
Se
ure and EÆ
ient Asyn
hronous Broad
ast

Proto
ols

Christian Ca
hin Klaus Kursawe Frank Petzold

�

Vi
tor Shoup

IBM Resear
h

Zuri
h Resear
h Laboratory

CH-8803 R�us
hlikon, Switzerland

f

a,kku,shog�zuri
h.ibm.
om

Mar
h 7, 2001

Abstra
t

Reliable broad
ast proto
ols are a fundamental building blo
k for implementing repli
a-

tion in fault-tolerant distributed systems. This paper addresses se
ure servi
e repli
ation

in an asyn
hronous environment with a stati
 set of servers, where a mali
ious adversary

may
orrupt up to a threshold of servers and
ontrols the network. We develop a formal

model using
on
epts from modern
ryptography, present modular de�nitions for several

broad
ast problems, in
luding reliable, atomi
, and se
ure
ausal broad
ast, and present

proto
ols implementing them. Reliable broad
ast is a basi
 primitive, also known as the

Byzantine generals problem, providing agreement on a delivered message. Atomi
 broad-

ast imposes additionally a total order on all delivered messages. We present a randomized

atomi
 broad
ast proto
ol based on a new, eÆ
ient multi-valued asyn
hronous Byzantine

agreement primitive with an external validity
ondition. Apparently, no su
h eÆ
ient asyn-

hronous atomi
 broad
ast proto
ol maintaining liveness and safety in the Byzantine model

has appeared previously in the literature. Se
ure
ausal broad
ast extends atomi
 broad-

ast by en
ryption to guarantee a
ausal order among the delivered messages. Threshold-

ryptographi
 proto
ols for signatures, en
ryption, and
oin-tossing also play an important

role.

�

Frank Petzold has sin
e left IBM and
an be rea
hed at petzold�hepe.
om.

1

Contents

1 Introdu
tion 3

1.1 Related Work . 5

1.2 Organization of the Paper . 6

2 Model 6

2.1 Basi
 System Model . 7

2.1.1 Parties and Proto
ols . 7

2.1.2 Communi
ation . 8

2.1.3 Quantitative Aspe
ts . 11

2.2 Byzantine Agreement . 14

2.3 Cryptographi
 Primitives . 15

2.3.1 Digital Signatures . 15

2.3.2 Non-Intera
tive Threshold Signatures . 15

2.3.3 Non-Intera
tive Threshold Cryptosystems 16

2.3.4 Threshold Coin-Tossing . 18

3 Broad
ast Primitives 19

3.1 Reliable Broad
ast . 19

3.1.1 De�nition . 19

3.1.2 A Proto
ol for Reliable Broad
ast . 21

3.2 Veri�able Broad
ast . 23

3.3 Consistent Broad
ast . 23

3.3.1 De�nition . 24

3.3.2 A Proto
ol for Veri�able Consistent Broad
ast 24

4 Validated Byzantine Agreement 26

4.1 De�nition . 27

4.2 Proto
ols for Binary Agreement . 28

4.3 A Proto
ol for Multi-valued Agreement . 28

4.4 A Constant-round Proto
ol for Multi-valued Agreement 31

5 Atomi
 Broad
ast 35

5.1 De�nition . 35

5.2 A Proto
ol for Atomi
 Broad
ast . 38

5.3 Equivalen
e of Byzantine Agreement and Atomi
 Broad
ast 41

6 Se
ure Causal Atomi
 Broad
ast 42

6.1 De�nition . 42

6.2 A Proto
ol for Se
ure Causal Atomi
 Broad
ast 44

7 Con
lusions 45

2

1 Introdu
tion

Broad
ast proto
ols are a fundamental building blo
k for fault-tolerant distributed systems.

A group of servers
an o�er some servi
e in a fault-tolerant way by using the state ma
hine

repli
ation te
hnique, whi
h will mask the failure of any individual server or a fra
tion of

them. In the model with Byzantine faults
onsidered here, faulty servers may exhibit arbitrary

behavior or even be
ontrolled by an adversary.

In this paper, we present a modular approa
h for building robust broad
ast proto
ols that

provide reliability (all servers deliver the same messages), atomi
ity (a total order on the deliv-

ered messages), and se
ure
ausality (a notion that ensures no dishonest server sees a message

before it is s
heduled by the system). An important building blo
k is a new proto
ol for

multi-valued Byzantine agreement with \external validation." Our fo
us is on methods for

distributing se
ure, trusted servi
es on the Internet with the goal of in
reasing their availability

and se
urity. Cryptographi
 operations are exploited to a greater extent than previously for

su
h proto
ols be
ause we
onsider them to be relatively
heap, in parti
ular
ompared to the

message laten
y on the Internet.

We do not make any timing assumptions and work in a purely asyn
hronous model with a

stati
 set of servers and no probabilisti
 assumptions about message delays. Our proto
ols rely

on a trusted dealer that is used on
e to set up the system, but they do not use any additional

external
onstru
ts later (su
h as failure dete
tors or stability me
hanisms). We view this as

the standard
ryptographi
 model for a distributed system with Byzantine faults. These
hoi
es

maintain the safety of the servi
e even if the network is temporarily disrupted. This model also

avoids the problem of having to assume syn
hrony properties and to �x timeout values for a

network that is
ontrolled by an adversary; su
h
hoi
es are diÆ
ult to justify if safety and also

se
urity depend on them.

Despite the pra
ti
al appeal of the asyn
hronous model, not mu
h resear
h has
on
entrated

on developing eÆ
ient asyn
hronous proto
ols or implementing pra
ti
al systems that need

onsensus or Byzantine agreement. Often, developers of pra
ti
al systems avoid the approa
h

be
ause of the result of Fis
her, Lyn
h, and Paterson [17℄, whi
h shows that
onsensus is

not rea
hable by proto
ols that use an a priori bounded number of rounds, even with
rash

failures only. But the impli
ations of this result should not be overemphasized. In parti
ular,

there are randomized solutions that use only a
onstant expe
ted number of rounds to rea
h

agreement [35, 8, 4℄. Moreover, by employing modern, eÆ
ient
ryptographi
 te
hniques, this

approa
h has re
ently been extended to a pra
ti
al yet provably se
ure proto
ol for Byzantine

agreement in the
ryptographi
 model that withstands the maximal possible
orruption [7℄.

The basi
 broad
ast proto
ols (following Bra
ha and Toueg [6℄) are reliable broad
ast, whi
h

ensures that all servers deliver the same messages, and a variation of it that we
all
onsistent

broad
ast, whi
h only provides agreement among the a
tually delivered messages. Consistent

broad
ast is parti
ularly useful in
onne
tion with a veri�ability property for the delivered

messages, whi
h ensures that a party
an transfer a \proof of delivery" to another party in a

single pie
e of information. We des
ribe message- and
ommuni
ation-eÆ
ient implementations

of reliable and
onsistent broad
ast based on
ryptographi
 te
hniques, su
h as digital signatures

and threshold signatures. Both of these broad
ast primitives do not ensure agreement on

messages from faulty senders, however, for whi
h a Byzantine agreement proto
ol is needed.

The eÆ
ient randomized agreement proto
ols mentioned before work only for binary de
i-

sions (or for de
isions on values from small sets). In order to build distributed se
ure appli
a-

tions, this is not suÆ
ient. One also needs agreement on values from large sets, in parti
ular for

ordering multiple messages. We propose a new multi-valued Byzantine agreement proto
ol with

3

an external validity
ondition and show how it
an be used for implementing atomi
 broad
ast.

External validity ensures that the de
ision value is a

eptable to the parti
ular appli
ation that

requests agreement; this
orre
ts a drawba
k of earlier agreement proto
ols for multi-valued

agreement, whi
h
ould de
ide on illegal values. Both proto
ols use digital signatures and

additional
ryptographi
 te
hniques.

The multi-valued Byzantine agreement proto
ol invokes only a
onstant number of binary

Byzantine agreement sub-proto
ols on average and a
hieves this by using a
ryptographi

om-

mon
oin proto
ol in a novel way. It withstands the maximal possible
orruption of up to one

third of the parties and has expe
ted quadrati
 message
omplexity (in the number of parties),

whi
h is essentially optimal.

Our atomi
 broad
ast proto
ol guarantees that a message from an honest party
annot be

delayed arbitrarily by an adversary as soon as a minimum number of honest parties are aware of

that message. The proto
ol invokes one multi-valued Byzantine agreement per bat
h of payload

messages that is delivered. An analogous redu
tion of atomi
 broad
ast to
onsensus in the

rash-fault model has been des
ribed by Chandra and Toueg [10℄, but it
annot be dire
tly

transferred to the Byzantine setting.

We also de�ne and implement a variation of atomi
 broad
ast
alled se
ure
ausal atomi

broad
ast. This is a robust atomi
 broad
ast proto
ol that tolerates a Byzantine adversary

and also provides se
re
y for messages up to the moment at whi
h they are guaranteed to be

delivered. Thus,
lient requests to a trusted servi
e using this broad
ast remain
on�dential

until they are answered by the servi
e. This is
ru
ial in our asyn
hronous environment for

applying the state ma
hine repli
ation method to servi
es that involve
on�dential data.

Se
ure
ausal atomi
 broad
ast works by
ombining an atomi
 broad
ast proto
ol with

robust threshold de
ryption. The notion and a heuristi
 proto
ol were proposed by Reiter

and Birman [39℄, who
alled it \se
ure atomi
 broad
ast" and also introdu
ed the term \input

ausality" for its properties. Re
ent progress in threshold
ryptography allows us to present an

eÆ
ient robust proto
ol together with a se
urity proof in the appropriate formal models from

ryptography.

In a

ordan
e with the
omprehensive survey of fault-tolerant broad
asts by Hadzila
os

and Toueg [21℄, we de�ne and implement our proto
ols in a modular way, with reliable and

onsistent broad
asts and Byzantine agreement as primitives. This leads to the following layered

ar
hite
ture:

Se
ure Causal Atomi
 Broad
ast

Atomi
 Broad
ast

Multi-valued Byzantine Agreement

Broad
ast Primitives Byzantine Agreement

Important for the presentation of our broad
ast proto
ols is our formal model of a modular

proto
ol ar
hite
ture, where a number of potentially
orrupted parties
ommuni
ate over an

inse
ure, asyn
hronous network; it uses
omplexity-theoreti

on
epts from modern
ryptogra-

phy. This makes it possible to easily integrate the formal notions for en
ryption, signatures, and

other
ryptographi
 tools with distributed proto
ols. The model allows for quantitative state-

ments about the running time and the
omplexity of proto
ols; the essen
e of our de�nition is

to bound the number of steps taken by parti
ipants on behalf of a proto
ol independently from

network behavior. In view of the growing importan
e of
ryptography for se
ure distributed

proto
ols, a uni�ed formal model for both is a
ontribution that may be of independent interest.

4

1.1 Related Work

The use of
ryptographi
 methods for maintaining
onsistent state in a distributed system has

a long history and originates with the seminal work of Pease, Shostak, and Lamport [33℄; Dolev

and Strong [14℄ derive lower bounds for proto
ols that use authenti
ation. However, mu
h

of the early work on Byzantine agreement predates the development of robust and eÆ
ient

ryptographi
 proto
ols and the adequate formal models, from whi
h we bene�t here.

Chandra and Toueg [10, p. 248℄ mention that Byzantine agreement and atomi
 broad
ast

are equivalent in asyn
hronous systems, but do not give any further details. In fa
t, we are

not aware of any previous des
ription of a proto
ol for asyn
hronous atomi
 broad
ast with

Byzantine faults in the literature.

A large body of resear
h in distributed systems fo
uses on view-based group
ommuni
ation

systems like Isis, Transis, or Horus for state ma
hine repli
ation [41℄ in the
rash-fault model

(see the overview in [34℄). Su
h systems provide the abstra
tion of a pro
ess group, whi
h may

hange over time. They guarantee
ertain syn
hrony properties among group members so that

they all see the same messages; Vitenberg et al. [44℄ survey and
ompare various spe
i�
ations

found in the literature and implemented in pra
ti
al systems.

Rampart [37, 38℄ is the only one of them that tolerates arbitrary (Byzantine) failures. It

also uses
ryptography for eÆ
ient reliable and atomi
 broad
asts [36℄, but solves a te
hni
ally

di�erent problem than the one we address here: As Rampart builds on a membership proto
ol to

agree dynami
ally on the group's
omposition, it
annot guarantee an honest majority within

the group when fa
ing an adversary that
ompletely
ontrols
ommuni
ation. Be
ause the

maintenan
e of safety is the primary appli
ation of our proto
ols for trusted servi
es, su
h

behavior
annot be tolerated and we have to use more expensive agreement methods.

Another
lass of proto
ols
ir
umvent the impossibility of
onsensus in asyn
hronous envi-

ronments by assuming a probabilisti
 behavior of the network links [6, 29, 31℄. In parti
ular,

Moser and Melliar-Smith [31℄ present algorithms to obtain a total order from a partial order

imposed by an underlying
ommuni
ation system. However, this model is not suitable for ap-

pli
ations that need high se
urity guarantees be
ause su
h assumptions are rather diÆ
ult to

justify in pra
ti
e.

Castro and Liskov [9℄ des
ribe a pra
ti
al algorithm for state-ma
hine repli
ation that main-

tains safety despite Byzantine faults and its implementation for realizing a fault-tolerant dis-

tributed �le system. Sin
e their proto
ols are deterministi
, however, this approa
h
annot

ensure liveness at the same time|at least not without making
ertain timing assumptions.

Se
ureRing [22℄ and the very re
ent work of Doudou, Garbinato, and Guerraoui [15℄ are two

examples of atomi
 broad
ast proto
ols that rely on failure dete
tors in the Byzantine model.

They en
apsulate all time-dependent aspe
ts in the abstra
t notion of a failure dete
tor and

permit
lean, deterministi
 proto
ols. However, most implementations of failure dete
tors will

use timeouts and a
tually su�er from some of the problems mentioned above. It also seems that

Byzantine failure dete
tors are not yet well enough understood to allow for pre
ise de�nitions.

In summary, we think the
ryptographi
 model with randomized Byzantine agreement is

both pra
ti
ally and theoreti
ally attra
tive, although it seems to have been somewhat over-

looked in the past. The fa
t that randomized agreement proto
ols may not terminate with

non-zero probability does not matter be
ause this probability is negligible. Moreover, if a

proto
ol uses authenti
ation, digital signatures, or any
ryptography at all, and the pra
ti
al

proto
ols mentioned above do so, a negligible probability of failure
annot be ruled out anyway.

5

1.2 Organization of the Paper

The remainder of the paper starts with a des
ription of our
ryptographi
 system model in

Se
tion 2, where also the ne
essary
ryptographi
 primitives are introdu
ed. The paper
ontin-

ues with de�nitions and proto
ols for reliable broad
ast and
onsistent broad
ast in Se
tion 3.

Se
tion 4 introdu
es the notion of validated Byzantine agreement and presents two proto
ols for

multi-valued validated Byzantine agreement. The de�nition and a proto
ol for atomi
 broad
ast

are given in Se
tion 5, and for se
ure
ausal atomi
 broad
ast in Se
tion 6.

2 Model

This se
tion des
ribes a formal model for our modular proto
ol ar
hite
ture, where a number

of parties
ommuni
ate over an inse
ure, asyn
hronous network, and where an adversary may

orrupt some of them.

Our model di�ers in two respe
ts from other models traditionally used in distributed systems

with Byzantine faults:

1. In order to use the proof te
hniques of
omplexity-based
ryptography [18℄, our model

is
omputational : all parties and the adversary are
onstrained to perform only feasible,

i.e., polynomial-time,
omputations. This is ne
essary for using formal notions from

ryptography in a meaningful way.

2. We make no assumptions about the network at all and leave it under
omplete
ontrol of

the adversary. Our proto
ols work only to the extent that the adversary delivers messages

faithfully. In short, the network is the adversary.

The di�eren
es be
ome most apparent in the treatment of termination, for whi
h we use more

on
rete
onditions that together imply the traditional notion of \eventual" termination.

We de�ne termination by bounding a statisti
 measuring the amount of work that hon-

est, un
orrupted parties do on behalf of a proto
ol; in parti
ular, we use the
ommuni
ation

omplexity of a proto
ol for this purpose. Sin
e the spe
i�
ation of a proto
ol requires
ertain

things to happen under the
ondition that all proto
ol messages have been delivered, bound-

ing the length (and also the number) of proto
ol messages generated by un
orrupted parties

ensures that the proto
ol has a
tually terminated under this
ondition. In
ryptography one

proves se
urity with respe
t to all polynomial-time adversaries, and we adopt this model here

as well. Our notion of an eÆ
ient (deterministi
) proto
ol requires that the statisti
 is bounded

by a �xed polynomial, whi
h is independent of the adversary. As we rely on randomization (for

Byzantine agreement as well as for other things), we also de�ne a
orresponding probabilisti

bound for randomized proto
ols; from this a bound on the expe
ted running time of a proto
ol

an be derived. Both of our notions are
losed under modular
omposition of proto
ols, whi
h

is not trivial for randomized proto
ols.

Among the many established formal models for asyn
hronous distributed proto
ols, the I/O

automata model of Lyn
h and Tuttle [26, 28, 27℄ seems to be the most general one. It has also

been extended to allow for modeling of randomized proto
ols. But even though authenti
ation

and digital signatures have been used before in se
ure distributed proto
ols, apparently no

adequate formal model has integrated both approa
hes before [27, p. 115℄.

6

2.1 Basi
 System Model

The se
urity parameter of our
omputational se
urity model is denoted by k. A fun
tion �(k)

is
alled negligible if for all
 > 0 there exists a k

0

su
h that �(k) <

1

k

for all k > k

0

. We

will
onsider negligible fun
tions also in other parameters than in k, but we assume that the

parameter of a negligible fun
tion is k if not expli
itly mentioned otherwise. In this sense, a

\negligible quantity" is a negligible fun
tion in the se
urity parameter k. As k is sometimes

not mentioned in other
ontexts either, keep in mind that all system parameters are bounded

by polynomials in k.

2.1.1 Parties and Proto
ols

Multi-Party Proto
ols. An n-party proto
ol
onsists of a
olle
tion of n parties, P

1

; : : : ; P

n

,

whi
h are probabilisti
 intera
tive Turing ma
hines that run in polynomial time (in k). Su
h

a ma
hine has two dedi
ated interfa
es for reading in
oming messages and writing outgoing

messages. There is also an initialization algorithm, whi
h is run by an additional party
alled

the dealer; on input k, n, and t, it generates the state information that is used to initialize ea
h

party. For simpli
ity, assume n � k.

