
Optimisti
 Asyn
hronous Atomi
 Broad
ast

Klaus Kursawe Vi
tor Shoup

IBM Resear
h

Zuri
h Resear
h Laboratory

CH-8803 R�us
hlikon, Switzerland

fkku,shog�zuri
h.ibm.
om

April 19, 2002

Abstra
t

This paper presents a new proto
ol for atomi
 broad
ast in an asyn
hronous network with a

maximal number of Byzantine failures. It guarantees both safety and liveness without making

any timing assumptions or using any type of \failure dete
tor."

Under normal
ir
umstan
es, the proto
ol runs in an \optimisti
 mode," with extremely low

message and
omputational
omplexity | essentially, just performing a Bra
ha broad
ast for

ea
h request. In parti
ular, no potentially expensive publi
-key
ryptographi
 operations are

used. In rare
ir
umstan
es, the proto
ol may brie
y swit
h to a \pessimisti
 mode," where

both the message and
omputational
omplexity are signi�
antly higher than in the \optimisti

mode," but are still reasonable.

Keywords: Asyn
hronous Consensus, Byzantine Faults, Atomi
 Broad
ast, State Ma
hine

Repli
ation

1 Introdu
tion

Atomi
 Broad
ast is a fundamental building blo
k in fault tolerant distributed
omputing. By

ordering broad
ast requests in su
h a way that two broad
ast requests are re
eived in the same

order by all honest re
ipients, a syn
hronization me
hanism is provided that deals with many of

the most problemati
 aspe
ts of asyn
hronous networks.

We present a new proto
ol for atomi
 broad
ast in an asyn
hronous network with a maximal

number of Byzantine failures. It guarantees both safety and liveness without making any timing

assumptions or using any type of \failure dete
tor," and its amortized message and
omputational

omplexity is essentially the same as that of a simple \Bra
ha broad
ast."

The FLP \impossibility" result [FLP85℄ implies that there is no proto
ol for Byzantine agree-

ment that runs in an a priori bounded number of steps, and guarantees both safety and liveness.

Moreover, it is fairly well known that Byzantine agreement and atomi
 broad
ast are equivalent,

so that any proto
ol for solving atomi
 broad
ast
ould be used to solve Byzantine agreement, and

vi
e versa. However, this impossibility result does not rule out randomized proto
ols for whi
h the

expe
ted number of steps is bounded.

There are several probabilisti
 proto
ols for asyn
hronous Byzantine agreement in the literature.

An early proto
ol by Ben-Or [Ben83℄ requires time exponential in the number of parties. Canetti

and Rabin [CR93℄ present a polynomial-time proto
ol for asyn
hronous Byzantine agreement; how-

ever, their proto
ol
annot be used in pra
ti
e, be
ause of its enormous message
omplexity. Ca
hin

1

et al. [CKS00℄ give a fairly pra
ti
al polynomial-time proto
ol for asyn
hronous Byzantine agree-

ment that makes use of publi
-key
ryptographi
 primitives that
an be proven
orre
t in the

\random ora
le" model [BR93℄, assuming a
omputationally bounded adversary. The proto
ol in

[CKS00℄ relies on a trusted dealer during system set-up, but after this, an arbitrary number of

instan
es of the proto
ol
an be exe
uted. Building on [CKS00℄, the paper [CKPS01℄ presents a

fairly pra
ti
al proto
ol for atomi
 broad
ast. In some settings, the atomi
 broad
ast proto
ol in

[CKPS01℄ may be adequate; however, be
ause of its heavy relian
e on publi
-key
ryptography, it

an easily be
ome \
ompute bound."

Our proto
ol is inspired by the innovative work of Castro and Liskov [CL99b, CL99a, Cas00℄.

Like their proto
ol, our proto
ol works in two phases: an optimisti
 phase and a pessimisti
 phase.

The optimisti
 phase is very \lightweight" | ea
h request is pro
essed using nothing more than

a \Bra
ha broad
ast" [Bra84℄ | in parti
ular, no publi
-key
ryptography is used. As long as

the network is reasonably behaved, the proto
ol remains in the optimisti
 phase | even if some

number of parties, barring a designated leader, are
orrupted. If there are unexpe
ted network

delays, or the leader is
orrupted, several parties may \time out," shifting the proto
ol into the

pessimisti
 phase. The pessimisti
 phase is somewhat more expensive than the optimisti
 phase |

both in terms of
ommuni
ation and
omputational
omplexity. Nevertheless, it is still reasonably

pra
ti
al, although
ertainly not as eÆ
ient as the optimisti
 phase. The pessimisti
 phase
leans

up any potential \mess" left by the
urrent leader, after whi
h the optimisti
 phase starts again

with a new leader.

