
Some observations on the theory of
ryptographi
 hash fun
tions

D.R. Stinson

Department of Combinatori
s and Optimization

University of Waterloo

Waterloo Ontario, N2L 3G1, Canada

dstinson�uwaterloo.
a

Mar
h 2, 2001

Abstra
t

In this paper, we study several issues related to the notion of \se
ure" hash fun
tions.

Several ne
essary
onditions are
onsidered, as well as a popular suÆ
ient
ondition (the so-

alled random ora
le model). We study the se
urity of various problems that are motivated

by the notion of a se
ure hash fun
tion. These problems are analyzed in the random ora
le

model, and we prove that the obvious trivial algorithms are optimal. As well, we look
losely

at redu
tions between various problems. In parti
ular, we
onsider the important question

\does preimage resistan
e imply
ollision resistan
e?". Finally, we study the relationship of the

se
urity of hash fun
tions built using the Merkle-Damg�ard
onstru
tion to the se
urity of the

underlying
ompression fun
tion.

1 Introdu
tion

Hash fun
tions are of fundamental importan
e in
ryptographi
 proto
ols (for a re
ent survey, see

Preneel [8℄). Se
urity of hash fun
tions has been
onsidered in many papers, but it is still not

ompletely
lear what it means for a
ryptographi
 hash fun
tion to be \se
ure". The notion of a

se
ure hash fun
tion is
losely tied to the most important appli
ation of hash fun
tions, namely,

signature s
hemes. In this regard, several properties of hash fun
tions are
learly ne
essary in

order for it to be
onsidered se
ure. It is generally a

epted that a se
ure hash fun
tion should

be one-way (i.e., preimage resistant), se
ond preimage resistant and
ollision resistant. There are

additional properties that may be ne
essary when a hash fun
tion is used in
onjun
tion with

a parti
ular signature s
heme. A re
ently observed example is that of zero-resistan
e, whi
h is a

property required of a hash fun
tion used in the Digital Signature Algorithm (DSA) and the Ellipti

Curve Digital Signature Algorithm (ECDSA) if these s
hemes are to be se
ure (see [3℄).

On the other hand, there is a widely used idealized model in whi
h proto
ols using hash fun
tions

an be proven se
ure. This is the random ora
le model, whi
h was introdu
ed by Bellare and

Rogaway in [1℄. In this model, a hash fun
tion is modelled as a random fun
tion and an adversary

is only permitted ora
le a

ess to the fun
tion. Clearly these are very strong assumptions { they

are so strong, in fa
t, that it seems that a random ora
le
annot realisti
ally be implemented

in pra
ti
e. Nevertheless, the random ora
le model is a very useful and \
lean" mathemati
al

model that permits formal se
urity proofs of proto
ols to be given. We dis
uss these issues more

thoroughly in Se
tion 1.1.

There is a
onsiderable gap between the above-mentioned ne
essary and suÆ
ient se
urity

onditions for hash fun
tions, and it is
ertainly an interesting problem to try and
lose these

1

gaps. Progress along these lines has re
ently been reported in [3℄, where some se
urity proofs for

ECDSA are presented in the generi
 group model. In this model, it
an be shown that there is a

mu
h smaller gap between the ne
essary and suÆ
ient
onditions imposed on hash fun
tions for

the ECDSA signature s
heme to be proven se
ure.

We give some de�nitions of hash fun
tions in Se
tion 1.2. Four problems relevant to the study

of hash fun
tions are presented in Se
tion 1.3, and motivation for studying these problems is brie
y

mentioned in Se
tion 1.4. In Se
tion 2, we study the se
urity of the four problems. These problems

are analyzed in the random ora
le model, and we prove that the obvious trivial algorithms are

optimal. We dis
uss redu
tions between the four problems in Se
tion 3. In parti
ular, we
onsider

the important question \does preimage resistan
e imply
ollision resistan
e?". In Se
tion 4, we

study the relationship of the se
urity of hash fun
tions built using the Merkle-Damg�ard
onstru
tion

to the se
urity of the underlying
ompression fun
tion.

1.1 The Random Ora
le Model

In this se
tion, we brie
y dis
uss the random ora
le model, and how proofs in this model should

be interpreted.

The following result from [2℄ is a typi
al example of the kind of thing that
an be proven in the

random ora
le model:

Full domain hash is se
ure against an adaptive
hosen message atta
k with respe
t to

existential forgeries in the random ora
le model, provided that it infeasible to invert a

trapdoor one-way permutation, f .

The proof is a
tually a redu
tion: given a hypotheti
al forging algorithm, say A, for full domain

hash (whi
h is a signature s
heme), that has some spe
i�ed probability of su

ess, say �, we
onstru
t

an inverting algorithm for f , whi
h inverts the fun
tion f on randomly
hosen inputs with some

spe
i�ed probability of su

ess, say �

0

. If �

0

is not too mu
h smaller than �, and we believe that it is

infeasible to invert f , then we have a
ontradi
tion, and we
on
lude that the hypothesized forging

algorithm
annot exist.

So far, this is all pretty standard, and not too diÆ
ult to follow. However, the proof is taking

pla
e in the \random ora
le model" whi
h means that some additional assumptions are being made

regarding the hash fun
tion being used, and the proof of se
urity is valid only if these assumptions

are valid.

