
Some observations on the theory of ryptographi hash funtions

D.R. Stinson

Department of Combinatoris and Optimization

University of Waterloo

Waterloo Ontario, N2L 3G1, Canada

dstinson�uwaterloo.a

Marh 2, 2001

Abstrat

In this paper, we study several issues related to the notion of \seure" hash funtions.

Several neessary onditions are onsidered, as well as a popular suÆient ondition (the so-

alled random orale model). We study the seurity of various problems that are motivated

by the notion of a seure hash funtion. These problems are analyzed in the random orale

model, and we prove that the obvious trivial algorithms are optimal. As well, we look losely

at redutions between various problems. In partiular, we onsider the important question

\does preimage resistane imply ollision resistane?". Finally, we study the relationship of the

seurity of hash funtions built using the Merkle-Damg�ard onstrution to the seurity of the

underlying ompression funtion.

1 Introdution

Hash funtions are of fundamental importane in ryptographi protools (for a reent survey, see

Preneel [8℄). Seurity of hash funtions has been onsidered in many papers, but it is still not

ompletely lear what it means for a ryptographi hash funtion to be \seure". The notion of a

seure hash funtion is losely tied to the most important appliation of hash funtions, namely,

signature shemes. In this regard, several properties of hash funtions are learly neessary in

order for it to be onsidered seure. It is generally aepted that a seure hash funtion should

be one-way (i.e., preimage resistant), seond preimage resistant and ollision resistant. There are

additional properties that may be neessary when a hash funtion is used in onjuntion with

a partiular signature sheme. A reently observed example is that of zero-resistane, whih is a

property required of a hash funtion used in the Digital Signature Algorithm (DSA) and the Ellipti

Curve Digital Signature Algorithm (ECDSA) if these shemes are to be seure (see [3℄).

On the other hand, there is a widely used idealized model in whih protools using hash funtions

an be proven seure. This is the random orale model, whih was introdued by Bellare and

Rogaway in [1℄. In this model, a hash funtion is modelled as a random funtion and an adversary

is only permitted orale aess to the funtion. Clearly these are very strong assumptions { they

are so strong, in fat, that it seems that a random orale annot realistially be implemented

in pratie. Nevertheless, the random orale model is a very useful and \lean" mathematial

model that permits formal seurity proofs of protools to be given. We disuss these issues more

thoroughly in Setion 1.1.

There is a onsiderable gap between the above-mentioned neessary and suÆient seurity

onditions for hash funtions, and it is ertainly an interesting problem to try and lose these

1

gaps. Progress along these lines has reently been reported in [3℄, where some seurity proofs for

ECDSA are presented in the generi group model. In this model, it an be shown that there is a

muh smaller gap between the neessary and suÆient onditions imposed on hash funtions for

the ECDSA signature sheme to be proven seure.

We give some de�nitions of hash funtions in Setion 1.2. Four problems relevant to the study

of hash funtions are presented in Setion 1.3, and motivation for studying these problems is briey

mentioned in Setion 1.4. In Setion 2, we study the seurity of the four problems. These problems

are analyzed in the random orale model, and we prove that the obvious trivial algorithms are

optimal. We disuss redutions between the four problems in Setion 3. In partiular, we onsider

the important question \does preimage resistane imply ollision resistane?". In Setion 4, we

study the relationship of the seurity of hash funtions built using the Merkle-Damg�ard onstrution

to the seurity of the underlying ompression funtion.

1.1 The Random Orale Model

In this setion, we briey disuss the random orale model, and how proofs in this model should

be interpreted.

The following result from [2℄ is a typial example of the kind of thing that an be proven in the

random orale model:

Full domain hash is seure against an adaptive hosen message attak with respet to

existential forgeries in the random orale model, provided that it infeasible to invert a

trapdoor one-way permutation, f .

The proof is atually a redution: given a hypothetial forging algorithm, say A, for full domain

hash (whih is a signature sheme), that has some spei�ed probability of suess, say �, we onstrut

an inverting algorithm for f , whih inverts the funtion f on randomly hosen inputs with some

spei�ed probability of suess, say �

0

. If �

0

is not too muh smaller than �, and we believe that it is

infeasible to invert f , then we have a ontradition, and we onlude that the hypothesized forging

algorithm annot exist.

So far, this is all pretty standard, and not too diÆult to follow. However, the proof is taking

plae in the \random orale model" whih means that some additional assumptions are being made

regarding the hash funtion being used, and the proof of seurity is valid only if these assumptions

are valid.

The random orale model is usually desribed by saying that the hash funtion is a random

funtion. Of ourse, when full domain hash is atually used in pratie, a partiular hash funtion

must be spei�ed, and so the assumption used in the random orale model is not valid. Indeed,

there is a ertain \arti�ial" protool whih has been proven seure in the random orale model, but

whih beomes inseure whenever the hash funtion used in the protool is spei�ed (this is a result

of Canetti, Goldreih and Halevi [4℄). As a onsequene, the random orale model is somewhat

ontroversial.

