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ABSTRACT. We apply powerful, recently discovered techniques for the list decoding of error-correcting codes
to the problem of efficiently tracing traitors. Traitor tracing schemes have been extensively studied for use
as a piracy deterrent. In a widely studied model for protecting digital content, each user in the system is
associated with a unique set of symbols. For example, the sets may be used to install a software CD or
decrypt pay-TV content. The assignment of sets is done in such a way that if a bounded collection of sets
is used to form a new set to enable piracy, at least one of the traitor sets can be identified by applying a
traitor tracing algorithm to the newly formed set. Much work has focused on methods for constructing such
traceability schemes, but the complexity of the traitor tracing algorithms has received little attention. A
widely used traitor tracing algorithm, the TA algorithm, has a running time of O(N) in general, where N
is number of sets in the system (e.g., the number of copies of the CD), and therefore is inefficient for large
populations. In this paper we use a coding theoretic approach to produce traceability schemes for which
the TA algorithm is very fast. We show that when suitable error-correcting codes are used to construct
traceability schemes, and fast list decoding algorithms are used to trace, the run time of the TA algorithm
is polynomial in the codeword length. We also use the strength of the error-correcting code approach
to construct traceability schemes with more efficient algorithms for finding all possible traitor coalitions.
Finally, we provide evidence that amongst traceability schemes in general, TA traceability schemes are the
most likely to be amenable to efficient tracing methods.

1. INTRODUCTION

Traceability schemes are introduced in [7] and have been extensively studied in the intervening years.
We focus on one of the few aspects of this area of work that has received little attention: the complexity
of the traitor tracing algorithms. We show that powerful new techniques for the list decoding of error-
correcting codes enable us to construct traceability schemes with very fast traitor tracing algorithms. These
list decoding techniques are receiving wide attention in the coding theory community, and improvements
and generalizations are being rapidly produced. This paper gives the first applications of these important
tools to the problem of tracing traitors.

A popular model for traceability schemes is one in which a unique set (possibly ordered) of r symbols is
associated with each user. For example, the set may be embedded in a software CD possessed by the user, or
contained in a smartcard the user has for the purpose of viewing encrypted pay-TV programs (in the latter
case, the set corresponds to a set of keys). When a coalition forms to commit piracy, it must construct a
set to associate with the pirate object. In the case of unordered sets, this pirate set consists of r symbols,
each of which belongs to at least one coalition member’s set. If the sets are ordered, the coalition members
have less freedom and must form an ordered pirate set in which the symbol in each position is identical to
the symbol in the same position in the ordered set of some coalition member. In either scenario a traitor
tracing algorithm is applied to the pirate, and the sets are constructed in such a way that the algorithm
only identifies an actual traitor or traitors. In practice, one randomly chooses a set of symbols {s(; ,)} with
i € {1,..,r} and y in a finite alphabet @), and the collection of symbols corresponding to a given user is
determined by the set associated with that user. For example, if the ordered set x = (z1, ..., z,-) is associated
with user u, then the set of symbols associated with user u is Sy = {S(1,2,)s > S(r,z,) }- It is Sy, not z, that
the user stores (e.g., S, is embedded in the user’s CD or stored on their smartcard). This additional step
makes the model of pirate behavior that we consider reasonable. Since the symbols are generated randomly
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it is essentially impossible to guess a symbol, and hence a coalition is only able to form pirate words out
of its pooled collection of symbols. In other words, moving from codewords to symbols thwarts algebraic
attacks (see, for example, [15]). Although a coalition may be able to write down any codeword on which
a user’s set is based (this information may be public) it can only generate the symbol associated with an
entry in the codeword if there is a coalition member that agrees with the codeword in that position. In this
paper, we do not define an associated encryption mechanism, anticipating instead that if one is needed it
will likely be a broadcast encryption scheme ([12]), as such a scheme enables certain users to be prevented
from recovering the content from the encrypted broadcast.

The approach we take here is to use error-correcting codes to construct traceability schemes in which the
sets are ordered. The ordered (as opposed to the unordered) set scenario yields naturally to coding theoretic
techniques and has many practical applications ([8, 6]). In addition, we note that when combined with
certain types of broadcast encryption schemes, a combination we expect in practice, our assumptions on the
traitors’ behavior are validated. More precisely, many broadcast encryption schemes have been studied (see,
for example, [7]) in which the only pirate sets that are capable of decrypting content are those constructed
by choosing one symbol each from amongst the symbols the traitors have in each particular position. Hence,
with such broadcast encryption schemes, if traitors do not behave as modeled here they will not create a
valid pirate set, and piracy attempts will be thwarted without any need for traceability.