The random ora
le model is usually des
ribed by saying that the hash fun
tion is a random

fun
tion. Of
ourse, when full domain hash is a
tually used in pra
ti
e, a parti
ular hash fun
tion

must be spe
i�ed, and so the assumption used in the random ora
le model is not valid. Indeed,

there is a
ertain \arti�
ial" proto
ol whi
h has been proven se
ure in the random ora
le model, but

whi
h be
omes inse
ure whenever the hash fun
tion used in the proto
ol is spe
i�ed (this is a result

of Canetti, Goldrei
h and Halevi [4℄). As a
onsequen
e, the random ora
le model is somewhat

ontroversial.

The
orre
t way to interpret a proof of se
urity for a proto
ol P in the random ora
le model is to

view it as a proof of se
urity against
ertain types of atta
ks on the proto
ol P. More pre
isely, the

proof shows that the proto
ol P is se
ure against what might be termed \hash-generi
" atta
ks. This

means that any atta
k whi
h treats the hash fun
tion as a random fun
tion will not be su

essful

(regardless of whether the hash fun
tion a
tually is a random fun
tion). In other words, it is better

to think of a proof in the random ora
le model as a proof in whi
h we make an assumption about

2

the atta
king algorithm rather than an assumption about the hash fun
tion (whi
h, as we already

mentioned,
annot be valid).

To summarize, a se
urity proof in the random ora
le model is pre
isely a proof of se
urity

against hash-generi
 algorithms. It is of
ourse possible that an algorithm
an break a proto
ol

for some parti
ular hash fun
tions (or even for all possible hash fun
tions) by somehow taking

advantage of how the hash fun
tion is
omputed. A proof in the random ora
le model is therefore

no more than plausible eviden
e of se
urity when the random ora
le is repla
ed by a parti
ular

hash fun
tion. This was the \thesis" proposed by Bellare and Rogaway when they introdu
ed the

random ora
le model in [1℄. In favour of this thesis, it should be noted that no pra
ti
al proto
ol

proven se
ure in the random ora
le model has been broken when used with a \good" hash fun
tion,

su
h as SHA-1. On the other hand, the Canetti-Goldrei
h-Halevi result indi
ates that there is not

likely to be any proof that this thesis is always valid.

1.2 De�nitions of Hash Fun
tions

An (N;M) hash fun
tion is any fun
tion f : X ! Y , where X and Y are �nite sets with jX j = N

and jY j = M . (A hash fun
tion with �nite domain is also known as a
ompression fun
tion.) An

(N;M) hash family is a set F of fun
tions su
h that f : X ! Y for ea
h f 2 F , where jX j = N

and jY j = M . Usually we assume that N � 2M in the above de�nitions.

Let F

X;Y

denote the set of all fun
tions from X to Y . Clearly jF

X;Y

j = M

N

. Using this

notation, an (N;M) hash family is a subset of fun
tions F � F

X;Y

.

Suppose that jX j = N , jY j = M and M jN . A hash fun
tion f 2 F

X;Y

is said to be uniform if

jf

�1

(y)j = N=M for all y 2 Y .

Suppose that jX j = N and jY j = M . For any f 2 F

X;Y

, de�ne

UP(f) = fy 2 Y : jf

�1

(y)j = 1g:

UP(f)
onsists of all elements y 2 Y that have unique preimages with respe
t to f (\UP" is an

abbreviation for \unique preimage").

1.3 Four Problems

We de�ne four problems whi
h will be studied in the rest of the paper. In referen
e to Problem 1,

we assume that 0 2 Y .

Problem 1: Zero preimage

Instan
e: A hash fun
tion f : X ! Y .

Find: x 2 X su
h that f(x) = 0.

Problem 2: Preimage

Instan
e: A hash fun
tion f : X ! Y and an element y 2 Y .

Find: x 2 X su
h that f(x) = y.

3

Problem 3: Se
ond preimage

Instan
e: A hash fun
tion f : X ! Y and an element x 2 X .

Find: x

0

2 X su
h that x

0

6= x and f(x

0

) = f(x).

Problem 4: Collision

Instan
e: A hash fun
tion f : X ! Y .

Find: x; x

0

2 X su
h that x

0

6= x and f(x

0

) = f(x).

1.4 Hash fun
tions and signature s
hemes

In the usual \hash-then-sign" paradigm, a message is �rst hashed, and then the resulting message

digest is signed. In this
ontext, it is well-known that if an adversary
an �nd a solution to Se
ond

preimage or Collision (for the given f), then a signature on a new message
an be forged. Further,

a solution to Preimage
an lead to an atta
k on RSA. (For des
riptions of all these atta
ks, see [6,

p. 324℄.)

It seems to be less well known that atta
ks on
ertain signature s
hemes
an be
arried out if

a prespe
i�ed element (as opposed to a random element y 2 Y)
an be inverted with respe
t to a

given hash fun
tion f . It is shown in [3℄ that solving Zero preimage
an permit atta
ks on DSA

and ECDSA. We des
ribe this atta
k on the DSA, whi
h
an be
arried out if Zero preimage
an

be solved for the hash fun
tion being used (SHA-1, in the
ase of the Digital Signature Standard).

