
Fully Distributed Threshold RSA under

Standard Assumptions

Pierre-Alain Fouque and Jacques Stern

�

Ecole Normale Sup�erieure, D�epartement d'Informatique

45, rue d'Ulm, F-75230 Paris Cedex 05, France

fPierre-Alain.Fouque,Jacques.Sterng@ens.fr

Abstract. The aim of the present article is to propose a fully distributed

environment for the RSA scheme. What we have in mind is highly sen-

sitive applications and even if we are ready to pay a price in terms of

e�ciency, we do not want any compromise of the security assumptions

that we make. Recently Shoup proposed a practical RSA threshold sig-

nature scheme in [17] that allows to share the ability to sign between a

set of players. This scheme can be used for decryption as well. However,

Shoup's protocol assumes a trusted dealer to generate and distribute

the keys. This comes from the fact that the scheme needs a special as-

sumption on the RSA modulus and this kind of RSA moduli cannot be

easily generated in an e�cient way with many players. Of course, it is

still possible to call theoretical results on multiparty computation, but

we cannot hope to design e�cient protocols. The only practical result

to generate RSA moduli in a distributive manner is Boneh and Franklin

protocol [2] but this protocol cannot be easily modi�ed to generate the

kind of RSA moduli that Shoup's protocol requires.

The present work takes a di�erent path by proposing a method to en-

hance the key generation with some additional properties and revisits the

proof of Shoup to work with the resulting RSA moduli. Both of these

enhancements decrease the performance of the basic protocols. However,

we think that in the applications that we target, these enhancements

provide practical solutions. Indeed, the key generation protocol is usu-

ally run only once and the number of players used to sign or decrypt is

not very large. Moreover, these players have time to perform their task

so that the communication or time complexity are not overly important.

1 Introduction

In this paper we propose new techniques to protect a shared RSA secret key from

generation phase to applications. This solves an open problem where one needs

to cope with requirements that do not match. On one hand, at Eurocrypt'00,

Shoup describes a practical threshold signature scheme which requires an RSA

modulus with speci�c properties : namely, the prime numbers of the modulus

should be safe primes. On the other hand, Boneh and Franklin at Crypto '97

describe a protocol to share an RSA modulus. However, the latter cannot be used

to generate a safe modulus. The distributed generation of safe moduli seems to

be hard and the method of Boneh and Franklin cannot be easily adapted to

this context. The present work takes a di�erent path by proposing a method

to enhance the key generation with some additional properties and revisits the

proof of Shoup to work with the resulting RSA moduli.

Shoup threshold RSA signature scheme [17] presents interesting features.

First of all, it is secure and robust in the random oracle model assuming the

RSA problem is hard. Next, the signature share generation and veri�cation are

completely non-interactive and �nally, the size of an individual signature share is

bounded by a constant times the size of the RSA modulus. However, this scheme

requires a trusted dealer to generate the keys and distribute the shares of the

secret key among the ` servers.

When a message m has to be signed by a quorum of at least t + 1 servers,

where 2t+ 1 � `, a special server, called the combiner, forwards the message m

to all servers. Then, each server computes its signature share along with a proof

of correctness. Finally, the combiner selects a subgroup of t+1 servers by check-

ing the proofs and combines the t + 1 related signature shares to generate the

signature s. A key point in this scheme is the proof of correctness, which guar-

antees the robustness of the scheme. Robustness means that corrupted servers

should not be able to prevent uncorrupted servers from signing. This property

is attractive for threshold protocols, but in this scheme, the proof of correctness

requires an RSA modulus built with safe primes.

This raises the question of generating RSA moduli for use in Shoup's threshold

scheme without a trusted dealer. There exist protocols that generate RSA keys in

a distributive manner. Boneh and Franklin in [2] designed such protocol for the

generation of an RSA modulus in the honest-but-curious model. Later, Frankel,

MacKenzie and Yung in [7] made this algorithm robust against malicious servers.

In [13], Poupard and Stern also provided a protocol to compute a shared modulus

for two players only. Finally, Gilboa in [10] has extended Poupard and Stern

method. As we can note, the Boneh and Franklin protocol is most e�cient but

no protocol is known to create shared safe RSA moduli.

It would be useful to fully distribute the RSA protocols from key generation to

signature. To avoid the generation of shared safe moduli, which appears currently

out of reach, this paper proposes a tradeo� between the requirements of the RSA

modulus for the signature and decryption protocols and the requirements at key

generation.

Independly of our work, Damgard and Koprowski [5] have considered the

same problem in a recent paper. They revisited Shoup's paper and used a non-

standard assumption to show that the proof of correctness works with an RSA

modulus.

In our work, we consider environments where high security is required such

as electronic voting schemes. Therefore, we prefer to use protocols based on stan-

dard assumptions and we are ready to pay the price. We believe that standard

assumptions and security proofs are needed to build secure protocols.

2

1.1 Outline of the paper

In the �rst part, we present the problem and in section 3 the security model

that we use. Next, in section 4, we describe how to enhance the Boneh-Franklin

scheme to generate RSA moduli having special properties and in section 5 we

present the new proof of correctness making Shoup scheme robust without using

safe primes. Finally, in section 6 we present practical parameters for our scheme.

1.2 Notations and De�nitions

Throughout this paper, we use the following notation: for any integer N = pq,

where n = log(N) is a security parameter, as well as k, k

1

and k

2

,

{ we use Q

N

to denote the group of square in Z

N

�

,

{ we use '(N) to denote the Euler totient function, i.e. the cardinality of Z

N

�

,

{ we use �(N) to denote Carmichael's lambda function de�ned as the largest

order of the elements of Z

N

�

.

Let p = 2p

0

+ 1 and q = 2q

0

+ 1 where in general p

0

=

Q

p

i

p

i

e

i

and q

0

=

Q

q

j

q

j

e

j

. Set M = p

0

q

0

.

Finally, a prime number p is a safe prime if p and p

0

are both prime.

2 Background

2.1 Where is the problem ?

Robustness guarantees that even if tmalicious players send false signature shares,

the scheme still correctly generates a signature s. This property is needed since

otherwise combination faces the problem of selecting the correct shares.

