
Analysis of a Subset Sum Randomizer

Peter S. Gemmell ∗and Anna M. Johnston†

22 February 2001

Abstract

In [5] an efficient pseudo-random number generator (PRNG) with
provable security is described. Its security is based on the hardness of
the subset sum or knapsack problem. In this paper we refine these ideas
to design a PRNG with independent seed and output generation. This in-
dependence allows for greater parallelism, design flexibility, and possibly
greater security.

∗University of New Mexico, Albuquerque, New Mexico. Email:{gemmell@cs.unm.edu}
†Sandia National Laboratories, Albuquerque, New Mexico 87185-0449. Sandia is a

multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company,

for the United States Department of Energy under contract DE-AC04-94AL85000.Email:

{ajohnst@sandia.gov}.

1



1 Introduction

In [5] an efficient pseudo-random number generator with provable security is
described. In this scheme the subset sum problem is used to generate m-random
bits from a seed of n-random bits. It uses a set A = {ai}

n−1
i=0 where each set

element, ai, is l(n)-bits long, where l(n) = (1+ c)n, with c > 0. The subset sum

function, f , operating on an n-bit integer S =
∑n−1

i=0 si2
i is defined as:

f(S) =

n−1
∑

i=0

aisi mod 2l(n).

In this model, one function generates both the randomizer output and the seed
for the next iteration. The last (m = cn)-bits of this result are used as output
for the PRNG, the remaining n bits are used as seed to generate the next cn
bits of random data.

The randomizer we propose is very similar to the above scheme. It uses the
subset sum problem to produce a secure pseudo-random number generator. But
instead of using one function to generate both seed and outputted random data,
our randomizer uses two subset sum sets. The first set generates a stream of seed
bits while the second set generates the outputted data. Dividing the PRNG into
these two separate sets neatly divides the analysis, allows for greater parallelism,
may improve security and make for a more flexible design.

2 Dual Subset Sum Randomizer

A dual subset sum randomizer (further known as DSSR) is a pseudo-random
number generator which uses two separate, independent subset sum problems
to generate the internal (secret) seed and external (public) output. Each subset
sum function operates on n-bits of input. The first subset sum function, G,
produces an internal (secret) n-bit seed at each iteration. The second subset
sum function, D, produces an external (public) cn-bit output at each iteration.
Given a seed St, the seed for the next iteration is St+1 = G (St) and the output
of the randomizer is Rt+1 = D

(

St+1
)

. This definition of the PRNG allows for
very flexible design. For example a subset sum problem similar to the Chor-
Rivest knapsack ([4]) might be used for G and a knapsack modulo 2cn could be
used for D.

For now we define G, D as subset sum functions modulo 2n and 2cn respec-
tively. Let G and D be based on the sets

Γ = {gi|gi ∈ {0, 1, . . . , 2n − 1}, i = 0, 1, . . . , n − 1} (1)

∆ = {di|di ∈ {0, 1, . . . , 2cn − 1}, i = 0, 1, . . . , n − 1} (2)

Let the seed at time t be St =
∑n−1

i=0 si2
i with si ∈ {0, 1}. This defines G and

D as

G
(

St
)

=
n−1
∑

i=0

gis
t
i mod 2n

1



D
(

St
)

=

n−1
∑

i=0

dis
t
i mod 2cn

The seed generated at time t is St = G
(

St−1
)

and the PRNG output at time t
is Rt = D (St).

3 Background

The DSSR is designed for cryptographic applications. Strong cryptographic
randomizers can be used to generate encryption keys, random data for public
key cryptosystems, and can even be used as encryption systems themselves. In
other words, strong cryptographic randomizers are needed and useful in almost
all aspects of cryptography. If these randomizers are designed for efficency they
also have numerous applications in supercomputing, modeling and simulation.

Because of the numerous applications, a strong cryptographic PRNG must
satisfy requirements for non-cryptographic PRNG and be able to withstand
cryptanalysis ([1]). In this paper we show that the DSSR satisfies both of these
requirements.

Although the random subset sum problem is NP-complete, specific cases of
the subset sum problem have been shown to be weak and easily broken. For ex-
ample, Brickell broke the Merkle-Hellman subset-sum based public key encryp-
tion protocol using the Lenstra-Lenstra-Lovasc lattice basis reduction algorithm
[3]. However the Merkle-Hellman protocol uses subset-sum problems of density
1/2 and L3 appears to work only on low-density (less than .93) problems.

Impagliazzo and Naor [5] argue that if subset-sum is hard then it can be
used for pseudo-random generation. They suggest also that the functions with
density closest to 1 are the hardest functions to invert.

We organize the paper as follows:

• In section 4 we define variables and terms used throughout the paper.

• In section 5, we describe an approach to analysis that uses the Lenstra-
Lenstra-Lovasc lattice basis reduction algorithm to solve subset sum prob-
lems.

• In section 6, we present a proof of security for DSSR that is similar to a
proof of security found in [5].