The orret way to interpret a proof of seurity for a protool P in the random orale model is to

view it as a proof of seurity against ertain types of attaks on the protool P. More preisely, the

proof shows that the protool P is seure against what might be termed \hash-generi" attaks. This

means that any attak whih treats the hash funtion as a random funtion will not be suessful

(regardless of whether the hash funtion atually is a random funtion). In other words, it is better

to think of a proof in the random orale model as a proof in whih we make an assumption about

2

the attaking algorithm rather than an assumption about the hash funtion (whih, as we already

mentioned, annot be valid).

To summarize, a seurity proof in the random orale model is preisely a proof of seurity

against hash-generi algorithms. It is of ourse possible that an algorithm an break a protool

for some partiular hash funtions (or even for all possible hash funtions) by somehow taking

advantage of how the hash funtion is omputed. A proof in the random orale model is therefore

no more than plausible evidene of seurity when the random orale is replaed by a partiular

hash funtion. This was the \thesis" proposed by Bellare and Rogaway when they introdued the

random orale model in [1℄. In favour of this thesis, it should be noted that no pratial protool

proven seure in the random orale model has been broken when used with a \good" hash funtion,

suh as SHA-1. On the other hand, the Canetti-Goldreih-Halevi result indiates that there is not

likely to be any proof that this thesis is always valid.

1.2 De�nitions of Hash Funtions

An (N;M) hash funtion is any funtion f : X ! Y , where X and Y are �nite sets with jX j = N

and jY j = M . (A hash funtion with �nite domain is also known as a ompression funtion.) An

(N;M) hash family is a set F of funtions suh that f : X ! Y for eah f 2 F , where jX j = N

and jY j = M . Usually we assume that N � 2M in the above de�nitions.

Let F

X;Y

denote the set of all funtions from X to Y . Clearly jF

X;Y

j = M

N

. Using this

notation, an (N;M) hash family is a subset of funtions F � F

X;Y

.

Suppose that jX j = N , jY j = M and M jN . A hash funtion f 2 F

X;Y

is said to be uniform if

jf

�1

(y)j = N=M for all y 2 Y .

Suppose that jX j = N and jY j = M . For any f 2 F

X;Y

, de�ne

UP(f) = fy 2 Y : jf

�1

(y)j = 1g:

UP(f) onsists of all elements y 2 Y that have unique preimages with respet to f (\UP" is an

abbreviation for \unique preimage").

1.3 Four Problems

We de�ne four problems whih will be studied in the rest of the paper. In referene to Problem 1,

we assume that 0 2 Y .

Problem 1: Zero preimage

Instane: A hash funtion f : X ! Y .

Find: x 2 X suh that f(x) = 0.

Problem 2: Preimage

Instane: A hash funtion f : X ! Y and an element y 2 Y .

Find: x 2 X suh that f(x) = y.

3

Problem 3: Seond preimage

Instane: A hash funtion f : X ! Y and an element x 2 X .

Find: x

0

2 X suh that x

0

6= x and f(x

0

) = f(x).

Problem 4: Collision

Instane: A hash funtion f : X ! Y .

Find: x; x

0

2 X suh that x

0

6= x and f(x

0

) = f(x).

1.4 Hash funtions and signature shemes

In the usual \hash-then-sign" paradigm, a message is �rst hashed, and then the resulting message

digest is signed. In this ontext, it is well-known that if an adversary an �nd a solution to Seond

preimage or Collision (for the given f), then a signature on a new message an be forged. Further,

a solution to Preimage an lead to an attak on RSA. (For desriptions of all these attaks, see [6,

p. 324℄.)

It seems to be less well known that attaks on ertain signature shemes an be arried out if

a prespei�ed element (as opposed to a random element y 2 Y) an be inverted with respet to a

given hash funtion f . It is shown in [3℄ that solving Zero preimage an permit attaks on DSA

and ECDSA. We desribe this attak on the DSA, whih an be arried out if Zero preimage an

be solved for the hash funtion being used (SHA-1, in the ase of the Digital Signature Standard).

This attak provides an existential forgery with respet to a key-only attak.

Briey, the DSA requires a 512-bit prime, p, and a 160-bit prime, q suh that qj(p�1). � 2Z

p

�

is an element of order q; a 2 f1; : : : ; q� 1g is hosen randomly; and � = �

a

mod p. The publi key

is (p; q; �; �), and the value a is seret. f is any hash funtion taking on values in the set Z

q

.

A signature (r; s) 2Z

q

�Z

q

on a message m is valid if and only if the following DSA veri�ation

algorithm returns the value \aept".