This atta
k provides an existential forgery with respe
t to a key-only atta
k.

Brie
y, the DSA requires a 512-bit prime, p, and a 160-bit prime, q su
h that qj(p�1). � 2Z

p

�

is an element of order q; a 2 f1; : : : ; q� 1g is
hosen randomly; and � = �

a

mod p. The publi
 key

is (p; q; �; �), and the value a is se
ret. f is any hash fun
tion taking on values in the set Z

q

.

A signature (r; s) 2Z

q

�Z

q

on a message m is valid if and only if the following DSA veri�
ation

algorithm returns the value \a

ept".

Algorithm 1.1: DSA-SignitureVeri�
ation(p; q; �; �; (r; s);m)

if (r = 0) or (s = 0)

then return (reje
t)

w s

�1

mod q

u

1

 wf(m) mod q

u

2

 wr mod q

v (�

u

1

�

u

2

mod p) mod q

if v = r

then return (a

ept)

else return (reje
t)

For the purposes of the atta
k, we assume that we know a value m su
h that f(m) = 0. In this

situation, it is not diÆ
ult to see that (r; s) is a valid signature on m, where

r = s = � mod q;

provided that � 6� 0 (mod q). This is easily seen as follows: In Algorithm 1.1, we will
ompute

u

1

= 0 and u

2

= 1. Then v = � mod q = r, so the signature is valid.

4

2 Algorithms in the Random Ora
le Model

In this se
tion, we
onsider the the
omplexity of the four problems de�ned in x1.3 in the random

ora
le model. To reiterate, this means that the following two assumptions are made:

1. f 2 F

X;Y

is a randomly
hosen fun
tion.

2. An algorithm is given only ora
le a

ess to f .

As a
onsequen
e of these two assumptions, it is obvious that the following independen
e prop-

erty holds:

Proposition 2.1 Suppose that f 2 F

X;Y

is
hosen randomly, and let X

0

� X. Suppose that the

values f(x) have been determined (by
onsulting an ora
le for f) if and only if x 2 X

0

. Then

Pr[f(x) = y℄ =

1

M

for all x 2 XnX

0

and all y 2 Y .

Proposition 2.1 is the key property used in proofs involving the random ora
le model.

We
onsider (�; q) randomized algorithms for the four problems de�ned in x1.3. The parameter

� denotes the probability that the algorithm
orre
tly solves the desired problem, and q denotes the

number of ora
le queries (i.e., evaluations of f) made by the the algorithm. (We are not in
luding

time as an expli
it parameter, though it would be straightforward to do so.)

We will perform average-
ase analyses of the algorithms. Averages will be
omputed over the

following sour
es of randomness:

� the random
oin tosses made by the algorithm

� the random
hoi
e of f 2 F

X;Y

� the random
hoi
e of x 2 X or y 2 Y , if spe
i�ed as part of the problem instan
e.

The main observation of this se
tion is that the trivial algorithms that evaluate f(x) for q values

of x 2 X are optimal in the model des
ribed above. In fa
t, the
omplexity is independent of the

hoi
e of the q values of x be
ause we are averaging over all fun
tions f 2 F

X;Y

.

We �rst
onsider an algorithm that attempts to solve Zero preimage by evaluating f at q points.

Algorithm 2.1: FindZeroPreimage(f; q)

hoose X

0

� X; jX

0

j = q

for ea
h x 2 X

0

do

�

if f(x) = 0

then return (x)

return (failure)

Theorem 2.2 For any X

0

� X with jX

0

j = q, the su

ess probability of Algorithm 2.1 is � =

1� (1� 1=M)

q

.

5

Proof. Let X

0

= fx

1

; : : : ; x

q

g. For 1 � i � q, let let E

i

denote the event \f(x

i

) = 0". It follows

from Proposition 2.1 that the E

i

's are independent events, and Pr[E

i

℄ = 1=M for all 1 � i � q.

Therefore, it holds that

Pr[E

1

_E

2

_ : : :_ E

q

℄ = 1�

�

1�

1

M

�

q

:

Algorithm 2.2: FindPreimage(f; y; q)

hoose X

0

� X; jX

0

j = q

for ea
h x 2 X

0

do

�

if f(x) = y

then return (x)

return (failure)

The su

ess probability of Algorithm 2.2, for any �xed y, is the same as that of Algorithm 2.1.

Therefore, the su

ess probability averaged over all y 2 Y is identi
al, too.

Theorem 2.3 For any X

0

� X with jX

0

j = q, the su

ess probability of Algorithm 2.2 is � =

1� (1� 1=M)

q

.

Algorithm 2.3: FindSe
ondPreimage(f; x; q)

y f(x)

hoose X

0

� Xnfxg; jX

0

j = q � 1

for ea
h x

0

2 X

0

do

�

if f(x

0

) = y

then return (x

0

)

return (failure)

The analysis of Algorithm 2.3 is similar to the two previous algorithms. The only di�eren
e is

that we require an \extra" appli
ation of f to
ompute y = f(x) for the input value x.

Theorem 2.4 For any X

0

� Xnfxg with jX

0

j = q � 1, the su

ess probability of Algorithm 2.3 is

� = 1� (1� 1=M)

q�1

.

