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Abstra
t. In many 
ases, the se
urity of a 
ryptographi
 s
heme based

on DiÆe{Hellman does in fa
t rely on the hardness of the DiÆe{Hellman

De
ision problem. In this paper, we show that the hardness of De
ision

DiÆe{Hellman is a mu
h stronger hypothesis than the hardness of the

regular DiÆe{Hellman problem. Indeed, we des
ribe a reasonably looking


ryptographi
 group where De
ision DiÆe{Hellman is easy while DiÆe{

Hellman is equivalent to a { presumably hard { Dis
rete Logarithm Prob-

lem. This shows that 
are should be taken when dealing with De
ision

DiÆe{Hellman, sin
e its se
urity 
annot be taken for granted.

1 Introdu
tion

Browsing through the 
ryptographi
 proto
ols based on DiÆe{Hellman, we �nd

that many of them rely on a stronger se
urity hypothesis: the hardness of the

so-
alled De
ision DiÆe{Hellman problem. This is espe
ially true when aiming

at high se
urity levels, su
h as, for example, semanti
 se
urity. Sin
e the De
ision

DiÆe{Hellman problem has been introdu
ed in 
ryptography [2℄, its hardness

has always been a 
on
ern: given a 
ryptographi
 group, is it suÆ
ient to study

the dis
rete logarithm problem in that group or do we need to assess the se
urity

of the DiÆe{Hellman and De
ision DiÆe{Hellman problems in that parti
ular

group? In [7℄, Maurer andWolf have given a strong heuristi
 argument that shows

that the se
urity of DiÆe{Hellman in a given group should not be a 
on
ern,

on
e the dis
rete logarithm problem is hard in that group. In this paper, we

address the 
ase of De
ision DiÆe{Hellman and show that it is mu
h less hopeful.
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Indeed, we 
onstru
t 
ryptographi
 groups based on ellipti
 
urve 
ryptography

where De
ision DiÆe{Hellman is easy, while DiÆe{Hellman itself is equivalent

to Dis
rete Logarithm. In order to 
onstru
t su
h groups, we use ideas from [7℄,

whi
h we turn pra
ti
al, to ensure the equivalen
e of DiÆe{Hellman and Dis
rete

Logarithm and from [4℄ to make De
ision DiÆe{Hellman easy. The main result

of [4℄ was the introdu
tion of a novel DiÆe{Hellman like proto
ol that allows for

three parti
ipants, using pairings on ellipti
 
urves. Yet it was also explained that

using the same te
hnique, De
ision DiÆe{Hellman 
an be made easy in some

spe
ial 
ases. However, the spe
ial 
ases that were given are somewhat arti�
ial,

sin
e in order to get an eÆ
ient 
onstru
tion two di�erent groups need to be

pasted together. An open question was to eÆ
iently 
onstru
t a single ellipti



urve where the De
ision DiÆe{Hellman problem be
omes easy. In this paper,

we show how the te
hnique from [4℄ 
an be adapted to deal with a 
ryptographi


group lying in a single ellipti
 
urve.

2 Notations and ba
kground ideas

2.1 DiÆe{Hellman and related assumptions

When doing 
ryptography using dis
rete logarithms in a group G, there are

three related 
omplexity assumptions on whi
h the se
urity usually relies. We

now des
ribe these three problems for an additive group (G;+). For simpli
ity,

we assume that G has prime order.

{ The DL problem. The DL (dis
rete logarithm) problem, 
an be stated as

follows. Given two group elements g and h, how to �nd an integer n, su
h

that h = ng whenever su
h an integer exists.

{ The DH problem. The DH (DiÆe{Hellman) problem, 
an be stated as

follows. Given three group elements g, ag and bg, how to �nd an element h

of G su
h that h = (ab)g.

{ The DDH problem. The DDH (de
ision DiÆe{Hellman) problem, 
an be

stated as follows. Given four group elements g, ag, bg and 
g, how to de
ide

whether 
 = ab (modulo the order of g).

Clearly, DDH is no harder than DH and DH is no harder than DL. However, in

the general 
ase, we do not know more than that about the relations between

these three problems. The goal of this paper is to separate DDH from DH, i.e.

to des
ribe a group where DDH be
omes easy while DH be
omes equivalent to

DL. Of 
ourse, we want to avoid the trivial 
ase where DL is known to be easy,

su
h as the additive group of a �nite �eld.

