
On adaptive vs. non-adaptive security of multiparty protocols

Ran Canetti∗ Ivan Damgaard† Stefan Dziembowski† Yuval Ishai‡

Tal Malkin§

February 27, 2001

Abstract

Security analysis of multiparty cryptographic protocols distinguishes between two types of
adversarial settings: In the non-adaptive setting, the set of corrupted parties is chosen in ad-
vance, before the interaction begins. In the adaptive setting, the adversary chooses who to
corrupt during the course of the computation. We study the relations between adaptive security
(i.e., security in the adaptive setting) and non-adaptive security, according to two definitions
and in several models of computation. While affirming some prevailing beliefs, we also obtain
some unexpected results. Some highlights of our results are:

• According to the definition of Dodis-Micali-Rogaway (which is set in the information-
theoretic model), adaptive and non-adaptive security are equivalent. This holds for both
honest-but-curious and Byzantine adversaries, and for any number of parties.

• According to the definition of Canetti, for honest-but-curious adversaries, adaptive se-
curity is equivalent to non-adaptive security when the number of parties is logarithmic,
and is strictly stronger than non-adaptive security when the number of parties is super-
logarithmic. For Byzantine adversaries, adaptive security is strictly stronger than non-
adaptive security, for any number of parties.

∗IBM Watson.
†Aarhus University, BRICS (Basic Research in Computer Science, Center of the Danish National Research

Foundation).
‡DIMACS and AT&T. Work partially done while the author was at the Technion and while visiting IBM Watson.
§AT&T Labs – Research. Work partially done while the author was at MIT and while visiting IBM Watson.

1

Contents

1 Introduction 3

2 Adaptivity vs. Non-adaptivity in the definition of Canetti 6
2.1 Review of the definition . 6

2.1.1 Non-adaptive Security . 7
2.1.2 Adaptive security . 9

2.2 Separation for active adversaries . 12
2.3 Separation for passive adversaries and a large number of players 14
2.4 Equivalence for passive adversaries and a small number of parties 15

2.4.1 Perfect emulation . 17
2.4.2 Imperfect Emulation . 19

2.5 Equivalence for passive adversaries and IT security 25

3 Adaptivity vs. Non-adaptivity in the definition of Dodis-Micali-Rogaway 26
3.1 Review of the definition . 26
3.2 Equivalence of adaptive and non-adaptive security 27

2

1 Introduction

Security analysis of cryptographic protocols is a delicate task. A first and crucial step towards
meaninful analysis is coming up with an appropriate definition of security of the protocol problem
at hand. Formulating good definitions is non-trivial: They should be compehensive and stringent
enough to guarantee security against a variety of threats and adversarial behaviors. On the other
hand, they should be as simple, workable, and as permissive as possible, so as to facilitate design
and analysis of secure protocols, and to avoid unnessecary requirements.

Indeed, in contrast with the great advances in constructing cryptographic protocols for a large
variety of protocol problems, formalizing definitions of security for crypographic protocol problems
has been progressing more slowly. The first protocols appearing in the literature use only intuitive
and ad-hoc notions of security, and rigorous security analysis was virtually non-existent. Eventually,
several general definitions of security for cryptographic protocols have appeared in the literature.
Most notable are the works of Goldwasser and Levin [gl90], Micali and Rogaway [mr91], Beaver
[b91], Canetti [c00] and Dodis and Micali [dm00] (that concentrate on the task of secure function
evaluation [y82, y86, gmw87]), and Pfitzmann and Waidner [pw94], Pfitzmann Schunter and
Waidner [psw00], and Canetti [c00a] (that discuss general reactive tasks). In particular, only
recently do we have precise and detailed definitions that allow rigorous study of “folklore beliefs”
regarding secure protocols.

This work initiates a comparative study of notions of security, according to different definitions.
We concentrate on secure function evaluation, and in particular the following aspect. Adversarial
behavior of a computational environment is usually modelled via a single algorithmic entity, the
adversary, the capabilities of which represent the actual security threats. Specifically, in a network
of communicating parties the adversary is typically allowed to control (or, corrupt) some of the
parties. Here the following question arises: How are the corrupted parties chosen? One standard
model assumes that the set of corrupted parties is fixed before the computation starts. This is the
model of non-adaptive adversaries. Alternatively, the adversary may be allowed to corrupt parties
during the course of the computation, when the identity of each corrupted party may be based on
the information gathered so far. We call such adversaries adaptive.

Indeed, attackers in a computer network (hackers, viruses, insiders) may break into computers
during the course of the computation, based on partial information that was already gathered.
Thus the adaptive model seems to better represent realistic security threats, and so provide a
better security guarantee. However, defining and proving security of protocols is considerably
easier in the non-adaptive model. One quintessential example for the additional complexity of
guaranteeing adaptive security is the case of using encryption to transform protocols that assume
ideally secure channels into protocols that withstand adversaries who hear all the communication. In
the non-adaptive model standard Chosen-Ciphertext-Attack secure encryption [ddn91, cs98, s99]
(or even plain semantically secure encryption [gm84], if used appropriately) is sufficient. To obtain
adaptively secure encryption, it seems that one needs to either trust data erasures [bh92], or use
considerably more complex constructs [cfgn96, b97, dn00].

Clearly, adaptive security implies non-adaptive security, under any reasonable definition of
security. However, is adaptive security really a stronger notion than non-adaptive security? Some
initial results (indicating clear separation in some settings) are provided in [cfgn96]. On the other
hand, it is a folklore belief that in an “information theoretic setting” adaptive and non-adaptive
security should be equivalent. Providing more complete answers to this question, in several models
of computation, is the focus of this work. While some of our results affirm common beliefs, other
results are quite surprising, and may considerably simplify the design and analysis of protocols.

3

Models of computation. We study the additional power of adaptive adversaries in a number
of standard adversary models, and according to two definitions (the definition of Dodis, Micali,
and Rogaway [mr91, dm00], and that of Canetti [c00]). To develop the necessary terminology for
presenting our results let us very shortly outline the structure of definitions of security of protocols.
(The description below applies to both definitions. The [mr91, dm00] definition imposes some
additional requirements, sketched in a later section.)

As mentioned above, both definitions concentrate on the task of Secure Function Evaluation.
Here the parties wish to jointly evaluate a given function at a point whose value is the concatenation
of the inputs of the parties. In a nutshell, protocols for secure function evaluation are protocols that
“emulate” an ideal process where all parties privately hand their inputs to an imaginary trusted
party who privately computes the desired results, hands them back to the parties, and vanishes.
A bit more precisely, it is required that for any adversary A, that interacts with parties running
a secure protocol π and induces some global output distribution, there exists an “ideal-process”
adversary S, that manages to obtain essentially the same global output distribution in the ideal
process. The global output contains the adversary’s output (which may be assumed to be his entire
view of the computation), together with the identities and outputs of the uncorrupted parties.
(Adversary S is often called a simulator, since it typically operates by simulating a run of A.) The
following parameters of the adversarial models turn out to be significant for our study.

Adversarial activity: The adversary may be either passive (where even corrupted parties follow
the prescribed protocol, and only try to gather additional information), or active, where
corrupted parties are allowed to arbitrarily deviate from their protocol. Passive (resp., active)
adversaries are often called honest-but-curious (resp., Byzantine).

Number of players: We distinguish between the case of a small number of players, where n, the
number of players, is O(log k), and a large number of players, where n is ω(log k). (Here k is
the security parameter.)

Complexity of adversaries: We consider three cases. Information-Theoretic (IT) security does
not take into account any computational complexity considerations. That is, both adversaries
A and S have unbounded resources regardless of each other’s resources. Universal security al-
lows A unbounded resources, but requires S to be efficient (i.e., expected polynomial) in the
complexity of A. Computational security restricts both A and S to expected polynomial time
(in the security parameter). Note that universal security implies both IT security and compu-
tational security (all other parameters being equal). However, IT security and computational
security are incomparable. See [c00] for more discussion on the differences between these
notions of security and their meaning.

Quality of emulation: We consider either perfect emulation (where the output distributions of
the real-life computation and of the ideal process must be identically distributed), or sta-
tistical emulation (where the output distributions shuld be statistically indistinguishable), or
computational emulation (where the output distributions shuld be computationally indistin-
guishable).

The rest of the Introduction overviews the state of affairs regarding the added power of adap-
tivity, as discovered by our investigation. We do not attempt here to explain “why” things are as
they are. Such (inevitably subjective) explanations require more familiarity with the definitions
and are postponed to the body of the paper.

4

Our results: Canetti’s definition. This definition is stated for several models of computation.
We concentrate by default on the secure channels model, where the communication channels are
perfectly secret and universal security is required. The same results hold also for the computational
setting, where the adversary sees all communication but is restricted to polynomial time. Finally,
we also consider a weaker variant of this definition, not considered in [c00], where only IT security
is required (and the communication channels are secure).

The most distinctive parameter here seems to be whether the adversary is active or passive.
If the adversary is active (i.e., Byzantine) then adaptive security is strictly stronger than non-
adaptive security, regardless of the values of all other parameters. We show this via a protocol
for three parties, that is non-adaptively universally secure with perfect emulation, but adaptively
insecure, even if the adversary is computationally bounded and we are satisfied with computational
emulation. This is the first such example involving only a constant number of players, for any
constant.

In the case of passive adversaries the situation is more involved. Out of the nine settings to
be considered (IT, universal, or computational security, with perfect, statistical, or computational
emulation), we show that for one – IT security and perfect emulation – adaptive and non-adaptive
security are equivalent, for any number of players. In all other eight settings we show that, roughly
speaking, adaptive security is equivalent to non-adaptive security when the number of players is
small, and is strictly stronger when the number of players is large. We elaborate below.

For a large number of players, it follows from an example protocol shown in [cfgn96] that
for statistical or computational emulation, adaptive security is strictly stronger than non-adaptive
security. We show separation also for perfect emulation, where universal or computational security
is required. We complete the picture by showing that for a small number of players, and perfect
emulation, adaptive and non-adaptive security are equivalent. Equivalence holds even in the case
of statistical or computational emulation, if n is O(log k/ log log k). (Notice that there is a small
gap between this equivalence result and the known separating example for n ∈ ω(log k). To close
this gap, we also show that if one relaxes slightly the demands to the complexity of simulators
and allows them to be expected polynomial time except with negligible probability, then this gap
can be closed: equivalence holds for all n ∈ O(log k). In many cases, this definition of “efficient
simulation” seems to be as reasonable as the standard one.)

Equivalence of adaptive and non-adaptive security for the case of passive adversaries and a
small number of players is very good news: Many protocol problems (for instance, those related to
threshold cryptography) make most sense in a setting where the number of parties is fixed. In such
cases, when concentrating on passive adversaries, adaptivity comes “for free”, which significantly
simplifies the construction and analysis of these protocols.

Our results: Dodis-Micali-Rogaway definition. This definition holds for the secure chan-
nels setting only. It is incomparable to the definition of [c00]: On the one hand, it makes a number
of additional requirements. On the other hand, only IT security is required. Here, to our sur-
prise, adaptive and non-adaptive security turn out to be equivalent, even for active adversaries,
and regardless of the number of players.

Two properties of the Dodis-Micali-Rogaway definition are essential for our proof of equivalence
to work. The first is that only IT security is required. The second property may be roughly sketched
as follows. It is required that there exists a stage in the protocol execution where all the parties are
“committed” to their contributed input values; this stage must occur strictly before the stage where
the output values become known to the adversary. (In order to formally state this requirement one
needs to make some additional technical restrictions, amounting to what is known in the jargon as
“one-pass black-box simulation”. See more details within.)

5

Organization. Section 2 presents our results relating to the definition of [c00]. Section 3 presents
our results relating to the definition of Dodis-Micali-Rogaway.