Algorithm 1.1: DSA-SignitureVeri�ation(p; q; �; �; (r; s);m)

if (r = 0) or (s = 0)

then return (rejet)

w s

�1

mod q

u

1

 wf(m) mod q

u

2

 wr mod q

v (�

u

1

�

u

2

mod p) mod q

if v = r

then return (aept)

else return (rejet)

For the purposes of the attak, we assume that we know a value m suh that f(m) = 0. In this

situation, it is not diÆult to see that (r; s) is a valid signature on m, where

r = s = � mod q;

provided that � 6� 0 (mod q). This is easily seen as follows: In Algorithm 1.1, we will ompute

u

1

= 0 and u

2

= 1. Then v = � mod q = r, so the signature is valid.

4

2 Algorithms in the Random Orale Model

In this setion, we onsider the the omplexity of the four problems de�ned in x1.3 in the random

orale model. To reiterate, this means that the following two assumptions are made:

1. f 2 F

X;Y

is a randomly hosen funtion.

2. An algorithm is given only orale aess to f .

As a onsequene of these two assumptions, it is obvious that the following independene prop-

erty holds:

Proposition 2.1 Suppose that f 2 F

X;Y

is hosen randomly, and let X

0

� X. Suppose that the

values f(x) have been determined (by onsulting an orale for f) if and only if x 2 X

0

. Then

Pr[f(x) = y℄ =

1

M

for all x 2 XnX

0

and all y 2 Y .

Proposition 2.1 is the key property used in proofs involving the random orale model.

We onsider (�; q) randomized algorithms for the four problems de�ned in x1.3. The parameter

� denotes the probability that the algorithm orretly solves the desired problem, and q denotes the

number of orale queries (i.e., evaluations of f) made by the the algorithm. (We are not inluding

time as an expliit parameter, though it would be straightforward to do so.)

We will perform average-ase analyses of the algorithms. Averages will be omputed over the

following soures of randomness:

� the random oin tosses made by the algorithm

� the random hoie of f 2 F

X;Y

� the random hoie of x 2 X or y 2 Y , if spei�ed as part of the problem instane.

The main observation of this setion is that the trivial algorithms that evaluate f(x) for q values

of x 2 X are optimal in the model desribed above. In fat, the omplexity is independent of the

hoie of the q values of x beause we are averaging over all funtions f 2 F

X;Y

.

We �rst onsider an algorithm that attempts to solve Zero preimage by evaluating f at q points.

Algorithm 2.1: FindZeroPreimage(f; q)

hoose X

0

� X; jX

0

j = q

for eah x 2 X

0

do

�

if f(x) = 0

then return (x)

return (failure)

Theorem 2.2 For any X

0

� X with jX

0

j = q, the suess probability of Algorithm 2.1 is � =

1� (1� 1=M)

q

.

5

Proof. Let X

0

= fx

1

; : : : ; x

q

g. For 1 � i � q, let let E

i

denote the event \f(x

i

) = 0". It follows

from Proposition 2.1 that the E

i

's are independent events, and Pr[E

i

℄ = 1=M for all 1 � i � q.

Therefore, it holds that

Pr[E

1

_E

2

_ : : :_ E

q

℄ = 1�

�

1�

1

M

�

q

:

Algorithm 2.2: FindPreimage(f; y; q)

hoose X

0

� X; jX

0

j = q

for eah x 2 X

0

do

�

if f(x) = y

then return (x)

return (failure)

The suess probability of Algorithm 2.2, for any �xed y, is the same as that of Algorithm 2.1.

Therefore, the suess probability averaged over all y 2 Y is idential, too.

Theorem 2.3 For any X

0

� X with jX

0

j = q, the suess probability of Algorithm 2.2 is � =

1� (1� 1=M)

q

.

Algorithm 2.3: FindSeondPreimage(f; x; q)

y f(x)

hoose X

0

� Xnfxg; jX

0

j = q � 1

for eah x

0

2 X

0

do

�

if f(x

0

) = y

then return (x

0

)

return (failure)

The analysis of Algorithm 2.3 is similar to the two previous algorithms. The only di�erene is

that we require an \extra" appliation of f to ompute y = f(x) for the input value x.

Theorem 2.4 For any X

0

� Xnfxg with jX

0

j = q � 1, the suess probability of Algorithm 2.3 is

� = 1� (1� 1=M)

q�1

.

Algorithm 2.4: FindCollision(f; q)

hoose X

0

� Xnfxg; jX

0

j = q

for eah x 2 X

0

do y

x

 f(x)

if y

x

= y

x

0

for some x

0

6= x

then return (x; x

0

)

else return (failure)

Algorithm 2.4 is analyzed using the standard \birthday paradox".