The optimisti
 phase of our proto
ol is essentially the same as that of Castro and Liskov.

Therefore, we expe
t that in pra
ti
e, our proto
ol is just as eÆ
ient as theirs. However, our

pessimisti
 phase is quite di�erent, and makes use of randomized Byzantine agreement as well

as some additional publi
-key
ryptographi
 operations. The pessimisti
 phase of Castro and

Liskov makes use of publi
-key
ryptography as well, and it is not
lear if their pessimisti
 phase is

signi�
antly more or less eÆ
ient than ours | determining this would require some experimentation.

Castro and Liskov's pessimisti
 proto
ol is
ompletely deterministi
, and hen
e is subje
t to the

FLP impossibility result. Indeed, although their proto
ol guarantees safety, it does not guarantee

liveness, unless one makes additional timing assumptions. Our proto
ol is randomized, and it guar-

antees both safety and liveness without making any timing assumptions at all, and without relying

on any kind of \failure dete
tor." This is a not just a theoreti
al issue: if the timing me
hanism

does not work properly in Castro and Liskov's proto
ol, the proto
ol may
y
le inde�nitely, without

doing anything useful, whereas in our proto
ol, the performan
e \gra
efully" degrades.

1.1 Other Related Work

There is a ri
h literature on ordering broad
ast
hannels, in
luding several implementations and a

broad theoreti
al basis. However, most work in the literature is done in the
rash-failure model;

mu
h less work has been done in the Byzantine failure model.

Rampart [Rei94℄ and Se
ureRing [KMMS98℄ dire
tly transfer
rash-failure proto
ols into the

Byzantine setting by using a modi�ed failure dete
tor along with digital signatures. The disadvan-

tage of this approa
h is that it is relatively expensive, as a large number of publi
-key
ryptographi

operations need to be performed. Furthermore, there are atta
ks on the failure dete
tor [ACBMT95℄

that
an violate the safety of these proto
ols.

The BFS system by Castro and Liskov [CL99b℄ addresses these problems. As already mentioned,

they only require timing assumptions to guarantee liveness, while the safety properties of the

proto
ol hold regardless of timing issues. A similar approa
h is taken by Doudou et al. [DGG00℄,

2

but their proto
ol is des
ribed and analyzed in terms of a Byzantine failure dete
tor. While both

[CL99b℄ and [DGG00℄ still rely extensively on expensive publi
-key
ryptographi
 operations, the

extension of BFS in [CL99a, Cas00℄ relies mu
h less on publi
-key
ryptography.

2 System Model and Problem Statement

2.1 Formal System Model

Our formal system model and de�nitions of se
urity are taken from [CKS00, CKPS01℄, whi
h

models atta
ks by
omputationally bounded adversaries. We refer the reader to [CKPS01℄ for

omplete details. We give only a brief summary here.

We assume a network of n parties P

1

; : : : ; P

n

, t of whi
h are
orrupted and fully
ontrolled by

an adversary. We shall assume that t < n=3. We also assume a trusted dealer that is needed only at

system set-up time. Informally, the adversary also has full
ontrol over the network; the adversary

may insert, dupli
ate, and reorder messages at will.

More formally, at the beginning of the atta
k, the trusted dealer is run, initializing the internal

state of the honest parties; the initial state information for the
orrupted parties is given to the

adversary. The atta
k then pro
eeds in steps. In ea
h step of the atta
k, the adversary delivers

a single message to an honest party, upon re
eipt of whi
h the party updates its internal state

and generates one or more response messages. These response messages indi
ate their origin and

intended destination; however, the adversary is free to do with these messages what he wishes: to

deliver them when he wishes, in any order that he wishes; he may also deliver them more than

on
e, or not all. We do assume, however, that the adversary may not modify messages or \fake"

their origin. This assumption is reasonable, sin
e this property
an be e�e
tively enfor
ed quite

heaply using message authenti
ation
odes.

We assume that the adversary's
orruptions are stati
: the set of
orrupted parties is
hosen

on
e and for all at the very beginning of the atta
k. Making this assumption greatly simpli�es the

se
urity analysis, and allows one to make use of
ertain
ryptographi
 primitives that
ould not

otherwise be proven se
ure.

Although we have not done so, we believe it should be straightforward to prove that our atomi

broad
ast proto
ol is se
ure in a adaptive
orruption model, assuming all underlying
ryptographi

primitives are se
ure in this model (in parti
ular, the
ommon
oin as used in [CKS00, CKPS01℄).