We focus on the TA traitor tracing algorithm (following the terminology in [34]), that identifies as traitors
all users whose set shares the most with the pirate set. In general the TA algorithm runs in O(N) time,
where N is the number of users. However this paper shows that for suitable constructions based on error-
correcting codes, tracing can be accomplished in time polynomial in the length of each codeword, a significant
improvement. The constructions in this paper match the best previously known schemes in this model in
terms of the alphabet size that is required to achieve a certain level of traceability for a given codeword
length, and exceed all earlier schemes in the speed with which they trace (at least) one traitor. Additional
justification for focusing on the TA algorithm is derived in Section 5, where evidence is given that adding
enough structure to a traceability scheme to enable fast tracing appears to make the properties of TA and
IPP indistinguishable.

Our approach takes advantage of recent powerful methods for list decoding of linear codes, that originated
with work of Sudan [39]. In list decoding, the input is a received word, and the output is the list of all
codewords within a given Hamming distance of the received word. Sudan’s results by themselves are not
strong enough to be applicable in the setting in which the TA algorithm succeeds in finding traitors (as
opposed to identifying probable traitors), since the decoding procedure in [39] is not capable of correcting
enough errors in the code. However, Sudan’s work has recently been extended to enable it to efficiently
correct more errors; in other words, it extends the radius of the Hamming ball around the received word in
which it can find all the codewords in polynomial time. The improvements in [17] are precisely sufficient to
be applicable to the setting where the TA algorithm succeeds. Efficient list decoding algorithms now exist
for Reed-Solomon codes, more general algebraic geometry codes, and some concatenated codes. The results
are rapidly undergoing improvement and generalization, and hold promise for greater improvements in the
construction of efficient traceability schemes.

Traceability should be viewed as one weapon in an arsenal against piracy. Traceability is a worthwhile
addition to a system provided the associated algorithms add sufficiently little cost, as we believe the tech-
niques presented in this paper do. For example, as noted in [15], traceability can be a useful addition to a
long-lived broadcast encryption scheme. If keys are allocated to smartcards in such a way as to ensure some
traceability, it is possible to keep a list of traitor smartcards over time. If the smartcard of one particular
user appears on the list frequently despite many smartcard refreshments (i.e., key changes) this mounting
evidence makes it increasingly likely that the user is actually guilty, and not simply a victim of smartcard
theft. Hence, as long as traceability schemes are efficient, they can quickly yield useful information during
system audits.

OVERVIEW. The rest of the paper is organized as follows. Section 1.1 covers related work in the areas of
traceability and broadcast encryption and Section 2 covers the necessary background on traceability and
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gives a brief overview of the coding theoretic ideas used in this paper. Section 3 describes how to construct
traceability schemes for which the TA algorithm is efficient. Section 4 discusses an efficient way to find all
(minimal) coalitions of traitors. Section 5 considers the relationship between TA and IPP (a term defined
in Section 2) traceability schemes. A discussion of other potential applications of coding theoretic ideas and
techniques to traceability questions is given in Section 6.

1.1. Related Work. The phrase traitor tracing is coined in [7] (see also the extended version [8]). In
traceability schemes, users are each given an ordered (as in [7, 6, 13, 34], for example), or unordered (as
in [37], for example) set of keys. In many of these papers, an encryption scheme is specified in a way
that enables the TA tracing algorithm to identify at least one traitor provided the coalition of traitors that
colluded to produce the pirate is of bounded size and the pirate set has been constructed in accordance with
the encryption scheme.

In [5] (see also the revised version [6]), methods for creating TA traceability codes are given for the purpose
of fingerprinting digital data. Lower bounds and additional constructions of TA traceability schemes are given
in [37], while lower bounds are also proven in [25, 24]. In addition, [24] provides a tracing algorithm for
schemes in [25].

The problem of combining broadcast encryption and traceability is studied in [38, 14, 27, 43].

Some variations on the models of [8, 6] have been studied in recent years. Dynamic models (here we
study a static model), in which it is possible to get additional evidence of piracy in order to “test” traitor
guesses, are studied in [13, 2, 31]. A public-key traitor tracing scheme is given in [4]. One of the nice
properties of the scheme in [4] is that it is possible to identify all traitors. We note, however, that although
our algorithms in Section 3 can only guarantee the identification of one traitor, they do so in significantly
faster time (polynomial in the code length r, versus O(Nlog Nlog NloglogN) in [4], where N is the number
of codewords).

In [29, 9], ways in which accountability can be added to the model are discussed. For example, to
improve upon the strength of the deterrent, in [9] committing piracy efficiently necessitates revealing sensitive
information. In [15], a system in which pirate pay-TV decoders can only work for short periods of time is
presented.

Recently, the identifiable parent property (IPP) tracing algorithm has garnered attention [21, 1, 34] (also,
very similar ideas are studied in [36]). In [21], a combinatorial characterization of 2-IPP schemes is presented.
Additional constructions of and bounds for IPP schemes appear in [1, 34].

A coding theoretic approach is taken in [23] to study the related problem of blacklisting users in a broadcast
encryption scheme, but that paper does not address the question of tracing.