After initialization, a party P

i

may be a
tivated repeatedly with some input message. It

will
arry out some
omputation, update its state, possibly generate some output messages,

and wait for the next a
tivation.

We leave it to the adversary to
hoose n and t, but a spe
i�
 proto
ol might impose its own

restri
tions (e.g., t < n=3). We
an assume that the dealer in
ludes these values, as well as the

index i, in the initial state of P

i

.

Our model in
ludes a publi
-key infrastru
ture for digital signatures, i.e., the dealer gener-

ates a key pair for a digital signature s
heme S for ea
h party, and in
ludes in the initial state

of ea
h party its private key and the publi
 keys of all parties. The dealer initializes a �xed

number of threshold
ryptosystems as required by the implemented proto
ols.

The dealer may also generate a publi
 output for information asso
iated with the n-party

proto
ol; this information may be useful for
lients of a repli
ated servi
e that is implemented

by the n-party proto
ol.

Exe
utions and the Adversary. As our network is inse
ure and asyn
hronous, proto
ol

exe
ution is de�ned entirely via the adversary. The adversary is a polynomial-time intera
tive

Turing ma
hine that s
hedules and delivers all messages and
orrupts some parties.

After the initial setup phase, the adversary repeatedly a
tivates a party with some input

message and waits for the party to generate some output message(s). The output is given to

the adversary and perhaps indi
ates to whom these messages should be sent, and the adversary

may
hoose to deliver these messages faithfully at some time. But in general, the adversary

hooses to deliver any message it wants, or no message at all; we sometimes impose additional

restri
tions on the adversary's behavior, however.

The adversary also
orrupts t parties. W.l.o.g. any adversary that
orrupts fewer than t

parties
an be
onverted into one that
orrupts exa
tly t parties. This simpli�
ation seems

justi�ed for distributed systems with Byzantine faults where one
annot rely on the a
tions of

a single, potentially
orrupted party; all our intended appli
ations are be based on the behavior

of (a majority of) the un
orrupted parties.

One distinguishes between stati
 and adaptive
orruptions in
ryptography: in the stati

orruption model, the adversary must de
ide whom to
orrupt independently of the exe
ution

7

of the system, whereas in the adaptive
orruption model, the adversary
an adaptively
hoose

whom to
orrupt as the atta
k is ongoing, based on information it has a

umulated so far.

We adopt a stati
 adversary in this work for using the threshold
oin-tossing s
heme and the

Byzantine agreement proto
ol of Ca
hin, Kursawe, and Shoup [7℄, the threshold
ryptosystem

of Shoup and Gennaro [43℄, and the threshold signature s
heme of Shoup [42℄. All of these

assume stati

orruptions. However, we believe that the proto
ols des
ribed here generalize

immediately to adaptive se
urity, given su
h primitives with adaptive se
urity.

The adversary re
eives the initial state of the
orrupted parties as produ
ed by the dealer.

Otherwise, the
orrupted parties are simply absorbed into the adversary: we do not regard

them as system
omponents. Un
orrupted parties are
alled honest.

Our formal model leaves
ontrol over the appli
ation interfa
e for invoking broad
asts and

starting agreement proto
ols up to the adversary. The proto
ol de�nitions merely state that if

the adversary invokes the proto
ol in a
ertain way|in the same way an intended appli
ation

would do|then the proto
ol should satisfy some spe
i�

onditions. This re
e
ts that appli
a-

tions might be partially in
uen
ed by an adversary, whi
h might
ause some se
urity problems

if this is not allowed. For simpli
ity, this appli
ation program interfa
e is mapped onto the

single messaging interfa
e, as des
ribed below.

Modular Proto
ol Ar
hite
ture. We des
ribe a modular proto
ol ar
hite
ture, in whi
h

multiple broad
asts and transa
tions may exe
ute in parallel. These proto
ol instan
es run

on
urrently and may also invoke other proto
ol instan
es on their behalf as sub-proto
ols.

The dynami
 relation between all
on
urrently running proto
ol instan
es is given by a dire
ted

a
y
li
 graph in whi
h every sub-proto
ol points to its parent. The \root" proto
ols with no

parents represent instan
es dire
tly invoked by a user appli
ation; in our formal model, they

are invoked by the adversary. All other proto
ol instan
es are invoked as sub-proto
ols of some

already running parent instan
e.

To identify proto
ol instan
es, we assume that ea
h instan
e is asso
iated with a unique

tag ID . The value ID is an arbitrary bit string whose stru
ture and meaning are determined

by a parti
ular proto
ol and appli
ation; in our formal model, the tag of the root instan
es

is
hosen by the adversary be
ause the adversary invokes them. Sub-proto
ols are identi�ed

by hierar
hi
al tags of the form ID jID

0

j : : : . The tag value ID jID

0

typi
ally identi�es a sub-

proto
ol of the parent proto
ol instan
e ID and is determined by the parent. The adversary

may not introdu
e a new tag on its own if this extends any previously introdu
ed tag, i.e., the

set of tags spe
i�ed for the root instan
es must be pre�x-free.

2.1.2 Communi
ation

Messages. The proto
ols are des
ribed in terms of a single
ommuni
ation interfa
e to whi
h

the adversary delivers messages. Ea
h party runs an internal s
heduler that delivers messages to

the proto
ol instan
e asso
iated with the
orresponding ID . The message interfa
e is used in two

di�erent ways, however: to send and to re
eive messages via the network and as a pla
eholder

for lo
al invo
ation of sub-proto
ols. Synta
ti
ally, invoking a sub-proto
ol appears as if it

were a request of the adversary in our formal model, as mentioned before. Sin
e our proto
ol

spe
i�
ations guarantee
ertain behavior when requests
ome from an arbitrary adversary, an

appli
ation using a sub-proto
ol
an bene�t from this universality, as long as it meets the

requirements in the respe
tive spe
i�
ation. The detailed me
hanism for
omposing proto
ols

is part of the s
heduler des
ribed below.

8

There are three di�erent types of messages: input a
tions, output a
tions, and proto
ol

(implementation) messages.

Input and output a
tions represent lo
al events; they provide lo
al input or
arry lo
al

output to or from a proto
ol instan
e, whi
h might be a sub-proto
ol of an already running

instan
e. On the \proto
ol sta
k" of the layered ar
hite
ture, input and output a
tions travel

verti
ally: inputs \down" to sub-proto
ols and outputs \up" to higher-layer proto
ols.

All other messages are proto
ol messages, generated and pro
essed by the proto
ol imple-

mentation; they are intended for the peer instan
es running at other parties on the same level

of the sta
k (dire
ted \horizontally"). Proto
ol messages are internal implementation messages

and they are distin
t from the messages or requests a
tually disseminated as payloads of the

broad
ast proto
ols; those messages are sometimes expli
itly
alled payload messages.

An input a
tion is a message of the form

(ID ; in; a
tion; : : :);

where a
tion is spe
i�
 to the proto
ol and followed by arbitrary data. Input a
tions represent

lo
al invo
ations of a proto
ol, either as a root proto
ol instan
e by the adversary or as a sub-

proto
ol of an already running proto
ol instan
e. An input a
tion is used to request a servi
e

from the proto
ol instan
e. There is a spe
ial input a
tion open, represented by

(ID ; in; open; type);

whi
h must pre
ede any other input a
tion with tag ID . When P

i

pro
esses su
h a message with

tag ID for the �rst time, it initializes the instan
e; type spe
i�es the type of the proto
ol being

initialized. We say that P

i

has opened a \
hannel" with tag ID or a
tivated a \transa
tion"

with tag ID . (Although it is a
ru
ial element, we usually assume that it o

urs impli
itly

before the �rst regular input a
tion.)

An output a
tion is a message of the form

(ID ; out; a
tion; : : :);

where a
tion is again dependent on the parti
ular servi
e. These messages typi
ally
ontain an

output from the proto
ol instan
e to the
alling entity. There is a spe
ial output a
tion halt,

represented by

(ID ; out; halt);

after whi
h no further messages tagged with ID are pro
essed by the party. When P

i

generates

su
h a message with tag ID , we say that P

i

has halted instan
e ID .

We stress that in a real proto
ol implementation, input and output a
tions both do not

involve any real network
ommuni
ation and will be mapped onto lo
al events being generated

or pro
essed by the
alling entity. But in the formal model at least some of them are generated

and re
eived by the adversary.

The third type of message generated by P

i

are proto
ol messages of the form

(ID ; type; : : :)

with type 62 fin; outg. The idea is that su
h messages are delivered by the network to other

parties, where they are pro
essed by the
orresponding proto
ol instan
e.

For simpli
ity, we shall not in
lude origin and destination addresses in the body of proto-

ol messages, and assume that this information is impli
itly available to the re
eiving party.

9

Furthermore, we assume that all proto
ol messages are authenti
ated, whi
h restri
ts the adver-

sary's behavior as follows: if P

i

and P

j

are honest and the adversary delivers a proto
ol message

M to P

j

indi
ating that it was sent by P

i

, then M was generated by P

i

at some prior point in

time. It is reasonable to build authenti
ation into our model be
ause it
an be implemented

very
heaply using standard symmetri
-key
ryptographi
 te
hniques [30℄.

Internal S
heduling. When a party is a
tivated by the adversary, the in
oming message is

appended to a lo
almessage bu�er and the internal s
heduler is invoked. It delivers the message

to the proto
ol instan
e asso
iated with the
orresponding ID . If no proto
ol asso
iated with

ID is running yet, the s
heduler bu�ers all arriving messages until a
orresponding instan
e has

been opened. If the proto
ol instan
e has already halted, the message is dis
arded.

The appli
able messages in the bu�er are delivered to the proto
ol instan
es as follows. For

ea
h input a
tion open with a tag ID that has not been opened before, a new proto
ol instan
e

with the spe
i�ed ID is initialized and the s
heduler remembers that it was started over the

network (i.e., by the adversary).

Ea
h opened proto
ol instan
e exe
utes as a separate thread, but at any point in time, at

most one of them is a
tive. Upon a
tivation of a party, all proto
ol instan
es are in wait states.

An instan
e enters this state by exe
uting await for operation, spe
ifying a
ondition de�ned on

the message bu�er and other lo
al state variables under whi
h it pro
esses a message. Waiting

instan
es be
ome ready as soon as their
ondition is satis�ed. Then one of the ready instan
es is

s
heduled to exe
ute (arbitrarily, if more than one are ready), subje
t to the following restri
tion:

An instan
e ID is not s
heduled if any of its
hildren in the dynami
 proto
ol tree are also ready.

In this way, instan
e ID is s
heduled only after any other ready instan
e whose tag
ontains

ID as a proper pre�x.

When a proto
ol instan
e is s
heduled, it pro
esses the message, potentially generating

some messages, until it enters the wait state again by issuing a wait for operation, or until it

performs an expli
it halt operation. The s
heduler translates halt into the output a
tion halt

for tag ID and removes the instan
e ID (further messages tagged with ID are ignored).

The s
heduler treats messages generated by an instan
e ID as follows. Proto
ol messages are

simply written to the outgoing
ommuni
ation interfa
e. For ea
h input a
tion open, however,

a new proto
ol instan
e with the spe
i�ed
hild ID is initialized, as if the message
ame from

the network. The s
heduler remembers the ID of the parent instan
e; all subsequent input

a
tions from the parent addressed to the
hild are not written out to the network, but in
luded

dire
tly in the bu�er. Ea
h output a
tion of a sub-proto
ol instan
e ID is mapped dire
tly

into a
orresponding internal message for its parent; output a
tions of a root proto
ol instan
e

are written to the outgoing
ommuni
ation interfa
e. These steps allow lo
al a
tivation of sub-

proto
ols and lo
al pro
essing of their output to be des
ribed in terms of the single message

interfa
e.

The s
heduler
ontinues to deliver messages to waiting proto
ol instan
es in an arbitrary

order, until the bu�er
ontains no more appli
able messages. When no more instan
e are ready,

ontrol is returned to the adversary. Some messages may remain in the bu�er until the next

a
tivation be
ause no proto
ol was waiting for them. Corre
tness and se
urity of a proto
ol

should not depend on the parti
ular implementation of the s
heduler, as long as it obeys these

rules.

Our proto
ol des
riptions are mostly written in rea
tive style,
onsisting simply of message

handlers for whi
h a global wait for operation is issued impli
itly. Upon re
eiving an appli
able

message, the handler will exe
ute some instru
tions, update its state, and may also perform a

10

wait for operation whi
h will blo
k until the appropriate messages have arrived. If an instan
e

ID waits for messages tagged with its own ID , it is simply a shorthand notation for the

orresponding message handlers. But if an instan
e ID waits for output from a
hild instan
e

(that has previously been opened), the s
heduler delivers the output a
tions of the
hild to the

parent, as mentioned before. We make the assumption that an instan
e waiting for output

from an uninitialized instan
e triggers impli
itly a
orresponding open a
tion, whi
h initializes

the instan
e.

2.1.3 Quantitative Aspe
ts

De�ning Termination. In the model with
omputationally bounded parti
ipants
onsidered

here, we
annot apply the notion of \eventual" termination traditionally used in distributed

omputing, whi
h allows for in�nite proto
ol runs and would make formal models of
rypto-

graphi
 methods with
omputationally bounded adversaries meaningless. Instead, we de�ne

termination of a proto
ol instan
e only to the extent that the adversary faithfully delivers mes-

sages among the honest parties (analogous to [7℄). In order to bound the adversary's running

time, we quantify the amount of work done by honest parties on behalf of a proto
ol. We

measure the eÆ
ien
y of a proto
ol for this purpose. Combined with a liveness
ondition (su
h

as \validity"), restri
ting the amount of work implies eventual termination in the
onventional

sense. For example, this will rule out trivial proto
ols that never terminate but always
ause

some work to be done without making progress.

Formally, our eÆ
ien
y
ondition is based on a proto
ol statisti
 X measuring the work done

by honest parties in a multi-party proto
ol exe
ution, su
h as \useful"
omputation steps or the

number of generated message bits. A proto
ol statisti
 is a family of real-valued, non-negative

random variables fX

A

(k)g, parameterized by adversary A and se
urity parameter k, where

ea
h X

A

(k) is a dis
rete random variable indu
ed by the
oin
ips of the dealer, the honest

parties, and adversary A for se
urity parameter k. We
all X a bounded proto
ol statisti
 if for

all adversaries A, there exists a polynomial p

A

su
h that for all k � 0, it holds X

A

(k) � p

A

(k),

i.e., the statisti
 is polynomial in the se
urity parameter, but depending on the adversary.

The key to de�ning eÆ
ien
y lies in \uniformly" bounding a proto
ol statisti
, independent

of the adversary|su
h a bound should only depend on the parti
ular proto
ol implementation.

As we
onsider deterministi
 and randomized proto
ols (whi
h may not always terminate after

a polynomial number of steps), we introdu
e two
orresponding notions for su
h uniformly

bounded statisti
s.

De�nition 1 (Uniformly Bounded Statisti
s). Let X be a bounded proto
ol statisti
. We

say that

1. X is uniformly bounded (by T) if there exists a �xed polynomial T (k) su
h that for all

adversaries A, there exists a negligible fun
tion �

A

(k) su
h that for all k � 0,

Pr[X

A

(k) > T (k)℄ � �

A

(k);

2. X is probabilisti
ally uniformly bounded (by T) if there exists a �xed polynomial T (k) and

a �xed negligible fun
tion Æ(l) su
h that for all adversaries A, there exists a negligible

fun
tion �

A

(k) su
h that for all l � 0 and k � 0,

Pr[X(k) > lT (k)℄ � Æ(l) + �

A

(k):

11

A probabilisti
ally uniformly bounded statisti
 is allowed to ex
eed the uniform bound

with non-negligible probability in the se
urity parameter, but this probability must again be

negligible, independent of the adversary. If X probabilisti
ally uniformly bounded by T , then

its expe
ted value is bounded by T times a
onstant that is independent of the adversary, as

shown next.

Lemma 1. Suppose X is a statisti
 of a multi-party proto
ol that is probabilisti
ally uniformly

bounded by T . Then there exists a
onstant
 su
h that for all adversaries A, the expe
ted value

of X

A

(k) is bounded by
T (k) + �

0

A

(k), where �

0

A

is a negligible fun
tion.

Proof. Re
all that a bounded proto
ol statisti
 is bounded by some polynomial q

A

(k) in the

se
urity parameter, depending on the adversary A; thus the random variable X

A

(k) ex
eeds

q

A

(k) with probability zero.

Set X

0

A

(k) = X

A

(k)=T (k); it follows X

0

A

(k) � q

0

A

(k) for some polynomial q

0

A

(k). Be
ause

X

A

(k) is probabilisti
ally uniformly bounded, we know that there exist negligible fun
tions Æ(l)

and �

A

(k) su
h that Pr[X

0

A

(k) > l℄ � Æ(l) + �

A

(k). Together with E[Y ℄ �

P

l�0

Pr[Y > l℄ for

any non-negative dis
rete random variable Y , it follows

E[X

0

A

(k)℄ �

X

l�0

Pr[X

0

A

(k) > l℄ =

q

0

A

(k)

X

l=0

Pr[X

0

A

(k) > l℄ �

q

0

A

(k)

X

l=0

�

Æ(l) + �

A

(k)

�

:

Now �x Æ to a fun
tion whose sum
onverges to a
onstant, say Æ(l) = l

�2

. We have

q

0

A

(k)

X

l=0

�

Æ(l) + �

A

(k)

�

�

q

0

A

(k)

X

l=0

l

�2

+ q

0

A

(k)�

A

(k) �

0

+ q

0

A

(k)�

A

(k)

for a
onstant

0

that is independent of the adversary. Be
ause �

A

is negligible and by the

linearity of expe
tation, this implies that E[X

A

(k)℄ =

0

T (k)+�

0

A

(k) for some negligible �

0

A

.

A key property of these notions is that they lend themselves to the
omposition of proto
ols

by way of the following lemma, whose proof is tedious but straightforward.

Lemma 2. Fix any polynomial F (x

1

; : : : ; x

f

), independent of adversary. If X

1

; : : : ;X

f

are

[probabilisti
ally℄ uniformly bounded statisti
s, then F (X

1

; : : : ;X

f

) is also a [probabilisti
ally℄

uniformly bounded statisti
.

Communi
ation and Message Complexity. An appropriate statisti
 in the above sense is

the
ommuni
ation
omplexity of a multi-proto
ol; it is used by our model to de�ne termination.

