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Abstra
t. We apply powerful, re
ently dis
overed te
hniques for the list de
oding of error-
orre
ting 
odes

to the problem of eÆ
iently tra
ing traitors. Traitor tra
ing s
hemes have been extensively studied for use

as a pira
y deterrent. In a widely studied model for prote
ting digital 
ontent, ea
h user in the system is

asso
iated with a unique set of symbols. For example, the sets may be used to install a software CD or

de
rypt pay-TV 
ontent. The assignment of sets is done in su
h a way that if a bounded 
olle
tion of sets

is used to form a new set to enable pira
y, at least one of the traitor sets 
an be identi�ed by applying a

traitor tra
ing algorithm to the newly formed set. Mu
h work has fo
used on methods for 
onstru
ting su
h

tra
eability s
hemes, but the 
omplexity of the traitor tra
ing algorithms has re
eived little attention. A

widely used traitor tra
ing algorithm, the TA algorithm, has a running time of O(N) in general, where N

is number of sets in the system (e.g., the number of 
opies of the CD), and therefore is ineÆ
ient for large

populations. In this paper we use a 
oding theoreti
 approa
h to produ
e tra
eability s
hemes for whi
h

the TA algorithm is very fast. We show that when suitable error-
orre
ting 
odes are used to 
onstru
t

tra
eability s
hemes, and fast list de
oding algorithms are used to tra
e, the run time of the TA algorithm

is polynomial in the 
odeword length. We also use the strength of the error-
orre
ting 
ode approa
h

to 
onstru
t tra
eability s
hemes with more eÆ
ient algorithms for �nding all possible traitor 
oalitions.

Finally, we provide eviden
e that amongst tra
eability s
hemes in general, TA tra
eability s
hemes are the

most likely to be amenable to eÆ
ient tra
ing methods.

1. Introdu
tion

Tra
eability s
hemes are introdu
ed in [7℄ and have been extensively studied in the intervening years.

We fo
us on one of the few aspe
ts of this area of work that has re
eived little attention: the 
omplexity

of the traitor tra
ing algorithms. We show that powerful new te
hniques for the list de
oding of error-


orre
ting 
odes enable us to 
onstru
t tra
eability s
hemes with very fast traitor tra
ing algorithms. These

list de
oding te
hniques are re
eiving wide attention in the 
oding theory 
ommunity, and improvements

and generalizations are being rapidly produ
ed. This paper gives the �rst appli
ations of these important

tools to the problem of tra
ing traitors.

A popular model for tra
eability s
hemes is one in whi
h a unique set (possibly ordered) of r symbols is

asso
iated with ea
h user. For example, the set may be embedded in a software CD possessed by the user, or


ontained in a smart
ard the user has for the purpose of viewing en
rypted pay-TV programs (in the latter


ase, the set 
orresponds to a set of keys). When a 
oalition forms to 
ommit pira
y, it must 
onstru
t a

set to asso
iate with the pirate obje
t. In the 
ase of unordered sets, this pirate set 
onsists of r symbols,

ea
h of whi
h belongs to at least one 
oalition member's set. If the sets are ordered, the 
oalition members

have less freedom and must form an ordered pirate set in whi
h the symbol in ea
h position is identi
al to

the symbol in the same position in the ordered set of some 
oalition member. In either s
enario a traitor

tra
ing algorithm is applied to the pirate, and the sets are 
onstru
ted in su
h a way that the algorithm

only identi�es an a
tual traitor or traitors. In pra
ti
e, one randomly 
hooses a set of symbols fs

(i;y)

g with

i 2 f1; :::; rg and y in a �nite alphabet Q, and the 
olle
tion of symbols 
orresponding to a given user is

determined by the set asso
iated with that user. For example, if the ordered set x = (x

1

; :::; x

r

) is asso
iated

with user u, then the set of symbols asso
iated with user u is S

u

= fs

(1;x

1

)

; :::; s

(r;x

r

)

g. It is S

u

, not x, that

the user stores (e.g., S

u

is embedded in the user's CD or stored on their smart
ard). This additional step

makes the model of pirate behavior that we 
onsider reasonable. Sin
e the symbols are generated randomly
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it is essentially impossible to guess a symbol, and hen
e a 
oalition is only able to form pirate words out

of its pooled 
olle
tion of symbols. In other words, moving from 
odewords to symbols thwarts algebrai


atta
ks (see, for example, [15℄). Although a 
oalition may be able to write down any 
odeword on whi
h

a user's set is based (this information may be publi
) it 
an only generate the symbol asso
iated with an

entry in the 
odeword if there is a 
oalition member that agrees with the 
odeword in that position. In this

paper, we do not de�ne an asso
iated en
ryption me
hanism, anti
ipating instead that if one is needed it

will likely be a broad
ast en
ryption s
heme ([12℄), as su
h a s
heme enables 
ertain users to be prevented

from re
overing the 
ontent from the en
rypted broad
ast.

The approa
h we take here is to use error-
orre
ting 
odes to 
onstru
t tra
eability s
hemes in whi
h the

sets are ordered. The ordered (as opposed to the unordered) set s
enario yields naturally to 
oding theoreti


te
hniques and has many pra
ti
al appli
ations ([8, 6℄). In addition, we note that when 
ombined with


ertain types of broad
ast en
ryption s
hemes, a 
ombination we expe
t in pra
ti
e, our assumptions on the

traitors' behavior are validated. More pre
isely, many broad
ast en
ryption s
hemes have been studied (see,

for example, [7℄) in whi
h the only pirate sets that are 
apable of de
rypting 
ontent are those 
onstru
ted

by 
hoosing one symbol ea
h from amongst the symbols the traitors have in ea
h parti
ular position. Hen
e,

with su
h broad
ast en
ryption s
hemes, if traitors do not behave as modeled here they will not 
reate a

valid pirate set, and pira
y attempts will be thwarted without any need for tra
eability.