2. BACKGROUND ON CODES AND TRACEABILITY
In this section we give definitions, notation, and background on codes, traceability, and decoding.

2.1. Definitions and Notation. A code C of length r is a subset of ", where @ is a finite alphabet. The
elements of C are called codewords; each codeword has the form z = (z1, -+ ,xz,), where z; € Q for 1 < i <.
Subsets of C' will be called coalitions.

For any coalition Cy C C, we define the set of descendants of Cy, denoted desc(Cp) by

desc(Co) ={w € Q" : w; € {z; : x € Cp}, forall 1 <i <r}.

The set desc(Cy) consists of the r-tuples that could be produced by the coalition Cy.

We define desc.(C) to be the set of all z € Q" for which there exists a coalition Cp of size at most ¢ such
that z € desc(Cp). In other words, desc.(C) consists of the r-tuples that could be produced by a coalition
of size at most c.

For z,y € Q", let I(z,y) = {i : x; = y; }.

Definition 1. A code C is a c¢-TA (traceability) code if for all coalitions C; of size at most ¢, if w € desc(C;)
then there exists © € C; such that |I(z,w)| > |I(z,w)| for all z € C — C;.

Codes with the identifiable parent property (IPP) are another type of traceability code.
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Definition 2. A code C is a c-IPP code if for all w € desc.(C), the intersection of the coalitions C; of size
at most ¢ such that w € desc(C;) is nonempty.

Suppose C' is a code of length r. The (Hamming) distance between two elements z and y of Q" is
r—|I(z,y)|- The minimum distance of the code C' is the smallest distance between distinct codewords of C.

If C is a ¢-IPP code and w € desc.(C), then the traitors that can produce the pirate w are the codewords
that lie in all coalitions C; of size at most ¢ such that w € desc(C}).

Since the traitor tracing problem is trivial when ¢ = 1, we will always take ¢ to be at least 2.

2.2. Background on c¢-TA codes. The following result, which is Lemma 1.3 of [34], is very useful for
showing that a code is c-IPP.

Lemma 1. Every c-TA code is a c-IPP code.

As shown in [34], there are ¢-IPP codes which are not ¢-TA. We give a simple example of a 2-IPP code
which is not 2-TA.

Example 1. Letu; = (0,0,1), us = (1,0,0), and uz = (2,0,0). The code {u1,us,us} is clearly 2-IPP, since
the first entry of a pirate determines a traitor. The coalition {ui,u2} can produce the pirate w = (0,0,0).
However, |I(uy,w)| = |I(uz,w)| = |I(ug,w)| =2, so the code is not 2-TA.

Note that for ¢-IPP codes, traitor tracing is an O((]X )) process, in general, where N is the total number
of codewords in the code. A traitor tracing algorithm for a ¢-TA code takes as input a w € desc.(C) and
outputs the codewords z such that |I(z,w)| is largest. Hence for ¢-TA codes, tracing is an O(N) process, in
general, where N is the number of codewords.

The next result, which is proved in [34] (Theorem 4.4 of that paper; see also [7] and [8]), shows that
for codes with large enough minimum distance the TA algorithm suffices, and consists of finding codewords
within distance r — £ from the pirate. In fact, all codewords within this distance will be traitors.

Theorem 1. Suppose C' is a code of length r, c is a positive integer, and the minimum distance d of C
satisfies d > r — 2z. Then

(i) C is a c-TA code;

(ii) if Co is a coalition of size at most ¢, and w € desc(Cyp), then:

(a) there exists a traitor within distance r — = of w, and

(b) every codeword within distance r — L of w is a traitor.

Proof: If |Cy| < ¢ and w € desc(Cp), then there exists x € Cy such that |I(z,w)| > Z. Since d > r — %, if
X1,T2,... ,Te,Tepr are ¢ + 1 distinet codewords and w € desc({z1,...,z.}), we have

C
rooor
wzern)] < S Hlarszenn)] < ez =
1=
It follows that C' is ¢-TA, and that the traitor tracing algorithm will only output codewords in Cy. In
addition this demonstrates that to trace traitors in this construction, it suffices to find codewords within
distance r — r/c of the pirate w. O

2.3. Linear Codes. Linear codes are a very important class of codes. We will say that a code of length r
is linear, or linear over Fy, if the alphabet is a finite field F;, and the code is a linear subspace of the vector
space F;. The dimension of the code is its dimension as a vector space. If C' is a linear code over Fy of
dimension k, then |C| = ¢*.

Reed-Solomon codes are among the most widely-used linear codes, with many useful applications and
properties. To obtain a Reed-Solomon code of length  and dimension k over the finite field F},, fix r distinct
elements a1, ... ,a, of F,. The codewords are exactly the r-tuples (f(a1),..., f(ay)) as f runs over (the
zero polynomial and) all polynomials of degree < k in Fj[z]. Note that a basis for the code over F, can be
taken to be

{1 (@), (af, o ad), o (af T ad ),
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Since two distinct polynomials of degree less than k agree on at most k — 1 points, the minimum distance of
the codeis r — k + 1.