6

Theorem 2.5 For any X

0

� X with jX

0

j = q, the suess probability of Algorithm 2.4 is

� = 1�

�

M � 1

M

��

M � 2

M

�

� � �

�

M � q + 1

M

�

:

Proof. LetX

0

= fx

1

; : : : ; x

q

g. For 1 � i � q, let E

i

denote the event \f(x

i

) 62 ff(x

1

); : : : ; f(x

i�1

)g".

Using indution, it follows from Proposition 2.1 that Pr[E

1

℄ = 1 and

Pr[E

i

jE

1

^ E

2

^ : : :^ E

i�i

℄ =

M � i+ 1

M

;

for 2 � i � q. Therefore, we have that

Pr[E

1

^E

2

^ : : :^ E

q

℄ =

�

M � 1

M

��

M � 2

M

�

� � �

�

M � q + 1

M

�

:

The result follows.

Remark. We note that the analyses of the four algorithms remain unhanged if F

X;Y

is replaed by

any q-wise independent hash family. (A q-wise independent hash family is one in whih Proposition

2.1 is satis�ed for all sets X

0

with jX

0

j � q � 1.)

We already mentioned that Algorithms 2.1 { 2.4 are optimal. By this, we mean that there do

not exist algorithms where � is larger (as a funtion of q) than it is in these algorithms. We �rst

provide a proof of this in the ase of Algorithm 2.1.

Theorem 2.6 Suppose that A is an (�; q)-algorithm in the random orale model for Zero preimage.

Then

� � 1�

�

1�

1

M

�

q

:

Proof. The proof is by indution on q. Suppose �rst that q = 1. For any x 2 X , it holds that

Pr[f(x) = 0℄ =

1

M

:

Therefore � � 1� (1� 1=M)

q

when q = 1.

Now, assume that the bound holds when q = k � 1. Consider any algorithm, say A, in whih

q = k. Suppose that A omputes f(x

1

); : : : ; f(x

k

) in that order. Let p denote the probability that

f(x

i

) = 0 for some i � k � 1. By the indution hypothesis, we have that p � 1� (1� 1=M)

k�1

.

Now onsider the kth query, whih is to evaluate f(x

k

). It follows from Proposition 2.1 that

Pr[f(x

k

) = 0℄ = 1=M . The probability that f(x

i

) = 0 for some i � k is therefore

p+

1� p

M

= p

�

M � 1

M

�

+

1

M

�

1�

�

1�

1

M

�

k�1

!

�

M � 1

M

�

+

1

M

= 1�

�

1�

1

M

�

k

:

By indution, the desired bound is proven.

7

Algorithms 2.2 and 2.3 an be proven to be optimal using similar arguments. Therefore we

proeed diretly to Algorithm 2.4.

Theorem 2.7 Suppose that A is an (�; q)-algorithm in the random orale model for Collision, where

q � 2. Then

� � 1�

�

M � 1

M

��

M � 2

M

�

� � �

�

M � q + 1

M

�

:

Proof. The proof is by indution on q. Suppose �rst that q = 2. In this ase, � = 1=M from

Proposition 2.1, and the stated bound holds.

Now, assume that the bound holds when q = k � 1. Consider any algorithm, say A, in whih

q = k. Suppose that A omputes f(x

1

); : : : ; f(x

k

) in that order. For 1 � i � q, let E

i

denote the

event \f(x

i

) 62 ff(x

1

); : : : ; f(x

i�1

)g". Let p denote the probability that f(x

i

) = f(x

j

) for some i

and j with 1 � i < j � k � 1. Then

1� p = Pr[E

1

^E

2

^ : : :^ E

k�1

℄:

Further, by the indution hypothesis, we have that

p � 1�

�

M � 1

M

��

M � 2

M

�

� � �

�

M � (k � 1) + 1

M

�

:

We are interested in the probability

1�Pr[E

1

^E

2

^ : : :^E

k

℄

= 1� Pr[E

1

^ E

2

^ : : :^ E

k�1

℄�Pr[E

k

jE

1

^E

2

^ : : :^E

k�1

℄

= 1� (1� p)

�

M � k + 1

M

�

from Proposition 2.1

= p

�

M � k + 1

M

�

+

k � 1

M

�

�

1�

�

M � 1

M

��

M � 2

M

�

� � �

�

M � (k� 1) + 1

M

���

M � k + 1

M

�

+

k � 1

M

= 1�

�

M � 1

M

��

M � 2

M

�

� � �

�

M � k + 1

M

�

:

The result follows by indution.

Remark. For any algorithm for Collision, we have that � = 0 whenever q = 1.

3 Redutions among the Problems

A hash funtion f for whih Preimage is diÆult to solve is often termed preimage resistant (or one-

way). Similarly, f is seond preimage resistant if Seond preimage is hard to solve, et. The pitfall

with this type of terminology is that the phrase \hard to solve" annot be made mathematially

rigourous for a �xed hash funtion. (One an talk about infeasibility of problems in an asymptoti

ontext, but this requires having an in�nite \keyed" family of funtions.)