Algorithm 2.4: FindCollision(f; q)

hoose X

0

� Xnfxg; jX

0

j = q

for ea
h x 2 X

0

do y

x

 f(x)

if y

x

= y

x

0

for some x

0

6= x

then return (x; x

0

)

else return (failure)

Algorithm 2.4 is analyzed using the standard \birthday paradox".

6

Theorem 2.5 For any X

0

� X with jX

0

j = q, the su

ess probability of Algorithm 2.4 is

� = 1�

�

M � 1

M

��

M � 2

M

�

� � �

�

M � q + 1

M

�

:

Proof. LetX

0

= fx

1

; : : : ; x

q

g. For 1 � i � q, let E

i

denote the event \f(x

i

) 62 ff(x

1

); : : : ; f(x

i�1

)g".

Using indu
tion, it follows from Proposition 2.1 that Pr[E

1

℄ = 1 and

Pr[E

i

jE

1

^ E

2

^ : : :^ E

i�i

℄ =

M � i+ 1

M

;

for 2 � i � q. Therefore, we have that

Pr[E

1

^E

2

^ : : :^ E

q

℄ =

�

M � 1

M

��

M � 2

M

�

� � �

�

M � q + 1

M

�

:

The result follows.

Remark. We note that the analyses of the four algorithms remain un
hanged if F

X;Y

is repla
ed by

any q-wise independent hash family. (A q-wise independent hash family is one in whi
h Proposition

2.1 is satis�ed for all sets X

0

with jX

0

j � q � 1.)

We already mentioned that Algorithms 2.1 { 2.4 are optimal. By this, we mean that there do

not exist algorithms where � is larger (as a fun
tion of q) than it is in these algorithms. We �rst

provide a proof of this in the
ase of Algorithm 2.1.

Theorem 2.6 Suppose that A is an (�; q)-algorithm in the random ora
le model for Zero preimage.

Then

� � 1�

�

1�

1

M

�

q

:

Proof. The proof is by indu
tion on q. Suppose �rst that q = 1. For any x 2 X , it holds that

Pr[f(x) = 0℄ =

1

M

:

Therefore � � 1� (1� 1=M)

q

when q = 1.

Now, assume that the bound holds when q = k � 1. Consider any algorithm, say A, in whi
h

q = k. Suppose that A
omputes f(x

1

); : : : ; f(x

k

) in that order. Let p denote the probability that

f(x

i

) = 0 for some i � k � 1. By the indu
tion hypothesis, we have that p � 1� (1� 1=M)

k�1

.

Now
onsider the kth query, whi
h is to evaluate f(x

k

). It follows from Proposition 2.1 that

Pr[f(x

k

) = 0℄ = 1=M . The probability that f(x

i

) = 0 for some i � k is therefore

p+

1� p

M

= p

�

M � 1

M

�

+

1

M

�

1�

�

1�

1

M

�

k�1

!

�

M � 1

M

�

+

1

M

= 1�

�

1�

1

M

�

k

:

By indu
tion, the desired bound is proven.

7

Algorithms 2.2 and 2.3
an be proven to be optimal using similar arguments. Therefore we

pro
eed dire
tly to Algorithm 2.4.

Theorem 2.7 Suppose that A is an (�; q)-algorithm in the random ora
le model for Collision, where

q � 2. Then

� � 1�

�

M � 1

M

��

M � 2

M

�

� � �

�

M � q + 1

M

�

:

Proof. The proof is by indu
tion on q. Suppose �rst that q = 2. In this
ase, � = 1=M from

Proposition 2.1, and the stated bound holds.

Now, assume that the bound holds when q = k � 1. Consider any algorithm, say A, in whi
h

q = k. Suppose that A
omputes f(x

1

); : : : ; f(x

k

) in that order. For 1 � i � q, let E

i

denote the

event \f(x

i

) 62 ff(x

1

); : : : ; f(x

i�1

)g". Let p denote the probability that f(x

i

) = f(x

j

) for some i

and j with 1 � i < j � k � 1. Then

1� p = Pr[E

1

^E

2

^ : : :^ E

k�1

℄:

Further, by the indu
tion hypothesis, we have that

p � 1�

�

M � 1

M

��

M � 2

M

�

� � �

�

M � (k � 1) + 1

M

�

:

We are interested in the probability

1�Pr[E

1

^E

2

^ : : :^E

k

℄

= 1� Pr[E

1

^ E

2

^ : : :^ E

k�1

℄�Pr[E

k

jE

1

^E

2

^ : : :^E

k�1

℄

= 1� (1� p)

�

M � k + 1

M

�

from Proposition 2.1

= p

�

M � k + 1

M

�

+

k � 1

M

�

�

1�

�

M � 1

M

��

M � 2

M

�

� � �

�

M � (k� 1) + 1

M

���

M � k + 1

M

�

+

k � 1

M

= 1�

�

M � 1

M

��

M � 2

M

�

� � �

�

M � k + 1

M

�

:

The result follows by indu
tion.

Remark. For any algorithm for Collision, we have that � = 0 whenever q = 1.