A useful generalization of Reed-Solomon codes are algebraic geometry (AG) codes (see for example [16, 35,
41]). The linear codes with the “best” known parameters asymptotically are AG codes [42]. One advantage
of AG codes is that they are not, in general, bound by the restriction that » < ¢, as was the case for
the Reed-Solomon codes above. Being freed of this constraint allows us to have a smaller alphabet (and in
applications, fewer keys), for given choices of the other parameters. Hermitian codes, coming from Hermitian
curves, are examples of AG codes that have nice properties and can be defined explicitly. For those familiar
with the below terminology (such knowledge is not essential for appreciating the results of this paper), we
note that for our purposes it will suffice to consider the one-point codes C'x (P, £Py) which can be defined as
follows. One begins with a smooth, absolutely irreducible curve X of genus g defined over a finite field Fj,
aset P ={Py,...,P.} of Fy-rational points on X, another F-rational point Py on X which is not in the
set P, and an integer ¢. The codewords are then the r-tuples (f(Py),..., f(P:)), where f is any element of
L(¢PR,), the vector space of rational functions on X whose only poles occur at Py, and with multiplicity at
most . Under the assumption 2g —2 < £ < r, one finds that this code has dimension £+ 1 — g and minimum
distance at least r — £. Notice that Reed-Solomon codes can be viewed as algebraic geometry codes by taking
X to be the projective line, P to be the set of points corresponding to the r chosen field elements, Py to be
the point at infinity, and £ = k — 1.

Concatenated codes are codes which are “concatenated” from two other codes. When two linear codes are
concatenated, the product of their lengths (resp., dimensions, resp., minimum distances) is the length (resp.,
dimension, resp., minimum distance) of the (linear) concatenated code. There are linear concatenated codes
for small alphabets which have good list decoding capabilities, i.e., a small list of possible codewords can be
recovered even when a large percentage of the symbols are in error or have been erased [18].

We refer the reader to [16, 26, 35, 41] for more information on coding theory.

2.4. Decoding. In the theory of error-correcting codes, a codeword is transmitted through a noisy channel
and an element of Q" (i.e., a word) is received. The receiver (or decoder) then tries to determine as accurately
as possible which codeword was transmitted. In mazimum-likelihood decoding, the decoding process consists
of finding the closest codeword to the received word. If d is the minimum distance of the code, then the
receiver can “correct” % errors; i.e., there is at most one codeword within distance % of the received
word. In the maximum-likelihood decoding decision problem, the inputs are a linear code over a given finite
field, a received word, and a specified distance ¢, and the output is a yes or no answer to the question of
whether there is a codeword within distance ¢ of the received word. This decision problem is known to be
NP-complete [3].

In list decoding, the goal is to output the list of all codewords within a specified distance of the received
word. In [39] and [40], Sudan gave the first efficient methods for list decoding that run in time polynomial
in the length of the codewords. Since then, Sudan’s list decoding technique has been improved, generalized,
and refined [32, 33, 17, 18, 19, 20, 22, 28, 30, 44, 10, 11]. The runtimes for the steps of the algorithm
have been improved, the number of errors that can be “corrected” has been increased, and the technique
has been shown to be applicable to a larger class of codes. Sudan’s original algorithm is for Reed-Solomon
codes. Other codes for which the techniques have been shown to apply include AG codes (for which the
focus has been on Hermitian codes) and certain concatenated codes (see [18], where the “outer code” is a
Reed-Solomon or AG code and the “inner code” is a Hadamard code).

In erasure decoding, some positions of the received word are garbled or “erased”, and cannot be identified.
In this case the decoder knows that errors occurred in those positions.

In erasure-and-error decoding, the decoder receives a word with some erasures and some errors, and
determines the transmitted word, or a list of possible transmitted words (given some appropriate bounds on
the numbers of errors and erasures).

In soft-decision decoding, instead of receiving a (hard-decision) word, the decoder receives a reliability
matrix, that states the probability that any given element of the alphabet was sent in any given position.
Using this “soft” information, a soft-decision decoder outputs the most likely transmitted codeword(s).
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3. EFFICIENT TRACING ALGORITHMS VIA LIST DECODING

In this section we show how the efficiency of the TA tracing algorithm can be greatly improved when
the traceability scheme is based on certain error-correcting codes, and the tracing algorithm uses fast list
decoding methods. What is an O(N) process in general becomes a process that runs in time polynomial in
the codeword length r. These constructions match the best previously known traceability schemes in this
model in terms of the alphabet size that is required to support a given level of traceability and codeword

length (roughly speaking, the alphabet size is O(N 5 )). We describe constructions based on Reed-Solomon,
algebraic geometry, and concatenated codes.

