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Abstract

In this paper, we study several issues related to the notion of “secure” hash functions.
Several necessary conditions are considered, as well as a popular sufficient condition (the so-
called random oracle model). We study the security of various problems that are motivated
by the notion of a secure hash function. These problems are analyzed in the random oracle
model, and we prove that the obvious trivial algorithms are optimal. As well, we look closely
at reductions between various problems. In particular, we consider the important question
“does preimage resistance imply collision resistance?”. Finally, we study the relationship of the
security of hash functions built using the Merkle-Damgard construction to the security of the
underlying compression function.

1 Introduction

Hash functions are of fundamental importance in cryptographic protocols (for a recent survey, see
Preneel [8]). Security of hash functions has been considered in many papers, but it is still not
completely clear what it means for a cryptographic hash function to be “secure”. The notion of a
secure hash function is closely tied to the most important application of hash functions, namely,
signature schemes. In this regard, several properties of hash functions are clearly necessary in
order for it to be considered secure. It is generally accepted that a secure hash function should
be one-way (i.e., preimage resistant), second preimage resistant and collision resistant. There are
additional properties that may be necessary when a hash function is used in conjunction with
a particular signature scheme. A recently observed example is that of zero-resistance, which is a
property required of a hash function used in the Digital Signature Algorithm (DSA) and the Elliptic
Curve Digital Signature Algorithm (ECDSA) if these schemes are to be secure (see [3]).

On the other hand, there is a widely used idealized model in which protocols using hash functions
can be proven secure. This is the random oracle model, which was introduced by Bellare and
Rogaway in [1]. In this model, a hash function is modelled as a random function and an adversary
is only permitted oracle access to the function. Clearly these are very strong assumptions — they
are so strong, in fact, that it seems that a random oracle cannot realistically be implemented
in practice. Nevertheless, the random oracle model is a very useful and “clean” mathematical
model that permits formal security proofs of protocols to be given. We discuss these issues more
thoroughly in Section 1.1.

There is a considerable gap between the above-mentioned necessary and sufficient security
conditions for hash functions, and it is certainly an interesting problem to try and close these



gaps. Progress along these lines has recently been reported in [3], where some security proofs for
ECDSA are presented in the generic group model. In this model, it can be shown that there is a
much smaller gap between the necessary and sufficient conditions imposed on hash functions for
the ECDSA signature scheme to be proven secure.

We give some definitions of hash functions in Section 1.2. Four problems relevant to the study
of hash functions are presented in Section 1.3, and motivation for studying these problems is briefly
mentioned in Section 1.4. In Section 2, we study the security of the four problems. These problems
are analyzed in the random oracle model, and we prove that the obvious trivial algorithms are
optimal. We discuss reductions between the four problems in Section 3. In particular, we consider
the important question “does preimage resistance imply collision resistance?”. In Section 4, we
study the relationship of the security of hash functions built using the Merkle-Damgard construction
to the security of the underlying compression function.

1.1 The Random Oracle Model

In this section, we briefly discuss the random oracle model, and how proofs in this model should
be interpreted.

The following result from [2] is a typical example of the kind of thing that can be proven in the
random oracle model:

Full domain hash is secure against an adaptive chosen message attack with respect to
existential forgeries in the random oracle model, provided that it infeasible to invert a
trapdoor one-way permutation, f.

The proof is actually a reduction: given a hypothetical forging algorithm, say A, for full domain
hash (which is a signature scheme), that has some specified probability of success, say €, we construct
an inverting algorithm for f, which inverts the function f on randomly chosen inputs with some
specified probability of success, say €. If € is not too much smaller than €, and we believe that it is
infeasible to invert f, then we have a contradiction, and we conclude that the hypothesized forging
algorithm cannot exist.

So far, this is all pretty standard, and not too difficult to follow. However, the proof is taking
place in the “random oracle model” which means that some additional assumptions are being made
regarding the hash function being used, and the proof of security is valid only if these assumptions
are valid.