We prefer to instead study redutions among the di�erent problems. We an study redutions

of problems without worrying about having to de�ne terms suh as \hard to solve" or \infeasible",

even if the hash funtion under onsideration is �xed. If we an polynomially redue a problem P

8

to a problem Q, then we know that solving P is no harder than solving problem Q. Consequently, if

we believe that solving P is \infeasible", then we would also believe that solving Q is \infeasible".

The main question we investigate in this setion is whether a preimage resistant hash funtion

is ollision resistant. Of ourse, this is rephrased in terms of redutions by asking if Collision an be

redued to Preimage. In other words, assuming we have an algorithm (or orale) to solve Preimage,

an we solve Collision? This is a partiularly interesting question, beause the answer an be either

positive or negative, depending on the assumptions that are made about the orale for Preimage.

We will study possible Turing redutions assuming that a hash funtion f is �xed. The redu-

tions are required to be blak-box redutions that treat the hash funtion f as an orale, and the

suess probability � is omputed over random oin ips in the algorithms in question, as well as

random hoies of the input x or y (as appropriate).

Our �rst omment is that there does not seem to be any obvious redution from Zero preimage

to Preimage or vie versa. Intuitively, it does not seem that being able to invert (with respet to

a given hash funtion f) a random y should be related in any meaningful way to being able to

invert the spei� value y = 0. It is oneivable that inverting y = 0 ould be easier or harder than

inverting a random y.

The most obvious redution is from Collision to Seond preimage. Suppose that FindSeond-

Preimage is any (�; q) algorithm for Seond preimage. If we hoose x 2 X at random and run

FindSeondPreimage(x), then we obtain a ollision with probability �. Thus we obtain the follow-

ing result.

Theorem 3.1 Let f : X ! Y be any hash funtion. If there exists an (�; q) algorithm that solves

Seond preimage for the hash funtion f , there exists an (�; q) algorithm that solves Collision for the

hash funtion f .

It is noted in [3℄ that it is not neessarily the ase that it is always possible to redue Collision

to Zero preimage. For example, it might happen that 0 2 UP(f) for a given hash funtion f . In

this situation, knowing the (unique) preimage of 0 is not of any obvious help in �nding a ollision.

However, as pointed out in [3℄, an algorithm that sueeds in �nding two di�erent preimages of 0

automatially solves Collision.

3.1 Reduing Collision to Preimage

As mentioned above, the most interesting questions are those onerning redutions from Collision

to Preimage. The obvious method to attempt to onstrut a ollision by using a preimage-�nding

algorithm is presented in Algorithm 3.1.

Algorithm 3.1: CollisionToPreimage(f)

external FindPreimage

hoose x 2 X uniformly at random

y f(x)

if (FindPreimage(f; y) = x

0

) and (x

0

6= x) and (f(x

0

) = y)

then return (x; x

0

)

else return (failure)

For algorithms solving Preimage with probability � = 1, the following is proven in [9, Theorem

7.1℄.

9

Theorem 3.2 Let f : X ! Y be any hash funtion. If there exists a (1; q) algorithm that solves

Preimage for the hash funtion f , then Algorithm 3.1 is a (1�M=N; q + 2) algorithm that solves

Collision for the hash funtion f .

We prove a more general result now. For all y 2 Y , let

p

y

= Pr[f(x) = y℄;

where x 2 X is hosen uniformly at random. It is lear that

p

y

=

jf

�1

(y)j

N

:

Further, suppose that FindPreimage is an (�; q) algorithm that solves Preimage with respet to the

�xed hash funtion f . For eah y 2 Y , let

q

y

= Pr[FindPreimage(y) sueeds℄:

Sine y 2 Y is hosen randomly and FindPreimage has suess probability equal to �, it must be

the ase that

X

y2Y

q

y

= M�:

Note also that q

y

= 0 if p

y

= 0.

We an now determine the suess probabilty of Algorithm 3.1.

Theorem 3.3 Let f : X ! Y be a hash funtion, and suppose that FindPreimage is an (�; q)

algorithm that solves Preimage for the hash funtion f . Suppose that p

y

and q

y

(y 2 Y) are as

de�ned above. Then Algorithm 3.1 is an (�

0

; q + 2) algorithm that solves Collision for the hash

funtion f , where

�

0

=

X

y2Y

q

y

p

y

�

M�

N

:

Proof. For all x 2 X , de�ne x � x

0

if f(x) = f(x

0

). Clearly � is an equivalene relation. De�ne

[x℄ = fx

0

2 X : f(x

0

) = f(x)g

for all x 2 X , and de�ne

C = f[x℄ : x 2 Xg:

C is a partition of X beause � is an equivalene relation; the subsets in C are the equivalene

lasses under �. For every 2 C, de�ne y

to be the unique element of Y suh that f(x) = y

for

all x 2 .