4 Definitions

While we will consider the security of DSSR for a fixed input size (n = 256),
we never-the-less can view it as part of larger function that takes various sizes
of inputs and which might satisfy the following definition of pseudo-random
function.

2



Definition 1 Pseudo-random number generator A polynomial-time computable
function F : {0, 1}n → {0, 1}M is a pseudo-random number generator if, for
all polynomials p, there is an integer n0 such that for all n ≥ n0 and for all
polynomial-time algorithms, A:

∣

∣Pry∈r{0,1}M [A accepts y] − Prx∈r{0,1}n [A accepts F (x)]
∣

∣ ≤ 1/p(x)

5 Using LLL

Although the subset sum problem is NP-complete, it is not clear that it is
hard to solve for either random (most) instances or that it is hard to solve for
moderately-sized problems.

The Lenstra-Lenstra-Lovasc (L3) [9] lattice basis reduction algorithm has
played a major role in breaking several subset-sum related cryptographic pro-
tocols.

In section 6, we are only able to show that DSSR is as secure as a particular
class of density 0.5 subset sum inversion problems. However, it is not apparent
(to us) how to attack DSSR by inverting a density 0.5 subset sum problem.
Instead, it seems that we must invert a 256-bit density 1 subset sum problem
in order to deduce the internal seed stream. Never-the-less, we are designing
a multi-precision rational number package that will enable L3 to run without
round-off error on 256-bit inputs. We will test this software on DSSR instances
to see if L3 can be used to deduce the internal seed stream from several blocks
of the output stream.

6 A Security Model for DSSR

We model the randomizer as a pseudo-random generator based on a pseudo-
random subset-sum function of density just under 0.5.

Define Θ = {ci}
256
i=1 to be the concatenation of elements in ∆ and Γ with

lg(256) bits between to accommodate carries. Using n = 256:

ci = di ∗ 2256+8 + gi

The elements in Θ are (2 ∗ 256 + 8) bits long. A new function which computes
both the internal seed and the output of the randomizer simultaneously can now
be created. Let:

F (St) =

256
∑

i=1

st
ici mod 22∗256+8

Note that F has density slightly less that 1/2.

Claim: If F were a one-way function, then [5] shows that F is also
a pseudo-random function.

3



Define

F 1(S) =
⌊

F (S)/2256+8
⌋

‖F (S) mod 2256

F t(S) =
⌊

F
(

F t−1 (S) mod 2256
)

/2256+8
⌋

‖
(

F
(

F t−1(S) mod 2256
)

mod 2256
)

If words, F t is F applied to the lower 256 bits of F t−1(S), with the middle 8
bits removed. In the original model this is equivalent to the concatenation of
the D(St−1) and G(St−1).

Claim: If F were a pseudo-random function, then for all t > 0,
F t would be a pseudo-random function producing (t + 1)n + log 256
bits.

Corollary 1 If the function F were one-way, then the DSSR would be a pseudo-
random generator.

7 A variant of DSSR and its Security Model

We describe a parameterized (k) randomizer similar to the DSSR and cite
Impagliazzo and Naor in proving its security using the one way property of a
random subset-sum function of density about 1/(1 + k). The description and
analysis are almost identical to the previous section. The only difference is that
instead of generating 256 bits of random data at each iteration, only k∗256 bits,
where 0 < k ≤ 1 bits are generated. Setting k = 1 will duplicate the previous
analysis.

Let k > 0 be such that k ∗ 256 is an integer and define sets similar to the
previous model:

Γ =
{

gi

∣

∣gi ∈r Z/2256Z, i = 0, 1, . . . , 256 − 1
}

∆ =
{

di

∣

∣di ∈r Z/2k∗256Z, i = 0, 1, . . . , 256 − 1
}

Θ =
{

ci

∣

∣

∣

(

ci = di ∗ 2256+8 + gi

)

∈r Z/2(1+k)256+8
}

As before the concatenated randomizer function can be defined as

Fk(S) =

256
∑

i=1

sici mod 2(1+k)256 + 8

Note that Fk has density approximately 1/(1 + k).

Claim: If Fk were a one-way function, then [5] shows that Fk is
also a pseudo-random function.

Define

F 1
k (S) =

⌊

Fk(S)/2256+8
⌋

‖Fk(S) mod 2256

F t
k(S) =

⌊

Fk

(

F t−1
k (S) mod 2256

)

/2256+8
⌋

‖Fk(F t−1
k (S) mod 2256)

4



If words, F t
k is Fk applied to the lower 256 bits of F t−1

k (S), with the 8 bits
following the first 256 bits removed. At each iteration, k ∗ 256 new random bits
will be created.

Claim: If Fk were a pseudo-random function, then for all k > 0,
F t

k would be a pseudo-random function producing (kt + 1)256 bits.

This modification of the DSSR has several benefits.

• A balance of the users need for security and efficency can be made by
adjusting the density of the subset sum. The parameter k can be chosen
so that 1/(1 + k) is as close to 1 as needed for security purposes yet not
so small that it runs too slow for the users efficency needs.

