
Efficient Algorithms for Computing Differential
Properties of Addition

Helger Lipmaa1 and Shiho Moriai2

1 Helsinki University of Technology, Department of ComputerScience and Engineering
P.O.Box 5400, FI-02015 HUT, Espoo, Finland

helger@tml.hut.fi
2 NTT Laboratories

1-1 Hikari-no-oka, Yokosuka, 239-0847 Japan
shiho@isl.ntt.co.jp

Abstract. In this paper we systematically study the differential properties of ad-
dition modulo2n. We derive�(log n)-time algorithms for most of the properties,
including differential probability of addition. We also present log-time algorithms
for finding good differentials. Despite the apparent simplicity of modular addi-
tion, the best known algorithms require naive exhaustive computation. Our re-
sults represent a significant improvement over them. In the most extreme case,
we present a complexity reduction from
(2

4n

) to�(log n).

Keywords: modular addition, differential cryptanalysis, differential probability, impos-
sible differentials, maximum differential probability.

1 Introduction

One of the most successful and influential attacks against block ciphers is Differential
Cryptanalysis (DC), introduced by Biham and Shamir in 1991 [BS91a]. For many of
the block ciphers proposed since then, provable security against DC (defined by Lai,
Massey and Murphy [LMM91] and first implemented by Nyberg andKnudsen [NK95])
has been one of the primary criteria used to confirm their potential quality.

Unfortunately, few approaches to proving security have been really successful. The
original approach of [NK95] has been used in designing MISTYand its variant KA-
SUMI (the new 3GPP block cipher standard). Another influential approach has been
the “wide trail” strategy proposed by Daemen [Dae95], applied for example in the pro-
posed AES, Rijndael. The main reason for the small number of successful strategies is
the complex structure of modern ciphers, which makes exact evaluation of their differ-
ential properties infeasible. This has, unfortunately, led to a situation where the security
against DC is often evaluated by heuristic methods.

We approach the above problem by using the bottom-up methodology. That is, we
evaluate many sophisticated differential properties of one of the most-used “non-trivial”
block cipher cornerstones,addition modulo2n for n � 1. We hope that this will help
to evaluate the differential properties of larger composite cipher parts like the Pseudo-
Hadamard Transform, with the entire cipher being the final goal. The algorithms pro-
posed here will enable the advanced cryptanalysis of block ciphers. We hope that our

results will facilitate cryptanalysis of such stream ciphers and hash functions that use
addition and XOR at the same time.

Importance of Differential Properties of Addition. Originally, DC was considered
with respect to XOR, and was generalized to DC with respect toan arbitrary group
operation in [LMM91]. In 1992, Berson [Ber92] observed thatfor many primitive op-
erations, it is significantly more difficult to apply DC with respect to XOR than with
respect to addition modulo232. Most interestingly, he classified DC of addition modulo
2

n itself, with n sufficiently big, with respect to XOR to be hard to analyze, given the
(then) current state of theory.

Until now it has seemed that the problem of evaluating the differential properties of
addition with respect to XORis hard. Hereafter, we omit the “with respect to XOR” and
take the addition to be always modulo2n. The fastest known algorithms for computing
the differential probability of additionDP

+

(�; � 7!
):=P

x;y

[(x + y) � ((x � �) +

(y � �)) =
℄ is exponential inn. The complexity of the algorithms for the maximum
differential probabilityDP

+

max

(�; �):=max

DP

+

(�; � 7!
), the double-maximum
differential probabilityDP

+

2max

(�):=max

�;

DP

+

(�; � 7!
), and many other differ-
ential properties of addition are also exponential inn.

With smalln (e.g.,n = 8 or even withn = 16), exponential-in-n computation is
feasible, as demonstrated in the cryptanalysis of FEAL by Aoki, Kobayashi and Moriai
in [AKM98]. However, this is not the case whenn � 32 as used in the recent 128-bit
block ciphers such as MARS, RC6 and Twofish. In practice, ifn � 32, both cipher
designers and cryptanalysts have mostly made use of only a few differential properties
of addition. (For example, lettingx

0

be the least significant bit ofx, they often use
the property that�

0

� �

0

�

0

= 0.) It means that block ciphers that employ both
XOR and addition modulo2n are hard to evaluate the security against DC due to the
lack of theory. This has led to the general concern that mixeduse of XOR and modular
addition might add more confusion (in Shannon’s sense) to a cipher but “none has yet
demonstrated to have a clear understanding of how to produceany proof nor convincing
arguments of the advantage of such an approach” [Knu99]. Onecould say that they also
add more confusion to the cipher in the layman’s sense.

There has been significant ongoing work on evaluating the security of such “confus-
ing” block ciphers against differential attacks. Some of these papers have also somewhat
focused on the specific problem of evaluating the differential properties of addition. The
full version of [BS91b] treated some differential probabilities of addition modulo2n

and included a few formulas useful to computeDP

+, but did not include any concrete
algorithms nor estimations of their complexities. The sameis true for many later papers
that analyzed ciphers like RC5, SAFER, and IDEA. Miyano [Miy98] studied the sim-
pler case with one addend fixed and derived a linear-time algorithm for computing the
corresponding differential probability.

Our Results. We develop a framework that allows the extremely efficient evaluation
of many interesting differential properties of modular addition. In particular, most of
the algorithms described herein run in time, sublinear inn. Since this would be impos-
sible in the Turing machine model, we chose to use a realisticunit-cost RAM (Random

Access Machine) model, which executes basicn-bit operations like Boolean operations
and addition modulo2n in unit time, as almost all contemporary microprocessors do.

The choice of this model is clearly motivated by the popularity of such micropro-
cessors. Still, for several problems (although sometimes implicitly) we also describe
linear-time algorithms that might run faster in hardware. (Moreover, the linear-time
algorithms are usually easier to understand and hence servean educational purpose.)
Nevertheless, the RAM model was chosen to be “minimal”, suchthat the described
algorithms would be directly usable on as many platforms as possible. On the other
hand, we immediately demonstrate the power of this model by describing some useful
log-time algorithms (namely, for the Hamming weight, all-one parity and common al-
ternation parity). They become very useful later when we investigate other differential
properties. One of them (for the common alternation parity)might be interesting by
itself; we have not met this algorithm in the literature.

