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Abstrat. We apply powerful, reently disovered tehniques for the list deoding of error-orreting odes

to the problem of eÆiently traing traitors. Traitor traing shemes have been extensively studied for use

as a piray deterrent. In a widely studied model for proteting digital ontent, eah user in the system is

assoiated with a unique set of symbols. For example, the sets may be used to install a software CD or

derypt pay-TV ontent. The assignment of sets is done in suh a way that if a bounded olletion of sets

is used to form a new set to enable piray, at least one of the traitor sets an be identi�ed by applying a

traitor traing algorithm to the newly formed set. Muh work has foused on methods for onstruting suh

traeability shemes, but the omplexity of the traitor traing algorithms has reeived little attention. A

widely used traitor traing algorithm, the TA algorithm, has a running time of O(N) in general, where N

is number of sets in the system (e.g., the number of opies of the CD), and therefore is ineÆient for large

populations. In this paper we use a oding theoreti approah to produe traeability shemes for whih

the TA algorithm is very fast. We show that when suitable error-orreting odes are used to onstrut

traeability shemes, and fast list deoding algorithms are used to trae, the run time of the TA algorithm

is polynomial in the odeword length. We also use the strength of the error-orreting ode approah

to onstrut traeability shemes with more eÆient algorithms for �nding all possible traitor oalitions.

Finally, we provide evidene that amongst traeability shemes in general, TA traeability shemes are the

most likely to be amenable to eÆient traing methods.

1. Introdution

Traeability shemes are introdued in [7℄ and have been extensively studied in the intervening years.

We fous on one of the few aspets of this area of work that has reeived little attention: the omplexity

of the traitor traing algorithms. We show that powerful new tehniques for the list deoding of error-

orreting odes enable us to onstrut traeability shemes with very fast traitor traing algorithms. These

list deoding tehniques are reeiving wide attention in the oding theory ommunity, and improvements

and generalizations are being rapidly produed. This paper gives the �rst appliations of these important

tools to the problem of traing traitors.

A popular model for traeability shemes is one in whih a unique set (possibly ordered) of r symbols is

assoiated with eah user. For example, the set may be embedded in a software CD possessed by the user, or

ontained in a smartard the user has for the purpose of viewing enrypted pay-TV programs (in the latter

ase, the set orresponds to a set of keys). When a oalition forms to ommit piray, it must onstrut a

set to assoiate with the pirate objet. In the ase of unordered sets, this pirate set onsists of r symbols,

eah of whih belongs to at least one oalition member's set. If the sets are ordered, the oalition members

have less freedom and must form an ordered pirate set in whih the symbol in eah position is idential to

the symbol in the same position in the ordered set of some oalition member. In either senario a traitor

traing algorithm is applied to the pirate, and the sets are onstruted in suh a way that the algorithm

only identi�es an atual traitor or traitors. In pratie, one randomly hooses a set of symbols fs

(i;y)

g with

i 2 f1; :::; rg and y in a �nite alphabet Q, and the olletion of symbols orresponding to a given user is

determined by the set assoiated with that user. For example, if the ordered set x = (x

1

; :::; x

r

) is assoiated

with user u, then the set of symbols assoiated with user u is S

u

= fs

(1;x

1

)

; :::; s

(r;x

r

)

g. It is S

u

, not x, that

the user stores (e.g., S

u

is embedded in the user's CD or stored on their smartard). This additional step

makes the model of pirate behavior that we onsider reasonable. Sine the symbols are generated randomly
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it is essentially impossible to guess a symbol, and hene a oalition is only able to form pirate words out

of its pooled olletion of symbols. In other words, moving from odewords to symbols thwarts algebrai

attaks (see, for example, [15℄). Although a oalition may be able to write down any odeword on whih

a user's set is based (this information may be publi) it an only generate the symbol assoiated with an

entry in the odeword if there is a oalition member that agrees with the odeword in that position. In this

paper, we do not de�ne an assoiated enryption mehanism, antiipating instead that if one is needed it

will likely be a broadast enryption sheme ([12℄), as suh a sheme enables ertain users to be prevented

from reovering the ontent from the enrypted broadast.

The approah we take here is to use error-orreting odes to onstrut traeability shemes in whih the

sets are ordered. The ordered (as opposed to the unordered) set senario yields naturally to oding theoreti

tehniques and has many pratial appliations ([8, 6℄). In addition, we note that when ombined with

ertain types of broadast enryption shemes, a ombination we expet in pratie, our assumptions on the

traitors' behavior are validated. More preisely, many broadast enryption shemes have been studied (see,

for example, [7℄) in whih the only pirate sets that are apable of derypting ontent are those onstruted

by hoosing one symbol eah from amongst the symbols the traitors have in eah partiular position. Hene,

with suh broadast enryption shemes, if traitors do not behave as modeled here they will not reate a

valid pirate set, and piray attempts will be thwarted without any need for traeability.

We fous on the TA traitor traing algorithm (following the terminology in [34℄), that identi�es as traitors

all users whose set shares the most with the pirate set. In general the TA algorithm runs in O(N) time,

where N is the number of users. However this paper shows that for suitable onstrutions based on error-

orreting odes, traing an be aomplished in time polynomial in the length of eah odeword, a signi�ant

improvement. The onstrutions in this paper math the best previously known shemes in this model in

terms of the alphabet size that is required to ahieve a ertain level of traeability for a given odeword

length, and exeed all earlier shemes in the speed with whih they trae (at least) one traitor. Additional

justi�ation for fousing on the TA algorithm is derived in Setion 5, where evidene is given that adding

enough struture to a traeability sheme to enable fast traing appears to make the properties of TA and

IPP indistinguishable.