2 Adaptivity vs. Non-adaptivity in the definition of Canetti

This section describes our results relative to the [c00] definition of security. The main aspects of
the definition that we will rely on were shortly described in the Introduction, and a more detailed
review of the definition is provided in Section 2.1. Section 2.2 shows a separating example for
the case of active adversary, Section 2.3 describes separating examples for passive adversary and
a large number of players, Section 2.4 proves the equivalence for passive adversaries and a small
number of players, and Section 2.5 shows the equivalence for passive adversaries in the setting of
IT security and perfect emulation.

2.1 Review of the definition

For self containment this section briefly sketches the definitions of [c00] for the relevant settings.
As stated in the Introduction, the following settings are considered. The adversary may be either
non-adaptive or adaptive. It can also be either passive, or active. We distinguish between perfect,
statistical and computational emulation, and also between the cases of universal, Information-Theoretic
(IT) and computational security. Finally, we distinguish between the case of ideally secure channels,
where the adversary has no access to information exchanged between uncorrupted parties, and the
case of open channels, where the adversary learns all the communication among the parties. (We
assume that the adversary cannot modify the communication among uncorrupted parties.)

In Section 2.1.1 we present the definition for the case of non-adaptive adversaries (both passive
and active), and introduce universal, IT and computational security. In Section 2.1.2 we present
the definition for the case of adaptive adversaries.

Preliminaries. We start by reviewing the notions of equal distribution and statistical and
computational indistinguishability . A distribution ensemble X = {X(k, a)}k∈N,a∈{0,1}∗ is an infinite
sequence of probability distributions, where a distribution X(k, a) is associated with the values
of k ∈ N and a ∈ {0, 1}∗. The distribution ensembles considered in the sequel are outputs of
computations where the parameter a corresponds to various types of inputs, and the parameter k
is a security parameter. All complexity characteristics of our constructions are measured in terms
of the security parameter. In particular, we will be interested in the behavior of our constructions
when the security parameter tends to infinity.

Definition 1 We say that two distribution ensembles X and Y are equally distributed (and write

X
d

= Y) if, for all sufficiently large k and all a, the distributions X(k, a) and Y (k, a) are identical.

Ensembles X and Y are statistically indistinguishable (written X
s≈ Y) if for all c > 0 and

for all large enough k we have SD(X(k, a), Y (k, a)) < k−c where SD denotes statistical distance
SD(Z1, Z2) = 1

2

∑

a |Prob(Z1 = a)− Prob(Z2 = a)|.
Ensembles X and Y are computationally indistinguishable (written X

c≈ Y) if for all polynomial-
time algorithm D, for all c > 0 and for all large enough k we have |Prob(D(1k, a, x) = 1) −
Prob(D(1k, a, y) = 1)| < k−c, Where x is chosen from distribution X(k, a), y is chosen from
distribution Y (k, a), and the probabilities are taken over the choices of x, y, and the random choices
of D.

6

The functions to be evaluated by the parties are formalized as follows. An n-party function (for
some n ∈ N) is a probabilistic function f : (D)n×{0, 1}∗ → (D)n, for some finite domain D, where
the last input is taken to be the random input.

Note that n, the number of parties, is treated as an unrelated quantity to the security parameter
k. This allows capturing different relations between n and k, such as a constant n, n which is
polynomial in k, or n = ω(log k).

2.1.1 Non-adaptive Security

We first formalize the “real-life” model of computation. Next we formalize the ideal process.
Finally we formalize the notion of emulation and state the definition. We develop the definitions
for the cases of active and passive adversaries side by side, noting the differences throughout the
presentation.

The real-life model. An n-party protocol π is a collection of n interactive, probabilistic algo-
rithms. We use the term party Pi to refer to the ith algorithm. Each party Pi starts with value k
for the security parameter, input xi ∈ D, and random input ri ∈ {0, 1}∗. Let an adversary struc-
ture B ⊂ 2{1...n} be a collection of subsets of {1...n}. A B-limited real-life adversary, A, is another
algorithm determining the behavior of the corrupted parties. Adversary A starts off with security
parameter k and input that contains the identities the corrupted parties (some set in B), together
with their inputs and random inputs. In addition, A receives auxiliary input z. The auxiliary input
is a standard tool that allows proving the composition theorem. (Intuitively, the auxiliary input
captures information gathered by the adversary from other interactions occurring before the current
interaction.)

The computation proceeds in rounds, where each round proceeds as follows. First the uncor-
rupted parties generate their messages of this round, as described in the protocol. (That is, these
messages appear on the outgoing communication tapes of the uncorrupted parties.) The messages
addressed to the corrupted parties become known to A (i.e., they appear on the adversary’s in-
coming communication tape). If the communication model is that of open channels then all the
messages exchanged among the parties become known to A. Next the adversary generates the
messages to be sent by the corrupted parties in this round. If the adversary is passive then these
messages are determined by the protocol. An active adversary determines the messages sent by
the corrupted parties in an arbitrary way. Finally each uncorrupted party receives all the messages
addressed to it in this round

At the end of the computation all parties locally generate their outputs. The uncorrupted parties
output whatever is specified in the protocol. The corrupted parties output a special symbol, ⊥,
specifying that they are corrupted. In addition, the adversary outputs some arbitrary function of
its view of the computation. The adversary view consists of its auxiliary input and random input,
followed by the corrupted parties’ inputs, random inputs, and all the messages sent and received
by the corrupted parties during the computation. Without loss of generality, we can imagine that
the real-life adversary’s output consists of its entire view.

Let advrπ,A(k, ~x, z, ~r) denote the output of real-life adversary A with security parameter k,
auxiliary input z and when interacting with parties running protocol π on input ~x = x1, . . . , xn

and random input ~r = rA, r1, . . . , rn as described above (rA for A, xi and ri for party Pi). Let
execπ,A(k, ~x, z, ~r)i denote the output of party Pi from this execution. Recall that if Pi is uncor-
rupted then this is the output specified by the protocol; if Pi is corrupted then execπ,A(k, ~x, z, ~r)i =⊥.
Let

execπ,A(k, ~x, z, ~r) = advrπ,A(k, ~x, z, ~r),execπ,A(k, ~x, z, ~r)1, . . . ,execπ,A(k, ~x, z, ~r)n.

7

Let execπ,A(k, ~x, z) denote the probability distribution of execπ,A(k, ~x, z, ~r) where ~r is uniformly
chosen. Let execπ,A denote the distribution ensemble {execπ,A(~x, z)}k∈N,〈~x,z〉∈{0,1}∗ .

The ideal process. The ideal process is parameterized by the function to be evaluated. This
is an n-party function f : (D)n × {0, 1}∗ → (D)n, as defined above. Each party Pi has security
parameter k and input xi ∈ D; no random input is needed for the parties in the ideal process (if f
is a probabilistic function then the needed randomness will be chosen by the trusted party). Recall
that the parties wish to compute f(~x, rf)1, . . . , f(~x, rf)n, where rf is an appropriately long random
string, and Pi learns f(~x, rf)i (where f(~x, rf)i denote the ith component of f(~x, rf)). An ideal-
process-adversary S is an algorithm describing the behavior of the corrupted parties. Adversary S
starts off with security parameter k, the identities and inputs of the corrupted parties (parties Pi

for i ∈ C), random input, and auxiliary input. In addition, there is an (incorruptible) trusted party,
T . The ideal process proceeds as follows.

Input substitution: The ideal-process-adversary S sees the inputs of the corrupted parties. If
S is active then it may also alter these inputs. Let ~b be the |C|-vector of the altered inputs of
the corrupted parties, and let ~y be the n-vector constructed from the input ~x by substituting
the entries of the corrupted parties by the corresponding entries in ~b. If S is passive then no
substitution is made and ~y = ~x.

Computation: Each party Pi hands its (possibly modified) input value, yi, to the trusted party
T . Next, T chooses a value rf randomly from Rf , and hands each Pi the value f(~y, rf)i.

Output: Each uncorrupted party Pi outputs f(~y, rf)i, and the corrupted parties output ⊥. In ad-
dition, the adversary outputs some arbitrary function of the information gathered during the
computation in the ideal process. This information consists of the adversary’s random input,
the corrupted parties’ inputs and the resulting function values {f(~y, rf)i : Pi is corrupted}.

Let advrf,S(k, ~x, z, ~r), where ~r = (rf , r), denote the output of ideal process adversary S on
random input r and auxiliary input z, when interacting with parties having input ~x = x1, . . . , xn,
and with a trusted party for computing f with random input rf . Let the (n + 1)-vector

idealf,S(k, ~x, z, ~r) = advrf,S(k, ~x, z, ~r), idealf,S(k, ~x, z, ~r)1, . . . , idealf,S(k, ~x, z, ~r)n

denote the outputs of the parties on inputs ~x, adversary S, and random inputs ~r as described above
(Pi outputs idealf,S(k, ~x, z, ~r)i). Let idealf,S(k, ~x, z) denote the distribution of idealf,S(k, ~x, z, ~r)
when ~r is uniformly distributed and let idealf,S be the ensemble {idealf,S(k, ~x, z)}k∈N,〈~x,z〉∈{0,1}∗ .

Definition of security. We require that protocol π emulates the ideal process for evaluating f ,
in the following sense. For any real-life adversary A there should exist an ideal-process adversary
S, such that for any input vector ~x and any auxiliary input z, the global outputs idealf,S(~x, z)
and execπ,A(~x, z) are similarly distributed.

We distinguish the following variants of this security requirement. First, if idealf,S(~x, z) and
execπ,A(~x, z) are identically distributed (resp., statistically or computationally indistinguishable)
then we say that the emulation is perfect (resp., statistical or computational). If both A and S
are allowed unbounded computational resources, regardless of each other, then the security is
information-theoretic (IT). If A is allowed unbounded computational resources, and S is required to
be polynomial in the complexity of A, then the security is universal. If both A and S are restricted
to expected polynomial time then the security is computational.

8

Definition 2 Let f be an n-party function and let π be a protocol for n parties. We say that π
non-adaptively, B-securely evaluates f with IT security and perfect (resp., statistical, computational)
emulation if for any B-limited real-life adversary A there exists an ideal-process adversary S such
that idealf,S

d

= execπ,A (resp., idealf,S
s≈ execπ,A or idealf,S

c≈ execπ,A).
If the running time of S runs in expected polynomial time in the running time of A then we say

that π has universal security.
If both A and S are limited to expected polynomial time in the security parameter then we say

that π has computational security.
If A and S are passive adversaries then we say that π B-privately evaluates f .

Spelled out, the definition requires that for any value of the security parameter k, for any input
vector ~x and any auxiliary input z, the global outputs idealf,S(k, ~x, z) and execπ,A(k, ~x, z) should
be identically distributed.

2.1.2 Adaptive security

As in the non-adaptive case, we develop the definitions for the cases of active and passive adversaries
side by side. One obvious difference from the definition of non-adaptive security is that here the
adversary chooses the identities of the corrupted parties in an adaptive way; upon corruption, it
sees the internal data of the corrupted party. (See more discussion on this point in [c00].)

An additional, more ‘technical’ difference is the way in which the interaction between the outside
environment and a single protocol execution is captured. Capturing this interaction is useful for
demonstrating that security is preserved under protocol composition. In the non-adaptive case this
interaction is captured by the parties’ inputs and outputs, plus an auxiliary input z given to the
adversary before the computation starts. In the adaptive case a more involved construct is used. An
additional entity, representing the external environment, is introduced to both the real-life model
and the ideal process. This entity, called the environment and denoted Z, is an algorithm that
interacts with the adversary and the parties in a way described below. The notion of emulation is
extended to include the environment.

The real-life model. Multiparty protocols are defined as in the non-adaptive case. An adaptive
real-life adversary A is an algorithm that starts off with some random input. The environment is
another algorithm, denoted Z, that starts off with input z and random input. At certain points
during the computation the environment interacts with the parties and the adversary. These points
and the type of interaction are specified below. Let an adversary structure B ⊂ 2{1...n} be a collection
of subsets of {1...n}. An adversary is B-limited if at all times the set of corrupted parties appears
in B.