After describing the model and the necessary tools, we show thatDP

+ can be com-
puted in time�(logn) in the worst-case. The corresponding algorithm has two princi-
pal steps. The first step checks in constant-time whether thedifferentialÆ = (�; � 7!
)

is impossible (i.e., whetherDP

+

(Æ) = 0). The second step, executed only ifÆ is possi-
ble, computes the Hamming weight of ann-bit string in time�(log n). As a corollary,
we prove an open conjecture from [AKM98].

The structure of the described algorithm raises an immediate question of what is
the density of the possible differentials. We show that the event DP

+

(Æ) 6= 0 oc-

curs with the negligible probability1
2

�

�

7

8

�

n�1

(This proves an open conjecture stated
in [AKM98]). That is, the density of possible differentialsis negligible, soDP

+ can be
computed in time�(1) in the average-case. These results can be further used for im-
possible differential cryptanalysis, since the best previously known general algorithm
to find non-trivial impossible differentials was by exhaustive search. Moreover, the high
density of impossible differentials makes differential cryptanalysis more efficient; most
of the wrong pairs can be filtered out [BS91a,O’C95].

Furthermore, we compute the explicit probabilitiesP
Æ

[DP

+

(Æ) = i℄ for anyi; 0 �
i � 1. This helps us to compute the distribution of the random variableX : Æ 7!

DP

+

(Æ), and to create formulas for the expected value and variance of the random
variableX . Based on this knowledge, one can easily compute the probabilities that
P[X > i℄ for anyi.

For the practical success of differential attacks it is not always sufficient to pick a
random differential hoping it will be “good” with reasonable probability. It would be
nice to find good differentials efficiently in a deterministic way. Both cipher designers
and cryptanalysts are especially interested in finding the “optimal” differentials that re-
sult in the maximum differential probabilities and therefore in the best possible attacks.
For this purpose we describe a log-time algorithm for computingDP

+

max

(�; �) and a

that achieves this probability. Both the structure of the algorithm (which makes use of
the all-one parity) and its proof of correctness are nontrivial. We also describe a log-
time algorithm that finds a pair(�;
) that maximizes the double-maximum differential
probabilityDP

+

2max

(�). We show that for many nonzero�-s,DP

+

2max

(�) is very close
to one. A summary of some of our results is presented in Table 1.

DP

+

DP

+

max

DP

+

2max

Previous result

�

2

2n

�

�

2

3n

�

�

2

4n

�

Our result �(log n) (worst-case),�(1) (average)�(log n) �(log n)

Table 1.Summary of the efficiency of our main algorithms

Road map. We give some preliminaries in Sect. 2. Section 3 describes a unit-cost
RAM model, and introduces the reader to several efficient algorithms that are crucial
for the later sections. In Sect. 4 we describe a log-time algorithm for DP

+. Section 5
gives formulas for the density of impossible differentialsand other statistical properties
of DP

+. Algorithms for maximum differential probability and related problems are
described in Sect. 6.

2 Preliminaries

Let � = f0; 1g be the binary alphabet. For anyn-bit string x 2 �

n, let x
i

2 �

be thei-th coordinate ofx (i.e., x =

P

n�1

i=0

x

i

2

i). We always assume thatx
i

= 0 if
i 62 [0; n� 1℄. (That is,x =

P

1

�1

x

i

2

i.)
Let �, _, ^ and: denoten-bit bitwise “XOR”, “OR”, “AND” and “negation”,

respectively. Letx� i (resp.x� i) denote the right (resp. the left) shift byi positions
(i.e.,x� i:=bx=2

i

 andx� i:=2

i

x mod 2

n). Addition is always performed modulo
2

n, if not stated otherwise. For anyx, y andz we defineeq(x; y; z):=(:x�y)^(:x�z)

(i.e.,eq(x; y; z)
i

= 1 () x

i

= y

i

= z

i

) andxor(x; y; z):=x� y � z. For anyn, let
mask(n):=2

n

� 1. For example,((:0)�1)

0

= 0.

Addition modulo 2n. Thecarry,
arry(x; y):=
 2 �n, x; y 2 �n, of additionx+y is
defined recursively as follows. First,

0

:=0. Second,

i+1

:=(x

i

^y

i

)�(x

i

^

i

)�(y

i

^

i

),
for everyi � 0. Equivalently,

i+1

= 1 () x

i

+ y

i

+

i

� 2. (That is, the carry bit

i+1

is a function of thesumx
i

+ y

i

+

i

.) The following is a basic property of addition
modulo2n.

Property 1. If (x; y) 2 �n

��

n, thenx+ y = x� y �
arry(x; y).

Differential Probability of Addition. We define thedifferential of addition modulo
2

n as a triplet of two input and one output differences, denotedas(�; � 7!
), where
�; �;
 2 �

n. Thedifferential probability of additionis defined as follows:

DP

+

(Æ) = DP

+

(�; � 7!
):=P

x;y

[(x + y)� ((x � �) + (y � �)) =
℄ :

That is,DP

+

(Æ):=℄fx; y : (x+ y)� ((x � �) + (y � �)) =
g=2

2n. We say thatÆ is
impossibleif DP

+

(Æ) = 0. Otherwise we say thatÆ is possible. It follows directly from
Property 1 that one can rewrite the definition ofDP

+ as follows:

Lemma 1. DP

+

(�; � 7!
) = P

x;y

[
arry(x; y)�
arry(x��; y��) = xor(�; �;
)℄.

Probability Theory. Let X be a discrete random variable. Except for a few explic-
itly mentioned cases, we always deal with uniformly distributed variables. We note
that in thebinomial distribution, P[X = k℄ = p

k

(1 � p)

n�k

�

n

k

�

=:b (k;n; p), for
some fixed0 � p � 1 and anyk 2 ZZ

n+1

. From the basic axioms of probabil-
ity,

P

n

k=0

b (k;n; p) = 1. Moreover, theexpectationE[X ℄ =

P

n

k=0

k � P[X = k℄

of a binomially distributed random variableX is equal tonp, while the variance
Var[X ℄ = E[X

2

℄�E[X ℄

2 is equal tonp(1� p).