Formally, the
ommuni
ation
omplexity is equal to the bit length of all asso
iated proto
ol

messages that honest parties generate. Whi
h proto
ol messages are asso
iated to a parti
ular

instan
e ID will vary a

ording to the proto
ol type and will be noted expli
itly when de�ning

a proto
ol. Typi
ally, this in
ludes all messages with the tag ID or any tag starting with

ID j : : : ; through the se
ond form, also messages generated by sub-proto
ols on behalf of the

alling proto
ol
an be asso
iated to an instan
e ID . Our proto
ol ar
hite
ture ensures that all

messages generated by honest parties are asso
iated to some proto
ol.

Restri
ting the
ommuni
ation
omplexity to messages generated by honest parties seems

the best one
an say about a proto
ol in a Byzantine environment; the adversary
an always

deliver \junk" proto
ol messages to honest parties, whi
h require some work to be read. Network

12

bandwidth is an apparent resour
e that
ommuni
ation proto
ols
onsume, thus, measuring it

seems adequate.

Alternatively, one
ould bound the bit length of all distin
t messages delivered to one honest

party that were generated by another honest party. But this is bounded by the
ommuni
ation

omplexity in the sense above.

As it is, there is no a priori restri
tion on the size of a payload message in our formal

model. However, the
ommuni
ation
omplexity of a broad
ast proto
ol depends on the length

of su
h a message. For simpli
ity, we will therefore assume that there exists a �xed polynomial

upper bound on the length of all payload messages that are
ontained in any input or output

a
tion message of any honest party. From this, and from the des
ription of a parti
ular proto
ol

implementation, one
an derive an upper bound on the maximal length of any proto
ol message.

Another appropriate statisti
 for a
ertain
lass of proto
ols (like Byzantine agreement, as

used in [7℄) is the message
omplexity, de�ned as the total number of all asso
iated proto
ol

messages that honest parties generate.

If the
ommuni
ation
omplexity (or also the message
omplexity) is uniformly bounded,

the adversary
ould qui
kly make all honest parties terminate the proto
ol instan
e, but it is

not for
ed to do so.

Modular Proto
ol Composition. Using the message
omplexity (or
ommuni
ation
om-

plexity) as a statisti
 has the advantage that it is
losed under the modular
omposition of

proto
ols as follows. A

ording to our ar
hite
ture, a higher-level proto
ol may invoke a sub-

proto
ol to
arry out a
ertain task; this appears as a one or more input a
tions generated

by the higher-level proto
ol, whi
h will start the sub-proto
ol(s) as des
ribed above. Suppose

for the moment that sub-proto
ols are implemented by a distributed ora
le available to every

party, whi
h provides the servi
e of the sub-proto
ols in an ideal and instantaneous way. We

all su
h a proto
ol an ora
le proto
ol. A party invokes the proto
ol ora
le by generating a

suitable input a
tion message, so that this
ounts as one towards message
omplexity.

Consider two multi-party ora
le proto
ols A and B with respe
tive message
omplexities X

A

and X

B

that are both [probabilisti
ally℄ uniformly bounded. Suppose that the ora
le proto
ol A

uses an ora
le for the task provided by B. Sin
e B is implemented by the ora
le, X

A

ounts

every invo
ation of B by any honest party as one unit.

If we repla
e every ora
le
all on behalf of A to B by a
tually invoking B a

ording to our

general system model, we obtain a
omposed proto
ol AB with message
omplexity X

AB

. This

ounts all messages that proto
ol A generates dire
tly and those generated by the instan
es of B

started on behalf of A. But be
ause X

A

and X

B

are [probabilisti
ally℄ uniformly bounded, there

exist the appropriate polynomial bounds on the message
omplexities of A and B and also on

the number of a
tivations of proto
ol B (be
ause message
omplexity bounds also the number

of sub-proto
ol invo
ations). Thus, by Lemma 2, X

AB

is also [probabilisti
ally℄ uniformly

bounded.

In other words, if we
ompose two, or any
onstant number of proto
ols with [probabilis-

ti
ally℄ uniformly bounded message
omplexities (some of them being ora
le proto
ols), we

obtain another proto
ol with [probabilisti
ally℄ uniformly bounded message
omplexity. This

extends trivially to
ommuni
ation
omplexity and, in fa
t, to any statisti
 in whi
h invoking

a sub-proto
ol is
ounted as one
ost unit.

Lemma 3. [Probabilisti
ally℄ uniformly bounded
ommuni
ation
omplexity is
losed under the

modular
omposition of proto
ols.

13

This is an important property of our notion of termination for randomized proto
ols and

justi�es the way in whi
h we have de�ned it. If one would merely
onsider the expe
ted value

of a statisti
 for a randomized proto
ol, one
ould not draw su
h
on
lusions. For example,

ombining a proto
ol from whi
h we only know that its expe
ted number of rounds is
onstant

with another one having the same property would not guarantee that the total expe
ted number

of rounds is also
onstant.

2.2 Byzantine Agreement

We give the de�nition of Byzantine agreement (or
onsensus in the
rash-fault model) here as

it is needed for building atomi
 broad
ast proto
ols. It
an be used to provide agreement on

independent transa
tions.

The Byzantine agreement proto
ol is a
tivated when the adversary delivers a message to P

i

of the form

(ID ; in; propose; v);

where v 2 f0; 1g. When this o

urs, we say P

i

proposes v for transa
tion ID .

A party terminates the Byzantine agreement proto
ol (for transa
tion ID) by generating an

output message of the form

(ID ; out; de
ide; v):

In this
ase, we say P

i

de
ides v for transa
tion ID .

Let any message with tag ID or ID j : : : that is generated by an honest party be asso
iated

to the agreement proto
ol for ID .

De�nition 2 (Byzantine agreement). A proto
ol solves Byzantine agreement if it satis�es

the following
onditions ex
ept with negligible probability:

Validity: If all honest parties that are a
tivated on a given ID propose v, then any honest

party that terminates for ID de
ides v.

Agreement: If an honest party de
ides v for ID , then any honest party that terminates de-

ides v for ID .

Liveness: If all honest parties have been a
tivated on ID and all asso
iated messages have

been delivered, then all honest parties have de
ided for ID .

EÆ
ien
y: For every ID , the
ommuni
ation
omplexity for ID is probabilisti
ally uniformly

bounded.

This is the usual de�nition of validity in the literature. In Se
tion 4 we introdu
e the

weaker notion of external validity that is useful for
ertain appli
ations. For instan
e, if initial

values
ome with validating data (e.g., a digital signature) that establishes their validity in a

parti
ular
ontext, we will require that an honest party may only de
ide on a value for whi
h it

has the a

ompanying validating data. Thus, even if all honest parties start with 0, they may

still de
ide on 1 if they obtain the
orresponding validating data for 1 during the agreement

proto
ol.

14

2.3 Cryptographi
 Primitives

Apart from ordinary digital signature s
hemes, we use robust, non-intera
tive threshold signa-

tures, threshold publi
-key en
ryption s
hemes, and a threshold
oin-tossing proto
ol.

We need a
ollision-free hash fun
tion H : f0; 1g

�

! f0; 1g

k

0

with the property that the

adversary
annot generate two distin
t strings x and x

0

su
h that H(x) = H(x

0

), ex
ept with

negligible probability.

Another useful primitive is a
ryptographi
ally strong pseudorandom generator [19℄, denoted

by G : f0; 1g

k

00

! f0; 1g

�

, that stret
hes a k

00

-bit seed by an arbitrary polynomial fa
tor. G is a

deterministi
 algorithm with input a random k

00

-bit seed su
h that its output is
omputationally

indistinguishable from a uniform random string of the same length. In other words, for every

eÆ
ient statisti
al test running in time polynomial in k, the probability that it
an distinguish

the output of G with a random seed from truly random bits is negligible.

Many eÆ
ient
ryptographi
 s
hemes, and in parti
ular all the threshold-
ryptography pro-

to
ols needed below,
an be analyzed only in the so-
alled random-ora
le model [1℄. This refers

to an idealized world where a hash fun
tion has been repla
ed by a truly random ora
le, avail-

able to all parti
ipants. Although su
h proofs provide only a heuristi
 notion of se
urity, the

model allows to design truly pra
ti
al proto
ols that admit a se
urity analysis, whi
h yields

very strong eviden
e for their se
urity.

2.3.1 Digital Signatures

A digital signature s
heme [20℄
onsists of a key generation algorithm, a signing algorithm, and

a veri�
ation algorithm. The key generation algorithm takes as input a se
urity parameter, and

outputs a publi
 key/private key pair. The signing algorithm takes as input that private key

and a message m, and produ
es a signature �. The veri�
ation algorithm takes the publi
 key,

a message m, and a putative signature �, and outputs a bit that indi
ates whether it a

epts

or reje
ts the signature. A signature is
onsidered valid if and only if the veri�
ation algorithm

a

epts. All signatures produ
ed by the signing algorithm must be valid.

The basi
 se
urity property is unforgeability. The atta
k s
enario is as follows. An adversary

is given the publi
 key, and then requests the signatures on a number of messages, where the

messages themselves may depend on previously obtained signatures. If at the end of the atta
k,

the adversary
an output a message m and a valid signature � on m, su
h that m was not

one of the messages whose signature it requested, then the adversary has su

essfully forged

a signature. Se
urity means that it is
omputationally infeasible for an adversary to forge a

signature.

2.3.2 Non-Intera
tive Threshold Signatures

An important tool for our broad
ast proto
ols are non-intera
tive threshold signatures. More

pre
isely, we need dual-threshold variations as introdu
ed by Shoup [42℄ and Ca
hin, Kursawe,

and Shoup [7℄. The basi
 idea of a dual-threshold signature s
heme is that there are n parties,

t of whi
h may be
orrupted. The parties hold shares of the se
ret key of a signature s
heme,

and may generate shares of signatures on individual messages. The only requirement is that

� signature shares are ne
essary and suÆ
ient to
onstru
t a signature, where t < � � n � t.

(The standard notion of threshold s
hemes
onsiders only � = t+ 1.)

More pre
isely, a non-intera
tive (n; �; t)-dual-threshold signature s
heme
onsists of the

following parts:

15

{ A key generation algorithm with input parameters k, n, �, and t. It outputs the publi

key of the s
heme, a private key share for ea
h party, and a lo
al veri�
ation key for ea
h

party.

{ A signing algorithm with inputs a message, the publi
 key and a private key share. It

outputs a signature share on the submitted message.

{ A share veri�
ation algorithm with inputs a message, a signature share on that message

from a party P

i

, along with the global publi
 key and the lo
al veri�
ation key of P

i

. It

determines if the signature share is valid.

{ A share
ombining algorithm that takes as input a message and � valid signature shares on

the message, along with the publi
 key and the veri�
ation keys, and (hopefully) outputs

a valid signature on the message.

{ A signature veri�
ation algorithm that takes as input a message and a signature (generated

by the share-
ombining algorithm), along with the publi
 key, and determines if the

signature is valid.

The intera
tion takes pla
e in the basi
 system model introdu
ed above. During initial-

ization, the dealer runs the key generation algorithm and gives ea
h party the publi
 key, all

lo
al veri�
ation keys, and its private key share. The adversary may submit signing requests to

the honest parties for messages of its
hoi
e. Upon re
eiving su
h a request, a party
omputes

a signature share for the given message using its private key share. Given � valid signature

shares from distin
t parties on the same message, they may be
ombined into a signature on

the message.

The two basi
 se
urity requirements are robustness and non-forgeability. Robustness means

that it is
omputationally infeasible for an adversary to produ
e � valid signature shares su
h

that the output of the share
ombining algorithm is not a valid signature. Non-forgeability

means that it is
omputationally infeasible for the adversary to output a valid signature on a

message that was submitted as a signing request to less than �� t honest parties.

A pra
ti
al s
heme that satis�es these de�nitions in the random-ora
le model was proposed

by Shoup [42℄ and is based on RSA [40℄. Ea
h signature share has essentially the size of an RSA

signature and the �nal signature is a standard RSA signature. Our de�nition of a threshold

signature s
heme would also admit the trivial implementation of just using a set of � ordinary

signatures.

The dual-threshold s
heme is used in some of our proto
ols, where a threshold signature

with � > t+1 provides eviden
e for the fa
t that �� t honest parties have exe
uted some steps

in the proto
ol. A single-threshold s
heme would not work here be
ause although our system

orruption model is stati
, the adversary may adaptively de
ide from whi
h honest parties to

request additional signature shares by s
heduling messages a

ordingly.

2.3.3 Non-Intera
tive Threshold Cryptosystems

We use the de�nition of non-intera
tive threshold
ryptosystems with se
urity against adap-

tive
hosen-
iphertext atta
ks put forward by Shoup and Gennaro [43℄. (For ordinary publi
-

key
ryptosystems, se
urity against adaptive
hosen-
iphertext atta
ks is equivalent to non-

malleability [13℄.)

A (n; t+ 1)-threshold
ryptosystem is given by the following algorithms:

16

{ A key generation algorithm, taking as input k, n, and t. Outputs are the publi
 key and

a private de
ryption key for ea
h party.

{ An en
ryption algorithm with inputs the publi
 key, a
leartext message m 2 f0; 1g

�

. The

algorithm outputs a
iphertext
 and a label ` 2 f0; 1g

�

.

{ A de
ryption algorithm with inputs the publi
 key, an index i 2 f1; : : : ; ng, the private

key of P

i

, a
iphertext
, and a label `. It outputs a de
ryption share or a spe
ial symbol

? if the inputs are invalid.

{ A
ombination algorithm that takes as inputs the publi
 key, a
iphertext
, a label ` and

a list D of de
ryption shares, of whi
h some may be invalid. If D
ontains at least t+ 1

valid de
ryption shares, the algorithm outputs the
leartext m. Otherwise it returns a

spe
ial symbol ?.

The intera
tion takes pla
e in the basi
 system model a

ording to Se
tion 2.1. During

the initialization phase, the dealer runs the key generation algorithm and gives ea
h party the

global publi
 key and its private key share.

Any party may run the en
ryption algorithm with the publi
 key and a
leartext message

to produ
e a
iphertext.

For de
ryption, a party sends the
iphertext together with the label to ea
h party P

i

,

who returns a de
ryption share. Upon re
eiving enough de
ryption shares, the de
ryptor
an

ombine them in order to obtain the
leartext.

The algorithms ensure that if a
iphertext
 of a
leartext m was produ
ed
orre
tly by the

en
ryption algorithm, then the re
overy algorithm yields m with all but negligible probability,

even if at most t de
ryption shares were not produ
ed by the de
ryption algorithm with inputs

as spe
i�ed above. This property is
alled robustness.

To de�ne se
urity against adaptive
hosen
iphertext atta
ks,
onsider the following game,

played by the adversary in our basi
 system model with t stati
ally
orrupted parties; the keys

generated by the dealer and given to the
orrupted parties are seen by the adversary.

A1. The adversary intera
ts with the un
orrupted parties in an arbitrary fashion, feeding them

iphertext/label pairs and obtaining de
ryption shares.

A2. The adversary
hooses two
leartexts, m

0

and m

1

, and gives them to an \en
ryption

ora
le." The ora
le
hooses a bit b at random, en
rypts m

b

, and returns the resulting

iphertext
 and label ` to the adversary.

A3. The adversary
ontinues to intera
t with the un
orrupted parties, feeding them
ipher-

text/label pairs (

0

; `

0

) and re
eiving de
ryption shares, with the restri
tion that (

0

; `

0

) 6=

(
; `).

A4. The adversary outputs a bit

^

b.

The threshold
ryptosystem is
alled se
ure against adaptive
hosen
iphertext atta
k if

for any polynomial-time bounded adversary the probability that b =

^

b ex
eeds 1=2 only by a

negligible quantity.

A pra
ti
al threshold
ryptosystem a

ording to the above de�nition has been presented by

Shoup and Gennaro [43℄. Its se
urity is based on the
omputational DiÆe-Hellman problem [12℄,

and it works in the random-ora
le model; a variation of it is based on the de
isional DiÆe-

Hellman problem.

17

2.3.4 Threshold Coin-Tossing

We also need an (n; t+ 1)-threshold
oin-tossing s
heme. The basi
 idea is the same as for the

other threshold primitives, but here the parties hold shares of a pseudorandom fun
tion F . It

maps a bit string N , the name of a
oin, to its value F (N) 2 f0; 1g

k

00

. We use a generalized
oin

that produ
es k

00

random bits simultaneously; su
h a
oin is also
alled a distributed pseudo-

random fun
tion [32℄. The parties may generate shares of a
oin value F (N) and t+ 1 shares

of the same
oin are both ne
essary and suÆ
ient to
onstru
t the value of that
oin. The

generation and veri�
ation of
oin shares are also non-intera
tive and we work in the basi

system model of Se
tion 2.1.

During initialization the dealer generates a global veri�
ation key, a lo
al veri�
ation key

for ea
h party, and a se
ret key share for ea
h party. The initial state information for ea
h

party
onsists of its se
ret key share and all veri�
ation keys. The se
ret keys impli
itly de�ne

a fun
tion F mapping names to k

00

-bit strings.

After the initialization phase, the adversary submits reveal requests to the honest parties for

oins of his
hoi
e. Upon re
eiving su
h a request, a party outputs a
oin share for the given

oin
omputed from its se
ret key.

The
oin-tossing s
heme also spe
i�es two algorithms:

{ The share veri�
ation algorithm takes as input the name of a
oin, a share of this
oin

from a party P

i

, along with the global veri�
ation key and the veri�
ation key of P

i

, and

determines if the
oin share is valid.

{ The share
ombining algorithm takes as input a the name N of a
oin and t + 1 valid

shares of N , along with (perhaps) the veri�
ation keys, and (hopefully) outputs F (N).

The se
urity requirements are robustness and pseudorandomness. Robustness means that

it is
omputationally infeasible for an adversary to produ
e a name N and � valid shares

of
oin N su
h that the output of the share
ombining algorithm is not F (N). To de�ne

pseudorandomness,
onsider the following game, played in the basi
 system model.

D1. The adversary intera
ts with the un
orrupted parties in an arbitrary fashion, obtaining

shares for arbitrary
oins.

D2. The adversary
hooses a
oin N for whi
h it has not yet requested a
oin share, and gives

it to an \F -ora
le." The ora
le
hooses a bit b at random, and returns F (N) if b = 0 and

a uniformly random k

00

-bit string otherwise.

D3. The adversary
ontinues to intera
t with the un
orrupted parties and may obtain shares

for arbitrary
oins, ex
ept for N .

