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Abstrat

Reliable broadast protools are a fundamental building blok for implementing replia-

tion in fault-tolerant distributed systems. This paper addresses seure servie repliation

in an asynhronous environment with a stati set of servers, where a maliious adversary

may orrupt up to a threshold of servers and ontrols the network. We develop a formal

model using onepts from modern ryptography, present modular de�nitions for several

broadast problems, inluding reliable, atomi, and seure ausal broadast, and present

protools implementing them. Reliable broadast is a basi primitive, also known as the

Byzantine generals problem, providing agreement on a delivered message. Atomi broad-

ast imposes additionally a total order on all delivered messages. We present a randomized

atomi broadast protool based on a new, eÆient multi-valued asynhronous Byzantine

agreement primitive with an external validity ondition. Apparently, no suh eÆient asyn-

hronous atomi broadast protool maintaining liveness and safety in the Byzantine model

has appeared previously in the literature. Seure ausal broadast extends atomi broad-

ast by enryption to guarantee a ausal order among the delivered messages. Threshold-

ryptographi protools for signatures, enryption, and oin-tossing also play an important

role.

�

Frank Petzold has sine left IBM and an be reahed at petzold�hepe.om.
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1 Introdution

Broadast protools are a fundamental building blok for fault-tolerant distributed systems.

A group of servers an o�er some servie in a fault-tolerant way by using the state mahine

repliation tehnique, whih will mask the failure of any individual server or a fration of

them. In the model with Byzantine faults onsidered here, faulty servers may exhibit arbitrary

behavior or even be ontrolled by an adversary.

In this paper, we present a modular approah for building robust broadast protools that

provide reliability (all servers deliver the same messages), atomiity (a total order on the deliv-

ered messages), and seure ausality (a notion that ensures no dishonest server sees a message

before it is sheduled by the system). An important building blok is a new protool for

multi-valued Byzantine agreement with \external validation." Our fous is on methods for

distributing seure, trusted servies on the Internet with the goal of inreasing their availability

and seurity. Cryptographi operations are exploited to a greater extent than previously for

suh protools beause we onsider them to be relatively heap, in partiular ompared to the

message lateny on the Internet.

We do not make any timing assumptions and work in a purely asynhronous model with a

stati set of servers and no probabilisti assumptions about message delays. Our protools rely

on a trusted dealer that is used one to set up the system, but they do not use any additional

external onstruts later (suh as failure detetors or stability mehanisms). We view this as

the standard ryptographi model for a distributed system with Byzantine faults. These hoies

maintain the safety of the servie even if the network is temporarily disrupted. This model also

avoids the problem of having to assume synhrony properties and to �x timeout values for a

network that is ontrolled by an adversary; suh hoies are diÆult to justify if safety and also

seurity depend on them.

Despite the pratial appeal of the asynhronous model, not muh researh has onentrated

on developing eÆient asynhronous protools or implementing pratial systems that need

onsensus or Byzantine agreement. Often, developers of pratial systems avoid the approah

beause of the result of Fisher, Lynh, and Paterson [17℄, whih shows that onsensus is

not reahable by protools that use an a priori bounded number of rounds, even with rash

failures only. But the impliations of this result should not be overemphasized. In partiular,

there are randomized solutions that use only a onstant expeted number of rounds to reah

agreement [35, 8, 4℄. Moreover, by employing modern, eÆient ryptographi tehniques, this

approah has reently been extended to a pratial yet provably seure protool for Byzantine

agreement in the ryptographi model that withstands the maximal possible orruption [7℄.

The basi broadast protools (following Braha and Toueg [6℄) are reliable broadast, whih

ensures that all servers deliver the same messages, and a variation of it that we all onsistent

broadast, whih only provides agreement among the atually delivered messages. Consistent

broadast is partiularly useful in onnetion with a veri�ability property for the delivered

messages, whih ensures that a party an transfer a \proof of delivery" to another party in a

single piee of information. We desribe message- and ommuniation-eÆient implementations

of reliable and onsistent broadast based on ryptographi tehniques, suh as digital signatures

and threshold signatures. Both of these broadast primitives do not ensure agreement on

messages from faulty senders, however, for whih a Byzantine agreement protool is needed.

The eÆient randomized agreement protools mentioned before work only for binary dei-

sions (or for deisions on values from small sets). In order to build distributed seure applia-

tions, this is not suÆient. One also needs agreement on values from large sets, in partiular for

ordering multiple messages. We propose a new multi-valued Byzantine agreement protool with
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an external validity ondition and show how it an be used for implementing atomi broadast.

External validity ensures that the deision value is aeptable to the partiular appliation that

requests agreement; this orrets a drawbak of earlier agreement protools for multi-valued

agreement, whih ould deide on illegal values. Both protools use digital signatures and

additional ryptographi tehniques.

The multi-valued Byzantine agreement protool invokes only a onstant number of binary

Byzantine agreement sub-protools on average and ahieves this by using a ryptographi om-

mon oin protool in a novel way. It withstands the maximal possible orruption of up to one

third of the parties and has expeted quadrati message omplexity (in the number of parties),

whih is essentially optimal.

Our atomi broadast protool guarantees that a message from an honest party annot be

delayed arbitrarily by an adversary as soon as a minimum number of honest parties are aware of

that message. The protool invokes one multi-valued Byzantine agreement per bath of payload

messages that is delivered. An analogous redution of atomi broadast to onsensus in the

rash-fault model has been desribed by Chandra and Toueg [10℄, but it annot be diretly

transferred to the Byzantine setting.

We also de�ne and implement a variation of atomi broadast alled seure ausal atomi

broadast. This is a robust atomi broadast protool that tolerates a Byzantine adversary

and also provides serey for messages up to the moment at whih they are guaranteed to be

delivered. Thus, lient requests to a trusted servie using this broadast remain on�dential

until they are answered by the servie. This is ruial in our asynhronous environment for

applying the state mahine repliation method to servies that involve on�dential data.

Seure ausal atomi broadast works by ombining an atomi broadast protool with

robust threshold deryption. The notion and a heuristi protool were proposed by Reiter

and Birman [39℄, who alled it \seure atomi broadast" and also introdued the term \input

ausality" for its properties. Reent progress in threshold ryptography allows us to present an

eÆient robust protool together with a seurity proof in the appropriate formal models from

ryptography.

In aordane with the omprehensive survey of fault-tolerant broadasts by Hadzilaos

and Toueg [21℄, we de�ne and implement our protools in a modular way, with reliable and

onsistent broadasts and Byzantine agreement as primitives. This leads to the following layered

arhiteture:

Seure Causal Atomi Broadast

Atomi Broadast

Multi-valued Byzantine Agreement

Broadast Primitives Byzantine Agreement

Important for the presentation of our broadast protools is our formal model of a modular

protool arhiteture, where a number of potentially orrupted parties ommuniate over an

inseure, asynhronous network; it uses omplexity-theoreti onepts from modern ryptogra-

phy. This makes it possible to easily integrate the formal notions for enryption, signatures, and

other ryptographi tools with distributed protools. The model allows for quantitative state-

ments about the running time and the omplexity of protools; the essene of our de�nition is

to bound the number of steps taken by partiipants on behalf of a protool independently from

network behavior. In view of the growing importane of ryptography for seure distributed

protools, a uni�ed formal model for both is a ontribution that may be of independent interest.
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1.1 Related Work

The use of ryptographi methods for maintaining onsistent state in a distributed system has

a long history and originates with the seminal work of Pease, Shostak, and Lamport [33℄; Dolev

and Strong [14℄ derive lower bounds for protools that use authentiation. However, muh

of the early work on Byzantine agreement predates the development of robust and eÆient

ryptographi protools and the adequate formal models, from whih we bene�t here.

Chandra and Toueg [10, p. 248℄ mention that Byzantine agreement and atomi broadast

are equivalent in asynhronous systems, but do not give any further details. In fat, we are

not aware of any previous desription of a protool for asynhronous atomi broadast with

Byzantine faults in the literature.

A large body of researh in distributed systems fouses on view-based group ommuniation

systems like Isis, Transis, or Horus for state mahine repliation [41℄ in the rash-fault model

(see the overview in [34℄). Suh systems provide the abstration of a proess group, whih may

hange over time. They guarantee ertain synhrony properties among group members so that

they all see the same messages; Vitenberg et al. [44℄ survey and ompare various spei�ations

found in the literature and implemented in pratial systems.

Rampart [37, 38℄ is the only one of them that tolerates arbitrary (Byzantine) failures. It

also uses ryptography for eÆient reliable and atomi broadasts [36℄, but solves a tehnially

di�erent problem than the one we address here: As Rampart builds on a membership protool to

agree dynamially on the group's omposition, it annot guarantee an honest majority within

the group when faing an adversary that ompletely ontrols ommuniation. Beause the

maintenane of safety is the primary appliation of our protools for trusted servies, suh

behavior annot be tolerated and we have to use more expensive agreement methods.

Another lass of protools irumvent the impossibility of onsensus in asynhronous envi-

ronments by assuming a probabilisti behavior of the network links [6, 29, 31℄. In partiular,

Moser and Melliar-Smith [31℄ present algorithms to obtain a total order from a partial order

imposed by an underlying ommuniation system. However, this model is not suitable for ap-

pliations that need high seurity guarantees beause suh assumptions are rather diÆult to

justify in pratie.

Castro and Liskov [9℄ desribe a pratial algorithm for state-mahine repliation that main-

tains safety despite Byzantine faults and its implementation for realizing a fault-tolerant dis-

tributed �le system. Sine their protools are deterministi, however, this approah annot

ensure liveness at the same time|at least not without making ertain timing assumptions.

SeureRing [22℄ and the very reent work of Doudou, Garbinato, and Guerraoui [15℄ are two

examples of atomi broadast protools that rely on failure detetors in the Byzantine model.

They enapsulate all time-dependent aspets in the abstrat notion of a failure detetor and

permit lean, deterministi protools. However, most implementations of failure detetors will

use timeouts and atually su�er from some of the problems mentioned above. It also seems that

Byzantine failure detetors are not yet well enough understood to allow for preise de�nitions.

In summary, we think the ryptographi model with randomized Byzantine agreement is

both pratially and theoretially attrative, although it seems to have been somewhat over-

looked in the past. The fat that randomized agreement protools may not terminate with

non-zero probability does not matter beause this probability is negligible. Moreover, if a

protool uses authentiation, digital signatures, or any ryptography at all, and the pratial

protools mentioned above do so, a negligible probability of failure annot be ruled out anyway.

5



1.2 Organization of the Paper

The remainder of the paper starts with a desription of our ryptographi system model in

Setion 2, where also the neessary ryptographi primitives are introdued. The paper ontin-

ues with de�nitions and protools for reliable broadast and onsistent broadast in Setion 3.

Setion 4 introdues the notion of validated Byzantine agreement and presents two protools for

multi-valued validated Byzantine agreement. The de�nition and a protool for atomi broadast

are given in Setion 5, and for seure ausal atomi broadast in Setion 6.

2 Model

This setion desribes a formal model for our modular protool arhiteture, where a number

of parties ommuniate over an inseure, asynhronous network, and where an adversary may

orrupt some of them.

Our model di�ers in two respets from other models traditionally used in distributed systems

with Byzantine faults:

1. In order to use the proof tehniques of omplexity-based ryptography [18℄, our model

is omputational : all parties and the adversary are onstrained to perform only feasible,

i.e., polynomial-time, omputations. This is neessary for using formal notions from

ryptography in a meaningful way.

2. We make no assumptions about the network at all and leave it under omplete ontrol of

the adversary. Our protools work only to the extent that the adversary delivers messages

faithfully. In short, the network is the adversary.

The di�erenes beome most apparent in the treatment of termination, for whih we use more

onrete onditions that together imply the traditional notion of \eventual" termination.

We de�ne termination by bounding a statisti measuring the amount of work that hon-

est, unorrupted parties do on behalf of a protool; in partiular, we use the ommuniation

omplexity of a protool for this purpose. Sine the spei�ation of a protool requires ertain

things to happen under the ondition that all protool messages have been delivered, bound-

ing the length (and also the number) of protool messages generated by unorrupted parties

ensures that the protool has atually terminated under this ondition. In ryptography one

proves seurity with respet to all polynomial-time adversaries, and we adopt this model here

as well. Our notion of an eÆient (deterministi) protool requires that the statisti is bounded

by a �xed polynomial, whih is independent of the adversary. As we rely on randomization (for

Byzantine agreement as well as for other things), we also de�ne a orresponding probabilisti

bound for randomized protools; from this a bound on the expeted running time of a protool

an be derived. Both of our notions are losed under modular omposition of protools, whih

is not trivial for randomized protools.

Among the many established formal models for asynhronous distributed protools, the I/O

automata model of Lynh and Tuttle [26, 28, 27℄ seems to be the most general one. It has also

been extended to allow for modeling of randomized protools. But even though authentiation

and digital signatures have been used before in seure distributed protools, apparently no

adequate formal model has integrated both approahes before [27, p. 115℄.
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2.1 Basi System Model

The seurity parameter of our omputational seurity model is denoted by k. A funtion �(k)

is alled negligible if for all  > 0 there exists a k

0

suh that �(k) <

1

k



for all k > k

0

. We

will onsider negligible funtions also in other parameters than in k, but we assume that the

parameter of a negligible funtion is k if not expliitly mentioned otherwise. In this sense, a

\negligible quantity" is a negligible funtion in the seurity parameter k. As k is sometimes

not mentioned in other ontexts either, keep in mind that all system parameters are bounded

by polynomials in k.

2.1.1 Parties and Protools

Multi-Party Protools. An n-party protool onsists of a olletion of n parties, P

1

; : : : ; P

n

,

whih are probabilisti interative Turing mahines that run in polynomial time (in k). Suh

a mahine has two dediated interfaes for reading inoming messages and writing outgoing

messages. There is also an initialization algorithm, whih is run by an additional party alled

the dealer; on input k, n, and t, it generates the state information that is used to initialize eah

party. For simpliity, assume n � k.

After initialization, a party P

i

may be ativated repeatedly with some input message. It

will arry out some omputation, update its state, possibly generate some output messages,

and wait for the next ativation.

We leave it to the adversary to hoose n and t, but a spei� protool might impose its own

restritions (e.g., t < n=3). We an assume that the dealer inludes these values, as well as the

index i, in the initial state of P

i

.

Our model inludes a publi-key infrastruture for digital signatures, i.e., the dealer gener-

ates a key pair for a digital signature sheme S for eah party, and inludes in the initial state

of eah party its private key and the publi keys of all parties. The dealer initializes a �xed

number of threshold ryptosystems as required by the implemented protools.

The dealer may also generate a publi output for information assoiated with the n-party

protool; this information may be useful for lients of a repliated servie that is implemented

by the n-party protool.

Exeutions and the Adversary. As our network is inseure and asynhronous, protool

exeution is de�ned entirely via the adversary. The adversary is a polynomial-time interative

Turing mahine that shedules and delivers all messages and orrupts some parties.