3 Redu
tions among the Problems

A hash fun
tion f for whi
h Preimage is diÆ
ult to solve is often termed preimage resistant (or one-

way). Similarly, f is se
ond preimage resistant if Se
ond preimage is hard to solve, et
. The pitfall

with this type of terminology is that the phrase \hard to solve"
annot be made mathemati
ally

rigourous for a �xed hash fun
tion. (One
an talk about infeasibility of problems in an asymptoti

ontext, but this requires having an in�nite \keyed" family of fun
tions.)

We prefer to instead study redu
tions among the di�erent problems. We
an study redu
tions

of problems without worrying about having to de�ne terms su
h as \hard to solve" or \infeasible",

even if the hash fun
tion under
onsideration is �xed. If we
an polynomially redu
e a problem P

8

to a problem Q, then we know that solving P is no harder than solving problem Q. Consequently, if

we believe that solving P is \infeasible", then we would also believe that solving Q is \infeasible".

The main question we investigate in this se
tion is whether a preimage resistant hash fun
tion

is
ollision resistant. Of
ourse, this is rephrased in terms of redu
tions by asking if Collision
an be

redu
ed to Preimage. In other words, assuming we have an algorithm (or ora
le) to solve Preimage,

an we solve Collision? This is a parti
ularly interesting question, be
ause the answer
an be either

positive or negative, depending on the assumptions that are made about the ora
le for Preimage.

We will study possible Turing redu
tions assuming that a hash fun
tion f is �xed. The redu
-

tions are required to be bla
k-box redu
tions that treat the hash fun
tion f as an ora
le, and the

su

ess probability � is
omputed over random
oin
ips in the algorithms in question, as well as

random
hoi
es of the input x or y (as appropriate).

Our �rst
omment is that there does not seem to be any obvious redu
tion from Zero preimage

to Preimage or vi
e versa. Intuitively, it does not seem that being able to invert (with respe
t to

a given hash fun
tion f) a random y should be related in any meaningful way to being able to

invert the spe
i�
 value y = 0. It is
on
eivable that inverting y = 0
ould be easier or harder than

inverting a random y.

The most obvious redu
tion is from Collision to Se
ond preimage. Suppose that FindSe
ond-

Preimage is any (�; q) algorithm for Se
ond preimage. If we
hoose x 2 X at random and run

FindSe
ondPreimage(x), then we obtain a
ollision with probability �. Thus we obtain the follow-

ing result.

Theorem 3.1 Let f : X ! Y be any hash fun
tion. If there exists an (�; q) algorithm that solves

Se
ond preimage for the hash fun
tion f , there exists an (�; q) algorithm that solves Collision for the

hash fun
tion f .

It is noted in [3℄ that it is not ne
essarily the
ase that it is always possible to redu
e Collision

to Zero preimage. For example, it might happen that 0 2 UP(f) for a given hash fun
tion f . In

this situation, knowing the (unique) preimage of 0 is not of any obvious help in �nding a
ollision.

However, as pointed out in [3℄, an algorithm that su

eeds in �nding two di�erent preimages of 0

automati
ally solves Collision.

3.1 Redu
ing Collision to Preimage

As mentioned above, the most interesting questions are those
on
erning redu
tions from Collision

to Preimage. The obvious method to attempt to
onstru
t a
ollision by using a preimage-�nding

algorithm is presented in Algorithm 3.1.

Algorithm 3.1: CollisionToPreimage(f)

external FindPreimage

hoose x 2 X uniformly at random

y f(x)

if (FindPreimage(f; y) = x

0

) and (x

0

6= x) and (f(x

0

) = y)

then return (x; x

0

)

else return (failure)

For algorithms solving Preimage with probability � = 1, the following is proven in [9, Theorem

7.1℄.

9

Theorem 3.2 Let f : X ! Y be any hash fun
tion. If there exists a (1; q) algorithm that solves

Preimage for the hash fun
tion f , then Algorithm 3.1 is a (1�M=N; q + 2) algorithm that solves

Collision for the hash fun
tion f .

We prove a more general result now. For all y 2 Y , let

p

y

= Pr[f(x) = y℄;

where x 2 X is
hosen uniformly at random. It is
lear that

p

y

=

jf

�1

(y)j

N

:

Further, suppose that FindPreimage is an (�; q) algorithm that solves Preimage with respe
t to the

�xed hash fun
tion f . For ea
h y 2 Y , let

q

y

= Pr[FindPreimage(y) su

eeds℄:

Sin
e y 2 Y is
hosen randomly and FindPreimage has su

ess probability equal to �, it must be

the
ase that

X

y2Y

q

y

= M�:

Note also that q

y

= 0 if p

y

= 0.

We
an now determine the su

ess probabilty of Algorithm 3.1.

Theorem 3.3 Let f : X ! Y be a hash fun
tion, and suppose that FindPreimage is an (�; q)

algorithm that solves Preimage for the hash fun
tion f . Suppose that p

y

and q

y

(y 2 Y) are as

de�ned above. Then Algorithm 3.1 is an (�

0

; q + 2) algorithm that solves Collision for the hash

fun
tion f , where

�

0

=

X

y2Y

q

y

p

y

�

M�

N

:

Proof. For all x 2 X , de�ne x � x

0

if f(x) = f(x

0

). Clearly � is an equivalen
e relation. De�ne

[x℄ = fx

0

2 X : f(x

0

) = f(x)g

for all x 2 X , and de�ne

C = f[x℄ : x 2 Xg:

C is a partition of X be
ause � is an equivalen
e relation; the subsets in C are the equivalen
e

lasses under �. For every
 2 C, de�ne y

to be the unique element of Y su
h that f(x) = y

for

all x 2
.