Our approah takes advantage of reent powerful methods for list deoding of linear odes, that originated

with work of Sudan [39℄. In list deoding, the input is a reeived word, and the output is the list of all

odewords within a given Hamming distane of the reeived word. Sudan's results by themselves are not

strong enough to be appliable in the setting in whih the TA algorithm sueeds in �nding traitors (as

opposed to identifying probable traitors), sine the deoding proedure in [39℄ is not apable of orreting

enough errors in the ode. However, Sudan's work has reently been extended to enable it to eÆiently

orret more errors; in other words, it extends the radius of the Hamming ball around the reeived word in

whih it an �nd all the odewords in polynomial time. The improvements in [17℄ are preisely suÆient to

be appliable to the setting where the TA algorithm sueeds. EÆient list deoding algorithms now exist

for Reed-Solomon odes, more general algebrai geometry odes, and some onatenated odes. The results

are rapidly undergoing improvement and generalization, and hold promise for greater improvements in the

onstrution of eÆient traeability shemes.

Traeability should be viewed as one weapon in an arsenal against piray. Traeability is a worthwhile

addition to a system provided the assoiated algorithms add suÆiently little ost, as we believe the teh-

niques presented in this paper do. For example, as noted in [15℄, traeability an be a useful addition to a

long-lived broadast enryption sheme. If keys are alloated to smartards in suh a way as to ensure some

traeability, it is possible to keep a list of traitor smartards over time. If the smartard of one partiular

user appears on the list frequently despite many smartard refreshments (i.e., key hanges) this mounting

evidene makes it inreasingly likely that the user is atually guilty, and not simply a vitim of smartard

theft. Hene, as long as traeability shemes are eÆient, they an quikly yield useful information during

system audits.

Overview. The rest of the paper is organized as follows. Setion 1.1 overs related work in the areas of

traeability and broadast enryption and Setion 2 overs the neessary bakground on traeability and



EFFICIENT TRAITOR TRACING ALGORITHMS USING LIST DECODING 3

gives a brief overview of the oding theoreti ideas used in this paper. Setion 3 desribes how to onstrut

traeability shemes for whih the TA algorithm is eÆient. Setion 4 disusses an eÆient way to �nd all

(minimal) oalitions of traitors. Setion 5 onsiders the relationship between TA and IPP (a term de�ned

in Setion 2) traeability shemes. A disussion of other potential appliations of oding theoreti ideas and

tehniques to traeability questions is given in Setion 6.

1.1. Related Work. The phrase traitor traing is oined in [7℄ (see also the extended version [8℄). In

traeability shemes, users are eah given an ordered (as in [7, 6, 13, 34℄, for example), or unordered (as

in [37℄, for example) set of keys. In many of these papers, an enryption sheme is spei�ed in a way

that enables the TA traing algorithm to identify at least one traitor provided the oalition of traitors that

olluded to produe the pirate is of bounded size and the pirate set has been onstruted in aordane with

the enryption sheme.

In [5℄ (see also the revised version [6℄), methods for reating TA traeability odes are given for the purpose

of �ngerprinting digital data. Lower bounds and additional onstrutions of TA traeability shemes are given

in [37℄, while lower bounds are also proven in [25, 24℄. In addition, [24℄ provides a traing algorithm for

shemes in [25℄.

The problem of ombining broadast enryption and traeability is studied in [38, 14, 27, 43℄.

Some variations on the models of [8, 6℄ have been studied in reent years. Dynami models (here we

study a stati model), in whih it is possible to get additional evidene of piray in order to \test" traitor

guesses, are studied in [13, 2, 31℄. A publi-key traitor traing sheme is given in [4℄. One of the nie

properties of the sheme in [4℄ is that it is possible to identify all traitors. We note, however, that although

our algorithms in Setion 3 an only guarantee the identi�ation of one traitor, they do so in signi�antly

faster time (polynomial in the ode length r, versus O(N logN logN loglogN) in [4℄, where N is the number

of odewords).

In [29, 9℄, ways in whih aountability an be added to the model are disussed. For example, to

improve upon the strength of the deterrent, in [9℄ ommitting piray eÆiently neessitates revealing sensitive

information. In [15℄, a system in whih pirate pay-TV deoders an only work for short periods of time is

presented.

Reently, the identi�able parent property (IPP) traing algorithm has garnered attention [21, 1, 34℄ (also,

very similar ideas are studied in [36℄). In [21℄, a ombinatorial haraterization of 2-IPP shemes is presented.

Additional onstrutions of and bounds for IPP shemes appear in [1, 34℄.

A oding theoreti approah is taken in [23℄ to study the related problem of blaklisting users in a broadast

enryption sheme, but that paper does not address the question of traing.

2. Bakground on Codes and Traeability

In this setion we give de�nitions, notation, and bakground on odes, traeability, and deoding.