2.2 Where DH and DL be
ome equivalent

In [7℄, it was shown that in a groupG of prime order q, the DL 
an be solved using

a DH{ora
le, if some auxillary group A with ni
e properties 
an be de�ned over

F

q

: More pre
isely, we need eÆ
ient algorithms that embed a large proportion
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of elements of F

q

in A, that extra
t an embedded value from an element of A

and that qui
kly 
ompute dis
rete logarithms in A. Of 
ourse, the embedding

and extra
ting maps should satisfy the natural property that whenever x has an

embedding g, the extra
tion of g gives ba
k x. One possible 
hoi
e of auxillary

groups is to use ellipti
 
urves de�ned over F

q

with suÆ
iently smooth order. In

this kind of 
urve, thanks to the Pohlig{Hellman algorithm, the DL problem is

easy. If su
h 
urves 
an be found, the DH and DL problems be
ome equivalent

in G. However, unless we 
an prove that suÆ
iently many smooth numbers exist

around q, there exists no provable te
hnique to �nd su
h 
urves. Thus, in general,

[7℄ does not give a proof that DL and DH are equivalent, but only a heuristi


argument. However it also states that in pra
ti
e, �nding a good auxillary 
urve

does indeed make the two problems equivalent. We use this fa
t in se
tion 3.

2.3 Pairings on ellipti
 
urves

On ellipti
 
urves, there exist some bilinear fun
tions that map a pair of `{torsion

points (P;Q) to an `{th root of unity hP;Qi. The bilinearity simply means that:

haP; bQi = hP;Qi

ab

:

These fun
tions are 
alled pairings. Among those, the Weil and Tate pairings

are quite well known. For most ellipti
 
urves, the pairing is de�ned over su
h

a large extension of the base �eld that it 
annot be 
omputed and is useless

for 
ryptographi
 purposes. However, when the `-th roots of unity appear in a

reasonably small extension, then pairings 
an be
ome pra
ti
al. Pairings were

�rst used in 
ryptography in [8℄ to show that the DL problem 
an be transported

from a super-singular 
urve to a �nite �eld. In fa
t this 
onstru
tion did use the

Weil pairing. In pra
ti
e, the Tate pairing in Li
htenbaum's version, as des
ribed

in [3℄, is better than the Weil pairing. Indeed, in order to be non-degenerate (i.e.

non-
onstant) the Weil pairing need to be 
omputed on two independent torsion

points, that is two points P andQ su
h that neither is a multiple of the other. For

the Tate pairing, the requirement is relaxed; indeed in some 
ases, the pairing of

P with itself is di�erent from one. As was noted in [4℄, whenever this happens,

the de
ision DiÆe{Hellman problem in the group generated by P be
omes easy

sin
e:

haP; bP i = hP; P i

ab

;

hP; 
P i = hP; P i




:

Thus de
iding whether 
 � ab (mod `) 
an be done by testing if haP; bP i =

hP; 
P i:

The 
ase of tra
e 2 
urves. In [4℄, it was mentioned that in the 
ase of tra
e 2


urves, i.e. 
urves with p� 1 points, we 
an be sure, given a point P of order `

that hP; P i 6= 1 as long as `

2

does not divide p� 1. However, 
onstru
ting su
h


urves is an open problem. Indeed, the only known method to eÆ
iently build
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urves of tra
e 2 is by 
omplex multipli
ation te
hniques [1, 5℄. However, with

this 
onstru
tion p � 1 is ne
essarily equal to dn

2

where d is a small number.

Thus, we 
annot guarantee that hP; P i 6= 1. Yet, in some reasonably frequent


ases, this property still holds [11℄, thus it is possible to eÆ
iently 
onstru
t

some tra
e 2 
urves where DDH is easy.

The 
ase of supersingular 
urves. With supersingular 
urves de�ned over F

p

,

the properties of the pairing imply that a `{torsion point P with 
oordinates in

F

p

satis�es hP; P i = 1. This means that we need a point that is independent

from P to get a useful result. Lu
kily, the fa
t that the 
urve is supersingu-

lar means that its endomorphism ring has a very spe
ial stru
ture. Namely, it


ontains extra endomorphisms whi
h 
annot be written as a 
ombination of the

usual endomorphisms (Frobenius and multipli
ation by integers). These extra

endomorphisms map points de�ned over the ground �eld to points de�ned over

an extension �eld. For su
h an endomorphism � we might get the ni
e property,

hP; �(P )i 6= 1. In that 
ase, we 
an solve DDH by 
omparing haP; �(bP )i and

hP; �(
P )i: Table 1 des
ribes some possible extra endomorphism � for frequently

en
ountered supersingular 
urves over prime �elds F

p

. The �rst two 
ases pre-

sented in the table are the well known supersingular 
urves with p + 1 points.