After the initial setup phase, the adversary repeatedly ativates a party with some input

message and waits for the party to generate some output message(s). The output is given to

the adversary and perhaps indiates to whom these messages should be sent, and the adversary

may hoose to deliver these messages faithfully at some time. But in general, the adversary

hooses to deliver any message it wants, or no message at all; we sometimes impose additional

restritions on the adversary's behavior, however.

The adversary also orrupts t parties. W.l.o.g. any adversary that orrupts fewer than t

parties an be onverted into one that orrupts exatly t parties. This simpli�ation seems

justi�ed for distributed systems with Byzantine faults where one annot rely on the ations of

a single, potentially orrupted party; all our intended appliations are be based on the behavior

of (a majority of) the unorrupted parties.

One distinguishes between stati and adaptive orruptions in ryptography: in the stati

orruption model, the adversary must deide whom to orrupt independently of the exeution
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of the system, whereas in the adaptive orruption model, the adversary an adaptively hoose

whom to orrupt as the attak is ongoing, based on information it has aumulated so far.

We adopt a stati adversary in this work for using the threshold oin-tossing sheme and the

Byzantine agreement protool of Cahin, Kursawe, and Shoup [7℄, the threshold ryptosystem

of Shoup and Gennaro [43℄, and the threshold signature sheme of Shoup [42℄. All of these

assume stati orruptions. However, we believe that the protools desribed here generalize

immediately to adaptive seurity, given suh primitives with adaptive seurity.

The adversary reeives the initial state of the orrupted parties as produed by the dealer.

Otherwise, the orrupted parties are simply absorbed into the adversary: we do not regard

them as system omponents. Unorrupted parties are alled honest.

Our formal model leaves ontrol over the appliation interfae for invoking broadasts and

starting agreement protools up to the adversary. The protool de�nitions merely state that if

the adversary invokes the protool in a ertain way|in the same way an intended appliation

would do|then the protool should satisfy some spei� onditions. This reets that applia-

tions might be partially inuened by an adversary, whih might ause some seurity problems

if this is not allowed. For simpliity, this appliation program interfae is mapped onto the

single messaging interfae, as desribed below.

Modular Protool Arhiteture. We desribe a modular protool arhiteture, in whih

multiple broadasts and transations may exeute in parallel. These protool instanes run

onurrently and may also invoke other protool instanes on their behalf as sub-protools.

The dynami relation between all onurrently running protool instanes is given by a direted

ayli graph in whih every sub-protool points to its parent. The \root" protools with no

parents represent instanes diretly invoked by a user appliation; in our formal model, they

are invoked by the adversary. All other protool instanes are invoked as sub-protools of some

already running parent instane.

To identify protool instanes, we assume that eah instane is assoiated with a unique

tag ID . The value ID is an arbitrary bit string whose struture and meaning are determined

by a partiular protool and appliation; in our formal model, the tag of the root instanes

is hosen by the adversary beause the adversary invokes them. Sub-protools are identi�ed

by hierarhial tags of the form ID jID

0

j : : : . The tag value ID jID

0

typially identi�es a sub-

protool of the parent protool instane ID and is determined by the parent. The adversary

may not introdue a new tag on its own if this extends any previously introdued tag, i.e., the

set of tags spei�ed for the root instanes must be pre�x-free.

2.1.2 Communiation

Messages. The protools are desribed in terms of a single ommuniation interfae to whih

the adversary delivers messages. Eah party runs an internal sheduler that delivers messages to

the protool instane assoiated with the orresponding ID . The message interfae is used in two

di�erent ways, however: to send and to reeive messages via the network and as a plaeholder

for loal invoation of sub-protools. Syntatially, invoking a sub-protool appears as if it

were a request of the adversary in our formal model, as mentioned before. Sine our protool

spei�ations guarantee ertain behavior when requests ome from an arbitrary adversary, an

appliation using a sub-protool an bene�t from this universality, as long as it meets the

requirements in the respetive spei�ation. The detailed mehanism for omposing protools

is part of the sheduler desribed below.
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There are three di�erent types of messages: input ations, output ations, and protool

(implementation) messages.

Input and output ations represent loal events; they provide loal input or arry loal

output to or from a protool instane, whih might be a sub-protool of an already running

instane. On the \protool stak" of the layered arhiteture, input and output ations travel

vertially: inputs \down" to sub-protools and outputs \up" to higher-layer protools.

All other messages are protool messages, generated and proessed by the protool imple-

mentation; they are intended for the peer instanes running at other parties on the same level

of the stak (direted \horizontally"). Protool messages are internal implementation messages

and they are distint from the messages or requests atually disseminated as payloads of the

broadast protools; those messages are sometimes expliitly alled payload messages.

An input ation is a message of the form

(ID ; in; ation; : : : );

where ation is spei� to the protool and followed by arbitrary data. Input ations represent

loal invoations of a protool, either as a root protool instane by the adversary or as a sub-

protool of an already running protool instane. An input ation is used to request a servie

from the protool instane. There is a speial input ation open, represented by

(ID ; in; open; type);

whih must preede any other input ation with tag ID . When P

i

proesses suh a message with

tag ID for the �rst time, it initializes the instane; type spei�es the type of the protool being

initialized. We say that P

i

has opened a \hannel" with tag ID or ativated a \transation"

with tag ID . (Although it is a ruial element, we usually assume that it ours impliitly

before the �rst regular input ation.)

An output ation is a message of the form

(ID ; out; ation; : : : );

where ation is again dependent on the partiular servie. These messages typially ontain an

output from the protool instane to the alling entity. There is a speial output ation halt,

represented by

(ID ; out; halt);

after whih no further messages tagged with ID are proessed by the party. When P

i

generates

suh a message with tag ID , we say that P

i

has halted instane ID .

We stress that in a real protool implementation, input and output ations both do not

involve any real network ommuniation and will be mapped onto loal events being generated

or proessed by the alling entity. But in the formal model at least some of them are generated

and reeived by the adversary.

The third type of message generated by P

i

are protool messages of the form

(ID ; type; : : : )

with type 62 fin; outg. The idea is that suh messages are delivered by the network to other

parties, where they are proessed by the orresponding protool instane.

For simpliity, we shall not inlude origin and destination addresses in the body of proto-

ol messages, and assume that this information is impliitly available to the reeiving party.

9



Furthermore, we assume that all protool messages are authentiated, whih restrits the adver-

sary's behavior as follows: if P

i

and P

j

are honest and the adversary delivers a protool message

M to P

j

indiating that it was sent by P

i

, then M was generated by P

i

at some prior point in

time. It is reasonable to build authentiation into our model beause it an be implemented

very heaply using standard symmetri-key ryptographi tehniques [30℄.

Internal Sheduling. When a party is ativated by the adversary, the inoming message is

appended to a loalmessage bu�er and the internal sheduler is invoked. It delivers the message

to the protool instane assoiated with the orresponding ID . If no protool assoiated with

ID is running yet, the sheduler bu�ers all arriving messages until a orresponding instane has

been opened. If the protool instane has already halted, the message is disarded.

The appliable messages in the bu�er are delivered to the protool instanes as follows. For

eah input ation open with a tag ID that has not been opened before, a new protool instane

with the spei�ed ID is initialized and the sheduler remembers that it was started over the

network (i.e., by the adversary).

Eah opened protool instane exeutes as a separate thread, but at any point in time, at

most one of them is ative. Upon ativation of a party, all protool instanes are in wait states.

An instane enters this state by exeuting await for operation, speifying a ondition de�ned on

the message bu�er and other loal state variables under whih it proesses a message. Waiting

instanes beome ready as soon as their ondition is satis�ed. Then one of the ready instanes is

sheduled to exeute (arbitrarily, if more than one are ready), subjet to the following restrition:

An instane ID is not sheduled if any of its hildren in the dynami protool tree are also ready.

In this way, instane ID is sheduled only after any other ready instane whose tag ontains

ID as a proper pre�x.

When a protool instane is sheduled, it proesses the message, potentially generating

some messages, until it enters the wait state again by issuing a wait for operation, or until it

performs an expliit halt operation. The sheduler translates halt into the output ation halt

for tag ID and removes the instane ID (further messages tagged with ID are ignored).

The sheduler treats messages generated by an instane ID as follows. Protool messages are

simply written to the outgoing ommuniation interfae. For eah input ation open, however,

a new protool instane with the spei�ed hild ID is initialized, as if the message ame from

the network. The sheduler remembers the ID of the parent instane; all subsequent input

ations from the parent addressed to the hild are not written out to the network, but inluded

diretly in the bu�er. Eah output ation of a sub-protool instane ID is mapped diretly

into a orresponding internal message for its parent; output ations of a root protool instane

are written to the outgoing ommuniation interfae. These steps allow loal ativation of sub-

protools and loal proessing of their output to be desribed in terms of the single message

interfae.

The sheduler ontinues to deliver messages to waiting protool instanes in an arbitrary

order, until the bu�er ontains no more appliable messages. When no more instane are ready,

ontrol is returned to the adversary. Some messages may remain in the bu�er until the next

ativation beause no protool was waiting for them. Corretness and seurity of a protool

should not depend on the partiular implementation of the sheduler, as long as it obeys these

rules.

Our protool desriptions are mostly written in reative style, onsisting simply of message

handlers for whih a global wait for operation is issued impliitly. Upon reeiving an appliable

message, the handler will exeute some instrutions, update its state, and may also perform a
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wait for operation whih will blok until the appropriate messages have arrived. If an instane

ID waits for messages tagged with its own ID , it is simply a shorthand notation for the

orresponding message handlers. But if an instane ID waits for output from a hild instane

(that has previously been opened), the sheduler delivers the output ations of the hild to the

parent, as mentioned before. We make the assumption that an instane waiting for output

from an uninitialized instane triggers impliitly a orresponding open ation, whih initializes

the instane.

2.1.3 Quantitative Aspets

De�ning Termination. In the model with omputationally bounded partiipants onsidered

here, we annot apply the notion of \eventual" termination traditionally used in distributed

omputing, whih allows for in�nite protool runs and would make formal models of rypto-

graphi methods with omputationally bounded adversaries meaningless. Instead, we de�ne

termination of a protool instane only to the extent that the adversary faithfully delivers mes-

sages among the honest parties (analogous to [7℄). In order to bound the adversary's running

time, we quantify the amount of work done by honest parties on behalf of a protool. We

measure the eÆieny of a protool for this purpose. Combined with a liveness ondition (suh

as \validity"), restriting the amount of work implies eventual termination in the onventional

sense. For example, this will rule out trivial protools that never terminate but always ause

some work to be done without making progress.

Formally, our eÆieny ondition is based on a protool statisti X measuring the work done

by honest parties in a multi-party protool exeution, suh as \useful" omputation steps or the

number of generated message bits. A protool statisti is a family of real-valued, non-negative

random variables fX

A

(k)g, parameterized by adversary A and seurity parameter k, where

eah X

A

(k) is a disrete random variable indued by the oin ips of the dealer, the honest

parties, and adversary A for seurity parameter k. We all X a bounded protool statisti if for

all adversaries A, there exists a polynomial p

A

suh that for all k � 0, it holds X

A

(k) � p

A

(k),

i.e., the statisti is polynomial in the seurity parameter, but depending on the adversary.

The key to de�ning eÆieny lies in \uniformly" bounding a protool statisti, independent

of the adversary|suh a bound should only depend on the partiular protool implementation.

As we onsider deterministi and randomized protools (whih may not always terminate after

a polynomial number of steps), we introdue two orresponding notions for suh uniformly

bounded statistis.

De�nition 1 (Uniformly Bounded Statistis). Let X be a bounded protool statisti. We

say that

1. X is uniformly bounded (by T ) if there exists a �xed polynomial T (k) suh that for all

adversaries A, there exists a negligible funtion �

A

(k) suh that for all k � 0,

Pr[X

A

(k) > T (k)℄ � �

A

(k);

2. X is probabilistially uniformly bounded (by T ) if there exists a �xed polynomial T (k) and

a �xed negligible funtion Æ(l) suh that for all adversaries A, there exists a negligible

funtion �

A

(k) suh that for all l � 0 and k � 0,

Pr[X(k) > lT (k)℄ � Æ(l) + �

A

(k):
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A probabilistially uniformly bounded statisti is allowed to exeed the uniform bound

with non-negligible probability in the seurity parameter, but this probability must again be

negligible, independent of the adversary. If X probabilistially uniformly bounded by T , then

its expeted value is bounded by T times a onstant that is independent of the adversary, as

shown next.

Lemma 1. Suppose X is a statisti of a multi-party protool that is probabilistially uniformly

bounded by T . Then there exists a onstant  suh that for all adversaries A, the expeted value

of X

A

(k) is bounded by T (k) + �

0

A

(k), where �

0

A

is a negligible funtion.

Proof. Reall that a bounded protool statisti is bounded by some polynomial q

A

(k) in the

seurity parameter, depending on the adversary A; thus the random variable X

A

(k) exeeds

q

A

(k) with probability zero.

Set X

0

A

(k) = X

A

(k)=T (k); it follows X

0

A

(k) � q

0

A

(k) for some polynomial q

0

A

(k). Beause

X

A

(k) is probabilistially uniformly bounded, we know that there exist negligible funtions Æ(l)

and �

A

(k) suh that Pr[X

0

A

(k) > l℄ � Æ(l) + �

A

(k). Together with E[Y ℄ �

P

l�0

Pr[Y > l℄ for

any non-negative disrete random variable Y , it follows

E[X

0

A

(k)℄ �

X

l�0

Pr[X

0

A

(k) > l℄ =

q

0

A

(k)

X

l=0

Pr[X

0

A

(k) > l℄ �

q

0

A

(k)

X

l=0

�

Æ(l) + �

A

(k)

�

:

Now �x Æ to a funtion whose sum onverges to a onstant, say Æ(l) = l

�2

. We have

q

0

A

(k)

X

l=0

�

Æ(l) + �

A

(k)

�

�

q

0

A

(k)

X

l=0

l

�2

+ q

0

A

(k)�

A

(k) � 

0

+ q

0

A

(k)�

A

(k)

for a onstant 

0

that is independent of the adversary. Beause �

A

is negligible and by the

linearity of expetation, this implies that E[X

A

(k)℄ = 

0

T (k)+�

0

A

(k) for some negligible �

0

A

.

A key property of these notions is that they lend themselves to the omposition of protools

by way of the following lemma, whose proof is tedious but straightforward.

Lemma 2. Fix any polynomial F (x

1

; : : : ; x

f

), independent of adversary. If X

1

; : : : ;X

f

are

[probabilistially℄ uniformly bounded statistis, then F (X

1

; : : : ;X

f

) is also a [probabilistially℄

uniformly bounded statisti.

Communiation and Message Complexity. An appropriate statisti in the above sense is

the ommuniation omplexity of a multi-protool; it is used by our model to de�ne termination.

