Separating Decision Diffie-Hellman from
Diffie-Hellman in cryptographic groups

Antoine Joux! and Kim Nguyen *2

' DCSSI
18, rue du Dr. Zamenhoff
F-92131 Issy-les-Mx Cedex
France
Antoine.Joux@ens.fr
2 Institut fiir experimentelle Mathematik
Universitdt GH Essen
Ellernstrasse 29
45326 Essen
Germany
nguyen@exp-math.uni-essen.de

Abstract. In many cases, the security of a cryptographic scheme based
on Diffie-Hellman does in fact rely on the hardness of the Diffie-Hellman
Decision problem. In this paper, we show that the hardness of Decision
Diffie-Hellman is a much stronger hypothesis than the hardness of the
regular Diffie-Hellman problem. Indeed, we describe a reasonably looking
cryptographic group where Decision Diffie-Hellman is easy while Diffie—
Hellman is equivalent to a — presumably hard — Discrete Logarithm Prob-
lem. This shows that care should be taken when dealing with Decision
Diffie-Hellman, since its security cannot be taken for granted.

1 Introduction

Browsing through the cryptographic protocols based on Diffie-Hellman, we find
that many of them rely on a stronger security hypothesis: the hardness of the
so-called Decision Diffie-Hellman problem. This is especially true when aiming
at high security levels, such as, for example, semantic security. Since the Decision
Diffie-Hellman problem has been introduced in cryptography [2], its hardness
has always been a concern: given a cryptographic group, is it sufficient to study
the discrete logarithm problem in that group or do we need to assess the security
of the Diffie-Hellman and Decision Diffie-Hellman problems in that particular
group? In [7], Maurer and Wolf have given a strong heuristic argument that shows
that the security of Diffie-Hellman in a given group should not be a concern,
once the discrete logarithm problem is hard in that group. In this paper, we
address the case of Decision Diffie—Hellman and show that it is much less hopeful.

* The second author acknowledges the financial support of SIEMENS AG, ZT IK3,
Munich, Germany.

Indeed, we construct cryptographic groups based on elliptic curve cryptography
where Decision Diffie-Hellman is easy, while Diffie-Hellman itself is equivalent
to Discrete Logarithm. In order to construct such groups, we use ideas from [7],
which we turn practical, to ensure the equivalence of Diffie-Hellman and Discrete
Logarithm and from [4] to make Decision Diffie-Hellman easy. The main result
of [4] was the introduction of a novel Diffie-Hellman like protocol that allows for
three participants, using pairings on elliptic curves. Yet it was also explained that
using the same technique, Decision Diffie-Hellman can be made easy in some
special cases. However, the special cases that were given are somewhat artificial,
since in order to get an efficient construction two different groups need to be
pasted together. An open question was to efficiently construct a single elliptic
curve where the Decision Diffie-Hellman problem becomes easy. In this paper,
we show how the technique from [4] can be adapted to deal with a cryptographic
group lying in a single elliptic curve.

2 Notations and background ideas

2.1 Diffie-Hellman and related assumptions

When doing cryptography using discrete logarithms in a group G, there are
three related complexity assumptions on which the security usually relies. We
now describe these three problems for an additive group (G, +). For simplicity,
we assume that G has prime order.

— The DL problem. The DL (discrete logarithm) problem, can be stated as
follows. Given two group elements g and h, how to find an integer n, such
that h = ng whenever such an integer exists.

— The DH problem. The DH (Diffie-Hellman) problem, can be stated as
follows. Given three group elements g, ag and bg, how to find an element h
of G such that h = (ab)g.

— The DDH problem. The DDH (decision Diffie-Hellman) problem, can be
stated as follows. Given four group elements g, ag, bg and cg, how to decide
whether ¢ = ab (modulo the order of g).

Clearly, DDH is no harder than DH and DH is no harder than DL. However, in
the general case, we do not know more than that about the relations between
these three problems. The goal of this paper is to separate DDH from DH, i.e.
to describe a group where DDH becomes easy while DH becomes equivalent to
DL. Of course, we want to avoid the trivial case where DL is known to be easy,
such as the additive group of a finite field.