D4. The adversary outputs a bit

^

b.

The threshold
oin-tossing s
heme is pseudorandom if for any polynomial-time bounded

adversary the probability that b =

^

b ex
eeds 1=2 only by a negligible quantity.

An eÆ
ient threshold
oin-tossing s
heme in the random-ora
le model has been presented by

Ca
hin, Kursawe, and Shoup [7℄. Although their implementation produ
es single-bit outputs,

it
an be trivially modi�ed to generate k

00

-bit strings, just by using a k

00

-bit hash fun
tion to

ompute the �nal value. Its se
urity is based on the
omputational DiÆe-Hellman problem in

the random-ora
le model. A related s
heme for a distributed pseudo-random fun
tion, with se-

urity based on the de
isional DiÆe-Hellman problem, has also been proposed by Naor, Pinkas,

and Reingold [32℄.

18

3 Broad
ast Primitives

In this se
tion, we introdu
e two broad
ast primitives, reliable broad
ast and
onsistent broad-

ast, and present
ommuni
ation-eÆ
ient proto
ols for both. In terms of our de�nitions, reliable

broad
ast (the Byzantine generals problem) appears as an extension of
onsistent broad
ast;

but we introdu
e reliable broad
ast �rst be
ause it is a well-known primitive. We also introdu
e

the notion of a veri�able broad
ast.

3.1 Reliable Broad
ast

Reliable broad
ast provides a way for a party to send a message to all other parties. It requires

that all honest parties deliver the same set of messages and that this set in
ludes all messages

broad
ast by honest parties, without guaranteeing anything about the order in whi
h messages

are delivered. In the
ontext of arbitrary faults, reliable broad
ast is also known as the Byzantine

generals problem [25℄.

3.1.1 De�nition

Broad
asts are parameterized by a tag ID , whi
h
an also be thought of as identifying a broad-

ast \
hannel." Sin
e many parties
an potentially broad
ast several payload messages with

the same ID , we augment the tag in a reliable broad
ast by the identity of the sender, j, and by

a sequen
e number s. Then, we restri
t the adversary to submit a request for reliable broad
ast

tagged with ID :j:s to P

i

only if i = j and at most on
e for every sequen
e number. These

requirements are easily satis�ed in pra
ti
e by maintaining a message
ounter. Instan
es of

reliable broad
ast are always identi�ed by ID :j:s so that the simple tag ID alone represents

a \virtual
hannel" for reliable broad
ast; its implementation uses one independent proto
ol

instan
e per payload message.

A reliable broad
ast proto
ol is a
tivated when the adversary delivers a message to P

j

of

the form

(ID :j:s; in; r-broad
ast;m);

with m 2 f0; 1g

�

and s 2 N. When this o

urs, we say P

j

reliably broad
asts m tagged

with ID :j:s, or simply P

j

r-broad
asts m. Note that only P

j

is a
tivated like this. The other

parties are a
tivated when they perform an expli
it open a
tion for instan
e ID :j:s in their

role as re
eivers; a

ording to our
onvention, this o

urs for instan
e when they wait for an

output tagged with ID :j:s.

A party terminates a reliable broad
ast of m tagged with ID :j:s by generating an output

message of the form

(ID :j:s; out; r-deliver;m):

In this
ase, we say P

i

reliably delivers m tagged with ID :j:s (or r-delivers for brevity).

We say that all proto
ol messages whi
h are generated by honest parties have tags with

pre�x ID :j:s are asso
iated to the broad
ast of m by P

j

with sequen
e number s. Re
all that

this de�nes also the messages
ontributing to the
ommuni
ation
omplexity of the proto
ol

instan
e ID :j:s.

De�nition 3 (Reliable Broad
ast). A proto
ol for reliable broad
ast satis�es the following

onditions ex
ept with negligible probability:

19

Validity: If an honest party has r-broad
ast m tagged with ID :j:s, then all honest parties

r-deliver m tagged with ID :j:s, provided all honest parties have been a
tivated on ID :j:s

and the adversary delivers all asso
iated messages.

Consisten
y: If some honest party r-delivers m tagged with ID :j:s and another honest party

r-delivers m

0

tagged with ID :j:s, then m = m

0

.

Totality: If some honest party r-delivers a message tagged with ID :j:s, then all honest parties

r-deliver some message tagged with ID :j:s, provided all honest parties have been a
tivated

on ID :j:s and the adversary delivers all asso
iated messages.

Integrity: For all ID , senders j, and sequen
e numbers s, every honest party r-delivers at

most one message m tagged with ID :j:s. Moreover, if all parties follow the proto
ol, then

m was previously r-broad
ast by P

j

with sequen
e number s.

EÆ
ien
y: For any ID , sender j, and sequen
e number s, the
ommuni
ation
omplexity of

instan
e ID :j:s is uniformly bounded.

Some remarks on the above de�nition. Re
all the impli
it quanti�
ation over all polynomial-

time adversaries.

1. Validity ensures the liveness of a proto
ol, and rules out trivial proto
ols that do not

generate any messages. One
ould use an equivalent, but simpler de�nition here, requiring

that only the sender (and not all honest parties) r-deliver the message; but then one would

have to modify this again to the present form for de�ning
onsistent broad
ast below.

2. The agreement
ondition found in traditional de�nitions is split into
onsisten
y and

totality. The reason for separating them is not only that they are distin
t properties, but

also that a reliable broad
ast without a totality guarantee is a useful notion, as shown

later.

3. The provision that the \adversary delivers all asso
iated messages" is our quantitative

ounterpart to the traditional \eventual" delivery assumption. It
an be ensured for an

arbitrary adversary as follows. Suppose the adversary halts and there are yet undelivered

proto
ol messages among honest parties (these
an be inferred from a trans
ript of the

adversary's intera
tions). Then using a \benign" s
heduler delivering all the undelivered

messages and the newly generated ones, the proto
ol is run until no more undelivered pro-

to
ol messages exist, whereby termination in polynomial time is guaranteed by eÆ
ien
y

and validity.

4. Integrity may seem weak, sin
e our model assumes authenti
ated links and we
ould hope

to get the guarantee in the se
ond
lause also with t a
tually
orrupted parties. Indeed,

most reliable broad
ast proto
ols impli
itly also authenti
ate the sender of a message. It

is possible to de�ne the
orresponding notion of an authenti
ated reliable broad
ast by

repla
ing the integrity
ondition above by the following.

Authenti
ity: For all ID , senders j, and sequen
e numbers s, every honest party r-

delivers at most one message m tagged with ID :j:s. Moreover, if P

j

is honest, then

m was previously r-broad
ast by P

j

with sequen
e number s.

20

However, we will not use authenti
ity in the standard de�nitions below be
ause only

some of our proto
ols provide authenti
ity. In parti
ular, the proto
ols for reliable and

for
onsistent broad
ast provide authenti
ity, but not the atomi
 broad
ast proto
ol.

We should note that an a
tual implementation of reliable broad
ast is not needed by any

of our proto
ols below. However, we build on the de�nition of reliable broad
ast for de�ning

other forms of broad
ast. Nevertheless, we give a proto
ol for reliable broad
ast in the next

se
tion|for
ompleteness and to illustrate the system model and our de�nitions.

3.1.2 A Proto
ol for Reliable Broad
ast

Proto
ol RBC for party P

i

and tag ID :j:s

Initialization:

�m ?;

�

d ?

e

d

 0; r

d

 0 (d 2 f0; 1g

k

0

)

Upon re
eiving message (ID :j:s; in; r-broad
ast;m):

send (ID :j:s; r-send;m) to all parties

Upon re
eiving message (ID :j:s; r-send;m) from P

l

:

if j = l and �m = ? then

�m m

send (ID :j:s; r-e
ho;H(m)) to all parties

Upon re
eiving message (ID :j:s; r-e
ho; d) from P

l

for the first time:

e

d

 e

d

+ 1

if e

d

= n� t and r

d

� t then

send (ID :j:s; r-ready; d) to all parties

Upon re
eiving message (ID :j:s; r-ready; d) from P

l

for the first time:

r

d

 r

d

+ 1

if r

d

= t+ 1 and e

d

< n� t then

send (ID :j:s; r-ready; d) to all parties

else if r

d

= 2t+ 1 then

�

d d

if H(�m) 6= d then

send (ID :j:s; r-request) to P

1

; : : : ; P

2t+1

wait for a message (ID :j:s; r-answer;m) su
h that H(m) =

�

d

�m m

output (ID :j:s; out; r-deliver; �m)

Upon re
eiving message (ID :j:s; r-request) from P

l

for the first time:

if �m 6= ? then

send (ID :j:s; r-answer; �m) to P

l

Figure 1: Proto
ol RBC for authenti
ated reliable broad
ast (or the Byzantine generals prob-

lem) adopted from Bra
ha [5℄.

21

A message-eÆ
ient reliable broad
ast proto
ol, denoted RBC, is given in Figure 1; it results from

a small modi�
ation of Bra
ha's reliable broad
ast proto
ol [5℄ to redu
e the
ommuni
ation

omplexity.

Proto
ol RBC uses the hash of a payload message as a short, but unique representation for

the potentially mu
h longer message. The idea is that the payload is sent only on
e by the

sender to all parties (similar to [36℄). When a party is ready to deliver a payload message but

does not yet know it, it asks an arbitrary subset of 2t+ 1 parties for its
ontents and at least

one of them will answer with the
orre
t value.

In the des
ription of the proto
ol, re
all the global wait for
ondition for any message

with a mat
hing tag. Let ? denote a spe
ial value that
annot be broad
ast. To implement

the
ondition that a parti
ular message from a party is pro
essed only the �rst time it is

re
eived, one has to maintain the
orresponding
ags and
ounters, indexed by the
ontents of

the message.

Theorem 4. Assuming H is a
ollision-free hash fun
tion, Proto
ol RBC provides authenti-

ated reliable broad
ast for n > 3t.

Proof. Validity is
lear for honest senders by inspe
tion of the proto
ol be
ause all parties re
eive

the initial r-send message and also 2t+ 1 r-ready messages from honest parties, provided all

asso
iated messages are delivered. It may not hold for faulty senders, though.

For
onsisten
y, suppose an honest party P

i

has r-delivered m and another honest party

P

i

0

has r-delivered m

0

6= m with tag ID :j:s. Then P

i

must have re
eived r-ready messages

ontaining d = H(m) from at least t+1 honest parties; the same holds for P

i

0

with d

0

= H(m

0

).

If d = d

0

, the adversary has
reated a
ollision in H. We assume no su
h
ollisions o

ur in the

rest of the proof.

An honest party generates an r-ready message for d only if it has re
eived n � t r-e
ho

messages
ontaining d or t+1 r-readymessages already
ontaining d. Thus, at least one honest

party has sent an r-ready message
ontaining d upon re
eiving n� t r-e
ho messages; at most

t of them are from
orrupted parties. Similarly, some honest party must have re
eived n � t

r-e
ho messages
ontaining d

0

. Thus, there are at least 2(n � t) � n+ t+ 1 r-e
ho messages

with tag ID :j:s and at least n� t + 1 among them from honest parties. But no honest party

generates more than one su
h message by the proto
ol.

To establish totality, note that if some honest P

i

delivers �m, then it has re
eived the message

(ID :j:s; r-ready;

�

d) from 2t+1 di�erent parties. Therefore, at least t+1 honest parties have sent

r-ready with ID :j:s and

�

d = H(�m), whi
h will be re
eived by all honest parties (assuming the

adversary delivers all messages). Thus, all honest parties will send the
orresponding r-ready

message and any other party P

l

will re
eive 2t + 1 of them. If P

l

already knows m

0

with

H(m

0

) =

�

d, it outputs that.

Otherwise, P

l

will send an r-request to 2t+1 parties and wait for an r-answer satisfying

H(m

0

) =

�

d. Observe that there is at least one honest party who has sent an r-ready message

ontaining

�

d upon re
eiving n � t
orresponding r-e
ho messages. Thus, there are at least

n � 2t honest parties who sent r-e
ho and know some m

0

su
h that H(m

0

) =

�

d. Sending the

r-request to 2t+1 parties ensures that at least one of them re
eives and answers it, provided

all messages are delivered.

For integrity, the uniqueness of the r-delivered message is
lear from the proto
ol. If the

sender P

j

of message with sequen
e number s is honest, then at most t parties will send r-e
ho

messages for tag ID :j:s with m

0

6= m. Thus, no un
orrupted party generates an r-ready

message with d di�erent from H(m) and no un
orrupted party outputs m

0

. A
tually, the

22

proto
ol also satis�es authenti
ity be
ause honest parties pro
ess r-send messages only from

the sender indi
ated by the r-e
ho message.

It is easy to see that the proto
ol satis�es eÆ
ien
y for any sender.

Note that
olle
ting n� t r-e
ho messages is needed for totality (be
ause r-request mes-

sages are sent to only 2t+1 parties), but for
onsisten
y alone, this
ould be relaxed to d

n+t+1

2

e

r-e
ho messages.

The message
omplexity of Proto
ol RBC is O(n

2

). If messages are delivered faithfully

by a \benign" s
heduler and no faults o

ur, then its
ommuni
ation
omplexity is only

O(n

2

k

0

+ njmj) for broad
asting a single message m, where k

0

is the length of a hash value.

However, the adversary
an delay the r-send messages for some parties and in
rease the
om-

muni
ation
omplexity. Sin
e there are at most t honest parties who issue an r-request by

the argument above to establish totality, m is transmitted O(t

2

) times and the overall
ommu-

ni
ation
omplexity is O(n

2

k

0

+ njmj+ t

2

jmj), or O(n

2

jmj) with maximal resilien
e.

Contrast this with the standard form of Bra
ha's broad
ast that requires bit
omplexity

(n

2

jmj), even in exe
utions without faults. Under optimal
ir
umstan
es, Proto
ol RBC needs

to transmit m only on
e per party in the system.

3.2 Veri�able Broad
ast

A party P

i

that has delivered a payload message using reliable broad
ast may want to inform

another party P

j

about this. Su
h information might be useful to P

j

if it has not yet delivered

the message, but
an exploit this knowledge somehow, in parti
ular sin
e P

j

is guaranteed to

deliver the same message later by the agreement property. In a standard reliable broad
ast,

su
h as the proto
ol from the previous se
tion, however, this knowledge
annot be transferred

in a veri�able way.

We formalize this property of a broad
ast proto
ol here be
ause it is useful in our appli
ation

below, and
all it veri�ability. Informally, it means this: when P

j

laims that it is not yet in a

state to deliver a parti
ular payload messagem, then P

i

an reply with a single proto
ol message

and when P

j

pro
esses this, it will deliver m immediately and terminate the
orresponding

broad
ast.

De�nition 4 (Veri�ability). A broad
ast proto
ol is
alled veri�able if the following holds,

ex
ept with negligible probability: When an honest party has deliveredm tagged with ID , then

it
an produ
e a single proto
ol message M that it may send to other parties su
h that any

other honest party will deliver m tagged with ID upon re
eiving M (provided the other party

has not already delivered m).

We
all M the message that
ompletes the veri�able broad
ast. This notion implies that

there is a predi
ate V

ID

that the re
eiving party
an apply to an arbitrary bit string for
he
king

if it
onstitutes a message that
ompletes a veri�able broad
ast tagged with ID .

Proto
ol RBC
ould be made veri�able by adding a digital signature to the r-ready messages

(this idea goes ba
k to Pease, Shostak, and Lamport [33℄). But veri�ability is more useful

in
onne
tion with weaker proto
ols than reliable broad
ast; for example, in the
onsistent

broad
ast introdu
ed next.

3.3 Consistent Broad
ast

The totality property of reliable broad
ast is rather expensive to satisfy; it is the main rea-

son why most proto
ols for reliable broad
ast need on the order of n

2

messages. For some

23

appli
ations, however, totality is not ne
essary and
an be ensured by other means, as long as

onsisten
y and integrity are satis�ed. We
all the resulting notion
onsistent broad
ast and

dis
uss it in this se
tion.

Several proto
ols for
onsistent broad
ast have been proposed by Reiter et al. [36, 29℄. To

ensure agreement (i.e., totality) for delivered messages, these proto
ols are
omplemented by

an external stability me
hanism from whi
h parties learn about the existen
e of messages they

have not yet delivered. No su
h general me
hanism is assumed here, but the parties may learn

that also from an appli
ation.

3.3.1 De�nition

The same restri
tions on the adversary apply as for reliable broad
ast. A
onsistent broad
ast

proto
ol is a
tivated when the adversary delivers a message to P

j

of the form

(ID :j:s; in;
-broad
ast;m);

with m 2 f0; 1g

�

and s 2 N. When this o

urs, we say P

j

onsistently broad
asts m tagged

with ID :j:s.

A party terminates a
onsistent broad
ast of m tagged with ID :j:s by generating an output

message of the form

(ID :j:s; out;
-deliver;m):

In this
ase, we say P

i

onsistently delivers m tagged with ID :j:s. To distinguish
onsistent

broad
ast from other forms of broad
ast, we will sometimes use the terms
-broad
ast and

-deliver.

All proto
ol messages generated by honest parties and tagged with ID :j:s are asso
iated to

the broad
ast of m by P

j

with sequen
e number s.

De�nition 5 (Consistent Broad
ast). A proto
ol for
onsistent broad
ast is a proto
ol for

reliable broad
ast that does not ne
essarily satisfy totality.

In other words,
onsistent broad
ast makes no provisions that two parties do deliver the

payload message, but maintains
onsisten
y among the a
tually delivered messages with the

same senders and sequen
e numbers.

The notion of an authenti
ated
onsistent broad
ast
an be de�ned similarly to authenti-

ated reliable broad
ast, repla
ing the integrity
ondition by authenti
ity.

3.3.2 A Proto
ol for Veri�able Consistent Broad
ast

Proto
ol VCBC implements veri�able
onsistent broad
ast and is des
ribed in Figure 2. It

uses a non-intera
tive (n; d

n+t+1

2

e; t)-dual-threshold signature s
heme S

1

with veri�able shares

a

ording to Se
tion 2.3.2. Re
all that all messages are authenti
ated a

ording to our basi

system model.

The proto
ol is based on the \e
ho broad
ast" of Reiter [36℄, but uses a threshold signature

to de
rease the
ommuni
ation
omplexity. The idea behind it is that the sender broad
asts

the message to all parties and hopes for d

n+t+1

2

e parties to sign it as \witnesses" to guarantee

onsisten
y. The signature shares are then
olle
ted by the sender and
ombined to a threshold

signature on the message; it then sends the signature all parties. After re
eiving the message

together with a valid signature, a party delivers it immediately.