Formally, the ommuniation omplexity is equal to the bit length of all assoiated protool

messages that honest parties generate. Whih protool messages are assoiated to a partiular

instane ID will vary aording to the protool type and will be noted expliitly when de�ning

a protool. Typially, this inludes all messages with the tag ID or any tag starting with

ID j : : : ; through the seond form, also messages generated by sub-protools on behalf of the

alling protool an be assoiated to an instane ID . Our protool arhiteture ensures that all

messages generated by honest parties are assoiated to some protool.

Restriting the ommuniation omplexity to messages generated by honest parties seems

the best one an say about a protool in a Byzantine environment; the adversary an always

deliver \junk" protool messages to honest parties, whih require some work to be read. Network
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bandwidth is an apparent resoure that ommuniation protools onsume, thus, measuring it

seems adequate.

Alternatively, one ould bound the bit length of all distint messages delivered to one honest

party that were generated by another honest party. But this is bounded by the ommuniation

omplexity in the sense above.

As it is, there is no a priori restrition on the size of a payload message in our formal

model. However, the ommuniation omplexity of a broadast protool depends on the length

of suh a message. For simpliity, we will therefore assume that there exists a �xed polynomial

upper bound on the length of all payload messages that are ontained in any input or output

ation message of any honest party. From this, and from the desription of a partiular protool

implementation, one an derive an upper bound on the maximal length of any protool message.

Another appropriate statisti for a ertain lass of protools (like Byzantine agreement, as

used in [7℄) is the message omplexity, de�ned as the total number of all assoiated protool

messages that honest parties generate.

If the ommuniation omplexity (or also the message omplexity) is uniformly bounded,

the adversary ould quikly make all honest parties terminate the protool instane, but it is

not fored to do so.

Modular Protool Composition. Using the message omplexity (or ommuniation om-

plexity) as a statisti has the advantage that it is losed under the modular omposition of

protools as follows. Aording to our arhiteture, a higher-level protool may invoke a sub-

protool to arry out a ertain task; this appears as a one or more input ations generated

by the higher-level protool, whih will start the sub-protool(s) as desribed above. Suppose

for the moment that sub-protools are implemented by a distributed orale available to every

party, whih provides the servie of the sub-protools in an ideal and instantaneous way. We

all suh a protool an orale protool. A party invokes the protool orale by generating a

suitable input ation message, so that this ounts as one towards message omplexity.

Consider two multi-party orale protools A and B with respetive message omplexities X

A

and X

B

that are both [probabilistially℄ uniformly bounded. Suppose that the orale protool A

uses an orale for the task provided by B. Sine B is implemented by the orale, X

A

ounts

every invoation of B by any honest party as one unit.

If we replae every orale all on behalf of A to B by atually invoking B aording to our

general system model, we obtain a omposed protool AB with message omplexity X

AB

. This

ounts all messages that protool A generates diretly and those generated by the instanes of B

started on behalf of A. But beause X

A

and X

B

are [probabilistially℄ uniformly bounded, there

exist the appropriate polynomial bounds on the message omplexities of A and B and also on

the number of ativations of protool B (beause message omplexity bounds also the number

of sub-protool invoations). Thus, by Lemma 2, X

AB

is also [probabilistially℄ uniformly

bounded.

In other words, if we ompose two, or any onstant number of protools with [probabilis-

tially℄ uniformly bounded message omplexities (some of them being orale protools), we

obtain another protool with [probabilistially℄ uniformly bounded message omplexity. This

extends trivially to ommuniation omplexity and, in fat, to any statisti in whih invoking

a sub-protool is ounted as one ost unit.

Lemma 3. [Probabilistially℄ uniformly bounded ommuniation omplexity is losed under the

modular omposition of protools.
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This is an important property of our notion of termination for randomized protools and

justi�es the way in whih we have de�ned it. If one would merely onsider the expeted value

of a statisti for a randomized protool, one ould not draw suh onlusions. For example,

ombining a protool from whih we only know that its expeted number of rounds is onstant

with another one having the same property would not guarantee that the total expeted number

of rounds is also onstant.

2.2 Byzantine Agreement

We give the de�nition of Byzantine agreement (or onsensus in the rash-fault model) here as

it is needed for building atomi broadast protools. It an be used to provide agreement on

independent transations.

The Byzantine agreement protool is ativated when the adversary delivers a message to P

i

of the form

(ID ; in; propose; v);

where v 2 f0; 1g. When this ours, we say P

i

proposes v for transation ID .

A party terminates the Byzantine agreement protool (for transation ID) by generating an

output message of the form

(ID ; out; deide; v):

In this ase, we say P

i

deides v for transation ID .

Let any message with tag ID or ID j : : : that is generated by an honest party be assoiated

to the agreement protool for ID .

De�nition 2 (Byzantine agreement). A protool solves Byzantine agreement if it satis�es

the following onditions exept with negligible probability:

Validity: If all honest parties that are ativated on a given ID propose v, then any honest

party that terminates for ID deides v.

Agreement: If an honest party deides v for ID , then any honest party that terminates de-

ides v for ID .

Liveness: If all honest parties have been ativated on ID and all assoiated messages have

been delivered, then all honest parties have deided for ID .

EÆieny: For every ID , the ommuniation omplexity for ID is probabilistially uniformly

bounded.

This is the usual de�nition of validity in the literature. In Setion 4 we introdue the

weaker notion of external validity that is useful for ertain appliations. For instane, if initial

values ome with validating data (e.g., a digital signature) that establishes their validity in a

partiular ontext, we will require that an honest party may only deide on a value for whih it

has the aompanying validating data. Thus, even if all honest parties start with 0, they may

still deide on 1 if they obtain the orresponding validating data for 1 during the agreement

protool.
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2.3 Cryptographi Primitives

Apart from ordinary digital signature shemes, we use robust, non-interative threshold signa-

tures, threshold publi-key enryption shemes, and a threshold oin-tossing protool.

We need a ollision-free hash funtion H : f0; 1g

�

! f0; 1g

k

0

with the property that the

adversary annot generate two distint strings x and x

0

suh that H(x) = H(x

0

), exept with

negligible probability.

Another useful primitive is a ryptographially strong pseudorandom generator [19℄, denoted

by G : f0; 1g

k

00

! f0; 1g

�

, that strethes a k

00

-bit seed by an arbitrary polynomial fator. G is a

deterministi algorithm with input a random k

00

-bit seed suh that its output is omputationally

indistinguishable from a uniform random string of the same length. In other words, for every

eÆient statistial test running in time polynomial in k, the probability that it an distinguish

the output of G with a random seed from truly random bits is negligible.

Many eÆient ryptographi shemes, and in partiular all the threshold-ryptography pro-

tools needed below, an be analyzed only in the so-alled random-orale model [1℄. This refers

to an idealized world where a hash funtion has been replaed by a truly random orale, avail-

able to all partiipants. Although suh proofs provide only a heuristi notion of seurity, the

model allows to design truly pratial protools that admit a seurity analysis, whih yields

very strong evidene for their seurity.

2.3.1 Digital Signatures

A digital signature sheme [20℄ onsists of a key generation algorithm, a signing algorithm, and

a veri�ation algorithm. The key generation algorithm takes as input a seurity parameter, and

outputs a publi key/private key pair. The signing algorithm takes as input that private key

and a message m, and produes a signature �. The veri�ation algorithm takes the publi key,

a message m, and a putative signature �, and outputs a bit that indiates whether it aepts

or rejets the signature. A signature is onsidered valid if and only if the veri�ation algorithm

aepts. All signatures produed by the signing algorithm must be valid.

The basi seurity property is unforgeability. The attak senario is as follows. An adversary

is given the publi key, and then requests the signatures on a number of messages, where the

messages themselves may depend on previously obtained signatures. If at the end of the attak,

the adversary an output a message m and a valid signature � on m, suh that m was not

one of the messages whose signature it requested, then the adversary has suessfully forged

a signature. Seurity means that it is omputationally infeasible for an adversary to forge a

signature.

2.3.2 Non-Interative Threshold Signatures

An important tool for our broadast protools are non-interative threshold signatures. More

preisely, we need dual-threshold variations as introdued by Shoup [42℄ and Cahin, Kursawe,

and Shoup [7℄. The basi idea of a dual-threshold signature sheme is that there are n parties,

t of whih may be orrupted. The parties hold shares of the seret key of a signature sheme,

and may generate shares of signatures on individual messages. The only requirement is that

� signature shares are neessary and suÆient to onstrut a signature, where t < � � n � t.

(The standard notion of threshold shemes onsiders only � = t+ 1.)

More preisely, a non-interative (n; �; t)-dual-threshold signature sheme onsists of the

following parts:

15



{ A key generation algorithm with input parameters k, n, �, and t. It outputs the publi

key of the sheme, a private key share for eah party, and a loal veri�ation key for eah

party.

{ A signing algorithm with inputs a message, the publi key and a private key share. It

outputs a signature share on the submitted message.

{ A share veri�ation algorithm with inputs a message, a signature share on that message

from a party P

i

, along with the global publi key and the loal veri�ation key of P

i

. It

determines if the signature share is valid.

{ A share ombining algorithm that takes as input a message and � valid signature shares on

the message, along with the publi key and the veri�ation keys, and (hopefully) outputs

a valid signature on the message.

{ A signature veri�ation algorithm that takes as input a message and a signature (generated

by the share-ombining algorithm), along with the publi key, and determines if the

signature is valid.

The interation takes plae in the basi system model introdued above. During initial-

ization, the dealer runs the key generation algorithm and gives eah party the publi key, all

loal veri�ation keys, and its private key share. The adversary may submit signing requests to

the honest parties for messages of its hoie. Upon reeiving suh a request, a party omputes

a signature share for the given message using its private key share. Given � valid signature

shares from distint parties on the same message, they may be ombined into a signature on

the message.

The two basi seurity requirements are robustness and non-forgeability. Robustness means

that it is omputationally infeasible for an adversary to produe � valid signature shares suh

that the output of the share ombining algorithm is not a valid signature. Non-forgeability

means that it is omputationally infeasible for the adversary to output a valid signature on a

message that was submitted as a signing request to less than �� t honest parties.

A pratial sheme that satis�es these de�nitions in the random-orale model was proposed

by Shoup [42℄ and is based on RSA [40℄. Eah signature share has essentially the size of an RSA

signature and the �nal signature is a standard RSA signature. Our de�nition of a threshold

signature sheme would also admit the trivial implementation of just using a set of � ordinary

signatures.

The dual-threshold sheme is used in some of our protools, where a threshold signature

with � > t+1 provides evidene for the fat that �� t honest parties have exeuted some steps

in the protool. A single-threshold sheme would not work here beause although our system

orruption model is stati, the adversary may adaptively deide from whih honest parties to

request additional signature shares by sheduling messages aordingly.

2.3.3 Non-Interative Threshold Cryptosystems

We use the de�nition of non-interative threshold ryptosystems with seurity against adap-

tive hosen-iphertext attaks put forward by Shoup and Gennaro [43℄. (For ordinary publi-

key ryptosystems, seurity against adaptive hosen-iphertext attaks is equivalent to non-

malleability [13℄.)

A (n; t+ 1)-threshold ryptosystem is given by the following algorithms:
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{ A key generation algorithm, taking as input k, n, and t. Outputs are the publi key and

a private deryption key for eah party.

{ An enryption algorithm with inputs the publi key, a leartext message m 2 f0; 1g

�

. The

algorithm outputs a iphertext  and a label ` 2 f0; 1g

�

.

{ A deryption algorithm with inputs the publi key, an index i 2 f1; : : : ; ng, the private

key of P

i

, a iphertext , and a label `. It outputs a deryption share or a speial symbol

? if the inputs are invalid.

{ A ombination algorithm that takes as inputs the publi key, a iphertext , a label ` and

a list D of deryption shares, of whih some may be invalid. If D ontains at least t+ 1

valid deryption shares, the algorithm outputs the leartext m. Otherwise it returns a

speial symbol ?.

The interation takes plae in the basi system model aording to Setion 2.1. During

the initialization phase, the dealer runs the key generation algorithm and gives eah party the

global publi key and its private key share.

Any party may run the enryption algorithm with the publi key and a leartext message

to produe a iphertext.

For deryption, a party sends the iphertext together with the label to eah party P

i

,

who returns a deryption share. Upon reeiving enough deryption shares, the deryptor an

ombine them in order to obtain the leartext.

The algorithms ensure that if a iphertext  of a leartext m was produed orretly by the

enryption algorithm, then the reovery algorithm yields m with all but negligible probability,

even if at most t deryption shares were not produed by the deryption algorithm with inputs

as spei�ed above. This property is alled robustness.

To de�ne seurity against adaptive hosen iphertext attaks, onsider the following game,

played by the adversary in our basi system model with t statially orrupted parties; the keys

generated by the dealer and given to the orrupted parties are seen by the adversary.

A1. The adversary interats with the unorrupted parties in an arbitrary fashion, feeding them

iphertext/label pairs and obtaining deryption shares.

A2. The adversary hooses two leartexts, m

0

and m

1

, and gives them to an \enryption

orale." The orale hooses a bit b at random, enrypts m

b

, and returns the resulting

iphertext  and label ` to the adversary.

A3. The adversary ontinues to interat with the unorrupted parties, feeding them ipher-

text/label pairs (

0

; `

0

) and reeiving deryption shares, with the restrition that (

0

; `

0

) 6=

(; `).

A4. The adversary outputs a bit

^

b.

The threshold ryptosystem is alled seure against adaptive hosen iphertext attak if

for any polynomial-time bounded adversary the probability that b =

^

b exeeds 1=2 only by a

negligible quantity.

A pratial threshold ryptosystem aording to the above de�nition has been presented by

Shoup and Gennaro [43℄. Its seurity is based on the omputational DiÆe-Hellman problem [12℄,

and it works in the random-orale model; a variation of it is based on the deisional DiÆe-

Hellman problem.
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2.3.4 Threshold Coin-Tossing

We also need an (n; t+ 1)-threshold oin-tossing sheme. The basi idea is the same as for the

other threshold primitives, but here the parties hold shares of a pseudorandom funtion F . It

maps a bit string N , the name of a oin, to its value F (N) 2 f0; 1g

k

00

. We use a generalized oin

that produes k

00

random bits simultaneously; suh a oin is also alled a distributed pseudo-

random funtion [32℄. The parties may generate shares of a oin value F (N) and t+ 1 shares

of the same oin are both neessary and suÆient to onstrut the value of that oin. The

generation and veri�ation of oin shares are also non-interative and we work in the basi

system model of Setion 2.1.

During initialization the dealer generates a global veri�ation key, a loal veri�ation key

for eah party, and a seret key share for eah party. The initial state information for eah

party onsists of its seret key share and all veri�ation keys. The seret keys impliitly de�ne

a funtion F mapping names to k

00

-bit strings.