At the onset of the computation A receives some initial information from Z. (This information
corresponds to the auxiliary information seen by A in the non-adaptive case.) Next, the computa-
tion proceeds according to the following (synchronous, with rushing) model of computation. The
computation proceeds in rounds; each round proceeds in mini-rounds, as follows. Each mini-round
starts by allowing A to corrupt parties one by one in an adaptive way. (The behavior of the system
upon corruption of a party is described below.) Next A chooses an uncorrupted party, Pi, that was
not yet activated in this round and activates it. Upon activation, Pi receives the messages sent to
it in the previous round, generates its messages for this round, and the next mini-round begins. A
learns the messages sent by Pi to already corrupted parties. (In the open channels model A learns
all the messages sent by Pi.) Once all the uncorrupted parties were activated, A generates the
messages to be sent by the corrupted parties that were not yet activated in this round, and the
next round begins.

9

Once a party is corrupted the party’s input, random input, and the entire history of the mes-
sages sent and received by the party become known to A. In addition, Z learns the identity of
the corrupted party, and hands some additional auxiliary information to A. (Intuitively, this in-
formation represents the party’s internal data from other protocols run by the newly corrupted
party.) From this point on A learns all the messages received by the party. If A is passive then the
corrupted parties continue running protocol π. If A is active (Byzantine) then once a party becomes
corrupted it follows the instructions of A, regardless of protocol π.

At the end of the computation (say, at some pre-determined round) all parties locally generate
their outputs. The uncorrupted parties output whatever is specified in the protocol. The corrupted
parties output ⊥. In addition, adversary A outputs some arbitrary function of its internal state.

Next, a “post-execution corruption (PEC) process” begins. (This process models the leakage of
information from the current execution to the environment, caused by corrupting parties after the
execution is completed. This process is necessary to guarantee secure composability of protocols
in the adaptive setting.) First, Z learns the outputs of all the parties and of the adversary.
Next Z and A interact in rounds, where in each round Z first generates a ‘corrupt Pi’ request
(for some Pi), and hands this request to A. Upon receipt of this request, A may corrupt more
parties as before (in which case Z learns their identity), and hands Z some arbitrary information.
(Intuitively, this information is interpreted as Pi’s internal data.) It is stressed that the set of
corrupted parties is always in B, even if Z requests to corrupt more parties; in this case A ignores
the requests of Z. The interaction continues until Z halts, with some output. Without loss of
generality, this output can be Z’s entire view of its interaction with A and the parties. Finally,
the global output is defined to be the output of Z. We use the following notation. Let the
global output execπ,A,Z(k, ~x, z, ~r) denote Z’s output on input z, random input rZ and security
parameter k, and after interacting with adversary A and parties running protocol π on inputs
~x = x1 . . . xn, random input ~r = rZ , r0 . . . rn, and security parameter k as described above (r0

for A; xi and ri for party Pi). Let execπ,A,Z(k, ~x, z) denote the random variable describing
execπ,A,Z(k, ~x, z, ~r) where ~r is uniformly chosen. Let execπ,A,Z denote the distribution ensemble
execπ,A,Z(k, ~x, z)}k∈N,〈~x,z〉∈{0,1}∗ .

1

The ideal process. As in the non-adaptive case, the ideal process is parameterized by the n-
party function f to be evaluated. Each party Pi has security parameter k and input xi ∈ {0, 1}∗;
no random input is needed. The model also involves an adaptive ideal-process-adversary S, which
is an algorithm that has random input r0 and security parameter k, and an environment Z which
is an algorithm that starts with input z, random input rZ and the security parameter.In addition,
there is an (incorruptible) trusted party, T . The ideal process proceeds as follows.

First corruption stage: First, as in the real-life model, S receives auxiliary information from Z.
Next, S proceeds in iterations, where in each iteration S may decide to corrupt some party,
based on S’s random input and the information gathered so far. Once a party is corrupted
its input becomes known to S. In addition, Z learns the identity of the corrupted party and
hands some extra auxiliary information to S. Let B denote the set of corrupted parties at
the end of this stage.

Computation stage: Once S completes the previous stage, the parties hand the following values

1The formalization of the global output execπ,A,Z is different than in the non-adaptive case, in that here the
global output contains only the output of the environment. We remark that the more complex formalization, where
the global output contains the concatenation of the outputs of all parties and adversary, would yield an equivalent
definition; this is so since the environment Z sees the outputs of all the parties and the adversary. We choose the
current formalization for its simplicity.

10

to the trusted party T . The uncorrupted parties hand their inputs to the computation. The
corrupted parties hand values chosen by S, based on the information gathered so far. (If S
is passive then even the corrupted parties hand their inputs to T .)

Let~b be the |B|-vector of the inputs contributed by the corrupted parties, and let ~y = y1, ..., yn

be the n-vector constructed from the input vector ~x by substituting the entries of the corrupted
parties by the corresponding entries in ~b. Then, T receives yi from Pi. (If S is passive then

~y = ~x). Next, T chooses rf
R←Rf , and hands each Pi the value f(k, ~y, rf)i.

Second corruption stage: Upon learning the corrupted parties’ outputs of the computation, S
proceeds in another sequence of iterations, where in each iteration S may decide to corrupt
some additional party, based on the information gathered so far. Upon corruption, Z learns
the identity of the corrupted party, S sees the corrupted party’s input and output, plus some
additional information from Z as before.

Output: Each uncorrupted party Pi outputs f(k, ~y, rf)i, and the corrupted parties output ⊥. In
addition, the adversary outputs some arbitrary function of the information gathered during
the computation in the ideal process. All outputs become known to Z.

Post-execution corruption: Once the outputs are generated, S engages in an interaction with
Z, similar to the interaction of A with Z in the real-life model. That is, Z and S proceed
in rounds where in each round Z generates some ‘corrupt Pi’ request, and S generates
some arbitrary answer based on its view of the computation so far. For this purpose, S may
corrupt more parties as described in the second corruption stage. The interaction continues
until Z halts with an arbitrary output.

Let idealf,S,Z(k, ~x, z, ~r), where ~r = rZ , r0, rf , denote the output of environment Z on in-
put z, random input rZ and security parameter k, after interacting as described above with
an ideal-process adversary S and with parties having input ~x = x1 . . . xn and with a trusted
party for evaluating f with random input rf . Let idealf,S,Z(k, ~x, z) denote the distribution of
idealf,S,Z(k, ~x, z, ~r) when ~r is uniformly distributed. Let idealf,S,Z denote the distribution en-
semble {idealf,S,Z(k, ~x, z)}k∈N,〈~x,z〉∈{0,1}∗ .

Comparing computations in the two models. As in the non-adaptive case, we require that
protocol π emulates the ideal process for evaluating f . Yet here the notion of emulation is slightly
different. We require that for any real-life adversary A and any environment Z there should exist
an ideal-process adversary S, such that idealf,S,Z

d

= execπ,A,Z . Note that the environment is
the same in the real-life model and the ideal process. This may be interpreted as saying that
“for any environment and real-life adversary A, there should exist an ideal-process adversary that
successfully simulates A in the presence of this specific environment.” As in the non-adaptive
case, we distinguish perfect and statistical emulation, as well as universal, IT, and computational
security.

Definition 3 Let f be an n-party function and let π be a protocol for n parties. We say that π
adaptively, B-securely evaluates f with IT security and perfect (resp., statistical, computational) emu-
lation if for any B-limited real-life adversary A and any environment Z there exists an ideal-process
adversary S such that idealf,S,Z

d

= execπ,A,Z (resp., idealf,S,Z
s≈ execπ,A,Z or idealf,S,Z

c≈
execπ,A,Z).

If the running time of S runs in expected polynomial time in the running time of A then we say
that π has universal security.

11

If both A and S are limited to expected polynomial time in the security parameter then we say
that π has computational security.

If A and S are passive adversaries then we say that π B-privately evaluates f .

Finally we also distinguish between the case of security with PEC, where the interaction proceeds
as described above, and the case of security without PEC, where the post-execution corruption stage
is omitted, both in the real-life model and in the ideal process.

2.2 Separation for active adversaries

This section shows that adaptive and non-adaptive security are not equivalent in the case of active
adversaries, for all settings considered here: information-theoretic, universal, and computational
security, with perfect, statistical, or computational emulation. This is proved by an example of
a simple protocol for secure function evaluation which is non-adaptively secure, but adaptively
insecure, in all above settings.

Our protocol involves three players D,R1, R2, where R1, R2 have no input, and D’s input
consists of two bits s1, s2 ∈ {0, 1}. The function fact to be computed is the function that returns
no output for D, s1 for R1, and s2 for R2. The adversary structure B (the collection of player
subsets that can be corrupted) contains all subsets of {D,R1}, namely the only restriction is that
R2 cannot be corrupted. The protocol πact proceeds as follows.

1. D sends s1 to R1.

2. D sends s2 to R2.

3. Each Ri outputs the bit that was sent to it by D, and terminates. D outputs nothing and
terminates.

Claim 4 The protocol πact non-adaptively, perfectly emulates fact with universal security, against
active adversary structure B.

Proof: Consider a non-adaptive real-life adversary A that corrupts D. The ideal-process simulator
S proceed as follows. S corrupts D in the ideal model, and provides A with the inputs s1, s2 of D.
A generates s′1 to be sent to R1 and s′2 to be sent to R2. S gives s′1, s

′
2 to the trusted party as D’s

input, outputs A’s output, and terminates. It is easy to see that the global output generated by S
in the ideal model is identical to the global output with the real-life A.

The above simulator can be easily modified for the case that A breaks into both D and R1

(here S may hand in to the trusted party 0, s′2 as the input of D, where s′2 is the message prepared
by A to be sent to R2).

Finally, consider A that corrupts only R1. The simulator S proceeds as follows. S corrupts R1

in the ideal model, hands the empty input to the trusted party, and obtains the output s1 in the
ideal model. S then hands s1 to A as the message that was sent from D to R1, outputs A’s output,
and terminates. Again it is easy to see that the global output generated by S is identical to the
global output with A. ✷

Claim 5 The protocol πact is adaptively insecure for evaluating the function fact, with either uni-
versal, IT or computational security, against active adversary structure B.

Proof: We show an adaptive efficient real life adversary A, such that there is no (even compu-
tationally unbounded) adaptive ideal-model adversary (simulator) S that can emulate the global
view induced by A (even if the emulation is only required to be computational). Intuitively, the

12

goal of our adversary is to ensure that whenever s1 = s2, R2 will output 0, whereas we do not care
what happens in other cases. A starts by corrupting R1 and receiving s1 in the first stage of the
protocol. If s1 = 0, A terminates. If s1 = 1, A corrupts D and sends s′2 = 0 to R2 in the second
stage of the protocol.

To prove that this A cannot be simulated in the ideal world, note that in the real world,
A never corrupts D when D’s input is s1 = s2 = 0, but always corrupts D when D’s input is
s1 = s2 = 1. In both these cases, R2 always outputs 0. Now let S be an arbitrary unbounded
adaptive ideal-process simulator. (Below “overwhelming probability” refers to 1 − neg for some
negligible function neg.) If, when interacting with S in the ideal model, whenever s1 = s2 = 1,
R2 outputs 0 with overwhelming probability, then it must be that with overwhelming probability,
whenever s1 = s2 = 1, S corrupts D in the first corruption stage (before the function is computed by
the trusted party). However, recall that in the first corruption stage in the ideal process, corrupting
a party provides only its input, and no other information. Thus, in our case, before D is corrupted
S cannot gain any information. It follows that S corrupts D in the first corruption stage with the
same probability for any input s1, s2, and in particular when the input is s1 = s2 = 0. However in
the real world, A never corrupts D in this case, and so the global views are significantly different.
✷

Claim 4 and Claim 5 together imply that our example separates adaptive security from non-
adaptive security for active adversaries in all settings considered. Thus we have:

Theorem 6 For active adversaries, adaptive security is strictly stronger than non-adaptive secu-
rity, under any notion of security, as long as there are at least three parties.