3 RAM Model and Some Useful Algorithms

In then-bit unit-cost RAM model, some subset of fixedn-bit operations can be exe-
cuted in constant time. In the current paper, we specify thissubset to be a small set of
n-bit instructions, all of which are readily available in thevast majority of contemporary
microprocessors: Boolean operations, addition, and the constant shifts. We additionally
allow unit-cost equality tests and (conditional) jumps. Onthe other hand, our model
doesnot include table look-ups or (say) multiplications. Such a restriction guarantees
that algorithms efficient in this model are also efficient on avery broad class of plat-
forms, including FPGA and other hardware. This is further emphasized by the fact that
our algorithms need only a few bytes of extra memory and thus avery small circuit size
in hardware implementations.

Many algorithms that we derive in the current paper make heavy use of the three
non-trivial functions described below. The power of our minimal computational model
is stressed by the fact that all three functions can be computed in time�(log n).

Hamming Weight. The first function is theHamming weight function(also known as
the population countor, sometimes, assideways addition) w

h

: For x =

P

n�1

i=0

x

i

2

i,
w

h

(x) =

P

n�1

i=0

x

i

, i.e.,w
h

counts the “one” bits in ann-bit string. In the unit-cost
RAM model,w

h

(x) can be computed in�(log n) steps. Many textbooks contain (a
variation of) the next algorithm that we list here only for the sake of completeness.

INPUT: x
OUTPUT:w

h

(x)

1. x x� ((x�1) ^ 0x55555555L);
2. x (x ^ 0x33333333L) + ((x�2) ^ 0x33333333L);
3. x (x+ (x�4)) ^ 0x0F0F0F0FL;
4. x x+ (x�8);
5. x (x+ (x�16)) ^ 0x0000003FL;
6. Returnx;

Additional time-space trade-offs are possible in calculating the Hamming weight. If
n =
m, then one can precompute2
 values ofw

h

(i), 0 � i < 2

, and then findw
h

(x)

by doingm = n=
 table look-ups. This method is faster than the method described in
the previous paragraph ifm � log

2

n, which is the case ifn = 32 andm 2 f8; 16g.
However, it also requires more memory. While we do not discuss this method hereafter,
our implementations use it, since it offers better performance on 32-bit processors.

x = 00001000001100110000010101010100 ;

y = 01000000000000010110110001110100 ;

aop(x) = 00001000001000100000010101010100 ;

aop

r

(x) = 00001000000100010000010101010100 ;

C(x; y) = 00000000000000001000001001001010 ;

C

r

(x; y) = 00000000000000010000010010010100 :

Fig. 1. A pair (x; y) with corresponding valuesaop(x), aopr(x), C(x; y) andCr

(x; y). Here,
for example,aop(x)

27

= 1 since1 = x

27

6= x

28

and28 � 27 = 1 is odd. On the other hand,
C

r

(x; y)

4

= 1 sincex
4

= y

4

6= x

3

= y

3

6= x

2

= y

2

6= x

1

= y

1

= x

0

= y

0

, and4� 0 is even.
Since`

5

= 0, we could have taken alsoC(x; y)

5

= 1

Interestingly, many ancient and modern power architectures have a special machine-
level “cryptanalyst’s” instruction forw

h

(mostly known as thepopulation countinstruc-
tion): SADDon the Mark I (sic), CXi Xj on the CDC Cyber series,Ai PSj on the
Cray X-MP,VPCNTon the NEC SX-4,CTPOPon the Alpha 21264,POPCon the Ul-
tra SPARC,POPCNTon the Intel IA64, etc. In principle, we could incorporate inour
model a unit-time population count instruction, then several later presented algorithms
would run in constant time. However, since there is no population count instruction on
most of the other architectures (especially on the widespread Intel IA32 platform), we
have decided not include it in the set of primitive operations. Moreover, the complexity
of population count does not significantly influence the (average-case) complexity of
the derived algorithms.

All-one and Common Alternation Parity. The second and third functions, important
for several derived algorithms (more precisely, they are used in Algorithm 4 and Al-
gorithm 5), are the all-one and common alternation parity ofn-bit strings, defined as
follows. (Note that while the Hamming weight has very many useful applications in
cryptography, the functions defined in this section have never been, as far as we know,
used before for any cryptographic or other purpose.)

Theall-one parityof ann-bit numberx is anothern-bit numbery = aop(x) s.t.
y

i

= 1 iff the longest sequence of consecutive one-bitsx

i

x

i+1

: : : x

i+j

= 11 : : :1 has
odd length.

Thecommon alternation parityof two n-bit numbersx andy is a functionC(x; y)

with the next properties: (1)C(x; y)

i

= 1, if `
i

is even and non-zero, (2)C(x; y)

i

= 0,
if `

i

is odd, (3) unspecified (either0 or 1) if `
i

= 0, where`
i

is the length of the longest
common alternating bit chainx

i

= y

i

6= x

i+1

= y

i+1

6= x

i+2

= y

i+2

: : : 6= x

i+`

i

=

y

i+`

i

, wherei + `

i

� n � 1. (In both cases, counting starts with one. E.g., ifx

i

= y

i

butx
i+1

6= y

i+1

then`
i

= 1 andC(x; y)

i

= 0.) W.l.o.g., we will define

C(x; y):=aop(:(x� y) ^ (:(x� y)�1) ^ (x� (x�1))) :

For both the all-one and common alternation parity we will also need their “du-
als” (denoted asaopr andCr), obtained by bit-reversing their arguments. That is,

Algorithm 1 Log-time algorithm foraop(x)
INPUT:x 2 �

n, n is a power of2
OUTPUT:aop(x)

1. x[1℄ = x ^ (x�1);
2. Fori 2 to log

2

n� 1 do x[i℄ x[i � 1℄ ^ (x[i� 1℄�2

i�1

);
3. y[1℄ x ^ :x[1℄;
4. Fori 2 to log

2

n do y[i℄ y[i� 1℄ _ ((y[i� 1℄�2

i�1

) ^ x[i� 1℄);
5. Returny[log

2

n℄;

aop

r

(x; y) = aop(x

0

; y

0

), wherex0
i

:= x

n�i

andy0
i

:= y

n�i

. (See Fig. 1.) Note that for
every(x; y) andi, C(x; y)

i

= 1) C(x; y)

i+1

= C(x; y)

i�1

= 0.
Clearly, Algorithm 1 finds the all-one parity ofx in time�(log n). (It is sufficient

to note thatx[i℄
j

= 1 if and only if the numbern
j

of ones in the sequence(x
j

=

1; x

j+1

= 1; : : : ; x

j+n

j

�1

= 1; x

j+n

j

�2

= 0) is at least2i andy[i℄
j

= 1 iff n
j

is
an odd number not bigger than2j .) Therefore alsoC(x; y) can be computed in time
�(log n).