One can note that this problem may seem more acute for the decryption

process than the signing process, but a solution to this problem is required for

both cases. For example, the combiner receives signature shares from the servers

and has to generate the correct signature. One way for him is to pick at random

t+1 signature shares, to generate the possible signatures s

0

and to test whether

s

0

is a valid signature of m. If it is correct, the correct signature has been found,

otherwise, the combiner has to test another group of t+1 signature shares. Since

the combiner cannot guess where the bad shares are, it might face an exponential

number of trials.

In the decryption process, the combiner cannot even test whether the de-

cryption is correct or not. Therefore, it is necessary to devise an e�cient test

in order to check whether a player has correctly answered a request. Shoup has

proposed an e�cient proof to achieve such check and the same kind of proof

appears in [15, 8] but still requires safe prime modulus.

At the same time, known methods to jointly generate an RSA modulus cannot

be easily adapted to generate a safe prime modulus. Therefore our approach is

to put additional criteria at key generation and modify the proof of correctness

to work with the resulting RSA modulus.

3

2.2 Our results

The proof of \correctness" described in Shoup's protocol uses two important

properties of the subgroup Q

N

of squares of Z

N

�

when N is a safe modulus.

On one hand, this subgroup is cyclic and on the other hand, its order M does

not have small prime factors. The cyclic group is used to show the existence

of the discrete log in the proof of correctness. The use of safe primes allows

to guarantee that, with overwhelming probability, a random element in Q

N

is a

generator.

Our �rst observation relates the structure of Q

N

with gcd(p� 1; q � 1) and

the search for generators in this group to the prime factor decomposition of

p�1

2

and

q�1

2

. In particular, if

p�1

2

and

q�1

2

have no small prime factors, then

with high probability few randomly chosen elements generate the entire group

Q

N

. Moreover, using a nice trick of Gennaro et al. which �rst appeared in [9]

and the protocol recently proposed by Catalano et al. in [4], the calculation of

gcd(p� 1; q � 1) can be performed in a distributed way. This method allows to

keep key generation e�cient.

In this paper, we show how to jointly construct RSA moduli such that the

subgroup Q

N

is cyclic, which guarantees the existence of discrete logs and of

generators of Q

N

. Moreover, the order M of this group does not have small

prime factors less than some sieving bound B. Checking such primes does not

exceedingly increase the running time of the key generation algorithm.

There is still a di�culty : contrary to the case of safe prime modulus, picking

at random an element in Q

N

does not necessarily provide a generator of Q

N

with

high probability. To overcome the di�culty, we choose enough random elements

(g

1

; : : : ; g

k

) to guarantee that the group generated by hg

1

; : : : ; g

k

i is all of Q

N

with high probability. Such techniques have already been used by Frankel et al.

in [7] and a precise treatment has been given by Poupard and Stern in [14]. What

the paper shows is that the overhead can remain at a practical level as well.

2.3 Previous works

As already pointed out, another solution to the same problem has been proposed

by Damgard and Koprowski. Besides being based on standard assumptions, our

method is di�erent in that :

1. we make the group of squares cyclic,

2. we build p and q such that

p�1

2

and

q�1

2

do not contain small prime factors,

3. we use a set of generators of Q

N

found by picking at random few elements

in Q

N

.

3 Security Model

3.1 The Network

We assume a group of ` servers connected to a broadcast medium, and that mes-

sages sent on the communication channel instantly reach every party connected

to it.

4

3.2 Formal de�nition

A RSA threshold signature scheme consists of the four following components :

{ A key generation algorithm takes as input security parameters n; k, the num-

ber ` of signing servers, the threshold parameter t and a random string !;

it outputs a public key (N; e) where n is the size in bits of N , the private

keys d

1

; : : : d

`

only known by the correct server and for each u 2 [1; k] a list

v

u

; v

u;1

= v

u

d

1

; : : : v

u;`

= v

u

d

`

mod N of veri�cation keys.

{ A share signature algorithm takes as input the public key (N; e), an indices

1 � i � `, the private key d

i

and a message m; it outputs a signature share

s

i

= H(m)

d

i

mod N , where H(:) is a hash-and-pad function, and a proof of

its validity proof

i

.

{ A combining algorithm takes as input the public key (N; e), a message m, a

list s

1

; : : : s

`

of signature shares, for each u 2 [1; k] the list v

u

; v

u;1

; : : : v

u;`

of

veri�cation keys and a list proof

1

; : : : proof

`

of validity proofs; it outputs a

signature s or fails.

{ A veri�cation algorithm takes as input the public key (N; e), a message m,

a signature s; it outputs a bit b indicating whether the signature is correct

or not.

3.3 The players and the scenario

Our game includes the following players : a dealer, a combiner, a set of ` servers

P

i

, an adversary and users. All are considered as probabilistic polynomial time

Turing machines. We consider the following scenario :

{ At the initialization phase, the servers use the distributed key generation

algorithm to create the public, private and veri�cation keys. The public key

(N; e) and all the veri�cation keys v, v

i

are published and each server obtains

its share d

i

of the secret key d.

{ To sign a message m, the combiner �rst forwards m to the servers. Using its

secret key d

i

and its veri�cation keys v; v

u;i

for u 2 [1; k], each server runs the

share signature algorithm and outputs a signature share s

i

together with a

proof of validity of the share signature proof

i

. Finally, the combiner uses the

combining algorithm to generate the signature, provided enough signature

shares are available and valid.

3.4 The adversaries

We consider an adversary able to corrupt up to t out of the ` servers. Such a

corruption can be passive, i.e. the attacker only eavesdrops the servers. It can

also consist in making the servers fail and stop. Finally, it can be active; in this

case, the adversary completely controls the behavior of the corrupted servers. In

the following, we only consider non-adaptive adversaries who choose the servers

they want to corrupt before key generation.

5

3.5 Properties of threshold signature schemes

The two properties of a t out of ` threshold signature scheme of interest to us are

robustness and unforgeability. As we already mentioned, robustness guarantees

that even if up to t malicious players send false signature shares, the scheme still

returns a correct signature.

Unforgeability guarantees that any subset of t+1 players can generate a sig-

nature s, but disallows the generation by fewer than t players. This unforgeability

property should hold even if some subset of less than t players are corrupted and

collude.

3.6 The Games

In this section, we describe the security of the distributive version of the key

generation protocol of our scheme. We do not describe the game for the unforge-

ability of the signature scheme as the proof remains identical with what appears

in [17]. We have to show that the public information revealed during execution

does not release any information to the adversary.

Game for the distributive version of key generation.