After the initialization phase, the adversary submits reveal requests to the honest parties for

oins of his hoie. Upon reeiving suh a request, a party outputs a oin share for the given

oin omputed from its seret key.

The oin-tossing sheme also spei�es two algorithms:

{ The share veri�ation algorithm takes as input the name of a oin, a share of this oin

from a party P

i

, along with the global veri�ation key and the veri�ation key of P

i

, and

determines if the oin share is valid.

{ The share ombining algorithm takes as input a the name N of a oin and t + 1 valid

shares of N , along with (perhaps) the veri�ation keys, and (hopefully) outputs F (N).

The seurity requirements are robustness and pseudorandomness. Robustness means that

it is omputationally infeasible for an adversary to produe a name N and � valid shares

of oin N suh that the output of the share ombining algorithm is not F (N). To de�ne

pseudorandomness, onsider the following game, played in the basi system model.

D1. The adversary interats with the unorrupted parties in an arbitrary fashion, obtaining

shares for arbitrary oins.

D2. The adversary hooses a oin N for whih it has not yet requested a oin share, and gives

it to an \F -orale." The orale hooses a bit b at random, and returns F (N) if b = 0 and

a uniformly random k

00

-bit string otherwise.

D3. The adversary ontinues to interat with the unorrupted parties and may obtain shares

for arbitrary oins, exept for N .

D4. The adversary outputs a bit

^

b.

The threshold oin-tossing sheme is pseudorandom if for any polynomial-time bounded

adversary the probability that b =

^

b exeeds 1=2 only by a negligible quantity.

An eÆient threshold oin-tossing sheme in the random-orale model has been presented by

Cahin, Kursawe, and Shoup [7℄. Although their implementation produes single-bit outputs,

it an be trivially modi�ed to generate k

00

-bit strings, just by using a k

00

-bit hash funtion to

ompute the �nal value. Its seurity is based on the omputational DiÆe-Hellman problem in

the random-orale model. A related sheme for a distributed pseudo-random funtion, with se-

urity based on the deisional DiÆe-Hellman problem, has also been proposed by Naor, Pinkas,

and Reingold [32℄.
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3 Broadast Primitives

In this setion, we introdue two broadast primitives, reliable broadast and onsistent broad-

ast, and present ommuniation-eÆient protools for both. In terms of our de�nitions, reliable

broadast (the Byzantine generals problem) appears as an extension of onsistent broadast;

but we introdue reliable broadast �rst beause it is a well-known primitive. We also introdue

the notion of a veri�able broadast.

3.1 Reliable Broadast

Reliable broadast provides a way for a party to send a message to all other parties. It requires

that all honest parties deliver the same set of messages and that this set inludes all messages

broadast by honest parties, without guaranteeing anything about the order in whih messages

are delivered. In the ontext of arbitrary faults, reliable broadast is also known as the Byzantine

generals problem [25℄.

3.1.1 De�nition

Broadasts are parameterized by a tag ID , whih an also be thought of as identifying a broad-

ast \hannel." Sine many parties an potentially broadast several payload messages with

the same ID , we augment the tag in a reliable broadast by the identity of the sender, j, and by

a sequene number s. Then, we restrit the adversary to submit a request for reliable broadast

tagged with ID :j:s to P

i

only if i = j and at most one for every sequene number. These

requirements are easily satis�ed in pratie by maintaining a message ounter. Instanes of

reliable broadast are always identi�ed by ID :j:s so that the simple tag ID alone represents

a \virtual hannel" for reliable broadast; its implementation uses one independent protool

instane per payload message.

A reliable broadast protool is ativated when the adversary delivers a message to P

j

of

the form

(ID :j:s; in; r-broadast;m);

with m 2 f0; 1g

�

and s 2 N. When this ours, we say P

j

reliably broadasts m tagged

with ID :j:s, or simply P

j

r-broadasts m. Note that only P

j

is ativated like this. The other

parties are ativated when they perform an expliit open ation for instane ID :j:s in their

role as reeivers; aording to our onvention, this ours for instane when they wait for an

output tagged with ID :j:s.

A party terminates a reliable broadast of m tagged with ID :j:s by generating an output

message of the form

(ID :j:s; out; r-deliver;m):

In this ase, we say P

i

reliably delivers m tagged with ID :j:s (or r-delivers for brevity).

We say that all protool messages whih are generated by honest parties have tags with

pre�x ID :j:s are assoiated to the broadast of m by P

j

with sequene number s. Reall that

this de�nes also the messages ontributing to the ommuniation omplexity of the protool

instane ID :j:s.

De�nition 3 (Reliable Broadast). A protool for reliable broadast satis�es the following

onditions exept with negligible probability:
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Validity: If an honest party has r-broadast m tagged with ID :j:s, then all honest parties

r-deliver m tagged with ID :j:s, provided all honest parties have been ativated on ID :j:s

and the adversary delivers all assoiated messages.

Consisteny: If some honest party r-delivers m tagged with ID :j:s and another honest party

r-delivers m

0

tagged with ID :j:s, then m = m

0

.

Totality: If some honest party r-delivers a message tagged with ID :j:s, then all honest parties

r-deliver some message tagged with ID :j:s, provided all honest parties have been ativated

on ID :j:s and the adversary delivers all assoiated messages.

Integrity: For all ID , senders j, and sequene numbers s, every honest party r-delivers at

most one message m tagged with ID :j:s. Moreover, if all parties follow the protool, then

m was previously r-broadast by P

j

with sequene number s.

EÆieny: For any ID , sender j, and sequene number s, the ommuniation omplexity of

instane ID :j:s is uniformly bounded.

Some remarks on the above de�nition. Reall the impliit quanti�ation over all polynomial-

time adversaries.

1. Validity ensures the liveness of a protool, and rules out trivial protools that do not

generate any messages. One ould use an equivalent, but simpler de�nition here, requiring

that only the sender (and not all honest parties) r-deliver the message; but then one would

have to modify this again to the present form for de�ning onsistent broadast below.

2. The agreement ondition found in traditional de�nitions is split into onsisteny and

totality. The reason for separating them is not only that they are distint properties, but

also that a reliable broadast without a totality guarantee is a useful notion, as shown

later.

3. The provision that the \adversary delivers all assoiated messages" is our quantitative

ounterpart to the traditional \eventual" delivery assumption. It an be ensured for an

arbitrary adversary as follows. Suppose the adversary halts and there are yet undelivered

protool messages among honest parties (these an be inferred from a transript of the

adversary's interations). Then using a \benign" sheduler delivering all the undelivered

messages and the newly generated ones, the protool is run until no more undelivered pro-

tool messages exist, whereby termination in polynomial time is guaranteed by eÆieny

and validity.

4. Integrity may seem weak, sine our model assumes authentiated links and we ould hope

to get the guarantee in the seond lause also with t atually orrupted parties. Indeed,

most reliable broadast protools impliitly also authentiate the sender of a message. It

is possible to de�ne the orresponding notion of an authentiated reliable broadast by

replaing the integrity ondition above by the following.

Authentiity: For all ID , senders j, and sequene numbers s, every honest party r-

delivers at most one message m tagged with ID :j:s. Moreover, if P

j

is honest, then

m was previously r-broadast by P

j

with sequene number s.
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However, we will not use authentiity in the standard de�nitions below beause only

some of our protools provide authentiity. In partiular, the protools for reliable and

for onsistent broadast provide authentiity, but not the atomi broadast protool.

We should note that an atual implementation of reliable broadast is not needed by any

of our protools below. However, we build on the de�nition of reliable broadast for de�ning

other forms of broadast. Nevertheless, we give a protool for reliable broadast in the next

setion|for ompleteness and to illustrate the system model and our de�nitions.

3.1.2 A Protool for Reliable Broadast

Protool RBC for party P

i

and tag ID :j:s

Initialization:

�m ?;

�

d ?

e

d

 0; r

d

 0 (d 2 f0; 1g

k

0

)

Upon reeiving message (ID :j:s; in; r-broadast;m):

send (ID :j:s; r-send;m) to all parties

Upon reeiving message (ID :j:s; r-send;m) from P

l

:

if j = l and �m = ? then

�m m

send (ID :j:s; r-eho;H(m)) to all parties

Upon reeiving message (ID :j:s; r-eho; d) from P

l

for the first time:

e

d

 e

d

+ 1

if e

d

= n� t and r

d

� t then

send (ID :j:s; r-ready; d) to all parties

Upon reeiving message (ID :j:s; r-ready; d) from P

l

for the first time:

r

d

 r

d

+ 1

if r

d

= t+ 1 and e

d

< n� t then

send (ID :j:s; r-ready; d) to all parties

else if r

d

= 2t+ 1 then

�

d d

if H( �m) 6= d then

send (ID :j:s; r-request) to P

1

; : : : ; P

2t+1

wait for a message (ID :j:s; r-answer;m) suh that H(m) =

�

d

�m m

output (ID :j:s; out; r-deliver; �m)

Upon reeiving message (ID :j:s; r-request) from P

l

for the first time:

if �m 6= ? then

send (ID :j:s; r-answer; �m) to P

l

Figure 1: Protool RBC for authentiated reliable broadast (or the Byzantine generals prob-

lem) adopted from Braha [5℄.
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A message-eÆient reliable broadast protool, denoted RBC, is given in Figure 1; it results from

a small modi�ation of Braha's reliable broadast protool [5℄ to redue the ommuniation

omplexity.

Protool RBC uses the hash of a payload message as a short, but unique representation for

the potentially muh longer message. The idea is that the payload is sent only one by the

sender to all parties (similar to [36℄). When a party is ready to deliver a payload message but

does not yet know it, it asks an arbitrary subset of 2t+ 1 parties for its ontents and at least

one of them will answer with the orret value.

In the desription of the protool, reall the global wait for ondition for any message

with a mathing tag. Let ? denote a speial value that annot be broadast. To implement

the ondition that a partiular message from a party is proessed only the �rst time it is

reeived, one has to maintain the orresponding ags and ounters, indexed by the ontents of

the message.

Theorem 4. Assuming H is a ollision-free hash funtion, Protool RBC provides authenti-

ated reliable broadast for n > 3t.

Proof. Validity is lear for honest senders by inspetion of the protool beause all parties reeive

the initial r-send message and also 2t+ 1 r-ready messages from honest parties, provided all

assoiated messages are delivered. It may not hold for faulty senders, though.

For onsisteny, suppose an honest party P

i

has r-delivered m and another honest party

P

i

0

has r-delivered m

0

6= m with tag ID :j:s. Then P

i

must have reeived r-ready messages

ontaining d = H(m) from at least t+1 honest parties; the same holds for P

i

0

with d

0

= H(m

0

).

If d = d

0

, the adversary has reated a ollision in H. We assume no suh ollisions our in the

rest of the proof.

An honest party generates an r-ready message for d only if it has reeived n � t r-eho

messages ontaining d or t+1 r-readymessages already ontaining d. Thus, at least one honest

party has sent an r-ready message ontaining d upon reeiving n� t r-eho messages; at most

t of them are from orrupted parties. Similarly, some honest party must have reeived n � t

r-eho messages ontaining d

0

. Thus, there are at least 2(n � t) � n+ t+ 1 r-eho messages

with tag ID :j:s and at least n� t + 1 among them from honest parties. But no honest party

generates more than one suh message by the protool.

To establish totality, note that if some honest P

i

delivers �m, then it has reeived the message

(ID :j:s; r-ready;

�

d) from 2t+1 di�erent parties. Therefore, at least t+1 honest parties have sent

r-ready with ID :j:s and

�

d = H( �m), whih will be reeived by all honest parties (assuming the

adversary delivers all messages). Thus, all honest parties will send the orresponding r-ready

message and any other party P

l

will reeive 2t + 1 of them. If P

l

already knows m

0

with

H(m

0

) =

�

d, it outputs that.

Otherwise, P

l

will send an r-request to 2t+1 parties and wait for an r-answer satisfying

H(m

0

) =

�

d. Observe that there is at least one honest party who has sent an r-ready message

ontaining

�

d upon reeiving n � t orresponding r-eho messages. Thus, there are at least

n � 2t honest parties who sent r-eho and know some m

0

suh that H(m

0

) =

�

d. Sending the

r-request to 2t+1 parties ensures that at least one of them reeives and answers it, provided

all messages are delivered.

For integrity, the uniqueness of the r-delivered message is lear from the protool. If the

sender P

j

of message with sequene number s is honest, then at most t parties will send r-eho

messages for tag ID :j:s with m

0

6= m. Thus, no unorrupted party generates an r-ready

message with d di�erent from H(m) and no unorrupted party outputs m

0

. Atually, the
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protool also satis�es authentiity beause honest parties proess r-send messages only from

the sender indiated by the r-eho message.

It is easy to see that the protool satis�es eÆieny for any sender.

Note that olleting n� t r-eho messages is needed for totality (beause r-request mes-

sages are sent to only 2t+1 parties), but for onsisteny alone, this ould be relaxed to d

n+t+1

2

e

r-eho messages.

The message omplexity of Protool RBC is O(n

2

). If messages are delivered faithfully

by a \benign" sheduler and no faults our, then its ommuniation omplexity is only

O(n

2

k

0

+ njmj) for broadasting a single message m, where k

0

is the length of a hash value.

However, the adversary an delay the r-send messages for some parties and inrease the om-

muniation omplexity. Sine there are at most t honest parties who issue an r-request by

the argument above to establish totality, m is transmitted O(t

2

) times and the overall ommu-

niation omplexity is O(n

2

k

0

+ njmj+ t

2

jmj), or O(n

2

jmj) with maximal resiliene.

Contrast this with the standard form of Braha's broadast that requires bit omplexity


(n

2

jmj), even in exeutions without faults. Under optimal irumstanes, Protool RBC needs

to transmit m only one per party in the system.

3.2 Veri�able Broadast

A party P

i

that has delivered a payload message using reliable broadast may want to inform

another party P

j

about this. Suh information might be useful to P

j

if it has not yet delivered

the message, but an exploit this knowledge somehow, in partiular sine P

j

is guaranteed to

deliver the same message later by the agreement property. In a standard reliable broadast,

suh as the protool from the previous setion, however, this knowledge annot be transferred

in a veri�able way.

We formalize this property of a broadast protool here beause it is useful in our appliation

below, and all it veri�ability. Informally, it means this: when P

j

laims that it is not yet in a

state to deliver a partiular payload messagem, then P

i

an reply with a single protool message

and when P

j

proesses this, it will deliver m immediately and terminate the orresponding

broadast.

De�nition 4 (Veri�ability). A broadast protool is alled veri�able if the following holds,

exept with negligible probability: When an honest party has deliveredm tagged with ID , then

it an produe a single protool message M that it may send to other parties suh that any

other honest party will deliver m tagged with ID upon reeiving M (provided the other party

has not already delivered m).

We all M the message that ompletes the veri�able broadast. This notion implies that

there is a prediate V

ID

that the reeiving party an apply to an arbitrary bit string for heking

if it onstitutes a message that ompletes a veri�able broadast tagged with ID .

