) = P, [carry(z,y) Dcarry(z @ o, y ® B) = xor(a, 8,7)].

Probability Theory. Let X be a discrete random variable. Except for a few explic-
ity mentioned cases, we always deal with uniformly disitéal variables. We note
that in thebinomial distribution P[X = k] = p*(1 — p)"~*(})=:b (k;n,p), for
some fixedd < p < 1 and anyk € Z,.,. From the basic axioms of probabil-
ity, > p_ob(k;n,p) = 1. Moreover, theexpectationE[X] = Y} k- P[X = k]

of a binomially distributed random variabl& is equal tonp, while the variance
Var[X] = E[X?] — E[X]? is equal tonp(1 — p).

3 RAM Model and Some Useful Algorithms

In the n-bit unit-cost RAM model, some subset of fixeebit operations can be exe-
cuted in constant time. In the current paper, we specifyshisset to be a small set of
n-bitinstructions, all of which are readily available in theest majority of contemporary
microprocessors: Boolean operations, addition, and thstaat shifts. We additionally
allow unit-cost equality tests and (conditional) jumps. tha other hand, our model
doesnotinclude table look-ups or (say) multiplications. Such arieson guarantees
that algorithms efficient in this model are also efficient omeay broad class of plat-
forms, including FPGA and other hardware. This is furthepbasized by the fact that
our algorithms need only a few bytes of extra memory and thugsyasmall circuit size
in hardware implementations.

Many algorithms that we derive in the current paper make yeae of the three
non-trivial functions described below. The power of our imial computational model
is stressed by the fact that all three functions can be cosagnttime® (log n).

Hamming Weight. The first function is th&damming weight functiofalso known as
n—1 i

the population counbr, sometimes, asideways additionw,: Foraz = >~ z,2¢,
wh(z) = Z?;Ol x;, 1.6., w, counts the “one” bits in am-bit string. In the unit-cost
RAM model, w,(z) can be computed i®(logn) steps. Many textbooks contain (a

variation of) the next algorithm that we list here only foetbake of completeness.

INPUT: z
OUTPUT:wy ()

.z <z — ((z>1) A 0x55555555L);

x + (z A 0x33333333L) + ((z>>2) A 0x33333333L);
.z + (z + (z>>4)) A 0xOFOFOFOFL;

Tz + (z>8);

z + (z + (2>>16)) A 0x0000003FL;

. Returnz;

OUAWNE

Additional time-space trade-offs are possible in caléntathe Hamming weight. If
n = ¢m, then one can precompué values ofwy, (i), 0 < 7 < 2¢, and then findvy, (x)
by doingm = n/c table look-ups. This method is faster than the method dasiin
the previous paragraphif < log, n, which is the case ifh = 32 andm € {8,16}.
However, it also requires more memory. While we do not disthis method hereafter,
our implementations use it, since it offers better perfarogeon 32-bit processors.

r = 00001000001100110000010101010100

y = 01000000000000010110110001110100
aop(z) = 00001000001000100000010101010100
aop” (z) = 00001000000100010000010101010100
C(z,y) = 00000000000000001000001001001010 ,
C"(x,y) = 00000000000000010000010010010100 .

Fig. 1. A pair (x, y) with corresponding valuesop(z), aop”(z), C(z,y) andC" (z,y). Here,
for exampleaop(z)27 = 1 sincel = xa7 # x2s and28 — 27 = 1 is odd. On the other hand,
C"(z,y)a = 1sinCers = y4 # T3 = ys # T2 = Y2 # T1 = y1 = To = Yo, and4 — 0 is even.
Sincels = 0, we could have taken al€8(z,y)s = 1

Interestingly, many ancient and modern power architestiia@e a special machine-
level “cryptanalyst’'s” instruction fow;,, (mostly known as theopulation couninstruc-
tion): SADDon the Mark | gic), CX Xj on the CDC Cyber seriegyi PSj on the
Cray X-MP,VPCNTon the NEC SX-4CTPOPFon the Alpha 21264P0OPCon the Ul-
tra SPARC,POPCNTon the Intel 1A64, etc. In principle, we could incorporateaar
model a unit-time population count instruction, then salkater presented algorithms
would run in constant time. However, since there is no pdmraount instruction on
most of the other architectures (especially on the widesphetel IA32 platform), we
have decided not include it in the set of primitive operatidiioreover, the complexity
of population count does not significantly influence the (age-case) complexity of
the derived algorithms.