The correctness of the key generation requires that the probability of the secret

keys d, p, q, and the public key (N; e) seem be uniformly distributed to the

adversary.

The secrecy of the key generation means that if there exists an adversary A

which corrupt at most t servers at the beginning of the game, then he cannot

obtain more information on the secret key held by uncorrupted players.

RemarksWe can note that we do not show that the information learned during

the key generation protocol does not help the adversary to decrypt or to sign

the message. We assume here a stronger adversary who can factor the modulus

N as Boneh and Frankel do.

4 Enhancing the Boneh-Franklin scheme

The aim of this section is to generate RSA moduli such that the group of squares

is a cyclic group whose order has no small prime factors. In the following section,

we will prove that this group can be generated with few random elements. In this

section, we use a sieving method to simultaneously improve the key generation

protocol and the probability of �nding a set of generators ofQ

N

. Next, we present

a protocol to compute the GCD of a known value and a shared value. We also

prove the robustness and the secrecy of this new distributed key generation

protocol.

4.1 Distributed RSA key Generation

In [2] Boneh and Franklin describe a protocol for generating a shared RSA

modulus. We describe this protocol and show how to generate the veri�cation

keys that we need as well.

6

1. In the �rst step, each server picks at random two values p

i

and q

i

in the

interval f

p

2:2

n=2�1

; : : : ; b

2

n=2

�1

`

cg according to [18], where n is the size in

bits of the modulus N . Then, we use a sieving algorithm in order to discard

p

1

+ : : : + p

`

and q

1

+ : : : + q

`

that have small prime factors and to also

discard p

1

+ : : :+ p

`

and q

1

+ : : :+ q

`

if p

1

+ : : :+ p

`

� 1 or q

1

+ : : :+ q

`

� 1

have small prime factors.

2. Then the BGW protocol [1, 2] is run to compute the productN of p

1

+: : :+p

`

and q

1

+ : : :+ q

`

.

3. Next, the parties perform a primality test similar to the Fermat test modulo

N . The practicality of this test is based on the empirical results of [16] where

Rivest showed that if sieving is performed, the Miller-Rabin primality test is

not needed as pseudoprimes are rare according to Pomerance's conjectures

[11, 12]. We set p = p

1

+ : : :+ p

`

and q = q

1

+ : : :+ q

`

.

4. Finally, we use another protocol described below in section 4.2 to compute

the inverse of the public key modulo '(N). Each server knows its share d

i

of the secret key d, then he computes and publishes v

u;i

= v

u

d

i

mod N for

all veri�cation keys v

u

. All other values are erased.

4.2 Computing the gcd of a public value and a shared secret value

We brie
y recall the protocol presented by Catalano et al. [4] for inverting a

public value e modulo a shared value '. The basic trick stems from the obser-

vation that gcd(e; ') = gcd(e+ R';') where R is a large integer used to mask

the shared and secret value ' = '

1

+ : : :+'

`

. Server i chooses a random integer

r

i

2

R

[0::2

n+k

0

], where k

0

is a security parameter, computes c

i

= '

i

+ er

i

and

forwards c

i

to all other servers. Each server can compute c =

P

i

c

i

= ' + eR

if we set R =

P

i

r

i

. This value can be publicly known and then, all servers can

compute gcd(e; c) which is equal to gcd(e; ') and u and v such that eu+ cv = 1

when gcd(e; ') = 1. Then, it is easy to show that if we replace c by ' + eR,

we obtain e(u + Rv) + 'v = 1. Hence, u + Rv is the inverse of e modulo '. In

this case, if we note d the inverse of e mod ', each server assigns its share of the

inverse d to d

i

= vr

i

and the �rst server to d

1

= u+ vr

1

.

We have presented here the protocol in the honest-but-curious model. But

this protocol can be made robust following [4]. We can also note that this algo-

rithm allows to compute the gcd.

4.3 E�cient sieving algorithm improving the generation of random

number without small factors

Here we want to show how to generate N such that p

0

=

p�1

2

and q

0

=

q�1

2

have

no small prime factors. Our method uses a new distributed sieving protocol

designed by Boneh, Malkin and Wu in [3] that we patch in order to create p

such as neither p, nor p

0

has a small prime factor less than B. Moreover, we

show how to withstand malicious adversaries. We denote by P the product of

all odd small primes up to B.

7

1. Each server picks a random integer a

i

in the range [1; : : : ; P] such that a

i

is relatively prime to P . Then, since each a

i

is a random integer relatively

prime to P , their product a = a

1

� : : : � a

`

mod P is also relatively prime

to P .

2. The servers perform a protocol to convert the multiplicative sharing of a to

an additive sharing of a = b

1

+ : : :+ b

`

using the BGW protocol.

3. Each server picks a random r

i

2 [0;

2

n

P

] and sets p

i

= r

i

P + b

i

.

Clearly, p =

P

p

i

� a mod P and hence p is not divisible by any prime

smaller than B. We can note that p = RP + a where R =

P

i

r

i

.

In order to also prove that p

0

=

p�1

2

has no prime factors less than B, one has to

check whether gcd(p�1; P) = gcd(2p

0

; P) = 1 and gcd(p�1; 4P) = 2 to test the

power of 2. If we denote P

0

by 4P , we can perform a single test gcd(p�1; P

0

) = 2.

To distribute this test in the honest-but-curious model, the �rst server sets its

parts p

1

to p

1

� 1 and we use the distributed GCD protocol described in section

4.2.

It is also possible to make this test robust in presence of malicious players.

To resist against such players, we �rst run a \sum-to-poly" algorithm as de-

scribed in [6, 7]. When the polynomial sharing of p is obtained, one can note

that

P

j2Snf0g

�

S

0;j

= 1, where �

S

0;j

denotes the Lagrange coe�cient of the jth

server. This follows from the fact that if one shares with Shamir's Sharing Secret

Scheme, the constant polynomial equal to 1, the value of this polynomial in 0

is also 1. Therefore, server i can set its new polynomial share to f(i)� 1 if f(i)

denotes its polynomial share. Indeed, if p = f(0) =

P

j2Snf0g

�

S

0;j

f(j), then

p� 1 = f(0)� 1 =

X

j2Snf0g

�

S

0;j

f(j)�

X

j2Snf0g

�

S

0;j

=

X

j2Snf0g

�

S

0;j

(f(j)� 1)

Next, the GCD protocol can also be applied with a polynomial sharing of the

secret value ' = p� 1.