We fo
us on the TA traitor tra
ing algorithm (following the terminology in [34℄), that identi�es as traitors

all users whose set shares the most with the pirate set. In general the TA algorithm runs in O(N) time,

where N is the number of users. However this paper shows that for suitable 
onstru
tions based on error-


orre
ting 
odes, tra
ing 
an be a

omplished in time polynomial in the length of ea
h 
odeword, a signi�
ant

improvement. The 
onstru
tions in this paper mat
h the best previously known s
hemes in this model in

terms of the alphabet size that is required to a
hieve a 
ertain level of tra
eability for a given 
odeword

length, and ex
eed all earlier s
hemes in the speed with whi
h they tra
e (at least) one traitor. Additional

justi�
ation for fo
using on the TA algorithm is derived in Se
tion 5, where eviden
e is given that adding

enough stru
ture to a tra
eability s
heme to enable fast tra
ing appears to make the properties of TA and

IPP indistinguishable.

Our approa
h takes advantage of re
ent powerful methods for list de
oding of linear 
odes, that originated

with work of Sudan [39℄. In list de
oding, the input is a re
eived word, and the output is the list of all


odewords within a given Hamming distan
e of the re
eived word. Sudan's results by themselves are not

strong enough to be appli
able in the setting in whi
h the TA algorithm su

eeds in �nding traitors (as

opposed to identifying probable traitors), sin
e the de
oding pro
edure in [39℄ is not 
apable of 
orre
ting

enough errors in the 
ode. However, Sudan's work has re
ently been extended to enable it to eÆ
iently


orre
t more errors; in other words, it extends the radius of the Hamming ball around the re
eived word in

whi
h it 
an �nd all the 
odewords in polynomial time. The improvements in [17℄ are pre
isely suÆ
ient to

be appli
able to the setting where the TA algorithm su

eeds. EÆ
ient list de
oding algorithms now exist

for Reed-Solomon 
odes, more general algebrai
 geometry 
odes, and some 
on
atenated 
odes. The results

are rapidly undergoing improvement and generalization, and hold promise for greater improvements in the


onstru
tion of eÆ
ient tra
eability s
hemes.

Tra
eability should be viewed as one weapon in an arsenal against pira
y. Tra
eability is a worthwhile

addition to a system provided the asso
iated algorithms add suÆ
iently little 
ost, as we believe the te
h-

niques presented in this paper do. For example, as noted in [15℄, tra
eability 
an be a useful addition to a

long-lived broad
ast en
ryption s
heme. If keys are allo
ated to smart
ards in su
h a way as to ensure some

tra
eability, it is possible to keep a list of traitor smart
ards over time. If the smart
ard of one parti
ular

user appears on the list frequently despite many smart
ard refreshments (i.e., key 
hanges) this mounting

eviden
e makes it in
reasingly likely that the user is a
tually guilty, and not simply a vi
tim of smart
ard

theft. Hen
e, as long as tra
eability s
hemes are eÆ
ient, they 
an qui
kly yield useful information during

system audits.

Overview. The rest of the paper is organized as follows. Se
tion 1.1 
overs related work in the areas of

tra
eability and broad
ast en
ryption and Se
tion 2 
overs the ne
essary ba
kground on tra
eability and



EFFICIENT TRAITOR TRACING ALGORITHMS USING LIST DECODING 3

gives a brief overview of the 
oding theoreti
 ideas used in this paper. Se
tion 3 des
ribes how to 
onstru
t

tra
eability s
hemes for whi
h the TA algorithm is eÆ
ient. Se
tion 4 dis
usses an eÆ
ient way to �nd all

(minimal) 
oalitions of traitors. Se
tion 5 
onsiders the relationship between TA and IPP (a term de�ned

in Se
tion 2) tra
eability s
hemes. A dis
ussion of other potential appli
ations of 
oding theoreti
 ideas and

te
hniques to tra
eability questions is given in Se
tion 6.

1.1. Related Work. The phrase traitor tra
ing is 
oined in [7℄ (see also the extended version [8℄). In

tra
eability s
hemes, users are ea
h given an ordered (as in [7, 6, 13, 34℄, for example), or unordered (as

in [37℄, for example) set of keys. In many of these papers, an en
ryption s
heme is spe
i�ed in a way

that enables the TA tra
ing algorithm to identify at least one traitor provided the 
oalition of traitors that


olluded to produ
e the pirate is of bounded size and the pirate set has been 
onstru
ted in a

ordan
e with

the en
ryption s
heme.

In [5℄ (see also the revised version [6℄), methods for 
reating TA tra
eability 
odes are given for the purpose

of �ngerprinting digital data. Lower bounds and additional 
onstru
tions of TA tra
eability s
hemes are given

in [37℄, while lower bounds are also proven in [25, 24℄. In addition, [24℄ provides a tra
ing algorithm for

s
hemes in [25℄.

The problem of 
ombining broad
ast en
ryption and tra
eability is studied in [38, 14, 27, 43℄.

Some variations on the models of [8, 6℄ have been studied in re
ent years. Dynami
 models (here we

study a stati
 model), in whi
h it is possible to get additional eviden
e of pira
y in order to \test" traitor

guesses, are studied in [13, 2, 31℄. A publi
-key traitor tra
ing s
heme is given in [4℄. One of the ni
e

properties of the s
heme in [4℄ is that it is possible to identify all traitors. We note, however, that although

our algorithms in Se
tion 3 
an only guarantee the identi�
ation of one traitor, they do so in signi�
antly

faster time (polynomial in the 
ode length r, versus O(N logN logN loglogN) in [4℄, where N is the number

of 
odewords).

In [29, 9℄, ways in whi
h a

ountability 
an be added to the model are dis
ussed. For example, to

improve upon the strength of the deterrent, in [9℄ 
ommitting pira
y eÆ
iently ne
essitates revealing sensitive

information. In [15℄, a system in whi
h pirate pay-TV de
oders 
an only work for short periods of time is

presented.

Re
ently, the identi�able parent property (IPP) tra
ing algorithm has garnered attention [21, 1, 34℄ (also,

very similar ideas are studied in [36℄). In [21℄, a 
ombinatorial 
hara
terization of 2-IPP s
hemes is presented.

Additional 
onstru
tions of and bounds for IPP s
hemes appear in [1, 34℄.