All-one and Common Alternation Parity. The second and third functions, important
for several derived algorithms (more precisely, they ardusa Algorithm 4 and Al-
gorithm 5), are the all-one and common alternation parity-diit strings, defined as
follows. (Note that while the Hamming weight has very mangfukapplications in
cryptography, the functions defined in this section haveenbeen, as far as we know,
used before for any cryptographic or other purpose.)

Theall-one parity of an n-bit numberz is anothem-bit numbery = aop(z) s.t.
y; = 1iff the longest sequence of consecutive one-bjts; ...z;+; = 11...1 has
odd length.

Thecommon alternation paritpf two n-bit numberse andy is a functionC'(x, y)
with the next properties: (10'(z,y); = 1, if £; is even and non-zero, (2)(z,y); = 0,
if £; is odd, (3) unspecified (eithéror 1) if ¢£; = 0, where/; is the length of the longest
common alternating bit chaim; = y; # 241 = Yit1 # Titz = Yit2 .-+ F Tits; =
Yit+r;, Wherei + £; < n — 1. (In both cases, counting starts with one. E.gx;it= y;
butz; 1 # y;11 thent; = 1andC(z,y); = 0.) W.l.o.g., we will define

C(z,y):=aop(~(z®y) A (m(zDy)>1)A(z® (z>>1))) .

For both the all-one and common alternation parity we wiioaheed their “du-
als” (denoted asop” and C"), obtained by bit-reversing their arguments. That is,

Algorithm 1 Log-time algorithm foraop(z)

INPUT: z € X", nis a power of2
OUTPUT:aop(z)

zl] =z A (z>1);

Fori « 2tolog,n —1do x[i] « z[i — 1] A (z[i — 1]>>2171);

y[1] < = A —z[1];

Fori « 2tolog,ndo y[i] « y[i — 1]V ((y[i — 1]>2""Y) A z[i — 1]);
Returny[log, n];

aprwhE

aop”(z,y) = aop(z',y'), wherez! := z,_; andy} := y,,—;. (See Fig. 1.) Note that for
every(z,y) andi, C(z,y); =1 = C(x,y)ix1 = C(z,y)i—1 =0.

Clearly, Algorithm 1 finds the all-one parity afin time ©(logn). (It is sufficient
to note thatz[i]; = 1 if and only if the numbem; of ones in the sequende; =
Lzjyr = 1,00, %54p1 = Lzjyn, 2 = 0)is at leas’ andy[i]; = 1iff n; is
an odd number not bigger thai.) Therefore alsd(z,y) can be computed in time
O(logn).

4 Log-time Algorithm for Differential Probability of Addit ion

In this section we say that differentiél= (a, 3 —) is “good” if eqla < 1,4 K
1,7y € 1) A (xor(a, B,7) @ (e < 1)) = 0. Alternatively, ¢ is not “good” iff for
somei € [0,n — 1], ;-1 = Bic1 = vie1 # a; ® B; D ;. (Remember that
a_1 = -1 = v—1 = 0.) The next algorithm has a simple linear-time version adlié
for “manual cryptanalysis”: (1) Check, whethkis “good”, using the second definition
of “goodness”; (2) I is “good”, count the number of positionst n — 1, s.t. the triple
(e, Bi, i) contains both zeros and ones.

Theorem 1. Letd = (a,8 — ~) be an arbitrary differential. Algorithm 2 returns
DP*(6) in time @ (log n). More precisely, it works in timé(1) + ¢, wheret is the time
it takes to computey,.

Algorithm 2 Log-time algorithm foDP*

INPUT: § = (o, 8 — 7)
OUTPUT:DP™(6)

1. Ifeqak 1,8k, 7k 1) A (xor(a, B,7) ® (B 1)) # 0 then returrD;
2. Returnz_""h(_‘eQ(asﬂx'Y)/\mask(n_l));

Rest of this subsection consists of a step-by-step prodfisfrésult, where we use
the Lemmal,i.e., th@P* (§) = P, ,[carry(z, y)PBcarry(zda, yd[) = xor(a, 5, 7).