Finally, the protocol that transforms the multiplicative sharing of a into an

additive sharing can also be made robust as it uses the BGW protocol. This

transformation calls ` times the BGW protocol. At the beginning, b

i;0

= 0 for all

i 2 f0; : : : ; `g. Then, for i = 1 to `, u

i

= a

i

and u

j

= 0 for 8j 6= i, and the BGW

protocol performs (b

1;i�1

+: : :+b

`;i�1

)�a

i

= (b

1;i�1

+: : :+b

`;i�1

)(u

1

+: : :+u

`

) =

b

1;i

+ : : :+ b

`;i

.

Theorem 1. The key generation protocol of Boneh-Franklin and the sieving

protocol allow to generate RSA moduli such that the order M of the group Q

N

does not contain small prime factors less than B.

It is obvious to see that the use of the sieving method to guess p

i

's and q

i

's

allows to replace the �rst step of the Boneh-Franklin protocol and speed up the

running time of this algorithm since this avoids many rewindings in the phase 3

of Boneh-Franklin. Moreover, the sieving protocol can be adapted to take into

account the small factors in the factorization of p

0

and q

0

.

8

4.4 The key generation of N such that Q

N

is cyclic

Here, we show how to generate N such that the group Q

N

is cyclic. To guarantee

that Q

N

is cyclic, we use the fact that the product of two cyclic groups which

orders are coprime is a cyclic group. The following lemma and the GCD protocol

enables to check that p

0

and q

0

are coprime in a distributed way. First we prove

a lemma which has been used in another form in [9].

Lemma 1. Let N = pq an RSA modulus, gcd(p � 1; q � 1)j gcd(N � 1; '(N))

and the square free part of gcd(N � 1; '(N)) divides gcd(p� 1; q � 1).

Proof. We can note that '(N) = N � p� q+1 = (N � 1)� (p� 1)� (q� 1). So,

(N � 1)� '(N) = (p� 1) + (q � 1)

Consequently, gcd(N�1; '(N)) = gcd((N�1)�'(N); '(N)) = gcd((p�1)+(q�

1); '(N)). If we note a = p� 1 and b = q� 1, we have to compare gcd(a+ b; ab)

and gcd(a; b). It is easy to see that gcd(a; b)j gcd(a+b; ab), because if f j gcd(a; b),

f ja and f jb, so f ja+ b and f jab.

But let f j gcd(a+ b; ab). As,

gcd(a+ b; ab) = gcd(a+ b; ab� a(a+ b)) = gcd(a+ b;�a

2

) = gcd(a+ b; a

2

)

We can assume that f j(a + b) and f ja

2

. If f is a prime number, f ja and as

f j(a + b), f j gcd(a; b). If f is not a prime number but a power of some prime

number, say f = f

0

�

, we have f

0

�

ja

2

and � = 2�. Hence, f

0

�

ja + b and f

0

�

ja,

so f

0

�

j gcd(a; b). ut

Corollary 1. If gcd(N � 1; '(N)) = 2, then gcd(p� 1; q � 1) = 2.

Proof. If p

0

and q

0

have not 2 as a prime factor, therefore, we have to check

whether gcd(N � 1; '(N)) = 2 in order to see that gcd(p� 1; q � 1) = 2. These

last veri�cation can be made using the GCD protocol described in section 4.2 ut

Theorem 2. The key generation protocol of Boneh-Franklin and the GCD pro-

tocol allow to generate RSA moduli such that the group Q

N

is cyclic of order

M = p

0

q

0

, where N = pq, p = 2p

0

+ 1, q = 2q

0

+ 1 and neither p

0

nor q

0

have

prime factors smaller than B. The iteration number of this protocol with respect

to the Boneh-Franklin protocol is on average 4� e

ln(B).

Proof. Following section 4.3, we can assume that we get an RSA modulus such

that p � 1 and q � 1 have all theirs prime divisors greater than B, they do not

have common divisors, i.e., gcd(p� 1; q � 1) = 2 and

p�1

2

and

q�1

2

do not have

small prime factors. As the product of cyclic groups whose order are coprime is a

cyclic group, the groups of squares in Z

p

�

and in Z

q

�

are cyclic, and so the group

Q

N

is also cyclic. This allows to guarantee that there exists a cyclic subgroup in

Z

N

�

of order M = p

0

q

0

.

We can estimate the iteration number of this algorithm with respect to the

Boneh-Franklin protocol. First, it is a well-known fact that Pr

p

0

;q

0

[gcd(p

0

; q

0

) =

9

1] =

6

�

2

> 1=2. Moreover, the only slowing factor at the key generation is the

check that gcd(P

0

; p�1) = 2, where P

0

= 4P . We can note that Pr

p

0

[gcd(2p

0

; P

0

) =

2] = Pr

p

0

[2 - p

0

^3 - p

0

^: : :^B - p

0

] = (1�

1

2

)(1�

1

3

) : : : (1�

1

B

) =

Q

p

i

�B

(1�

1

p

i

) �

1

e

ln(B)

according to the second theorem of Mertens, where
 is the Euler con-

stant. Therefore, we have to run this algorithm 2 � (e

ln(B) + e

ln(B)) on

average in order to get such RSA moduli. ut

4.5 Proofs of security and robustness

Theorem 3. The distributed key generation is secure and robust against static

and malicious adversaries controlling up to t servers.

Proof. We begin to show that the distributive version of the key generation is

secure against a t-static adversary and then, we will show that this protocol is

robust against a t-malicious adversary.

Indistinguishability of data received by the adversary.

In the proof of secrecy, we have to show that if there exists an adversary A

which corrupts at most t servers at the beginning of the game, then we can use

it to construct an attacker against the centralized version of the key generation

protocol in order to factor the modulus N . This attacker is a simulator, whose

role is to simulate fake information to the adversary in order to provide him

the same information as it will receive in its normal game so that this fake

information cannot be distinguished from real ones by the adversary. Therefore,

the attacker will be sometimes called the simulator Sim.

Let us consider the following game A :

A1 The attacker chooses to corrupt t servers. He learns all their secret informa-

tion and actively controls their behavior.

A2 The key generation algorithm is run; the public and secret keys and the

veri�cation keys are computed.

A3 The adversary tries to factor the RSA modulus based on the information

he learned at the key generation or to learn information on the shares of the

private key hold by the non corrupted servers.