The random oracle model is usually described by saying that the hash function is a random
function. Of course, when full domain hash is actually used in practice, a particular hash function
must be specified, and so the assumption used in the random oracle model is not valid. Indeed,
there is a certain “artificial” protocol which has been proven secure in the random oracle model, but
which becomes insecure whenever the hash function used in the protocol is specified (this is a result
of Canetti, Goldreich and Halevi [4]). As a consequence, the random oracle model is somewhat
controversial.

The correct way to interpret a proof of security for a protocol P in the random oracle model is to
view it as a proof of security against certain types of attacks on the protocol P. More precisely, the
proof shows that the protocol P is secure against what might be termed “hash-generic” attacks. This
means that any attack which treats the hash function as a random function will not be successful
(regardless of whether the hash function actually is a random function). In other words, it is better
to think of a proof in the random oracle model as a proof in which we make an assumption about



the attacking algorithm rather than an assumption about the hash function (which, as we already
mentioned, cannot be valid).

To summarize, a security proof in the random oracle model is precisely a proof of security
against hash-generic algorithms. It is of course possible that an algorithm can break a protocol
for some particular hash functions (or even for all possible hash functions) by somehow taking
advantage of how the hash function is computed. A proof in the random oracle model is therefore
no more than plausible evidence of security when the random oracle is replaced by a particular
hash function. This was the “thesis” proposed by Bellare and Rogaway when they introduced the
random oracle model in [1]. In favour of this thesis, it should be noted that no practical protocol
proven secure in the random oracle model has been broken when used with a “good” hash function,
such as SHA-1. On the other hand, the Canetti-Goldreich-Halevi result indicates that there is not
likely to be any proof that this thesis is always valid.

1.2 Definitions of Hash Functions

An (N, M) hash function is any function f: X — Y, where X and Y are finite sets with | X| =N
and |Y| = M. (A hash function with finite domain is also known as a compression function.) An
(N, M) hash family is a set F of functions such that f : X — Y for each f € F, where | X| =N
and |Y| = M. Usually we assume that N > 2M in the above definitions.

Let FXY denote the set of all functions from X to Y. Clearly |F*Y| = MN. Using this
notation, an (N, M) hash family is a subset of functions F C FX:V,

Suppose that | X| = N, |Y| = M and M|N. A hash function f € F*V is said to be uniform if
|f~1(y)|= N/M forall y € Y.

Suppose that | X| = N and |Y| = M. For any f € FXV, define

UP(f)={yeY :|f'(y)|=1}.

UP(f) consists of all elements y € Y that have unique preimages with respect to f (“UP” is an
abbreviation for “unique preimage”).

1.3 Four Problems

We define four problems which will be studied in the rest of the paper. In reference to Problem 1,
we assume that 0 € Y.

Problem 1: Zero preimage

Instance: A hash function f: X =Y.

Find: z € X such that f(z) = 0.

Problem 2: Preimage

Instance: A hash function f: X — Y and an element y € Y.
Find: x € X such that f(z) = y.




Problem 3: Second preimage

Instance: A hash function f: X — Y and an element z € X.
Find: @' € X such that 2’ # 2 and f(2') = f(2).

Problem 4: Collision

Instance: A hash function f: X =Y.

Find: z,2" € X such that 2’ # @ and f(2') = f(2).

1.4 Hash functions and signature schemes

In the usual “hash-then-sign” paradigm, a message is first hashed, and then the resulting message
digest is signed. In this context, it is well-known that if an adversary can find a solution to Second
preimage or Collision (for the given f), then a signature on a new message can be forged. Further,
a solution to Preimage can lead to an attack on RSA. (For descriptions of all these attacks, see [6,
p. 324].)

It seems to be less well known that attacks on certain signature schemes can be carried out if
a prespecified element (as opposed to a random element y € Y) can be inverted with respect to a
given hash function f. It is shown in [3] that solving Zero preimage can permit attacks on DSA
and ECDSA. We describe this attack on the DSA, which can be carried out if Zero preimage can
be solved for the hash function being used (SHA-1, in the case of the Digital Signature Standard).
This attack provides an existential forgery with respect to a key-only attack.