2.1. De�nitions and Notation. A ode C of length r is a subset of Q

r

, where Q is a �nite alphabet. The

elements of C are alled odewords; eah odeword has the form x = (x

1

; � � � ; x

r

), where x

i

2 Q for 1 � i � r.

Subsets of C will be alled oalitions.

For any oalition C

0

� C, we de�ne the set of desendants of C

0

, denoted des(C

0

) by

des(C

0

) = fw 2 Q

r

: w

i

2 fx

i

: x 2 C

0

g; for all 1 � i � rg:

The set des(C

0

) onsists of the r-tuples that ould be produed by the oalition C

0

.

We de�ne des



(C) to be the set of all x 2 Q

r

for whih there exists a oalition C

0

of size at most  suh

that x 2 des(C

0

). In other words, des



(C) onsists of the r-tuples that ould be produed by a oalition

of size at most .

For x; y 2 Q

r

, let I(x; y) = fi : x

i

= y

i

g.

De�nition 1. A ode C is a -TA (traeability) ode if for all oalitions C

i

of size at most , if w 2 des(C

i

)

then there exists x 2 C

i

suh that jI(x;w)j > jI(z; w)j for all z 2 C � C

i

.

Codes with the identi�able parent property (IPP) are another type of traeability ode.
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De�nition 2. A ode C is a -IPP ode if for all w 2 des



(C), the intersetion of the oalitions C

i

of size

at most  suh that w 2 des(C

i

) is nonempty.

Suppose C is a ode of length r. The (Hamming) distane between two elements x and y of Q

r

is

r�jI(x; y)j. The minimum distane of the ode C is the smallest distane between distint odewords of C.

If C is a -IPP ode and w 2 des



(C), then the traitors that an produe the pirate w are the odewords

that lie in all oalitions C

i

of size at most  suh that w 2 des(C

i

).

Sine the traitor traing problem is trivial when  = 1, we will always take  to be at least 2.

2.2. Bakground on -TA odes. The following result, whih is Lemma 1.3 of [34℄, is very useful for

showing that a ode is -IPP.

Lemma 1. Every -TA ode is a -IPP ode.

As shown in [34℄, there are -IPP odes whih are not -TA. We give a simple example of a 2-IPP ode

whih is not 2-TA.

Example 1. Let u

1

= (0; 0; 1), u

2

= (1; 0; 0), and u

3

= (2; 0; 0). The ode fu

1

; u

2

; u

3

g is learly 2-IPP, sine

the �rst entry of a pirate determines a traitor. The oalition fu

1

; u

2

g an produe the pirate w = (0; 0; 0).

However, jI(u

1

; w)j = jI(u

2

; w)j = jI(u

3

; w)j = 2, so the ode is not 2-TA.

Note that for -IPP odes, traitor traing is an O(

�

N



�

) proess, in general, where N is the total number

of odewords in the ode. A traitor traing algorithm for a -TA ode takes as input a w 2 des



(C) and

outputs the odewords x suh that jI(x;w)j is largest. Hene for -TA odes, traing is an O(N) proess, in

general, where N is the number of odewords.

The next result, whih is proved in [34℄ (Theorem 4.4 of that paper; see also [7℄ and [8℄), shows that

for odes with large enough minimum distane the TA algorithm suÆes, and onsists of �nding odewords

within distane r �

r



from the pirate. In fat, all odewords within this distane will be traitors.

Theorem 1. Suppose C is a ode of length r,  is a positive integer, and the minimum distane d of C

satis�es d > r �

r



2

. Then

(i) C is a -TA ode;

(ii) if C

0

is a oalition of size at most , and w 2 des(C

0

), then:

(a) there exists a traitor within distane r �

r



of w, and

(b) every odeword within distane r �

r



of w is a traitor.

Proof: If jC

0

j �  and w 2 des(C

0

), then there exists x 2 C

0

suh that jI(x;w)j �

r



. Sine d > r �

r



2

, if

x

1

; x

2

; : : : ; x



; x

+1

are + 1 distint odewords and w 2 des(fx

1

; : : : ; x



g), we have

jI(w; x

+1

)j �



X

i=1

jI(x

i

; x

+1

)j < 

r



2

=

r



:

It follows that C is -TA, and that the traitor traing algorithm will only output odewords in C

0

. In

addition this demonstrates that to trae traitors in this onstrution, it suÆes to �nd odewords within

distane r � r= of the pirate w.

2.3. Linear Codes. Linear odes are a very important lass of odes. We will say that a ode of length r

is linear, or linear over F

q

, if the alphabet is a �nite �eld F

q

and the ode is a linear subspae of the vetor

spae F

r

q

. The dimension of the ode is its dimension as a vetor spae. If C is a linear ode over F

q

of

dimension k, then jCj = q

k

.

Reed-Solomon odes are among the most widely-used linear odes, with many useful appliations and

properties. To obtain a Reed-Solomon ode of length r and dimension k over the �nite �eld F

q

, �x r distint

elements �

1

; : : : ; �

r

of F

q

. The odewords are exatly the r-tuples (f(�

1

); : : : ; f(�

r

)) as f runs over (the

zero polynomial and) all polynomials of degree < k in F

q

[x℄. Note that a basis for the ode over F

q

an be

taken to be

f(1; : : : ; 1); (�

1

; : : : ; �

r

); (�

2

1

; : : : ; �

2

r

); : : : ; (�

k�1

1

; : : : ; �

k�1

r

)g:
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Sine two distint polynomials of degree less than k agree on at most k� 1 points, the minimum distane of

the ode is r � k + 1.

