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Abstrat. In many ases, the seurity of a ryptographi sheme based

on DiÆe{Hellman does in fat rely on the hardness of the DiÆe{Hellman

Deision problem. In this paper, we show that the hardness of Deision

DiÆe{Hellman is a muh stronger hypothesis than the hardness of the

regular DiÆe{Hellman problem. Indeed, we desribe a reasonably looking

ryptographi group where Deision DiÆe{Hellman is easy while DiÆe{

Hellman is equivalent to a { presumably hard { Disrete Logarithm Prob-

lem. This shows that are should be taken when dealing with Deision

DiÆe{Hellman, sine its seurity annot be taken for granted.

1 Introdution

Browsing through the ryptographi protools based on DiÆe{Hellman, we �nd

that many of them rely on a stronger seurity hypothesis: the hardness of the

so-alled Deision DiÆe{Hellman problem. This is espeially true when aiming

at high seurity levels, suh as, for example, semanti seurity. Sine the Deision

DiÆe{Hellman problem has been introdued in ryptography [2℄, its hardness

has always been a onern: given a ryptographi group, is it suÆient to study

the disrete logarithm problem in that group or do we need to assess the seurity

of the DiÆe{Hellman and Deision DiÆe{Hellman problems in that partiular

group? In [7℄, Maurer andWolf have given a strong heuristi argument that shows

that the seurity of DiÆe{Hellman in a given group should not be a onern,

one the disrete logarithm problem is hard in that group. In this paper, we

address the ase of Deision DiÆe{Hellman and show that it is muh less hopeful.
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Indeed, we onstrut ryptographi groups based on ellipti urve ryptography

where Deision DiÆe{Hellman is easy, while DiÆe{Hellman itself is equivalent

to Disrete Logarithm. In order to onstrut suh groups, we use ideas from [7℄,

whih we turn pratial, to ensure the equivalene of DiÆe{Hellman and Disrete

Logarithm and from [4℄ to make Deision DiÆe{Hellman easy. The main result

of [4℄ was the introdution of a novel DiÆe{Hellman like protool that allows for

three partiipants, using pairings on ellipti urves. Yet it was also explained that

using the same tehnique, Deision DiÆe{Hellman an be made easy in some

speial ases. However, the speial ases that were given are somewhat arti�ial,

sine in order to get an eÆient onstrution two di�erent groups need to be

pasted together. An open question was to eÆiently onstrut a single ellipti

urve where the Deision DiÆe{Hellman problem beomes easy. In this paper,

we show how the tehnique from [4℄ an be adapted to deal with a ryptographi

group lying in a single ellipti urve.

2 Notations and bakground ideas

2.1 DiÆe{Hellman and related assumptions

When doing ryptography using disrete logarithms in a group G, there are

three related omplexity assumptions on whih the seurity usually relies. We

now desribe these three problems for an additive group (G;+). For simpliity,

we assume that G has prime order.

{ The DL problem. The DL (disrete logarithm) problem, an be stated as

follows. Given two group elements g and h, how to �nd an integer n, suh

that h = ng whenever suh an integer exists.

{ The DH problem. The DH (DiÆe{Hellman) problem, an be stated as

follows. Given three group elements g, ag and bg, how to �nd an element h

of G suh that h = (ab)g.

{ The DDH problem. The DDH (deision DiÆe{Hellman) problem, an be

stated as follows. Given four group elements g, ag, bg and g, how to deide

whether  = ab (modulo the order of g).

Clearly, DDH is no harder than DH and DH is no harder than DL. However, in

the general ase, we do not know more than that about the relations between

these three problems. The goal of this paper is to separate DDH from DH, i.e.

to desribe a group where DDH beomes easy while DH beomes equivalent to

DL. Of ourse, we want to avoid the trivial ase where DL is known to be easy,

suh as the additive group of a �nite �eld.