3.1. Reed-Solomon codes. A widely used and extremely important class of codes are the Reed-Solomon
codes. This is the class of codes used in compact disks, for example. This is also the class of codes which has
received the most attention by coding theorists looking for fast list decoding techniques, and to which Sudan
first applied his method. While Sudan’s original result is not strong enough to allow us to use list decoding
to trace traitors, the later results of Guruswami and Sudan are exactly strong enough to accomplish this.

Theorem 2. Let C be a Reed-Solomon code of length r and dimension k over a finite field of size at most
2", If c is an integer, ¢ > 2, and r > c*(k—1), then C is a c-TA code and there is a traitor tracing algorithm

that runs in time O(r'®). If r = (14 8)c*(k — 1) then the algorithm runs in time O(g—Z).

Proof: Since C is a Reed-Solomon code, the minimum distance d satisfies d = r — k + 1. The condition
r > c?(k — 1) is then equivalent to the condition d > r —r/c?. By Theorem 1, C is a ¢-TA code and traitor
tracing amounts to finding a codeword within distance r — r/c of the pirate. Theorem 12 and Corollary 13
of [17] imply that if ¢ > /(k — 1)r then all codewords within distance r — ¢ of a given word can be listed
in time O(r'®), and if > = (1 + §)(k — 1)r then the runtime is O(g—i). Taking ¢t = r/c gives the desired
result. O

We note that further improvements in the runtime are being rapidly produced, and it seems that some of
these results will bring the runtime down to O(rlog®r), at least in certain cases (see [10]).

3.2. AG Codes. In [17], a polynomial-time algorithm for list decoding an AG code defined from a nonsin-
gular plane curve is given. This algorithm depends on the (reasonable) assumption that a certain amount of
pre-processing has occurred which provides the decoder with some additional information about the code,
for example a list of certain rational functions on the curve. Under this same assumption, we have:

Theorem 3. Let X be a nonsingular plane curve of genus g defined over a finite field Fy, P a set of r F-
rational points on X, Py an F-rational point on X which is not in P, and k an integer such that k > g — 1.
Let ¢ be an integer such that ¢ > 2 and r > c2(k+g—1), assume that ¢ < 2", and assume the pre-processing
described above has occurred. Then the one-point AG code Cx (P, (k+g—1)P) is a c-TA code with a traitor
tracing algorithm that runs in time polynomial in r.

Proof: The minimum distance d of the code satisfies d > r —k — g+ 1 (see Theorem 10.6.3 of [26]). By our
choice of c we haved >r —k —g+1>r —r/c2 andr —r/c <r —/r(k + g —1). By Theorem 27 of [17],
there exists an algorithm that runs in time polynomial in r that outputs the list of codewords of distance
less than r — \/r(k + g — 1) from a given word. The result now follows from Theorem 1. O

The list decoding algorithm in [17] for AG codes was improved in [44] (see Theorems 3.4 and 4.1), where
an explicit runtime was also given.

3.3. Concatenated Codes. As pointed out earlier, there exist nice linear concatenated codes for small
alphabets which have good list decoding capabilities.

Theorem 4. Given a prime power q and positive integers k and c such that ¢ > ¢> > 4, and given a real

2
number § such that 0 < 0 < q/ch_l, then there exists an explicit linear c-TA code over the field F, of length
2

r= O(m) (or length r = O(
algorithm.

m))) and dimension k with a polynomial (in r) traitor tracing
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Proof: Theorems 7 and 8 and Corollaries 2 and 3 of [18] imply that there exists an explicit concatenated
code over Fj of the correct length r and dimension &, with minimum distance d > (1 — %)(1 — 0)r, with

a polynomial time list decoding algorithm for e errors, as long as e < (1 — v/§)(q — 1)r/q. The condition

0 < % implies that d > r — r/c? and that the upper bound on the number of errors is satisfied when
e <r —r/c. The result therefore follows from Theorem 1. O

4. FINDING ALL PosSSIBLE COALITIONS

In this section, we describe how a coding theoretic approach can be used to amass additional piracy
information: a list of all (minimal) coalitions that are capable of creating a given pirate. Such information is
useful in two respects. Codewords not appearing in any of these coalitions were not involved in constructing
the pirate word, and it constitutes useful audit information that may be helpful in the prosecution of a
traitor later on. In addition, the algorithm we present enables the IPP traitor tracing algorithm [21, 1, 34]
to run more efficiently, as that algorithm works by intersecting all coalitions that are capable of creating a
given pirate word.

At a high level, the algorithm builds a “tree” from which all c-coalitions capable of constructing w can be
extracted. At the root of the tree lie all codewords that we know must be in any such coalitions. The children
are then candidate codewords for the next member of the coalition. Branches of the tree are extended until
the current coalition “covers” w, or until it becomes clear that this is impossible (e.g., because the coalition
is already of size ¢ and still cannot create w). In the latter case, that “dead-end” coalition is discarded, and
other branches of the tree are explored.