We first state and prove two auxiliary lemmas. After that wevslhow Theorem 1
follows from them, and present two corollaries.

Lemma 2. Let L(z) be a mapping, such thdt(0) = 0, L(1) = L(2) = 1 andL(3) =
1. Leta, B € X". ThenP, ,[carry(z,y)it1 @ carry(z ® o,y @ B)it1 = l|a; + B; +
Ac; = j] = L(5).

Proof. We denote: = carry(z,y) andc* = carry(z & a,y ® (), wherez andy are
understood from the context. Let alse: = ¢ ® ¢*. By the definition of carryAc; .1 =
(iNy) @ (@iAe)®(Yine) D ((zDa)iA(yDB)) ® ((zda)i Ac))®((ydB)iAcy).
This formula forAc;; is symmetric in the three paifs;, «;), (v:, 8;) and(c;, Ac;).
Hence, the functiorf (o, 8i, Ac;i): =Py, y;,c; [Acit1 = 1] is symmetric, and therefore
fis afunction ofa; + 8; + Ac;, f(J) = Pa; yire; [ACivr = 1o + B; + Ac; = j]. One
can now prove thaP,, ,.[Aciy1 = l|a; + B + Ac; = j] = L(j) forany0 < j < 3,
and for any value of; € {0,1}. For exampleP,, ,.[Aci+1 = 1oy + B;i + Ac; =
1] = Pa,y;[Acir = 1(as, 8i, Aci) = (0,0,1)] = Poyyf(mi Aci) ® (yi Aei) ©
(zi A =¢;) @ (z; A —e;) = 1] = Py, .0z = y;] = L. The claim follows since
Poy[Acii1] = Po, y [Acip]. u

Lemma 3. 1) Every possible differential is “good”.

2) Letd = (o, 8 —) be “good”. If i € [0,n — 1], thenP,, ,[carry(z,y); ® carry(z
o,y ®B)i = laj—1 + Bi1 +vi—1 = j] = L(j). In particular, P, ,[carry(z,y)o ®
carry(z ® o,y ® 8)o = 0] = 1.

Proof. 1) Let§ be possible but not “good”. By Lemma 1, there exists @amd a pair
(z,y), s.t.carry(x, y)ir1 Dcarry(z ® a,y D B)ir1 = xor(a, B,7)i+1 # i = Bi = Y.
Note that therxor(a, 3,v); = 7;. But by Lemma 2P, ., [carry(z,y)i+1 @ carry(z B
a,y ® B)it1 # vilai = Bi = i) = 0, which is a contradiction.

2) Let § be “good”. We prove the theorem by induction frby simultaneously
proving the induction invariar®, , [carry(z,y) & carry(z & a, y &) = xor(e, §,7)
(mod 2%)] > 0. BASE (i = 0). Straightforward from Property 1 and the definition
of a “good” differential. SEP (¢ + 1 > 0). We assume that the invariant is true for
i. In particular, there exists a paig, y), s.t. Ac;—; = xor(«, 3,7)i—1, whereAc =
carry(z,y) @ carry(z & o,y ® 3). Then, by Lemma 2L(j) = P, ,[Ac; = 1|a;—1 +
Bi1+Aci 1 = j] = Py y[Aci = 1a; 1+ 1+xor(a, B,7)i-1 = j| = Py y[Ac; =
1ai—1 + Bi—1 + vi—1 = j], where the last equation follows from the easily verifiable
equalityL(a; + as + a3) = L(ay + a2 + xor(a1, as, az)), for everya;,as,a3 € X.
This proves the theorem claim for The invariant fori, Ac; = xor(«, 3,), follows
from that and the “goodness” éf O

Proof (Theorem 1)First, § is “good” iff it is possible. (The “if” part follows from the
first claim of Lemma 3. The “only if” part follows from the sewd claim of Lemma 3
and the definition of a “good” differential.) Let be possible. Then, by Lemma 1,
DPH(8) = [1}5 Poylcarry(z,y); @ carry(z ® a,y ® B); = xor(a, 3,7)]. By
Lemma 2,P, ,[carry(z,y); & carry(z & a,y & 3); = xor(a, 3,7);] is eitherl or
%, depending on whether; ; = ;-1 = ;1 or not. (This probability cannot b
sinced is possible and hence “good”.) TherefoRP* () = 2~ XiZs ~ea(@)i =

2~wn(—eale,f,y)Amask(n—1)) ' 5g required. Finally, the only non-constant time computa-
tion is that of Hamming weight. O

Note thattechnically for Algorithm 2 to be log-time it would have to return (say)
if the differential is impossible, dbg, DP*(6), if it is not. (The other valid possibility
would be to include data-dependent shifts in the set of cost-operations.)