24

Proto
ol VCBC for party P

i

and tag ID :j:s

Initialization:

�m ?; �� ?

W

d

 ;; r

d

 0 (d 2 f0; 1g

k

0

)

Upon re
eiving message (ID :j:s; in;
-broad
ast;m):

send (ID :j:s;
-send;m) to all parties

Upon re
eiving message (ID :j:s;
-send;m) from P

l

:

if j = l and �m = ? then

�m m

ompute an S

1

-signature share � on (ID :j:s;
-ready;H(m))

send (ID :j:s;
-ready;H(m); �) to P

j

Upon re
eiving message (ID :j:s;
-ready; d; �

l

) from P

l

for the first time:

if i = j and �

l

is a valid S

1

-signature share then

W

d

 W

d

[f�

l

g

r

d

 r

d

+ 1

if r

d

= d

n+t+1

2

e then

ombine the shares in W

d

to an S

1

-threshold signature �

send (ID :j:s;
-final; d; �) to all parties

Upon re
eiving message (ID :j:s;
-final; d; �):

if H(�m) = d and �� = ? and � is a valid S

1

-signature then

�� �

output (ID :j:s; out;
-deliver; �m)

Implementation of veri�ability property

Upon re
eiving message (ID :j:s;
-request) from P

l

:

if �� 6= ? then

send (ID :j:s;
-answer; �m; ��) to P

l

Upon re
eiving message (ID :j:s;
-answer;m; �) from P

l

:

if �� = ? and � is a valid S

1

-signature on (ID :j:s;
-ready;H(m)) then

�� �

�m m

output (ID :j:s; out;
-deliver; �m)

Figure 2: Proto
ol VCBC for veri�able and authenti
ated
onsistent broad
ast.

25

Be
ause a party may forward the message and the signature to other parties, the proto
ol

is also veri�able a

ording to De�nition 4. The
orresponding interfa
e is implemented by the

-request and
-answer messages, whi
h are not otherwise used by the proto
ol.

The
onsisten
y property of the proto
ol is based on the following lemma.

Lemma 5. For all senders j, sequen
e numbers s, and strings ID, it is infeasible for the

adversary in Proto
ol VCBC to
reate valid S

1

-signatures on the strings (ID :j:s;
-ready;m)

and (ID :j:s;
-ready;m

0

) with m 6= m

0

.

Proof. Suppose not. Then, assuming S

1

is se
ure, there are at least d

n+t+1

2

e�t signature shares

from distin
t honest parties on a message
ontaining ID :j:s and m and at least as many from

honest parties on the message
ontaining ID :j:s andm

0

. In total, there are n+t+1�2t = n�t+1

or more shares generated by honest parties
ontaining ID :j:s. Sin
e there are only n� t honest

parties, at least one honest party has signed two di�erent messages with the same sender j and

sequen
e number s, whi
h is impossible a

ording to the proto
ol.

Theorem 6. Assuming S

1

is a se
ure (n; d

n+t+1

2

e; t)-dual-threshold signature s
heme, Proto-

ol VCBC provides veri�able and authenti
ated
onsistent broad
ast for n > 3t.

Proof. Validity for an honest sender is obvious from the
onstru
tion of the proto
ol sin
e all

honest parties generate a signature share on m as soon as they re
eive an
-send message

ontaining m. Sin
e at least d

n+t+1

2

e honest parties return them to the sender, it
an
ombine

them to a valid signature and
-deliver the message.

The
onsisten
y property follows dire
tly from Lemma 5 be
ause an honest party
-delivers

a payload message only after verifying the
orresponding threshold signature.

Integrity follows dire
tly from Lemma 5 together with the logi
 of the proto
ol, where �� 6= ?

is used to represent the state in whi
h �m has already been
-delivered. The proto
ol provides

also authenti
ity be
ause honest parties pro
ess
-sendmessages only from the sender indi
ated

by the message.

Finally, eÆ
ien
y is straightforward to verify and veri�ability is ensured by the
-answer

proto
ol message, whi
h is generated upon re
eiving a suitable
-request.

The message
omplexity of Proto
ol VCBC is O(n) and its bit
omplexity is O(n(jmj+K)),

assuming the length of a threshold signature and a signature share is at most K bits.

4 Validated Byzantine Agreement

The standard notion of Byzantine agreement implements a binary de
ision and
an guarantee

a parti
ular out
ome only if all honest parties propose the same value. We introdu
e in this

se
tion a weaker validity
ondition,
alled external validity, whi
h relaxes the standard validity

ondition and generalizes to de
isions on a value from an arbitrarily large set. It requires that

the de
ided value satis�es a global predi
ate that is determined by the parti
ular appli
ation

and known to all parties. Ea
h party adds some validation data to the proposed value, whi
h

serves as the proof for its validity. Typi
ally, this
onsists of a digital signature that
an be

veri�ed by all parties. The agreement proto
ol then returns to the
aller not only the de
ision

value, but also the
orresponding validation data|the
aller might need this information if it

did not know it before. The standard validity
ondition is the spe
ial
ase of a trivially true

predi
ate.

26

Validated Byzantine agreement generalizes the primitive of agreement on a
ore set [2, 3℄,

whi
h is used in the information-theoreti
 model for a similar purpose. Validated Byzantine

agreement also generalizes the notion of intera
tive
onsisten
y [16℄ to the Byzantine model,

whi
h requires agreement on a ve
tor of n values, one from ea
h party.

Another related problem is set agreement [11℄, in whi
h the agreement
ondition is relaxed

so that the output of ea
h party is
ontained in a small, global set. Although there exists a

onsiderable literature on this problem, it
annot be used for our appli
ations be
ause it gives

only an approximation of agreement.

4.1 De�nition

Suppose there is a global polynomial-time
omputable predi
ate Q

ID

known to all parties, whi
h

is determined by an external appli
ation. Ea
h party may propose a value v together with a

proof � that should satisfy Q

ID

. The agreement domain is not restri
ted to binary values.

A validated Byzantine agreement proto
ol is a
tivated by a message of the form

(ID ; in; v-propose; v; �);

where v 2 f0; 1g

�

and � 2 f0; 1g

�

. When this o

urs, we say P

i

proposes v validated by � for

transa
tion ID . We assume the adversary a
tivates all honest parties on a given ID at most

on
e and, w.l.o.g., honest parties propose values with proofs that satisfy Q

ID

.

A party terminates a validated Byzantine agreement proto
ol by generating a message of

the form

(ID ; out; v-de
ide; v; �):

In this
ase, we say P

i

de
ides v validated by � for transa
tion ID .

We say that any proto
ol message with tag ID that was generated by an honest party is

asso
iated to the validated Byzantine agreement proto
ol for ID . An agreement proto
ol may

also invoke sub-proto
ols for low-level broad
asts or for Byzantine agreement; in this
ase, all

messages asso
iated to those proto
ols that are started on behalf of the validated agreement

proto
ol are asso
iated to ID as well (su
h messages have tags with pre�x ID j : : :).

De�nition 6 (Validated Byzantine Agreement). A proto
ol solves validated Byzantine

agreement with predi
ate Q

ID

if it satis�es the following
onditions ex
ept with negligible

probability:

External Validity: Any honest party that terminates for ID de
ides v validated by � su
h

that Q

ID

(v; �) holds.

Agreement: If some honest party de
ides v for ID , then any honest party that terminates

de
ides v for ID .

Liveness: If all honest parties have been a
tivated on ID and all asso
iated messages have

been delivered, then all honest parties have de
ided for ID .

Integrity: If all parties follow the proto
ol, and if some party de
ides v validated by � for ID ,

then some party proposed v validated by � for ID .

EÆ
ien
y: For every ID , the
ommuni
ation
omplexity for ID is probabilisti
ally uniformly

bounded.

27

In other words, honest parties may propose all di�erent values and the de
ision value may

have been proposed by a
orrupted party, as long as honest parties
an verify the
orresponding

validation during the proto
ol. Note that agreement, liveness, and eÆ
ien
y are the same as

in the de�nition of ordinary, binary Byzantine agreement. Integrity is needed to rule out some

trivial proto
ols in
ases where a trivial predi
ate is used.

Another variation of the validity
ondition is that an appli
ation may prefer one de
ision

value over others. Su
h an agreement proto
ol may be biased and always output the preferred

value in
ases where other values would have been valid as well.

For binary validated agreement, we will need a proto
ol that is biased towards 1 below. Its

purpose is to dete
t whether there is a validation for 1, so it suÆ
es to guarantee termination

with output 1 if t+1 honest parties know the
orresponding information at the outset. A binary

validated Byzantine agreement proto
ol biased towards 1 is a proto
ol for validated Byzantine

agreement on values in f0; 1g su
h that the following
ondition holds:

Biased External Validity: If at least t+ 1 honest parties propose 1, then any honest party

that terminates for ID de
ides 1.

We des
ribe two related proto
ols for multi-valued validated Byzantine agreement below:

Proto
ol VBA, des
ribed in Se
tion 4.3, needs O(n) rounds and invokes O(n) binary agreement

sub-proto
ols; this
an be improved to a
onstant expe
ted number of rounds, resulting in

Proto
ol VBA
onst, whi
h is des
ribed in Se
tion 4.4. But �rst we dis
uss the binary
ase.

4.2 Proto
ols for Binary Agreement

Binary asyn
hronous Byzantine agreement proto
ols
an easily be adapted to external validity.

For example, in the proto
ol of Ca
hin, Kursawe, and Shoup [7℄ one has to \justify" the pre-

votes of round 1 with a valid �. The logi
 of the proto
ol guarantees that either a de
ision is

rea
hed immediately or the validations for 0 and for 1 are seen by all parties in the �rst two

rounds.

Furthermore, the proto
ol
an be biased towards 1 by modifying the
oin su
h that it always

outputs 1 in the �rst round.

4.3 A Proto
ol for Multi-valued Agreement

We des
ribe Proto
ol VBA that implements multi-valued validated Byzantine agreement.

The basi
 idea of the validated agreement proto
ol is that every party proposes its value

as a
andidate value for the �nal result. One party whose proposal satis�es the validation

predi
ate is then sele
ted in a sequen
e of binary Byzantine agreement proto
ols and this value

be
omes the �nal de
ision value. More pre
isely, the proto
ol
onsists of the following steps

(see Figure 3).

E
hoing the proposal (lines 1{4): Ea
h party P

i

-broad
asts the value that it proposes to

all other parties using veri�able authenti
ated
onsistent broad
ast. This ensures that all

honest parties obtain the same proposal value for any parti
ular party, even if the sender

is
orrupted. Then P

i

waits until it has re
eived n � t proposals satisfying Q

ID

before

entering the agreement loop.

Agreement loop (lines 5{20): One party is
hosen after another, a

ording to a �xed per-

mutation � of f1; : : : ; ng. Let a denote the index of the party sele
ted in the
urrent

round (P

a

is
alled the \
andidate"). Ea
h party P

i

arries out the following steps for P

a

:

28

1. Send a v-vote message to all parties
ontaining 1 if P

i

has re
eived P

a

's proposal

(in
luding the proposal in the vote) and 0 otherwise (lines 6{11).

2. Wait for n�t v-votemessages, but do not
ount votes indi
ating 1 unless a valid pro-

posal from P

a

has been re
eived|either dire
tly or in
luded in the v-vote message

(lines 12{13).

3. Run a binary validated Byzantine agreement biased towards 1 to determine whether

P

a

has properly broad
ast a valid proposal. Vote 1 if P

i

has re
eived a valid proposal

from P

a

and validate this by the proto
ol message that
ompletes the veri�able

broad
ast of P

a

's proposal. Otherwise, if P

i

has re
eived n � t v-vote messages

ontaining 0, vote 0; no validation data is needed here. If the agreement de
ides 1,

exit from the loop (lines 14{20).

Delivering the
hosen proposal (lines 21{24): If P

i

has not yet
-delivered the broad
ast

by the sele
ted
andidate, obtain the proposal from the validation returned by the Byzan-

tine agreement.

The full proto
ol is shown in Figure 3.

An obvious optimization of Proto
ol VBA is based on the observation that in most
ases,

adding P

a

's proposal in � to a v-vote message is not ne
essary. If this is omitted, then the

ode for P

i

to re
eive v-vote messages has to be modi�ed as follows. If a v-vote from P

j

indi
ates 1 but P

i

has not yet re
eived P

a

's proposal, ignore the vote and ask P

j

to supply

P

a

's proposal (by sending it the message (ID jv
b
:a:0;
-request)). The v-vote by P

j

is only

taken into a

ount after (ID ; v-e
ho; w

a

; �

a

) has been
-delivered with tag ID jv
b
:a:0 su
h

that Q

ID

(w

a

; �

a

) holds; however, it may still be that enough votes indi
ating 0 from other

parties are re
eived before that.

Lemma 7. In Proto
ol VBA, the adversary
an
ause at most 2t iterations of the agreement

loop.

Proof. The proof works by
ounting the total number A of v-vote messages
ontaining 0 that

are generated by honest parties (over all iterations of the agreement loop).

Sin
e every honest party has re
eived a valid proposal from n � t parties in the v-e
ho

broad
asts, it will generate v-vote messages
ontaining 0 for at most t proposing parties.

Thus, A � t(n� t).

Note that for the binary Byzantine agreement proto
ol to de
ide 0 for a parti
ular a and to

ause one more iteration of the loop, at least n�2t honest parties must propose 0 for the binary

agreement (otherwise, there would be t+ 1 or more honest parties proposing 1 and the binary

agreement proto
ol would terminate with 1, as it is biased towards 1). Sin
e honest parties

only propose 0 if they have re
eived n� t v-vote messages
ontaining 0, there must be at least

n� 2t honest parties who have generated a v-vote message
ontaining 0 in this iteration.

Let R denote the number of iterations of the loop where the binary agreement proto
ol

de
ides 0. From the pre
eding argument, we have A � R(n� 2t).

Combining these two bounds on A, we obtain R(n� 2t) � (n� t)t, or equivalently,

R � t+

t

2

n� 2t

:

Using n� 2t � t + 1, this
an be simpli�ed to R � t +

t

2

t+1

and further to R < 2t. Thus, the

binary agreement de
ides 1 at the latest in iteration R+1 of the loop and the lemma follows.

29

Proto
ol VBA for party P

i

, tag ID, and validation predi
ate Q

ID

Let V

IDja

(v; �) be the following predi
ate:

V

ID ja

(v; �) � (v = 0) or

�

v = 1 and �
ompletes the veri�able authenti
ated
-broad
ast of a message

(v-e
ho; w

a

; �

a

) with tag ID :a:0 su
h that Q

ID

(w

a

; �

a

) holds

�

Upon re
eiving message (ID ; in; v-propose; w; �):

1: veri�ably authenti
atedly
-broad
ast message (v-e
ho; w; �) tagged with ID jv
b
:i:0

2: w

j

 ?;�

j

 ? (1 � j � n)

3: wait for n� t messages (v-e
ho; w

j

; �

j

) to be
-delivered with tag ID jv
b
:j:0

from distin
t P

j

su
h that Q

ID

(w

j

; �

j

) holds

4: l 0

5: repeat

6: l l + 1; a �(l)

7: if w

a

= ? then

8: send the message (ID ; v-vote; a; 0;?) to all parties

9: else

10: let � be the message that
ompletes the
-broad
ast with tag ID jv
b
:a:0

11: send the message (ID ; v-vote; a; 1; �) to all parties

12: u

j

 ?; r

j

 ? (1 � j � n)

13: wait for n� t messages (ID ; v-vote; a; u

j

; �

j

) from distin
t P

j

su
h

that V

IDja

(u

j

; �

j

) holds

14: if there is some u

j

= 1 then

15: v 1; � �

j

16: else

17: v 0; � ?

18: propose v validated by � for ID ja in binary validated Byzantine agreement

biased towards 1, with predi
ate V

ID ja

19: wait for the agreement proto
ol to de
ide some b validated by � for ID ja

20: until b = 1

21: if w

a

= ? then

22: use � to
omplete the veri�able authenti
ated
-broad
ast with tag ID jv
b
:a:0

and
-deliver (ID ; v-e
ho; w

a

; �

a

)

23: output (ID ; out; v-de
ide; w

a

; �

a

)

24: halt

Figure 3: Proto
ol VBA for multi-valued validated Byzantine agreement.

30

Theorem 8. Given a proto
ol for biased binary validated Byzantine agreement and a proto
ol

for veri�able authenti
ated
onsistent broad
ast, Proto
ol VBA provides multi-valued validated

Byzantine agreement for n > 3t.

Proof. We have to establish external validity, agreement, liveness, and eÆ
ien
y.

External validity follows be
ause every honest party that proposes 1 in the agreement on

party P

a

has veri�ed that Q

ID

holds for w

a

and �

a

. Thus, by the standard validity
ondition

for the binary Byzantine agreement, the de
ision is 0 if Q

ID

does not hold.

For agreement, note that the properties of the binary validated Byzantine agreement proto-

ol ensure that all parties terminate the loop with the same a. By the
onsisten
y property of

onsistent broad
ast, all honest parties obtain the same values w

a

and �

a

from the broad
ast

tagged with ID jv
b
:a:0. Thus, they output the same w

a

.

Liveness and integrity hold by inspe
tion of the proto
ol.

EÆ
ien
y follows from Lemma 3 together with Lemma 7 be
ause there are at most 2t binary

agreement sub-proto
ols invoked for a parti
ular ID .

The message
omplexity of Proto
ol VBA is O(tn

2

) if Proto
ol VCBC is used for veri�able

onsistent broad
ast and the binary validated Byzantine agreement is implemented a

ording

to Se
tion 4.2.

If all parties propose v and � that are together no longer than L bits, the
ommuni
ation

omplexity in the above
ase is O(n

2

(tK + L)), assuming the length of a threshold signature

and a signature share is at most K bits. For a
onstant fra
tion of
orrupted parties, however,

both values are
ubi
 in n. As shown next, the expe
ted message
omplexity
an be redu
ed

to a quadrati
 expression in n.

4.4 A Constant-round Proto
ol for Multi-valued Agreement

In this se
tion we present Proto
ol VBA
onst, whi
h is an improvement of the proto
ol in the

previous se
tion that guarantees termination within a
onstant expe
ted number of rounds. The

drawba
k of Proto
ol VBA above is that the adversary knows the order � in whi
h the parties

sear
h for an a

eptable
andidate, i.e., one that has broad
ast a valid proposal. Although at

least one third of all parties are guaranteed to be a

epted, as shown above, the adversary
an

hoose the
orruptions and s
hedule messages su
h that none of them is examined early in the

agreement loop.