2.2 Where DH and DL beome equivalent

In [7℄, it was shown that in a groupG of prime order q, the DL an be solved using

a DH{orale, if some auxillary group A with nie properties an be de�ned over

F

q

: More preisely, we need eÆient algorithms that embed a large proportion
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of elements of F

q

in A, that extrat an embedded value from an element of A

and that quikly ompute disrete logarithms in A. Of ourse, the embedding

and extrating maps should satisfy the natural property that whenever x has an

embedding g, the extration of g gives bak x. One possible hoie of auxillary

groups is to use ellipti urves de�ned over F

q

with suÆiently smooth order. In

this kind of urve, thanks to the Pohlig{Hellman algorithm, the DL problem is

easy. If suh urves an be found, the DH and DL problems beome equivalent

in G. However, unless we an prove that suÆiently many smooth numbers exist

around q, there exists no provable tehnique to �nd suh urves. Thus, in general,

[7℄ does not give a proof that DL and DH are equivalent, but only a heuristi

argument. However it also states that in pratie, �nding a good auxillary urve

does indeed make the two problems equivalent. We use this fat in setion 3.

2.3 Pairings on ellipti urves

On ellipti urves, there exist some bilinear funtions that map a pair of `{torsion

points (P;Q) to an `{th root of unity hP;Qi. The bilinearity simply means that:

haP; bQi = hP;Qi

ab

:

These funtions are alled pairings. Among those, the Weil and Tate pairings

are quite well known. For most ellipti urves, the pairing is de�ned over suh

a large extension of the base �eld that it annot be omputed and is useless

for ryptographi purposes. However, when the `-th roots of unity appear in a

reasonably small extension, then pairings an beome pratial. Pairings were

�rst used in ryptography in [8℄ to show that the DL problem an be transported

from a super-singular urve to a �nite �eld. In fat this onstrution did use the

Weil pairing. In pratie, the Tate pairing in Lihtenbaum's version, as desribed

in [3℄, is better than the Weil pairing. Indeed, in order to be non-degenerate (i.e.

non-onstant) the Weil pairing need to be omputed on two independent torsion

points, that is two points P andQ suh that neither is a multiple of the other. For

the Tate pairing, the requirement is relaxed; indeed in some ases, the pairing of

P with itself is di�erent from one. As was noted in [4℄, whenever this happens,

the deision DiÆe{Hellman problem in the group generated by P beomes easy

sine:

haP; bP i = hP; P i

ab

;

hP; P i = hP; P i



:

Thus deiding whether  � ab (mod `) an be done by testing if haP; bP i =

hP; P i:

The ase of trae 2 urves. In [4℄, it was mentioned that in the ase of trae 2

urves, i.e. urves with p� 1 points, we an be sure, given a point P of order `

that hP; P i 6= 1 as long as `

2

does not divide p� 1. However, onstruting suh

urves is an open problem. Indeed, the only known method to eÆiently build
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urves of trae 2 is by omplex multipliation tehniques [1, 5℄. However, with

this onstrution p � 1 is neessarily equal to dn

2

where d is a small number.

Thus, we annot guarantee that hP; P i 6= 1. Yet, in some reasonably frequent

ases, this property still holds [11℄, thus it is possible to eÆiently onstrut

some trae 2 urves where DDH is easy.

The ase of supersingular urves. With supersingular urves de�ned over F

p

,

the properties of the pairing imply that a `{torsion point P with oordinates in

F

p

satis�es hP; P i = 1. This means that we need a point that is independent

from P to get a useful result. Lukily, the fat that the urve is supersingu-

lar means that its endomorphism ring has a very speial struture. Namely, it

ontains extra endomorphisms whih annot be written as a ombination of the

usual endomorphisms (Frobenius and multipliation by integers). These extra

endomorphisms map points de�ned over the ground �eld to points de�ned over

an extension �eld. For suh an endomorphism � we might get the nie property,

hP; �(P )i 6= 1. In that ase, we an solve DDH by omparing haP; �(bP )i and

hP; �(P )i: Table 1 desribes some possible extra endomorphism � for frequently

enountered supersingular urves over prime �elds F

p

. The �rst two ases pre-

sented in the table are the well known supersingular urves with p + 1 points.

The third ase is a supersingular urve de�ned over F

p

2

with p

2

� p+ 1 points.