The next two corollaries follow straightforwardly from Adgthm 2

Corollary 1. DPT is symmetric in its arguments. That is, for an arbitrary teip
(o, 3,7), DPH(a, B =) = DPT(B,a = v) = DP"(a,y — B). Therefore, in par-
ticular, max, DP" (a, 8 =) = maxz DP (@, 8 = v) = max, DP" (a, 8 = 7).

Corollary 2. 1) [Conjecture 1, [AKM98].] Leta + B3 = o' + ' anda ® B = o' @
B'. Then for everyy, DP*(a, 8 — v) = DPT(o/, 5" = 7). 2) For everya, 3, 7,
DP" (o, 7) =DP (aAB,aV B 7).

Proof. We say tha{(«, 3) and(«', 8') areequivalentif {«;,5;} = {a}, 8}} fori <
n—1,anday_1 ® Br—1 = al,_1 ® Bn-1. If (o, 8) and (', ') are equivalent then
DP"(a, 3 — v) = DP*(a/, ' — ~) by the structure of Algorithm 2.

1) The corresponding carries= carry(«, 3) andc’ = carry(a’, ') are equal, since
c=(a®B)®(a+p)=(dp)® (' +5")=c.Thereforea+ 3 = o’ + 5’ and
ad®f=dapif (a,p) and(a’, §") are equivalnet.

2) The second claim is straightforward, sirfeg) and(aAS, aV) are equivalent
for anya andp. O

Note that a paifz, y) is equivalent t@! +w((z®y)Amask(n—1)) different pairs(z*, y*).
In[DGV93, Sect. 2.3]it was briefly mentioned that the numdfesuch pairs is not more
than 2% (*®v): this result was used to cryptanalyse IDEA. The second ctzmies
unexpected connotations with the well known fact that o/ = (e A ') + (a V a').

5 Statistical Properties of Differential Probability

Note that Algorithm 2 has two principal steps. The first seep constant-time check of
whether the differential = (a, 8 — ~) is impossible (i.e., wheth@P™(§) = 0). The
second step, executed onlyifs possible, computes in log-time the Hamming weight
of ann-bit string. The structure of this algorithm raises an immgglquestion of what
is the densityP;[DP"(§) # 0] of the possible differentials, since its average-case
complexity (where the average is taken over uniformly amadicen chosen differentials
8)is O(Ps[DP(8) = 0] + Ps[DP* () # 0] - logn). This is one (but certainly not the
only or the most important) motivation for the current sewti

Let X : § — DP™(§) be a uniformly random variable. We next calculate the
exact probabilitiedP[X = i] for anyi. From the results we can directly derive the
distribution of X. Knowing the distribution, one can, by using standard pbdlstic
tools, calculate the values of many other interesting dodistic properties like the
probabilitiesP[X > i] for anys.

Theorem 2. 1) [Conjecture 2, [AKM98].JP[X # 0] =1 - (%)nfl. 1
2) Let0 < k < n. ThenP[X = 2k = 92+k=3n . gk (1) = L (1)n=",

b(k;n—l,%).

Proof. Let § = (a, 8 — ~) be an arbitrary differential and let= eq(«, 5,7), €' =
eqla<k 1,8« 1,y< 1) andz = xor(a, 8,7) ® (e < 1)) be convenient shorthands.
Sinceq, § and~y are mutually independent,andz (and alsoe’ andz) are pairwise
independent.