Discussion. The essential difference between adaptive and non-adaptive security is well captured
by the simplicity of the protocol used in our separating example, which at first look may seem like
a very “harmless” protocol. Indeed, πact is a straight-forward implementation of the function fact,
which just “mimics” the ideal-world computation, replacing the trusted party passing input from
one party to the output of another party, by directly sending the message between the parties.
For the non-adaptive setting, this intuition translates into a proof that any adversary A can be
simulated by an adversary S in the ideal world. However, as we have shown, the protocol is
susceptible to an attack by an adaptive adversary.

In the heart of this separation is the idea that some information in the protocol (the value of
s1 in our example) is revealed prematurely before the parties have “committed” to their inputs.
Thus, an adaptive adversary may take advantage of that by choosing whether to corrupt a party
(and which one) based on this information, and then changing the party’s input to influence the
global output of the execution.

On the other hand, as we will show, for a passive adversary and information theoretic security,
non-adaptive security is equivalent to adaptive security. This may suggest the intuition that even
for active adversaries, in the information-theoretic setting, adaptive and non-adaptive security may
be equivalent for a subclass of protocols that excludes examples of the above nature; that is, for
protocols where “no information is revealed before the parties have committed to their inputs”.
This is in fact the case for many existing protocols (cf., [bgw88, cdm98]), and furthermore, the
definition of Dodis-Micali-Rogaway requires this condition. In Section 3 we indeed formalize and
prove this intuition, showing equivalence for the definition of Dodis-Micali-Rogaway.

Finally, we remark that for two parties and active adversaries, the situation is more involved:
In the IT setting, adaptive security is equivalent to non-adaptive security. In the universal and
computational settings, we have a separating example showing that adaptive security is strictly
stronger, assuming perfectly hiding bit-commitment exists (which holds under standard complexity

13

assumptions). However, this example heavily relies on a technical requirement, called post-execution
corruptibility (PEC), which is part of the definition of adaptive security, needed in order to guarantee
secure composability of protocols (the technical meaning of the requirement is described along with
the definition in Section 2.1). In contrast, the above three party separating example holds in all
settings, regardless of whether the PEC requirement is imposed or not.2

2.3 Separation for passive adversaries and a large number of players

In [cfgn96], Canetti et al. show an example protocol that separates adaptive and non-adaptive
security for passive adversaries and a large number of players, when only statistical or computational
emulation is required. This separation holds for universal, IT, and computational security. Very
roughly, the protocol is based on sharing a secret among a large set of players, making the identity
of the set very hard to guess for a non-adaptive adversary, but easy for an adaptive one. We refer
the reader to [cfgn96] for details of the example.

To complete the picture, we show an example that, under standard complexity assumptions,
separates adaptive and non-adaptive security even when perfect emulation is required, for the
universal or computational security model. The example is only sketched here, and the complete
proof and definitions of the standard primitives used, are deferred to the final version of the paper.

Our example relies on the existence of perfectly hiding bit commitment schemes and collision-
intractable hash functions.3 For n players, we will need to hash n commitments in a collision-
intractable manner. Thus, the number of players required depends on the strength of the assump-
tion: For n that is polynomial in the security parameter k, this is a standard assumption, whereas
for n = ω(log k) this requires a stronger assumption. For simplicity, we refer below to a large
number of players, instead of making the explicit distinction based on the quality of computational
assumption.

The protocol involves players P0, P1, . . . , Pn, where the input of P0 is a function h from a family
of collision intractable hash functions, and a public key pk for a perfectly hiding bit commitment
scheme. The input of each other Pi is a bit bi. The output of each player is h, pk. The protocol
proceeds as follows:

1. P0 sends h, pk to all other players.

2. Each Pi, i ≥ 1 computes and broadcasts a commitment ci = commit(pk, bi, ri).

3. All players output h, pk.

We allow the adversary to corrupt P0 and in addition any subset of size n/2 of the other players.
It is straightforward to check that this protocol is non-adaptively secure: the simulator asks to

compute the function in the ideal process immediately, learns h, pk and can now perfectly simulate
any message from non-corrupted players.

On the other hand, consider an adaptive adversary A, who will first corrupt P0, listen to the
messages from the first two steps and then compute h(c1, .., cn). Then A interprets the result in
some fixed deterministic way as a subset of the players P1, .., Pn of size n/2, and corrupts this
subset. Assuming that a simulator S exists for this adversary, the following algorithm breaks either
the commitment scheme or the hash function family. The algorithm gets input h, pk and then
proceeds as follows:

2The setting of two parties without PEC is only of interest if we are considering a 2-party protocol as a standalone
application, without composing it with multi-player protocols. For this setting, we can prove equivalence of adaptive
and non-adaptive security in the secure channels model or when the simulation is black box.

3This example is an extension of another example given in [cfgn96], which uses only bit commitment, and works
only for black-box simulators.

14

1. Run S on random input r.

2. When S corrupts P0, give it pk, h as the input.

3. When S corrupts a player Pi, i ≥ 1, give it 0 as input bit for Pi.

4. Let v0 be the view for A output by S and let Pj be the last player S corrupted when generating
v0.

5. Rewind S to its state just after Step 1. Run S forward again, and give it the same input
values for corrupted players, except for Pj where we give a 1 as input bit. Let v1 be the view
produced this time.

6. Use v0, v1 to either break the hash function or the commitment scheme.

The reason why this works as required is first that the set of corrupted players must be the same
in v0 and v1, since A always corrupts P0 and n/2 players of the rest, and all of S’s input in the two
runs is the same until after the last corruption happens. Therefore the hash values computed from
round 2 messages in the two views are the same. Now, it may be that the commitments c1, ..., cn

appearing in v0 are not the same as those in v1, in which case we have a collision for h. Otherwise
cn appears in both views, and these contain information on how to open it as both 1 and 0.

We thus have the following theorem.

Theorem 7 For passive adversaries and a large number of parties, adaptive security is strictly
stronger than non-adaptive security, under all notions of security except IT with perfect emulation.
This holds unconditionally for either statistical or computational emulation, and under the assump-
tion that a perfectly hiding bit commitment scheme and a collision intractable hash function family
exist, for perfect emulation.

2.4 Equivalence for passive adversaries and a small number of parties

This section proves that adaptive and non-adaptive security against a passive adversary are equiv-
alent when the number of parties is small.

Before going into our results, we need to elaborate on a simplifying assumption we make in this
section. As previously mentioned, the [c00] definition of adaptive security (as well as [b91, mr91],
in different ways) include a special technical requirement, called post-execution corruptibility (PEC).
This requirement is in general needed in order to guarantee secure composition of protocols in the
adaptive setting (see Section 2.1 for more technical details about PEC).

However, in the particular setting of this section, i.e. passive adversaries and a small number
of players, it turns out that PEC is an “overkill” requirement for guaranteeing composability of
protocols. Very informally, the argument for this is the following. Let π and ρ be protocols that are
adaptively secure without the PEC property. These protocols are (of course) also non-adaptively
secure. Since the non-adaptive definition of security is closed under (non-concurrent) composition
[c00], it follows that the ‘composed’ protocol, π ◦ ρ, is non-adaptively secure. By our result given
below, the composed protocol is also adaptively secure (without PEC).

We conclude that in the setting of this section, PEC is not needed to guarantee adaptively secure
composition, and therefore we discuss in this section only results that hold without assuming the
PEC requirement.4

4If we were to assume the PEC requirement, we can in fact show a two-party protocol which is non-adaptively
secure, but adaptively insecure (this is the same example based on perfectly hiding bit commitment which was
mentioned in the end of Section 2.2). Thus, strictly speaking, there is a separation in this setting under the [c00]
definition. The results in other sections hold regardless of whether the PEC requirement is imposed or not.

15

We first note that the general definition detailed in Section 2.1 takes a simpler form in the
passive case. In particular, in the passive case we may assume without loss of generality that
the real-life adversary waits until the protocol terminates, and then starts to adaptively corrupt
the parties; corrupting parties at an earlier stage is clearly of no advantage in the passive case.
Similarly, the ideal-process adversary may be assumed to corrupt parties after the ideal function
evaluation terminates. To further ease the exposition, we will make in the remainder of this section
the following simplifying assumptions: (1) assume that the adversary is deterministic; (2) assume
that the function computed by the protocol is deterministic; and (3) ignore auxiliary inputs. The
results in this section generalize to hold without the above assumptions.

The card game

In attempting to prove equivalence between non-adaptive and adaptive security, it may be helpful
to picture the following game. Let B⊆2[n] be a monotone adversary structure. The game involves
two players, the adversary and the simulator, and n distinct cards. The two players are bound to
different rules, as specified below.

Adversary. When the adversary plays, the faces of the n cards are picked from some (unknown)
joint distribution V = (V1, . . . , Vn) and are initially covered. The adversary proceeds by
sequentially uncovering cards according to a fixed deterministic strategy; that is, the choice
of the next card to be uncovered is determined by the contents of previously uncovered
cards. Moreover, the index set of uncovered cards should always remain within the confines
of the structure B. After terminating, the adversary’s output consists of the identity and the
contents of all uncovered cards.

Simulator. The simulator plays in a different room. It is initially given n distinct blank cards,
all of which are covered. Similarly to the adversary, it is allowed to gradually uncover cards,
as long as the set of uncovered cards remains in B. Its goal is to fill the blank uncovered
cards with content, so that the final configuration (including the identity and contents of
uncovered cards) is “similarly” distributed to the adversary’s output. (The precise sense of
this similarity requirement will depend on the specific security setting.) Note that unless the
simulator has some form of access to the unknown distribution V , the game would not make
much sense. Indeed, we grant the simulator the following type of restricted access to V . At
each stage, when the set of uncovered cards is some b ∈ B, the simulator may freely sample
from some fixed distribution Ṽb which is guaranteed to be “similar” to Vb, the restriction of
V to b. (Again, the type of this similarity depends on the setting.) The |B| distributions Vb

may be arbitrarily (or adversarially) fixed, as long as they conform to the above similarity
condition.

Let us briefly explain the analogy between the above game and the question of non-adaptive
versus adaptive security. Fix some n-party protocol π computing a deterministic function f , and
suppose that π is non-adaptively secure against a passive B-limited adversary. The n cards corre-
spond to the n parties. The distribution V corresponds to the parties’ joint view under an input
x, which is a-priori unknown. Uncovering the i-th card by the adversary and learning Vi corre-
sponds to corrupting the i-th party Pi in the real-life process and learning its entire view: its input,
random input, communication messages, and output. Uncovering the i-th card by the simulator
corresponds to corrupting Pi in the ideal-model process. Finally, each distribution Ṽb from which
the simulator can sample corresponds to a simulation of a non-adaptive adversary corrupting b,
which exists under the assumption that π is non-adaptively secure. Note that the simulator can

16

access Ṽb only when all cards in b are uncovered; this reflects the fact that the non-adaptive simu-
lation cannot proceed without learning the inputs and outputs of corrupted parties. The types of
similarity between Vb and Ṽb we will consider are perfect, statistical, and computational, correspond-
ing to the type of non-adaptive emulation we assume. We will also consider the relation between
the computational complexity of the adversary and that of the simulator, addressing the security
variants in which the simulator is computationally bounded.

Remark. The above game models a secure channels setting, in which the adversary has no
information before corrupting a party. To model open channels (or a “broadcast” channel), the
distribution V should be augmented with an additional entry V0, whose card is initially uncovered.
The analysis that will follow can be easily adapted to deal with this more general setting.

2.4.1 Perfect emulation

We first deal with perfect emulation, i.e., the case where Ṽb = Vb for all b ∈ B. In this setting, we
show how to construct an adaptive simulator running in (expected) time polynomial in the time of
the adversary and the size of the adversary structure. The construction from this section will allow
us to prove equivalence of non-adaptive and adaptive security both in the information-theoretic
case (see Section 2.5) and, when the adversary structure is small, in the universal case.

A black-box simulator. To prove equivalence between non-adaptive and adaptive security it
suffices to show that for any adversary strategy A there exists a simulator strategy S, such that
under any distribution V the simulator wins. In fact, we will construct a single simulator S with
a black-box access to A, and later analyze it in various settings.