A 
oding theoreti
 approa
h is taken in [23℄ to study the related problem of bla
klisting users in a broad
ast

en
ryption s
heme, but that paper does not address the question of tra
ing.

2. Ba
kground on Codes and Tra
eability

In this se
tion we give de�nitions, notation, and ba
kground on 
odes, tra
eability, and de
oding.

2.1. De�nitions and Notation. A 
ode C of length r is a subset of Q

r

, where Q is a �nite alphabet. The

elements of C are 
alled 
odewords; ea
h 
odeword has the form x = (x

1

; � � � ; x

r

), where x

i

2 Q for 1 � i � r.

Subsets of C will be 
alled 
oalitions.

For any 
oalition C

0

� C, we de�ne the set of des
endants of C

0

, denoted des
(C

0

) by

des
(C

0

) = fw 2 Q

r

: w

i

2 fx

i

: x 2 C

0

g; for all 1 � i � rg:

The set des
(C

0

) 
onsists of the r-tuples that 
ould be produ
ed by the 
oalition C

0

.

We de�ne des





(C) to be the set of all x 2 Q

r

for whi
h there exists a 
oalition C

0

of size at most 
 su
h

that x 2 des
(C

0

). In other words, des





(C) 
onsists of the r-tuples that 
ould be produ
ed by a 
oalition

of size at most 
.

For x; y 2 Q

r

, let I(x; y) = fi : x

i

= y

i

g.

De�nition 1. A 
ode C is a 
-TA (tra
eability) 
ode if for all 
oalitions C

i

of size at most 
, if w 2 des
(C

i

)

then there exists x 2 C

i

su
h that jI(x;w)j > jI(z; w)j for all z 2 C � C

i

.

Codes with the identi�able parent property (IPP) are another type of tra
eability 
ode.
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De�nition 2. A 
ode C is a 
-IPP 
ode if for all w 2 des





(C), the interse
tion of the 
oalitions C

i

of size

at most 
 su
h that w 2 des
(C

i

) is nonempty.

Suppose C is a 
ode of length r. The (Hamming) distan
e between two elements x and y of Q

r

is

r�jI(x; y)j. The minimum distan
e of the 
ode C is the smallest distan
e between distin
t 
odewords of C.

If C is a 
-IPP 
ode and w 2 des





(C), then the traitors that 
an produ
e the pirate w are the 
odewords

that lie in all 
oalitions C

i

of size at most 
 su
h that w 2 des
(C

i

).

Sin
e the traitor tra
ing problem is trivial when 
 = 1, we will always take 
 to be at least 2.

2.2. Ba
kground on 
-TA 
odes. The following result, whi
h is Lemma 1.3 of [34℄, is very useful for

showing that a 
ode is 
-IPP.

Lemma 1. Every 
-TA 
ode is a 
-IPP 
ode.

As shown in [34℄, there are 
-IPP 
odes whi
h are not 
-TA. We give a simple example of a 2-IPP 
ode

whi
h is not 2-TA.

Example 1. Let u

1

= (0; 0; 1), u

2

= (1; 0; 0), and u

3

= (2; 0; 0). The 
ode fu

1

; u

2

; u

3

g is 
learly 2-IPP, sin
e

the �rst entry of a pirate determines a traitor. The 
oalition fu

1

; u

2

g 
an produ
e the pirate w = (0; 0; 0).

However, jI(u

1

; w)j = jI(u

2

; w)j = jI(u

3

; w)j = 2, so the 
ode is not 2-TA.

Note that for 
-IPP 
odes, traitor tra
ing is an O(

�

N




�

) pro
ess, in general, where N is the total number

of 
odewords in the 
ode. A traitor tra
ing algorithm for a 
-TA 
ode takes as input a w 2 des





(C) and

outputs the 
odewords x su
h that jI(x;w)j is largest. Hen
e for 
-TA 
odes, tra
ing is an O(N) pro
ess, in

general, where N is the number of 
odewords.

The next result, whi
h is proved in [34℄ (Theorem 4.4 of that paper; see also [7℄ and [8℄), shows that

for 
odes with large enough minimum distan
e the TA algorithm suÆ
es, and 
onsists of �nding 
odewords

within distan
e r �

r




from the pirate. In fa
t, all 
odewords within this distan
e will be traitors.

Theorem 1. Suppose C is a 
ode of length r, 
 is a positive integer, and the minimum distan
e d of C

satis�es d > r �

r




2

. Then

(i) C is a 
-TA 
ode;

(ii) if C

0

is a 
oalition of size at most 
, and w 2 des
(C

0

), then:

(a) there exists a traitor within distan
e r �

r




of w, and

(b) every 
odeword within distan
e r �

r




of w is a traitor.

Proof: If jC

0

j � 
 and w 2 des
(C

0

), then there exists x 2 C

0

su
h that jI(x;w)j �

r




. Sin
e d > r �

r




2

, if

x

1

; x

2

; : : : ; x




; x


+1

are 
+ 1 distin
t 
odewords and w 2 des
(fx

1

; : : : ; x




g), we have

jI(w; x


+1

)j �




X

i=1

jI(x

i

; x


+1

)j < 


r




2

=

r




:

It follows that C is 
-TA, and that the traitor tra
ing algorithm will only output 
odewords in C

0

. In

addition this demonstrates that to tra
e traitors in this 
onstru
tion, it suÆ
es to �nd 
odewords within

distan
e r � r=
 of the pirate w.

2.3. Linear Codes. Linear 
odes are a very important 
lass of 
odes. We will say that a 
ode of length r

is linear, or linear over F

q

, if the alphabet is a �nite �eld F

q

and the 
ode is a linear subspa
e of the ve
tor

spa
e F

r

q

. The dimension of the 
ode is its dimension as a ve
tor spa
e. If C is a linear 
ode over F

q

of

dimension k, then jCj = q

k

.