Protool RBC ould be made veri�able by adding a digital signature to the r-ready messages

(this idea goes bak to Pease, Shostak, and Lamport [33℄). But veri�ability is more useful

in onnetion with weaker protools than reliable broadast; for example, in the onsistent

broadast introdued next.

3.3 Consistent Broadast

The totality property of reliable broadast is rather expensive to satisfy; it is the main rea-

son why most protools for reliable broadast need on the order of n

2

messages. For some
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appliations, however, totality is not neessary and an be ensured by other means, as long as

onsisteny and integrity are satis�ed. We all the resulting notion onsistent broadast and

disuss it in this setion.

Several protools for onsistent broadast have been proposed by Reiter et al. [36, 29℄. To

ensure agreement (i.e., totality) for delivered messages, these protools are omplemented by

an external stability mehanism from whih parties learn about the existene of messages they

have not yet delivered. No suh general mehanism is assumed here, but the parties may learn

that also from an appliation.

3.3.1 De�nition

The same restritions on the adversary apply as for reliable broadast. A onsistent broadast

protool is ativated when the adversary delivers a message to P

j

of the form

(ID :j:s; in; -broadast;m);

with m 2 f0; 1g

�

and s 2 N. When this ours, we say P

j

onsistently broadasts m tagged

with ID :j:s.

A party terminates a onsistent broadast of m tagged with ID :j:s by generating an output

message of the form

(ID :j:s; out; -deliver;m):

In this ase, we say P

i

onsistently delivers m tagged with ID :j:s. To distinguish onsistent

broadast from other forms of broadast, we will sometimes use the terms -broadast and

-deliver.

All protool messages generated by honest parties and tagged with ID :j:s are assoiated to

the broadast of m by P

j

with sequene number s.

De�nition 5 (Consistent Broadast). A protool for onsistent broadast is a protool for

reliable broadast that does not neessarily satisfy totality.

In other words, onsistent broadast makes no provisions that two parties do deliver the

payload message, but maintains onsisteny among the atually delivered messages with the

same senders and sequene numbers.

The notion of an authentiated onsistent broadast an be de�ned similarly to authenti-

ated reliable broadast, replaing the integrity ondition by authentiity.

3.3.2 A Protool for Veri�able Consistent Broadast

Protool VCBC implements veri�able onsistent broadast and is desribed in Figure 2. It

uses a non-interative (n; d

n+t+1

2

e; t)-dual-threshold signature sheme S

1

with veri�able shares

aording to Setion 2.3.2. Reall that all messages are authentiated aording to our basi

system model.

The protool is based on the \eho broadast" of Reiter [36℄, but uses a threshold signature

to derease the ommuniation omplexity. The idea behind it is that the sender broadasts

the message to all parties and hopes for d

n+t+1

2

e parties to sign it as \witnesses" to guarantee

onsisteny. The signature shares are then olleted by the sender and ombined to a threshold

signature on the message; it then sends the signature all parties. After reeiving the message

together with a valid signature, a party delivers it immediately.
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Protool VCBC for party P

i

and tag ID :j:s

Initialization:

�m ?; �� ?

W

d

 ;; r

d

 0 (d 2 f0; 1g

k

0

)

Upon reeiving message (ID :j:s; in; -broadast;m):

send (ID :j:s; -send;m) to all parties

Upon reeiving message (ID :j:s; -send;m) from P

l

:

if j = l and �m = ? then

�m m

ompute an S

1

-signature share � on (ID :j:s; -ready;H(m))

send (ID :j:s; -ready;H(m); �) to P

j

Upon reeiving message (ID :j:s; -ready; d; �

l

) from P

l

for the first time:

if i = j and �

l

is a valid S

1

-signature share then

W

d

 W

d

[ f�

l

g

r

d

 r

d

+ 1

if r

d

= d

n+t+1

2

e then

ombine the shares in W

d

to an S

1

-threshold signature �

send (ID :j:s; -final; d; �) to all parties

Upon reeiving message (ID :j:s; -final; d; �):

if H( �m) = d and �� = ? and � is a valid S

1

-signature then

�� �

output (ID :j:s; out; -deliver; �m)

Implementation of veri�ability property

Upon reeiving message (ID :j:s; -request) from P

l

:

if �� 6= ? then

send (ID :j:s; -answer; �m; ��) to P

l

Upon reeiving message (ID :j:s; -answer;m; �) from P

l

:

if �� = ? and � is a valid S

1

-signature on (ID :j:s; -ready;H(m)) then

�� �

�m m

output (ID :j:s; out; -deliver; �m)

Figure 2: Protool VCBC for veri�able and authentiated onsistent broadast.
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Beause a party may forward the message and the signature to other parties, the protool

is also veri�able aording to De�nition 4. The orresponding interfae is implemented by the

-request and -answer messages, whih are not otherwise used by the protool.

The onsisteny property of the protool is based on the following lemma.

Lemma 5. For all senders j, sequene numbers s, and strings ID, it is infeasible for the

adversary in Protool VCBC to reate valid S

1

-signatures on the strings (ID :j:s; -ready;m)

and (ID :j:s; -ready;m

0

) with m 6= m

0

.

Proof. Suppose not. Then, assuming S

1

is seure, there are at least d

n+t+1

2

e�t signature shares

from distint honest parties on a message ontaining ID :j:s and m and at least as many from

honest parties on the message ontaining ID :j:s andm

0

. In total, there are n+t+1�2t = n�t+1

or more shares generated by honest parties ontaining ID :j:s. Sine there are only n� t honest

parties, at least one honest party has signed two di�erent messages with the same sender j and

sequene number s, whih is impossible aording to the protool.

Theorem 6. Assuming S

1

is a seure (n; d

n+t+1

2

e; t)-dual-threshold signature sheme, Proto-

ol VCBC provides veri�able and authentiated onsistent broadast for n > 3t.

Proof. Validity for an honest sender is obvious from the onstrution of the protool sine all

honest parties generate a signature share on m as soon as they reeive an -send message

ontaining m. Sine at least d

n+t+1

2

e honest parties return them to the sender, it an ombine

them to a valid signature and -deliver the message.

The onsisteny property follows diretly from Lemma 5 beause an honest party -delivers

a payload message only after verifying the orresponding threshold signature.

Integrity follows diretly from Lemma 5 together with the logi of the protool, where �� 6= ?

is used to represent the state in whih �m has already been -delivered. The protool provides

also authentiity beause honest parties proess -sendmessages only from the sender indiated

by the message.

Finally, eÆieny is straightforward to verify and veri�ability is ensured by the -answer

protool message, whih is generated upon reeiving a suitable -request.

The message omplexity of Protool VCBC is O(n) and its bit omplexity is O(n(jmj+K)),

assuming the length of a threshold signature and a signature share is at most K bits.

4 Validated Byzantine Agreement

The standard notion of Byzantine agreement implements a binary deision and an guarantee

a partiular outome only if all honest parties propose the same value. We introdue in this

setion a weaker validity ondition, alled external validity, whih relaxes the standard validity

ondition and generalizes to deisions on a value from an arbitrarily large set. It requires that

the deided value satis�es a global prediate that is determined by the partiular appliation

and known to all parties. Eah party adds some validation data to the proposed value, whih

serves as the proof for its validity. Typially, this onsists of a digital signature that an be

veri�ed by all parties. The agreement protool then returns to the aller not only the deision

value, but also the orresponding validation data|the aller might need this information if it

did not know it before. The standard validity ondition is the speial ase of a trivially true

prediate.
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Validated Byzantine agreement generalizes the primitive of agreement on a ore set [2, 3℄,

whih is used in the information-theoreti model for a similar purpose. Validated Byzantine

agreement also generalizes the notion of interative onsisteny [16℄ to the Byzantine model,

whih requires agreement on a vetor of n values, one from eah party.

Another related problem is set agreement [11℄, in whih the agreement ondition is relaxed

so that the output of eah party is ontained in a small, global set. Although there exists a

onsiderable literature on this problem, it annot be used for our appliations beause it gives

only an approximation of agreement.

4.1 De�nition

Suppose there is a global polynomial-time omputable prediate Q

ID

known to all parties, whih

is determined by an external appliation. Eah party may propose a value v together with a

proof � that should satisfy Q

ID

. The agreement domain is not restrited to binary values.

A validated Byzantine agreement protool is ativated by a message of the form

(ID ; in; v-propose; v; �);

where v 2 f0; 1g

�

and � 2 f0; 1g

�

. When this ours, we say P

i

proposes v validated by � for

transation ID . We assume the adversary ativates all honest parties on a given ID at most

one and, w.l.o.g., honest parties propose values with proofs that satisfy Q

ID

.

A party terminates a validated Byzantine agreement protool by generating a message of

the form

(ID ; out; v-deide; v; �):

In this ase, we say P

i

deides v validated by � for transation ID .

We say that any protool message with tag ID that was generated by an honest party is

assoiated to the validated Byzantine agreement protool for ID . An agreement protool may

also invoke sub-protools for low-level broadasts or for Byzantine agreement; in this ase, all

messages assoiated to those protools that are started on behalf of the validated agreement

protool are assoiated to ID as well (suh messages have tags with pre�x ID j : : : ).

De�nition 6 (Validated Byzantine Agreement). A protool solves validated Byzantine

agreement with prediate Q

ID

if it satis�es the following onditions exept with negligible

probability:

External Validity: Any honest party that terminates for ID deides v validated by � suh

that Q

ID

(v; �) holds.

Agreement: If some honest party deides v for ID , then any honest party that terminates

deides v for ID .

Liveness: If all honest parties have been ativated on ID and all assoiated messages have

been delivered, then all honest parties have deided for ID .

Integrity: If all parties follow the protool, and if some party deides v validated by � for ID ,

then some party proposed v validated by � for ID .

EÆieny: For every ID , the ommuniation omplexity for ID is probabilistially uniformly

bounded.
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In other words, honest parties may propose all di�erent values and the deision value may

have been proposed by a orrupted party, as long as honest parties an verify the orresponding

validation during the protool. Note that agreement, liveness, and eÆieny are the same as

in the de�nition of ordinary, binary Byzantine agreement. Integrity is needed to rule out some

trivial protools in ases where a trivial prediate is used.

Another variation of the validity ondition is that an appliation may prefer one deision

value over others. Suh an agreement protool may be biased and always output the preferred

value in ases where other values would have been valid as well.

For binary validated agreement, we will need a protool that is biased towards 1 below. Its

purpose is to detet whether there is a validation for 1, so it suÆes to guarantee termination

with output 1 if t+1 honest parties know the orresponding information at the outset. A binary

validated Byzantine agreement protool biased towards 1 is a protool for validated Byzantine

agreement on values in f0; 1g suh that the following ondition holds:

Biased External Validity: If at least t+ 1 honest parties propose 1, then any honest party

that terminates for ID deides 1.

We desribe two related protools for multi-valued validated Byzantine agreement below:

Protool VBA, desribed in Setion 4.3, needs O(n) rounds and invokes O(n) binary agreement

sub-protools; this an be improved to a onstant expeted number of rounds, resulting in

Protool VBAonst, whih is desribed in Setion 4.4. But �rst we disuss the binary ase.

4.2 Protools for Binary Agreement

Binary asynhronous Byzantine agreement protools an easily be adapted to external validity.

For example, in the protool of Cahin, Kursawe, and Shoup [7℄ one has to \justify" the pre-

votes of round 1 with a valid �. The logi of the protool guarantees that either a deision is

reahed immediately or the validations for 0 and for 1 are seen by all parties in the �rst two

rounds.

Furthermore, the protool an be biased towards 1 by modifying the oin suh that it always

outputs 1 in the �rst round.

4.3 A Protool for Multi-valued Agreement

We desribe Protool VBA that implements multi-valued validated Byzantine agreement.

The basi idea of the validated agreement protool is that every party proposes its value

as a andidate value for the �nal result. One party whose proposal satis�es the validation

prediate is then seleted in a sequene of binary Byzantine agreement protools and this value

beomes the �nal deision value. More preisely, the protool onsists of the following steps

(see Figure 3).

Ehoing the proposal (lines 1{4): Eah party P

i

-broadasts the value that it proposes to

all other parties using veri�able authentiated onsistent broadast. This ensures that all

honest parties obtain the same proposal value for any partiular party, even if the sender

is orrupted. Then P

i

waits until it has reeived n � t proposals satisfying Q

ID

before

entering the agreement loop.

Agreement loop (lines 5{20): One party is hosen after another, aording to a �xed per-

mutation � of f1; : : : ; ng. Let a denote the index of the party seleted in the urrent

round (P

a

is alled the \andidate"). Eah party P

i

arries out the following steps for P

a

:
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1. Send a v-vote message to all parties ontaining 1 if P

i

has reeived P

a

's proposal

(inluding the proposal in the vote) and 0 otherwise (lines 6{11).

2. Wait for n�t v-votemessages, but do not ount votes indiating 1 unless a valid pro-

posal from P

a

has been reeived|either diretly or inluded in the v-vote message

(lines 12{13).

3. Run a binary validated Byzantine agreement biased towards 1 to determine whether

P

a

has properly broadast a valid proposal. Vote 1 if P

i

has reeived a valid proposal

from P

a

and validate this by the protool message that ompletes the veri�able

broadast of P

a

's proposal. Otherwise, if P

i

has reeived n � t v-vote messages

ontaining 0, vote 0; no validation data is needed here. If the agreement deides 1,

exit from the loop (lines 14{20).

Delivering the hosen proposal (lines 21{24): If P

i

has not yet -delivered the broadast

by the seleted andidate, obtain the proposal from the validation returned by the Byzan-

tine agreement.

The full protool is shown in Figure 3.

An obvious optimization of Protool VBA is based on the observation that in most ases,

adding P

a

's proposal in � to a v-vote message is not neessary. If this is omitted, then the

ode for P

i

to reeive v-vote messages has to be modi�ed as follows. If a v-vote from P

j

indiates 1 but P

i

has not yet reeived P

a

's proposal, ignore the vote and ask P

j

to supply

P

a

's proposal (by sending it the message (ID jvb:a:0; -request)). The v-vote by P

j

is only

taken into aount after (ID ; v-eho; w

a

; �

a

) has been -delivered with tag ID jvb:a:0 suh

that Q

ID

(w

a

; �

a

) holds; however, it may still be that enough votes indiating 0 from other

parties are reeived before that.

Lemma 7. In Protool VBA, the adversary an ause at most 2t iterations of the agreement

loop.

Proof. The proof works by ounting the total number A of v-vote messages ontaining 0 that

are generated by honest parties (over all iterations of the agreement loop).

Sine every honest party has reeived a valid proposal from n � t parties in the v-eho

broadasts, it will generate v-vote messages ontaining 0 for at most t proposing parties.

Thus, A � t(n� t).