4 Log-time Algorithm for Differential Probability of Addit ion

In this section we say that differentialÆ = (�; � 7!
) is “good” if eq(�� 1; ��

1;
 � 1) ^ (xor(�; �;
) � (� � 1)) = 0. Alternatively, Æ is not “good” iff for
somei 2 [0; n � 1℄, �

i�1

= �

i�1

=

i�1

6= �

i

� �

i

�

i

. (Remember that
�

�1

= �

�1

=

�1

= 0.) The next algorithm has a simple linear-time version, suitable
for “manual cryptanalysis”: (1) Check, whetherÆ is “good”, using the second definition
of “goodness”; (2) IfÆ is “good”, count the number of positionsi 6= n�1, s.t. the triple
(�

i

; �

i

;

i

) contains both zeros and ones.

Theorem 1. Let Æ = (�; � 7!
) be an arbitrary differential. Algorithm 2 returns
DP

+

(Æ) in time�(log n). More precisely, it works in time�(1)+ t, wheret is the time
it takes to computew

h

.

Algorithm 2 Log-time algorithm forDP

+

INPUT: Æ = (�; � 7!
)

OUTPUT:DP

+

(Æ)

1. If eq(��1; ��1;
�1) ^ (xor(�; �;
)� (��1)) 6= 0 then return0;
2. Return2�w

h

(:eq(�;�;
)^mask(n�1));

Rest of this subsection consists of a step-by-step proof of this result, where we use
the Lemma 1, i.e., thatDP

+

(Æ) = P

x;y

[
arry(x; y)�
arry(x��; y��) = xor(�; �;
).

We first state and prove two auxiliary lemmas. After that we show how Theorem 1
follows from them, and present two corollaries.

Lemma 2. LetL(x) be a mapping, such thatL(0) = 0,L(1) = L(2) =

1

2

andL(3) =
1. Let�; � 2 �n. ThenP

x;y

[
arry(x; y)

i+1

�
arry(x � �; y � �)

i+1

= 1j�

i

+ �

i

+

�

i

= j℄ = L(j).

Proof. We denote
 =
arry(x; y) and
� =
arry(x � �; y � �), wherex andy are
understood from the context. Let also�
 =
�

�. By the definition of carry,�

i+1

=

(x

i

^y

i

)�(x

i

^

i

)�(y

i

^

i

)�((x��)

i

^(y��)

i

)�((x��)

i

^

�

i

)�((y��)

i

^

�

i

).
This formula for�

i+1

is symmetric in the three pairs(x
i

; �

i

), (y
i

; �

i

) and(

i

; �

i

).
Hence, the functionf(�

i

; �

i

; �

i

):=P

x

i

;y

i

;

i

[�

i+1

= 1℄ is symmetric, and therefore
f is a function of�

i

+�

i

+�

i

, f(j) = P

x

i

;y

i

;

i

[�

i+1

= 1j�

i

+�

i

+�

i

= j℄. One
can now prove thatP

x

i

;y

i

[�

i+1

= 1j�

i

+ �

i

+�

i

= j℄ = L(j) for any0 � j � 3,
and for any value of

i

2 f0; 1g. For example,P
x

i

;y

i

[�

i+1

= 1j�

i

+ �

i

+ �

i

=

1℄ = P

x

i

;y

i

[�

i+1

= 1j(�

i

; �

i

; �

i

) = (0; 0; 1)℄ = P

x

i

;y

i

[(x

i

^

i

) � (y

i

^

i

) �

(x

i

^ :

i

) � (x

i

^ :

i

) = 1℄ = P

x

i

;y

i

[x

i

= y

i

℄ =

1

2

. The claim follows since
P

x;y

[�

i+1

℄ = P

x

i

;y

i

[�

i+1

℄. ut

Lemma 3. 1) Every possible differential is “good”.
2) LetÆ = (�; � 7!
) be “good”. If i 2 [0; n� 1℄, thenP

x;y

[
arry(x; y)

i

�
arry(x�

�; y � �)

i

= 1j�

i�1

+ �

i�1

+

i�1

= j℄ = L(j). In particular,P
x;y

[
arry(x; y)

0

�

arry(x� �; y � �)

0

= 0℄ = 1.

Proof. 1) Let Æ be possible but not “good”. By Lemma 1, there exists ani and a pair
(x; y), s.t.
arry(x; y)

i+1

�
arry(x��; y��)

i+1

= xor(�; �;
)

i+1

6= �

i

= �

i

=

i

.
Note that thenxor(�; �;
)

i

=

i

. But by Lemma 2,P
x

i

;y

i

[
arry(x; y)

i+1

�
arry(x�

�; y � �)

i+1

6=

i

j�

i

= �

i

=

i

℄ = 0, which is a contradiction.
2) Let Æ be “good”. We prove the theorem by induction oni, by simultaneously

proving the induction invariantP
x;y

[
arry(x; y)�
arry(x � �; y � �) = xor(�; �;
)

(mod 2

i

)℄ > 0. BASE (i = 0). Straightforward from Property 1 and the definition
of a “good” differential. STEP (i + 1 > 0). We assume that the invariant is true for
i. In particular, there exists a pair(x; y), s.t.�

i�1

= xor(�; �;
)

i�1

, where�
 =

arry(x; y) �
arry(x � �; y � �). Then, by Lemma 2,L(j) = P

x;y

[�

i

= 1j�

i�1

+

�

i�1

+�

i�1

= j℄ = P

x;y

[�

i

= 1j�

i�1

+�

i�1

+xor(�; �;
)

i�1

= j℄ = P

x;y

[�

i

=

1j�

i�1

+ �

i�1

+

i�1

= j℄, where the last equation follows from the easily verifiable
equalityL(a

1

+ a

2

+ a

3

) = L(a

1

+ a

2

+ xor(a

1

; a

2

; a

3

)), for everya
1

; a

2

; a

3

2 � .
This proves the theorem claim fori. The invariant fori, �

i

= xor(�; �;
)

i

, follows
from that and the “goodness” ofÆ. ut

Proof (Theorem 1).First, Æ is “good” iff it is possible. (The “if” part follows from the
first claim of Lemma 3. The “only if” part follows from the second claim of Lemma 3
and the definition of a “good” differential.) LetÆ be possible. Then, by Lemma 1,
DP