Briefly, the DSA requires a 512-bit prime, p, and a 160-bit prime, ¢ such that ¢|(p—1). o € Z),~
is an element of order ¢; @ € {1,...,¢— 1} is chosen randomly; and 8 = a® mod p. The public key
is (p, ¢, a, ), and the value « is secret. f is any hash function taking on values in the set Z,.

A signature (r,s) € ZyX Z4 on a message m is valid if and only if the following DSA verification
algorithm returns the value “accept”.

Algorithm 1.1: DSA-SignitureVerification(p, q, o, 5, (r,s), m)

if (r=0)or (s=0)
then return (reject)
w ¢+ 571 mod ¢
uy < wf(m) mod ¢
Uy + wr mod ¢
v« (o™ 8" mod p) mod ¢
ifvo=r
then return (accept)
else return (reject)

For the purposes of the attack, we assume that we know a value m such that f(m) = 0. In this
situation, it is not difficult to see that (r,s) is a valid signature on m, where

r=s = mod ¢,

provided that 8 # 0 (mod ¢). This is easily seen as follows: In Algorithm 1.1, we will compute
u1 = 0 and wy = 1. Then v = 8 mod ¢ = r, so the signature is valid.



2 Algorithms in the Random Oracle Model

In this section, we consider the the complexity of the four problems defined in §1.3 in the random
oracle model. To reiterate, this means that the following two assumptions are made:

1. f e FXY is a randomly chosen function.

2. An algorithm is given only oracle access to f.

As a consequence of these two assumptions, it is obvious that the following independence prop-
erty holds:

Proposition 2.1 Suppose that f € F>Y is chosen randomly, and let Xo C X. Suppose that the
values f(x) have been determined (by consulting an oracle for f) if and only if € Xo. Then

1

P = = —

r[f(z) =yl = 57
forallz € X\Xp and ally €Y.

Proposition 2.1 is the key property used in proofs involving the random oracle model.

We consider (e, ¢) randomized algorithms for the four problems defined in §1.3. The parameter
€ denotes the probability that the algorithm correctly solves the desired problem, and ¢ denotes the
number of oracle queries (i.e., evaluations of f) made by the the algorithm. (We are not including
time as an explicit parameter, though it would be straightforward to do so.)

We will perform average-case analyses of the algorithms. Averages will be computed over the
following sources of randomness:

e the random coin tosses made by the algorithm
e the random choice of f € FXV

e the random choice of z € X or y € Y, if specified as part of the problem instance.

The main observation of this section is that the trivial algorithms that evaluate f(z) for ¢ values
of x € X are optimal in the model described above. In fact, the complexity is independent of the
choice of the ¢ values of x because we are averaging over all functions f € FX:¥.

We first consider an algorithm that attempts to solve Zero preimage by evaluating f at ¢ points.

Algorithm 2.1: FindZeroPreimage(f, q)

choose Xy C X, |Xo| =¢
for each » € X
if f(z)=0
do { then return ()
return (failure)

Theorem 2.2 For any Xo C X with | Xo| = ¢, the success probability of Algorithm 2.1 is € =
1-(1-1/M)4.



Proof. Let Xg = {z1,...,24}. For 1 <i < ¢, let let E; denote the event “f(z;) = 0”. It follows
from Proposition 2.1 that the E;’s are independent events, and Pr[E;] = 1/M for all 1 < i < g¢.

Therefore, it holds that
1 q
Pr[E4VE;V...VE]=1- (1— M) .

Algorithm 2.2: FindPreimage(f,y, q)

choose Xy C X, |Xo| =¢
for each » € X
do {lf fl@)=y

then return ()

return (failure)

The success probability of Algorithm 2.2, for any fixed y, is the same as that of Algorithm 2.1.
Therefore, the success probability averaged over all y € YV is identical, too.

Theorem 2.8 For any Xo C X with | Xo| = ¢, the success probability of Algorithm 2.2 is € =
1-(1-1/M)4.