Suppose that x 2 X is
hosen uniformly at random, and f(x) = y. Then it is easy to see that

Pr[FindPreimage(f; y)) = x℄ =

q

y

j[x℄j

:

10

Now we
al
ulate the su

ess probability �

0

as follows:

�

0

=

1

N

X

x2X

q

f(x)

(j[x℄j � 1)

j[x℄j

=

1

N

X

2C

j
j � 1

j
j

X

x2

q

f(x)

=

1

N

X

2C

q

y

(j
j � 1)

=

1

N

X

2C

q

y

(Np

y

� 1)

=

1

N

X

y2Y

q

y

(Np

y

� 1)

=

X

y2Y

q

y

p

y

�

X

y2Y

q

y

N

=

X

y2Y

q

y

p

y

�

M�

N

:

We look at some
onsequen
es of the above result. First, we observe that Theorem 3.2 is an

immediate
orollary of Theorem 3.3, obtained by letting q

y

= 1 for all y 2 Y . More generally, if

q

y

= � for all y (as is typi
ally required in a Las Vegas algorithm), then we obtain the following

orollary.

Corollary 3.4 Let f : X ! Y be a hash fun
tion, and suppose that FindPreimage is an (�; q)

algorithm that solves Preimage for the hash fun
tion f with probability � for every y 2 Y . Then

Algorithm 3.1 is an (�

0

; q + 2) algorithm that solves Collision for the hash fun
tion f , where

�

0

= �

�

1�

M

N

�

:

On the other hand, it is possible to produ
e \pathologi
al" examples where �

0

= 0 (see, for

example, [6, p. 330℄). We present a
lass of su
h examples now. Informally, the underlying idea is

that, in a worst-
ase s
enario, we might have a preimage-�nding algorithm that is su

essful if and

only if y 2 UP(f). In this
ase, Algorithm 3.1 will never �nd a
ollision! In terms of the q

y

's, this

is des
ribed as follows:

q

y

=

�

1 if y 2 UP(f)

0 otherwise.

Denote � = jUP(f)j; then � = �=M . However, it is easily seen using Theorem 3.3 that �

0

= 0 in

this situation.

It is
lear that the \problem" is
aused by elements that have a unique preimage under f . The

following general bound
an be proven about this redu
tion, given a spe
i�ed value for the quantity

jUP(f)j.

Corollary 3.5 Let f : X ! Y be a surje
tive hash fun
tion, and suppose that FindPreimage is

an (�; q) algorithm that solves Preimage for the hash fun
tion f , where M� is an integer. Denote

11

� = jUP(f)j. Then Algorithm 3.1 is an (�

0

; q+2) algorithm that solves Collision for the hash fun
tion

f , where

�

0

�

M�� �

N

:

Proof. We have that � = j=M , where j is a positive integer. Without loss of generality, suppose

that Y = f1; : : : ;Mg and 0 < p

1

� : : : � p

M

. Note that p

y

= a

y

=N , where a

y

is a positive integer

for all 1 � y �M .

Given the distribution p

1

; : : : ; p

M

, the quantity

�

0

=

X

y2Y

q

y

p

y

�

M�

N

=

X

y2Y

q

y

p

y

�

j

N

is minimized by de�ning the q

i

's as follows:

q

y

=

�

1 if 1 � y � j

0 if j + 1 � y �M .

With the above
hoi
e of q

y

's, we have

�

0

=

j

X

y=1

p

y

�

j

N

:

Now, assume that � � j (otherwise, the bound is negative and the result holds trivially). Then it

is easily seen that �

0

is minimized by de�ning the p

y

's (for 1 � y � j) as follows:

p

y

=

�

1=N if 1 � y � �

2=N if � + 1 � y � j.

With the above
hoi
e of p

y

's, we have

�

0

=

� + 2(j � �)� j

N

=

M� � �

N

:

Remark. Similar results
an be proven without assuming that M� is an integer. They are just a

bit messier to write down.

The above result is quite weak, but it is essentially the strongest result that
an be proved

under the given assumptions. One way to obtain a tighter bound on the su

ess probability of

the redu
tion is to make the stronger assumption that the
ardinalities of the preimages f

�1

(y)

(y 2 Y) are all roughly the same size (i.e., f is \
lose to" uniform).

Corollary 3.6 Let f : X ! Y be a hash fun
tion, and suppose that FindPreimage is an (�; q)

algorithm that solves Preimage for the hash fun
tion f . Let Æ > 0 and suppose that

jf

�1

(y)j �

N(1� Æ)

M

for every y 2 Y . Then Algorithm 3.1 is an (�

0

; q + 2) algorithm that solves Collision for the hash

fun
tion f , where

�

0

� �

�

1� Æ �

M

N

�

:

12

Proof. We have that p

y

� (1� Æ)=M for all y. Therefore, it holds that

�

0

=

X

y2Y

q

y

p

y

�

M�

N

�

�

1� Æ

M

�

X

y2Y

q

y

�

M�

N

= �

�

1� Æ �

M

N

�

:

Remark. In the
ase where f is uniform, we have Æ = 0 and then

�

0

� �

�

1�

M

N

�

:

To summarize the results of this se
tion, we see that it is possible to obtain a \good" redu
tion

from Collision to Preimage for a given hash fun
tion f : X ! Y , provided that either of the following

two assumptions are satis�ed:

� the hash fun
tion is \
lose to uniform"

� the ora
le for Preimage has a \good" su

ess probability � for every possible input y 2 Y .