Before describing the algorithm in more detail, we introduce some of the ideas used. If S is a subset of
{1,...,r} and s = |S|, define a map fs : F; — F;~° by “forgetting” the entries in positions corresponding
to elements of S. If C' is a code, then the image code fs(C) is the punctured code, where we view the code
C as having been punctured at the positions corresponding to the elements of S. If u is in fs(C') we call a
lift of u to C' any codeword v such that fs(v) = w.

We say that Cy is a minimal c-coalition for w if |Co| < ¢, w € descCy, but w is not in descC; for any
proper subset C; of Cy.

Algorithm Sketch:

Input: positive integer ¢, Reed-Solomon Code C' of length r having N codewords and minimum distance
greater than r — 5, pirate word w € desc.C.

Output: A list of coalitions of size at most ¢ which can create w, that includes all minimal c¢-coalitions
for w.

The basic steps of the algorithm are as follows:

(i) Use list decoding to find all codewords uy, ...,u, € C (a < ¢) within distance r —r/c of w. Let S be the
subset of {1,...,r} on which w agrees with at least one of {uy,...,u,}, and let s =|S|. Let ry =7 — s,
¢ =c—a, Cy = fs(C), and wy; = fs(w). (Thus C; is the punctured code, r is its length, w; is the
image of the pirate word in C, and ¢; is the number of coalition members still to be found.) If 7, =0,
quit and output {u1,...,us}. Set i = 1.

(if) Use list decoding to find all codewords v;1, ..., vip; € C; (b; < ¢;) within distance r; —r;/¢; of w;. (Note
that the first time this is executed, the output is non-empty.) If this outputs the empty-set, exit to
Step (iii). Otherwise, let S; be the subset of {1,...,r;} on which w; agrees with v;,, and let s; = |S;].
Let riy1 =7i — 8iy ¢ix1 = ¢ — 1, Cip1 = fs,(C;), and w1 = fs, (w;).

(iii) To create the coalitions to output, always start with u,...,u,. Then add (a lift to C of) vip,, vap,,
and so on. Continue until the list of codewords “covers” the pirate w. When this process succeeds or
dead-ends (i.e, the current list does not yet cover w, but either we cannot find any codewords within
the required distance r; — 7;/c; of w;, or we already have ¢ codewords in our list), then move up the
“tree” of vp;’s to find the first unexplored branch and continue from there. The algorithm terminates
when all branches have been explored.

Analysis of the Algorithm:
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By Theorem 2, Step (i) can be done efficiently (time polynomial in r). By Theorem 1, uy,...,u, are in
every coalition that can create w. Further, in Step (ii), if d; > r; —r;/c? where d; is the minimum distance of
the new (punctured) code C;, then every coalition that can produce the original pirate w will contain some
lift to the original code of some v; ;. Moreover, if a lift to C' of v; 5, is in some coalition that can create the
original pirate w, then there exists a codeword within 7; —7;/¢; of v;p; (by the pigeonhole principle), and the
algorithm will proceed. If Step (ii) returns the empty-set, then v; 5, was a dead-end. Note that list decoding
a punctured code and then lifting accomplishes the same as erasure-and-error decoding. One may therefore
use erasure-and-error decoding algorithms to accomplish this step. Any codeword found in Step (i) of the
algorithm (and at least one codeword must be found in this step) must appear in every coalition considered
by the algorithm. Hence the algorithm will certainly not consider the coalitions that do not include the
codeword(s) produced in Step (i), and the number of such coalitions is at least (Nc_l) = Nee (IX), where N is
the number of codewords. If N > ¢, then the number of coalitions that are not considered by the algorithm
is @((lj)) The algorithm is therefore a significant improvement over the brute force method.

5. THE TA AND IPP TRACING ALGORITHMS

The results in this section justify a focus on TA (as opposed to IPP) schemes. In this paper we have
been using the additional structure provided by linear codes to construct schemes for which the TA tracing
algorithm is efficient. We know by Lemma 1 that ¢-TA codes are also c-IPP codes. However the converse
fails ([34]; see also Example 1 above). If constructions of schemes for which the IPP tracing algorithm is
efficient (i.e., significantly reduced from O((JZ)) time) are possible, it is reasonable to expect this to be
accomplished by introducing an algebraic structure to the scheme. Here we give evidence that doing so may
enable the inherently more efficient TA algorithm to be used to identify traitors. In particular, we show
that one natural approach to adding such structure, that is via Reed-Solomon codes, fails to construct IPP
schemes that are not also TA schemes. Hence, since it is unclear that ¢-IPP schemes yield any advantage
over c-TA schemes, most of our work focuses on the latter.