+

(Æ) =

Q

n�2

i=0

P

x;y

[
arry(x; y)

i

�
arry(x � �; y � �)

i

= xor(�; �;
)

i

℄. By
Lemma 2,P

x;y

[
arry(x; y)

i

�
arry(x � �; y � �)

i

= xor(�; �;
)

i

℄ is either1 or
1

2

, depending on whether�
i�1

= �

i�1

=

i�1

or not. (This probability cannot be0,

sinceÆ is possible and hence “good”.) Therefore,DP

+

(Æ) = 2

�

P

n�2

i=0

:eq(�;�;
)

i

=

2

�w

h

(:eq(�;�;
)^mask(n�1)), as required. Finally, the only non-constant time computa-
tion is that of Hamming weight. ut

Note thattechnically, for Algorithm 2 to be log-time it would have to return (say)�1
if the differential is impossible, orlog

2

DP

+

(Æ), if it is not. (The other valid possibility
would be to include data-dependent shifts in the set of unit-cost operations.)

The next two corollaries follow straightforwardly from Algorithm 2

Corollary 1. DP

+ is symmetric in its arguments. That is, for an arbitrary triple
(�; �;
), DP

+

(�; � 7!
) = DP

+

(�; � 7!
) = DP

+

(�;
 7! �). Therefore, in par-
ticular, max

�

DP

+

(�; � 7!
) = max

�

DP

+

(�; � 7!
) = max

DP

+

(�; � 7!
).

Corollary 2. 1) [Conjecture 1, [AKM98].] Let� + � = �

0

+ �

0 and� � � = �

0

�

�

0. Then for every
, DP

+

(�; � 7!
) = DP

+

(�

0

; �

0

7!
). 2) For every�, �,
,
DP

+

(�; � 7!
) = DP

+

(� ^ �; � _ � 7!
).

Proof. We say that(�; �) and(�0; �0) areequivalent, if f�
i

; �

i

g = f�

0

i

; �

0

i

g for i <
n � 1, and�

n�1

� �

n�1

= �

0

n�1

� �

n�1

. If (�; �) and(�0; �0) are equivalent then
DP

+

(�; � 7!
) = DP

+

(�

0

; �

0

7!
) by the structure of Algorithm 2.
1) The corresponding carries
 =
arry(�; �) and
0 =
arry(�

0

; �

0

) are equal, since

 = (�� �)� (�+ �) = (�

0

� �

0

)� (�

0

+ �

0

) =

0. Therefore,�+ � = �

0

+ �

0 and
�� � = �

0

� �

0 iff (�; �) and(�0; �0) are equivalnet.
2) The second claim is straightforward, since(�; �) and(�^�; �_�) are equivalent

for any� and�. ut

Note that a pair(x; y) is equivalent to21+w

h

((x�y)^mask(n�1)) different pairs(x�; y�).
In [DGV93, Sect. 2.3] it was briefly mentioned that the numberof such pairs is not more
than2

w

h

(x�y); this result was used to cryptanalyse IDEA. The second claimcarries
unexpected connotations with the well known fact that�+ �

0

= (� ^ �

0

) + (� _ �

0

).

5 Statistical Properties of Differential Probability

Note that Algorithm 2 has two principal steps. The first step is a constant-time check of
whether the differentialÆ = (�; � 7!
) is impossible (i.e., whetherDP

+

(Æ) = 0). The
second step, executed only ifÆ is possible, computes in log-time the Hamming weight
of ann-bit string. The structure of this algorithm raises an immediate question of what
is the densityP

Æ

[DP

+

(Æ) 6= 0℄ of the possible differentials, since its average-case
complexity (where the average is taken over uniformly and random chosen differentials
Æ) is�(P

Æ

[DP

+

(Æ) = 0℄+P

Æ

[DP

+

(Æ) 6= 0℄ � logn). This is one (but certainly not the
only or the most important) motivation for the current section.

Let X : Æ 7! DP

+

(Æ) be a uniformly random variable. We next calculate the
exact probabilitiesP[X = i℄ for any i. From the results we can directly derive the
distribution ofX . Knowing the distribution, one can, by using standard probabilistic
tools, calculate the values of many other interesting probabilistic properties like the
probabilitiesP[X > i℄ for anyi.

Theorem 2. 1) [Conjecture 2, [AKM98].]P[X 6= 0℄ =

1

2

�

�

7

8

�

n�1

.

2) Let 0 � k < n. ThenP[X = 2

�k

℄ = 2

2+k�3n

� 3

k

�

�

n�1

k

�

=

1

2

�

�

7

8

�

n�1

�

b

�

k;n� 1;

6

7

�

.

Proof. Let Æ = (�; � 7!
) be an arbitrary differential and lete = eq(�; �;
), e0 =
eq(�� 1; �� 1;
� 1) andx = xor(�; �;
) � (�� 1)) be convenient shorthands.
Since�, � and
 are mutually independent,e andx (and alsoe0 andx) are pairwise
independent.

1) From Theorem 1,P[X 6= 0℄ = P

Æ

[e

0

^ x = 0℄ =

Q

n�1

i=0

(1 � P

Æ

[e

0

i

= 1; x

i

=

1℄) =

Q

n�1

i=0

(1 � P

Æ

[e

0

i

= 1℄ � P

Æ

[x

i

= 1℄) =

�

1� 1 �

1

2

�

�

Q

n�1

i=1

�

1�

1

4

�

1

2

�

=

1

2

�

�

7

8

�

n�1

.
2) Letm = mask(n � 1). First, clearly, for any0 � k < n, P

Æ

[w

h

(e) = k℄ =

P

�;�;
2�

n

[w

h

(e) = k℄ =

�

1

4

�

k

�

�

3

4

�

n�k

�

�

n

k

�

= b

�

k;n;

1

4

�

and thereforeP
Æ

[w

h

(:e^

m) = k℄ = b

�

n� 1� k;n� 1;