The third 
ase is a supersingular 
urve de�ned over F

p

2

with p

2

� p+ 1 points.

The Weil pairing maps this 
urve to the group used in the XTR 
ryptosystem

(see [6℄), as was �rst pointed out at the rump session of Crypto'00 [9℄. Sin
e

then, it has been looked at in deeper details [12℄ and it turns out that DDH is

easy in the ellipti
 
urve and is presumably hard in the XTR group.

Field Curve Morphism Conditions Group order

F

p

y

2

= x

3

+ ax

(x; y) 7! (�x; iy)

i

2

= �1

p � 3 (mod 4) p+1

F

p

y

2

= x

3

+ a

(x; y) 7! (�x; y)

�

3

= 1

p � 2 (mod 3) p+1

F

p

2
y

2

= x

3

+ a

(x; y) 7! (!

x

p

r

(2p�1)=3

;

y

p

r

p�1

)

r

2

= a; r 2 F

p

2

!

3

= r; ! 2 F

p

6

p � 2 (mod 3) p

2

� p+ 1

Table 1. Extra endomorphism in some supersingular 
urves

3 Constru
ting groups that separate DH and DDH

Using the ideas from se
tion 2.2 and 2.3, 
onstru
ting groups where DDH is

easy and where DH and DL are provably equivalent is now a simple matter.

Indeed, we use one of the ellipti
 
urves proposed in se
tion 2.3, together with

a large prime divisor q of its order. We also need an auxillary 
urve de�ned

over F

q

of suÆ
iently smooth order. In order to 
onstru
t these parameters, we
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start by 
hoosing q and the auxillary 
urve. Several di�erent methods 
an be

used at that point. A �rst solution is to 
hoose q and a random 
urve, to 
ount

the number of points and to test whether it is smooth. When q is a 160{bit

number, this 
an be done reasonably qui
kly using an early abort strategy as

shown in se
tion 4. Alternatively, we 
an de
ide to work with a spe
ial 
urve

whose number of points is easy to 
ompute, e.g. a supersingular 
urve or a 
urve

with 
omplex multipli
ation. Assume that we de
ided to use the super-singular


urve y

2

= x

3

+ x (mod q); then when q � 3 (mod 4) is a prime, the order of

the 
urve is q+1 � 0 (mod 4): Now 
hoose a smooth number m � 0 (mod 4); if

m�1 is prime, we are done. For 160{bit numbers, this pro
edure is very eÆ
ient.

Alternatively, we 
an use 
omplex multipli
ation, some possible 
urves of that

kind are shown in table 2. Note that all the imaginary quadrati
 �elds in table

2 have 
lass number 1, however the 
onstru
tion method works quite easily for


lass numbers up to several hundreds.

Complex multipli
ation

by main order of

Curve Conditions Group order

Q(

p

�2) y

2

= x

3

+ 4x

2

+ 2x p = 2n

2

q

2

+ 1 2n

2

q

2

Q(

p

�11) y

2

+ y = x

3

� x

2

� 7x+ 10 p = 11n

2

q

2

+ 1 11n

2

q

2

Q(

p

�43) y

2

+ y = x

3

� 860x+ 9707 p = 43n

2

q

2

+ 1 43n

2

q

2

Table 2. Some 
omplex multipli
ation 
urves

On
e q is known, we need to 
hoose p and an ellipti
 
urve su
h that DDH

is easy. For all the 
urves we have 
onsidered in se
tion 2.3, p 
an be expressed

as a simple fun
tion of the number of points whi
h is a multiple of q (or even q

2

in some 
ases). For example, when using the supersingular 
urve y

2

= x

3

+ x, p

should be of the form �q � 1 and when using 
omplex multipli
ation, p should

be of the form dn

2

q

2

+ 1 with d small. Finding prime values of that form is

easy when dealing with the sizes usually en
ountered in 
ryptography su
h as

1024{bit numbers.