Suppose that x 2 X is hosen uniformly at random, and f(x) = y. Then it is easy to see that

Pr[FindPreimage(f; y)) = x℄ =

q

y

j[x℄j

:

10

Now we alulate the suess probability �

0

as follows:

�

0

=

1

N

X

x2X

q

f(x)

(j[x℄j � 1)

j[x℄j

=

1

N

X

2C

jj � 1

jj

X

x2

q

f(x)

=

1

N

X

2C

q

y

(jj � 1)

=

1

N

X

2C

q

y

(Np

y

� 1)

=

1

N

X

y2Y

q

y

(Np

y

� 1)

=

X

y2Y

q

y

p

y

�

X

y2Y

q

y

N

=

X

y2Y

q

y

p

y

�

M�

N

:

We look at some onsequenes of the above result. First, we observe that Theorem 3.2 is an

immediate orollary of Theorem 3.3, obtained by letting q

y

= 1 for all y 2 Y . More generally, if

q

y

= � for all y (as is typially required in a Las Vegas algorithm), then we obtain the following

orollary.

Corollary 3.4 Let f : X ! Y be a hash funtion, and suppose that FindPreimage is an (�; q)

algorithm that solves Preimage for the hash funtion f with probability � for every y 2 Y . Then

Algorithm 3.1 is an (�

0

; q + 2) algorithm that solves Collision for the hash funtion f , where

�

0

= �

�

1�

M

N

�

:

On the other hand, it is possible to produe \pathologial" examples where �

0

= 0 (see, for

example, [6, p. 330℄). We present a lass of suh examples now. Informally, the underlying idea is

that, in a worst-ase senario, we might have a preimage-�nding algorithm that is suessful if and

only if y 2 UP(f). In this ase, Algorithm 3.1 will never �nd a ollision! In terms of the q

y

's, this

is desribed as follows:

q

y

=

�

1 if y 2 UP(f)

0 otherwise.

Denote � = jUP(f)j; then � = �=M . However, it is easily seen using Theorem 3.3 that �

0

= 0 in

this situation.

It is lear that the \problem" is aused by elements that have a unique preimage under f . The

following general bound an be proven about this redution, given a spei�ed value for the quantity

jUP(f)j.

Corollary 3.5 Let f : X ! Y be a surjetive hash funtion, and suppose that FindPreimage is

an (�; q) algorithm that solves Preimage for the hash funtion f , where M� is an integer. Denote

11

� = jUP(f)j. Then Algorithm 3.1 is an (�

0

; q+2) algorithm that solves Collision for the hash funtion

f , where

�

0

�

M�� �

N

:

Proof. We have that � = j=M , where j is a positive integer. Without loss of generality, suppose

that Y = f1; : : : ;Mg and 0 < p

1

� : : : � p

M

. Note that p

y

= a

y

=N , where a

y

is a positive integer

for all 1 � y �M .

Given the distribution p

1

; : : : ; p

M

, the quantity

�

0

=

X

y2Y

q

y

p

y

�

M�

N

=

X

y2Y

q

y

p

y

�

j

N

is minimized by de�ning the q

i

's as follows:

q

y

=

�

1 if 1 � y � j

0 if j + 1 � y �M .

With the above hoie of q

y

's, we have

�

0

=

j

X

y=1

p

y

�

j

N

:

Now, assume that � � j (otherwise, the bound is negative and the result holds trivially). Then it

is easily seen that �

0

is minimized by de�ning the p

y

's (for 1 � y � j) as follows:

p

y

=

�

1=N if 1 � y � �

2=N if � + 1 � y � j.

With the above hoie of p

y

's, we have

�

0

=

� + 2(j � �)� j

N

=

M� � �

N

:

Remark. Similar results an be proven without assuming that M� is an integer. They are just a

bit messier to write down.

The above result is quite weak, but it is essentially the strongest result that an be proved

under the given assumptions. One way to obtain a tighter bound on the suess probability of

the redution is to make the stronger assumption that the ardinalities of the preimages f

�1

(y)

(y 2 Y) are all roughly the same size (i.e., f is \lose to" uniform).

Corollary 3.6 Let f : X ! Y be a hash funtion, and suppose that FindPreimage is an (�; q)

algorithm that solves Preimage for the hash funtion f . Let Æ > 0 and suppose that

jf

�1

(y)j �

N(1� Æ)

M

for every y 2 Y . Then Algorithm 3.1 is an (�

0

; q + 2) algorithm that solves Collision for the hash

funtion f , where

�

0

� �

�

1� Æ �

M

N

�

:

12

Proof. We have that p

y

� (1� Æ)=M for all y. Therefore, it holds that

�

0

=

X

y2Y

q

y

p

y

�

M�

N

�

�

1� Æ

M

�

X

y2Y

q

y

�

M�

N

= �

�

1� Æ �

M

N

�

:

Remark. In the ase where f is uniform, we have Æ = 0 and then

�

0

� �

�

1�

M

N

�

:

To summarize the results of this setion, we see that it is possible to obtain a \good" redution

from Collision to Preimage for a given hash funtion f : X ! Y , provided that either of the following

two assumptions are satis�ed:

� the hash funtion is \lose to uniform"

� the orale for Preimage has a \good" suess probability � for every possible input y 2 Y .