Be
ause we want to use
ryptographi
 te
hniques, it does not make sense to
onsider \in�nite

runs" of proto
ols, but rather, we only
onsider atta
ks that terminate after some bounded amount

of steps. The number of steps in the adversary's atta
k, as well as the
omputational
omplexity

of the adversary, are assumed to be bounded by a polynomial in some se
urity parameter.

Our proto
ols are de�ned su
h that they are only guaranteed to make progress to the extent to

whi
h the adversary a
tually delivers messages. To ensure that su
h a proto
ol behaves well in pra
-

ti
e, an implementation would have to resend messages until re
eiving (se
ure) a
knowledgments

for them. We do not dis
uss any of these implementation details any further in this paper.

In our formal model, there is no notion of time. However, in making the transition from the

optimisti
 phase to the pessimisti
 phase of our proto
ol, we need a way to test if an unexpe
tedly

large amount of time has passed sin
e some progress has been made by the proto
ol. That is,

we need a \time out" me
hanism. This is a bit diÆ
ult to represent in a formal model in whi
h

there is no notion of time. Nevertheless, we
an e�e
tively implement su
h a \time out" as follows:

to start a timer, a party simply sends a message to itself, and when this message is delivered to

that party, the
lo
k \times out." By representing time outs in this way, we e�e
tively give the

3

adversary
omplete
ontrol of our \
lo
k."

2.2 Some Te
hni
alities

As already mentioned above, there is a se
urity parameter � = 0; 1; 2 : : : that is used to instantiate

a proto
ol instan
e. All adversaries and proto
ols
an be modeled as Turing ma
hines that run in

time bounded by a polynomial in �. We make the
onvention that the parameter n is bounded

by a �xed polynomial in �, independent of the adversary. We make a similar assumption on the

sizes of all messages in the proto
ol: ex
essively large messages are simply never generated by or

delivered to honest parties.

We de�ne the message
omplexity of a proto
ol as the number of messages generated by all

honest parties. This is a random variable that depends on the adversary and �. We denote it by

MC (ID), where ID identi�es a parti
ular proto
ol instan
e.

We say that a fun
tion �, mapping non-negative integers to non-negative reals, is negligible if

for all
 > 0, there exists k

0

(
) � 0, su
h that for all k � k

0

(
): �(k) � k

�

.

We say that some quantity is negligible, if it is bounded by a negligible fun
tion in �.

For a given proto
ol, a proto
ol statisti
 X is a family of real-valued, non-negative random

variables fX

A

(�)g, parameterized by adversary A and se
urity parameter �, where ea
h X

A

(�)

is a random variable on the probability spa
e indu
e by A's atta
k on the proto
ol with se
urity

parameter �. We
allX a bounded proto
ol statisti
 if for all adversaries A, there exists a polynomial

p

A

, su
h that for all � � 0: X

A

(�) � p

A

(�).

The message
omplexity MC (ID) is an example of a bounded proto
ol statisti
.

A bounded proto
ol statisti
 X is
alled uniformly bounded (by p) if there exists a �xed poly-

nomial p, su
h that for all adversaries A, there is a negligible fun
tion �

A

, su
h that for all � � 0:

Pr[X

A

(�) > p(�)℄ � �

A

(�):

A bounded proto
ol statisti
 X is
alled probabilisti
ally uniformly bounded (by p) if there exists

a �xed polynomial p and a �xed negligible fun
tion Æ, su
h that for all adversaries A, there is a

negligible fun
tion �

A

, su
h that for all k � 0 and � � 0:

Pr[X

A

(�) � kp(�)℄ � Æ(k) + �

A

(�):

IfX is probabilisti
ally uniformly bounded by p, then for all adversaries A, E[X

A

(�)℄ = O(p(�)),

where the big-`O'
onstant is independent of the adversary. Additionally, if Y is probabilisti
ally

uniformly bounded by q, then X � Y is probabilisti
ally uniformly bounded by p � q, and X + Y is

probabilisti
ally uniformly bounded by p+ q. Thus, probabilisti
ally uniformly bounded statisti
s

are
losed under polynomial
omposition, whi
h makes them useful for analyzing the
omposition

of several proto
ols. The same observations apply to uniformly bounded statisti
s as well.

2.3 Formal De�nition of Atomi
 Broad
ast

Our de�nition of atomi
 broad
ast
omes dire
tly from [CKPS01℄, with some modi�
ation.

As we de�ne it, an atomi
 broad
ast primitive o�ers one or several broad
ast
hannels, ea
h

spe
i�ed by some
hannel identi�er ID . Before a party
an use a
hannel, it must be expli
itly

opened. Formally speaking, this is done by the adversary.