4 Examples

4.1 Finding q and an auxillary 
urve

Using the point 
ounting algorithm by S
hoof{Atkin{Elkies a 
urve over a prime

�eld F

q

where q is a 160{bit prime 
an be 
ounted in about a minute, hen
e it

is reasonable to 
hoose random 
urves de�ned over F

q

and sear
h for one with a

smooth group order. Indeed, 160{bit primes have about 48 digits and we know
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that the ellipti
 
urve fa
toring method 
an �nd 50{digit fa
tors (see [10℄), using

a smoothness bound B = 56 � 10

6

by trying 5300 
urves on average. Hen
e, with

su
h a smoothness bound, we 
an expe
t to �nd a 
urve in less than 4 days on

a single ma
hine. In fa
t, taking into a

ount the fa
t that ea
h point 
ounting

exe
ution gives the number of points on two 
urves (the original one and its

twist) this estimation 
an be lowered to two days. We did sear
h for a good


urve of the form y

2

= x

3

+ x + b for the prime q = 2

160

+ 7: For example, we

found that for b = 93, the number of points on the twist is:

3 � 7 � 17 � 827 � 1811 � 117427 � 519797 � 1377931 � 2160461 � 65938193 � 228136331:

Writing the equation of the twist as y

2

= x

3

+25x+125 �93; we get a good 
urve

with smoothness bound 228136331.

However we 
an reverse this pro
ess, meaning that we 
hoose a smooth num-

ber �rst and then 
onstru
t a 
urve whi
h has this number of points. One way

to do this is to �nd a smooth number n su
h that q = n� 1 is prime and q � 3

(mod 4). Then the supersingular 
urve y

2

= x

3

+ x de�ned over F

q

will have

group order q + 1 whi
h is smooth by 
onstru
tion. To �nd su
h a number, we


an start from the 149{bit number:

n = 2

2

�3�7�11�13�17�19�23�29�31�37�41�43�47�53�59�61�67�71�73�79�83�89�97�101�103 �107�109:

Then we look for a prime of the form �n�1, with � in the range [1307 : : :2612℄.

Many 
hoi
es of � result in a good 
andidate, for example � = 2

4

� 163 = 2608 is

the largest possible su
h value. We let q

1

= 2608 � n� 1, it is a prime 
ongruent

to 3 (mod 4), hen
e y

2

= x

3

+ x is a desired 
urve of smooth order over F

q

1

.

Alternatively, we 
an make use of 
omplex multipli
ation in order to produ
e


urves with smooth order. Consider for example the prime

q

2

= 2 � 3

2

� 5

2

� 7

4

� 11

4

� 13

2

� 17

2

� 19

4

� 23

4

� 29

4

� 41

4

� 43

2

� 47

2

� 53

4

� 59

2

� 71

2

+1:

By 
onstru
tion this prime splits in Q(

p

�2) and hen
e gives rise to an ellipti



urve of tra
e 2: the quadrati
 twist of the 
urve y

2

= x

3

+ 4x

2

+ 2x over F

q

2

.

This 
urve has smooth group order q

2

� 1.

4.2 Choosing p and the main 
urve

On
e q is 
hosen, p is easily 
onstru
ted. For example, we 
an now �nd a super-

singular 
urve whose order is a multiple of q

1

. We simply look for a prime of the

form 4�q

1

� 1. Here is a possible value:

p

1

= 17976931348623159077293051907890247336179769789423065727343008115773267580550096313270847732

24075360211201138798713933576587897688144166224928474306394741243777678934248654852763022196

01246094119453082952085005768838150682342462881473913110540827237163350508117621323351641252

31983505498987544266223317;

Now the supersingular 
urve y

2

= x

3

+ x de�ned over F

p

1

has a subgroup of

order q

1

.

As explained before, we 
an also work with tra
e 2 
urves. For example, the

prime

p

2

= 10670060186383776944160772179366270641259594083276237150022019567758593793429649789360814336

76897328420496223452607179142772034762933054027679044991310709383278097774649981692256846811

97721746477548968118598258710445553784811268805673258859628640140181305129265780039630649196

38999286909139705330098359729606070445812557282252233
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is of the form

p

2

= 2 � q

2

2

� n

2

+ 1:

Hen
e the quadrati
 twist of y

2

= x

3

+ 4x

2

+ 2x over F

p

2

has order p

2

� 1. On

that 
urve of equation y

2

= x

3

+4 � 5x

2

+2 � 25x; there exists a point P of order

q

2

with hP; P i 6= 1.

5 Con
lusion

The above 
onstru
tion of reasonably looking 
ryptographi
 groups where De-


ision DiÆe{Hellman is easy, while DiÆe{Hellman is known to be as hard as

Dis
rete Logarithm gives an eery feeling about all the 
ryptographi
 proto
ols

that use the DDH assumption, espe
ially when dealing with ellipti
 
urve 
ryp-

tography. We feel that this issue needs to be addressed in the near future. This


ould be done either by devising proto
ols that avoid DDH altogether or by

proving that in 
ertain 
ases, this problem also be
omes provably hard.
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