First, we prove a necessary condition on the minimum distance of Reed-Solomon codes, under which Reed-
Solomon codes yield ¢-TA set systems. This result suggests a potential method for generating examples of
schemes that are ¢-IPP but not ¢-TA. Next, we demonstrate through a family of counterexamples that in fact
this approach does not work; as soon as the minimum distance is decreased it is possible to find examples of
codes where both the IPP and TA tracing algorithms fail.

We first recall that there is a natural way to produce unordered sets from the ordered sets that constitute
the code: to a codeword z = (21, ..., %, ), associate the set ' = {(1,21),..., (r,z,)}. We define TA and IPP
set systems (as opposed to TA and IPP codes) in the natural way, with the noteworthy difference that a
pirate unordered set consists of r elements such that each element is a member of some coalition member’s
set. This is a generalization of our earlier definition because it is not necessary to have one element of the
form (i,y;) for each i = 1,...,7.

The following theorem is a partial converse of Theorem 1.

Theorem 5. If ¢ is an integer, ¢ > 2, and C' is a Reed-Solomon code of length r with minimum distance
d <r — 2, then the set system corresponding to C' is not a c-TA set system.

Proof: As above, if u € C, write u’' = {(1,u1), ..., (r,u,)} for the associated element of the set system.
Choose a codeword v = (v1,... ,v,) in C. We will show that a coalition of size at most ¢ exists which does
not contain v’, but which can implicate v'. In other words, we will construct a pirate set w which can be
created by a coalition {u],...,u;} with b < ¢ that does not contain v', but which satisfies [v' Nw]| > |u} Nw|
for every i. Let d =r — d = k — 1, where k is the dimension of the code C. By assumption, § > r/c?.

First, assume ¢ < r. For i = 1,...,¢, choose u; € C, distinct from v, which agrees with v on the
positions (i —1)d + 1, ..., id. (To do this, simply find a polynomial h; of degree § which vanishes on the §

field elements corresponding to these d positions, and let u; be the codeword corresponding to the polynomial

f — hi, where f is the polynomial corresponding to v.) Notice that, since two distinct codewords can agree

on at most J positions, each u; contains at least r — ¢/ elements which are not in v’ or in u/; for any j # i.
r—cd

Since r —cd > 0 and ¢ > 2, we have r —cd > [ = [Z] —J. We can therefore form a pirate set w so that
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for every i, [u;Nw| <+ ([£] —0) = [£] and [v'Nw| = cd > [Z]. Thus the TA algorithm will mark »" as a
traitor.

If on the other hand ¢d > r, simply choose uy, ... ,u; as above, where j = || < ¢, and choose uji1 # v
to agree with v on the last r — j§ positions. The coalition {uj,...,u,} can create v" as a pirate set. [

The previous theorem leaves open the question of whether Reed-Solomon codes with minimum distance
at most r — -z might still have traceability when the IPP algorithm is used even though the TA algorithm
may no longer correctly identify traitors. The following family of counterexamples illustrates that this is not
generally the case. The key idea behind the examples is that if the underlying field is sufficiently large, a
function defined as the difference between two polynomials of degree «, has « roots in the field. From this,
it can be argued that there exist two disjoint collections of ¢ polynomials, such that if a polynomial is chosen
from each collection, the resulting pair agrees on as many distinct points as their degree. In addition, the
sets of points of agreement of each pair are disjoint. Hence, we can generate two disjoint coalitions that are
capable of creating the same pirate word.

Theorem 6. Let s and ¢ be positive integers with ¢ > 2, and let p be a prime number greater than c*. For
i=1,...,¢c, leta; = (i —1)c. Fori=1,... ¢, if s is not divisible by p, let g;(x) = x* — i; otherwise let
gi(r) = 2° +x —i. Let T be the set of roots of all the ¢* polynomials g; — a;. Let q be a sufficiently high
power of p so that T is a subset of the finite field F,. Then T consists of ¢*s distinct elements of F,. Let C
be the Reed-Solomon code in which the codewords are the evaluations at the elements of T of all polynomials
over F, of degree at most s. Then C is not c-IPP. The length r of the codewords is r = c*s, the dimension
of the code is s + 1, and the minimum distance is equal to r —r/c?.

Proof: We first show that T consists of ¢?s distinct elements. Let h;; = g; — aj. Then h;j(z) — hyn(z) =
—i— (G —De+m+ (n—1)c If hjj(x) — hmn(z) = 0, then m — ¢ is divisible by ¢. Since m and i are both
in the range 1,...,c¢, they must be equal. Thus (j — 1) = (n — 1)¢, and so j = n. Therefore the set {h;;}
consists of ¢? distinct polynomials of degree s, any two of which differ by a non-zero constant. Therefore no
two can have a root in common. Further, the derivative of h;; is sz*~! if s is not divisible by p, and is 1
otherwise. In both cases this derivative is relatively prime to h;; (in the first case, note that h;; is always of
the form 2°+(a non-zero constant), so it never has 0 as a root). Therefore all the roots of h;; are simple. So
T consists of ¢?s distinct elements, and it makes sense to define the Reed-Solomon code defined by evaluating
polynomials of degree at most s at the elements of T'. The code clearly has the stated parameters. The two
coalitions corresponding to the polynomials in the sets {a1,... ,a.} and {¢1,...,g.} are disjoint, and each
coalition can produce the pirate word defined as follows: for each 8 in T', the -th entry of the pirate word
is g;(8) = aj, for the unique i and j such that the equality holds. It follows that the code is not ¢-IPP. O

By evaluating the polynomials at subsets of T' of size at least s + 1 (to ensure that k < r), we can take
the length r to be anything between s + 1 and ¢?s. The resulting minimum distance r — s is then at most
r—r/ct.