A convention for measuring the running time of black-box simulators. In the
following we view adaptive simulators as algorithms supplied with two types of oracles: distribution
oracles Ṽb, implemented by a non-adaptive ideal-process adversary (to be referred to as a non-
adaptive simulator), and an adaptive adversary oracle A. In measuring the running time of a
simulator, each oracle call will count as a single step. This convention is convenient for proving
universal security: If the protocol has universal non-adaptive security and the black-box simulator
S runs in expected time poly(k) then, after substituting appropriate implementations of the oracles,
the expected running time of S is polynomial in k and the expected running time of A.5

In the description and analysis of S we will use the following additional notation. By vb, where
v is an n-tuple (presumably an instance of V) and b⊆[n] is a set, we denote the restriction of v to
its b-entries. For notational convenience, we assume that the entries of a partial view vb, obtained
by restricting v or by directly sampling from Ṽb or Vb, are labeled by their corresponding b-elements
(so that b can be inferred from vb). We write v

A→ b if the joint card contents (view) v leads the

adversary A to uncover (corrupt) the set b at some stage. For instance, v
A→ ∅ always holds. An

important observation is that whether v
A→ b holds depends only on vb. This trivially follows from

the fact that cards cannot be covered once uncovered. Hence, we will also use the notation v′
A→ b,

where v′ is a |b|-tuple representing a partial view.
In our description of the simulator we will adopt the simplified random variable notation from

the game described above, but will revert to the original terminology of corrupting parties rather
than uncovering cards.

Before describing our simulator S, it is instructive to explain why a simpler simulation attempt
fails. Consider a “straight line” simulator which proceeds as follows. It starts by corrupting b = ∅.

5Note that when the protocol has universal non-adaptive security, a distribution Ṽb can be sampled in expected
polynomial time from the view of an ideal-process adversary corrupting b.

17

At each iteration, it samples Ṽb and runs the adversary on the produced view to find the first
party outside b it would corrupt. The simulator corrupts this party, adds it to b, and proceeds
to the next iteration (or terminates with the adversary’s output if the adversary would terminate
before corrupting a party outside b). This simulation approach fails for the following reason. When
sampling Ṽb, the produced view is independent of the event which has lead the simulator to corrupt
b. This makes it possible, for instance, that the simulator corrupts a set which cannot be corrupted
at all in the real-life execution. The simulator S, described next, will fix this problem by insisting
that the view sampled from Ṽb be consistent with the event that the adversary corrupts b.

Algorithm of S:

1. Initialization:
Let b0 = ∅. The set bi will contain the first i parties corrupted by the simulator.

2. For i = 0, 1, 2, . . . do:

(a) Repeatedly sample v′
R← Ṽbi

(by invoking the non-adaptive simulator) until v′
A→ bi (i.e.,

the sampled partial view would lead A to corrupt bi). Let vi be the last sampled view.
(Recall that v′ includes the identities of parties in bi.)

(b) Invoke A on vi to find the index pi+1 of the party which A is about to corrupt next (if
any). If there is no such party (i.e., A terminates), output vi. Otherwise, corrupt the
pi+1-th party, let bi+1 = bi ∪ {pi+1}, and iterate to the next i.

In the remainder of this section we analyze the performance of the simulator S. To this end,
let B̃i, Ṽi be random variables containing the corrupted set bi and the partial view vi in the i-th
iteration of S. Similarly, let Bi, Vi be the corresponding random variables induced by the real-life
execution of A. In the event that an execution terminates before the i-th iteration, the random
variables indexed by i will be set to a special value ‘⊥’.

Lemma 8 In the case of a perfect non-adaptive emulation, for every iteration i and set bi ∈ B,
the distribution Ṽi conditioned on B̃i = bi is identical to Vi conditioned on Bi = bi.

Proof: If bi =⊥ then both Vi conditioned on Bi = bi and Ṽi conditioned on B̃i = bi are forced
to be ⊥. Otherwise, it follows from the description of S that Ṽi given B̃i = bi is sampled from
the distribution Vbi

(
d

= Ṽbi
) conditioned on the event Vbi

A→ bi. On the other hand, the distribution
Vi(= VBi

) conditioned on Bi = bi is the same as Vbi
conditioned on Bi = bi, which in turn is the

same as Vbi
conditioned on V

A→ bi (since Bi = bi and V
A→ bi are two names for the same the

event). ✷

Lemma 9 In the case of a perfect non-adaptive emulation, Ṽi
d

= Vi for every i.

Proof: It follows from Lemma 8 that if B̃i
d

= Bi then Ṽi
d

= Vi. It thus suffices to show that B̃i = Bi

for all i. Clearly, both B̃0 and B0 are deterministically the empty set. Now, suppose that B̃i
d

= Bi

and hence also Ṽi
d

= Vi. We show that B̃i+1
d

= Bi+1 by conditioning on the i-th iteration’s view
vi. The crucial observation is that B̃i+1 is determined by the simulator from vi in the same way
that Bi+1 it is determined by the adversary from vi. In particular, if vi =⊥ or if vi leads A or S
to terminate, then B̃i+1 and Bi+1 are both set to ⊥. It follows that the conditional distribution of

B̃i+1 given Ṽi = vi is the same as Bi+1 given Vi = vi, from which it follows that B̃i+1
d

= Bi+1. ✷

Claim 10 In the case of a perfect non-adaptive emulation, S perfectly emulates A.

18

Proof: We need to show that the output distributions of S and A are identical. Note that the
joint distribution (Ṽ1, Ṽ2, . . . , Ṽn) may be different from (V1, V2, . . . , Vn). For instance, the path S
takes in arriving at a set bi may be impossible for A to take in the real-life process. However, from
Ṽi (respectively, Vi) alone, one may determine: (1) the probability of S (resp., A) terminating in
the i-th iteration; and (2) the output distribution of S (resp., A) given that it terminates in the
i-th iteration. Using Lemma 9 it follows that the outputs are identically distributed. ✷

We turn to analyze the complexity of S, still for a perfect non-adaptive emulation. A trivial
observation is that the number of iterations is bounded by the number of parties (or, more precisely,
by the maximal size of a set in B). The complexity of each iteration, however, may be unbounded.
The following lemma implies a bound on the total expected running time of S.

Claim 11 In the case of perfect non-adaptive emulation, the expected running time of S is linear
in |B|.

Proof: We count the expected number of times a view v′ is sampled (in step 2a) throughout
the execution of S. Let T̃i be a random variable counting the number of samples taken in the
i-th iteration, and T̃ =

∑

i T̃i be the total number of samples. To bound E[T̃i], we condition this
expectation on the set bi corrupted by the simulator in the i-th iteration. Given that B̃i = bi

(bi 6=⊥), T̃i is distributed as the number of independent samples taken from Ṽbi
until obtaining one

that would lead the adversary to bi. The success probability of a single sampling attempt is:

Prob[Ṽbi

A→ bi] = Prob[Vbi

A→ bi] = Prob[Bi = bi] = Prob[B̃i = bi]

where the first equality relies on the perfect emulation assumption, the second on equality of the
relevant events, and the third on Lemma 9. Hence E[T̃i|B̃i = bi] = 1/Prob[B̃i = bi]. Letting
sup(B̃i) denote the support set of the random variable B̃i (excluding ⊥) we obtain:

E[T̃i] =
∑

bi∈sup(B̃i)

E[T̃i|B̃i = bi]·Prob[B̃i = bi] =
∑

bi∈sup(B̃i)

(1/Prob[B̃i = bi])·Prob[B̃i = bi] = |sup(B̃i)|.

Finally, since all sets in sup(B̃i) are of size i, we have: E[T̃] =
∑

i E[T̃i] =
∑

i |sup(B̃i)| ≤ |B| as
required. ✷

If n = O(log k), |B| is guaranteed to be polynomial in k. We may thus conclude from Claim 10
and Claim 11 the following:

Theorem 12 For function evaluation protocols with passive adversary, universal perfect security,
and n = O(log k) parties, adaptive and non-adaptive security are equivalent.

2.4.2 Imperfect Emulation

We next address the cases of statistical and computational security against a passive adversary.
Suppose that we are given an imperfect (statistical or computational) non-adaptive simulator and
attempt to construct an adaptive one. If we use exactly the same approach as before, some technical
problems arise: with imperfect non-adaptive emulation, it is possible that a real life adversary A
corrupts some set with a very small probability, whereas this set is never corrupted in emulated
views. As a result, the loop in step (2a) of the algorithm of S will never terminate, and the
expected time will be infinite. Consequently, it is also unclear whether S will produce a good
output distribution when given access to imperfect non-adaptive simulation oracles Ṽb.

We start by showing that when the size of the adversary structure is polynomial, the simulator
S will indeed produce a (statistically or computationally) good output distribution even when

19

given access to (statistically or computationally) imperfect non-adaptive simulators. Moreover, it
will turn out that when the adversary structure is polynomial, the expected running time of S is
polynomial except with negligible probability. Later, we define a more sophisticated simulator S ′
which achieves strict expected-polynomial time simulation, at the expense of requiring a stronger
assumption on the size of the adversary structure.

A main tool in the following is a technical lemma referred to in the sequel as the adaptive sam-
pling lemma. For simplicity we will use a non-uniform notion of computational indistinguishability.
The lemma and its corollaries can be extended to the uniform setting well. The lemma will use the
following terminology and notation. Let D = {D(k)}k∈N be a distribution ensemble. An adaptive
sampling algorithm S is an algorithm which, given oracle access to D and an input 1k, may take a
variable number of independent samples from D(k). At each stage, based on all previous samples,
the algorithm decides whether to take an additional sample or to terminate. Upon termination, the
algorithm outputs some function of all samples it took. Let SD(k) denote the output distribution
of S running with oracle access to D and Time(SD(k)) be a random variable measuring the running
time of the corresponding execution, where an oracle call is counted as a single step.

We first state and prove the computational version of the lemma, and then state its statistical
version.

Lemma 13 (Adaptive Sampling Lemma: Computational Version) Let C = {C(k)},D =

{D(k)} be two distribution ensembles such that C
c≈ D, and S be an adaptive sampling algorithm

such that SC runs in expected polynomial time. Then:

1. SC c≈ SD;

2. SD runs in expected polynomial time except with negligible probability. That is, in the exe-
cution of SD there exists an event occurring with negligible probability, such that conditioned
on the complement of this event the expected running time is polynomial.

Proof: Assume towards contradiction that P is an efficient distinguisher between SC , SD. That
is, there exists a constant c > 0 such that for some infinite K⊆N

|Prob[P (SC(k)) = 1]− Prob[P (SD(k)) = 1]| > k−c (1)

for all k ∈ K. Let p(k) be a polynomial bounding the running time of SC . Define a non-adaptive
sampler S0 which first samples its oracle q(k) = 3p(k)kc times, and then simulates S on the samples
it generated. If S terminates, S0 outputs the same output as S. If S attempts to make an additional
sample beyond the q(k) samples S0 can provide, S0 terminates and outputs a special symbol. By
Markov inequality, for all k ∈ K we have Prob[Time(SC)(k) > q(k)] ≤ 1

3k−c, hence

SD(SC(k), SC
0 (k)) ≤ 1

3
k−c. (2)

It follows from the robustness of computational indistinguishability under efficient non-adaptive
sampling (cf. [g95]) that SC

0

c≈ SD
0 and hence:

|Prob[P (SC
0 (k)) = 1]− Prob[P (SD

0 (k)) = 1]| ≤ k−ω(1). (3)

From the computational indistinguishability of SC
0 , SD

0 it also follows that |Prob[Time(SC(k)) >
q(k)] − Prob[Time(SD(k)) > q(k)]| ≤ k−ω(1), from which we can conclude that for every k ∈ K,
Prob[Time(SD)(k) > q(k)] ≤ 1

3k−c + k−ω(1) and

SD(SD
0 (k), SD(k)) ≤ 1

3
k−c + k−ω(1). (4)

20

Finally, combining Eq. (2), Eq. (3), and Eq. (4), we have that for every k ∈ K

|Prob[P (SC(k)) = 1]− Prob[P (SD(k)) = 1]| ≥ 1

3
k−c + k−ω(1) + (

1

3
k−c + k−ω(1)),

contradicting Eq. (1). This concludes the proof of the first part of the lemma.