The Weil pairing maps this urve to the group used in the XTR ryptosystem

(see [6℄), as was �rst pointed out at the rump session of Crypto'00 [9℄. Sine

then, it has been looked at in deeper details [12℄ and it turns out that DDH is

easy in the ellipti urve and is presumably hard in the XTR group.

Field Curve Morphism Conditions Group order

F

p

y

2

= x

3

+ ax

(x; y) 7! (�x; iy)

i

2

= �1

p � 3 (mod 4) p+1

F

p

y

2

= x

3

+ a

(x; y) 7! (�x; y)

�

3

= 1

p � 2 (mod 3) p+1

F

p

2
y

2

= x

3

+ a

(x; y) 7! (!

x

p

r

(2p�1)=3

;

y

p

r

p�1

)

r

2

= a; r 2 F

p

2

!

3

= r; ! 2 F

p

6

p � 2 (mod 3) p

2

� p+ 1

Table 1. Extra endomorphism in some supersingular urves

3 Construting groups that separate DH and DDH

Using the ideas from setion 2.2 and 2.3, onstruting groups where DDH is

easy and where DH and DL are provably equivalent is now a simple matter.

Indeed, we use one of the ellipti urves proposed in setion 2.3, together with

a large prime divisor q of its order. We also need an auxillary urve de�ned

over F

q

of suÆiently smooth order. In order to onstrut these parameters, we
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start by hoosing q and the auxillary urve. Several di�erent methods an be

used at that point. A �rst solution is to hoose q and a random urve, to ount

the number of points and to test whether it is smooth. When q is a 160{bit

number, this an be done reasonably quikly using an early abort strategy as

shown in setion 4. Alternatively, we an deide to work with a speial urve

whose number of points is easy to ompute, e.g. a supersingular urve or a urve

with omplex multipliation. Assume that we deided to use the super-singular

urve y

2

= x

3

+ x (mod q); then when q � 3 (mod 4) is a prime, the order of

the urve is q+1 � 0 (mod 4): Now hoose a smooth number m � 0 (mod 4); if

m�1 is prime, we are done. For 160{bit numbers, this proedure is very eÆient.

Alternatively, we an use omplex multipliation, some possible urves of that

kind are shown in table 2. Note that all the imaginary quadrati �elds in table

2 have lass number 1, however the onstrution method works quite easily for

lass numbers up to several hundreds.

Complex multipliation

by main order of

Curve Conditions Group order

Q(

p

�2) y

2

= x

3

+ 4x

2

+ 2x p = 2n

2

q

2

+ 1 2n

2

q

2

Q(

p

�11) y

2

+ y = x

3

� x

2

� 7x+ 10 p = 11n

2

q

2

+ 1 11n

2

q

2

Q(

p

�43) y

2

+ y = x

3

� 860x+ 9707 p = 43n

2

q

2

+ 1 43n

2

q

2

Table 2. Some omplex multipliation urves

One q is known, we need to hoose p and an ellipti urve suh that DDH

is easy. For all the urves we have onsidered in setion 2.3, p an be expressed

as a simple funtion of the number of points whih is a multiple of q (or even q

2

in some ases). For example, when using the supersingular urve y

2

= x

3

+ x, p

should be of the form �q � 1 and when using omplex multipliation, p should

be of the form dn

2

q

2

+ 1 with d small. Finding prime values of that form is

easy when dealing with the sizes usually enountered in ryptography suh as

1024{bit numbers.