Reed-Solomon 
odes are among the most widely-used linear 
odes, with many useful appli
ations and

properties. To obtain a Reed-Solomon 
ode of length r and dimension k over the �nite �eld F

q

, �x r distin
t

elements �

1

; : : : ; �

r

of F

q

. The 
odewords are exa
tly the r-tuples (f(�

1

); : : : ; f(�

r

)) as f runs over (the

zero polynomial and) all polynomials of degree < k in F

q

[x℄. Note that a basis for the 
ode over F

q


an be

taken to be

f(1; : : : ; 1); (�

1

; : : : ; �

r

); (�

2

1

; : : : ; �

2

r

); : : : ; (�

k�1

1

; : : : ; �

k�1

r

)g:
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Sin
e two distin
t polynomials of degree less than k agree on at most k� 1 points, the minimum distan
e of

the 
ode is r � k + 1.

A useful generalization of Reed-Solomon 
odes are algebrai
 geometry (AG) 
odes (see for example [16, 35,

41℄). The linear 
odes with the \best" known parameters asymptoti
ally are AG 
odes [42℄. One advantage

of AG 
odes is that they are not, in general, bound by the restri
tion that r � q, as was the 
ase for

the Reed-Solomon 
odes above. Being freed of this 
onstraint allows us to have a smaller alphabet (and in

appli
ations, fewer keys), for given 
hoi
es of the other parameters. Hermitian 
odes, 
oming from Hermitian


urves, are examples of AG 
odes that have ni
e properties and 
an be de�ned expli
itly. For those familiar

with the below terminology (su
h knowledge is not essential for appre
iating the results of this paper), we

note that for our purposes it will suÆ
e to 
onsider the one-point 
odes C

X

(P; `P

0

) whi
h 
an be de�ned as

follows. One begins with a smooth, absolutely irredu
ible 
urve X of genus g de�ned over a �nite �eld F

q

,

a set P = fP

1

; : : : ; P

r

g of F

q

-rational points on X , another F

q

-rational point P

0

on X whi
h is not in the

set P , and an integer `. The 
odewords are then the r-tuples (f(P

1

); : : : ; f(P

r

)), where f is any element of

L(`P

0

), the ve
tor spa
e of rational fun
tions on X whose only poles o

ur at P

0

, and with multipli
ity at

most `. Under the assumption 2g�2 < ` < r, one �nds that this 
ode has dimension `+1�g and minimum

distan
e at least r�`. Noti
e that Reed-Solomon 
odes 
an be viewed as algebrai
 geometry 
odes by taking

X to be the proje
tive line, P to be the set of points 
orresponding to the r 
hosen �eld elements, P

0

to be

the point at in�nity, and ` = k � 1.

Con
atenated 
odes are 
odes whi
h are \
on
atenated" from two other 
odes. When two linear 
odes are


on
atenated, the produ
t of their lengths (resp., dimensions, resp., minimum distan
es) is the length (resp.,

dimension, resp., minimum distan
e) of the (linear) 
on
atenated 
ode. There are linear 
on
atenated 
odes

for small alphabets whi
h have good list de
oding 
apabilities, i.e., a small list of possible 
odewords 
an be

re
overed even when a large per
entage of the symbols are in error or have been erased [18℄.

We refer the reader to [16, 26, 35, 41℄ for more information on 
oding theory.

2.4. De
oding. In the theory of error-
orre
ting 
odes, a 
odeword is transmitted through a noisy 
hannel

and an element of Q

r

(i.e., a word) is re
eived. The re
eiver (or de
oder) then tries to determine as a

urately

as possible whi
h 
odeword was transmitted. In maximum-likelihood de
oding, the de
oding pro
ess 
onsists

of �nding the 
losest 
odeword to the re
eived word. If d is the minimum distan
e of the 
ode, then the

re
eiver 
an \
orre
t"

d�1

2

errors; i.e., there is at most one 
odeword within distan
e

d�1

2

of the re
eived

word. In the maximum-likelihood de
oding de
ision problem, the inputs are a linear 
ode over a given �nite

�eld, a re
eived word, and a spe
i�ed distan
e t, and the output is a yes or no answer to the question of

whether there is a 
odeword within distan
e t of the re
eived word. This de
ision problem is known to be

NP-
omplete [3℄.

In list de
oding, the goal is to output the list of all 
odewords within a spe
i�ed distan
e of the re
eived

word. In [39℄ and [40℄, Sudan gave the �rst eÆ
ient methods for list de
oding that run in time polynomial

in the length of the 
odewords. Sin
e then, Sudan's list de
oding te
hnique has been improved, generalized,

and re�ned [32, 33, 17, 18, 19, 20, 22, 28, 30, 44, 10, 11℄. The runtimes for the steps of the algorithm

have been improved, the number of errors that 
an be \
orre
ted" has been in
reased, and the te
hnique

has been shown to be appli
able to a larger 
lass of 
odes. Sudan's original algorithm is for Reed-Solomon


odes. Other 
odes for whi
h the te
hniques have been shown to apply in
lude AG 
odes (for whi
h the

fo
us has been on Hermitian 
odes) and 
ertain 
on
atenated 
odes (see [18℄, where the \outer 
ode" is a

Reed-Solomon or AG 
ode and the \inner 
ode" is a Hadamard 
ode).

In erasure de
oding, some positions of the re
eived word are garbled or \erased", and 
annot be identi�ed.

In this 
ase the de
oder knows that errors o

urred in those positions.

In erasure-and-error de
oding, the de
oder re
eives a word with some erasures and some errors, and

determines the transmitted word, or a list of possible transmitted words (given some appropriate bounds on

the numbers of errors and erasures).

In soft-de
ision de
oding, instead of re
eiving a (hard-de
ision) word, the de
oder re
eives a reliability

matrix, that states the probability that any given element of the alphabet was sent in any given position.

Using this \soft" information, a soft-de
ision de
oder outputs the most likely transmitted 
odeword(s).
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3. Effi
ient Tra
ing Algorithms via List De
oding

In this se
tion we show how the eÆ
ien
y of the TA tra
ing algorithm 
an be greatly improved when

the tra
eability s
heme is based on 
ertain error-
orre
ting 
odes, and the tra
ing algorithm uses fast list

de
oding methods. What is an O(N) pro
ess in general be
omes a pro
ess that runs in time polynomial in

the 
odeword length r. These 
onstru
tions mat
h the best previously known tra
eability s
hemes in this

model in terms of the alphabet size that is required to support a given level of tra
eability and 
odeword

length (roughly speaking, the alphabet size is O(N




2

r

)). We des
ribe 
onstru
tions based on Reed-Solomon,

algebrai
 geometry, and 
on
atenated 
odes.