A useful generalization of Reed-Solomon odes are algebrai geometry (AG) odes (see for example [16, 35,

41℄). The linear odes with the \best" known parameters asymptotially are AG odes [42℄. One advantage

of AG odes is that they are not, in general, bound by the restrition that r � q, as was the ase for

the Reed-Solomon odes above. Being freed of this onstraint allows us to have a smaller alphabet (and in

appliations, fewer keys), for given hoies of the other parameters. Hermitian odes, oming from Hermitian

urves, are examples of AG odes that have nie properties and an be de�ned expliitly. For those familiar

with the below terminology (suh knowledge is not essential for appreiating the results of this paper), we

note that for our purposes it will suÆe to onsider the one-point odes C

X

(P; `P

0

) whih an be de�ned as

follows. One begins with a smooth, absolutely irreduible urve X of genus g de�ned over a �nite �eld F

q

,

a set P = fP

1

; : : : ; P

r

g of F

q

-rational points on X , another F

q

-rational point P

0

on X whih is not in the

set P , and an integer `. The odewords are then the r-tuples (f(P

1

); : : : ; f(P

r

)), where f is any element of

L(`P

0

), the vetor spae of rational funtions on X whose only poles our at P

0

, and with multipliity at

most `. Under the assumption 2g�2 < ` < r, one �nds that this ode has dimension `+1�g and minimum

distane at least r�`. Notie that Reed-Solomon odes an be viewed as algebrai geometry odes by taking

X to be the projetive line, P to be the set of points orresponding to the r hosen �eld elements, P

0

to be

the point at in�nity, and ` = k � 1.

Conatenated odes are odes whih are \onatenated" from two other odes. When two linear odes are

onatenated, the produt of their lengths (resp., dimensions, resp., minimum distanes) is the length (resp.,

dimension, resp., minimum distane) of the (linear) onatenated ode. There are linear onatenated odes

for small alphabets whih have good list deoding apabilities, i.e., a small list of possible odewords an be

reovered even when a large perentage of the symbols are in error or have been erased [18℄.

We refer the reader to [16, 26, 35, 41℄ for more information on oding theory.

2.4. Deoding. In the theory of error-orreting odes, a odeword is transmitted through a noisy hannel

and an element of Q

r

(i.e., a word) is reeived. The reeiver (or deoder) then tries to determine as aurately

as possible whih odeword was transmitted. In maximum-likelihood deoding, the deoding proess onsists

of �nding the losest odeword to the reeived word. If d is the minimum distane of the ode, then the

reeiver an \orret"

d�1

2

errors; i.e., there is at most one odeword within distane

d�1

2

of the reeived

word. In the maximum-likelihood deoding deision problem, the inputs are a linear ode over a given �nite

�eld, a reeived word, and a spei�ed distane t, and the output is a yes or no answer to the question of

whether there is a odeword within distane t of the reeived word. This deision problem is known to be

NP-omplete [3℄.

In list deoding, the goal is to output the list of all odewords within a spei�ed distane of the reeived

word. In [39℄ and [40℄, Sudan gave the �rst eÆient methods for list deoding that run in time polynomial

in the length of the odewords. Sine then, Sudan's list deoding tehnique has been improved, generalized,

and re�ned [32, 33, 17, 18, 19, 20, 22, 28, 30, 44, 10, 11℄. The runtimes for the steps of the algorithm

have been improved, the number of errors that an be \orreted" has been inreased, and the tehnique

has been shown to be appliable to a larger lass of odes. Sudan's original algorithm is for Reed-Solomon

odes. Other odes for whih the tehniques have been shown to apply inlude AG odes (for whih the

fous has been on Hermitian odes) and ertain onatenated odes (see [18℄, where the \outer ode" is a

Reed-Solomon or AG ode and the \inner ode" is a Hadamard ode).

In erasure deoding, some positions of the reeived word are garbled or \erased", and annot be identi�ed.

In this ase the deoder knows that errors ourred in those positions.

In erasure-and-error deoding, the deoder reeives a word with some erasures and some errors, and

determines the transmitted word, or a list of possible transmitted words (given some appropriate bounds on

the numbers of errors and erasures).

In soft-deision deoding, instead of reeiving a (hard-deision) word, the deoder reeives a reliability

matrix, that states the probability that any given element of the alphabet was sent in any given position.

Using this \soft" information, a soft-deision deoder outputs the most likely transmitted odeword(s).
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3. Effiient Traing Algorithms via List Deoding

In this setion we show how the eÆieny of the TA traing algorithm an be greatly improved when

the traeability sheme is based on ertain error-orreting odes, and the traing algorithm uses fast list

deoding methods. What is an O(N) proess in general beomes a proess that runs in time polynomial in

the odeword length r. These onstrutions math the best previously known traeability shemes in this

model in terms of the alphabet size that is required to support a given level of traeability and odeword

length (roughly speaking, the alphabet size is O(N



2

r

)). We desribe onstrutions based on Reed-Solomon,

algebrai geometry, and onatenated odes.