Algorithm 2.3: FindSecondPreimage(f,z, q)

y < fla)
choose Xy C X\{z},|Xo|=¢-1
for each zy € X

do {lf f($0) =Y

then return (z)

return (failure)

The analysis of Algorithm 2.3 is similar to the two previous algorithms. The only difference is
that we require an “extra” application of f to compute y = f(z) for the input value z.

Theorem 2.4 For any Xo C X\{a} with | Xo| = ¢ — 1, the success probability of Algorithm 2.3 is
e=1-(1-1/M)7 L.

Algorithm 2.4: FindCollision(f, q)

choose X¢ C X\{z},|Xo| = ¢
for each » € X
do y, + f(z)
if y, = y,» for some 2’ # «
then return (z,z')
else return (failure)

Algorithm 2.4 is analyzed using the standard “birthday paradox”.



Theorem 2.5 For any Xo C X with | Xo| = q, the success probability of Algorithm 2.4 is

(M1 (M2 M-q+1
= M M M)
Proof. Let Xg = {z1,...,24}. For1 <1 < g, let E; denote the event “f(x;) ¢ {f(z1),..., f(zi=1)}”.
Using induction, it follows from Proposition 2.1 that Pr[E;] =1 and

M—-i+1

PI'[E,’|E1/\E2/\.../\EZ'_1']: i ,

for 2 < ¢ < ¢. Therefore, we have that

Pr[EAEsA...AE)] = (MJ\;1> (%\;3(%)

The result follows. 0

Remark. We note that the analyses of the four algorithms remain unchanged if FX+Y is replaced by
any ¢-wise independent hash family. (A g-wise independent hash family is one in which Proposition
2.1 is satisfied for all sets X with |Xo| < ¢ —1.)

We already mentioned that Algorithms 2.1 — 2.4 are optimal. By this, we mean that there do
not exist algorithms where € is larger (as a function of ¢) than it is in these algorithms. We first
provide a proof of this in the case of Algorithm 2.1.

Theorem 2.6 Suppose that A is an (€, ¢)-algorithm in the random oracle model for Zero preimage.

Then
1 q
<l—(1—-——) .
= ( M)

Proof. The proof is by induction on ¢. Suppose first that ¢ = 1. For any # € X, it holds that

M-
Therefore € <1 — (1 —1/M)? when ¢ = 1.

Now, assume that the bound holds when ¢ = k — 1. Consider any algorithm, say A, in which
g = k. Suppose that A computes f(z1),..., f(z) in that order. Let p denote the probability that
f(z;) = 0 for some i < k — 1. By the induction hypothesis, we have that p < 1 — (1 — 1/M)*1.

Now consider the kth query, which is to evaluate f(xy). It follows from Proposition 2.1 that
Pr[f(zx) = 0] = 1/M. The probability that f(z;) = 0 for some ¢ < k is therefore

Jlop o (M-o1Y 1
PT oy T P\ T M

< [1-(i-% T (Mn + L
- M M M
=1 1 LY
= )
By induction, the desired bound is proven. 0



Algorithms 2.2 and 2.3 can be proven to be optimal using similar arguments. Therefore we
proceed directly to Algorithm 2.4.

Theorem 2.7 Suppose that A is an (€, q)-algorithm in the random oracle model for Collision, where

q > 2. Then
el M-1 M-2\ (M-qg+1
- M M M '

Proof. The proof is by induction on ¢. Suppose first that ¢ = 2. In this case, ¢ = 1/M from
Proposition 2.1, and the stated bound holds.

Now, assume that the bound holds when ¢ = k — 1. Consider any algorithm, say A, in which
g = k. Suppose that A computes f(x1),..., f(zx) in that order. For 1 < i < ¢, let E; denote the
event “f(z;) € {f(z1),..., f(zi=1)}". Let p denote the probability that f(z;) = f(z;) for some ¢
and j with 1 <7< j <k —1. Then

]_—p:PI'[El/\Ez/\.../\Ek_l].