4 Examples

4.1 Finding q and an auxillary urve

Using the point ounting algorithm by Shoof{Atkin{Elkies a urve over a prime

�eld F

q

where q is a 160{bit prime an be ounted in about a minute, hene it

is reasonable to hoose random urves de�ned over F

q

and searh for one with a

smooth group order. Indeed, 160{bit primes have about 48 digits and we know
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that the ellipti urve fatoring method an �nd 50{digit fators (see [10℄), using

a smoothness bound B = 56 � 10

6

by trying 5300 urves on average. Hene, with

suh a smoothness bound, we an expet to �nd a urve in less than 4 days on

a single mahine. In fat, taking into aount the fat that eah point ounting

exeution gives the number of points on two urves (the original one and its

twist) this estimation an be lowered to two days. We did searh for a good

urve of the form y

2

= x

3

+ x + b for the prime q = 2

160

+ 7: For example, we

found that for b = 93, the number of points on the twist is:

3 � 7 � 17 � 827 � 1811 � 117427 � 519797 � 1377931 � 2160461 � 65938193 � 228136331:

Writing the equation of the twist as y

2

= x

3

+25x+125 �93; we get a good urve

with smoothness bound 228136331.

However we an reverse this proess, meaning that we hoose a smooth num-

ber �rst and then onstrut a urve whih has this number of points. One way

to do this is to �nd a smooth number n suh that q = n� 1 is prime and q � 3

(mod 4). Then the supersingular urve y

2

= x

3

+ x de�ned over F

q

will have

group order q + 1 whih is smooth by onstrution. To �nd suh a number, we

an start from the 149{bit number:

n = 2

2

�3�7�11�13�17�19�23�29�31�37�41�43�47�53�59�61�67�71�73�79�83�89�97�101�103 �107�109:

Then we look for a prime of the form �n�1, with � in the range [1307 : : :2612℄.

Many hoies of � result in a good andidate, for example � = 2

4

� 163 = 2608 is

the largest possible suh value. We let q

1

= 2608 � n� 1, it is a prime ongruent

to 3 (mod 4), hene y

2

= x

3

+ x is a desired urve of smooth order over F

q

1

.

Alternatively, we an make use of omplex multipliation in order to produe

urves with smooth order. Consider for example the prime

q

2

= 2 � 3

2

� 5

2

� 7

4

� 11

4

� 13

2

� 17

2

� 19

4

� 23

4

� 29

4

� 41

4

� 43

2

� 47

2

� 53

4

� 59

2

� 71

2

+1:

By onstrution this prime splits in Q(

p

�2) and hene gives rise to an ellipti

urve of trae 2: the quadrati twist of the urve y

2

= x

3

+ 4x

2

+ 2x over F

q

2

.

This urve has smooth group order q

2

� 1.

4.2 Choosing p and the main urve

One q is hosen, p is easily onstruted. For example, we an now �nd a super-

singular urve whose order is a multiple of q

1

. We simply look for a prime of the

form 4�q

1

� 1. Here is a possible value:

p

1

= 17976931348623159077293051907890247336179769789423065727343008115773267580550096313270847732

24075360211201138798713933576587897688144166224928474306394741243777678934248654852763022196

01246094119453082952085005768838150682342462881473913110540827237163350508117621323351641252

31983505498987544266223317;

Now the supersingular urve y

2

= x

3

+ x de�ned over F

p

1

has a subgroup of

order q

1

.

As explained before, we an also work with trae 2 urves. For example, the

prime

p

2

= 10670060186383776944160772179366270641259594083276237150022019567758593793429649789360814336

76897328420496223452607179142772034762933054027679044991310709383278097774649981692256846811

97721746477548968118598258710445553784811268805673258859628640140181305129265780039630649196

38999286909139705330098359729606070445812557282252233
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is of the form

p

2

= 2 � q

2

2

� n

2

+ 1:

Hene the quadrati twist of y

2

= x

3

+ 4x

2

+ 2x over F

p

2

has order p

2

� 1. On

that urve of equation y

2

= x

3

+4 � 5x

2

+2 � 25x; there exists a point P of order

q

2

with hP; P i 6= 1.

5 Conlusion

The above onstrution of reasonably looking ryptographi groups where De-

ision DiÆe{Hellman is easy, while DiÆe{Hellman is known to be as hard as

Disrete Logarithm gives an eery feeling about all the ryptographi protools

that use the DDH assumption, espeially when dealing with ellipti urve ryp-

tography. We feel that this issue needs to be addressed in the near future. This

ould be done either by devising protools that avoid DDH altogether or by

proving that in ertain ases, this problem also beomes provably hard.
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