1

4

�

=

�

1

4

�

n�1�k

�

�

3

4

�

k

�

�

n�1

k

�

= 2

2�2n

� 3

k

�

�

n�1

k

�

.
LetA denote the eventw

h

(e^m) = n�1�k and letB denote the evente0^x = 0.
LetB

i

be the evente0
i

^x

i

= 0. According to Algorithm 2,P[X = 2

�k

℄ = P

Æ

[A;B℄ =

P

Æ

[A℄ �P

Æ

[BjA℄ = P

Æ

[A℄ �

Q

n�1

i=0

P

Æ

[B

i

jA℄ =

1

2

�P

Æ

[A℄ �

Q

n�1

i=1

P

Æ

[B

i

jA℄, where we
used the fact thate0

0

= 1.
Now, if i > 0 thenP

Æ

[B

i

je

0

i

= 1℄ = P

Æ

[x

i

= 0℄ =

1

2

, while P
Æ

[B

i

= 0je

0

i

=

0℄ = 1. Moreover,e0
i

= e

i�1

. Therefore,
Q

n�1

i=0

P

Æ

[B

i

jA℄ =

�

1

2

�

n�1�k

, and hence

P[X = 2

�k

℄ =

1

2

�P

Æ

[A℄ �

Q

n�1

i=0

P

Æ

[B

i

jA℄ =

1

2

�b

�

n� 1� k;n� 1;

1

4

�

�

�

1

2

�

n�1�k

=

1

2

�2

2�2n

�3

k

�

�

n�1

k

�

�2

1+k�n

= 2

2+k�3n

�3

k

�

�

n�1

k

�

=

1

2

�

�

7

8

�

n�1

�b

�

k;n� 1;

6

7

�

. ut

Corollary 3. Algorithm 2 has average-case complexity�(1).

As another corollary,X = X

0

+X

1

, whereX
1

; X

2

: Æ 7! DP

+

(Æ) are two random
variables.X

0

has domainD(X
0

) = fÆ 2 �

3n

: DP

+

(Æ) = 0g, whileX
1

has the com-
plementary domainD(X

1

) = fÆ 2 �

3n

: DP

+

(Æ) 6= 0g. Moreover,X
0

has constant
distribution (sinceP[X

0

= 0℄ = 1), while the random variable� log

2

X

1

has binomial
distribution withp =

6

7

. Knowledge of the distribution helps to find further properties
of DP

+ (e.g., the probabilities thatDP

+

(Æ) > 2

�k) by using standard methods from
probability theory.

One can double-check the correctness of Theorem 2 by verifying that1
2

� (

7

8

)

n�1

�

P

n�1

k=0

b

�

k;n� 1;

6

7

�

=

P

n�1

k=0

P[X = 2

�k

℄ = P[X 6= 0℄ =

1

2

�

�

7

8

�

n�1

. Moreover,
clearlyP[X = 2

�k

℄ = jD(X

0

)j � P[X

0

= 2

�k

℄ + jD(X

1

)j � P[X

1

= 2

�k

℄ =

1

2

�

�

7

8

�

n�1

� b

�

k;n� 1;

6

7

�

, which agrees with Theorem 2.

We next compute the variance ofX . Clearly,E[X ℄ =

P

n�1

k=0

2

�k

P[X = 2

�k

℄ =

2

�n, and thereforeE[X ℄

2

= 2

�2n. Next, by using Theorem 2 and the basic properties
of the binomial distribution,E[X2

℄ = 0 �P[X

2

= 0℄+

P

n�1

k=0

2

�2k

�P[X

2

= 2

�2k

℄ =

1

2

�

�

7

8

�

n�1

�

P

n�1

k=0

2

�2k

� b

�

k;n� 1;

6

7

�

=

1

2

�

�

5

16

�

n�1

�

P

n�1

i=0

b

�

k;n� 1;

3

5

�

=

1

2

�

�

5

16

�

n�1

. Therefore,Var[X ℄ =

1

2

�

�

5

16

�

n�1

� 2

�2n

=

1

2

�

�

�

5

16

�

n�1

�

�

4

16

�

n�1

�

.

Note that the density of possible differentialsP[X 6= 0℄ is exponentially small inn.
This can be contrasted with a result of O’Connor [O’C95] thata randomly selectedn-bit

Algorithm 3 Algorithm that finds all
-s, s.t.DP

+

(�; � 7!
) = DP

+

max

(�; �)

INPUT: (�; �)
OUTPUT: All (�; �)-optimal output differences

1.

0

 �

0

� �

0

;
2. p C(�; �);
3. Fori 1 to n � 1 do

If �
i�1

= �

i�1

=

i�1

then

i

 �

i

� �

i

� �

i�1

else ifi = n � 1 or �
i

6= �

i

or p
i

= 1 then

i

 f0; 1g

else

i

 �

i

;
4. Return
.

permutation has a fraction of1�e�1=2 � 0:4 impossible differentials, independently of
the choice ofn. Moreover, a randomly selectedn-bit composite permutation [O’C93],
controlled by ann-bit string, has a negligible fraction� 2

3n

=e

2

n

�1 of impossible dif-
ferentials.

6 Algorithms for Finding Good Differentials of Addition

The last section described methods for computing the probability that a randomly
picked differentialÆ has high differential probability. While this alone might give rise
to successful differential attacks, it would be nice to havean efficient deterministic al-
gorithm for finding differentials with high differential probability. This section gives
some relevant algorithms for this.

6.1 Linear-time Algorithm for DP+
max

In this subsection, we will describe an algorithm that, given an input difference(�; �),
finds all output differences
, for which DP

+

(�; � 7!
) is equal to themaximum
differential probability of addition,DP

+

max

(�; �):=max

DP

+

(�; � 7!
). (By Corol-
lary 1, we would get exactly the same result when maximizing the differential probabil-
ity under� or �.) We say that such
 is (�; �)-optimal. Note that when an(�; �)-
optimal
 is known, the maximum differential probability can be foundby apply-
ing Algorithm 2 to Æ = (�; � 7!
). Moreover, similar algorithms can be used
to find “near-optimal”
-s, wherelog

2

DP

+

(�; � 7!
) is only slightly smaller than
log

2

DP

+

max

(�; �).

Theorem 3. Algorithm 3 returns all(�; �)-optimal output differences
.

Proof (Sketch).First, we say that positioni is bad if eq(�; �;
)

i

= 0. According
to Theorem 1,
 is (�; �)-optimal if it is chosen so that (1) for everyi � 0, if
eq(�; �;
)

i�1

= 1 thenxor(�
i

; �

i

;

i

) = �

i�1

, and (2) the number of bad positionsi
is the least among all such output differences

0, for which(�; � 7!