3.1. Reed-Solomon odes. A widely used and extremely important lass of odes are the Reed-Solomon

odes. This is the lass of odes used in ompat disks, for example. This is also the lass of odes whih has

reeived the most attention by oding theorists looking for fast list deoding tehniques, and to whih Sudan

�rst applied his method. While Sudan's original result is not strong enough to allow us to use list deoding

to trae traitors, the later results of Guruswami and Sudan are exatly strong enough to aomplish this.

Theorem 2. Let C be a Reed-Solomon ode of length r and dimension k over a �nite �eld of size at most

2

r

. If  is an integer,  � 2, and r > 

2

(k�1), then C is a -TA ode and there is a traitor traing algorithm

that runs in time O(r

15

). If r = (1 + Æ)

2

(k � 1) then the algorithm runs in time O(

r

3

Æ

6

).

Proof: Sine C is a Reed-Solomon ode, the minimum distane d satis�es d = r � k + 1. The ondition

r > 

2

(k � 1) is then equivalent to the ondition d > r � r=

2

. By Theorem 1, C is a -TA ode and traitor

traing amounts to �nding a odeword within distane r � r= of the pirate. Theorem 12 and Corollary 13

of [17℄ imply that if t >

p

(k � 1)r then all odewords within distane r � t of a given word an be listed

in time O(r

15

), and if t

2

= (1 + Æ)(k � 1)r then the runtime is O(

r

3

Æ

6

). Taking t = r= gives the desired

result.

We note that further improvements in the runtime are being rapidly produed, and it seems that some of

these results will bring the runtime down to O(rlog

3

r), at least in ertain ases (see [10℄).

3.2. AG Codes. In [17℄, a polynomial-time algorithm for list deoding an AG ode de�ned from a nonsin-

gular plane urve is given. This algorithm depends on the (reasonable) assumption that a ertain amount of

pre-proessing has ourred whih provides the deoder with some additional information about the ode,

for example a list of ertain rational funtions on the urve. Under this same assumption, we have:

Theorem 3. Let X be a nonsingular plane urve of genus g de�ned over a �nite �eld F

q

, P a set of r F

q

-

rational points on X, P

0

an F

q

-rational point on X whih is not in P , and k an integer suh that k > g� 1.

Let  be an integer suh that  � 2 and r > 

2

(k+ g� 1), assume that q � 2

r

, and assume the pre-proessing

desribed above has ourred. Then the one-point AG ode C

X

(P; (k+g�1)P

0

) is a -TA ode with a traitor

traing algorithm that runs in time polynomial in r.

Proof: The minimum distane d of the ode satis�es d � r� k� g+1 (see Theorem 10.6.3 of [26℄). By our

hoie of  we have d � r � k � g + 1 > r � r=

2

and r � r= < r �

p

r(k + g � 1). By Theorem 27 of [17℄,

there exists an algorithm that runs in time polynomial in r that outputs the list of odewords of distane

less than r �

p

r(k + g � 1) from a given word. The result now follows from Theorem 1.

The list deoding algorithm in [17℄ for AG odes was improved in [44℄ (see Theorems 3.4 and 4.1), where

an expliit runtime was also given.

3.3. Conatenated Codes. As pointed out earlier, there exist nie linear onatenated odes for small

alphabets whih have good list deoding apabilities.

Theorem 4. Given a prime power q and positive integers k and  suh that q > 

2

� 4, and given a real

number Æ suh that 0 < Æ �

q=

2

�1

q�1

, then there exists an expliit linear -TA ode over the �eld F

q

of length

r = O(

k

2

Æ

3

log(1=Æ)

) (or length r = O(

k

Æ

2

log

2

(1=Æ)

))) and dimension k with a polynomial (in r) traitor traing

algorithm.
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Proof: Theorems 7 and 8 and Corollaries 2 and 3 of [18℄ imply that there exists an expliit onatenated

ode over F

q

of the orret length r and dimension k, with minimum distane d � (1 �

1

q

)(1 � Æ)r, with

a polynomial time list deoding algorithm for e errors, as long as e < (1 �

p

Æ)(q � 1)r=q. The ondition

Æ �

q=

2

�1

q�1

implies that d > r � r=

2

and that the upper bound on the number of errors is satis�ed when

e � r � r=. The result therefore follows from Theorem 1.

4. Finding all Possible Coalitions

In this setion, we desribe how a oding theoreti approah an be used to amass additional piray

information: a list of all (minimal) oalitions that are apable of reating a given pirate. Suh information is

useful in two respets. Codewords not appearing in any of these oalitions were not involved in onstruting

the pirate word, and it onstitutes useful audit information that may be helpful in the proseution of a

traitor later on. In addition, the algorithm we present enables the IPP traitor traing algorithm [21, 1, 34℄

to run more eÆiently, as that algorithm works by interseting all oalitions that are apable of reating a

given pirate word.

At a high level, the algorithm builds a \tree" from whih all -oalitions apable of onstruting w an be

extrated. At the root of the tree lie all odewords that we know must be in any suh oalitions. The hildren

are then andidate odewords for the next member of the oalition. Branhes of the tree are extended until

the urrent oalition \overs" w, or until it beomes lear that this is impossible (e.g., beause the oalition

is already of size  and still annot reate w). In the latter ase, that \dead-end" oalition is disarded, and

other branhes of the tree are explored.