We remark that if s is not divisible by p, then we can always find a ¢ that works which is a divisor of p®.

The results in this section lead to the following questions which, while peripheral to the traitor tracing
problem, are of independent interest. Is it the case that all Reed-Solomon codes of length r with minimum
distance d < r—r/c? are not c-IPP? It is easy to see that this is false for linear codes in general. For example,
one-dimensional linear codes are always both ¢-IPP and ¢-TA, but can have d < r — r/c? if they are not
Reed-Solomon codes (for one-dimensional codes, the minimum distance d is the number of non-zero entries
in the non-zero codewords; the codewords of distance less than d from the pirate lie in every coalition that
can create the pirate). If the answer to the above question were yes, combining it with Theorem 1 would
imply that all Reed-Solomon ¢-IPP codes are ¢-TA. We raise as an open question whether all linear c-IPP
codes are ¢-TA.

6. TRACING WITH EXTRA INFORMATION

In this section, we describe how other coding theoretic techniques may be applied to the traitor tracing
problem when additional information about traitor behavior is available.
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In [17], list decoding is considered not just in the case of errors, but also in the case of erasures and
errors (and another potentially useful case that is referred to as “decoding with uncertain receptions”). For
concatenated codes, [18] also deals with the problem of decoding from errors and erasures. Building on
[17], [22] presents a high-performance soft-decision list decoding algorithm. We believe that these results
also have potential for use in traitor tracing problems, in cases where some additional information is known
about the traitors or how they are operating.

If one has information about the traitors or their modes of operation, one can build that information into
a reliability matrix, and apply soft-decision decoding algorithms to trace.

For example, suppose we know that a user who contributed the first entry to the pirate contributed at
least r/c entries to the pirate. One can use this information to construct a skewed reliability matrix. If the
underlying code is a Reed-Solomon code over a finite field of size ¢, one can then apply the soft-decision
algorithm in [22] to find such a “dominant” traitor. The channel that models this situation is a g-ary
symmetric channel. The first column of the reliability matrix will have a 1 in the entry corresponding to
the field element that occurs in the first position of the pirate, and 0’s elsewhere. For j > 1, the jth column
of the reliability matrix will have 1 — € in the entry corresponding to the field element in the jth entry of
the pirate, and the other entries will all be q%l, where € < q%’l is chosen so as to optimize the soft-decision
decoding algorithm in [22]. If one does not know which entry was contributed by the user who contributed
the most, one possible search method is to choose entries at random from the pirate and apply the above
strategy to search for traitors that contributed that entry.

Another possible approach to tracing traitors is to try to second-guess their strategy. For example,
if you believe that one traitor has contributed more than the other members of the coalition, you can
apply maximum-likelihood decoding to find such traitors very quickly. This might involve a “ringleader” or
“scapegoat” scenario. If on the other hand you believe that all traitors contributed roughly equal amounts,
then list decoding should be tried first. Traitors can be searched for in sequences of expanding Hamming
balls around the pirate. The optimal decoding algorithm to use will depend on the radius of the Hamming
ball. These algorithms can be run in parallel or sequentially.

Erasure-and-error decoding may be useful in fingerprinting or watermarking scenarios, such as those
presented in [5, 6, 13]. In one model for such a scenario, a coalition creates a pirate copy of the digital
content by leaving fixed all codeword entries where they all agree, and choosing the values of the remaining
positions from @ U {7}, where @ is the alphabet. The ?’s can be viewed as erasures.

7. CONCLUSION

In this paper we have demonstrated that traitor tracing algorithms can be quite efficient when the con-
struction of the traceability scheme is based on error-correcting codes and the method of tracing is based on
fast list decoding algorithms. For the TA algorithm, traitors can be identified in time polynomial in r, the
length of the code, rather than in the much larger parameter N, the number of codewords. In addition, list
decoding on successive punctured codes gives a method for identifying all possible traitor coalitions of size at
most ¢ more efficiently than a brute force search (which runs in O((JX )) time). Finally, we suggest avenues
for future research in this area, including explorations of applications of soft-decision and erasure decoding
techniques to traitor tracing in scenarios where additional information has been obtained about the traitors
or their mode of operation.
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