Towards proving the second part, define the distribution ensembles TC
def
= {Time(SC(k))} and

TD
def
= {Time(SD(k))}. We first argue that TC , TD are statistically indistinguishable. Otherwise,

by a similar argument to the above, there exists an adaptive sampling algorithm S0 such that
{Time(SC

0 (k))} and {Time(SD
0 (k))} are both polynomially-bounded and are statistically distin-

guishable (i.e., not indistinguishable) from each other. Since the two distribution ensembles have
polynomial-size support, their statistical distinguishability implies computational distinguishability,
contradicting the assumption that C

c≈ D.
Now, let

T (k) =
{

t ∈ N : Prob[Time(SD(k)) = t] > 2 · Prob[Time(SC(k)) = t]
}

.

Since TC
s≈ TD, the event Time(SD(k)) ∈ T (k) must occur with negligible probability. It remains

to show that the expected running time of SD conditioned on the complement of this event is
polynomial. Since Time(SD(k)) ∈ T (k) occurs with small probability, we may conclude that for
all sufficiently large k and t 6∈ T (k):

Prob[Time(SD(k)) = t | Time(SD(k)) 6∈ T] ≤ 2 · Prob[Time(SD(k)) = t]

and so

E[Time(SD(k)) | Time(SD(k)) 6∈ T] ≤ 2
∑

t6∈T

t · Prob[Time(SD(k)) = t]

≤ 4
∑

t6∈T

t · Prob[Time(SC(k)) = t]

≤ 4 ·E[Time(SC(k))]

≤ kO(1)

as required. ✷

A proof of the following statistical version of the adaptive sampling lemma may proceed similarly
to the proof for the computational case.

Lemma 14 (Adaptive Sampling Lemma: Statistical Version)) Let C = {C(k)},D = {D(k)}
be two distribution ensembles such that C

s≈ D. Let S be an adaptive sampling algorithm which,
in addition to its distribution oracle, has access to an (arbitrarily powerful) oracle A. Suppose that
SC,A runs in expected polynomial time. Then:

1. SC,A s≈ SD,A.

2. SD,A runs in expected polynomial time except with negligible probability.

The adaptive sampling lemma can be used to analyze the quality of the simulator S from
Section 2.4.1 when given access to imperfect non-adaptive simulator oracles.

21

Corollary 15 Suppose that the simulator S is run with oracle access to computationally (respec-
tively, statistically) good non-adaptive simulators Ṽb and an expected-polynomial time (resp., un-
bounded) adaptive adversary A. Moreover, suppose that the size of the adversary structure B is
polynomial in the security parameter. Then:

1. Ignoring the running time of S, it produces a computationally (resp., statistically) good em-
ulation of A.

2. S runs in expected polynomial time except with negligible probability.

Proof: Let S be the simulator S running an expected polynomial time implementation of A
(resp., with oracle access to A), let C be a concatenation of all perfect non-adaptive simulator
oracles (Vb)b∈B, and D a concatenation of all imperfect oracles (Ṽb)b∈B. Since |B| is polynomial, we

have C
c≈ D (resp., C

s≈ D). From an analysis of the simulator S in the perfect case, we have that:
(1) SC perfectly emulates A; (2) SC runs in expected polynomial time. Noting that SD corresponds
to the execution of S with access to the imperfect non-adaptive simulators, the corollary follows
by applying the adaptive sampling lemma to S,C,D defined above. ✷

We stress that the expected running time of S may be unbounded even if the non-adaptive
simulators are arbitrarily close to being perfect. In the rest of the section we describe and analyze
a modified simulator S ′ which attempts to remedy this situation. While the efficiency and security
of S were analyzed in terms of |B|, the number of possible sets the adversary may corrupt, those
of S ′ will be analyzed in terms of the number of possible corruption paths an adversary may take.
Formally, let

~B def
= {(b0, b1, . . . , bi) : 0 ≤ i ≤ n, b0 = ∅, |bj \ bj−1| = 1, bj ∈ B (1 ≤ j ≤ i)}

be the directed structure corresponding to B. The simulator S ′ will enjoy the following properties.
When | ~B| is polynomial, S ′ will output a good emulation of A, similarly to S. However, in this
case S ′ will be guaranteed to run in expected polynomial time regardless of the quality of the
non-adaptive simulators.

Before describing S ′, it will be helpful to consider the following modification of S. For any path
π ∈ ~B, view v, and adaptive adversary A, we write v

A→ π if the view v leads A to corrupt all
parties in π in the order prescribed by π. Now, let ~S denote a variant of S which keeps track of an
entire path πi = (b0, b1, . . . , bi) in addition to the currently corrupted set bi. The condition v

A→ bi

in step (2a) of S is replaced by v
A→ πi, and after adding pi+1 to bi in step (2b) to form bi+1, the

set bi+1 is concatenated to πi. A slight modification of the analysis from the previous section gives
the following:

Lemma 16 In the case of perfect non-adaptive emulation (Vb
d

= Ṽb), the emulation of ~S is perfect.
Moreover, its expected running time is linear in | ~B|.

We turn to describing the new simulator S ′. The underlying idea is the following. Similarly
to ~S, the simulator will keep track of the current corruption path. However, before extending the
current path πi, it will try to obtain “significant statistical evidence” that the probability of the
event Ṽbi

A→ πi is not much smaller than that of S ′ arriving at πi. This is done by repeatedly
rerunning a “lighter” version of the simulation history in parallel to sampling from Ṽbi

. (Rerunning
the entire simulation from scratch will be too costly, and will only allow to efficiently handle a
constant number of parties. The lighter version assumes that πi has already been verified to be
good.) Unless evidence as above is obtained, the simulation terminates. This careful path extension
policy will guarantee that the contribution of each path to the expected running time is small.

22

The simulator S ′ is described in detail below. Somewhat abusing notation, given a path πi we
will denote by πi′ , for i′ < i, the length-i′ prefix of πi.

Algorithm of S ′:

1. Initialization:
Let b0 be the empty set and π0 = (b0) be the initial path (πi is the currently corrupted path
thereafter).

2. For i = 0, 1, 2, . . . do:

(a) Initialize counters c, c′ to 0;
Given the currently corrupted path πi:
Repeat

i. Call procedure Rerun(πi), defined below; if it returns success increment the counter
c.

ii. Sample v′
R← Ṽbi

; if v′
A→ πi, increment the counter c′.

Until c = k

(b) If c′ < k/2, terminate the simulation and output fail ;

(* This will only happen with negligible probability, and should warn us that it
is not a good idea to proceed. *)

(c) Using the view v′ which led to first incrementing c′ in step (a.ii), run A to determine
the next party pi+1 to corrupt. If A decides to terminate, terminate the simulation
outputting v′. Otherwise, let bi+1 be bi plus pi+1, let πi+1 be the path obtained by
concatenating bi+1 to the end of πi, and iterate to next the i.

Procedure Rerun(πi = (b0, ..., bi))
For i′ = 0 to i− 1 do

Sample v′
R← Ṽbi′

until v′
A→ πi′ ;

Run A to determine the next party to corrupt;
If this party is inconsistent with πi′+1, return fail ;

Return success .

Analysis of S ′. We begin by analyzing the running time. Let #pathsi denote the number of
paths of length i in ~B, Π̃′

i a random variable taking the value of the corrupted path in the i-th
iteration of S ′, and T̃ ′

i the running time of the i-th iteration. It will be helpful to compare the
execution of S ′ on the imperfect distributions Ṽb to the execution of its simpler variant ~S described
above on the same distributions. We let Π̃i denote a random variable taking the value of the
corrupted path in the i-th iteration of ~S.

We will show that the expected running time of the i-th iteration of S ′ is polynomial in k and
#pathsi. Conditioning on the path πi, we have:

E[T̃ ′
i] =

∑

πi

E[T̃ ′
i | Π̃′

i = πi] · Prob[Π̃′
i = πi]

=
∑

πi

k · E[#calls to Rerun(πi) until success] ·E[Time(Rerun(πi))] · Prob[Π̃′
i = πi] (5)

We bound the above expression using the following lemmas.

23

Lemma 17 Prob[Π̃′
i = πi] ≤ Prob[Π̃i = πi].

Proof: It is clear from the description of S ′ that unless it prematurely terminates, it produces the
same path distribution as ~S. ✷

Lemma 18 The expected number of calls to Rerun(πi) until it returns “success” is 1/Prob[Π̃i = πi].

Proof: Procedure Rerun(πi) emulates ~S, truncating its execution only when it is clear that it will
not lead to πi. We may therefore conclude that:

Prob[Rerun(πi) = success] = Prob[Π̃i = πi]

from which the lemma follows. ✷

Lemma 19 E[Time(Rerun(πi))] =
∑

i′<i Prob[Π̃i = πi′]/Prob[Ṽbi′

A→ πi′]

Proof: For each 0 ≤ i′ < i, the probability that Rerun(πi) gets to the stage where it samples Ṽbi′

(until it is consistent with πi′) is exactly Prob[Π̃i′ = πi′]. The expected contribution of the i′-th

segment to the run time of Rerun(πi) is therefore Prob[Π̃i′ = πi′]/Prob[Ṽbi′

A→ πi′]. ✷

Lemma 20 For any path πi,

Prob[Π̃′
i = πi] · (1/Prob[Π̃i = πi]) · E[Time(Rerun(πi))] = O(i)

Proof: First note that if either Prob[Π̃i = πi] = 0 or E[Time(Rerun(πi))] is unbounded, then
Prob[Π̃′

i = πi] = 0 (since a path is extended only after there is evidence that it is reachable by ~S).
From Lemma 17, Prob[Π̃′

i = πi] · (1/Prob[Π̃i = πi]) ≤ 1. It therefore suffices to show that, for
sufficiently large m,k, if E[Time(Rerun(πi))] > mi then Prob[Π̃′

i = πi] < Prob[Π̃i = πi]/m. This
will imply that the survival probability of a bad path is (at most) inverse proportional to the time
penalty it incurs on Rerun.

Suppose that E[Time(Rerun(πi))] > mi. Then, by Lemma 19, there is i′ < i such that

Prob[Π̃i′ = πi′]/Prob[Ṽbi′

A→ πi′] > m. (6)

To analyze the probability of passing the i′-th test in step (2b), let p1 = Prob[Π̃i′ = πi′] and

p2 = Prob[Ṽbi′

A→ πi′]. By Eq. (6), p2 < p1/m. In the following we show that when flipping
in parallel two coins with success probabilities p1, p2 such that p2 < p1/m, the probability that
the p2-trials will have k/2 successes before the p1-trials have k successes is less than 1/m (for
sufficiently large m,k). We refer to the above event as a success of the test. Let s = k

√
m/p1 be a

number of trials. The probability of the test succeeding is bounded by the probability that either
there are less than k successes in s independent p1-trials, or there are at least k/2 successes in s
independent p2-trials (for otherwise the test clearly fails). We show that both of these probabilities
are asymptotically smaller than 1/m. The first experiment has expectation µ = k

√
m and a relative

deviation greater than a constant. The tail probability is bounded by F−(δ, µ) < e−Ω(µ) which is
o(1/m). The second experiment has expectation µ < k/

√
m and relative deviation δ = Ω(

√
m).

The tail probability is bounded by F+(δ, µ) < (e/(1 + δ))(1+δ)µ = (1/
√

m)Ω(k). For k greater than
some constant, this probability is again o(1/m). We may conclude that for m,k greater than some
absolute constant, Prob[Π̃′

i = πi] < 1/m · Prob[Π̃i = πi] as required. ✷

We are now ready to bound the expected running time of the i-th iteration of S ′.