Before desribing the algorithm in more detail, we introdue some of the ideas used. If S is a subset of

f1; : : : ; rg and s = jSj, de�ne a map f

S

: F

r

q

! F

r�s

q

by \forgetting" the entries in positions orresponding

to elements of S. If C is a ode, then the image ode f

S

(C) is the puntured ode, where we view the ode

C as having been puntured at the positions orresponding to the elements of S. If u is in f

S

(C) we all a

lift of u to C any odeword v suh that f

S

(v) = w.

We say that C

0

is a minimal -oalition for w if jC

0

j � , w 2 desC

0

, but w is not in desC

i

for any

proper subset C

i

of C

0

.

Algorithm Sketh:

Input: positive integer , Reed-Solomon Code C of length r having N odewords and minimum distane

greater than r �

r



2

, pirate word w 2 des



C.

Output: A list of oalitions of size at most  whih an reate w, that inludes all minimal -oalitions

for w.

The basi steps of the algorithm are as follows:

(i) Use list deoding to �nd all odewords u

1

; :::; u

a

2 C (a � ) within distane r�r= of w. Let S be the

subset of f1; : : : ; rg on whih w agrees with at least one of fu

1

; :::; u

a

g, and let s = jSj. Let r

1

= r� s,



1

=  � a, C

1

= f

S

(C), and w

1

= f

S

(w). (Thus C

1

is the puntured ode, r

1

is its length, w

1

is the

image of the pirate word in C

1

, and 

1

is the number of oalition members still to be found.) If r

1

= 0,

quit and output fu

1

; :::; u

a

g. Set i = 1.

(ii) Use list deoding to �nd all odewords v

i1

; :::; v

ib

i

2 C

i

(b

i

� 

i

) within distane r

i

� r

i

=

i

of w

i

. (Note

that the �rst time this is exeuted, the output is non-empty.) If this outputs the empty-set, exit to

Step (iii). Otherwise, let S

i

be the subset of f1; : : : ; r

i

g on whih w

i

agrees with v

ib

i

, and let s

i

= jS

i

j.

Let r

i+1

= r

i

� s

i

, 

i+1

= 

i

� 1, C

i+1

= f

S

i

(C

i

), and w

i+1

= f

S

i

(w

i

).

(iii) To reate the oalitions to output, always start with u

1

; :::; u

a

. Then add (a lift to C of) v

1b

1

, v

2b

2

,

and so on. Continue until the list of odewords \overs" the pirate w. When this proess sueeds or

dead-ends (i.e, the urrent list does not yet over w, but either we annot �nd any odewords within

the required distane r

i

� r

i

=

i

of w

i

, or we already have  odewords in our list), then move up the

\tree" of v

ib

j

's to �nd the �rst unexplored branh and ontinue from there. The algorithm terminates

when all branhes have been explored.

Analysis of the Algorithm:
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By Theorem 2, Step (i) an be done eÆiently (time polynomial in r). By Theorem 1, u

1

; :::; u

a

are in

every oalition that an reate w. Further, in Step (ii), if d

i

> r

i

�r

i

=

2

i

where d

i

is the minimum distane of

the new (puntured) ode C

i

, then every oalition that an produe the original pirate w will ontain some

lift to the original ode of some v

i;b

j

. Moreover, if a lift to C of v

i;b

j

is in some oalition that an reate the

original pirate w, then there exists a odeword within r

i

�r

i

=

i

of v

i;b

j

(by the pigeonhole priniple), and the

algorithm will proeed. If Step (ii) returns the empty-set, then v

i;b

j

was a dead-end. Note that list deoding

a puntured ode and then lifting aomplishes the same as erasure-and-error deoding. One may therefore

use erasure-and-error deoding algorithms to aomplish this step. Any odeword found in Step (i) of the

algorithm (and at least one odeword must be found in this step) must appear in every oalition onsidered

by the algorithm. Hene the algorithm will ertainly not onsider the oalitions that do not inlude the

odeword(s) produed in Step (i), and the number of suh oalitions is at least

�

N�1



�

=

N�

N

�

N



�

, where N is

the number of odewords. If N � , then the number of oalitions that are not onsidered by the algorithm

is �(

�

N



�

). The algorithm is therefore a signi�ant improvement over the brute fore method.

5. The TA and IPP Traing Algorithms

The results in this setion justify a fous on TA (as opposed to IPP) shemes. In this paper we have

been using the additional struture provided by linear odes to onstrut shemes for whih the TA traing

algorithm is eÆient. We know by Lemma 1 that -TA odes are also -IPP odes. However the onverse

fails ([34℄; see also Example 1 above). If onstrutions of shemes for whih the IPP traing algorithm is

eÆient (i.e., signi�antly redued from O(

�

N



�

) time) are possible, it is reasonable to expet this to be

aomplished by introduing an algebrai struture to the sheme. Here we give evidene that doing so may

enable the inherently more eÆient TA algorithm to be used to identify traitors. In partiular, we show

that one natural approah to adding suh struture, that is via Reed-Solomon odes, fails to onstrut IPP

shemes that are not also TA shemes. Hene, sine it is unlear that -IPP shemes yield any advantage

over -TA shemes, most of our work fouses on the latter.