Neither of these assumptions are entirely satisfa
tory. The �rst assumption seems to be impos-

sible to verify for hash fun
tions used in pra
ti
e; the se
ond assumption ignores the possibility

that there
ould exist pra
ti
al preimage-�nding algorithms that are su

essful on some (but not

all) inputs.

4 The Merkle-Damg�ard Constru
tion

The Merkle-Damg�ard
onstru
tion (see [7, 5℄) is a method of extending a �nite hash fun
tion (i.e.,

a
ompression fun
tion) to one with in�nite domain. We review this method, as presented in [9,

x7.5℄. Suppose that f : f0; 1g

m

! f0; 1g

t

is a hash fun
tion, wherem � t+2. The Merkle-Damg�ard

onstru
tion produ
es a related fun
tion, built from f , whi
h is denoted f

�

. The fun
tion

f

�

: [

1

i=m

f0; 1g

i

! f0; 1g

t

:

We will think of elements of [

1

i=m

f0; 1g

i

as bit-strings. jxj denotes the length of x (i.e., the

number of bits in x), and x k y denotes the
on
atenation of the bit-strings x and y. Suppose

jxj = n > m. We
an express x as the
on
atenation

x = x

1

k x

2

k : : : k x

k

;

where

jx

1

j = jx

2

j = : : := jx

k�1

j = m� t� 1

and

jx

k

j = m� t � 1� d;

where 0 � d � m� t� 2. Hen
e, we have that

k =

�

n

m� t � 1

�

:

We de�ne f

�

(x) to be the output of Algorithm 4.1.

13

Algorithm 4.1: Merkle-Damgard(f; x)

external f

omment f : f0; 1g

m

! f0; 1g

t

, where m � t+ 2

n jxj

k dn=(m� t � 1)e

d n� k(m� t� 1)

for i 1 to k � 1

do u

i

 x

i

y

k

 x

k

k 0

d

y

k+1

 the binary representation of d

omment y

k+1

should be padded on the left with zeroes so that jy

k+1

j = m� t � 1

z

1

 0

t+1

k y

1

g

1

 f(z

1

)

for i 1 to k

do

�

z

i+1

 g

i

k 1 k y

i+1

g

i+1

 f(z

i+1

)

return (g

k+1

)

Denote

y(x) = y

1

k y

2

k : : : k y

k+1

:

Observe that y

k

is formed from x

k

by padding on the right with d zeroes, so that all the blo
ks y

i

(1 � i � k) are of length m � t � 1. Also, as noted in Algorithm 4.1, y

k+1

is padded on the left

with zeroes so that jy

k+1

j = m� t � 1.

In order to hash x using Algorithm 4.1, we �rst
onstru
t y(x), and then \pro
ess" the blo
ks

y

1

; y

2

; : : : ; y

k+1

in a parti
ular fashion. It is important that y(x) 6= y(x

0

) whenever x 6= x

0

. In fa
t,

y

k+1

is de�ned in su
h a way that the mapping x 7! y(x) will be an inje
tion.

The domain of f

�

, namely [

1

i=m

f0; 1g

i

, is an in�nite set. We now
onsider Problems 5 and 6,

in whi
h (an upper bound on) the length of the desired output is spe
i�ed as a problem parameter.

Note that these two problems are given the hash fun
tion f as an input parameter, and are required

to �nd outputs relative to the hash fun
tion f

�

.

Problem 5: Restri
ted length MD preimage

Instan
e: A hash fun
tion f : f0; 1g

m

! f0; 1g

t

, where m � t + 2, an element y 2

f0; 1g

t

, and an integer ` � m.

Find: x 2 [

`

i=m

f0; 1g

i

su
h that f

�

(x) = y.

Problem 6: Restri
ted length MD
ollision

Instan
e: A hash fun
tion f : f0; 1g

m

! f0; 1g

t

, where m � t + 2, and an integer

` � m.

Find: x; x

0

2 [

`

i=m

f0; 1g

i

su
h that x

0

6= x and f

�

(x

0

) = f

�

(x).

We will designate an algorithm solving Problem 5 or 6 as an (�; q; `) algorithm, where the

parameters have the obvious meanings. Note that `
ould be �xed or variable, and � and q
ould

depend on `.

14

We informally des
ribe a redu
tion from Restri
ted length MD
ollision to Collision. This redu
-

tion shows that an algorithm that �nds
ollisions in f

�

an be used as an ora
le to �nd
ollisions

in f .

The main steps of the redu
tion are as follows:

1. Given f and `, run a hypotheti
al (�; q; `) algorithm for Restri
ted length MD
ollision on the

instan
e de�ned by f and `. With probability at least �, it holds that the output of this

algorithm is a pair x; x

0

, where jxj � `, jx

0

j � ` and f

�

(x) = f

�

(x

0

).