1) From Theorem 1P[X # 0] = Ps[e’ Az = 0] = 1‘[?;01(1 —Psle] =1,2; =
1)) = Iy (1 = Pslej = 1] - Psla; = 1)) = (1-1-4) - [[(1-5-3) =
1, (1)”—1
2 8)

2) Letm = mask(n — 1). First, clearly, for any0 < k < n, Ps[wi(e) = k] =
Pogyesnlwi(e) =k = (1) (3)"7"-(2) = b (k;n, 1) and therefords[w; (e A

m)=k=bmn-1-kn-1%) =" """ (3)'“-(” 1) =22 gk (),

Let A denote the evemh(e/\m) = n—1—kand letB denote the evert Az = 0.
Let B; be the event, Az; = 0. Accordmg to AIgorlthm 2P[X =27%] = P4[A4,B] =
P;s[A] - Ps[B|A] = Ps[A]-T1, ' Ps[B;|A] = 1. Ps[A]-TT . P5[B;|A], where we
used the fact that, = 1.

Now, if i > 0 thenP;[B;le} = 1] = P(;[a:Z = 0] = 1, while Ps[B; = 0le} =
0] = 1. Moreover,e, = e;_;. ThereforeH VPB4l = (1) '~* ‘and hence

PIX =274 = §-Ps[A] [T PolBil 4] = 5b (n— 1~ kin — 1,5). (1) =

P S P i R

Corollary 3. Algorithm 2 has average-case complexityl).

As another corollaryX = Xy + X, whereX;, X5 : § — DP*(&) are two random
variables X, has domairD(X,) = {§ € %" : DP*(§) = 0}, while X; has the com-
plementary domai®(X;) = {§ € X" : DP*(§) # 0}. Moreover,X, has constant
distribution (sincéP[X, = 0] = 1), while the random variable log, X; has binomial
distribution withp = % Knowledge of the distribution helps to find further propest
of DP* (e.g., the probabilities th@P ™ (§) > 27F) by using standard methods from
probability theory.

One can double- check the correctness of Theorem 2 by mdhatl . (L

ab(kn—1,8) = S PIX = 27K = P[X #£0] = L - (£)""". Moreover,
cIearIyP[- 2—%] |D(X0)| P[Xo = 274 + [D(X))| - P[X; = 274] = L.
()" b (k;n — 1,), which agrees with Theorem 2.

We next compute the variance &f. Clearly, E[X] = Y/ 27 *P[X = 27%] =
27", and thereford&[X]? = 272", Next, by using Theorem 2 and the basic properties
of the binomial dlStI’IbutIOﬂE[X2] =0-PX2=0]+37 02 2 P[X2=2"2=
(BTS2 b (k- 1,8) = 5 ()" Z?:olb (kin—1,2) =

- (%)"‘1- ThereforeVar[X] = 4 - ()" =277 = - ((£)" = (§)"):
Note that the density of possible differenti®EX # 0] is exponentially small im.

This can be contrasted with a result of O’Connor [O’'C95] theindomly selectea-bit

[(MEENIE

Algorithm 3 Algorithm that finds alky-s, s.tDP*(a, 8 = v) = DP/ (a, B)

INPUT: (a, 8)
OUTPUT: All («, 3)-optimal output differences

1. vo < ao & Bo;

2. p+ Cla, B);

3. Fori+ 1ton—1do
If i1 = Bic1 =vi—1theny; «— a; & B S ai—1
elseifi =n —1ora; # B; orp; = 1theny; « {0,1}
elsevy; « ai;

4. Returmny.

permutation has a fraction @f-e~'/2 ~ 0.4 impossible differentials, independently of
the choice of.. Moreover, a randomly selectedbit composite permutation [O’'C93],
controlled by am-bit string, has a negligible fractios 2" /e2"~! of impossible dif-
ferentials.

6 Algorithms for Finding Good Differentials of Addition

The last section described methods for computing the pibityathat a randomly
picked differentiald has high differential probability. While this alone mighvg rise
to successful differential attacks, it would be nice to hameefficient deterministic al-
gorithm for finding differentials with high differential pbability. This section gives
some relevant algorithms for this.