Note that for the binary Byzantine agreement protool to deide 0 for a partiular a and to

ause one more iteration of the loop, at least n�2t honest parties must propose 0 for the binary

agreement (otherwise, there would be t+ 1 or more honest parties proposing 1 and the binary

agreement protool would terminate with 1, as it is biased towards 1). Sine honest parties

only propose 0 if they have reeived n� t v-vote messages ontaining 0, there must be at least

n� 2t honest parties who have generated a v-vote message ontaining 0 in this iteration.

Let R denote the number of iterations of the loop where the binary agreement protool

deides 0. From the preeding argument, we have A � R(n� 2t).

Combining these two bounds on A, we obtain R(n� 2t) � (n� t)t, or equivalently,

R � t+

t

2

n� 2t

:

Using n� 2t � t + 1, this an be simpli�ed to R � t +

t

2

t+1

and further to R < 2t. Thus, the

binary agreement deides 1 at the latest in iteration R+1 of the loop and the lemma follows.
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Protool VBA for party P

i

, tag ID, and validation prediate Q

ID

Let V

IDja

(v; �) be the following prediate:

V

ID ja

(v; �) � (v = 0) or

�

v = 1 and � ompletes the veri�able authentiated -broadast of a message

(v-eho; w

a

; �

a

) with tag ID :a:0 suh that Q

ID

(w

a

; �

a

) holds

�

Upon reeiving message (ID ; in; v-propose; w; �):

1: veri�ably authentiatedly -broadast message (v-eho; w; �) tagged with ID jvb:i:0

2: w

j

 ?;�

j

 ? (1 � j � n)

3: wait for n� t messages (v-eho; w

j

; �

j

) to be -delivered with tag ID jvb:j:0

from distint P

j

suh that Q

ID

(w

j

; �

j

) holds

4: l 0

5: repeat

6: l l + 1; a �(l)

7: if w

a

= ? then

8: send the message (ID ; v-vote; a; 0;?) to all parties

9: else

10: let � be the message that ompletes the -broadast with tag ID jvb:a:0

11: send the message (ID ; v-vote; a; 1; �) to all parties

12: u

j

 ?; r

j

 ? (1 � j � n)

13: wait for n� t messages (ID ; v-vote; a; u

j

; �

j

) from distint P

j

suh

that V

IDja

(u

j

; �

j

) holds

14: if there is some u

j

= 1 then

15: v  1; � �

j

16: else

17: v  0; � ?

18: propose v validated by � for ID ja in binary validated Byzantine agreement

biased towards 1, with prediate V

ID ja

19: wait for the agreement protool to deide some b validated by � for ID ja

20: until b = 1

21: if w

a

= ? then

22: use � to omplete the veri�able authentiated -broadast with tag ID jvb:a:0

and -deliver (ID ; v-eho; w

a

; �

a

)

23: output (ID ; out; v-deide; w

a

; �

a

)

24: halt

Figure 3: Protool VBA for multi-valued validated Byzantine agreement.
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Theorem 8. Given a protool for biased binary validated Byzantine agreement and a protool

for veri�able authentiated onsistent broadast, Protool VBA provides multi-valued validated

Byzantine agreement for n > 3t.

Proof. We have to establish external validity, agreement, liveness, and eÆieny.

External validity follows beause every honest party that proposes 1 in the agreement on

party P

a

has veri�ed that Q

ID

holds for w

a

and �

a

. Thus, by the standard validity ondition

for the binary Byzantine agreement, the deision is 0 if Q

ID

does not hold.

For agreement, note that the properties of the binary validated Byzantine agreement proto-

ol ensure that all parties terminate the loop with the same a. By the onsisteny property of

onsistent broadast, all honest parties obtain the same values w

a

and �

a

from the broadast

tagged with ID jvb:a:0. Thus, they output the same w

a

.

Liveness and integrity hold by inspetion of the protool.

EÆieny follows from Lemma 3 together with Lemma 7 beause there are at most 2t binary

agreement sub-protools invoked for a partiular ID .

The message omplexity of Protool VBA is O(tn

2

) if Protool VCBC is used for veri�able

onsistent broadast and the binary validated Byzantine agreement is implemented aording

to Setion 4.2.

If all parties propose v and � that are together no longer than L bits, the ommuniation

omplexity in the above ase is O(n

2

(tK + L)), assuming the length of a threshold signature

and a signature share is at most K bits. For a onstant fration of orrupted parties, however,

both values are ubi in n. As shown next, the expeted message omplexity an be redued

to a quadrati expression in n.

4.4 A Constant-round Protool for Multi-valued Agreement

In this setion we present Protool VBAonst, whih is an improvement of the protool in the

previous setion that guarantees termination within a onstant expeted number of rounds. The

drawbak of Protool VBA above is that the adversary knows the order � in whih the parties

searh for an aeptable andidate, i.e., one that has broadast a valid proposal. Although at

least one third of all parties are guaranteed to be aepted, as shown above, the adversary an

hoose the orruptions and shedule messages suh that none of them is examined early in the

agreement loop.

The remedy for this problem is to hoose � randomly during the protool after making sure

that enough parties are already ommitted to their votes on the andidates. This is ahieved

in two steps. First, one round of ommitment exhanges is added before the agreement loop.

Eah party must ommit to the votes that it will ast by broadasting the identities of the

n � t parties from whih it has reeived valid v-eho messages (using at least authentiated

onsistent broadast). Honest parties will later only aept v-vote messages that are onsistent

with the ommitments made before. The seond step is to determine the permutation � using a

threshold oin-tossing sheme that outputs a random, unpreditable value after enough votes are

ommitted. Taken together, these steps ensure that the fration of parties whih are guaranteed

to be aepted are distributed randomly in �, ausing termination in a onstant expeted

number of rounds.

The details of Protool VBAonst are desribed in Figure 4 as modi�ations to Protool VBA.

To analyze the protool, we onsider the state of the system at the point in time when

the �rst honest party P

i

reveals its oin share. The ruial observation is that n � t \early

ommitting" parties are ommitted to their 0-votes at this point beause P

i

has delivered the
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Protool VBAonst for party P

i

, tag ID, and validation prediate Q

ID

Modify Protool VBA for party P

i

, tag ID , and validation prediate Q

ID

as follows:

1. Initialize and distribute the shares for an (n; t+1)-threshold oin-tossing sheme C

1

with

k

00

-bit outputs during system setup. Reall that this de�nes a pseudorandom funtion F .

Let G be a pseudorandom generator aording to Setion 2.3.

2. Inlude the following instrutions between lines 3 and 4 of Protool VBA, before entering

the agreement loop:

1: 

j

 

(

1 if w

j

6= ?

0 otherwise

(1 � j � n)

2: C  [

1

; : : : ; 

n

℄

3: authentiatedly -broadast the message (v-ommit; C) tagged with ID jb:i:0

4: C

j

 ? (1 � j � n)

5: wait for n� t messages (v-ommit; C

j

) to be -delivered with tag ID jb:j:0

suh that at least n� t entries in C

j

are 1

6: generate a oin share  of the oin ID jvba and send the message (ID ; v-oin; )

to all parties

7: wait for t+ 1 v-oin messages ontaining shares of the oin ID jvba and

ombine these to get the value S = F (ID jvba) 2 f0; 1g

k

00

8: hoose a random permutation �, using the pseudorandom generator G with seed S.

3. Modify the ondition for aepting v-vote messages (line 13) inside the agreement loop

suh that (v-vote; a; 0;?) from P

j

is aepted only if C

j

is known and C

j

[a℄ = 0. (This

involves also waiting for additional messages (v-ommit; C

j

) to be -delivered as above.)

Figure 4: Protool VBAonst for multi-valued validated Byzantine agreement.
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orresponding broadasts. We are now going to investigate the number of andidates that an

be rejeted by the adversary, by making the binary Byzantine agreement deide 0, and the

number of iterations of the agreement loop.

Lemma 9. Let A � f1; : : : ; ng denote the set of parties that garner less than n� 2t ommit-

ments to 0-votes from the early ommitters, and suppose � is an ideal, random permutation of

f1; : : : ; ng. Then, exept with negligible probability,

1. for every a 2 A, the binary agreement protool on ID ja will deide 1;

2. jAj > n� 2t;

3. there exists a onstant � > 1 suh that for all f � 1,

Pr

h

�

�(1) 62 A

�

^ � � � ^

�

�(f) 62 A

�

i

� �

�f

:

Proof. In order for the binary agreement for ID ja to deide 0, there must be some honest party

who proposes 0. By the instrutions for omputing v, it must have reeived n � t v-vote

messages ontaining 0 that are onsistent with the ommitments made by their issuers. But

sine there are only n distint parties, at least n � 2t of those 0-votes must ome from early

ommitters, whih is not the ase for any a 2 A. This proves the �rst laim.

To establish the seond laim, let A denote the total number of ommitments to 0-votes

ast by early ommitters. Sine every early ommitter may ommit to voting 0 for at most t

parties, we have A � t(n � t). On the other hand, observe that A � (n � jAj)(n � 2t) by the

de�nition of A.

Observe that these bounds on A are the same as in Lemma 7 with R = n� jAj. Using the

same argument, it follows jAj > n� 2t.

The third laim follows now beause jAj is at least a onstant fration of n and thus, there

is a onstant � > 1 suh that Pr[�(i) 62 A℄ � 1=� for all 1 � i � f . Sine the probability of the

f �rst elements of � jointly satisfying the ondition is no larger than for f independently and

uniformly hosen values, we obtain

Pr

h

�

�(1) 62 A

�

^ � � � ^

�

�(f) 62 A

�

i

� �

�f

:

Lemma 10. Assuming C

1

is a seure threshold oin-tossing sheme and G is a pseudorandom

generator, there is a onstant � > 1 suh that for all f � 1, the probability of any honest party

performing f or more iterations of the agreement loop is at most �

�f

+ �, where � is negligible.

Proof. This an be shown by a standard hybrid argument, where one makes a series of small

modi�ations to transform an idealized system into the real system, argues that eah hange

a�ets the adversary only with negligible probability, and then onludes that the real system

behaves just like the idealized system with all but negligible probability.

The \hybrid systems" are de�ned by running the system

(1) with a truly random permutation �,

(2) with the output of G replaed by truly random bits, and � omputed from that,

(3) with F (ID jvba) replaed by a random bit string, but G being a pseudorandom generator

aording to the protool, and � omputed from the output of G,
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(4) with F , G, and � omputed aording to the protool.

In all ases, we de�ne a statistial test by letting the adversary run the system until the �rst

honest party is about to release its share of the oin ID jvba, and then F , G, and � are

determined. Note that the set of early ommitters is de�ned and the set A (of Lemma 9) an

be omputed at this point. The statistial test simply outputs 0 if �(i) 62 A for all 1 � i � f

and 1 otherwise.

We now analyze the behavior of the statistial test.

Case (1) above orresponds to the idealized system in Lemma 9, whih implies that the test

outputs 0 at most with probability �

�f

.

In ase (2) above, the permutation is generated from truly random bits with uniform distri-

bution. This an be done using an algorithm that always terminates in a polynomial number

of steps suh that the output permutation is statistially lose to a random permutation. The

behavior of any polynomial-time adversary will not be hanged by this, exept with negligible

probability.

Cases (2) and (3) above an be mapped to the de�nition of a pseudorandom generator. But

if G is seure, the statistial test will not be able to distinguish between them with more than

negligible probability.

Finally, the di�erene between (3) and (4) orresponds to game C1{C4 in the de�nition of

the oin F . Assuming F is pseudorandom, this annot indue more than a negligible di�erene

in the behavior of the statistial test.

In onlusion, we obtain that no polynomial-time statistial test an distinguish between (1)

and (4) and therefore the onlusions of Lemma 9 apply also to the real protool exept with

negligible probability. Sine honest parties go through more than f iterations of the agreement

loop only if the �rst f elements of � are not in A, this probability is at most �

�f

plus some

negligible quantity.

Theorem 11. Given a protool for biased binary validated Byzantine agreement and a protool

for veri�able onsistent broadast, Protool VBAonst provides multi-valued validated Byzantine

agreement for n > 3t and invokes a onstant expeted number of binary Byzantine agreement

sub-protools.

Proof. Sine we have not hanged the way in whih binary agreement sub-protools are invoked

from Protool VBA, we only have to show liveness and eÆieny for the modi�ed protool.

Liveness holds beause all n�t honest parties broadast orretly onstruted ommitments

and therefore, enough valid v-ommit and v-vote messages are guaranteed to be reeived in

line 13 of the original protool.

EÆieny follows from Lemma 3 together with Lemma 10 above, beause honest parties

generate a polynomial number of messages in eah iteration of the agreement loop.

The expeted message omplexity of Protool VBAonst is O(n

2

) if Protool VCBC is used

for onsistent veri�able broadast and the binary validated Byzantine agreement is implemented

aording to Setion 4.2.

If all parties propose v and � that are together no longer than L bits, the expeted om-

muniation omplexity in the above ase is O(n

3

+ n

2

(K +L)), assuming a digital signature is

K bits. The n

3

-term, whih results from broadasting the ommitments, has atually a very

small hidden onstant beause the ommitments an be represented as bit vetors.

For a onstant fration of orrupted parties, the message omplexity is quadrati in n and

essentially optimal. We do not know whether the ommuniation omplexity an be lowered to

a quadrati expression in n as well.
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5 Atomi Broadast

Atomi broadast guarantees a total order on messages suh that honest parties deliver all

messages with a ommon tag in the same order. It is well known that protools for atomi

broadast are onsiderably more expensive than those for reliable broadast beause even in

the rash-fault model, atomi broadast is equivalent to onsensus [10℄ and annot be solved

by deterministi protools. The atomi broadast protool given here builds diretly on multi-

valued validated Byzantine agreement from the last setion.

5.1 De�nition

Atomi broadast ensures that all messages broadast with the same tag ID are delivered in

the same order by honest parties; in this way, ID an be interpreted as the name of a broadast

\hannel." The total order of atomi broadast yields an impliit labeling of all messages.

Assuming some honest party has atomially delivered s distint messages, the global sequene

of the �rst s delivered messages is well-de�ned. Thus, an expliit sequene number is not

needed. Sine the sender of a payload message is not neessarily identi�able (without requiring

expliit authentiity instead of integrity), the sender name is also omitted, and an unstrutured

tag ID suÆes.

An atomi broadast is ativated when the adversary delivers an input message to P

i

of the

form

(ID ; in; a-broadast;m);

where m 2 f0; 1g

�

. When this ours, we say P

i

atomially broadasts m with tag ID . \Ativa-

tion" here refers only to the broadast of a partiular payload message; the broadast hannel

ID must be opened before the �rst suh request.

A party terminates an atomi broadast of a partiular payload by generating an output

message of the form

(ID ; out; a-deliver;m):

In this ase, we say P

i

atomially delivers m with tag ID . To distinguish atomi broadast from

other forms of broadast, we will also use the terms a-broadast and a-deliver.