2.2 Where DH and DL become equivalent

In [7], it was shown that in a group G of prime order ¢, the DL can be solved using
a DH-oracle, if some auxillary group A with nice properties can be defined over
I, . More precisely, we need efficient algorithms that embed a large proportion

of elements of I, in A, that extract an embedded value from an element of A
and that quickly compute discrete logarithms in A. Of course, the embedding
and extracting maps should satisfy the natural property that whenever « has an
embedding g, the extraction of g gives back z. One possible choice of auxillary
groups is to use elliptic curves defined over F, with sufficiently smooth order. In
this kind of curve, thanks to the Pohlig—Hellman algorithm, the DL problem is
easy. If such curves can be found, the DH and DL problems become equivalent
in G. However, unless we can prove that sufficiently many smooth numbers exist
around g, there exists no provable technique to find such curves. Thus, in general,
[7] does not give a proof that DL and DH are equivalent, but only a heuristic
argument. However it also states that in practice, finding a good auxillary curve
does indeed make the two problems equivalent. We use this fact in section 3.

2.3 Pairings on elliptic curves

On elliptic curves, there exist some bilinear functions that map a pair of /~torsion
points (P, Q) to an {~th root of unity (P, Q). The bilinearity simply means that:

(aP,bQ) = (P,Q)".

These functions are called pairings. Among those, the Weil and Tate pairings
are quite well known. For most elliptic curves, the pairing is defined over such
a large extension of the base field that it cannot be computed and is useless
for cryptographic purposes. However, when the /-th roots of unity appear in a
reasonably small extension, then pairings can become practical. Pairings were
first used in cryptography in [8] to show that the DL problem can be transported
from a super-singular curve to a finite field. In fact this construction did use the
WEeil pairing. In practice, the Tate pairing in Lichtenbaum’s version, as described
in [3], is better than the Weil pairing. Indeed, in order to be non-degenerate (i.e.
non-constant) the Weil pairing need to be computed on two independent torsion
points, that is two points P and () such that neither is a multiple of the other. For
the Tate pairing, the requirement is relaxed; indeed in some cases, the pairing of
P with itself is different from one. As was noted in [4], whenever this happens,
the decision Diffie-Hellman problem in the group generated by P becomes easy
since:

(aP,bP) = (P, P)*,
(P,cP) = (P, P)°.

Thus deciding whether ¢ = ab (mod ¢) can be done by testing if (aP,bP) =
(P, cP).

The case of trace 2 curves. In [4], it was mentioned that in the case of trace 2
curves, i.e. curves with p — 1 points, we can be sure, given a point P of order ¢
that (P, P) # 1 as long as ¢? does not divide p — 1. However, constructing such
curves is an open problem. Indeed, the only known method to efficiently build

curves of trace 2 is by complex multiplication techniques [1,5]. However, with
this construction p — 1 is necessarily equal to dn? where d is a small number.
Thus, we cannot guarantee that (P, P) # 1. Yet, in some reasonably frequent
cases, this property still holds [11], thus it is possible to efficiently construct
some trace 2 curves where DDH is easy.

The case of supersingular curves. With supersingular curves defined over F,,
the properties of the pairing imply that a {—torsion point P with coordinates in
F, satisfies (P,P) = 1. This means that we need a point that is independent
from P to get a useful result. Luckily, the fact that the curve is supersingu-
lar means that its endomorphism ring has a very special structure. Namely, it
contains extra endomorphisms which cannot be written as a combination of the
usual endomorphisms (Frobenius and multiplication by integers). These extra
endomorphisms map points defined over the ground field to points defined over
an extension field. For such an endomorphism @ we might get the nice property,
(P,®(P)) # 1. In that case, we can solve DDH by comparing (aP, &(bP)) and
(P, ®(cP)). Table 1 describes some possible extra endomorphism & for frequently
encountered supersingular curves over prime fields F,. The first two cases pre-
sented in the table are the well known supersingular curves with p + 1 points.
The third case is a supersingular curve defined over F,> with p?> — p + 1 points.
The Weil pairing maps this curve to the group used in the XTR cryptosystem
(see [6]), as was first pointed out at the rump session of Crypto’00 [9]. Since
then, it has been looked at in deeper details [12] and it turns out that DDH is
easy in the elliptic curve and is presumably hard in the XTR group.