• The function Fk is uniformly distributed over all density 1/(1+k) subset-
sum functions.

8 Two Examples

In this section we give to toy examples. The purpose of this is to clarify how
the randomizers are used, not to demonstrate there qualities.

The first example is modeled like the original DSSR, but using only eight
bits instead of 256. The second example also uses eight bits for the seed but is
a modified version of DSSR, with modeled knapsack density approximately 0.8.

8.1 Example 1

The hexadecimal representations of ∆, Γ and the initial seed S0 are:

0 1 2 3 4 5 6 7
∆ 95 73 61 69 A5 6E AE FC
Γ A8 FF 31 9C 13 8A 0A CA

S0 = 7E 0 1 1 1 1 1 1 0

This generates the following internal seed streams and random output:

St =
∑7

i=0 st
idi mod 28

t St s0 s1 s2 s3 s4 s5 s6 s7

1 FE 0 1 1 1 1 1 1 1
2 FA 0 1 0 1 1 1 1 1
3 99 1 0 0 1 1 0 0 1
4 9F 1 1 1 1 1 0 0 1
5 73 1 1 0 0 1 1 1 0
6 C9 1 0 0 1 0 0 1 1
7 A8 0 0 0 1 0 1 0 1
8 D3 1 1 0 0 1 0 1 1

5



Rt =
∑7

i=0 st
igi mod 28

t Rt r0 r1 r2 r3 r4 r5 r6 r7

1 3D 1 0 1 1 1 1 0 0
2 0C 0 0 1 1 0 0 0 0
3 21 1 0 0 0 0 1 0 0
4 51 1 0 0 0 1 0 1 0
5 4E 0 1 1 1 0 0 1 0
6 18 0 0 0 1 1 0 0 0
7 F0 0 0 0 0 1 1 1 1
8 8E 0 1 1 1 0 0 0 1

8.2 Example Two

This example is very similar to the first example except that the elements of Γ
are shortened to two bits. For this example I use the same ∆ set as in the first
example but use the following Γ set:

Γ 1 3 2 3 2 1 1 1

The 16 random bits generated are generated from eight iterations. Using the
seed S0 from the first example generates the following bits:

t rt
0 rt

1

1 1 1
2 1 0
3 0 0
4 0 1
5 1 0
6 1 1
7 0 1
8 1 0

9 Final Comments

The DSSR is a simple fast way to generate random bits. The flexibility in
the parameter choices allows the user to increase efficiency or security at will,
though not both simultaneously. Although much of our analysis combined the
two subset-sum sets into one set over one group, the division of these sets allows
different subset sum problems to be used. Instead of doing the both subset
sums over the integers modulo 2256, the subset sum problems might be done
over different groups. The internal seed subset sum problem might be done
using elliptic curves while the external PRNG subset sum might be done multi-
plicatively modulo a prime. Even non-commutative groups, such as composition
of permutations, could be used.

6



References

[1] X9- Financial Services, X9.82-200x Random Number Generation, January
2000. DRAFT.

[2] Alexi, Chor, Goldreich, and Schnorr, Rsa/rabin bits are 1
2 +

poly (log n)
−1

, in Foundations of Computer Science, IEEE, 1984.

[3] E. F. Brickell, Breaking iterated knapsacks, in Advances in Cryptology:
Proceedings of Crypto ’84, G. R. Blakley and D. Chaum, eds., Berlin, 1985,
Springer-Verlag, pp. 342–358. Lecture Notes in Computer Science Volume
196.

[4] B. Chor and R. L. Rivest, A knapsack type public key cryptosystem
based on arithmetic in finite fields, in Advances in Cryptology: Proceedings
of Crypto ’84, G. R. Blakley and D. Chaum, eds., Berlin, 1985, Springer-
Verlag, pp. 54–65. Lecture Notes in Computer Science Volume 196.

[5] R. Impaglazio and M. Naor, Efficient cryptographic schemes provably as
secure as subset sum, in Foundations of Computer Science, IEEE, 1989.

[6] Kelsey, Schneier, Wagner, and Hall, Cryptanalytic attacks on pseudo-
random number generators, in Fifth International Workshop on Fast Soft-
ware Encryption, no. 1372 in Lecture Notes in Computer Science, 1998.
Paris, France.

[7] J. Lagarias, Pseudorandom number generators in number theory and cryp-
tography, in Proceedings of Symposia in Appied Mathematics, C. Pomerance,
ed., vol. 42, AMS, 1990, pp. 114–144.

[8] J. C. Lagarias, Knapsack public key cryptosystems and Diophantine
approximation, in Advances in Cryptology: Proceedings of Crypto ’83,
D. Chaum, ed., New York, USA, 1984, Plenum Publishing, pp. 3–24.

[9] A. Lenstra, H. L. Jr., and L. Lovász, Factoring polynomials with ra-
tional coefficients, Mathematische Annalen, (1982), pp. 515–534.

7