Further, by the induction hypothesis, we have that

va1-(07) () - ().

We are interested in the probability

1—Pr[Ei ANEy A ... A EY]
= ]_—PI'[El/\Ez/\.../\Ek_l] XPF[Ek|E1AE2A...AEk_1]

M-k+1
= 1-(1-p) (T—I_) from Proposition 2.1

_ (M1 ko
=P M M

< (1_ M-1 M -2 M-((k-1)+1 M-k+1 _I_k—l
- M M M M M
_ M-1 M -2 M-k+1
N M M M ’
The result follows by induction. 0

Remark. For any algorithm for Collision, we have that € = 0 whenever ¢ = 1.

3 Reductions among the Problems

A hash function f for which Preimage is difficult to solve is often termed preimage resistant (or one-
way). Similarly, f is second preimage resistant if Second preimage is hard to solve, etc. The pitfall
with this type of terminology is that the phrase “hard to solve” cannot be made mathematically
rigourous for a fixed hash function. (One can talk about infeasibility of problems in an asymptotic
context, but this requires having an infinite “keyed” family of functions.)

We prefer to instead study reductions among the different problems. We can study reductions
of problems without worrying about having to define terms such as “hard to solve” or “infeasible”,
even if the hash function under consideration is fixed. If we can polynomially reduce a problem P



to a problem Q, then we know that solving P is no harder than solving problem Q. Consequently, if
we believe that solving P is “infeasible”, then we would also believe that solving Q is “infeasible”.

The main question we investigate in this section is whether a preimage resistant hash function
is collision resistant. Of course, this is rephrased in terms of reductions by asking if Collision can be
reduced to Preimage. In other words, assuming we have an algorithm (or oracle) to solve Preimage,
can we solve Collision? This is a particularly interesting question, because the answer can be either
positive or negative, depending on the assumptions that are made about the oracle for Preimage.

We will study possible Turing reductions assuming that a hash function f is fixed. The reduc-
tions are required to be black-box reductions that treat the hash function f as an oracle, and the
success probability € is computed over random coin flips in the algorithms in question, as well as
random choices of the input  or y (as appropriate).

Our first comment is that there does not seem to be any obvious reduction from Zero preimage
to Preimage or vice versa. Intuitively, it does not seem that being able to invert (with respect to
a given hash function f) a random y should be related in any meaningful way to being able to
invert the specific value y = 0. It is conceivable that inverting y = 0 could be easier or harder than
inverting a random y.

The most obvious reduction is from Collision to Second preimage. Suppose that FindSecond-
Preimage is any (e, ¢q) algorithm for Second preimage. If we choose # € X at random and run
FindSecondPreimage(z), then we obtain a collision with probability e. Thus we obtain the follow-
ing result.

Theorem 3.1 Let f: X — Y be any hash function. If there exists an (¢, q) algorithm that solves
Second preimage for the hash function f, there exists an (¢, q) algorithm that solves Collision for the
hash function f.

It is noted in [3] that it is not necessarily the case that it is always possible to reduce Collision
to Zero preimage. For example, it might happen that 0 € UP(f) for a given hash function f. In
this situation, knowing the (unique) preimage of 0 is not of any obvious help in finding a collision.
However, as pointed out in [3], an algorithm that succeeds in finding two different preimages of 0
automatically solves Collision.

3.1 Reducing Collision to Preimage

As mentioned above, the most interesting questions are those concerning reductions from Collision
to Preimage. The obvious method to attempt to construct a collision by using a preimage-finding
algorithm is presented in Algorithm 3.1.

Algorithm 3.1: CollisionToPreimage( f)

external FindPreimage

choose x € X uniformly at random

y < fla)

if (FindPreimage(f,y) = ') and (2’ # z) and (f(2') = y)
then return (z,2’)
else return (failure)

For algorithms solving Preimage with probability € = 1, the following is proven in [9, Theorem
7.1].



Theorem 3.2 Let f: X — Y be any hash function. If there exists a (1, q) algorithm that solves
Preimage for the hash function f, then Algorithm 3.1 is a (1 — M/N,q+ 2) algorithm that solves
Collision for the hash function f.