6.1 Linear-time Algorithm for DP©

max

In this subsection, we will describe an algorithm that, gia@ input differencéc;, 3),
finds all output differences, for which DP™(a, 8 — 7) is equal to themaximum
differential probability of additionDP}., (a, 3):= max, DP*(a, 8 + 7). (By Corol-
lary 1, we would get exactly the same result when maximiziegdifferential probabil-
ity undera or 8.) We say that such is (a, §)-optimal Note that when aria, 3)-
optimal v is known, the maximum differential probability can be foubd apply-
ing Algorithm 2 toé = («a,8 +—). Moreover, similar algorithms can be used
to find “near-optimal®y-s, wherelog, DP™ (a, 5 +— +) is only slightly smaller than
10g2 DP:‘:ax (Oé, ﬂ)

Theorem 3. Algorithm 3 returns all(«, 3)-optimal output differences.

Proof (Sketch)First, we say that position is bad if eq(«, 8,7); = 0. According
to Theorem 1,y is (a, 8)-optimal if it is chosen so that (1) for every > 0, if
eq(a, B,7)i—1 = 1 thenxor(a;, B;,7vi) = a;—1, and (2) the number of bad positiohs
is the least among all such output differeng&gor which (a, 3 — ~') is possible. For

Algorithm 4 A log-time algorithm that finds afw, 8)-optimaly

INPUT: (a, 8)
OUTPUT: An(a, 8)-optimaly

.r+aAl;

e+ =(adB)A-r;

a+eNle<)A (a® (akl));

p < aop”(a);

a<+ (aV(a>1))A-r;

b« (aVe)k1;

vy ((@a®p)Aa)V ((adBd (akl))A=-aAb)V (aA—a A -b);
= (A V((@sB)AL);

. Returny.

CENOTAWNE

achieving (1) we must first fixy <+ a9 ® B9, and after that recursively guarantee that
~; obtains the predicted value whenewgr, = 3;_1 = v;_1.

This, and minimizing the number of bades can be done recursively for every
i < n — 1, starting from; = 0. If «; # B; theni is bad independently of the value of
v € {0,1}. Moreover, either choice of places no restriction on choosing, . This
means that we can assign eithgr— 0 orv; < 1.

The situation is more complicateddf; = ;. Intuitively, if £; = 2k > 0 is even,
then the choice; < «; (as compared to the choieg + —«;) will result in k& bad
positions(i,i+2,...,i+2k—2) instead ofc bad positiongi+1,i+3,...,i+2k—1).
Thus these two choices are equal. On the other haAd+if2k+1 > 0, then the choice
v; < a; would result ink bad positions compared to+ 1 whenvy; + «;, and hence is
to be preferred over the second one. We leave the full detbite proof to the reader.

O

Alinear-time algorithm that finds onex, §)-optimaly can be derived from Algorithm 3
straightforwardly, by assigning, < a; wheneveeq(a, 8,v);—1 = 0.

As an example, let us look at the case- 16, a = 0x5254 and/3 = 0x1A45. Then
C(a,) = 0x1244, and by Algorithm 3 the set dfw, 5)-optimal values is equal to
2155 4212p 2t 574 24 57+ 1, whereP = {0,3,7},and¥ = {0, 1}, as always. There-

fore, for exampleDP;, (0x5254, 0x1A45) = DP T (0x5254, 0x1A45 + 0x7011) =
278,

6.2 Log-time Algorithm for DP"

max

For a log-time algorithm we need a somewhat different apgrosince in Algorithm 3
the value ofy; depends on that of;_;. However, luckily for us;y; only depends on
~vi—1 if eq(a, B,7)i—1 = 1, and as seen from the proof of Theorem 3, in many cases we
can choose the output differengg; so thateq(a, 8,7);—1 = 0!

Moreover, the positions whereg)(«, 5,v);—1 = 1 must hold are easily detected.
Namely (see Algorithm 3), if (1j = 0 anda; = 3; = 0, 0r (2)¢i > 0 anda; = f;
but p; = 0. Accordingly, we can replace the conditieg(«, 3,7);—1 = 1 with the

Algorithm 5 A log-time algorithm forDP3._ («)

2max
INPUT:
OUTPUT:DP; __ (a)

1. Returnszh((l”" (a,a)/\mask(nfl)).

condition—(a; 4 B;) A p;, and take additional care ifis small. By noting how the
valuesp; are computed, one can prove that

Theorem 4. Algorithm 4 finds ar{«, 5)-optimaly.