The remedy for this problem is to
hoose � randomly during the proto
ol after making sure

that enough parties are already
ommitted to their votes on the
andidates. This is a
hieved

in two steps. First, one round of
ommitment ex
hanges is added before the agreement loop.

Ea
h party must
ommit to the votes that it will
ast by broad
asting the identities of the

n � t parties from whi
h it has re
eived valid v-e
ho messages (using at least authenti
ated

onsistent broad
ast). Honest parties will later only a

ept v-vote messages that are
onsistent

with the
ommitments made before. The se
ond step is to determine the permutation � using a

threshold
oin-tossing s
heme that outputs a random, unpredi
table value after enough votes are

ommitted. Taken together, these steps ensure that the fra
tion of parties whi
h are guaranteed

to be a

epted are distributed randomly in �,
ausing termination in a
onstant expe
ted

number of rounds.

The details of Proto
ol VBA
onst are des
ribed in Figure 4 as modi�
ations to Proto
ol VBA.

To analyze the proto
ol, we
onsider the state of the system at the point in time when

the �rst honest party P

i

reveals its
oin share. The
ru
ial observation is that n � t \early

ommitting" parties are
ommitted to their 0-votes at this point be
ause P

i

has delivered the

31

Proto
ol VBA
onst for party P

i

, tag ID, and validation predi
ate Q

ID

Modify Proto
ol VBA for party P

i

, tag ID , and validation predi
ate Q

ID

as follows:

1. Initialize and distribute the shares for an (n; t+1)-threshold
oin-tossing s
heme C

1

with

k

00

-bit outputs during system setup. Re
all that this de�nes a pseudorandom fun
tion F .

Let G be a pseudorandom generator a

ording to Se
tion 2.3.

2. In
lude the following instru
tions between lines 3 and 4 of Proto
ol VBA, before entering

the agreement loop:

1:

j

(

1 if w

j

6= ?

0 otherwise

(1 � j � n)

2: C [

1

; : : : ;

n

℄

3: authenti
atedly
-broad
ast the message (v-
ommit; C) tagged with ID j
b
:i:0

4: C

j

 ? (1 � j � n)

5: wait for n� t messages (v-
ommit; C

j

) to be
-delivered with tag ID j
b
:j:0

su
h that at least n� t entries in C

j

are 1

6: generate a
oin share
 of the
oin ID jvba and send the message (ID ; v-
oin;
)

to all parties

7: wait for t+ 1 v-
oin messages
ontaining shares of the
oin ID jvba and

ombine these to get the value S = F (ID jvba) 2 f0; 1g

k

00

8:
hoose a random permutation �, using the pseudorandom generator G with seed S.

3. Modify the
ondition for a

epting v-vote messages (line 13) inside the agreement loop

su
h that (v-vote; a; 0;?) from P

j

is a

epted only if C

j

is known and C

j

[a℄ = 0. (This

involves also waiting for additional messages (v-
ommit; C

j

) to be
-delivered as above.)

Figure 4: Proto
ol VBA
onst for multi-valued validated Byzantine agreement.

32

orresponding broad
asts. We are now going to investigate the number of
andidates that
an

be reje
ted by the adversary, by making the binary Byzantine agreement de
ide 0, and the

number of iterations of the agreement loop.

Lemma 9. Let A � f1; : : : ; ng denote the set of parties that garner less than n� 2t
ommit-

ments to 0-votes from the early
ommitters, and suppose � is an ideal, random permutation of

f1; : : : ; ng. Then, ex
ept with negligible probability,

1. for every a 2 A, the binary agreement proto
ol on ID ja will de
ide 1;

2. jAj > n� 2t;

3. there exists a
onstant � > 1 su
h that for all f � 1,

Pr

h

�

�(1) 62 A

�

^ � � � ^

�

�(f) 62 A

�

i

� �

�f

:

Proof. In order for the binary agreement for ID ja to de
ide 0, there must be some honest party

who proposes 0. By the instru
tions for
omputing v, it must have re
eived n � t v-vote

messages
ontaining 0 that are
onsistent with the
ommitments made by their issuers. But

sin
e there are only n distin
t parties, at least n � 2t of those 0-votes must
ome from early

ommitters, whi
h is not the
ase for any a 2 A. This proves the �rst
laim.

To establish the se
ond
laim, let A denote the total number of
ommitments to 0-votes

ast by early
ommitters. Sin
e every early
ommitter may
ommit to voting 0 for at most t

parties, we have A � t(n � t). On the other hand, observe that A � (n � jAj)(n � 2t) by the

de�nition of A.

Observe that these bounds on A are the same as in Lemma 7 with R = n� jAj. Using the

same argument, it follows jAj > n� 2t.

The third
laim follows now be
ause jAj is at least a
onstant fra
tion of n and thus, there

is a
onstant � > 1 su
h that Pr[�(i) 62 A℄ � 1=� for all 1 � i � f . Sin
e the probability of the

f �rst elements of � jointly satisfying the
ondition is no larger than for f independently and

uniformly
hosen values, we obtain

Pr

h

�

�(1) 62 A

�

^ � � � ^

�

�(f) 62 A

�

i

� �

�f

:

Lemma 10. Assuming C

1

is a se
ure threshold
oin-tossing s
heme and G is a pseudorandom

generator, there is a
onstant � > 1 su
h that for all f � 1, the probability of any honest party

performing f or more iterations of the agreement loop is at most �

�f

+ �, where � is negligible.

Proof. This
an be shown by a standard hybrid argument, where one makes a series of small

modi�
ations to transform an idealized system into the real system, argues that ea
h
hange

a�e
ts the adversary only with negligible probability, and then
on
ludes that the real system

behaves just like the idealized system with all but negligible probability.

The \hybrid systems" are de�ned by running the system

(1) with a truly random permutation �,

(2) with the output of G repla
ed by truly random bits, and �
omputed from that,

(3) with F (ID jvba) repla
ed by a random bit string, but G being a pseudorandom generator

a

ording to the proto
ol, and �
omputed from the output of G,

33

(4) with F , G, and �
omputed a

ording to the proto
ol.

In all
ases, we de�ne a statisti
al test by letting the adversary run the system until the �rst

honest party is about to release its share of the
oin ID jvba, and then F , G, and � are

determined. Note that the set of early
ommitters is de�ned and the set A (of Lemma 9)
an

be
omputed at this point. The statisti
al test simply outputs 0 if �(i) 62 A for all 1 � i � f

and 1 otherwise.

We now analyze the behavior of the statisti
al test.

Case (1) above
orresponds to the idealized system in Lemma 9, whi
h implies that the test

outputs 0 at most with probability �

�f

.

In
ase (2) above, the permutation is generated from truly random bits with uniform distri-

bution. This
an be done using an algorithm that always terminates in a polynomial number

of steps su
h that the output permutation is statisti
ally
lose to a random permutation. The

behavior of any polynomial-time adversary will not be
hanged by this, ex
ept with negligible

probability.

Cases (2) and (3) above
an be mapped to the de�nition of a pseudorandom generator. But

if G is se
ure, the statisti
al test will not be able to distinguish between them with more than

negligible probability.

Finally, the di�eren
e between (3) and (4)
orresponds to game C1{C4 in the de�nition of

the
oin F . Assuming F is pseudorandom, this
annot indu
e more than a negligible di�eren
e

in the behavior of the statisti
al test.

In
on
lusion, we obtain that no polynomial-time statisti
al test
an distinguish between (1)

and (4) and therefore the
on
lusions of Lemma 9 apply also to the real proto
ol ex
ept with

negligible probability. Sin
e honest parties go through more than f iterations of the agreement

loop only if the �rst f elements of � are not in A, this probability is at most �

�f

plus some

negligible quantity.

Theorem 11. Given a proto
ol for biased binary validated Byzantine agreement and a proto
ol

for veri�able
onsistent broad
ast, Proto
ol VBA
onst provides multi-valued validated Byzantine

agreement for n > 3t and invokes a
onstant expe
ted number of binary Byzantine agreement

sub-proto
ols.

Proof. Sin
e we have not
hanged the way in whi
h binary agreement sub-proto
ols are invoked

from Proto
ol VBA, we only have to show liveness and eÆ
ien
y for the modi�ed proto
ol.

Liveness holds be
ause all n�t honest parties broad
ast
orre
tly
onstru
ted
ommitments

and therefore, enough valid v-
ommit and v-vote messages are guaranteed to be re
eived in

line 13 of the original proto
ol.

EÆ
ien
y follows from Lemma 3 together with Lemma 10 above, be
ause honest parties

generate a polynomial number of messages in ea
h iteration of the agreement loop.

The expe
ted message
omplexity of Proto
ol VBA
onst is O(n

2

) if Proto
ol VCBC is used

for
onsistent veri�able broad
ast and the binary validated Byzantine agreement is implemented

a

ording to Se
tion 4.2.

If all parties propose v and � that are together no longer than L bits, the expe
ted
om-

muni
ation
omplexity in the above
ase is O(n

3

+ n

2

(K +L)), assuming a digital signature is

K bits. The n

3

-term, whi
h results from broad
asting the
ommitments, has a
tually a very

small hidden
onstant be
ause the
ommitments
an be represented as bit ve
tors.

For a
onstant fra
tion of
orrupted parties, the message
omplexity is quadrati
 in n and

essentially optimal. We do not know whether the
ommuni
ation
omplexity
an be lowered to

a quadrati
 expression in n as well.

34

5 Atomi
 Broad
ast

Atomi
 broad
ast guarantees a total order on messages su
h that honest parties deliver all

messages with a
ommon tag in the same order. It is well known that proto
ols for atomi

broad
ast are
onsiderably more expensive than those for reliable broad
ast be
ause even in

the
rash-fault model, atomi
 broad
ast is equivalent to
onsensus [10℄ and
annot be solved

by deterministi
 proto
ols. The atomi
 broad
ast proto
ol given here builds dire
tly on multi-

valued validated Byzantine agreement from the last se
tion.

5.1 De�nition

Atomi
 broad
ast ensures that all messages broad
ast with the same tag ID are delivered in

the same order by honest parties; in this way, ID
an be interpreted as the name of a broad
ast

\
hannel." The total order of atomi
 broad
ast yields an impli
it labeling of all messages.

Assuming some honest party has atomi
ally delivered s distin
t messages, the global sequen
e

of the �rst s delivered messages is well-de�ned. Thus, an expli
it sequen
e number is not

needed. Sin
e the sender of a payload message is not ne
essarily identi�able (without requiring

expli
it authenti
ity instead of integrity), the sender name is also omitted, and an unstru
tured

tag ID suÆ
es.

An atomi
 broad
ast is a
tivated when the adversary delivers an input message to P

i

of the

form

(ID ; in; a-broad
ast;m);

where m 2 f0; 1g

�

. When this o

urs, we say P

i

atomi
ally broad
asts m with tag ID . \A
tiva-

tion" here refers only to the broad
ast of a parti
ular payload message; the broad
ast
hannel

ID must be opened before the �rst su
h request.

A party terminates an atomi
 broad
ast of a parti
ular payload by generating an output

message of the form

(ID ; out; a-deliver;m):

In this
ase, we say P

i

atomi
ally delivers m with tag ID . To distinguish atomi
 broad
ast from

other forms of broad
ast, we will also use the terms a-broad
ast and a-deliver.

For the
omposition of atomi
 broad
ast with other proto
ols, we need a syn
hronized output

mode, where a-delivering a payload may blo
k the proto
ol and prevent it from delivering

more payloads until the
onsumer is ready to a

ept them. We introdu
e an a
knowledgment

me
hanism for output messages for this purpose, i.e., the adversary should a
knowledge every

a-delivered payload message to the delivering party. In pra
ti
e, the a-delivery operation
ould

be implemented by a blo
king up
all to the higher-level proto
ol. In terms of the formal

model, an a
knowledgment is modeled as an input message (ID ; in; a-a
knowledge) from the

adversary. When a party re
eives su
h a message, it means that its most re
ently a-delivered

payload message with tag ID has been a
knowledged. We will say that the adversary generates

a
knowledgments if it a
knowledges every a-delivered message.

Again, the adversary must not request an a-broad
ast of the same payload message from

any parti
ular party more than on
e for ea
h ID (however, several parties may a-broad
ast the

same message).

Atomi
 broad
ast proto
ols should be fair so that a payload message m is s
heduled and

delivered within a reasonable (polynomial) number of steps after it is a-broad
ast by an honest

party. But sin
e the adversary may delay the sender arbitrarily and a-deliver an a priori

unbounded number of messages among the remaining honest parties, we
an only provide su
h

35

a guarantee when at least t+1 honest parties be
ome \aware" of m. Our de�nitions of validity

and of fairness require a
tually that only after t+1 honest parties have a-broad
ast some payload,

it will be delivered within a reasonable number of steps. This is also the reason for allowing

multiple parties to a-broad
ast the same payload message|a
lient appli
ation might be able

to satisfy this pre
ondition through external means and a
hieve guaranteed fair delivery in this

way. Fairness
an be interpreted as a termination
ondition for the broad
ast of a parti
ular

payload m.

The eÆ
ien
y
ondition (whi
h ensures fast termination) for atomi
 broad
ast di�ers from

the proto
ols dis
ussed so far be
ause the proto
ol for a parti
ular tag
annot terminate on its

own. It merely stalls if no more undelivered payload messages are in the system and must be

terminated externally. Thus, we
annot de�ne eÆ
ien
y using the absolute number of proto
ol

messages generated. Instead we measure the progress of the proto
ol with respe
t to the number

of messages that are a-delivered by honest parties. In parti
ular, we require that the number

of asso
iated proto
ol messages does not ex
eed the number of a-delivered payload messages

times a polynomial fa
tor, independent of the adversary.

We say that a proto
ol message is asso
iated to the atomi
 broad
ast proto
ol with tag ID

if and only if the message is generated by an honest party and tagged with ID or with a tag

ID j : : : starting with ID . In parti
ular, this en
ompasses all messages of the atomi
 broad
ast

proto
ol with tag ID generated by honest parties and all messages asso
iated to basi
 broad
ast

and Byzantine agreement sub-proto
ols invoked by atomi
 broad
ast.

Fairness and eÆ
ien
y are de�ned using the number of payload messages in the \impli
it

queues" of honest parties. We say that a payload message m is in the impli
it queue of a party

P

i

(for
hannel ID) if P

i

has a-broad
ast m with tag ID , but no honest party has a-delivered m

tagged with ID . The system queue
ontains any message that is in the impli
it queue of some

honest party. We say that one payload message in the impli
it queue of an honest party P

i

is

older than another if P

i

a-broad
ast the �rst message before it a-broad
ast the se
ond one.

When dis
ussing impli
it queues at parti
ular points in time, we
onsider a sequen
e of

events E

1

; : : : ; E

k

000

during the operation of the system, where ea
h event but the last one is

either an a-broad
ast or a-delivery by an honest party. The phrase \at time �" for 1 � � � k

000

refers to the point in time just before event E

�

o

urs.

De�nition 7 (Atomi
 Broad
ast). A proto
ol for atomi
 broad
ast satis�es the following

onditions ex
ept with negligible probability:

Validity: There are at most t honest parties with non-empty impli
it queues for some
hannel

ID , provided the adversary opens
hannel ID for all honest parties, delivers all asso
iated

messages, and generates a
knowledgments.

Agreement: If some honest party has a-delivered m tagged with ID , then all honest parties a-

deliver m tagged with ID , provided the adversary opens
hannel ID for all honest parties,

delivers all asso
iated messages, and generates a
knowledgments for every party that has

not yet a-delivered m tagged with ID .

Total Order: Suppose an honest party P

i

has a-delivered m

1

; : : : ;m

s

with tag ID , a distin
t

honest party P

j

has a-delivered m

0

1

; : : : ;m

0

s

0

with tag ID , and s � s

0

. Then m

l

= m

0

l

for

1 � l � s.

Integrity: For all ID , every honest party a-delivers a payload message m at most on
e tagged

with ID . Moreover, if all parties follow the proto
ol, then m was previously a-broad
ast

by some party with tag ID .

36

Fairness: Fix a parti
ular proto
ol instan
e with tag ID . Consider the system at any point

in time �

0

where there is a set T of t+ 1 honest parties with non-empty impli
it queues,

letM be the set
onsisting of the oldest payload message for ea
h party in T , and let S

0

denote the total number of distin
t payload messages a-delivered by any honest party so

far. De�ne a random variableW as follows: letW be the total number of distin
t payload

messages a-delivered by honest parties at the point in time when the �rst message inM

is a-delivered by any honest party, or let W = S

0

if this never o

urs. Then W � S

0

is

uniformly bounded.

EÆ
ien
y: For a parti
ular proto
ol instan
e with tag ID , let X denote its
ommuni
ation

omplexity, and let Y be the total number of distin
t payload messages that have been

a-delivered by any honest party with tag ID . Then, at any point in time, the random

variable X=(Y + 1) is probabilisti
ally uniformly bounded.

Some remarks on the above de�nition:

1. Compared to the de�nition of reliable broad
ast, agreement and integrity are analogous,

validity is somewhat weaker, and total order and fairness are new.

2. The agreement
ondition
ombines the
onsisten
y and totality of reliable broad
ast;

there is no need to distinguish these two aspe
ts here. However, only totality requires

that messages and a
knowledgments are delivered.

3. Validity ensures liveness of a proto
ol and rules out trivially empty proto
ols. It is stated

in a weak form, guaranteeing progress whenever at least t + 1 honest parties have some

undelivered payload message. A stronger notion, more along the lines of the validity

ondition used in reliable broad
ast, would have been the following.

Strong Validity: If an honest party has a-broad
ast m tagged with ID , then it a-delivers

m tagged with ID , provided the adversary opens
hannel ID for all honest parties,

delivers all asso
iated messages, and generates a
knowledgments.

However, our weaker notion of validity is suÆ
ient in many appli
ations where a
lient

needs to
onta
t more than t + 1 servers anyway. It is also more suitable for proto
ol

omposition and makes some atomi
 broad
ast proto
ols simpler, like the one of Kursawe

and Shoup [23℄. On the other hand, strong validity
an be obtained for any atomi

broad
ast proto
ol that provides weak validity by a relatively simple initial round of

e
hoing the payload to all parties, who adopt it as their own if their input queues are

empty.