While the Boneh and Franklin scheme requires to simulate only the public mod-

ulus N at key generation, our scheme additionally needs veri�cation keys. We

begin to prove the security of the RSA modulus.

In lemma 2.1 of [2], Boneh and Franklin reduce the distributed protocol to

the centralized protocol and show in particular that if there is an attacker A

that achieves breaking the secrecy of the distributed key generation protocol

(i.e., with t parts of the secret key), there is a simulator Sim that factors a

non-negligible amount of RSA modulus N of size n. The aim of their reduction

is to prove the secrecy of the RSA modulus assuming the hardness of factoring a

non-negligible fraction of the RSA moduli in Z

(2)

n

, where Z

(2)

n

is the set of RSA

moduli such that N = pq that can be output by their protocol when t parties

10

are involved and each party picks two shares p

i

and q

i

of n=2 bits. They prove

the following theorem.

Theorem 4. Suppose there exists a polynomial time algorithm A that given :

(1) a random N 2 Z

(2)

n

chosen from the distribution on Z

(2)

n

induced by the

protocol, and (2) the shares hp

i

; q

i

i of t parties, factors N with probability at

least 1=n

c

.Then there exists an expected polynomial time algorithm B that factors

1=4(t+ 1)

3

n

c

of the integers in Z

(2)

n

.

We argue that the modi�cation that we have made on the key generation protocol

do not change Boneh and Franklin result on N . Indeed, we slightly restrict the

choice of p and q by allowing only values such that gcd(p � 1; q � 1) = 2 and

p�1

2

and

q�1

2

do not have small prime factors. We have seen in theorem 2 that

we decrease the probability by a factor 1=4(e

log(B)). Hence, the result is still

valid by replacing 1=4(t+ 1)

3

n

c

by 1=16(e

log(B))(t + 1)

3

n

c

.

Now, we have to prove that the information revealed by the veri�cation

keys does not help the adversary.

From the information known by the adversary, namely the t shares of the

private key obtained from the corrupted servers and the veri�cation keys v

u

2

Q

N

for u 2 [1; k], we want to prove that the veri�cation key of each server can

be computed by the adversary. Hence, this revealed information cannot give him

information on the shares of the private key held by non corrupted servers.

Without loss of generality, we can assume that A corrupt the t �rst servers.

So, the attacker chooses the secret keys d

1

; : : : ; d

t

of the corrupted players in

the phase A1 of game A; d

i

should be in the interval f0; : : : ;Mg, but since M

is unknown, Sim picks d

i

in f0; : : : ; bN=4cg. Anyway, the statistical distance

between the uniform distribution on f0; : : : bN=4c � 1g and the uniform distri-

bution on f0; : : :M � 1g is O(N

�1=2

) so the adversary A cannot distinguish real

and simulated corrupted secret keys.

In the simulation, Sim chooses the v

u

's by picking k random elements w

u

's

in Z

N

�

such that v

u

= w

u

2e

mod N . Therefore, we know that v

u

d

= w

u

2

mod N

and the v

u

's are in Q

N

. The veri�cation keys of corrupted servers are computed

using the known secret keys d

i

and the missing v

u;t+1

; : : : ; v

u;`

are obtained

with the Lagrange interpolation formula. Of course, we are not able to �nd the

missing secret keys but in fact we do not need them.

Indeed, we denote by S, 0 and the index of corrupted players. For each

veri�cation keys v

u

, the shares of the corrupted server i are v

u;i

= v

u

�d

i

mod N

where we denote `! by �. A can compute these values as he knows d

i

for the set

of corrupted servers. For the other servers, the simulator uses the polynomial

interpolation.

v

u;i

= w

u

2�

S

i;0

�

Y

j2Snf0g

v

u

d

j

�

S

i;j

= v

u

d�

S

i;0

+

P

j2Snf0g

d

j

�

S

i;j

mod N

11

where S = f0; 1; : : : tg,

�

i;j

S

= �

Q

j

0

2Snfjg

(i� j

0

)

Q

j

0

2Snfjg

(j � j

0

)

2 Z and �f(i) =

X

j2S

�

S

i;j

f(j) modM

Robustness of the key generation protocol.

To show the robustness of our scheme we use two robustness results. The �rst

one comes from the Frankel et al. proof of [7] where they make the Boneh and

Franklin protocol robust against malicious t-adversary. The other result comes

from the Catalano et al. proof of [4] where they make the inverse computation

modulo a shared value robust against t-adversary.Moreover, the sieving protocol,

developed by Boneh et al. can be made robust as well. So, we have to show that

this last protocol can be achieved in a robust way. As it uses the BGW protocol,

if we add some commitment stages, it is possible to make this last protocol

robust. ut

5 Enhancing the Shoup scheme

The aim of this section is to revisit the proof of correctness originally designed

by Shoup to cover the case of RSA moduli generated as in the previous section.

This uses a method by which we generate the entire group of squares with few

random elements with high probability.

5.1 Proof of correctness

Let N be a modulus such that N = pq and p = 2p

0

+ 1 and q = 2q

0

+ 1 where

p

0

and q

0

have no small prime factors and gcd(p � 1; q � 1) = 2. Accordingly

Q

N

is cyclic and there exists a generator g in Q

N

. Thus, the discrete log of any

element c

i

2

in basis g exists, where c

i

= c

2�d

i

and � = `!. As we will see in

section 5.3, we can denote by v

1

; : : : ; v

k

a k-tuple of random elements in (Q

N

)

k

such that with high probability, this tuple generates the whole group Q

N

of

order M = p

0

q

0

, i.e. for each x 2 Q

N

, there exists (a

1

; : : : ; a

k

) 2 [0;M [

k

such

that x =

Q

k

i=1

v

i

a

i

mod N .

Each server i has a k-tuple of veri�cation keys v

1;i

= v

1

d

i

mod N; : : : ; v

k;i

=

v

k

d

i

mod N . He computes a signature share, c

i

= c

2d

i

�

mod N , where d

i

is the

ith signature share of d and proves that

log

v

1

(v

1;i

) = : : : = log

v

k

(v

k;i

) = log

c

4�

(c

i

2

)

The value c

i

2

is a square and is an element of Q

N

.