Proof (Sketch, many details omittedrst, the value ofp computed in the step 4 is
“approximately” equal taC'" («,), with some additional care taken about the lowest
bits. Let{” be the bit-reverse of (i.e., £} is equal to the length of longest common
alternating chaimy; = §; # a;—1 = B;—1 #). Step 7 computeg; (again, “approx-
imately”) as (1)y; < a; ® p;, if a; = B3, (2) vi < a; @ B ® a1 if oy # B; but
eq(a, B8,7)i—1 = 1and (3)y; « «; if a; # B; andeq(«, 3,7);—1 = 0. Since the two
last cases are sound, according to Algorithm 3, we are ndvidgirove that the first
choice makes optimal.

But this choice means that in every maximum-length commtuanradting bit chain
a; = Bi # aj—1 = Bim1 # ... # Qi—gr41 = Bi—er41, Algorithm 4 chooses all bits
vj» J € [i — €7 + 1,i], to be equal tav;_¢r 11 = Bi—¢r 1. By approximately the same
arguments as in the proof of Theorem 3, this choice givesaisg /2| bad bit positions
in the fragmenfi — ¢ + 1,1]; every other choice of bits; would result in at least as
many bad positions. Moreover, sineéa;11 = 811 # a; = f3;), it has to be the case
that either; 11 # Biy1 OF air1 = Biv1 = a; = B;. In the first case, both choicespf
make: + 1 bad. In the second case we must later tgkg <+ «a;11, which makes + 1
good, and enables us to start the next fragment from thei@osit- 1. (Intuitively, this
last fact is also the reason whyp” is here preferred oveiop.) O

Note that Biham and Shamir used the fa®P*"(a,f—a®p) =
2—wn((avB)Amask(n—1)) in their differential cryptanalysis of FEAL in [BS91b].
Often this value is significantly smaller than the maximurffedential probability
DP/,.(a, B). For example, ifae = 3 = 2" — 1, thenDP} (a,3) = %, while
DP" (o, = a®) = DP'(a, B — 0) = 27!, However, since FEAL only uses
8-bit addition, it is possible to finda, 3)-optimal output differences by exhaustive
search. This has been done, for example, in [AKM98].

6.3 Log-time Algorithm for Double-Maximum Differential Pr obability

We next show that thdouble-maximum differential probability

"

of addition can be computed in tinlog n). (As seen from Algorithm P (a, B)

is a symmetric function and hend®Pj,,, (a) is equal toDP*(a, f +—) maxi-
mized under any two of its three arguments.) In particulae, next theorem shows

(a)
o

g

E
-2
A3
5“3 -4

0 16 32 48 64 80 96 112 128 144 160 176 192 208 224 240

«

Fig. 2. Tabulatlon of valuedog, DPQW(), 0 < a < 255, for n = 8. For example,

DP},..(64) = £ andDP}, (53) =2*
thatDP3, .. (a) is equal to the (more relevant for the DC) valuexso DP,, (o, B)

whenevera # 0. Note that the naive algorithm for the same problem worksnret
2(2*"), which makes it practically infeasible even for= 16.

Theorem 5. For everya € X", Algorithm 5 computeBP5. _ () in time@(logn).

Proof (Sketch)By the same arguments as in the proof of previous theoremngiputs
(a, @), the valuey:=a ® (C’“(a a) A mask(n — 1)) is (a, a)-optimal. We now prove
by contradiction thaDP3. . (a) = DP, (a,a). Let 3 # « andy' be such that
DP*(a, B+ 4') > DP}, (a,a). By Algorlthms 2 and 4, thereis an< n — 1

such thateq(a, 8,7"); = 1 and C"(a,a); = 1. But then, on the other hand, since
the differential(a, 8 +— ') is possible and”"(a, «); = 1, it is also the case that

eq(a, 8,7)i—1 = 0. SinceC"(a,a); = 1 = CT(a a);—1 = 0, we have also that

C"(a a);_1 = 0. ThereforeDP* (a, + v') < DP/ (a,q). O

Straightforwardly, Theorem 5 helps to find many interespngperties oDP}, . . For
example,DP}, . (a) = 1iff a A (2°~' — 1) = 0, andmin, DP3, . (a) = 277/2,
Another consequence is thBlP2maX() =1iff (1) aA (27! —1) = —2° + 1 for
somel < s < n, 0r 2)a A (2” — 1) = 2° for some0 < s < n — 1. For better
understanding, all values &P5,,.. (a), n = 8, are depicted in Fig. 2.