We prove a more general result now. For all y € Y, let

Py = Pr[f(x) = y]7
where # € X is chosen uniformly at random. It is clear that

U]}

N

Further, suppose that FindPreimage is an (¢, ¢) algorithm that solves Preimage with respect to the
fixed hash function f. For each y € Y, let

¢y = Pr[FindPreimage(y) succeeds].

Since y € Y is chosen randomly and FindPreimage has success probability equal to €, it must be

the case that
Z qy = Me.
yey

Note also that ¢, = 0 if p, = 0.
We can now determine the success probabilty of Algorithm 3.1.

Theorem 3.3 Let f : X — Y be a hash function, and suppose that FindPreimage is an (¢, q)
algorithm that solves Preimage for the hash function f. Suppose that p, and g, (y € Y ) are as
defined above. Then Algorithm 8.1 is an (€/,q + 2) algorithm that solves Collision for the hash

function f, where
Me
6/ = Z qypy — W
yeyYy

Proof. For all x € X, define o ~ 2’ if f(z) = f(a'). Clearly ~ is an equivalence relation. Define

[2] ={2" € X : f(2") = f(2)}

for all z € X, and define
C=A{[z] 2 € X}.

C' is a partition of X because ~ is an equivalence relation; the subsets in C are the equivalence
classes under ~. For every ¢ € C, define y, to be the unique element of Y such that f(z) = y. for
all z € c.

Suppose that 2 € X is chosen uniformly at random, and f(z) = y. Then it is easy to see that

Pr[FindPreimage(f,y)) = z] = qu—y”

10



Now we calculate the success probability € as follows:

g izqf(x)d[w”_l)

N2 ]
1 le] =1
- ﬁz E qu(x)
ceC rEc
1
= Tl -1
ceC
1
- WZch(prc_l)
ceC
1
= ﬁZ%(pr_l)
yey
q
- Tan- XY
yey yey
Me
— Y-
yey

0

We look at some consequences of the above result. First, we observe that Theorem 3.2 is an
immediate corollary of Theorem 3.3, obtained by letting ¢, = 1 for all y € Y. More generally, if
gy = € for all y (as is typically required in a Las Vegas algorithm), then we obtain the following
corollary.

Corollary 3.4 Let f : X — Y be a hash function, and suppose that FindPreimage is an (€, q)
algorithm that solves Preimage for the hash function f with probability € for every y € Y. Then
Algorithm 8.1 is an (€', g+ 2) algorithm that solves Collision for the hash function f, where

6/:€<1—%>.
N

On the other hand, it is possible to produce “pathological” examples where ¢ = 0 (see, for
example, [6, p. 330]). We present a class of such examples now. Informally, the underlying idea is
that, in a worst-case scenario, we might have a preimage-finding algorithm that is successful if and
only if y € UP(f). In this case, Algorithm 3.1 will never find a collision! In terms of the ¢,’s, this

is described as follows:
_{ 1 ify e UP(f)

%=1 0 otherwise.

Denote p = |[UP(f)|; then € = u/M. However, it is easily seen using Theorem 3.3 that ¢ = 0 in
this situation.

It is clear that the “problem” is caused by elements that have a unique preimage under f. The
following general bound can be proven about this reduction, given a specified value for the quantity

[UP(f)]-

Corollary 3.5 Let f : X — Y be a surjective hash function, and suppose that FindPreimage is
an (€,q) algorithm that solves Preimage for the hash function f, where Me is an integer. Denote

11



w=[UP(f)|. Then Algorithm 3.1 is an (¢', q+2) algorithm that solves Collision for the hash function
f, where

Me —
4> T H
- N
Proof. We have that e = j/M, where j is a positive integer. Without loss of generality, suppose

that Y = {1,...,M} and 0 < p; < ... < py. Note that p, = a,/N, where q, is a positive integer
forall 1 <y <M.