4. Validity and fairness
omplement ea
h other: Validity ensures that a payload message

that is a-broad
ast by t+ 1 honest parties is a-delivered at all, provided all messages are

delivered and a
knowledgments are generated, and fairness implies that it is a-delivered

reasonably qui
kly, relative to other payloads.

One
ould de�ne a weaker versions of fairness and validity by
onsidering only the situation

that f honest parties a-broad
ast a payload message for t+ 1 � f � n� t.

5. The eÆ
ien
y
ondition
ounts only the payload messages delivered by the \fastest" honest

party. This party will usually be syn
hronized within one round with at least n� 2t� 1

other honest parties, but it seems impossible to syn
hronize it with the \slowest" honest

37

party. Moreover, there seems to be no easy way to provide a �xed bound on a suitable

statisti
 (su
h as
ommuni
ation
omplexity) until all honest parties have delivered a

parti
ular payload. This is be
ause the adversary
an always drive the system forward

with only n � 2t honest parties and leave the others behind. The \fast" parties might

generate an a priori unbounded amount of work until the \slow" ones �nally a-deliver

a parti
ular payload, if at all. (Adding 1 to the divisor
overs the state until the �rst

payload is delivered.)

5.2 A Proto
ol for Atomi
 Broad
ast

We now present a proto
ol for atomi
 broad
ast based on validated Byzantine agreement. Its

overall stru
ture is similar to the proto
ol of Hadzila
os and Toueg [21℄ for the
rash-fault

model, but we need to take additional measures to tolerate Byzantine faults.

Our Proto
ol ABC for atomi
 broad
ast pro
eeds as follows. Ea
h party maintains a FIFO

queue of not yet a-delivered payload messages. Messages re
eived to a-broad
ast are appended

to this queue whenever they are re
eived. The proto
ol pro
eeds in asyn
hronous global rounds,

where ea
h round r
onsists of the following steps:

1. Send the �rst payload message w in the
urrent queue to all parties, a

ompanied by a

digital signature � in an a-queue message.

2. Colle
t the messages of n � t distin
t parties and store them in a ve
tor W , store the

orresponding signatures in a ve
tor S, and proposeW for Byzantine agreement validated

by S.

3. Perform multi-valued Byzantine agreement with validation of a ve
tor W = [w

1

; : : : ; w

n

℄

and proof S = [�

1

; : : : ; �

n

℄ through the predi
ate Q

IDjab
:r

(W;S) whi
h is true if and

only if for at least n� t distin
t indi
es j, the ve
tor element �

j

is a valid S-signature on

(ID ; a-queue; r; j; w

j

) by P

j

.

4. After de
iding on a ve
tor V of messages, deliver the union of all payload messages in V

a

ording to a deterministi
 order; pro
eed to the next round.

In order to ensure liveness of the proto
ol, there are a
tually two ways in whi
h the parties

move forward to the next round: when a party re
eives an a-broad
ast input message (as stated

above) and when a party re
eives an a-queuemessage of another party pertaining to the
urrent

round. If either of these two messages arrive and
ontain a yet undelivered payload message,

and if the party has not yet sent its own a-queue message for the
urrent round, then it enters

the round by appending the payload to its queue and sending an a-queuemessage to all parties.

The detailed des
ription of Proto
ol ABC is found in Figure 5. The FIFO queue q is an

ordered list of values (initially empty). It is a

essed using the operations append, remove,

and �rst, where append(q;m) inserts m into q at the end, remove(q;m) removes m from q (if

present), and �rst(q) returns the �rst element in q. The operation m 2 q tests if an element m

is
ontained in q.

A party waiting at the beginning of a round simultaneously waits for a-broad
ast and

a-queue messages
ontaining some w 62 d in line 2. If it re
eives an a-broad
ast request, the

payload m is appended to q. If only a suitable a-queue proto
ol message is re
eived, the party

makes w its own message for the round, but does not append it to q. It should be
lear from

the proto
ol that no honest party is ever blo
ked waiting for some payload message to pro
ess

if some honest party has a-broad
ast one and all asso
iated messages have been delivered.

38

Proto
ol ABC for party P

i

and tag ID

Let Q

IDjab
:r

be the following predi
ate:

Q

IDjab
:r

([w

1

; : : : ; w

n

℄; [�

1

; : : : ; �

n

℄) �

�

for at least n� t distin
t j, �

j

is a valid

S-signature by P

j

on (ID ; a-queue; r; j; w

j

).

�

Initialization:

q [℄ fFIFO queue of messages to a-broad
astg

d ; fset of a-delivered messagesg

r 0 f
urrent roundg

Upon re
eiving message (ID ; in; a-broad
ast;m):

if m 62 d and m 62 q then

append(q;m)

Forever:

1: w

j

 ?;�

j

 ? (1 � j � n)

2: wait for q 6= [℄ or a message (ID ; a-queue; r; l; w

l

; �

l

) re
eived from P

l

su
h that w

l

62 d and �

l

is a valid signature from P

l

3: if q 6= [℄ then

4: w �rst(q)

5: else

6: w w

l

7:
ompute a digital signature � on (ID ; a-queue; r; i; w)

8: send the message (ID ; a-queue; r; i; w; �) to all parties

9: wait for n� t messages (ID ; a-queue; r; j; w

j

; �

j

) su
h that �

j

is a valid

signature from P

j

(in
luding the message from P

l

above)

10: W [w

1

; : : : ; w

n

℄;S [�

1

; : : : ; �

n

℄

11: propose W validated by S for multi-valued validated Byzantine agreement

for ID jab
:r with predi
ate Q

IDjab
:r

12: wait for the validated Byzantine agreement proto
ol to de
ide some

V = [v

1

; : : : ; v

n

℄ for ID jab
:r

13: b

S

n

j=1

v

j

14: for m 2 (b n d), in some deterministi
 order do

15: output (ID ; out; a-deliver;m)

16: wait for an a
knowledgment

17: d d [fmg

18: remove(q;m)

19: r r + 1

Figure 5: Proto
ol ABC for atomi
 broad
ast using multi-valued validated Byzantine agree-

ment.

39

The term n � t in line 9 of the proto
ol and in the validation predi
ate Q

IDjab
:r

ould

be repla
ed by any f

0

between t + 1 and n � t if the fairness
ondition is
hanged su
h that

f = n� f

0

+ 1 parties instead of t+ 1 must have a-broad
ast the message.

The proto
ol in Figure 5 is formulated using a single loop that runs forever after initializa-

tion; this is merely for synta
ti

onvenien
e and
an be implemented by de
omposing the loop

into the respe
tive message handlers.

Theorem 12. Given a proto
ol for multi-valued validated Byzantine agreement and assuming

S is a se
ure signature s
heme, Proto
ol ABC provides atomi
 broad
ast for n > 3t.

Proof. We �rst prove validity and show that the proto
ol even implements strong validity.

Towards a
ontradi
tion, suppose that some honest party has a-broad
ast a payload message

m, but not a-delivered it and yet, all asso
iated proto
ol messages and a
knowledgments have

been delivered. Sin
e the sender has a-broad
ast but not a-delivered m, its queue q
ontains

at least m and it
an no longer be waiting in line 2. Thus, it has pro
eeded and sent a-queue

messages to all parties in line 8. Sin
e these have been delivered, every honest party has re
eived

an a-queue message
ontaining m 62 d and therefore has also entered the same round (by

ondition for waiting in line 2). Thus, all n� t honest parties have sent valid a-queue messages

and every honest party has re
eived all of them and subsequently started and terminated

Byzantine agreement. Sin
e also the a-delivered payloads have been a
knowledged, the sender

must be waiting in line 2 with q = [℄. But then m has been removed from q and this o

urs

only if it was a-delivered, a
ontradi
tion.

We now establish agreement. Towards a
ontradi
tion, suppose that some honest P

i

has

a-delivered a payload message m, but an honest P

j

has not a-delivered it and yet, all asso
iated

proto
ol messages have been delivered and a
knowledgments have been generated for all parties

who have not yet a-delivered m. Assume P

i

a-delivered m in round r. Sin
e no party who has

not a-delivered m is blo
ked waiting for messages or a
knowledgments under these
onditions,

it is easy to see from inspe
tion of the proto
ol and from the liveness
ondition of the Byzantine

agreement sub-proto
ol that P

j

must have re
eived all messages belonging to any round up to

and in
luding r. But then it
annot be waiting for an a
knowledgment either|unless it has

already a-delivered m.

The total order
ondition follows from the agreement property of the validated Byzantine

agreement primitive sin
e all honest parties de
ide on the same proposal and then a-deliver all

payload messages
ontained in the proposal in a deterministi
 order. This implies also that the

set d of a-delivered messages is the same for all honest parties.

Integrity is immediate from the proto
ol by indu
tion on the
onstru
tion of d, using the

properties of Byzantine agreement. Even if
orrupted parties in
lude messages that have already

been delivered, they are not delivered again.

To show fairness, �x some �

0

and T (this de�nes alsoM), and
onsider the system at the

point in time when W > 0 is �rst de�ned. We show that W � S

0

� n, independent of the

adversary. Note that the de
ided ve
tor in the
urrent round is de�ned and
ontains n � t

payloads (not ne
essarily distin
t). At least n � 2t of them are signed by honest parties that

have all
aught up to the
urrent round; we
all these parties the \signing parties." They have

ea
h signed the oldest payload message in their queue q. By de�nition, the impli
it queue of

every honest party is a subset of q; but be
ause ea
h signing party must have entered the
urrent

round, its impli
it queue was equal to its queue q at the point in time when it generated the

signature. Sin
e T has
ardinality t+ 1 and there are at least n� 2t signing parties, but only

n � t honest parties in total, there must be at least one signing party in T . Thus, there is at

40

least one payload fromM among the de
ided payloads and no more than n distin
t payloads

an have been a-delivered sin
e �

0

.

For eÆ
ien
y, we have to relate the
ommuni
ation
omplexity of the proto
ol to the pay-

load messages that were a
tually a-delivered. Note that honest parties generate messages only

when they make progress in the round stru
ture|either by sending an a-queue message or by

invoking the Byzantine agreement sub-proto
ol. But an honest party enters the next round only

if it is aware of some payload message that it has not yet a-delivered. Sin
e at least one payload

message from the system queue is delivered in every round, all proto
ol messages generated

during that round
an be related to that payload. There are a �xed polynomial number of

proto
ol messages generated dire
tly by the proto
ol in every round and the length of ea
h one

is at most n times the length of a payload. The
ommuni
ation
omplexity of the Byzantine

agreement sub-proto
ol is probabilisti
ally uniformly bounded by its eÆ
ien
y
ondition. Thus,

the
ommuni
ation
omplexity per round is probabilisti
ally uniformly bounded.

The message
omplexity of Proto
ol ABC to broad
ast one payload message m is domi-

nated by the number of messages in the multi-valued validated Byzantine agreement; the extra

overhead for atomi
 broad
ast is only O(n

2

) messages. The same holds for the
ommuni
ation

omplexity, but the proposed values have length O(n(jmj+K)), assuming digital signatures of

length K bits.

With Proto
ol VBA
onst from Se
tion 4.4, the total expe
ted message
omplexity is O(n

2

)

and the expe
ted
ommuni
ation
omplexity is O(n

3

jmj) for an atomi
 broad
ast of a single

payload message.

5.3 Equivalen
e of Byzantine Agreement and Atomi
 Broad
ast

For the sake of
ompleteness, we state the equivalen
e of atomi
 broad
ast to Byzantine agree-

ment in the
ryptographi
 model. It is the analogue to the equivalen
e between
onsensus and

atomi
 broad
ast in the
rash-fault model shown by Chandra and Toueg [10℄.

Corollary 13. (Binary) Byzantine agreement and atomi
 broad
ast are equivalent in the basi

system model of Se
tion 2.1, assuming a se
ure signature s
heme and provided n > 3t.

Proof. To implement Byzantine agreement from an atomi
 broad
ast proto
ol, a party uses the

following algorithm:

1. To propose v 2 f0; 1g for transa
tion ID ,
ompute a digital signature � on (ID ; v) and

a-broad
ast the message (ID ; v; �).

2. Wait for a-delivery of the �rst 2t+1 messages of the form (ID ; v

j

; �

j

) from distin
t parties

that
ontain valid signatures. De
ide for the simple majority of all re
eived values v

j

.

The other dire
tion follows from Theorems 8 and 12.

Note that using an appropriately de�ned notion of authenti
ated atomi
 broad
ast, this

ould also be implemented without the additional digital signatures in the redu
tion. However,

Proto
ol ABC would have to be modi�ed in order to provide authenti
ation.

41

6 Se
ure Causal Atomi
 Broad
ast

Se
ure
ausal atomi
 broad
ast (SC-ABC) is a useful proto
ol for building se
ure appli
ations

that use state ma
hine repli
ation in a Byzantine setting. It provides atomi
 broad
ast, whi
h

ensures that all re
ipients re
eive the same sequen
e of messages, and also guarantees that the

payload messages arrive in an order that maintains \input
ausality," a notion introdu
ed by

Reiter and Birman [39℄. Informally, input
ausality ensures that a Byzantine adversary may

not ask the system to deliver any payload message that depends in a meaningful way on a yet

undelivered payload sent by an honest
lient. This is very useful for delivering
lient requests

to a distributed servi
e in appli
ations that require the
ontents of a request to remain se
ret

until the system pro
esses it. Input
ausality is related to the standard
ausal order (going ba
k

to Lamport [24℄), whi
h is a useful safety property for distributed systems with
rash failures,

but is a
tually not well de�ned in the Byzantine model [21℄.

Input
ausality
an be a
hieved if the sender en
rypts a message to broad
ast with the

publi
 key of a threshold
ryptosystem for whi
h all parties share the de
ryption key [39℄. The

iphertext is then broad
ast using an atomi
 broad
ast proto
ol; after delivering it, all parties

engage in an additional round to re
over the message from the
iphertext.

In our des
ription of se
ure
ausal atomi
 broad
ast, one of the parties a
ts as the sender of

a payload message. If SC-ABC is used by a distributed system to broad
ast
lient requests, then

en
ryption and broad
asting is taken
are of by the
lient. In this
ase, additional
onsiderations

are needed to ensure proper delivery of the replies from the servi
e (see [39℄ for those details).

6.1 De�nition

Asso
iated with any instan
e of a se
ure
ausal atomi
 broad
ast proto
ol with tag ID is

an en
ryption algorithm E

ID

. It should be possible to infer this algorithm from the dealer's

publi
 output. E

ID

is a probabilisti
 algorithm that maps a message m to a
iphertext
.

We
all
 = E

ID

(m) an en
ryption of m (with tag ID). Sin
e the en
ryption algorithm is

probabilisti
, there will in general be many di�erent en
ryptions of a given message; indeed,

this will ne
essarily be the
ase if the system is to be se
ure.

An appli
ation that wants to se
urely broad
ast a payload message should �rst en
rypt it

using E

ID

and invoke the broad
ast proto
ol with the resulting
iphertext. Sin
e E

ID

is publi
ly

known, also
lients from outside the group P

1

; : : : ; P

n

an produ
e
iphertexts.

A se
ure
ausal atomi
 broad
ast proto
ol is a
tivated when P

i

re
eives an input message

of the form

(ID ; in; s-broad
ast;
):

We say P

i

s-broad
asts
 with tag ID .

Unlike atomi
 broad
ast, delivery
onsists of two distin
t steps: the �rst is the generation

of an output message of the form

(ID ; out; s-s
hedule;
);

and the se
ond is the generation of an output message of the form

(ID ; out; s-reveal;m):

We shall require that honest parties generate sequen
es of su
h pairs of output messages|

there must never be two
onse
utive s-s
hedule or s-revealmessages. When the s-s
hedule

42

message is generated, we will say that P

i

s-s
hedules the
iphertext
 (with tag ID). When the

s-reveal message is generated, we will say that P

i

s-delivers the
iphertext
 (with tag ID),

where
 is the most re
ently s-s
heduled
iphertext; we
all m the asso
iated
leartext.

De�nition 8 (Se
ure Causal Atomi
 Broad
ast). A se
ure
ausal atomi
 broad
ast pro-

to
ol satis�es the properties of an atomi
 broad
ast proto
ol, where the s-broad
ast and s-

delivery of
iphertexts in the se
ure
ausal atomi
 broad
ast proto
ol play the role of the

a-broad
ast and a-delivery of payload messages in an atomi
 broad
ast proto
ol.

Additionally, the following
onditions hold.

Message Se
re
y: A

ording to the basi
 system model, the parties run an atomi
 broad
ast

proto
ol (and possibly other broad
ast proto
ols), and the adversary plays the following

game:

B1. The adversary intera
ts with the honest parties in an arbitrary way.

B2. The adversary
hooses two messages m

0

and m

1

and a tag ID ; it gives them to

an \en
ryption ora
le." The ora
le
hooses a bit B at random and
omputes an

en
ryption
 of m

B

with tag ID , and gives this
iphertext to the adversary.

B3. The adversary
ontinues to intera
t with the honest parties subje
t only to the

ondition that no honest party s-s
hedules
 with tag ID .

B4. Finally, the adversary outputs a bit

^

B.

Then, for any adversary, the probability that

^

B = B must ex
eed

1

2

only by a negligible

amount.

Message Integrity: A

ording to the basi
 system model, the parties run an atomi
 broad
ast

proto
ol (and possibly other broad
ast proto
ols), and the adversary plays the following

game:

C1. The adversary intera
ts with the honest parties in an arbitrary way.

C2. The adversary
hooses a message m and a tag ID , and gives it to an \en
ryption

ora
le." The ora
le
omputes an en
ryption
 of m with tag ID , and gives this

iphertext to the adversary.

C3. The adversary
ontinues to intera
t with the honest parties in an arbitrary way.

We say the adversary wins the game if at some point an honest party s-delivers
 with

tag ID , but
orresponding
leartext m

0

is not equal to m. Then, for any adversary, the

probability that it wins this game is negligible.

Message Consisten
y: If two parties honest parties s-deliver the same
iphertext
 with tag

ID , then with all but negligible probability, the asso
iated
leartexts are the same.

It is easy to verify that this de�nition implies input
ausality in the sense of Reiter and

Birman [39℄, i.e., that a
leartext remains hidden from the adversary until the
orresponding

iphertext is s-s
heduled. But the
leartext may be revealed to the adversary before the �rst

honest party outputs it in a s-reveal message, and this is also the reason for introdu
ing

our two-step delivery pro
ess. Although this is ne
essary for the proper de�nition of se
urity,

s-s
heduling a
iphertext might be omitted in a pra
ti
al implementation.