3.1. Reed-Solomon 
odes. A widely used and extremely important 
lass of 
odes are the Reed-Solomon


odes. This is the 
lass of 
odes used in 
ompa
t disks, for example. This is also the 
lass of 
odes whi
h has

re
eived the most attention by 
oding theorists looking for fast list de
oding te
hniques, and to whi
h Sudan

�rst applied his method. While Sudan's original result is not strong enough to allow us to use list de
oding

to tra
e traitors, the later results of Guruswami and Sudan are exa
tly strong enough to a

omplish this.

Theorem 2. Let C be a Reed-Solomon 
ode of length r and dimension k over a �nite �eld of size at most

2

r

. If 
 is an integer, 
 � 2, and r > 


2

(k�1), then C is a 
-TA 
ode and there is a traitor tra
ing algorithm

that runs in time O(r

15

). If r = (1 + Æ)


2

(k � 1) then the algorithm runs in time O(

r

3

Æ

6

).

Proof: Sin
e C is a Reed-Solomon 
ode, the minimum distan
e d satis�es d = r � k + 1. The 
ondition

r > 


2

(k � 1) is then equivalent to the 
ondition d > r � r=


2

. By Theorem 1, C is a 
-TA 
ode and traitor

tra
ing amounts to �nding a 
odeword within distan
e r � r=
 of the pirate. Theorem 12 and Corollary 13

of [17℄ imply that if t >

p

(k � 1)r then all 
odewords within distan
e r � t of a given word 
an be listed

in time O(r

15

), and if t

2

= (1 + Æ)(k � 1)r then the runtime is O(

r

3

Æ

6

). Taking t = r=
 gives the desired

result.

We note that further improvements in the runtime are being rapidly produ
ed, and it seems that some of

these results will bring the runtime down to O(rlog

3

r), at least in 
ertain 
ases (see [10℄).

3.2. AG Codes. In [17℄, a polynomial-time algorithm for list de
oding an AG 
ode de�ned from a nonsin-

gular plane 
urve is given. This algorithm depends on the (reasonable) assumption that a 
ertain amount of

pre-pro
essing has o

urred whi
h provides the de
oder with some additional information about the 
ode,

for example a list of 
ertain rational fun
tions on the 
urve. Under this same assumption, we have:

Theorem 3. Let X be a nonsingular plane 
urve of genus g de�ned over a �nite �eld F

q

, P a set of r F

q

-

rational points on X, P

0

an F

q

-rational point on X whi
h is not in P , and k an integer su
h that k > g� 1.

Let 
 be an integer su
h that 
 � 2 and r > 


2

(k+ g� 1), assume that q � 2

r

, and assume the pre-pro
essing

des
ribed above has o

urred. Then the one-point AG 
ode C

X

(P; (k+g�1)P

0

) is a 
-TA 
ode with a traitor

tra
ing algorithm that runs in time polynomial in r.

Proof: The minimum distan
e d of the 
ode satis�es d � r� k� g+1 (see Theorem 10.6.3 of [26℄). By our


hoi
e of 
 we have d � r � k � g + 1 > r � r=


2

and r � r=
 < r �

p

r(k + g � 1). By Theorem 27 of [17℄,

there exists an algorithm that runs in time polynomial in r that outputs the list of 
odewords of distan
e

less than r �

p

r(k + g � 1) from a given word. The result now follows from Theorem 1.

The list de
oding algorithm in [17℄ for AG 
odes was improved in [44℄ (see Theorems 3.4 and 4.1), where

an expli
it runtime was also given.

3.3. Con
atenated Codes. As pointed out earlier, there exist ni
e linear 
on
atenated 
odes for small

alphabets whi
h have good list de
oding 
apabilities.

Theorem 4. Given a prime power q and positive integers k and 
 su
h that q > 


2

� 4, and given a real

number Æ su
h that 0 < Æ �

q=


2

�1

q�1

, then there exists an expli
it linear 
-TA 
ode over the �eld F

q

of length

r = O(

k

2

Æ

3

log(1=Æ)

) (or length r = O(

k

Æ

2

log

2

(1=Æ)

))) and dimension k with a polynomial (in r) traitor tra
ing

algorithm.
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Proof: Theorems 7 and 8 and Corollaries 2 and 3 of [18℄ imply that there exists an expli
it 
on
atenated


ode over F

q

of the 
orre
t length r and dimension k, with minimum distan
e d � (1 �

1

q

)(1 � Æ)r, with

a polynomial time list de
oding algorithm for e errors, as long as e < (1 �

p

Æ)(q � 1)r=q. The 
ondition

Æ �

q=


2

�1

q�1

implies that d > r � r=


2

and that the upper bound on the number of errors is satis�ed when

e � r � r=
. The result therefore follows from Theorem 1.

4. Finding all Possible Coalitions

In this se
tion, we des
ribe how a 
oding theoreti
 approa
h 
an be used to amass additional pira
y

information: a list of all (minimal) 
oalitions that are 
apable of 
reating a given pirate. Su
h information is

useful in two respe
ts. Codewords not appearing in any of these 
oalitions were not involved in 
onstru
ting

the pirate word, and it 
onstitutes useful audit information that may be helpful in the prose
ution of a

traitor later on. In addition, the algorithm we present enables the IPP traitor tra
ing algorithm [21, 1, 34℄

to run more eÆ
iently, as that algorithm works by interse
ting all 
oalitions that are 
apable of 
reating a

given pirate word.

At a high level, the algorithm builds a \tree" from whi
h all 
-
oalitions 
apable of 
onstru
ting w 
an be

extra
ted. At the root of the tree lie all 
odewords that we know must be in any su
h 
oalitions. The 
hildren

are then 
andidate 
odewords for the next member of the 
oalition. Bran
hes of the tree are extended until

the 
urrent 
oalition \
overs" w, or until it be
omes 
lear that this is impossible (e.g., be
ause the 
oalition

is already of size 
 and still 
annot 
reate w). In the latter 
ase, that \dead-end" 
oalition is dis
arded, and

other bran
hes of the tree are explored.