First, we prove a neessary ondition on the minimum distane of Reed-Solomon odes, under whih Reed-

Solomon odes yield -TA set systems. This result suggests a potential method for generating examples of

shemes that are -IPP but not -TA. Next, we demonstrate through a family of ounterexamples that in fat

this approah does not work; as soon as the minimum distane is dereased it is possible to �nd examples of

odes where both the IPP and TA traing algorithms fail.

We �rst reall that there is a natural way to produe unordered sets from the ordered sets that onstitute

the ode: to a odeword x = (x

1

; :::; x

r

), assoiate the set x

0

= f(1; x

1

); :::; (r; x

r

)g. We de�ne TA and IPP

set systems (as opposed to TA and IPP odes) in the natural way, with the noteworthy di�erene that a

pirate unordered set onsists of r elements suh that eah element is a member of some oalition member's

set. This is a generalization of our earlier de�nition beause it is not neessary to have one element of the

form (i; y

i

) for eah i = 1; :::; r.

The following theorem is a partial onverse of Theorem 1.

Theorem 5. If  is an integer,  � 2, and C is a Reed-Solomon ode of length r with minimum distane

d � r �

r



2

, then the set system orresponding to C is not a -TA set system.

Proof: As above, if u 2 C, write u

0

= f(1; u

1

); :::; (r; u

r

)g for the assoiated element of the set system.

Choose a odeword v = (v

1

; : : : ; v

r

) in C. We will show that a oalition of size at most  exists whih does

not ontain v

0

, but whih an impliate v

0

. In other words, we will onstrut a pirate set w whih an be

reated by a oalition fu

0

1

; : : : ; u

0

b

g with b �  that does not ontain v

0

, but whih satis�es jv

0

\wj � ju

0

i

\wj

for every i. Let Æ = r � d = k � 1, where k is the dimension of the ode C. By assumption, Æ � r=

2

.

First, assume Æ � r. For i = 1; : : : ; , hoose u

i

2 C, distint from v, whih agrees with v on the

positions (i� 1)Æ + 1, : : : , iÆ. (To do this, simply �nd a polynomial h

i

of degree Æ whih vanishes on the Æ

�eld elements orresponding to these Æ positions, and let u

i

be the odeword orresponding to the polynomial

f � h

i

, where f is the polynomial orresponding to v.) Notie that, sine two distint odewords an agree

on at most Æ positions, eah u

0

i

ontains at least r � Æ elements whih are not in v

0

or in u

0

j

for any j 6= i.

Sine r� Æ � 0 and  � 2, we have r� Æ � d

r�Æ



e = d

r



e� Æ. We an therefore form a pirate set w so that
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for every i, ju

i

\wj � Æ+ (d

r



e� Æ) = d

r



e and jv

0

\wj = Æ � d

r



e. Thus the TA algorithm will mark v

0

as a

traitor.

If on the other hand Æ > r, simply hoose u

1

; : : : ; u

j

as above, where j = b

r

Æ

 < , and hoose u

j+1

6= v

to agree with v on the last r � jÆ positions. The oalition fu

0

1

; : : : ; u

0

j+1

g an reate v

0

as a pirate set.

The previous theorem leaves open the question of whether Reed-Solomon odes with minimum distane

at most r �

r



2

might still have traeability when the IPP algorithm is used even though the TA algorithm

may no longer orretly identify traitors. The following family of ounterexamples illustrates that this is not

generally the ase. The key idea behind the examples is that if the underlying �eld is suÆiently large, a

funtion de�ned as the di�erene between two polynomials of degree �, has � roots in the �eld. From this,

it an be argued that there exist two disjoint olletions of  polynomials, suh that if a polynomial is hosen

from eah olletion, the resulting pair agrees on as many distint points as their degree. In addition, the

sets of points of agreement of eah pair are disjoint. Hene, we an generate two disjoint oalitions that are

apable of reating the same pirate word.

Theorem 6. Let s and  be positive integers with  � 2, and let p be a prime number greater than 

2

. For

i = 1; : : : ; , let a

i

= (i � 1). For i = 1; : : : ; , if s is not divisible by p, let g

i

(x) = x

s

� i; otherwise let

g

i

(x) = x

s

+ x � i. Let T be the set of roots of all the 

2

polynomials g

i

� a

j

. Let q be a suÆiently high

power of p so that T is a subset of the �nite �eld F

q

. Then T onsists of 

2

s distint elements of F

q

. Let C

be the Reed-Solomon ode in whih the odewords are the evaluations at the elements of T of all polynomials

over F

q

of degree at most s. Then C is not -IPP. The length r of the odewords is r = 

2

s, the dimension

of the ode is s+ 1, and the minimum distane is equal to r � r=

2

.