Given the distribution pq, ..., pap, the quantity
Me 7
r_ il _ L
= - S g L
yey yey

is minimized by defining the ¢;’s as follows:

_J 1 1<y <y
YTl 0 ifj+1<y< M.

With the above choice of ¢,’s, we have

J .
J
6/ = Zpy — N
y=1

Now, assume that pu < j (otherwise, the bound is negative and the result holds trivially). Then it
is easily seen that ¢ is minimized by defining the p,’s (for 1 < y < j) as follows:

[N f1<y<y
=V oyN ifpr1<y <y

With the above choice of p,’s, we have

g2 - - Me—p
N N
0

Remark. Similar results can be proven without assuming that Me is an integer. They are just a
bit messier to write down.

The above result is quite weak, but it is essentially the strongest result that can be proved
under the given assumptions. One way to obtain a tighter bound on the success probability of
the reduction is to make the stronger assumption that the cardinalities of the preimages f~'(y)
(y € Y) are all roughly the same size (i.e., f is “close to” uniform).

Corollary 8.6 Let f : X — Y be a hash function, and suppose that FindPreimage is an (€, q)
algorithm that solves Preimage for the hash function f. Let § > 0 and suppose that

S N(1-39)
(W)l > M

for every y € Y. Then Algorithm 3.1 is an (€',q+ 2) algorithm that solves Collision for the hash

function f, where
€>ell-6 M
— N .

12



Proof. We have that p, > (1 — §)/M for all y. Therefore, it holds that

Remark. In the case where f is uniform, we have § = 0 and then

€ >ell %
p— N .

To summarize the results of this section, we see that it is possible to obtain a “good” reduction
from Collision to Preimage for a given hash function f : X — Y, provided that either of the following
two assumptions are satisfied:

e the hash function is “close to uniform”
e the oracle for Preimage has a “good” success probability € for every possible input y € Y.

Neither of these assumptions are entirely satisfactory. The first assumption seems to be impos-
sible to verify for hash functions used in practice; the second assumption ignores the possibility
that there could exist practical preimage-finding algorithms that are successful on some (but not
all) inputs.

4 The Merkle-Damgard Construction

The Merkle-Damgard construction (see [7, 5]) is a method of extending a finite hash function (i.e.,
a compression function) to one with infinite domain. We review this method, as presented in [9,
§7.5]. Suppose that f:{0,1}™ — {0, 1}"is a hash function, where m > t+2. The Merkle-Damgérd
construction produces a related function, built from f, which is denoted f*. The function

U, {01} — {0, 1}

We will think of elements of U2 {0,1}% as bit-strings. |z| denotes the length of = (i.e., the
number of bits in ), and z || y denotes the concatenation of the bit-strings # and y. Suppose
|z| = n > m. We can express & as the concatenation

r=ar || a2 - || Tks

where
|x1|: |$2| = ...= |xk_1|:m—t—1

and
|zl =m—t—1—4d,

where 0 < d < m —t — 2. Hence, we have that

= el

We define f*(z) to be the output of Algorithm 4.1.

13



Algorithm 4.1: Merkle-Damgard(f,z)

external f
comment f:{0,1}™ — {0,1}!, where m > ¢+ 2
n ¢« |z
k< [n/(m—-t-1)]
d<n—k(m—-t-1)
fori+—1to k-1

do u; + x;
yk 21 || 07
Yr+1 < the binary representation of d
comment yi1q should be padded on the left with zeroes so that |yg41| =m —t —1
21 0 |y
g1+ f(=1)
for 1 «+ 1to k

do {Zz+1 — i 1 1] yisa

giv1 < fzig1)

return (gr41)

Denote
y(@) =y lly2 Il - || Yrtr

Observe that gy is formed from 2z by padding on the right with d zeroes, so that all the blocks y;
(1 < i< k) are of length m — ¢ — 1. Also, as noted in Algorithm 4.1, yr4; is padded on the left
with zeroes so that |ygt1| =m —t — 1.