Before des
ribing the algorithm in more detail, we introdu
e some of the ideas used. If S is a subset of

f1; : : : ; rg and s = jSj, de�ne a map f

S

: F

r

q

! F

r�s

q

by \forgetting" the entries in positions 
orresponding

to elements of S. If C is a 
ode, then the image 
ode f

S

(C) is the pun
tured 
ode, where we view the 
ode

C as having been pun
tured at the positions 
orresponding to the elements of S. If u is in f

S

(C) we 
all a

lift of u to C any 
odeword v su
h that f

S

(v) = w.

We say that C

0

is a minimal 
-
oalition for w if jC

0

j � 
, w 2 des
C

0

, but w is not in des
C

i

for any

proper subset C

i

of C

0

.

Algorithm Sket
h:

Input: positive integer 
, Reed-Solomon Code C of length r having N 
odewords and minimum distan
e

greater than r �

r




2

, pirate word w 2 des





C.

Output: A list of 
oalitions of size at most 
 whi
h 
an 
reate w, that in
ludes all minimal 
-
oalitions

for w.

The basi
 steps of the algorithm are as follows:

(i) Use list de
oding to �nd all 
odewords u

1

; :::; u

a

2 C (a � 
) within distan
e r�r=
 of w. Let S be the

subset of f1; : : : ; rg on whi
h w agrees with at least one of fu

1

; :::; u

a

g, and let s = jSj. Let r

1

= r� s,




1

= 
 � a, C

1

= f

S

(C), and w

1

= f

S

(w). (Thus C

1

is the pun
tured 
ode, r

1

is its length, w

1

is the

image of the pirate word in C

1

, and 


1

is the number of 
oalition members still to be found.) If r

1

= 0,

quit and output fu

1

; :::; u

a

g. Set i = 1.

(ii) Use list de
oding to �nd all 
odewords v

i1

; :::; v

ib

i

2 C

i

(b

i

� 


i

) within distan
e r

i

� r

i

=


i

of w

i

. (Note

that the �rst time this is exe
uted, the output is non-empty.) If this outputs the empty-set, exit to

Step (iii). Otherwise, let S

i

be the subset of f1; : : : ; r

i

g on whi
h w

i

agrees with v

ib

i

, and let s

i

= jS

i

j.

Let r

i+1

= r

i

� s

i

, 


i+1

= 


i

� 1, C

i+1

= f

S

i

(C

i

), and w

i+1

= f

S

i

(w

i

).

(iii) To 
reate the 
oalitions to output, always start with u

1

; :::; u

a

. Then add (a lift to C of) v

1b

1

, v

2b

2

,

and so on. Continue until the list of 
odewords \
overs" the pirate w. When this pro
ess su

eeds or

dead-ends (i.e, the 
urrent list does not yet 
over w, but either we 
annot �nd any 
odewords within

the required distan
e r

i

� r

i

=


i

of w

i

, or we already have 
 
odewords in our list), then move up the

\tree" of v

ib

j

's to �nd the �rst unexplored bran
h and 
ontinue from there. The algorithm terminates

when all bran
hes have been explored.

Analysis of the Algorithm:
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By Theorem 2, Step (i) 
an be done eÆ
iently (time polynomial in r). By Theorem 1, u

1

; :::; u

a

are in

every 
oalition that 
an 
reate w. Further, in Step (ii), if d

i

> r

i

�r

i

=


2

i

where d

i

is the minimum distan
e of

the new (pun
tured) 
ode C

i

, then every 
oalition that 
an produ
e the original pirate w will 
ontain some

lift to the original 
ode of some v

i;b

j

. Moreover, if a lift to C of v

i;b

j

is in some 
oalition that 
an 
reate the

original pirate w, then there exists a 
odeword within r

i

�r

i

=


i

of v

i;b

j

(by the pigeonhole prin
iple), and the

algorithm will pro
eed. If Step (ii) returns the empty-set, then v

i;b

j

was a dead-end. Note that list de
oding

a pun
tured 
ode and then lifting a

omplishes the same as erasure-and-error de
oding. One may therefore

use erasure-and-error de
oding algorithms to a

omplish this step. Any 
odeword found in Step (i) of the

algorithm (and at least one 
odeword must be found in this step) must appear in every 
oalition 
onsidered

by the algorithm. Hen
e the algorithm will 
ertainly not 
onsider the 
oalitions that do not in
lude the


odeword(s) produ
ed in Step (i), and the number of su
h 
oalitions is at least

�

N�1




�

=

N�


N

�

N




�

, where N is

the number of 
odewords. If N � 
, then the number of 
oalitions that are not 
onsidered by the algorithm

is �(

�

N




�

). The algorithm is therefore a signi�
ant improvement over the brute for
e method.

5. The TA and IPP Tra
ing Algorithms

The results in this se
tion justify a fo
us on TA (as opposed to IPP) s
hemes. In this paper we have

been using the additional stru
ture provided by linear 
odes to 
onstru
t s
hemes for whi
h the TA tra
ing

algorithm is eÆ
ient. We know by Lemma 1 that 
-TA 
odes are also 
-IPP 
odes. However the 
onverse

fails ([34℄; see also Example 1 above). If 
onstru
tions of s
hemes for whi
h the IPP tra
ing algorithm is

eÆ
ient (i.e., signi�
antly redu
ed from O(

�

N




�

) time) are possible, it is reasonable to expe
t this to be

a

omplished by introdu
ing an algebrai
 stru
ture to the s
heme. Here we give eviden
e that doing so may

enable the inherently more eÆ
ient TA algorithm to be used to identify traitors. In parti
ular, we show

that one natural approa
h to adding su
h stru
ture, that is via Reed-Solomon 
odes, fails to 
onstru
t IPP

s
hemes that are not also TA s
hemes. Hen
e, sin
e it is un
lear that 
-IPP s
hemes yield any advantage

over 
-TA s
hemes, most of our work fo
uses on the latter.