Now, we describe the proof of \correctness" and still let d

i

2 [0;M [be

the secret share of a server, and A and B

0

two integers such that log(A) �

log(B

0

Mh) + k

2

where B

0

and k

2

are security parameters and h is the number

of rounds. Finally, k

1

is a parameter such that the cheating probability 1=B

0

h

is

12

< 1=2

k

1

. Whereas security parameter k

1

controls the completeness and statistical

zero-knowledge results, security parameter k

2

controls the soundness result. We

present the proof for h = 1.

The prover chooses a random r in [0; A[. Then, he computes t = (v

0

1

; : : : ; v

0

k

; c

0

) =

(v

r

1

; : : : ; v

r

k

; c

4�r

). Let e be the �rst b

0

= log(B

0

)� 1 bits of the hash value

e = [H(v

1

; : : : ; v

k

; c

4�

; v

1;i

; : : : ; v

k;i

; c

i

2

; v

0

1

; : : : ; v

0

k

; c

0

)]

b

0

if we denote by [x]

b

0

the �rst b' bits of x. Next, the prover calculates z where

z = r + ed

i

. The proof is the pair (e; z) 2 [0; B

0

[�[0; A[. To check it, the veri�er

has to compute whether

e = [H(v

1

; : : : ; v

k

; c

4�

; v

1;i

; : : : ; v

k;i

; c

i

2

; v

1

z

v

1;i

�e

; : : : ; v

k

z

v

k;i

�e

; c

4�z

c

i

�2e

)]

b

0

and verify whether 0 � z < A.

5.2 Security analysis of the proof of correctness

Proof of Completeness.

Theorem 5. The execution of the protocol between a prover who knows the

secret d

i

and a veri�er is successful with overwhelming probability if B

0

Mh=A is

negligible where h is the number of rounds.

Proof. If the prover knows a secret d

i

2 [0;M [and follows the protocol, he fails

only if some z � A. For any value x 2 [0;M [the probability of failure of such

event taken over all possible choices of r is smaller than B

0

M=A. Consequently

the execution of the proof is successful with probability� (1�

B

0

M

A

)

h

� 1�

B

0

Mh

A

.

ut

Proof of Soundness. Let us focus on soundness.

Lemma 2. If the veri�er accepts the proof, with probability � 1=B

0

+� where � is

a non-negligible quantity, then using the prover as a \black-box" it is possible to

compute � and � such that j�j < A and j� j < B

0

such that v

1

�

= v

1;i

�

; : : : ; v

k

�

=

v

k;i

�

; c

4��

= c

i

2�

.

Proof. If we rewind the adversary and get two valid proofs for the same commit-

ment t, (e; z) and (e

0

; z

0

), we have for u = 1; : : : ; k i.e. for all veri�cation keys,

v

u

r

= v

u

z

v

�e

u;i

= v

u

z

0

v

�e

0

u;i

. So, we obtain v

u

�

= v

u;i

�

mod N if we set � = z

0

� z

and � = e� e

0

. Therefore we can write v

1

�

= v

1;i

�

; : : : ; v

k

�

= v

k;i

�

; c

4��

= c

i

2�

.

ut

Theorem 6. (Soundness) Assume that some probabilistic polynomial Turing

machine

~

P is accepted with non-negligible probability. If B

0

< B, h� log(B

0

) =

�(k

1

), k = �(k

1

= log(B)) and log(A) is a polynomial in k

1

and log(N), we can

prove that c

4�d

i

= c

i

2

and so c

i

is a correct signature share.

13

Proof. By the previous lemma we can assume that we have � and � such that

v

u

�

= v

u

d

i

�

for u = 1; : : : ; k and c

4��

= c

i

2�

.

Then, we can write c

4�

with the set of generators of Q

N

since it is a square :

c

4�

= v

1

�

1

� : : :� v

k

�

k

.

Consequently if we raise this equation to the power �, we obtain c

4��

=

v

1

��

1

� : : : � v

k

��

k

. But, c

4��

is equal to c

i

2�

and v

1

��

1

� : : : � v

k

��

k

is equal

to (v

1

�

1

� : : :� v

k

�

k

)

�d

i

as v

u

�

= v

u

d

i

�

for u = 1; : : : ; k.

Therefore, c

i

2�

= (c

4�

)

�d

i

with j� j < B

0

. We can simplify this equation by �

if � is coprime with p

0

q

0

. So we obtain c

4�d

i

= c

i

2

if B

0

< B.

Let ~�(k

1

) the probability of success of

~

P . If ~�(k

1

) is non-negligible, there

exists an integer c such that ~�(k

1

) � 1=k

1

c

for in�nitely many values k

1

. The

probability for

~

P to generate a correct signature share while the v

i

s generate

the group Q

N

is larger than ~�(k

1

) � 2�

2

k�1

�

1

B

k�1

according to the result of

the section 5.3. So, if k = �(k

1

= log(B)), for in�nitely many values k

1

, 2�

2

k�1

�

1

B

k�1

� 1=3k

1

c

.

Furthermore, for k

1

large enough, 1=B

0

h

< 1=3k

1

c

if h� log(B

0

) = �(k

1

). So

by taking � = ~�(k

1

)=3 in lemma 2 we conclude that it is possible to obtain (�; �)

in polynomial time O(1=�) = O(k

1

c

). ut

Proof of Statistical Zero-Knowledge.

Proof. Furthermore, we can prove that if A is much larger than B

0

� N , the

protocol statistically gives no information about the secret. In the random oracle

model where the attacker has a full control of the values returned by the hash

function H , we de�ne the �rst b

0

bits of the value of H at

(v

1

; : : : ; v

k

; c

4�

; v

1;i

; : : : ; v

k;i

; c

i

2

; v

1

z

v

1;i

�e

; : : : ; v

k

z

v

k;i

�e

; c

4�z

c

i

�2e

)

to be e. With overwhelming probability, the attacker has not yet de�ned the

random oracle at this point so the adversary A cannot detect the fraud. ut

5.3 Choice of parameters

In this section we prove that with high probability we generate the entire square

group Q

N

with only few random elements.

Theorem 7. With probability greater than 1�2�

2

k�1

�

1

B

k�1

, a random k-tuple

(v

1

; : : : ; v

k

) generates Q

N

.