For the omposition of atomi broadast with other protools, we need a synhronized output

mode, where a-delivering a payload may blok the protool and prevent it from delivering

more payloads until the onsumer is ready to aept them. We introdue an aknowledgment

mehanism for output messages for this purpose, i.e., the adversary should aknowledge every

a-delivered payload message to the delivering party. In pratie, the a-delivery operation ould

be implemented by a bloking upall to the higher-level protool. In terms of the formal

model, an aknowledgment is modeled as an input message (ID ; in; a-aknowledge) from the

adversary. When a party reeives suh a message, it means that its most reently a-delivered

payload message with tag ID has been aknowledged. We will say that the adversary generates

aknowledgments if it aknowledges every a-delivered message.

Again, the adversary must not request an a-broadast of the same payload message from

any partiular party more than one for eah ID (however, several parties may a-broadast the

same message).

Atomi broadast protools should be fair so that a payload message m is sheduled and

delivered within a reasonable (polynomial) number of steps after it is a-broadast by an honest

party. But sine the adversary may delay the sender arbitrarily and a-deliver an a priori

unbounded number of messages among the remaining honest parties, we an only provide suh

35



a guarantee when at least t+1 honest parties beome \aware" of m. Our de�nitions of validity

and of fairness require atually that only after t+1 honest parties have a-broadast some payload,

it will be delivered within a reasonable number of steps. This is also the reason for allowing

multiple parties to a-broadast the same payload message|a lient appliation might be able

to satisfy this preondition through external means and ahieve guaranteed fair delivery in this

way. Fairness an be interpreted as a termination ondition for the broadast of a partiular

payload m.

The eÆieny ondition (whih ensures fast termination) for atomi broadast di�ers from

the protools disussed so far beause the protool for a partiular tag annot terminate on its

own. It merely stalls if no more undelivered payload messages are in the system and must be

terminated externally. Thus, we annot de�ne eÆieny using the absolute number of protool

messages generated. Instead we measure the progress of the protool with respet to the number

of messages that are a-delivered by honest parties. In partiular, we require that the number

of assoiated protool messages does not exeed the number of a-delivered payload messages

times a polynomial fator, independent of the adversary.

We say that a protool message is assoiated to the atomi broadast protool with tag ID

if and only if the message is generated by an honest party and tagged with ID or with a tag

ID j : : : starting with ID . In partiular, this enompasses all messages of the atomi broadast

protool with tag ID generated by honest parties and all messages assoiated to basi broadast

and Byzantine agreement sub-protools invoked by atomi broadast.

Fairness and eÆieny are de�ned using the number of payload messages in the \impliit

queues" of honest parties. We say that a payload message m is in the impliit queue of a party

P

i

(for hannel ID) if P

i

has a-broadast m with tag ID , but no honest party has a-delivered m

tagged with ID . The system queue ontains any message that is in the impliit queue of some

honest party. We say that one payload message in the impliit queue of an honest party P

i

is

older than another if P

i

a-broadast the �rst message before it a-broadast the seond one.

When disussing impliit queues at partiular points in time, we onsider a sequene of

events E

1

; : : : ; E

k

000

during the operation of the system, where eah event but the last one is

either an a-broadast or a-delivery by an honest party. The phrase \at time �" for 1 � � � k

000

refers to the point in time just before event E

�

ours.

De�nition 7 (Atomi Broadast). A protool for atomi broadast satis�es the following

onditions exept with negligible probability:

Validity: There are at most t honest parties with non-empty impliit queues for some hannel

ID , provided the adversary opens hannel ID for all honest parties, delivers all assoiated

messages, and generates aknowledgments.

Agreement: If some honest party has a-delivered m tagged with ID , then all honest parties a-

deliver m tagged with ID , provided the adversary opens hannel ID for all honest parties,

delivers all assoiated messages, and generates aknowledgments for every party that has

not yet a-delivered m tagged with ID .

Total Order: Suppose an honest party P

i

has a-delivered m

1

; : : : ;m

s

with tag ID , a distint

honest party P

j

has a-delivered m

0

1

; : : : ;m

0

s

0

with tag ID , and s � s

0

. Then m

l

= m

0

l

for

1 � l � s.

Integrity: For all ID , every honest party a-delivers a payload message m at most one tagged

with ID . Moreover, if all parties follow the protool, then m was previously a-broadast

by some party with tag ID .
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Fairness: Fix a partiular protool instane with tag ID . Consider the system at any point

in time �

0

where there is a set T of t+ 1 honest parties with non-empty impliit queues,

letM be the set onsisting of the oldest payload message for eah party in T , and let S

0

denote the total number of distint payload messages a-delivered by any honest party so

far. De�ne a random variableW as follows: letW be the total number of distint payload

messages a-delivered by honest parties at the point in time when the �rst message inM

is a-delivered by any honest party, or let W = S

0

if this never ours. Then W � S

0

is

uniformly bounded.

EÆieny: For a partiular protool instane with tag ID , let X denote its ommuniation

omplexity, and let Y be the total number of distint payload messages that have been

a-delivered by any honest party with tag ID . Then, at any point in time, the random

variable X=(Y + 1) is probabilistially uniformly bounded.

Some remarks on the above de�nition:

1. Compared to the de�nition of reliable broadast, agreement and integrity are analogous,

validity is somewhat weaker, and total order and fairness are new.

2. The agreement ondition ombines the onsisteny and totality of reliable broadast;

there is no need to distinguish these two aspets here. However, only totality requires

that messages and aknowledgments are delivered.

3. Validity ensures liveness of a protool and rules out trivially empty protools. It is stated

in a weak form, guaranteeing progress whenever at least t + 1 honest parties have some

undelivered payload message. A stronger notion, more along the lines of the validity

ondition used in reliable broadast, would have been the following.

Strong Validity: If an honest party has a-broadast m tagged with ID , then it a-delivers

m tagged with ID , provided the adversary opens hannel ID for all honest parties,

delivers all assoiated messages, and generates aknowledgments.

However, our weaker notion of validity is suÆient in many appliations where a lient

needs to ontat more than t + 1 servers anyway. It is also more suitable for protool

omposition and makes some atomi broadast protools simpler, like the one of Kursawe

and Shoup [23℄. On the other hand, strong validity an be obtained for any atomi

broadast protool that provides weak validity by a relatively simple initial round of

ehoing the payload to all parties, who adopt it as their own if their input queues are

empty.

4. Validity and fairness omplement eah other: Validity ensures that a payload message

that is a-broadast by t+ 1 honest parties is a-delivered at all, provided all messages are

delivered and aknowledgments are generated, and fairness implies that it is a-delivered

reasonably quikly, relative to other payloads.

One ould de�ne a weaker versions of fairness and validity by onsidering only the situation

that f honest parties a-broadast a payload message for t+ 1 � f � n� t.

5. The eÆieny ondition ounts only the payload messages delivered by the \fastest" honest

party. This party will usually be synhronized within one round with at least n� 2t� 1

other honest parties, but it seems impossible to synhronize it with the \slowest" honest
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party. Moreover, there seems to be no easy way to provide a �xed bound on a suitable

statisti (suh as ommuniation omplexity) until all honest parties have delivered a

partiular payload. This is beause the adversary an always drive the system forward

with only n � 2t honest parties and leave the others behind. The \fast" parties might

generate an a priori unbounded amount of work until the \slow" ones �nally a-deliver

a partiular payload, if at all. (Adding 1 to the divisor overs the state until the �rst

payload is delivered.)

5.2 A Protool for Atomi Broadast

We now present a protool for atomi broadast based on validated Byzantine agreement. Its

overall struture is similar to the protool of Hadzilaos and Toueg [21℄ for the rash-fault

model, but we need to take additional measures to tolerate Byzantine faults.

Our Protool ABC for atomi broadast proeeds as follows. Eah party maintains a FIFO

queue of not yet a-delivered payload messages. Messages reeived to a-broadast are appended

to this queue whenever they are reeived. The protool proeeds in asynhronous global rounds,

where eah round r onsists of the following steps:

1. Send the �rst payload message w in the urrent queue to all parties, aompanied by a

digital signature � in an a-queue message.

2. Collet the messages of n � t distint parties and store them in a vetor W , store the

orresponding signatures in a vetor S, and proposeW for Byzantine agreement validated

by S.

3. Perform multi-valued Byzantine agreement with validation of a vetor W = [w

1

; : : : ; w

n

℄

and proof S = [�

1

; : : : ; �

n

℄ through the prediate Q

IDjab:r

(W;S) whih is true if and

only if for at least n� t distint indies j, the vetor element �

j

is a valid S-signature on

(ID ; a-queue; r; j; w

j

) by P

j

.

4. After deiding on a vetor V of messages, deliver the union of all payload messages in V

aording to a deterministi order; proeed to the next round.

In order to ensure liveness of the protool, there are atually two ways in whih the parties

move forward to the next round: when a party reeives an a-broadast input message (as stated

above) and when a party reeives an a-queuemessage of another party pertaining to the urrent

round. If either of these two messages arrive and ontain a yet undelivered payload message,

and if the party has not yet sent its own a-queue message for the urrent round, then it enters

the round by appending the payload to its queue and sending an a-queuemessage to all parties.

The detailed desription of Protool ABC is found in Figure 5. The FIFO queue q is an

ordered list of values (initially empty). It is aessed using the operations append, remove,

and �rst, where append(q;m) inserts m into q at the end, remove(q;m) removes m from q (if

present), and �rst(q) returns the �rst element in q. The operation m 2 q tests if an element m

is ontained in q.

A party waiting at the beginning of a round simultaneously waits for a-broadast and

a-queue messages ontaining some w 62 d in line 2. If it reeives an a-broadast request, the

payload m is appended to q. If only a suitable a-queue protool message is reeived, the party

makes w its own message for the round, but does not append it to q. It should be lear from

the protool that no honest party is ever bloked waiting for some payload message to proess

if some honest party has a-broadast one and all assoiated messages have been delivered.
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Protool ABC for party P

i

and tag ID

Let Q

IDjab:r

be the following prediate:

Q

IDjab:r

([w

1

; : : : ; w

n

℄; [�

1

; : : : ; �

n

℄) �

�

for at least n� t distint j, �

j

is a valid

S-signature by P

j

on (ID ; a-queue; r; j; w

j

).

�

Initialization:

q  [℄ fFIFO queue of messages to a-broadastg

d ; fset of a-delivered messagesg

r  0 furrent roundg

Upon reeiving message (ID ; in; a-broadast;m):

if m 62 d and m 62 q then

append(q;m)

Forever:

1: w

j

 ?;�

j

 ? (1 � j � n)

2: wait for q 6= [℄ or a message (ID ; a-queue; r; l; w

l

; �

l

) reeived from P

l

suh that w

l

62 d and �

l

is a valid signature from P

l

3: if q 6= [℄ then

4: w  �rst(q)

5: else

6: w  w

l

7: ompute a digital signature � on (ID ; a-queue; r; i; w)

8: send the message (ID ; a-queue; r; i; w; �) to all parties

9: wait for n� t messages (ID ; a-queue; r; j; w

j

; �

j

) suh that �

j

is a valid

signature from P

j

(inluding the message from P

l

above)

10: W  [w

1

; : : : ; w

n

℄;S  [�

1

; : : : ; �

n

℄

11: propose W validated by S for multi-valued validated Byzantine agreement

for ID jab:r with prediate Q

IDjab:r

12: wait for the validated Byzantine agreement protool to deide some

V = [v

1

; : : : ; v

n

℄ for ID jab:r

13: b 

S

n

j=1

v

j

14: for m 2 (b n d), in some deterministi order do

15: output (ID ; out; a-deliver;m)

16: wait for an aknowledgment

17: d d [ fmg

18: remove(q;m)

19: r  r + 1

Figure 5: Protool ABC for atomi broadast using multi-valued validated Byzantine agree-

ment.
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The term n � t in line 9 of the protool and in the validation prediate Q

IDjab:r

ould

be replaed by any f

0

between t + 1 and n � t if the fairness ondition is hanged suh that

f = n� f

0

+ 1 parties instead of t+ 1 must have a-broadast the message.

The protool in Figure 5 is formulated using a single loop that runs forever after initializa-

tion; this is merely for syntati onveniene and an be implemented by deomposing the loop

into the respetive message handlers.

Theorem 12. Given a protool for multi-valued validated Byzantine agreement and assuming

S is a seure signature sheme, Protool ABC provides atomi broadast for n > 3t.

Proof. We �rst prove validity and show that the protool even implements strong validity.

Towards a ontradition, suppose that some honest party has a-broadast a payload message

m, but not a-delivered it and yet, all assoiated protool messages and aknowledgments have

been delivered. Sine the sender has a-broadast but not a-delivered m, its queue q ontains

at least m and it an no longer be waiting in line 2. Thus, it has proeeded and sent a-queue

messages to all parties in line 8. Sine these have been delivered, every honest party has reeived

an a-queue message ontaining m 62 d and therefore has also entered the same round (by

ondition for waiting in line 2). Thus, all n� t honest parties have sent valid a-queue messages

and every honest party has reeived all of them and subsequently started and terminated

Byzantine agreement. Sine also the a-delivered payloads have been aknowledged, the sender

must be waiting in line 2 with q = [℄. But then m has been removed from q and this ours

only if it was a-delivered, a ontradition.

We now establish agreement. Towards a ontradition, suppose that some honest P

i

has

a-delivered a payload message m, but an honest P

j

has not a-delivered it and yet, all assoiated

protool messages have been delivered and aknowledgments have been generated for all parties

who have not yet a-delivered m. Assume P

i

a-delivered m in round r. Sine no party who has

not a-delivered m is bloked waiting for messages or aknowledgments under these onditions,

it is easy to see from inspetion of the protool and from the liveness ondition of the Byzantine

agreement sub-protool that P

j

must have reeived all messages belonging to any round up to

and inluding r. But then it annot be waiting for an aknowledgment either|unless it has

already a-delivered m.

The total order ondition follows from the agreement property of the validated Byzantine

agreement primitive sine all honest parties deide on the same proposal and then a-deliver all

payload messages ontained in the proposal in a deterministi order. This implies also that the

set d of a-delivered messages is the same for all honest parties.

Integrity is immediate from the protool by indution on the onstrution of d, using the

properties of Byzantine agreement. Even if orrupted parties inlude messages that have already

been delivered, they are not delivered again.

To show fairness, �x some �

0

and T (this de�nes alsoM), and onsider the system at the

point in time when W > 0 is �rst de�ned. We show that W � S

0

� n, independent of the

adversary. Note that the deided vetor in the urrent round is de�ned and ontains n � t

payloads (not neessarily distint). At least n � 2t of them are signed by honest parties that

have all aught up to the urrent round; we all these parties the \signing parties." They have

eah signed the oldest payload message in their queue q. By de�nition, the impliit queue of

every honest party is a subset of q; but beause eah signing party must have entered the urrent

round, its impliit queue was equal to its queue q at the point in time when it generated the

signature. Sine T has ardinality t+ 1 and there are at least n� 2t signing parties, but only

n � t honest parties in total, there must be at least one signing party in T . Thus, there is at
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least one payload fromM among the deided payloads and no more than n distint payloads

an have been a-delivered sine �

0

.