First, we prove a ne
essary 
ondition on the minimum distan
e of Reed-Solomon 
odes, under whi
h Reed-

Solomon 
odes yield 
-TA set systems. This result suggests a potential method for generating examples of

s
hemes that are 
-IPP but not 
-TA. Next, we demonstrate through a family of 
ounterexamples that in fa
t

this approa
h does not work; as soon as the minimum distan
e is de
reased it is possible to �nd examples of


odes where both the IPP and TA tra
ing algorithms fail.

We �rst re
all that there is a natural way to produ
e unordered sets from the ordered sets that 
onstitute

the 
ode: to a 
odeword x = (x

1

; :::; x

r

), asso
iate the set x

0

= f(1; x

1

); :::; (r; x

r

)g. We de�ne TA and IPP

set systems (as opposed to TA and IPP 
odes) in the natural way, with the noteworthy di�eren
e that a

pirate unordered set 
onsists of r elements su
h that ea
h element is a member of some 
oalition member's

set. This is a generalization of our earlier de�nition be
ause it is not ne
essary to have one element of the

form (i; y

i

) for ea
h i = 1; :::; r.

The following theorem is a partial 
onverse of Theorem 1.

Theorem 5. If 
 is an integer, 
 � 2, and C is a Reed-Solomon 
ode of length r with minimum distan
e

d � r �

r




2

, then the set system 
orresponding to C is not a 
-TA set system.

Proof: As above, if u 2 C, write u

0

= f(1; u

1

); :::; (r; u

r

)g for the asso
iated element of the set system.

Choose a 
odeword v = (v

1

; : : : ; v

r

) in C. We will show that a 
oalition of size at most 
 exists whi
h does

not 
ontain v

0

, but whi
h 
an impli
ate v

0

. In other words, we will 
onstru
t a pirate set w whi
h 
an be


reated by a 
oalition fu

0

1

; : : : ; u

0

b

g with b � 
 that does not 
ontain v

0

, but whi
h satis�es jv

0

\wj � ju

0

i

\wj

for every i. Let Æ = r � d = k � 1, where k is the dimension of the 
ode C. By assumption, Æ � r=


2

.

First, assume 
Æ � r. For i = 1; : : : ; 
, 
hoose u

i

2 C, distin
t from v, whi
h agrees with v on the

positions (i� 1)Æ + 1, : : : , iÆ. (To do this, simply �nd a polynomial h

i

of degree Æ whi
h vanishes on the Æ

�eld elements 
orresponding to these Æ positions, and let u

i

be the 
odeword 
orresponding to the polynomial

f � h

i

, where f is the polynomial 
orresponding to v.) Noti
e that, sin
e two distin
t 
odewords 
an agree

on at most Æ positions, ea
h u

0

i


ontains at least r � 
Æ elements whi
h are not in v

0

or in u

0

j

for any j 6= i.

Sin
e r� 
Æ � 0 and 
 � 2, we have r� 
Æ � d

r�
Æ




e = d

r




e� Æ. We 
an therefore form a pirate set w so that
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for every i, ju

i

\wj � Æ+ (d

r




e� Æ) = d

r




e and jv

0

\wj = 
Æ � d

r




e. Thus the TA algorithm will mark v

0

as a

traitor.

If on the other hand 
Æ > r, simply 
hoose u

1

; : : : ; u

j

as above, where j = b

r

Æ


 < 
, and 
hoose u

j+1

6= v

to agree with v on the last r � jÆ positions. The 
oalition fu

0

1

; : : : ; u

0

j+1

g 
an 
reate v

0

as a pirate set.

The previous theorem leaves open the question of whether Reed-Solomon 
odes with minimum distan
e

at most r �

r




2

might still have tra
eability when the IPP algorithm is used even though the TA algorithm

may no longer 
orre
tly identify traitors. The following family of 
ounterexamples illustrates that this is not

generally the 
ase. The key idea behind the examples is that if the underlying �eld is suÆ
iently large, a

fun
tion de�ned as the di�eren
e between two polynomials of degree �, has � roots in the �eld. From this,

it 
an be argued that there exist two disjoint 
olle
tions of 
 polynomials, su
h that if a polynomial is 
hosen

from ea
h 
olle
tion, the resulting pair agrees on as many distin
t points as their degree. In addition, the

sets of points of agreement of ea
h pair are disjoint. Hen
e, we 
an generate two disjoint 
oalitions that are


apable of 
reating the same pirate word.

Theorem 6. Let s and 
 be positive integers with 
 � 2, and let p be a prime number greater than 


2

. For

i = 1; : : : ; 
, let a

i

= (i � 1)
. For i = 1; : : : ; 
, if s is not divisible by p, let g

i

(x) = x

s

� i; otherwise let

g

i

(x) = x

s

+ x � i. Let T be the set of roots of all the 


2

polynomials g

i

� a

j

. Let q be a suÆ
iently high

power of p so that T is a subset of the �nite �eld F

q

. Then T 
onsists of 


2

s distin
t elements of F

q

. Let C

be the Reed-Solomon 
ode in whi
h the 
odewords are the evaluations at the elements of T of all polynomials

over F

q

of degree at most s. Then C is not 
-IPP. The length r of the 
odewords is r = 


2

s, the dimension

of the 
ode is s+ 1, and the minimum distan
e is equal to r � r=


2

.