Let us �rst de�ne additional notations. If (v

1

; : : : ; v

k

) is a k-tuple of (Q

N

)

k

, we

use hv

1

; : : : ; v

k

i to denote the subgroup of Q

N

that is generated by the v

i

's, i.e.,

hv

1

; : : : ; v

k

i = fx 2 Q

N

j9(�

1

; : : : ; �

k

) x =

k

Y

i=1

v

�

i

i

mod Ng

14

We also denote by �(k) the Riemann Zeta function de�ned by �(k) =

P

+1

d=1

1

d

k

for any integer k � 2. If n = q

1

e

1

� q

2

e

2

� : : :� q

j

e

j

, we denote by '

k

(n)

n

k

� (1�

1

q

1

k

)(1�

1

q

2

k

) : : : (1�

1

q

j

k

)

the generalization of the Euler function in the case of k generators. Finally, if n

has no prime factors less than B, we de�ne �

B

(k) has

P

+1

d=B

1

d

k

.

We can note that

p�1

2

and

q�1

2

are mutually prime. To �nd a generator v of

Q

N

, we have to �nd a v such that v mod p generates Q

p

and v mod q generates

Q

q

.

We estimate the probability that x 2 Q

N

is a generator of Q

N

. The proba-

bility to catch such number depends on the factorization of the order p

0

of Q

p

and q

0

. Yet, even if M = p

0

q

0

has no small factors, the probability is to obtain

such generator is not overwhelming. Indeed, if we pick a random element v in

Q

p

, the probability that v is a generator of Q

p

is

Pr = Pr

v2Q

p

(hvi = Q

p

) =

'(p

0

)

p

0

=

Y

p

i

�B;p

i

jp�1

(1�

1

p

i

) � 1�

1

p

1

and if p

1

� 2B, we can bound the probability by � 1 �

1

2B

. The probability

that B � p

1

� 2B is equal to the probability that p

0

is divisible by at least one

prime that belongs in [B; 2B]. So, Pr

p

1

[B � p

1

� 2B] =

P

B�q

i

�2B;q

i

prime

1

q

i

�

1

2B

� (�(2B)� �(B)) if we denote by �(x) the number of primes between 2 and

x. If B = 2

16

, with probability � 1=26, Pr �

1

2

17

. Consequently, we cannot say

that this probability is overwhelming.

However, if we allow to choose several random elements in Q

N

, then the sub-

group hv

1

; : : : ; v

k

i is a equal to Q

N

with high probability. A k-tuple (v

1

; : : : ; v

k

)

is a set of generators of Q

N

if (v

1

mod p; : : : ; v

k

mod p) is a set of generators

of Q

p

and if (v

1

mod q; : : : ; v

k

mod q) is a set of generators of Q

q

. Hence, the

number of k-tuples of (Q

N

)

k

that generate Q

N

is the number of these k-tuples

viewed as elements of (Q

p

)

k

that generate Q

p

and viewed as elements of (Q

q

)

k

that generate Q

q

.

There are p

0

=

p�1

2

elements in Q

p

. To generate this cyclic subgroup of Z

p

�

(since it is a subgroup of a cyclic group), there are '(p

0

) such generators.

The analysis made by Poupard and Stern in [14] can be extended in our

context as it is true in general cyclic groups and not only in Z

p

e

�

. Let us now

present a preliminary lemma.

Lemma 3. The number of k-tuples of (Q

p

)

k

that generate Q

p

is '

k

(p

0

).

The proof of this lemma is given in appendix.

Now, we return back to the proof of the theorem 7. Let us �rst introduce

a notation : for any integer x, let S

x

be the set of the indices i such that p

i

is a factor of x. From the previous lemma, we know that the probability for a

15

k-tuple of (Q

p

)

k

to generate Q

p

is

'

k

(p

0

)

p

0

k

. Lemma 3 shows that Pr is equal to

the product

Q

i2S

p

0

1 �

1

p

i

k

. The inverse of each term 1 �

1

p

i

k

can be expanded

in power series : (1 �

1

p

i

k

)

�1

=

P

1

j=0

(1=p

i

k

)

j

. The probability Pr is a product

of series with positive terms, Pr= (

Q

i2S

p

0

P

1

�

i

=0

1

p

i

�

i

k

)

�1

so we can distribute

terms and obtain that Pr

�1

is the sum of 1=d

k

where d ranges over integers whose

prime factors are among p

i

s, i 2 S

p

0

. This sum is smaller than the unrestricted

sum

P

1

d=1

1=d

k

= �(k). Finally, we obtain Pr > 1=�(k).

In our case, neither p

0

nor q

0

have prime factors less than B, therefore, the Rie-

mann Zeta function is bounded by the following integral : �

B

(k) =

P

1

d=B

1=d

k

<

1+1=B

k

+

R

1

B

dx=x

k

= 1+

k�1+B

k�1

�

1

B

k

. Since for all x > �1, 1=(1+x) � 1�x,

1=�(k) > 1�

k�1+B

k�1

�

1

B

k

.

Therefore, the number of k-tuples of (Q

p

)

k

that generate Q

p

is '

k

(p

0

) and

Pr

(v

1

;::: ;v

k

)2(Q

p

)

kfhv

1

; : : : ; v

k

i = Q

p

g =

'

k

(p

0

)

p

0

k

>

1

�(k)

> 1�

k +B � 1

k � 1

�

1

B

k

Consequently, with probability greater than 1� 2�

2

k�1

�

1

B

k�1

, the k-tuple

(v

1

; : : : ; v

k

) generates Q

p

and Q

q

and therefore Q

N

. For example, with k = 6

and B = 2

16

, this probability is larger than 1� 1=2

80

.

6 Practical parameters for the scheme

In the key generation we can test whether p, q, p

0

and q

0

are divisible by

small primes � B and gcd(p

0

; q

0

) = 1. We can assume that B is the �rst

prime greater than 2

16

. The loss in the key generation phase is a factor 80

on average. Indeed, we have seen in the proof of theorem 2 section 4.4 that

Pr

p

0

[p

0

has no small prime factors � B] �

1

e

ln(B)

. If we �x B to 2

16

, we can

assume that Pr

p

0

[p

0

has no small prime factors � B] >

1

20

. Therefore, to gener-

ate p and q such that neither p

0

nor q

0

have small prime factors and such that

gcd(p � 1; q � 1) = 2, we have to run on average 2� (20 + 20) = 80 times this

protocol. This factor is not critical as this algorithm is run only once.