2. If the output of the previous step is a pair x; x

0

, where jxj � ` and jx

0

j � `, then
ompute

f

�

(x) = Merkle-Damgard(f; x)

and

f

�

(x

0

) = Merkle-Damgard(f; x

0

):

Keep tra
k of the g-values and z-values that are
omputed, and denote them by g

1

; : : : ; g

k+1

,

z

1

; : : : ; z

k+1

, g

0

1

; : : :g

0

k

0

+1

and z

0

1

; : : :z

0

k

0

+1

respe
tively. With probability at least �, it holds

that g

k+1

= g

0

k

0

+1

.

3. If g

k+1

= g

0

k

0

+1

holds in the previous step, then with probability at least �, it must be the

ase that g

k+1�i

= g

0

k

0

+1�i

and z

k+1�i

6= z

0

k

0

+1�i

for some integer i � 0 (e.g., see the proof of

[9, Theorem 7.3℄). If this o

urs, then we obtain a
ollision for f .

Note that the above redu
tion requires at most

2(k + 1) = 2

�

`+m� t� 1

m� t� 1

�

appli
ations of f , in addition to the (at most) q appli
ations of f required by the ora
le. Therefore

the above dis
ussion establishes the following result.

Theorem 4.1 Suppose f : f0; 1g

m

! f0; 1g

t

is any hash fun
tion, where m � t+ 2. If there is an

(�; q; `) algorithm that solves Restri
ted length MD
ollision for the hash fun
tion f , then there is an

(�; q + 2d(`+m� t � 1)=(m� t� 1)e; `) algorithm that solves Collision for the hash fun
tion f .

It is easy to see that a similar result holds for Problem 5. Note that, if f

�

(x) = y, then

f(z

k+1

) = y. Given a solution x to Restri
ted length MD preimage with input f; y, we
an easily

onstru
t a solution to Preimage with input f; y. We have the following.

Theorem 4.2 Suppose f : f0; 1g

m

! f0; 1g

t

is any hash fun
tion, where m � t+ 2. If there is an

(�; q; `) algorithm that solves Restri
ted length MD preimage for the hash fun
tion f , then there is

an (�; q + d(`+m� t� 1)=(m� t� 1)e; `) algorithm that solves Preimage for the hash fun
tion f .

As a result of the above-des
ribed redu
tions, we have shown that f

�

is
ollision resistant and

preimage resistant provided that f is. The fa
t that it is apparently ne
essary to inl
ude preimage

resistan
e as a se
urity assumption for f (as dis
ussed in the last se
tion) does not
reate any

diÆ
ulties when we extend f to f

�

.

15

5 Con
lusion

We suggest that it is best to require both
ollision resistan
e and preimage resistan
e as ne
essary

properties for a hash fun
tion to be
onsidered se
ure, due to the la
k of a
ompletely satisfa
tory

redu
tion from the problem of �nding
ollsions to the problem of �nding preimages.

A
knowledgements

Thanks to Dan Brown for helpful
omments.

D.R. Stinson's resear
h is supported by NSERC grants IRC #216431-96 and RGPIN #203114-

98, and by the MITACS proje
t \Applied Cryptography".

Referen
es

[1℄ M. Bellare and P. Rogaway. Random ora
les are pra
ti
al: a paradigm for designing eÆ-

ient proto
ols. Pro
eedings of the First Annual Conferen
e on Computer and Communi
ations

Se
urity, ACM Press, 1993, pp. 62{73.

[2℄ M. Bellare and P. Rogaway. The exa
t se
urity of digital signatures: how to sign with RSA

and Rabin. Le
ture Notes in Computer S
ien
e, 1070 (1996), 399{416 (Advan
es in Cryptology

{ EUROCRYPT '96.)

[3℄ D. Brown. Con
rete lower bounds on the se
urity of ECDSA in the generi
 group model.

Preprint.

[4℄ R. Canetti, O. Goldrei
h and S. Halevi. The random ora
le methodology, revisited.

Pro
eedings of the 13th Annual ACM Symposium on Theory of Computing, ACM Press, 1998,

pp. 209{218.

[5℄ I.B. Damg

�

ard. A design prin
iple for hash fun
tions. Le
ture Notes in Computer S
ien
e,

435 (1990), 416{427 (Advan
es in Cryptology { CRYPTO '89.)

[6℄ A.J. Menezes, P.C. van Oors
hot and S.A. Vanstone. Handbook of Applied Cryptog-

raphy, CRC Press, 1997.

[7℄ R.C. Merkle. One way hash fun
tions and DES. Le
ture Notes in Computer S
ien
e, 435

(1990), 428{426 (Advan
es in Cryptology { CRYPTO '89.)

[8℄ B. Preneel. The state of
ryptographi
 hash fun
tions. Le
ture Notes in Computer S
ien
e,

1561 (1999), 158{182 (Le
tures on Data Se
urity: Modern Cryptology in Theory and Pra
ti
e).

[9℄ D.R. Stinson. Cryptography: Theory and Pra
ti
e, CRC Press, 1995.

16