Once again, our results may be compared with the results’'@9g&0’C95] that
show that for am-bit permutation (resp. composite permutation, contcbblg ann-
bit string) the expected probability of the maximum nonzgifterential is< n /2" *
(resp.~ 277).

Further Work and Acknowledgments

While we leave practical applications of our results as aenoguestion, we note that
our results have already been used in [MYO00] fiemcateddifferential cryptanalysis
of Twofish.

The current work bases somewhat on [Mor00], that had a (cDriaear-time al-
gorithm for DP ™, but with an incorrect proof. We would like to thank Eli Bihaor
notifying us about the results presented in the full versibfBS91b].

References

[AKM98] Kazumaro Aoki, Kunio Kobayashi, and Shiho Moriai h& Best Differential Charac-
teristic Search of FEALIEICE Trans. Fundamentgl&€£81-A(1):98-104, January 1998.

[Ber92] Thomas A. Berson. Differential Cryptanalysis M2tf with Applications to MD5. In
Ernest F. Brickell, editoAdvances in Cryptology—CRYPTO ;92lume 740 of_ecture
Notes in Computer Sciengeages 71-80. Springer-Verlag, 1993, 16—20 August 1992.

[BS91a] Eli Biham and Adi Shamir. Differential Cryptanalyf DES-like Cryptosystems.
Journal of Cryptology4(1):3-72, 1991.

[BS91b] Eli Biham and Adi Shamir. Differential Cryptanaiyof Feal and N-Hash. In Don-
ald W. Davies, editorAdvances on Cryptology — EUROCRYPT, 9tblume 547 of
Lecture Notes in Computer Sciengages 1-16, Brighton, UK, April 1991. Springer-
Verlag. Full version available from
http://www.cs.technion.ac.il/"biham/ ,as of April 2001.

[Dae95] Joan DaemerCipher and Hash Function Design. Strategies based on liaeal dif-
ferential cryptanalysisPhD thesis, Katholieke Universiteit Leuven, 1995.

[DGV93] Joan Daemen, René Govaerts, and Joos Vandewati@tabalysis of 2.5 Rounds of
IDEA. Technical Report 1, ESAT-COSIC, 1993.

[Knu99] Lars Knudsen. Some Thoughts on the AES ProcessidRobinment to the AES First
Round, 15 April 1999. Available from
http://www.ii.uib.no/"larsr/serpent/ , as of April 2001.

[LMMO91] Xuejia Lai, James L. Massey, and Sean Murphy. Markgiphers and Differential
Cryptanalysis. In Donald W. Davies, editérdvances on Cryptology — EUROCRYPT
'91, volume 547 ofLecture Notes in Computer Sciengages 17-38, Brighton, UK,
April 1991. Springer-Verlag.

[Miy98] Hiroshi Miyano. Addend Dependency of Differentiainear Probability of Addition.
IEICE Trans. Fundamental&£81-A(1):106—-109, January 1998.

[Mor00] Shiho Moriai. Cryptanalysis of Twofish (I). Iihe Symposium on Cryptography and
Information SecurityOkinawa, Japan, 26—28 January 2000. In Japanese.

[MY00] Shiho Moriai and Yiqun Lisa Yin. Cryptanalysis of T¥ieh (Il). Technical report,
IEICE, ISEC2000-38, July 2000.

[NK95] Kaisa Nyberg and Lars Knudsen. Provable SecurityiAstea Differential AttackJour-
nal of Cryptology 8(1):27-37, 1995.

[O’'C93] Luke J. O’Connor. On the Distribution of Charactits in Composite Permutations.
In Douglas R. Stinson, editofdvances on Cryptology — CRYPTO,'98lume 773 of
Lecture Notes in Computer Scienpgages 403—412, Santa Barbara, USA, August 1993.
Springer-Verlag.

[O’C95] Luke O’Connor. On the Distribution of Characteitstin Bijective MappingsJournal
of Cryptology 8(2):67—-86, 1995.