Proof: We �rst show that T onsists of 

2

s distint elements. Let h

ij

= g

i

� a

j

. Then h

ij

(x) � h

mn

(x) =

�i� (j � 1)+m+ (n � 1). If h

ij

(x) � h

mn

(x) = 0, then m� i is divisible by . Sine m and i are both

in the range 1; : : : ; , they must be equal. Thus (j � 1) = (n � 1), and so j = n. Therefore the set fh

ij

g

onsists of 

2

distint polynomials of degree s, any two of whih di�er by a non-zero onstant. Therefore no

two an have a root in ommon. Further, the derivative of h

ij

is sx

s�1

if s is not divisible by p, and is 1

otherwise. In both ases this derivative is relatively prime to h

ij

(in the �rst ase, note that h

ij

is always of

the form x

s

+(a non-zero onstant), so it never has 0 as a root). Therefore all the roots of h

ij

are simple. So

T onsists of 

2

s distint elements, and it makes sense to de�ne the Reed-Solomon ode de�ned by evaluating

polynomials of degree at most s at the elements of T . The ode learly has the stated parameters. The two

oalitions orresponding to the polynomials in the sets fa

1

; : : : ; a



g and fg

1

; : : : ; g



g are disjoint, and eah

oalition an produe the pirate word de�ned as follows: for eah � in T , the �-th entry of the pirate word

is g

i

(�) = a

j

, for the unique i and j suh that the equality holds. It follows that the ode is not -IPP.

By evaluating the polynomials at subsets of T of size at least s + 1 (to ensure that k � r), we an take

the length r to be anything between s+ 1 and 

2

s. The resulting minimum distane r � s is then at most

r � r=

2

.

We remark that if s is not divisible by p, then we an always �nd a q that works whih is a divisor of p

s

.

The results in this setion lead to the following questions whih, while peripheral to the traitor traing

problem, are of independent interest. Is it the ase that all Reed-Solomon odes of length r with minimum

distane d � r�r=

2

are not -IPP? It is easy to see that this is false for linear odes in general. For example,

one-dimensional linear odes are always both -IPP and -TA, but an have d � r � r=

2

if they are not

Reed-Solomon odes (for one-dimensional odes, the minimum distane d is the number of non-zero entries

in the non-zero odewords; the odewords of distane less than d from the pirate lie in every oalition that

an reate the pirate). If the answer to the above question were yes, ombining it with Theorem 1 would

imply that all Reed-Solomon -IPP odes are -TA. We raise as an open question whether all linear -IPP

odes are -TA.

6. Traing with Extra Information

In this setion, we desribe how other oding theoreti tehniques may be applied to the traitor traing

problem when additional information about traitor behavior is available.
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In [17℄, list deoding is onsidered not just in the ase of errors, but also in the ase of erasures and

errors (and another potentially useful ase that is referred to as \deoding with unertain reeptions"). For

onatenated odes, [18℄ also deals with the problem of deoding from errors and erasures. Building on

[17℄, [22℄ presents a high-performane soft-deision list deoding algorithm. We believe that these results

also have potential for use in traitor traing problems, in ases where some additional information is known

about the traitors or how they are operating.

If one has information about the traitors or their modes of operation, one an build that information into

a reliability matrix, and apply soft-deision deoding algorithms to trae.

For example, suppose we know that a user who ontributed the �rst entry to the pirate ontributed at

least r= entries to the pirate. One an use this information to onstrut a skewed reliability matrix. If the

underlying ode is a Reed-Solomon ode over a �nite �eld of size q, one an then apply the soft-deision

algorithm in [22℄ to �nd suh a \dominant" traitor. The hannel that models this situation is a q-ary

symmetri hannel. The �rst olumn of the reliability matrix will have a 1 in the entry orresponding to

the �eld element that ours in the �rst position of the pirate, and 0's elsewhere. For j > 1, the jth olumn

of the reliability matrix will have 1 � � in the entry orresponding to the �eld element in the jth entry of

the pirate, and the other entries will all be

�

q�1

, where � <

q�1

q

is hosen so as to optimize the soft-deision

deoding algorithm in [22℄. If one does not know whih entry was ontributed by the user who ontributed

the most, one possible searh method is to hoose entries at random from the pirate and apply the above

strategy to searh for traitors that ontributed that entry.

Another possible approah to traing traitors is to try to seond-guess their strategy. For example,

if you believe that one traitor has ontributed more than the other members of the oalition, you an

apply maximum-likelihood deoding to �nd suh traitors very quikly. This might involve a \ringleader" or

\sapegoat" senario. If on the other hand you believe that all traitors ontributed roughly equal amounts,

then list deoding should be tried �rst. Traitors an be searhed for in sequenes of expanding Hamming

balls around the pirate. The optimal deoding algorithm to use will depend on the radius of the Hamming

ball. These algorithms an be run in parallel or sequentially.

Erasure-and-error deoding may be useful in �ngerprinting or watermarking senarios, suh as those

presented in [5, 6, 13℄. In one model for suh a senario, a oalition reates a pirate opy of the digital

ontent by leaving �xed all odeword entries where they all agree, and hoosing the values of the remaining

positions from Q [ f?g, where Q is the alphabet. The ?'s an be viewed as erasures.

7. Conlusion

In this paper we have demonstrated that traitor traing algorithms an be quite eÆient when the on-

strution of the traeability sheme is based on error-orreting odes and the method of traing is based on

fast list deoding algorithms. For the TA algorithm, traitors an be identi�ed in time polynomial in r, the

length of the ode, rather than in the muh larger parameter N , the number of odewords. In addition, list

deoding on suessive puntured odes gives a method for identifying all possible traitor oalitions of size at

most  more eÆiently than a brute fore searh (whih runs in O(

�

N



�

) time). Finally, we suggest avenues

for future researh in this area, inluding explorations of appliations of soft-deision and erasure deoding

tehniques to traitor traing in senarios where additional information has been obtained about the traitors

or their mode of operation.
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