Field Curve Morphism Conditions |Group order
]Fp yZ — CE3 +ax (x7y7)l2'_:(__1x)7'y) p= 3 (IIlOd 4) P+1
F, |y*=2%4a (:c,yé;—)_(gx,y) p =2 (mod 3) p+1
, (x)y)'_‘)(wr(z;jfpl)/:a):piLl) .
Fe |y> =2°+a r’ =a,r €F, p=2 (mod 3)| p>—p+1
wi=rwe F,6

Table 1. Extra endomorphism in some supersingular curves

3 Constructing groups that separate DH and DDH

Using the ideas from section 2.2 and 2.3, constructing groups where DDH is
easy and where DH and DL are provably equivalent is now a simple matter.
Indeed, we use one of the elliptic curves proposed in section 2.3, together with
a large prime divisor ¢ of its order. We also need an auxillary curve defined
over I, of sufficiently smooth order. In order to construct these parameters, we

start by choosing ¢ and the auxillary curve. Several different methods can be
used at that point. A first solution is to choose ¢ and a random curve, to count
the number of points and to test whether it is smooth. When ¢ is a 160-bit
number, this can be done reasonably quickly using an early abort strategy as
shown in section 4. Alternatively, we can decide to work with a special curve
whose number of points is easy to compute, e.g. a supersingular curve or a curve
with complex multiplication. Assume that we decided to use the super-singular
curve y? = 2% + z (mod q), then when ¢ = 3 (mod 4) is a prime, the order of
the curve is ¢+1 =0 (mod 4). Now choose a smooth number m =0 (mod 4); if
m—1 is prime, we are done. For 160-bit numbers, this procedure is very efficient.
Alternatively, we can use complex multiplication, some possible curves of that
kind are shown in table 2. Note that all the imaginary quadratic fields in table
2 have class number 1, however the construction method works quite easily for
class numbers up to several hundreds.

Corg;)lz(aﬂu;:g;licgftion Curve Conditions |Group order
Q(v-2) y? =3 4+ 42% + 2z p=2n%¢+1 2n2q?
Q(v/—11) Y +y=2>—2 —7r+10|p = 11n’¢*> + 1| 11n?¢®
Q(v/—43) y? +y =z® — 860z + 9707 |p = 43n%¢> + 1| 43n°¢°

Table 2. Some complex multiplication curves

Once ¢ is known, we need to choose p and an elliptic curve such that DDH
is easy. For all the curves we have considered in section 2.3, p can be expressed
as a simple function of the number of points which is a multiple of ¢ (or even ¢
in some cases). For example, when using the supersingular curve y?> = 2% +z, p
should be of the form A¢ — 1 and when using complex multiplication, p should
be of the form dn?¢®> + 1 with d small. Finding prime values of that form is
easy when dealing with the sizes usually encountered in cryptography such as
1024-bit numbers.

4 Examples

4.1 Finding q and an auxillary curve

Using the point counting algorithm by Schoof-Atkin-Elkies a curve over a prime
field F, where ¢ is a 160-bit prime can be counted in about a minute, hence it
is reasonable to choose random curves defined over F, and search for one with a
smooth group order. Indeed, 160-bit primes have about 48 digits and we know

that the elliptic curve factoring method can find 50—digit factors (see [10]), using
a smoothness bound B = 56 - 10° by trying 5300 curves on average. Hence, with
such a smoothness bound, we can expect to find a curve in less than 4 days on
a single machine. In fact, taking into account the fact that each point counting
execution gives the number of points on two curves (the original one and its
twist) this estimation can be lowered to two days. We did search for a good
curve of the form y? = 2 + « + b for the prime ¢ = 20 + 7. For example, we
found that for b = 93, the number of points on the twist is:

3-7-17-827-1811- 117427 - 519797 - 1377931 - 2160461 - 65938193 - 228136331.

Writing the equation of the twist as y? = 23 + 25z +125-93, we get a good curve

with_smoothness bound 228136331. .
However we can reverse this process, meaning that we choose a smooth num-

ber first and then construct a curve which has this number of points. One way
to do this is to find a smooth number n such that ¢ =n — 1 is prime and ¢ = 3
(mod 4). Then the supersingular curve y? = 2% + z defined over F, will have
group order ¢ + 1 which is smooth by construction. To find such a number, we
can start from the 149-bit number:

n=2%.3.7-11-13-17-19-23-29.31-37-41-43-47-53-59-61-67-71-73-79-83-89-97-101-103-107-109.

Then we look for a prime of the form An — 1, with X in the range [1307...2612].
Many choices of X result in a good candidate, for example A = 2*-163 = 2608 is
the largest possible such value. We let ¢; = 2608 -n — 1, it is a prime congruent
to 3 (mod 4), hence y? = z® + z is a desired curve of smooth order over F,, .