In the proof of correctness, if we want to have a security parameter of 2

80

,

we choose B

0

= 2

16

< B. Hence, we have to choose h = 5 rounds. To generate

the group of squares with probability greater than 1 � 2

80

, we need u = 6

veri�cation keys. Therefore, we need 30 proofs of correctness but is is acceptable

in the applications that we have in mind.

7 Conclusion

In this paper, we have showed how to avoid safe prime RSA modulus in Shoup's

proof of robustness such that the proof remains correct. We consider environ-

ments where high security is required such as electronic voting schemes, and

therefore, we need protocols using standard assumptions and we are ready to

pay the price for it.

Basically, we use three di�erent techniques allowing to prove that :

16

{ the group of square is cyclic,

{ we generate p and q such that p

0

and q

0

do not contain small prime factors,

which allows us to generate the group Q

N

{ we generate a set of generators of Q

N

by picking at random di�erent gener-

ators in Q

N

.

Finally, we show how to adapt Shoup proof in order to work with di�erent

elements that generate Q

N

instead of a single one.

References

1. M. Ben-Or, S. Goldwasser, and A. Widgerson. Completeness theorems for non-

cryptographic fault-tolerant distributed computing. In Proceedings of the 20th

STOC, ACM, pages 1{10, 1988.

2. D. Boneh and M. Franklin. E�cient Generation of Shared RSA keys. In Crypto

'97, LNCS 1233, pages 425{439. Springer-Verlag, 1997.

3. D. Boneh, M. Malkin, and T. Wu. Experimenting with Shared Generation of RSA

keys. In Internet Society's 1999 Symposium on Network and Distributed System

Security (SNDSS), pages 43{56, 1999.

4. D. Catalano, R. Gennaro, and S. Halevi. Computing Inverses over a Shared Secret

Modulus. In Eurocrypt '00, LNCS 1807, pages 190{207. Springer-Verlag, 2000.

5. I. Damg�ard and M. Koprowski. Practical Threshold RSA Signatures Without a

Trusted Dealer. Technical report, Aarhus University, BRICS, November 2000.

6. Y. Frankel, P. Gemmell, P. MacKenzie, and M. Yung. Optimal Resilience Proactive

Public-Key Cryptosystems. In FOCS '97, pages 384{393, 1997.

7. Y. Frankel, P. MacKenzie, and M. Yung. Robust E�cient Distributed RSA Key

Generation. In STOC '98, pages 663{672, 1995.

8. R. Gennaro, S. Jarecki, H. Krawczyk, and T. Rabin. Robust Threshold DSS Sig-

natures. In Eurocrypt '96, LNCS 1070, pages 425{438. Springer-Verlag, 1996.

9. R. Gennaro, D. Micciancio, and T. Rabin. An E�cient Non-Interactive Statistical

Zero-Knowledge Proof System for Quasi-Safe Prime Products. In Proc. of the Fifth

ACM Conference on Computer and Communications Security '98. ACM, 1998.

10. N. Gilboa. Two Party RSA Key Generation. In Crypto '99, LNCS 1666. Springer-

Verlag, 1999.

11. C. Pomerance. On the distribution of pseudoprimes. In Mathematics of Compu-

tation, 37(156), pages 587{593, 1981.

12. C. Pomerance. Two methods in elementary analytic number theory. pages 135{

161. Kluwer Academic Publishers, 1989.

13. G. Poupard and J. Stern. Generation of Shared RSA Keys by Two Parties. In

Asiacrypt '98, LNCS 1514, pages 11{24. Springer-Verlag, 1998.

14. G. Poupard and J. Stern. Short Proofs of Knowledge for Factoring. In PKC '00,

LNCS 1751, pages 147{166. Springer-Verlag, 2000.

15. T. Rabin. A Simpli�ed Approach to Threshold and Proactive RSA. In Crypto '98,

LNCS 1462, pages 89{104. Springer-Verlag, 1998.

16. R. Rivest. Finding Four Million Large Random Primes. In Crypto '90, LNCS 537,

pages 625{626. Springer-Verlag, 1991.

17. V. Shoup. Practical Threshold Signatures. In Eurocrypt '00, LNCS 1807, pages

207{220. Springer-Verlag, 2000.

18. R.D. Silverman. Fast Generation of Random, Strong RSA Primes. RSA Labora-

tories, May 1997.

17

8 Appendix

In this appendix, we prove the lemma 3.

Proof. Let (v

1

; : : : ; v

k

) be k-tuple of (Q

p

)

k

and v be a generator of Q

p

; for

i = 1; : : : ; k, we de�ne �

i

2 Z

p

0

by the relation v

�

i

= v

i

mod p.

We �rst notice that (v

1

; : : : ; v

k

) generatesQ

p

if and only if the ideal generated

by �

1

; : : : ; �

k

in the ring Z

p

0

is the entire ring. Bezout equality shows that this

event occurs i� gcd(�

1

; : : : ; �

k

; p

0

) = 1.

Now, we count the number of k-tuples (�

1

; : : : ; �

k

) 2 (Q

p

)

k

such that

gcd(�

1

; : : : ; �

k

; p

0

) = 1.

Let

Q

t

0

i=1

q

i

f

i

the prime factorization of p

0

. We know that

gcd(x;

t

0

Y

i=1

q

i

f

i

) = 1 () 8i � t

0

; gcd(x; q

i

f

i

) = 1 () 8i � t

0

; gcd(x mod q

i

f

i

; q

i

f

i

) = 1

Using the Chinese remainder theorem, the problem reduces to counting the

number of k-tuples (�

1

; : : : ; �

k

) of (Z

q

i

f

i

)

k

such that gcd(�

1

mod q

i

f

i

; : : : ; �

k

mod

q

i

f

i

; q

i

f

i

) = 1 for i = 1; : : : ; t

0

. The k-tuples that do not verify this relation for a

�xed index i are of the form (q

i

1

; : : : ; q

i

k

) where (

1

; : : : ;

k

) 2 Z

q

i

f

i

�1

k

and

there are exactly q

i

k(f

i

�1)

such k-tuples.

Finally, there are

Q

t

0

i=1

(q

i

kf

i

�q

i

k(f

i

�1)

) k-tuples of (Z

p

0

)

k

such that gcd(�

1

; : : : ; �

k

; p

0

) =

1 and this is equal to

Q

t

0

i=1

'

k

(q

i

f

i

) = '

k

(p

0

) since '

k

is multiplicative. ut

18