24

Lemma 21 E[T̃ ′
i] = O(k · i ·#pathsi).

Proof: Substituting Lemma 18 in Eq. (5) and applying Lemma 20, we get:

E[T̃ ′
i] = O(

∑

πi

k · i) = O(k · i ·#pathsi).

✷

From the last lemma we may conclude the following:

Claim 22 Regardless of the non-adaptive emulation quality, the expected running time of S ′ is
polynomial in | ~B| and the security parameter.

We turn to analyze the emulation quality of S ′.

Claim 23 Suppose that | ~B| is polynomial in k, and that the non-adaptive simulators Ṽb are com-
putationally (respectively, statistically) good. Then the simulator S ′ produces a computationally
(resp., statistically) good output.

Proof: It follows from Lemma 16 and the adaptive sampling lemma that when | ~B| is polynomial,
the output of ~S is computationally (resp., statistically) good. We will argue that the output
produced by S ′ is statistically close to that of ~S. Since an execution of S ′ produces the same
output distribution as ~S except for the event that S ′ terminates prematurely and outputs fail ,
it suffices to show that this event occurs with negligible probability. Consider a termination test
performed during the execution of S ′ with current path πi, and let p1, p2 be the two relevant
probabilities. That is, p1(πi) = Prob[Π̃i = πi] and p2(πi) = Prob[Ṽbi

A→ πi]. The difference |p1− p2|
must be bounded by some negligible function ǫ(k). Indeed, both probabilities are negligibly close
to the probability of ~S arriving at πi when given access to perfect distributions Vb. Now, call
πi good if p1(πi) > 3ǫ(k) and bad otherwise. Clearly, since by Lemma 17 the probability of S ′
arriving at πi is at most p1(πi), the probability of S ′ arriving at any bad path during its execution
is negligible. Finally, since for any good path πi we have p2(πi) > 2

3p1(πi), the probability of
premature termination at a good path πi is negligible in k (as the probability of having k successes
of p1-trials before k/2 successes of p2-trials). ✷

Noting that | ~B| is polynomial when n = O(log k/ log log k), the results of this section can be
summarized by the following theorem.

Theorem 24 For function evaluation protocols with passive adversary and n = O(log k/ log log k)
parties, adaptive and non-adaptive security are equivalent under any notion of security. Moreover,
with a relaxed notion of efficiency allowing a negligible failure probability, the bound on the number
of parties can be improved to n = O(log k).

We remark that Theorem 24 is essentially tight in the following sense: when n = ω(log k), adaptive
security is separated from non-adaptive security even if the adaptive simulator is allowed to be
computationally unbounded.

2.5 Equivalence for passive adversaries and IT security

Claim 10 immediately implies the following:

Theorem 25 For function evaluation protocols with passive adversary and perfect information-
theoretic security, adaptive and non-adaptive security are equivalent.

Note that there is no dependence on the number of players in the above theorem.

25

3 Adaptivity vs. Non-adaptivity in the definition of Dodis-Micali-

Rogaway

3.1 Review of the definition

For completeness, we start with a very short summary of the definition of secure multiparty com-
putation by Micali and Rogaway, more specifically the version that appears in the paper by Dodis
and Micali [dm00]. For additional details, please refer to [dm00].

We have n players, each player Pi starts with a value xi as input and auxiliary input ai. We
set a = (a1, ...an);x = (x1, ..., xn).

To satisfy the definition, a protocol π must have a fixed committal round CR, the point at which
inputs become uniquely defined, as follows: The traffic of a player consists of all messages he sends
and receives. π must specify input- and output functions that map traffic to input- and output
values for the function f computed. The effective inputs x̂π

1 , ..., x̂π
n are determined by applying

the input functions to the traffic of each player up to and including CR. So these values are the
ones that players “commit to” as their inputs. The effective outputs ŷπ

1 , ..., ŷπ
n are determined by

applying the output functions to the entire traffic of each player.
For adversary A (taking random input and auxiliary input α), random variable V iew(A, π) is

the view of A when attacking π. We define:

History(A, π) = V iew(A, π), x̂π , ŷπ

The way A interacts with the protocol is as follows: in each round, A sees all messages from honest
players in this round. He may then issue some number of corruption requests adaptively, and only
then must he generate the messages to be sent to the remaining honest players.

The definition calls for existence of a simulator S which may depend on the protocol in question,
but not the adversary. The goal of the simulator is to sample the distribution of History(A, π). To
do so, it is allowed to interact with A, but it is restricted to one-pass black-box simulation with no
bound on the simulator’s running time, i.e., A interacts with S in the same way it interacts with
π, and S is not allowed to rewind A. The simulator S gets an oracle O as help (where the oracle
knows x, a):

• If Pj is corrupted before CR, the oracle sends xj , aj to S.

• At CR, S applies the input functions to the view of A it generated so far to get effective
inputs of corrupted players x̂S

j . It sends these values to O. O computes the function choosing
random input r and using as input the values it got from S for corrupted players and the
real xj ’s for honest players. The result is ŷS = (ŷS1 , ..., ŷSn). O sends the results for corrupted
players back to S.

• If Pj is corrupted in or after CR, O sends xj , aj , ŷj to S.

The random variable V iew(A,S) is the view of A when interacting with S. The effective inputs
x̂S are as defined above, i.e., if a Pj is corrupted before CR, then his effective input x̂S

j is determined

by the input function on his traffic, else x̂j = xj. The effective outputs ŷS are defined as what the
oracle outputs, i.e. ŷS = f(x̂S , r).

History(A,S) = V iew(A,S), x̂S , ŷS

We can now define that π computes f securely iff there exists a simulator S such that for every
adversary A, and every x, a, α,

History(A,S) ≡ History(A, π)

26

i.e., the two variables have identical distributions.
At first sight it may seem strange that the definition does not explicitly require that players who

are honest up to CR actually commit to their real inputs, or that players who are never corrupted
really receive “correct” values. But this follows from the definition:

Lemma 26 If π computes f securely, then the input- and output functions are such that if Pj

remains honest up to CR, then x̂π
j = xj . And if Pj is never corrupted, then ŷπ

j is the j’th component
of f(x̂π, r), for a random r.

Proof: Consider an adversary Aj that never corrupts Pj . Then the first claim follows from xj = x̂S
j

and History(Aj,S) ≡ History(Aj, π). The second follows from History(Aj,S) ≡ History(Aj, π)
and the fact that the correlation ŷSj = f(x̂S , r)j between x̂S and ŷS always holds. ✷

Note that this lemma continues to hold, even if we only assume static security.

3.2 Equivalence of adaptive and non-adaptive security

It turns out to be convenient in the following to define the notion of a partial history, of an adversary
A that either attacks π or interacts with a simulator. A partial history constrains the history up to
a point at the start of, or inside round j for some j. That is, round j − 1 has been completed but
round j has not. If j ≤ CR, then such a partial history consists of a view of the adversary up to
round j, and possibly including some part of round j. If j > CR, but the protocol is not finished, a
partial history consists of a partial view of A as described before plus the effective inputs. Finally,
if the protocol is finished at round j, the history is as defined earlier: complete view of A plus the
effective inputs and outputs.

Note that if S is such that History(A, π) ≡ History(A,S), then trivially it also holds that the
partial histories of A, π and of A,S ending at any point are identically distributed. Moreover, since
S never rewinds, the value of the partial history of A,S at some point in time will be fixed as soon
as S has reached that point in the simulation.

We can then slightly extend the actions an adversary can take: a halting adversary A′ is one that
interacts with protocol or simulator in the normal way, but may at any point output a special halting
symbol and then stop. In the simulation, if the simulator receives such a symbol, the simulation
process also stops. The histories History(A′, π),History(A′,S) are defined to be whatever the
partial history is at the point when A stops.

Trivially protocol π is secure in the above definition if and only if, for any halting adversary A′,
History(A′, π) ≡ History(A′,S). Note that this extension of the definition does not capture any
new security properties, it is simply a “hack” that turns out to be convenient in the proof of the
following theorem.

In the following we assume that there exists a static (non-adaptive) simulator S0 such that for
every static adversary A0, and every x, a, α,

History(A0,S0) ≡ History(A0, π)

We want to make a general simulator S that shows that π in fact is secure against any adaptive
adversary A, in other words, we claim

Theorem 27 Adaptive and non-adaptive security are equivalent under the Dodis-Micali-Rogaway
definition.

27

To this end, we construct a static adversary AB (of the halting type), for every set B that it
is possible for A to corrupt. AB plays the following strategy, where we assume that AB is given
black-box access to (adaptive) adversary A, running with some random and auxiliary inputs rA
and α6:

Algorithm of AB

1. Corrupt the set B initially. For each Pj ∈ B, initialize the honest algorithm for Pj , using as
input xj, aj learnt from corrupting Pj (and fresh random input).

2. Start executing the protocol, initially letting the players in B play honestly, but keeping a
record of their views. At the same time, start running A.

3. Whenever A issues a corruption request for player Pj , we do the following: if Pj ∈ B, we
provide A with xj, aj and all internal data of Pj . After this point, all messages for Pj are
sent to A, and we let A decide the actions of Pj from this point. If Pj 6∈ B, output a halt
symbol and stop.

The idea in the following is to use the assumed ability (by S0) to generate histories of AB

attacking π to generate histories of A attacking π. Note that in any round of π, the current history
of AB contains both the (so far honest) history of 0 or more players that A has not yet corrupted,
plus the view so far of A. So for any such (partial) history u of AB , we let Aview(u) be the view
of A that can be extracted from u in the natural way.

In particular, if u is a history of AB that ends after the final round of the protocol, then
Aview(u) is a complete view of A where A corrupted only players in B, whereas if u ends before
the protocol is complete, Aview(u) ends in the some round where A requested to corrupt some
player outside B.

We are now ready to describe the algorithm of S. We assume S interacts with an adaptive
adversary A who starts from some random input and is given some arbitrary auxiliary input α.
Also we are given an oracle O, that knows the actual inputs x and makes some random choice r
when computing the function.
Algorithm of S:

1. Initialization:
Set B = ∅. B will contain the current set of corrupted parties
Set v = the empty string. v will contain the (simulated) view of A so far
Set aB , xB , and ŷSB = the empty string, these variables will contain the inputs, auxiliary
inputs, and effective outputs of players in B.

2. The purpose of this step is to obtain a random sample of the output of S0 when interacting
with AB, conditioned on the event that the history u produced, is such that v is a prefix of
Aview(u).

We do this by repeatedly executing S0,AB until a useful u is obtained (this make take more
than polynomial time, but we consider unbounded simulation here). We will not always run
S0,AB until they halt, in cases where it is clear that there is no hope of getting a useful u,
we will stop immediately, as described below. Note that, in order to execute S0, we need to

6We could also have given rA, α as input to AB , letting it simulate the algorithm of A, but the set-up we use is
more convenient in the following.

28

provide access it needs to an oracle (which we call O0 to distinguish from the oracle O that
S uses), also AB needs black-box access to A. We describe how to emulate O0, As below.
Thus, the following subroutine for sampling S0,AB is repeated until a history u is produced
such that v is a prefix of Aview(u).

(a) Initialize the algorithms of AB and S0 using random inputs chosen uniformly among
those we have not used before. (but note that we do not restart A). Send xB , aB to S0

(on behalf of O0). The variable u will at all times hold the current history of S0,AB

we have produced so far. It is initially empty, and we maintain the following invariant:
either v is a prefix of Aview(u) (which includes the case v = Aview(u)), or Aview(u) is
a proper prefix of v.