Neither of these assumptions are entirely satisfatory. The �rst assumption seems to be impos-

sible to verify for hash funtions used in pratie; the seond assumption ignores the possibility

that there ould exist pratial preimage-�nding algorithms that are suessful on some (but not

all) inputs.

4 The Merkle-Damg�ard Constrution

The Merkle-Damg�ard onstrution (see [7, 5℄) is a method of extending a �nite hash funtion (i.e.,

a ompression funtion) to one with in�nite domain. We review this method, as presented in [9,

x7.5℄. Suppose that f : f0; 1g

m

! f0; 1g

t

is a hash funtion, wherem � t+2. The Merkle-Damg�ard

onstrution produes a related funtion, built from f , whih is denoted f

�

. The funtion

f

�

: [

1

i=m

f0; 1g

i

! f0; 1g

t

:

We will think of elements of [

1

i=m

f0; 1g

i

as bit-strings. jxj denotes the length of x (i.e., the

number of bits in x), and x k y denotes the onatenation of the bit-strings x and y. Suppose

jxj = n > m. We an express x as the onatenation

x = x

1

k x

2

k : : : k x

k

;

where

jx

1

j = jx

2

j = : : := jx

k�1

j = m� t� 1

and

jx

k

j = m� t � 1� d;

where 0 � d � m� t� 2. Hene, we have that

k =

�

n

m� t � 1

�

:

We de�ne f

�

(x) to be the output of Algorithm 4.1.

13

Algorithm 4.1: Merkle-Damgard(f; x)

external f

omment f : f0; 1g

m

! f0; 1g

t

, where m � t+ 2

n jxj

k dn=(m� t � 1)e

d n� k(m� t� 1)

for i 1 to k � 1

do u

i

 x

i

y

k

 x

k

k 0

d

y

k+1

 the binary representation of d

omment y

k+1

should be padded on the left with zeroes so that jy

k+1

j = m� t � 1

z

1

 0

t+1

k y

1

g

1

 f(z

1

)

for i 1 to k

do

�

z

i+1

 g

i

k 1 k y

i+1

g

i+1

 f(z

i+1

)

return (g

k+1

)

Denote

y(x) = y

1

k y

2

k : : : k y

k+1

:

Observe that y

k

is formed from x

k

by padding on the right with d zeroes, so that all the bloks y

i

(1 � i � k) are of length m � t � 1. Also, as noted in Algorithm 4.1, y

k+1

is padded on the left

with zeroes so that jy

k+1

j = m� t � 1.

In order to hash x using Algorithm 4.1, we �rst onstrut y(x), and then \proess" the bloks

y

1

; y

2

; : : : ; y

k+1

in a partiular fashion. It is important that y(x) 6= y(x

0

) whenever x 6= x

0

. In fat,

y

k+1

is de�ned in suh a way that the mapping x 7! y(x) will be an injetion.

The domain of f

�

, namely [

1

i=m

f0; 1g

i

, is an in�nite set. We now onsider Problems 5 and 6,

in whih (an upper bound on) the length of the desired output is spei�ed as a problem parameter.

Note that these two problems are given the hash funtion f as an input parameter, and are required

to �nd outputs relative to the hash funtion f

�

.

Problem 5: Restrited length MD preimage

Instane: A hash funtion f : f0; 1g

m

! f0; 1g

t

, where m � t + 2, an element y 2

f0; 1g

t

, and an integer ` � m.

Find: x 2 [

`

i=m

f0; 1g

i

suh that f

�

(x) = y.

Problem 6: Restrited length MD ollision

Instane: A hash funtion f : f0; 1g

m

! f0; 1g

t

, where m � t + 2, and an integer

` � m.

Find: x; x

0

2 [

`

i=m

f0; 1g

i

suh that x

0

6= x and f

�

(x

0

) = f

�

(x).

We will designate an algorithm solving Problem 5 or 6 as an (�; q; `) algorithm, where the

parameters have the obvious meanings. Note that ` ould be �xed or variable, and � and q ould

depend on `.

14

We informally desribe a redution from Restrited length MD ollision to Collision. This redu-

tion shows that an algorithm that �nds ollisions in f

�

an be used as an orale to �nd ollisions

in f .