Alternatively, we can make use of complex multiplication in order to produce
curves with smooth order. Consider for example the prime

@2 =2-3%-5%-7.11* 132177 - 19* - 23* . 29* - 41 - 43% - 477 . 53* - 59% - 712 + 1.

By construction this prime splits in Q(v/—2) and hence gives rise to an elliptic
curve of trace 2: the quadratic twist of the curve y? = 2% + 422 + 2z over F, .
This curve has smooth group order ¢, — 1.

4.2 Choosing p and the main curve

Once ¢ is chosen, p is easily constructed. For example, we can now find a super-
singular curve whose order is a multiple of ¢;. We simply look for a prime of the
form 4Aq; — 1. Here is a possible value:

p1 = 17976931348623159077293051907890247336179769789423065727343008115773267580550096313270847732
24075360211201138798713933576587897688144166224928474306394741243777678934248654852763022196
01246094119453082952085005768838150682342462881473913110540827237163350508117621323351641252
31983505498987544266223317

Now the supersingular curve y? = 2® + x defined over F,, has a subgroup of

order q;.
As explained before, we can also work with trace 2 curves. For example, the
prime
p2 = 10670060186383776944160772179366270641259594083276237150022019567758593793429649789360814336
76897328420496223452607179142772034762933054027679044991310709383278097774649981692256846811

97721746477548968118598258710445553784811268805673258859628640140181305129265780039630649196
38999286909139705330098359729606070445812557282252233

is of the form
p2:2-q§-n2+1.

Hence the quadratic twist of y? = 2% + 42? + 2z over F,, has order p» — 1. On
that curve of equation y? = 2% +4 - 52% + 2 - 25z, there exists a point P of order
g2 with (P, P) # 1.

5 Conclusion

The above construction of reasonably looking cryptographic groups where De-
cision Diffie-Hellman is easy, while Diffie-Hellman is known to be as hard as
Discrete Logarithm gives an eery feeling about all the cryptographic protocols
that use the DDH assumption, especially when dealing with elliptic curve cryp-
tography. We feel that this issue needs to be addressed in the near future. This
could be done either by devising protocols that avoid DDH altogether or by
proving that in certain cases, this problem also becomes provably hard.

References

1. A.O.L. Atkin and F. Morain. Elliptic curves and primality proving. Mathematics
of Computation, 61:29-68, 1993.

2. S. Brands. An efficient off-line electronic cash system based on the representation
problem. Technical Report CS-R9323, CWI, Amsterdam, 1993.

3. G. Frey, M. Miiller, and H.-G. Riick. The Tate pairing and the discrete logarithm
applied to elliptic curve cryptosystems. IEEE Transactions on Information Theory,
45(5):1717-1718, 1999.

4. A. Joux. A omne round protocol for tripartite Diffie-Hellman. In Wieb Bosma,
editor, Proceedings of the ANTS-IV conference, volume 1838 of Lecture Notes in
Comput. Sct., pages 385—394. Springer, 2000.

5. G.-J. Lay and H. Zimmer. Constructing elliptic curves with given group order over
large finite fields. In L. Adleman, editor, Algorithmic Number Theory, volume 877
of Lecture Notes in Comput. Sci., pages 250-263. Springer, 1994.

6. A. Lentra and E. Verheul. The XTR public key system. In Mihir Bellare, editor,
Proceedings of CRYPTQO’2000, volume 1880 of Lecture Notes in Comput. Sci.,
pages 1-19. Springer, 2000.

7. U. Maurer and S. Wolf. The relationship between breaking the Diffie-Hellman
protocol and computing discrete logarithms. SIAM J. Comput., 28(5):1689-1721,
1999.

8. A. Menezes, T. Okamoto, and S. Vanstone. Reducing elliptic curve logarithms to
logarithms in a finite field. IEEE Transaction on Information Theory, 39:1639—
1646, 1993.

9. A. Menezes and S. Vanstone. ECSTR(XTR): Elliptic curve singular trace repre-
sentation. Rump session of Crypto’00, August 2000.

10. P. Mountgomery. An FFT Extension of the elliptic curve method of factorization.
PhD thesis, University of California, Los Angeles, 1992.

11. H. G. Riick and K. Nguyen. A comparison of the Weil and Tate pairing. preprint.

12. E. Verheul. XTR is more secure than supersingular elliptic curve crypto systems.
Preprint.