(b) Do the following for each round:
Get messages for players in B from S0 and send these to AB. Now we want to simply
run the algorithm of AB to compute the actions in this round of players in B. But recall
that AB needs black-box access to A. At this point, however, A thinks that it is in the
middle of an attack on the protocol and we are not allowed to rewind. Fortunately, since
we are only interested in generating views with v as prefix, we can do something else:

• If Aview(u) is a proper prefix of v, look at the set of messages that AB sends to A at
this point. Check if this equals the set of messages sent to A at this point according to
the view v. If so, we take the response of A from v and send it to AB. This response
may be a corruption request, in which case we check if the reaction to this from AB is
consistent with v, and continue to process the next response from A (again taken from
v). If any inconsistencies with v are discovered, we stop the current run of (AB ,S0),
and go back to step 2a (since it is then clear that the history u we are generating will
not be consistent with v). Otherwise, we keep going, extending the contents of u until
either the interaction between AB and A in this round is finished, or we reach a point
where Aview(u) = v (in the latter case continue with the next item).
• If we are not finished with the current round and if v is a prefix of Aview(u), send

the messages generated by AB at this point to A, and let AB conduct its interaction
directly with A starting from whatever state A is in at this point. Note that this may
cause AB (and hence S0) to halt if A tries to corrupt a player outside B.

We reach this point if S0,AB completed the current round without halting. If we are
in the CR at this point, we must also emulate the behavior of O0 in the CR. We do as
follows:

• If we have not queried O in CR before, send the effective inputs produced by S0 and
send them to O to get ŷSj , Pj ∈ B, we save these values in ŷSB and also send them to
S0.
• If we have queried O before, send the current value of ŷSB to S0.

3. At this stage, the previous step has produced a history u of AB, such that w = Aview(u)
has v as a prefix. Now, if w extends all the way to the end of the protocol, we output w and
stop. Otherwise, go to next step.

4. If we reach this step, w ends prematurely because A requested to corrupt a party Pj 6∈ B.
Then get xj , aj and possibly ŷSj from O
set B = B ∪ {Pj}

29

set v = w
set aB = a ∪ {aj}, xB = x ∪ {xj} and ŷSB = ŷSB ∪ ŷSj .

5. Go to step 2.

To show that S works as required it is clearly enough to show the following
Claim: For any fixed random and auxiliary input for A and for any input x and random

choice r for the oracle O, the algorithm for S terminates and conditioned on the data we fixed,
History(A, π) ≡ History(A,S).

In the entire following discussion, we assume that the data mentioned in the claim are fixed.
The fact that S terminates is one consequence of the following lemma:

Lemma 28 Fix any B, v, aB , xB , ŷSB that may occur as values at the start of some iteration i of the
algorithm of S. Then the following iteration terminates and produces a value u of History(AB,S0),
where the distribution of u equals that of the history of S0 when interacting with AB conditioned
on the values B, v, aB , xB , ŷSB, and on v being a prefix of Aview(u).

Proof: If i = 1, the lemma is trivially true: in this case all the variables B, v, aB , xB , ŷSB are
empty, so we are not conditioning on anything, and AB and S0 are executed according to their
respective algorithms with black-box access to correct data. Termination is also trivial because the
first attempt to run AB and S0 will always result in a useful u.

For i > 0, let B′ be the value of B in iteration i−1. Since iteration i is executed, we may assume
that the view v ends by A corrupting a player Pj 6∈ B′. The view v was produced in the previous
iteration by S0 interacting with AB′ . Since S0 is a perfect simulator, there exists an execution of
the real protocol, where A’s view is v and where Pj has some honest view vj until the end of v.
Then by definition of AB, a possible (partial) view of AB is one where its interaction with A results
in view v and honest view vj for Pj . And again, since S0 is a perfect simulator, it must be possible
to generate these same views by having AB interact with S0. Since the algorithm of S in the i’th
iteration searches exhaustively through the random inputs of S0,AB, a history u consistent with v
will eventually be found.

Finally, for the claim on the distribution of u, note that the algorithm for the i’th iteration
chooses uniformly among those random inputs for S0,AB that will produce a u consistent with v.
The claim therefore follows if we show that the data obtained from our simulated black-box access
to A and our simulation of oracle O0 are distributed as in a normal execution. This is clear for the
black-box access to A because we just force the output view for A to have v as prefix, and otherwise
query the real adversary A. For the simulation of O0, we split in the two cases considered also in
the algorithm of S, according to what the situation is when S0 queries O0:

• If we have not queried O in CR before, it is clear that the view v must end in or before CR.
So therefore, the effective inputs supplied by S0 is a random set of values as S0,AB would
choose them, conditioned on B, v, aB , xB . Hence the results are also correctly distributed
because we obtain them from O.

• If we have queried O before, Suppose we are doing iteration i currently, and suppose we
queried O in iteration i′. Let B′ ⊂ B be the corrupted set in iteration i′.

Note that we cannot have i = i′: the first time we queried O we must have had the current v
as a proper prefix of the current view for A since the simulation is one-pass. This guarantees
that we finished that run of S0,AB successfully extending v, and so we would not need to
run S0,AB again in the same iteration.

30

So i′ < i. Let v′ be the view output by iteration i′, this view must of course extend beyond
the CR, and must determine some effective inputs x̂′, namely the input functions applied to
v′ for players in B′ and the real inputs for the other players. Moreover, v determines the same
effective inputs x̂′: v′ is a prefix of v so the input functions for players in B′ return the same
results on v as on v′. For players in B \B′, v contains the honest history of these players up
to and including the CR, so the input functions for these players return the real inputs, by
Lemma 26

Let u be the current history produced by S0 when the query to O0 is made. Since u is
consistent with v, u also determines the same input vector x̂′, again by applying the input
functions. Hence the inputs on which the trusted party would compute the function are
exactly the same as the ones it used in iteration i′, so it is correct to return the results we
already know.

✷

Lemma 29 Fix any corruptible set B. Let DistrB be the distribution obtained from the distribution
of History(A, F) by truncating every history such that it ends at the first point where A corrupts
a player not in B (no truncation if A never corrupts a player outside B). Then the distribution of
History(AB,S0) is DistrB.

Proof: Follows immediately from History(AB,S0) ≡ History(AB, π) and by definition of AB. ✷

We now return to the proof of the claim above. Let Distri be the distribution obtained from
the distribution of History(A, π) by truncating every history such that it ends at the point where
A corrupts the i’th player (no truncation if A corrupts less than i players).

We will show by induction on i that running the algorithm for S for at most i iterations produces
a history with Distri as distribution, for any i. The claim then follows because Distrn+1 is the
distribution of History(A, π), since it cannot corrupt more than the total number of players.

The basis of the reduction (i = 1) follows immediately from the two lemmas with B = ∅, and
v = aB = xB = ŷSB = the empty string (note that Distr1 = Distr∅).

So consider the induction step for some i > 1. By the induction hypothesis, the cases where S
halts after i − 1 steps produce with the right distribution those histories where A completes the
protocol having corrupted at most i− 2 players. In the cases where the i’th iteration is executed,
the induction hypothesis also implies that the values of B, v, aB , xB , ŷSB we have going into the i’th
iteration are distributed exactly as they would be in a real protocol execution in a case where A
has just corrupted the i− 1’th player.

We therefore only have to show that this next iteration of S will produce a history that is
distributed according to Distri, conditioned on the event that v is a prefix of the view of A (Note
that v determines the values of B, aB, xB , ŷSB). Let us call this distribution Distri(v).

Similarly, let DistrB(v) be the distribution obtained by starting from DistrB and conditioning
on the event that v is a prefix of A’s view. It is now clear that Distri(v) = DistrB(v) – namely
both equal the distribution over (partial) histories in which A’s view has v as a prefix and continue
until A corrupts the next player or completes the protocol.

Now, by Lemma 29, DistrB(v) is the distribution produced by S0 interacting with AB when
we condition on v. Finally by Lemma 28, this in turn equals the distribution produced by the i’th
iteration of S, when that iteration starts from B, v, aB , xB , ŷSB .

31

References

[b91] D. Beaver, “Secure Multi-party Protocols and Zero-Knowledge Proof Systems Tolerating a
Faulty Minority”, J. Cryptology, Springer-Verlag, (1991) 4: 75-122.

[b97] D. Beaver, “Plug and Play Encryption”, CRYPTO 97.

[bh92] D. Beaver and S. Haber, “Cryptographic Protocols Provably secure Against Dynamic Ad-
versaries”, Eurocrypt, 1992.

[bgw88] M. Ben-Or, S. Goldwasser and A. Wigderson, “Completeness Theorems for Non-
Cryptographic Fault-Tolerant Distributed Computation”, 20th Symposium on Theory of
Computing (STOC), ACM, 1988, pp. 1-10.

[c00] R. Canetti, “Security and Composition of Multiparty Cryptographic Protocols”, Journal
of Cryptology, Vol. 13, No. 1, Winter 2000. On-line version at
http://philby.ucsd.edu/cryptolib/1998/98-18.html.

[c00a] R. Canetti, “A unified framework for analyzing security of Protocols”, manuscript, 2000.
Available at http://eprint.iacr.org/2000/067.

[cddim01] R. Canetti, I. Damgaard, S. Dziembowski, Y. Ishai and T. Malkin, “On adaptive vs.
non-adaptive security of multiparty protocols”, http://eprint.iacr.org/2001.

[cfgn96] R. Canetti, U. Feige, O. Goldreich and M. Naor, “Adaptively Secure Computation”, 28th
Symposium on Theory of Computing (STOC), ACM, 1996. Fuller version in MIT-LCS-TR
#682, 1996.

[cdm98] R.Cramer, I.Damgaard and U.Maurer: General Secure Multiparty Computation from Any
Linear Secret-Sharing Scheme, EuroCrypt 2000.

[ccd88] D. Chaum, C. Crepeau, and I. Damgaard. Multi-party Unconditionally Secure Protocols.
In Proc. 20th Annual Symp. on the Theory of Computing (STOC), pages 11–19, ACM, 1988.

[cs98] R. Cramer and V. Shoup, “A paractical public-key cryptosystem provably secure against
adaptive chosen ciphertext attack”, CRYPTO ’98, 1998.

[dn00] I. Damgaard and J. Nielsen, “Improved non-committing encryption schemes based on a
general complexity assumption”, CRYPTO 2000.

[dm00] Y. Dodis and S. Micali, “Parallel Reducibility for Information-Theoretically Secure Com-
putation”, CRYPTO 2000.

[ddn91] D. Dolev, C. Dwork and M. Naor, “Non-malleable cryptography”, SICOMP, to appear.
Preliminary version in STOC 91.

[g95] O. Goldreich, “Foundations of Cryptography (Fragments of a book)”, Weizmann Inst. of
Science, 1995. (Avaliable at http://philby.ucsd.edu)

[gmw87] O. Goldreich, S. Micali and A. Wigderson, “How to Play any Mental Game”, 19th Sym-
posium on Theory of Computing (STOC), ACM, 1987, pp. 218-229.

[gl90] S. Goldwasser, and L. Levin, “Fair Computation of General Functions in Presence of Im-
moral Majority”, CRYPTO ’90, LNCS 537, Springer-Verlag, 1990.

32

[gm84] S. Goldwasser and S. Micali, “Probabilistic encryption”, JCSS, Vol. 28, No 2, April 1984,
pp. 270-299.

[mr91] S. Micali and P. Rogaway, “Secure Computation”, unpublished manuscript, 1992. Prelim-
inary version in CRYPTO ’91, LNCS 576, Springer-Verlag, 1991.

[pw94] B. Pfitzmann and M.Waidner, “A General Framework for Formal Notions of Secure Sys-
tems”, Hildesheimer Informatik-Berichte, ISSN 0941-3014, April 1994.

[psw00] B. Pfitzmann, M. Schunter and M.Waidner, “Secure Reactive Systems”, IBM Technical
report RZ 3206 (93252), May 2000.

[s99] A. Sahai, “Non malleable, non-interactive zero knowlege and adaptive chosen ciphertext
security”, FOCS 99.

[y82] A. Yao, “Protocols for Secure Computation”, In Proc. 23rd Annual Symp. on Foundations
of Computer Science (FOCS), pages 160–164. IEEE, 1982.

[y86] A. Yao, “How to generate and exchange secrets”, In Proc. 27th Annual Symp. on Founda-
tions of Computer Science (FOCS), pages 162–167. IEEE, 1986.

33