Proof: We �rst show that T 
onsists of 


2

s distin
t elements. Let h

ij

= g

i

� a

j

. Then h

ij

(x) � h

mn

(x) =

�i� (j � 1)
+m+ (n � 1)
. If h

ij

(x) � h

mn

(x) = 0, then m� i is divisible by 
. Sin
e m and i are both

in the range 1; : : : ; 
, they must be equal. Thus (j � 1) = (n � 1)
, and so j = n. Therefore the set fh

ij

g


onsists of 


2

distin
t polynomials of degree s, any two of whi
h di�er by a non-zero 
onstant. Therefore no

two 
an have a root in 
ommon. Further, the derivative of h

ij

is sx

s�1

if s is not divisible by p, and is 1

otherwise. In both 
ases this derivative is relatively prime to h

ij

(in the �rst 
ase, note that h

ij

is always of

the form x

s

+(a non-zero 
onstant), so it never has 0 as a root). Therefore all the roots of h

ij

are simple. So

T 
onsists of 


2

s distin
t elements, and it makes sense to de�ne the Reed-Solomon 
ode de�ned by evaluating

polynomials of degree at most s at the elements of T . The 
ode 
learly has the stated parameters. The two


oalitions 
orresponding to the polynomials in the sets fa

1

; : : : ; a




g and fg

1

; : : : ; g




g are disjoint, and ea
h


oalition 
an produ
e the pirate word de�ned as follows: for ea
h � in T , the �-th entry of the pirate word

is g

i

(�) = a

j

, for the unique i and j su
h that the equality holds. It follows that the 
ode is not 
-IPP.

By evaluating the polynomials at subsets of T of size at least s + 1 (to ensure that k � r), we 
an take

the length r to be anything between s+ 1 and 


2

s. The resulting minimum distan
e r � s is then at most

r � r=


2

.

We remark that if s is not divisible by p, then we 
an always �nd a q that works whi
h is a divisor of p

s

.

The results in this se
tion lead to the following questions whi
h, while peripheral to the traitor tra
ing

problem, are of independent interest. Is it the 
ase that all Reed-Solomon 
odes of length r with minimum

distan
e d � r�r=


2

are not 
-IPP? It is easy to see that this is false for linear 
odes in general. For example,

one-dimensional linear 
odes are always both 
-IPP and 
-TA, but 
an have d � r � r=


2

if they are not

Reed-Solomon 
odes (for one-dimensional 
odes, the minimum distan
e d is the number of non-zero entries

in the non-zero 
odewords; the 
odewords of distan
e less than d from the pirate lie in every 
oalition that


an 
reate the pirate). If the answer to the above question were yes, 
ombining it with Theorem 1 would

imply that all Reed-Solomon 
-IPP 
odes are 
-TA. We raise as an open question whether all linear 
-IPP


odes are 
-TA.

6. Tra
ing with Extra Information

In this se
tion, we des
ribe how other 
oding theoreti
 te
hniques may be applied to the traitor tra
ing

problem when additional information about traitor behavior is available.
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In [17℄, list de
oding is 
onsidered not just in the 
ase of errors, but also in the 
ase of erasures and

errors (and another potentially useful 
ase that is referred to as \de
oding with un
ertain re
eptions"). For


on
atenated 
odes, [18℄ also deals with the problem of de
oding from errors and erasures. Building on

[17℄, [22℄ presents a high-performan
e soft-de
ision list de
oding algorithm. We believe that these results

also have potential for use in traitor tra
ing problems, in 
ases where some additional information is known

about the traitors or how they are operating.

If one has information about the traitors or their modes of operation, one 
an build that information into

a reliability matrix, and apply soft-de
ision de
oding algorithms to tra
e.

For example, suppose we know that a user who 
ontributed the �rst entry to the pirate 
ontributed at

least r=
 entries to the pirate. One 
an use this information to 
onstru
t a skewed reliability matrix. If the

underlying 
ode is a Reed-Solomon 
ode over a �nite �eld of size q, one 
an then apply the soft-de
ision

algorithm in [22℄ to �nd su
h a \dominant" traitor. The 
hannel that models this situation is a q-ary

symmetri
 
hannel. The �rst 
olumn of the reliability matrix will have a 1 in the entry 
orresponding to

the �eld element that o

urs in the �rst position of the pirate, and 0's elsewhere. For j > 1, the jth 
olumn

of the reliability matrix will have 1 � � in the entry 
orresponding to the �eld element in the jth entry of

the pirate, and the other entries will all be

�

q�1

, where � <

q�1

q

is 
hosen so as to optimize the soft-de
ision

de
oding algorithm in [22℄. If one does not know whi
h entry was 
ontributed by the user who 
ontributed

the most, one possible sear
h method is to 
hoose entries at random from the pirate and apply the above

strategy to sear
h for traitors that 
ontributed that entry.

Another possible approa
h to tra
ing traitors is to try to se
ond-guess their strategy. For example,

if you believe that one traitor has 
ontributed more than the other members of the 
oalition, you 
an

apply maximum-likelihood de
oding to �nd su
h traitors very qui
kly. This might involve a \ringleader" or

\s
apegoat" s
enario. If on the other hand you believe that all traitors 
ontributed roughly equal amounts,

then list de
oding should be tried �rst. Traitors 
an be sear
hed for in sequen
es of expanding Hamming

balls around the pirate. The optimal de
oding algorithm to use will depend on the radius of the Hamming

ball. These algorithms 
an be run in parallel or sequentially.

Erasure-and-error de
oding may be useful in �ngerprinting or watermarking s
enarios, su
h as those

presented in [5, 6, 13℄. In one model for su
h a s
enario, a 
oalition 
reates a pirate 
opy of the digital


ontent by leaving �xed all 
odeword entries where they all agree, and 
hoosing the values of the remaining

positions from Q [ f?g, where Q is the alphabet. The ?'s 
an be viewed as erasures.

7. Con
lusion

In this paper we have demonstrated that traitor tra
ing algorithms 
an be quite eÆ
ient when the 
on-

stru
tion of the tra
eability s
heme is based on error-
orre
ting 
odes and the method of tra
ing is based on

fast list de
oding algorithms. For the TA algorithm, traitors 
an be identi�ed in time polynomial in r, the

length of the 
ode, rather than in the mu
h larger parameter N , the number of 
odewords. In addition, list

de
oding on su

essive pun
tured 
odes gives a method for identifying all possible traitor 
oalitions of size at

most 
 more eÆ
iently than a brute for
e sear
h (whi
h runs in O(

�

N




�

) time). Finally, we suggest avenues

for future resear
h in this area, in
luding explorations of appli
ations of soft-de
ision and erasure de
oding

te
hniques to traitor tra
ing in s
enarios where additional information has been obtained about the traitors

or their mode of operation.
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