0

) is possible. For

Algorithm 4 A log-time algorithm that finds an(�; �)-optimal

INPUT: (�; �)
OUTPUT: An(�; �)-optimal

1. r � ^ 1;
2. e :(�� �) ^ :r;
3. a e ^ (e�1) ^ (�� (��1));
4. p aop

r

(a);
5. a (a _ (a�1)) ^ :r;
6. b (a _ e)�1;
7.
 ((�� p) ^ a) _ ((�� � � (��1)) ^ :a ^ b) _ (� ^ :a ^ :b);
8.
 (
 ^ :1) _ ((�� �) ^ 1);
9. Return
.

achieving (1) we must first fix

0

 �

0

� �

0

, and after that recursively guarantee that

i

obtains the predicted value whenever�

i�1

= �

i�1

=

i�1

.
This, and minimizing the number of badi-s can be done recursively for every0 �

i � n � 1, starting fromi = 0. If �
i

6= �

i

theni is bad independently of the value of

i

2 f0; 1g. Moreover, either choice of
 places no restriction on choosing

i+1

. This
means that we can assign either

i

 0 or

i

 1.
The situation is more complicated if�

i

= �

i

. Intuitively, if `
i

= 2k > 0 is even,
then the choice

i

 �

i

(as compared to the choice

i

 :�

i

) will result in k bad
positions(i; i+2; : : : ; i+2k�2) instead ofk bad positions(i+1; i+3; : : : ; i+2k�1).
Thus these two choices are equal. On the other hand, if`

i

= 2k+1 > 0, then the choice

i

 �

i

would result ink bad positions compared tok+1 when

i

 �

i

, and hence is
to be preferred over the second one. We leave the full detailsof the proof to the reader.

ut

A linear-time algorithm that finds one(�; �)-optimal
 can be derived from Algorithm 3
straightforwardly, by assigning

i

 �

i

whenevereq(�; �;
)
i�1

= 0.
As an example, let us look at the casen = 16, � = 0x5254 and� = 0x1A45. Then

C(�; �) = 0x1244, and by Algorithm 3 the set of(�; �)-optimal values is equal to
2

15

�+2

12

P+2

11

�+2

4

�+1, whereP = f0; 3; 7g, and� = f0; 1g, as always. There-
fore, for example,DP

+

max

(0x5254; 0x1A45) = DP

+

(0x5254; 0x1A45 7! 0x7011) =

2

�8.

6.2 Log-time Algorithm for DP+
max

For a log-time algorithm we need a somewhat different approach, since in Algorithm 3
the value of

i

depends on that of

i�1

. However, luckily for us,

i

only depends on

i�1

if eq(�; �;
)
i�1

= 1, and as seen from the proof of Theorem 3, in many cases we
can choose the output difference

i�1

so thateq(�; �;
)
i�1

= 0!
Moreover, the positions whereeq(�; �;
)

i�1

= 1 must hold are easily detected.
Namely (see Algorithm 3), if (1)i = 0 and�

i

= �

i

= 0, or (2) i > 0 and�
i

= �

i

but p
i

= 0. Accordingly, we can replace the conditioneq(�; �;
)
i�1

= 1 with the

Algorithm 5 A log-time algorithm forDP

+

2max

(�)

INPUT:�
OUTPUT:DP

+

2max

(�)

1. Return2�w

h

(C

r

(�;�)^mask(n�1)).

condition:(�
i

� �

i

) ^ p

i

, and take additional care ifi is small. By noting how the
valuesp

i

are computed, one can prove that

Theorem 4. Algorithm 4 finds an(�; �)-optimal
.

Proof (Sketch, many details omitted).First, the value ofp computed in the step 4 is
“approximately” equal toCr

(�; �), with some additional care taken about the lowest
bits. Let `r be the bit-reverse of̀ (i.e., `r

i

is equal to the length of longest common
alternating chain�

i

= �

i

6= �

i�1

= �

i�1

6= : : :.). Step 7 computes

i

(again, “approx-
imately”) as (1)

i

 �

i

� p

i

, if �
i

= �

i

, (2)

i

 �

i

� �

i

� �

i�1

if �
i

6= �

i

but
eq(�; �;
)

i�1

= 1 and (3)

i

 �

i

if �
i

6= �

i

andeq(�; �;
)
i�1

= 0. Since the two
last cases are sound, according to Algorithm 3, we are now left to prove that the first
choice makes
 optimal.

But this choice means that in every maximum-length common alternating bit chain
�

i

= �

i

6= �

i�1

= �

i�1

6= : : : 6= �

i�`

r

i

+1

= �

i�`

r

i

+1

, Algorithm 4 chooses all bits

j

, j 2 [i � `

r

i

+ 1; i℄, to be equal to�
i�`

r

i

+1

= �

i�`

r

i

+1

. By approximately the same
arguments as in the proof of Theorem 3, this choice gives riseto b`

i

=2
 bad bit positions
in the fragment[i � `

r

i

+ 1; i℄; every other choice of bits

j

would result in at least as
many bad positions. Moreover, since:(�

i+1

= �

i+1

6= �

i

= �

i

), it has to be the case
that either�

i+1

6= �

i+1

or�
i+1

= �

i+1

= �

i

= �

i

. In the first case, both choices of

i

makei+1 bad. In the second case we must later take

i+1

 �

i+1

, which makesi+1

good, and enables us to start the next fragment from the position i+1. (Intuitively, this
last fact is also the reason whyaopr is here preferred overaop.) ut

Note that Biham and Shamir used the factDP

+

(�; � 7! �� �) =

2

�w

h

((�_�)^mask(n�1)) in their differential cryptanalysis of FEAL in [BS91b].
Often this value is significantly smaller than the maximum differential probability
DP

+

max

(�; �). For example, if� = � = 2

n

� 1, thenDP

+

max

(�; �) =

1

2

, while
DP

+

(�; � 7! �� �) = DP

+

(�; � 7! 0) = 2

n�1. However, since FEAL only uses
8-bit addition, it is possible to find(�; �)-optimal output differences
 by exhaustive
search. This has been done, for example, in [AKM98].