For eÆieny, we have to relate the ommuniation omplexity of the protool to the pay-

load messages that were atually a-delivered. Note that honest parties generate messages only

when they make progress in the round struture|either by sending an a-queue message or by

invoking the Byzantine agreement sub-protool. But an honest party enters the next round only

if it is aware of some payload message that it has not yet a-delivered. Sine at least one payload

message from the system queue is delivered in every round, all protool messages generated

during that round an be related to that payload. There are a �xed polynomial number of

protool messages generated diretly by the protool in every round and the length of eah one

is at most n times the length of a payload. The ommuniation omplexity of the Byzantine

agreement sub-protool is probabilistially uniformly bounded by its eÆieny ondition. Thus,

the ommuniation omplexity per round is probabilistially uniformly bounded.

The message omplexity of Protool ABC to broadast one payload message m is domi-

nated by the number of messages in the multi-valued validated Byzantine agreement; the extra

overhead for atomi broadast is only O(n

2

) messages. The same holds for the ommuniation

omplexity, but the proposed values have length O(n(jmj+K)), assuming digital signatures of

length K bits.

With Protool VBAonst from Setion 4.4, the total expeted message omplexity is O(n

2

)

and the expeted ommuniation omplexity is O(n

3

jmj) for an atomi broadast of a single

payload message.

5.3 Equivalene of Byzantine Agreement and Atomi Broadast

For the sake of ompleteness, we state the equivalene of atomi broadast to Byzantine agree-

ment in the ryptographi model. It is the analogue to the equivalene between onsensus and

atomi broadast in the rash-fault model shown by Chandra and Toueg [10℄.

Corollary 13. (Binary) Byzantine agreement and atomi broadast are equivalent in the basi

system model of Setion 2.1, assuming a seure signature sheme and provided n > 3t.

Proof. To implement Byzantine agreement from an atomi broadast protool, a party uses the

following algorithm:

1. To propose v 2 f0; 1g for transation ID , ompute a digital signature � on (ID ; v) and

a-broadast the message (ID ; v; �).

2. Wait for a-delivery of the �rst 2t+1 messages of the form (ID ; v

j

; �

j

) from distint parties

that ontain valid signatures. Deide for the simple majority of all reeived values v

j

.

The other diretion follows from Theorems 8 and 12.

Note that using an appropriately de�ned notion of authentiated atomi broadast, this

ould also be implemented without the additional digital signatures in the redution. However,

Protool ABC would have to be modi�ed in order to provide authentiation.
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6 Seure Causal Atomi Broadast

Seure ausal atomi broadast (SC-ABC) is a useful protool for building seure appliations

that use state mahine repliation in a Byzantine setting. It provides atomi broadast, whih

ensures that all reipients reeive the same sequene of messages, and also guarantees that the

payload messages arrive in an order that maintains \input ausality," a notion introdued by

Reiter and Birman [39℄. Informally, input ausality ensures that a Byzantine adversary may

not ask the system to deliver any payload message that depends in a meaningful way on a yet

undelivered payload sent by an honest lient. This is very useful for delivering lient requests

to a distributed servie in appliations that require the ontents of a request to remain seret

until the system proesses it. Input ausality is related to the standard ausal order (going bak

to Lamport [24℄), whih is a useful safety property for distributed systems with rash failures,

but is atually not well de�ned in the Byzantine model [21℄.

Input ausality an be ahieved if the sender enrypts a message to broadast with the

publi key of a threshold ryptosystem for whih all parties share the deryption key [39℄. The

iphertext is then broadast using an atomi broadast protool; after delivering it, all parties

engage in an additional round to reover the message from the iphertext.

In our desription of seure ausal atomi broadast, one of the parties ats as the sender of

a payload message. If SC-ABC is used by a distributed system to broadast lient requests, then

enryption and broadasting is taken are of by the lient. In this ase, additional onsiderations

are needed to ensure proper delivery of the replies from the servie (see [39℄ for those details).

6.1 De�nition

Assoiated with any instane of a seure ausal atomi broadast protool with tag ID is

an enryption algorithm E

ID

. It should be possible to infer this algorithm from the dealer's

publi output. E

ID

is a probabilisti algorithm that maps a message m to a iphertext .

We all  = E

ID

(m) an enryption of m (with tag ID). Sine the enryption algorithm is

probabilisti, there will in general be many di�erent enryptions of a given message; indeed,

this will neessarily be the ase if the system is to be seure.

An appliation that wants to seurely broadast a payload message should �rst enrypt it

using E

ID

and invoke the broadast protool with the resulting iphertext. Sine E

ID

is publily

known, also lients from outside the group P

1

; : : : ; P

n

an produe iphertexts.

A seure ausal atomi broadast protool is ativated when P

i

reeives an input message

of the form

(ID ; in; s-broadast; ):

We say P

i

s-broadasts  with tag ID .

Unlike atomi broadast, delivery onsists of two distint steps: the �rst is the generation

of an output message of the form

(ID ; out; s-shedule; );

and the seond is the generation of an output message of the form

(ID ; out; s-reveal;m):

We shall require that honest parties generate sequenes of suh pairs of output messages|

there must never be two onseutive s-shedule or s-revealmessages. When the s-shedule
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message is generated, we will say that P

i

s-shedules the iphertext  (with tag ID). When the

s-reveal message is generated, we will say that P

i

s-delivers the iphertext  (with tag ID),

where  is the most reently s-sheduled iphertext; we all m the assoiated leartext.

De�nition 8 (Seure Causal Atomi Broadast). A seure ausal atomi broadast pro-

tool satis�es the properties of an atomi broadast protool, where the s-broadast and s-

delivery of iphertexts in the seure ausal atomi broadast protool play the role of the

a-broadast and a-delivery of payload messages in an atomi broadast protool.

Additionally, the following onditions hold.

Message Serey: Aording to the basi system model, the parties run an atomi broadast

protool (and possibly other broadast protools), and the adversary plays the following

game:

B1. The adversary interats with the honest parties in an arbitrary way.

B2. The adversary hooses two messages m

0

and m

1

and a tag ID ; it gives them to

an \enryption orale." The orale hooses a bit B at random and omputes an

enryption  of m

B

with tag ID , and gives this iphertext to the adversary.

B3. The adversary ontinues to interat with the honest parties subjet only to the

ondition that no honest party s-shedules  with tag ID .

B4. Finally, the adversary outputs a bit

^

B.

Then, for any adversary, the probability that

^

B = B must exeed

1

2

only by a negligible

amount.

Message Integrity: Aording to the basi system model, the parties run an atomi broadast

protool (and possibly other broadast protools), and the adversary plays the following

game:

C1. The adversary interats with the honest parties in an arbitrary way.

C2. The adversary hooses a message m and a tag ID , and gives it to an \enryption

orale." The orale omputes an enryption  of m with tag ID , and gives this

iphertext to the adversary.

C3. The adversary ontinues to interat with the honest parties in an arbitrary way.

We say the adversary wins the game if at some point an honest party s-delivers  with

tag ID , but orresponding leartext m

0

is not equal to m. Then, for any adversary, the

probability that it wins this game is negligible.

Message Consisteny: If two parties honest parties s-deliver the same iphertext  with tag

ID , then with all but negligible probability, the assoiated leartexts are the same.

It is easy to verify that this de�nition implies input ausality in the sense of Reiter and

Birman [39℄, i.e., that a leartext remains hidden from the adversary until the orresponding

iphertext is s-sheduled. But the leartext may be revealed to the adversary before the �rst

honest party outputs it in a s-reveal message, and this is also the reason for introduing

our two-step delivery proess. Although this is neessary for the proper de�nition of seurity,

s-sheduling a iphertext might be omitted in a pratial implementation.

The message integrity ondition gives lients aess to the broadast protool for leartext

payload messages, and implies that payloads ontained in orretly enrypted iphertexts are

atually output by the honest parties.
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6.2 A Protool for Seure Causal Atomi Broadast

Protool SC-ABC in Figure 6 implements seure ausal atomi broadast. It uses an (n; t +

1)-threshold ryptosystem E

1

that is seure against adaptive hosen iphertext attaks (see

Setion 2.3.3) for whih the parties share the deryption key. It also uses an atomi broadast

protool aording to Setion 5.

During initialization, the dealer generates a publi key for E

1

, together with the orrespond-

ing private key shares, and distributes them aording to the initialization algorithm of E

1

.

For a tag ID , E

ID

(m) is omputed by applying the enryption algorithm of E

1

to m with

label ID , using the generated publi key of the ryptosystem.

We emphasize that all instanes of the seure ausal broadast protool share the same

publi key for E

1

, and so the use of labeled iphertexts is essential to properly \isolate" di�erent

instanes of the protool from one another.

To s-broadast a iphertext , we simply a-broadast . Upon a-delivery of a iphertext , a

party s-shedules . Then it omputes a deryption share Æ and sends this to all other parties

in an s-derypt message ontaining . It waits for t + 1 s-derypt messages pertaining to

. One they arrive, it reovers the assoiated leartext and s-delivers . After reeiving

the aknowledgment, the party ontinues proessing the next a-delivery by generating the

orresponding aknowledgment. The details are in Figure 6. For ease of notation, the protool

in Figure 6 is formulated using a Forever loop; it an be deomposed into the respetive

message handlers in straightforward way.

Protool SC-ABC for party P

i

and tag ID

Initialization:

open an atomi broadast hannel with tag ID jsab

Upon reeiving (ID ; in; s-broadast; ):

a-broadast  with tag ID jsab

Forever:

wait for the next message  that is a-delivered with tag ID jsab

ompute an E

1

-deryption share Æ for  with label ID

output (ID ; out; s-shedule; )

send the message (ID ; s-derypt; ; Æ) to all parties

Æ

j

 ? (1 � j � n)

wait for t+ 1 messages (ID ; s-derypt; ; Æ

j

) from distint parties that ontain valid

deryption shares for  with label ID

ombine the deryption shares Æ

1

; : : : ; Æ

n

to obtain a leartext m

output (ID ; out; s-reveal;m)

wait for an aknowledgment

aknowledge the last a-delivered message with tag ID jsab

Figure 6: Protool SC-ABC for seure ausal atomi broadast.

Theorem 14. Given an atomi broadast protool and assuming E

1

is a (n; t + 1)-threshold

ryptosystem seure against adaptive hosen-iphertext attaks, Protool SC-ABC provides se-

ure ausal atomi broadast for n > 3t.
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Proof. We have to show that the protool implements atomi broadast and satis�es message

serey and message integrity onditions.

We �rst show validity. Suppose enough honest parties have s-broadast  and all assoiated

messages have been delivered and all aknowledgments have been generated. Thus, all senders

have a-broadast . We an now invoke the validity ondition of the atomi broadast protool

as follows: �rst, the messages assoiated to the atomi broadast have been delivered sine

they are also assoiated to the seure broadast; seond, it is lear from the protool that

the aknowledgements to the seure broadast protool are passed on to the atomi broadast

protool. Thus, the validity of the atomi broadast implies that  has been a-delivered by

some honest party. For the same reasons, the agreement ondition of atomi broadast implies

that all other honest parties must also have a-delivered , sine they are not bloked or waiting

for aknowledgements. All honest parties have therefore generated deryption shares for  and

sent an s-derypt message to all parties. It follows that any honest party has reeived at least

t+ 1 valid shares for . But then it has also s-delivered .

It is perhaps interesting to note that the above proof of validity made essential use of both

the validity and agreement properties of the underlying atomi broadast protool.

For agreement, suppose that an honest P

i

has s-delivered  and P

j

has not, and yet, all

assoiated messages have been delivered and aknowledgments have been generated for those

parties who have not s-delivered . Sine any honest party that has not yet s-delivered  has

reeived suÆiently many aknowledgements, it has also aknowledged all a-deliveries and it

annot be waiting for an aknowledgment in the atomi broadast protool. Sine P

i

has a-

delivered , it follows from the agreement ondition of the underlying atomi broadast that

all other honest parties must also have a-delivered . Thus, they all have generated deryption

shares for  and P

j

must have reeived at least t + 1 valid shares for . Therefore, P

j

has

s-delivered , a ontradition.

To show eÆieny, we must bound the amount of work done (as measured by ommuniation

omplexity) per s-delivered message. But sine the s-delivery messages is synhronized with the

a-delivery of iphertexts in Protool SC-ABC, the number of a-delivered messages exeeds the

number of s-delivered ones by at most one, and eÆieny follows from the eÆieny ondition

of the atomi broadast protool.

Note that without this synhronization, we ould not ahieve eÆieny, sine the lower-level

atomi broadast protool ould \run ahead" of the higher-level seure ausal atomi broadast

protool|lots of messages would be generated, but very few messages would be s-delivered.

It is easy to see that the remaining broadast properties (total order, integrity, and fairness)

hold as well, using the orresponding properties of the underlying atomi broadast.

Message serey, integrity, and onsisteny follow easily from the properties of the under-

lying threshold enryption sheme.

7 Conlusions

Although ryptographi tehniques play an important role in the development of seure fault-

tolerant systems, the formal methods used in ryptography and in distributed systems seem

rather di�erent today. An integration of both approahes, suh as the one proposed in this

paper, is therefore desirable for developing seure distributed protools.

Apart from the de�nitions, this paper presents several new protools for asynhronous broad-

ast and Byzantine agreement problems. They illustrate how fault-tolerant broadasts an ben-

e�t from threshold-ryptographi protools suh as threshold signatures and oin-tossing. In
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partiular, they lead to improved ommuniation omplexity. Our most eÆient protool for

atomi broadast ahieves O(n

2

) expeted message omplexity to broadast a single payload

message and expeted ommuniation omplexity O(n

3

).

Several interesting problems remain open:

{ Our orruption model is stati, i.e., the adversary must deide whih parties to orrupt

independently from the behavior of the system. Allowing for adaptive orruptions would

give stronger seurity guarantees, but it is urrently not known how to eÆiently realize

all of our threshold-ryptographi primitives with adaptive seurity.

{ Although the ommuniation omplexity per payload message of the atomi broadast

protool seems reasonable for relatively small values of n, it would be nie to redue it

further to O(n

2

), or even to a smaller expression. This improvement would have to be

made in the multi-valued validated Byzantine agreement protool.

Another approah for reduing the overhead of atomi broadast in pratie are dual-mode

protools, whih normally operate in a fast \optimisti" mode, and only swith to a slower

\pessimisti" mode if no progress seems to be made during a ertain time. The protool of

Castro and Liskov [9℄ is of this type, but it does not guarantee liveness in a fully asynhronous

model. Reently, Kursawe and Shoup [23℄ have developed suh an \optimisti" atomi broad-

ast protool that guarantees liveness and safety at the same time, and exploits many of the

tehniques developed in this work.
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