The main steps of the redution are as follows:

1. Given f and `, run a hypothetial (�; q; `) algorithm for Restrited length MD ollision on the

instane de�ned by f and `. With probability at least �, it holds that the output of this

algorithm is a pair x; x

0

, where jxj � `, jx

0

j � ` and f

�

(x) = f

�

(x

0

).

2. If the output of the previous step is a pair x; x

0

, where jxj � ` and jx

0

j � `, then ompute

f

�

(x) = Merkle-Damgard(f; x)

and

f

�

(x

0

) = Merkle-Damgard(f; x

0

):

Keep trak of the g-values and z-values that are omputed, and denote them by g

1

; : : : ; g

k+1

,

z

1

; : : : ; z

k+1

, g

0

1

; : : :g

0

k

0

+1

and z

0

1

; : : :z

0

k

0

+1

respetively. With probability at least �, it holds

that g

k+1

= g

0

k

0

+1

.

3. If g

k+1

= g

0

k

0

+1

holds in the previous step, then with probability at least �, it must be the

ase that g

k+1�i

= g

0

k

0

+1�i

and z

k+1�i

6= z

0

k

0

+1�i

for some integer i � 0 (e.g., see the proof of

[9, Theorem 7.3℄). If this ours, then we obtain a ollision for f .

Note that the above redution requires at most

2(k + 1) = 2

�

`+m� t� 1

m� t� 1

�

appliations of f , in addition to the (at most) q appliations of f required by the orale. Therefore

the above disussion establishes the following result.

Theorem 4.1 Suppose f : f0; 1g

m

! f0; 1g

t

is any hash funtion, where m � t+ 2. If there is an

(�; q; `) algorithm that solves Restrited length MD ollision for the hash funtion f , then there is an

(�; q + 2d(`+m� t � 1)=(m� t� 1)e; `) algorithm that solves Collision for the hash funtion f .

It is easy to see that a similar result holds for Problem 5. Note that, if f

�

(x) = y, then

f(z

k+1

) = y. Given a solution x to Restrited length MD preimage with input f; y, we an easily

onstrut a solution to Preimage with input f; y. We have the following.

Theorem 4.2 Suppose f : f0; 1g

m

! f0; 1g

t

is any hash funtion, where m � t+ 2. If there is an

(�; q; `) algorithm that solves Restrited length MD preimage for the hash funtion f , then there is

an (�; q + d(`+m� t� 1)=(m� t� 1)e; `) algorithm that solves Preimage for the hash funtion f .

As a result of the above-desribed redutions, we have shown that f

�

is ollision resistant and

preimage resistant provided that f is. The fat that it is apparently neessary to inlude preimage

resistane as a seurity assumption for f (as disussed in the last setion) does not reate any

diÆulties when we extend f to f

�

.

15

5 Conlusion

We suggest that it is best to require both ollision resistane and preimage resistane as neessary

properties for a hash funtion to be onsidered seure, due to the lak of a ompletely satisfatory

redution from the problem of �nding ollsions to the problem of �nding preimages.

Aknowledgements

Thanks to Dan Brown for helpful omments.

D.R. Stinson's researh is supported by NSERC grants IRC #216431-96 and RGPIN #203114-

98, and by the MITACS projet \Applied Cryptography".

Referenes

[1℄ M. Bellare and P. Rogaway. Random orales are pratial: a paradigm for designing eÆ-

ient protools. Proeedings of the First Annual Conferene on Computer and Communiations

Seurity, ACM Press, 1993, pp. 62{73.

[2℄ M. Bellare and P. Rogaway. The exat seurity of digital signatures: how to sign with RSA

and Rabin. Leture Notes in Computer Siene, 1070 (1996), 399{416 (Advanes in Cryptology

{ EUROCRYPT '96.)

[3℄ D. Brown. Conrete lower bounds on the seurity of ECDSA in the generi group model.

Preprint.

[4℄ R. Canetti, O. Goldreih and S. Halevi. The random orale methodology, revisited.

Proeedings of the 13th Annual ACM Symposium on Theory of Computing, ACM Press, 1998,

pp. 209{218.

[5℄ I.B. Damg

�

ard. A design priniple for hash funtions. Leture Notes in Computer Siene,

435 (1990), 416{427 (Advanes in Cryptology { CRYPTO '89.)

[6℄ A.J. Menezes, P.C. van Oorshot and S.A. Vanstone. Handbook of Applied Cryptog-

raphy, CRC Press, 1997.

[7℄ R.C. Merkle. One way hash funtions and DES. Leture Notes in Computer Siene, 435

(1990), 428{426 (Advanes in Cryptology { CRYPTO '89.)

[8℄ B. Preneel. The state of ryptographi hash funtions. Leture Notes in Computer Siene,

1561 (1999), 158{182 (Letures on Data Seurity: Modern Cryptology in Theory and Pratie).

[9℄ D.R. Stinson. Cryptography: Theory and Pratie, CRC Press, 1995.

16