In order to hash x using Algorithm 4.1, we first construct y(z), and then “process” the blocks
YLy Y2y - - - Ykt1 10 @ particular fashion. It is important that y(z) # y(2') whenever z # 2’. In fact,
Yk+1 is defined in such a way that the mapping = — y(2) will be an injection.

The domain of f*, namely U2 {0, 1}, is an infinite set. We now consider Problems 5 and 6,
in which (an upper bound on) the length of the desired output is specified as a problem parameter.
Note that these two problems are given the hash function f as an input parameter, and are required
to find outputs relative to the hash function f*.

Problem 5: Restricted length MD preimage

Instance: A hash function f : {0,1}™ — {0,1}!, where m > t + 2, an element y €
{0,1}!, and an integer £ > m.

Find: x € U'_, {0,1} such that f*(z) =y.

Problem 6: Restricted length MD collision

Instance: A hash function f : {0,1}™ — {0,1}!, where m > t + 2, and an integer
£>m.

Find: z, 2’ € U'_, {0,1} such that 2’ # z and f*(2) = f*(z).

We will designate an algorithm solving Problem 5 or 6 as an (e, ¢, () algorithm, where the
parameters have the obvious meanings. Note that £ could be fixed or variable, and € and ¢ could
depend on /(.

14



We informally describe a reduction from Restricted length MD collision to Collision. This reduc-
tion shows that an algorithm that finds collisions in f* can be used as an oracle to find collisions

in f.

The main steps of the reduction are as follows:

1. Given f and /, run a hypothetical (e, ¢, {) algorithm for Restricted length MD collision on the
instance defined by f and £. With probability at least ¢, it holds that the output of this
algorithm is a pair z, 2, where |z| < {, [2'| < € and f*(x) = f*(a').

2. If the output of the previous step is a pair x, 2, where |2| < £ and |2'| < ¢, then compute

f*(x) = Merkle-Damgard( f, z)

and

f*(2') = Merkle-Damgard( f, z').
Keep track of the g-values and z-values that are computed, and denote them by g1, ..., gx+1,
21y oy Zht1y 915 Gpoyq and 21, ...z, tespectively. With probability at least e, it holds

that gx11 = g,’cl_l_l.

3. If gpy1 = g,’c,_l_1 holds in the previous step, then with probability at least €, it must be the
case that ggy1-; = g,;,+1_i and zgy1-; # Z]/c’—l—l—i for some integer ¢ > 0 (e.g., see the proof of
[9, Theorem 7.3]). If this occurs, then we obtain a collision for f.

Note that the above reduction requires at most

2k +1) =2 Ver—_t_ﬂ

m—t-—1

applications of f, in addition to the (at most) ¢ applications of f required by the oracle. Therefore
the above discussion establishes the following result.

Theorem 4.1 Suppose f:{0,1}™ — {0, 1} is any hash function, where m > t + 2. If there is an
(€, q,{) algorithm that solves Restricted length MD collision for the hash function f, then there is an
(e,q+2[(L+m—t—1)/(m—1t—1)],{) algorithm that solves Collision for the hash function f.

It is easy to see that a similar result holds for Problem 5. Note that, if f*(z) = y, then
f(zk41) = y. Given a solution z to Restricted length MD preimage with input f,y, we can easily
construct a solution to Preimage with input f,y. We have the following.

Theorem 4.2 Suppose f :{0,1}™ — {0, 1} is any hash function, where m > t + 2. If there is an
(€,q,0) algorithm that solves Restricted length MD preimage for the hash function f, then there is
an (,q+[(l+m—t—1)/(m —t—1)],{) algorithm that solves Preimage for the hash function f.

As a result of the above-described reductions, we have shown that f* is collision resistant and
preimage resistant provided that f is. The fact that it is apparently necessary to inlcude preimage
resistance as a security assumption for f (as discussed in the last section) does not create any
difficulties when we extend f to f*.
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5 Conclusion

We suggest that it is best to require both collision resistance and preimage resistance as necessary
properties for a hash function to be considered secure, due to the lack of a completely satisfactory
reduction from the problem of finding collsions to the problem of finding preimages.
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