The message integrity
ondition gives
lients a

ess to the broad
ast proto
ol for
leartext

payload messages, and implies that payloads
ontained in
orre
tly en
rypted
iphertexts are

a
tually output by the honest parties.

43

6.2 A Proto
ol for Se
ure Causal Atomi
 Broad
ast

Proto
ol SC-ABC in Figure 6 implements se
ure
ausal atomi
 broad
ast. It uses an (n; t +

1)-threshold
ryptosystem E

1

that is se
ure against adaptive
hosen
iphertext atta
ks (see

Se
tion 2.3.3) for whi
h the parties share the de
ryption key. It also uses an atomi
 broad
ast

proto
ol a

ording to Se
tion 5.

During initialization, the dealer generates a publi
 key for E

1

, together with the
orrespond-

ing private key shares, and distributes them a

ording to the initialization algorithm of E

1

.

For a tag ID , E

ID

(m) is
omputed by applying the en
ryption algorithm of E

1

to m with

label ID , using the generated publi
 key of the
ryptosystem.

We emphasize that all instan
es of the se
ure
ausal broad
ast proto
ol share the same

publi
 key for E

1

, and so the use of labeled
iphertexts is essential to properly \isolate" di�erent

instan
es of the proto
ol from one another.

To s-broad
ast a
iphertext
, we simply a-broad
ast
. Upon a-delivery of a
iphertext
, a

party s-s
hedules
. Then it
omputes a de
ryption share Æ and sends this to all other parties

in an s-de
rypt message
ontaining
. It waits for t + 1 s-de
rypt messages pertaining to

. On
e they arrive, it re
overs the asso
iated
leartext and s-delivers
. After re
eiving

the a
knowledgment, the party
ontinues pro
essing the next a-delivery by generating the

orresponding a
knowledgment. The details are in Figure 6. For ease of notation, the proto
ol

in Figure 6 is formulated using a Forever loop; it
an be de
omposed into the respe
tive

message handlers in straightforward way.

Proto
ol SC-ABC for party P

i

and tag ID

Initialization:

open an atomi
 broad
ast
hannel with tag ID js
ab

Upon re
eiving (ID ; in; s-broad
ast;
):

a-broad
ast
 with tag ID js
ab

Forever:

wait for the next message
 that is a-delivered with tag ID js
ab

ompute an E

1

-de
ryption share Æ for
 with label ID

output (ID ; out; s-s
hedule;
)

send the message (ID ; s-de
rypt;
; Æ) to all parties

Æ

j

 ? (1 � j � n)

wait for t+ 1 messages (ID ; s-de
rypt;
; Æ

j

) from distin
t parties that
ontain valid

de
ryption shares for
 with label ID

ombine the de
ryption shares Æ

1

; : : : ; Æ

n

to obtain a
leartext m

output (ID ; out; s-reveal;m)

wait for an a
knowledgment

a
knowledge the last a-delivered message with tag ID js
ab

Figure 6: Proto
ol SC-ABC for se
ure
ausal atomi
 broad
ast.

Theorem 14. Given an atomi
 broad
ast proto
ol and assuming E

1

is a (n; t + 1)-threshold

ryptosystem se
ure against adaptive
hosen-
iphertext atta
ks, Proto
ol SC-ABC provides se-

ure
ausal atomi
 broad
ast for n > 3t.

44

Proof. We have to show that the proto
ol implements atomi
 broad
ast and satis�es message

se
re
y and message integrity
onditions.

We �rst show validity. Suppose enough honest parties have s-broad
ast
 and all asso
iated

messages have been delivered and all a
knowledgments have been generated. Thus, all senders

have a-broad
ast
. We
an now invoke the validity
ondition of the atomi
 broad
ast proto
ol

as follows: �rst, the messages asso
iated to the atomi
 broad
ast have been delivered sin
e

they are also asso
iated to the se
ure broad
ast; se
ond, it is
lear from the proto
ol that

the a
knowledgements to the se
ure broad
ast proto
ol are passed on to the atomi
 broad
ast

proto
ol. Thus, the validity of the atomi
 broad
ast implies that
 has been a-delivered by

some honest party. For the same reasons, the agreement
ondition of atomi
 broad
ast implies

that all other honest parties must also have a-delivered
, sin
e they are not blo
ked or waiting

for a
knowledgements. All honest parties have therefore generated de
ryption shares for
 and

sent an s-de
rypt message to all parties. It follows that any honest party has re
eived at least

t+ 1 valid shares for
. But then it has also s-delivered
.

It is perhaps interesting to note that the above proof of validity made essential use of both

the validity and agreement properties of the underlying atomi
 broad
ast proto
ol.

For agreement, suppose that an honest P

i

has s-delivered
 and P

j

has not, and yet, all

asso
iated messages have been delivered and a
knowledgments have been generated for those

parties who have not s-delivered
. Sin
e any honest party that has not yet s-delivered
 has

re
eived suÆ
iently many a
knowledgements, it has also a
knowledged all a-deliveries and it

annot be waiting for an a
knowledgment in the atomi
 broad
ast proto
ol. Sin
e P

i

has a-

delivered
, it follows from the agreement
ondition of the underlying atomi
 broad
ast that

all other honest parties must also have a-delivered
. Thus, they all have generated de
ryption

shares for
 and P

j

must have re
eived at least t + 1 valid shares for
. Therefore, P

j

has

s-delivered
, a
ontradi
tion.

To show eÆ
ien
y, we must bound the amount of work done (as measured by
ommuni
ation

omplexity) per s-delivered message. But sin
e the s-delivery messages is syn
hronized with the

a-delivery of
iphertexts in Proto
ol SC-ABC, the number of a-delivered messages ex
eeds the

number of s-delivered ones by at most one, and eÆ
ien
y follows from the eÆ
ien
y
ondition

of the atomi
 broad
ast proto
ol.

Note that without this syn
hronization, we
ould not a
hieve eÆ
ien
y, sin
e the lower-level

atomi
 broad
ast proto
ol
ould \run ahead" of the higher-level se
ure
ausal atomi
 broad
ast

proto
ol|lots of messages would be generated, but very few messages would be s-delivered.

It is easy to see that the remaining broad
ast properties (total order, integrity, and fairness)

hold as well, using the
orresponding properties of the underlying atomi
 broad
ast.

Message se
re
y, integrity, and
onsisten
y follow easily from the properties of the under-

lying threshold en
ryption s
heme.

7 Con
lusions

Although
ryptographi
 te
hniques play an important role in the development of se
ure fault-

tolerant systems, the formal methods used in
ryptography and in distributed systems seem

rather di�erent today. An integration of both approa
hes, su
h as the one proposed in this

paper, is therefore desirable for developing se
ure distributed proto
ols.

Apart from the de�nitions, this paper presents several new proto
ols for asyn
hronous broad-

ast and Byzantine agreement problems. They illustrate how fault-tolerant broad
asts
an ben-

e�t from threshold-
ryptographi
 proto
ols su
h as threshold signatures and
oin-tossing. In

45

parti
ular, they lead to improved
ommuni
ation
omplexity. Our most eÆ
ient proto
ol for

atomi
 broad
ast a
hieves O(n

2

) expe
ted message
omplexity to broad
ast a single payload

message and expe
ted
ommuni
ation
omplexity O(n

3

).

Several interesting problems remain open:

{ Our
orruption model is stati
, i.e., the adversary must de
ide whi
h parties to
orrupt

independently from the behavior of the system. Allowing for adaptive
orruptions would

give stronger se
urity guarantees, but it is
urrently not known how to eÆ
iently realize

all of our threshold-
ryptographi
 primitives with adaptive se
urity.

{ Although the
ommuni
ation
omplexity per payload message of the atomi
 broad
ast

proto
ol seems reasonable for relatively small values of n, it would be ni
e to redu
e it

further to O(n

2

), or even to a smaller expression. This improvement would have to be

made in the multi-valued validated Byzantine agreement proto
ol.

Another approa
h for redu
ing the overhead of atomi
 broad
ast in pra
ti
e are dual-mode

proto
ols, whi
h normally operate in a fast \optimisti
" mode, and only swit
h to a slower

\pessimisti
" mode if no progress seems to be made during a
ertain time. The proto
ol of

Castro and Liskov [9℄ is of this type, but it does not guarantee liveness in a fully asyn
hronous

model. Re
ently, Kursawe and Shoup [23℄ have developed su
h an \optimisti
" atomi
 broad-

ast proto
ol that guarantees liveness and safety at the same time, and exploits many of the

te
hniques developed in this work.

A
knowledgments

This work was supported by the European IST Proje
t MAFTIA (IST-1999-11583). However,

it represents the view of the authors. The MAFTIA proje
t is partially funded by the European

Commission and the Swiss Department for Edu
ation and S
ien
e.

Referen
es

[1℄ M. Bellare and P. Rogaway, \Random ora
les are pra
ti
al: A paradigm for designing

eÆ
ient proto
ols," in Pro
. 1st ACM Conferen
e on Computer and Communi
ations Se-

urity, 1993.

[2℄ M. Ben-Or, R. Canetti, and O. Goldrei
h, \Asyn
hronous se
ure
omputation," in Pro
.

25th Annual ACM Symposium on Theory of Computing (STOC), 1993.

[3℄ M. Ben-Or, B. Kelmer, and T. Rabin, \Asyn
hronous se
ure
omputation with optimal re-

silien
e," in Pro
. 13th ACM Symposium on Prin
iples of Distributed Computing (PODC),

1994.

[4℄ P. Berman and J. A. Garay, \Randomized distributed agreement revisited," in Pro
. 23th

International Symposium on Fault-Tolerant Computing (FTCS-23), pp. 412{419, 1993.

[5℄ G. Bra
ha, \An asyn
hronous [(n� 1)=3℄-resilient
onsensus proto
ol," in Pro
. 3rd ACM

Symposium on Prin
iples of Distributed Computing (PODC), pp. 154{162, 1984.

[6℄ G. Bra
ha and S. Toueg, \Asyn
hronous
onsensus and broad
ast proto
ols," Journal of

the ACM, vol. 32, pp. 824{840, O
t. 1985.

46

[7℄ C. Ca
hin, K. Kursawe, and V. Shoup, \Random ora
les in Constantinople: Pra
ti
al

asyn
hronous Byzantine agreement using
ryptography," in Pro
. 19th ACM Symposium

on Prin
iples of Distributed Computing (PODC), pp. 123{132, 2000. Full version available

from Cryptology ePrint Ar
hive, Report 2000/034, http://eprint.ia
r.org/.

[8℄ R. Canetti and T. Rabin, \Fast asyn
hronous Byzantine agreement with optimal re-

silien
e," in Pro
. 25th Annual ACM Symposium on Theory of Computing (STOC), pp. 42{

51, 1993. Updated version available from http://www.resear
h.ibm.
om/se
urity/.

[9℄ M. Castro and B. Liskov, \Pra
ti
al Byzantine fault toleran
e," in Pro
. Third Symp.

Operating Systems Design and Implementation (OSDI), 1999.

[10℄ T. D. Chandra and S. Toueg, \Unreliable failure dete
tors for reliable distributed systems,"

Journal of the ACM, vol. 43, no. 2, pp. 225{267, 1996.

[11℄ S. Chaudhuri, \More
hoi
es allow more faults: Set
onsensus problems in totally asyn-

hronous systems," Information and Computation, vol. 105, no. 1, pp. 132{158, 1993.

[12℄ W. DiÆe and M. E. Hellman, \New dire
tions in
ryptography," IEEE Transa
tions on

Information Theory, vol. 22, pp. 644{654, Nov. 1976.

[13℄ D. Dolev, C. Dwork, and M. Naor, \Non-malleable
ryptography," SIAM Journal on Com-

puting, vol. 30, no. 2, pp. 391{437, 2000.

[14℄ D. Dolev and H. R. Strong, \Authenti
ated algorithms for Byzantine agreement," SIAM

Journal on Computing, vol. 12, pp. 656{666, Nov. 1983.

[15℄ A. Doudou, B. Garbinato, and R. Guerraoui, \Abstra
tions for devising Byzantine-resilient

state ma
hine repli
ation," in Pro
. 19th Symposium on Reliable Distributed Systems

(SRDS 2000), pp. 144{152, 2000.

[16℄ M. J. Fis
her, \The
onsensus problem in unreliable distributed systems (a brief survey),"

in Foundations of Computation Theory (M. Karpinsky, ed.), vol. 158 of Le
ture Notes in

Computer S
ien
e, Springer, 1983. Also published as Te
h. Report YALEU/DCS/TR-273,

Department of Computer S
ien
e, Yale University.

[17℄ M. J. Fis
her, N. A. Lyn
h, and M. S. Paterson, \Impossibility of distributed
onsensus

with one faulty pro
ess," Journal of the ACM, vol. 32, pp. 374{382, Apr. 1985.

[18℄ O. Goldrei
h, Foundations of Cryptography: Basi
 Tools. Cambridge University Press,

2001. To appear.

[19℄ O. Goldrei
h, S. Goldwasser, and S. Mi
ali, \How to
onstru
t random fun
tions," Journal

of the ACM, vol. 33, pp. 792{807, O
t. 1986.

[20℄ S. Goldwasser, S. Mi
ali, and R. L. Rivest, \A digital signature s
heme se
ure against

adaptive
hosen-message atta
ks," SIAM Journal on Computing, vol. 17, pp. 281{308,

Apr. 1988.

[21℄ V. Hadzila
os and S. Toueg, \Fault-tolerant broad
asts and related problems," in Dis-

tributed Systems (S. J. Mullender, ed.), New York: ACM Press & Addison-Wesley, 1993.

An expanded version appears as Te
hni
al Report TR94-1425, Department of Computer

S
ien
e, Cornell University, Itha
a NY, 1994.

47

[22℄ K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith, \The Se
ureRing proto
ols for

se
uring group
ommuni
ation," in Pro
. 31st Hawaii International Conferen
e on System

S
ien
es, pp. 317{326, IEEE, Jan. 1998.

[23℄ K. Kursawe and V. Shoup, \Optimisti
 asyn
hronous atomi
 broad
ast." Cryptology ePrint

Ar
hive, Report 2001/022, Mar. 2001. http://eprint.ia
r.org/.

[24℄ L. Lamport, \Time,
lo
ks, and the ordering of events in a distributed system," Commu-

ni
ations of the ACM, vol. 21, pp. 558{565, July 1978.

[25℄ L. Lamport, R. Shostak, and M. Pease, \The Byzantine generals problem," ACM Trans-

a
tions on Programming Languages and Systems, vol. 4, pp. 382{401, July 1982.

[26℄ N. Lyn
h and M. R. Tuttle, \Hierar
hi
al
orre
tness proofs for distributed algorithms,"

in Pro
. 6th ACM Symposium on Prin
iples of Distributed Computing (PODC), 1987.

[27℄ N. A. Lyn
h, Distributed Algorithms. San Fran
is
o: Morgan Kaufmann, 1996.

[28℄ N. A. Lyn
h and M. R. Tuttle, \An introdu
tion to input/output automata," CWI

Quaterly, vol. 2, pp. 219{246, Sept. 1989.

[29℄ D. Malkhi, M. Merritt, and O. Rodeh, \Se
ure reliable multi
ast proto
ols in a WAN,"

Distributed Computing, vol. 13, no. 1, pp. 19{28, 2000.

[30℄ A. J. Menezes, P. C. van Oors
hot, and S. A. Vanstone, Handbook of Applied Cryptography.

Bo
a Raton, FL: CRC Press, 1997.

[31℄ L. E. Moser and P. M. Melliar-Smith, \Byzantine-resistant total ordering algorithms,"

Information and Computation, vol. 150, pp. 75{111, 1999.

[32℄ M. Naor, B. Pinkas, and O. Reingold, \Distributed pseudo-random fun
tions and KDCs,"

in Advan
es in Cryptology: EUROCRYPT '99 (J. Stern, ed.), vol. 1592 of Le
ture Notes

in Computer S
ien
e, Springer, 1999.

[33℄ M. Pease, R. Shostak, and L. Lamport, \Rea
hing agreement in the presen
e of faults,"

Journal of the ACM, vol. 27, pp. 228{234, Apr. 1980.

[34℄ D. Powell (Guest Ed.), \Group
ommuni
ation," Communi
ations of the ACM, vol. 39,

pp. 50{97, Apr. 1996.

[35℄ M. O. Rabin, \Randomized Byzantine generals," in Pro
. 24th IEEE Symposium on Foun-

dations of Computer S
ien
e (FOCS), pp. 403{409, 1983.

[36℄ M. Reiter, \Se
ure agreement proto
ols: Reliable and atomi
 group multi
ast in Rampart,"

in Pro
. 2nd ACM Conferen
e on Computer and Communi
ations Se
urity, 1994.

[37℄ M. K. Reiter, \The Rampart toolkit for building high-integrity servi
es," in Theory and

Pra
ti
e in Distributed Systems, vol. 938 of Le
ture Notes in Computer S
ien
e, pp. 99{110,

Springer, 1995.

[38℄ M. K. Reiter, \Distributing trust with the Rampart toolkit," Communi
ations of the ACM,

vol. 39, pp. 71{74, Apr. 1996.

48

[39℄ M. K. Reiter and K. P. Birman, \How to se
urely repli
ate servi
es," ACM Transa
tions

on Programming Languages and Systems, vol. 16, pp. 986{1009, May 1994.

[40℄ R. L. Rivest, A. Shamir, and L. Adleman, \A method for obtaining digital signatures and

publi
-key
ryptosystems," Communi
ations of the ACM, vol. 21, pp. 120{126, Feb. 1978.

[41℄ F. B. S
hneider, \Implementing fault-tolerant servi
es using the state ma
hine approa
h:

A tutorial," ACM Computing Surveys, vol. 22, De
. 1990.

[42℄ V. Shoup, \Pra
ti
al threshold signatures," inAdvan
es in Cryptology: EUROCRYPT 2000

(B. Preneel, ed.), vol. 1087 of Le
ture Notes in Computer S
ien
e, pp. 207{220, Springer,

2000.

[43℄ V. Shoup and R. Gennaro, \Se
uring threshold
ryptosystems against
hosen
iphertext

atta
k," in Advan
es in Cryptology: EUROCRYPT '98 (K. Nyberg, ed.), vol. 1403 of

Le
ture Notes in Computer S
ien
e, Springer, 1998.

[44℄ R. Vitenberg, I. Keidar, G. V. Cho
kler, and D. Dolev, \Group
ommuni
ation spe
i�
a-

tions: A
omprehensive study," Te
hni
al Report MIT-LCS-TR-790, MIT, Sept. 1999.

49