6.3 Log-time Algorithm for Double-Maximum Differential Pr obability

We next show that thedouble-maximum differential probability

DP

+

2max

(�):=max

�;

DP

+

(�; � 7!
) = max

�

DP

+

max

(�; �)

of addition can be computed in time�(log n). (As seen from Algorithm 3,DP

+

max

(�; �)

is a symmetric function and henceDP

+

2max

(�) is equal toDP

+

(�; � 7!
) maxi-
mized under any two of its three arguments.) In particular, the next theorem shows

�

l

o

g

2

D

P

+ 2

m

a

x

(

�

)

2402242081921761601441281129680644832160

0
-1
-2
-3
-4

Fig. 2. Tabulation of valueslog
2

DP

+

2max

(�), 0 � � � 255, for n = 8. For example,
DP

+

2max

(64) =

1

2

andDP

+

2max

(53) = 2

�4

thatDP

+

2max

(�) is equal to the (more relevant for the DC) valuemax

� 6=0

DP

+

max

(�; �)

whenever� 6= 0. Note that the naive algorithm for the same problem works in time

(2

4n

), which makes it practically infeasible even forn = 16.

Theorem 5. For every� 2 �n, Algorithm 5 computesDP

+

2max

(�) in time�(log n).

Proof (Sketch).By the same arguments as in the proof of previous theorem, given inputs
(�; �), the value
:=� � (C

r

(�; �) ^ mask(n� 1)) is (�; �)-optimal. We now prove
by contradiction thatDP

+

2max

(�) = DP

+

max

(�; �). Let � 6= � and
0 be such that
DP

+

(�; � 7!

0

) > DP

+

max

(�; �). By Algorithms 2 and 4, there is ani < n � 1

such thateq(�; �;
0)
i

= 1 andCr

(�; �)

i

= 1. But then, on the other hand, since
the differential(�; � 7!

0

) is possible andCr

(�; �)

i

= 1, it is also the case that
eq(�; �;

0

)

i�1

= 0. SinceCr

(�; �)

i

= 1) C

r

(�; �)

i�1

= 0, we have also that
C

r

(�; �)

i�1

= 0. ThereforeDP

+

(�; � 7!

0

) � DP

+

max

(�; �). ut

Straightforwardly, Theorem 5 helps to find many interestingproperties ofDP

+

2max

. For
example,DP

+

2max

(�) = 1 iff � ^ (2

n�1

� 1) = 0, andmin

�

DP

+

2max

(�) = 2

�n=2.
Another consequence is thatDP

+

2max

(�) =

1

2

iff (1) � ^ (2

n�1

� 1) = �2

s

+ 1 for
some0 � s < n, or (2)� ^ (2

n�1

� 1) = 2

s for some0 � s < n � 1. For better
understanding, all values ofDP

+

2max

(�), n = 8, are depicted in Fig. 2.
Once again, our results may be compared with the results in [O’C93,O’C95] that

show that for ann-bit permutation (resp. composite permutation, controlled by ann-
bit string) the expected probability of the maximum nonzerodifferential is� n=2

n�1

(resp.� 2

�n).

Further Work and Acknowledgments

While we leave practical applications of our results as an open question, we note that
our results have already been used in [MY00] fortruncateddifferential cryptanalysis
of Twofish.

The current work bases somewhat on [Mor00], that had a (correct) linear-time al-
gorithm forDP

+, but with an incorrect proof. We would like to thank Eli Bihamfor
notifying us about the results presented in the full versionof [BS91b].

References

[AKM98] Kazumaro Aoki, Kunio Kobayashi, and Shiho Moriai. The Best Differential Charac-
teristic Search of FEAL.IEICE Trans. Fundamentals, E81-A(1):98–104, January 1998.

[Ber92] Thomas A. Berson. Differential Cryptanalysis Mod232 with Applications to MD5. In
Ernest F. Brickell, editor,Advances in Cryptology—CRYPTO ’92, volume 740 ofLecture
Notes in Computer Science, pages 71–80. Springer-Verlag, 1993, 16–20 August 1992.

[BS91a] Eli Biham and Adi Shamir. Differential Cryptanalysis of DES-like Cryptosystems.
Journal of Cryptology, 4(1):3–72, 1991.

[BS91b] Eli Biham and Adi Shamir. Differential Cryptanalysis of Feal and N-Hash. In Don-
ald W. Davies, editor,Advances on Cryptology — EUROCRYPT ’91, volume 547 of
Lecture Notes in Computer Science, pages 1–16, Brighton, UK, April 1991. Springer-
Verlag. Full version available from
http://www.cs.technion.ac.il/˜biham/ , as of April 2001.

[Dae95] Joan Daemen.Cipher and Hash Function Design. Strategies based on linearand dif-
ferential cryptanalysis. PhD thesis, Katholieke Universiteit Leuven, 1995.

[DGV93] Joan Daemen, René Govaerts, and Joos Vandewalle. Cryptanalysis of 2.5 Rounds of
IDEA. Technical Report 1, ESAT-COSIC, 1993.

[Knu99] Lars Knudsen. Some Thoughts on the AES Process. Public Comment to the AES First
Round, 15 April 1999. Available from
http://www.ii.uib.no/˜larsr/serpent/ , as of April 2001.

[LMM91] Xuejia Lai, James L. Massey, and Sean Murphy. MarkovCiphers and Differential
Cryptanalysis. In Donald W. Davies, editor,Advances on Cryptology — EUROCRYPT
’91, volume 547 ofLecture Notes in Computer Science, pages 17–38, Brighton, UK,
April 1991. Springer-Verlag.

[Miy98] Hiroshi Miyano. Addend Dependency of Differential/Linear Probability of Addition.
IEICE Trans. Fundamentals, E81-A(1):106–109, January 1998.

[Mor00] Shiho Moriai. Cryptanalysis of Twofish (I). InThe Symposium on Cryptography and
Information Security, Okinawa, Japan, 26–28 January 2000. In Japanese.

[MY00] Shiho Moriai and Yiqun Lisa Yin. Cryptanalysis of Twofish (II). Technical report,
IEICE, ISEC2000-38, July 2000.

[NK95] Kaisa Nyberg and Lars Knudsen. Provable Security Against a Differential Attack.Jour-
nal of Cryptology, 8(1):27–37, 1995.

[O’C93] Luke J. O’Connor. On the Distribution of Characteristics in Composite Permutations.
In Douglas R. Stinson, editor,Advances on Cryptology — CRYPTO ’93, volume 773 of
Lecture Notes in Computer Science, pages 403–412, Santa Barbara, USA, August 1993.
Springer-Verlag.

[O’C95] Luke O’Connor. On the Distribution of Characteristics in Bijective Mappings.Journal
of Cryptology, 8(2):67–86, 1995.