At any point, the adversary may deliver the message (ID ; in; a-broad
ast;m) to some honest

party, where m is an arbitrary bit string (of bounded size). We say the party a-broad
asts the

request m at this point.

4

At any point, an honest party may generate an output message (ID ; out; a-deliver;m), whi
h

is given to the adversary. We say the party a-delivers the request m at this point.

In the above two paragraphs, the \adversary" may very well represent a higher-level proto
ol

that the honest party is running, but sin
e we want our atomi
 broad
ast proto
ol to work in an

arbitrary environment, we simply absorb this higher-level proto
ol into the adversary.

As a matter of terminology, we adopt the following
onvention: a \request" is something that

is a-broad
ast or a-delivered, while a \message" is something that is sent or delivered in the imple-

mentation of the proto
ol.

To give higher level proto
ols the option to blo
k the atomi
 broad
ast proto
ol, the delivering

party waits for an a
knowledgment after every a-delivery of a request. That is, the number of

a-delivered requests is equal to either the number of a
knowledgments or the number of a
knowl-

edgments plus one. This is ne
essary so that higher-level proto
ols may satisfy a property analogous

to the eÆ
ien
y property (see De�nition 1 below). Without this ability to syn
hronize proto
ol

layers, a low-level atomi
 broad
ast proto
ol
ould generate an arbitrary amount of network traÆ

without a higher-level proto
ol ever doing anything useful.

At any point in time, for any honest party P

i

, we de�ne B

(i)

to be the set of requests that P

i

has a-broad
ast, and we de�ne D

(i)

to be the set of requests that P

i

has a-delivered. At any point

in time, we also de�ne D

�

= [

honest P

i

D

(i)

.

For an honest party P

i

, we say that one request in B

(i)

is older than another if P

i

a-broad
ast

the �rst request before it a-broad
ast the se
ond request.

In dis
ussing the values of the sets B

(i)

, D

(i)

, or D

�

at parti
ular points in time, we
onsider the

sequen
e of events E

1

; : : : ; E

k

during the adversary's atta
k, where ea
h event but the last is either

an a-broad
ast or a-delivery by an honest party, and the last event is a spe
ial \end of atta
k" event.

The phrase \at time � ," for 1 � � � k, refers to the point in time just before event E

�

o

urs.

Re
all that MC (ID) is the message
omplexity of a proto
ol.

De�nition 1 (Atomi
 Broad
ast). A proto
ol for atomi
 broad
ast satis�es the following
on-

ditions, for all
hannels ID and all adversaries, with all but negligible probability.

Agreement: If some honest party has a-delivered m on
hannel ID , then all honest parties a-

deliver m on
hannel ID , provided the adversary opens
hannel ID for all honest parties,

delivers all asso
iated messages, and generates a
knowledgments for every party that has not

yet a-delivered m on
hannel ID .

Total Order: Suppose one honest party has a-delivered m

1

; : : : ;m

s

on
hannel ID , and another

honest party has a-delivered m

0

1

; : : : ;m

0

s

0

on
hannel ID with s � s

0

. Then m

l

= m

0

l

for

1 � l � s.

Validity: There are at most t honest parties P

j

with B

(j)

nD

�

6= ;, provided the adversary opens

hannel ID for all honest parties, delivers all asso
iated messages, and generates all a
knowl-

edgments.

Fairness: There exist a quantity �, whi
h is bounded by a �xed polynomial in the se
urity pa-

rameter (independent of the adversary), su
h that the following holds. Suppose that at some

time �

1

, there is a set S of t + 1 honest parties, su
h that for all P

j

2 S, the set B

(j)

nD

�

is

non-empty. Suppose that there is a later point in time �

2

su
h that the size of D

�

in
reases

by more than � between times �

1

and �

2

. Then there is some P

j

2 S, su
h that the oldest

request in B

(j)

nD

�

at time �

1

is in D

�

at �

2

.

5

EÆ
ien
y: At any point in time, the quantity MC (ID)=(jD

�

j + 1) is probabilisti
ally uniformly

bounded.

Integrity: Every honest party a-delivers a request m at most on
e on
hannel ID . Moreover, if

all parties follow the proto
ol, then m was previously a-broad
ast by some party on
hannel

ID .

We stress that the above properties are to be interpreted as properties of a
omplete run of

the adversary's atta
k. That is, the adversary's atta
k is a probabilisti
 experiment de�ned on

the probability spa
e
onsisting of the random
hoi
es of the dealer, the honest parties, and the

adversary. The out
ome of this experiment is a
omplete history of this atta
k, and the above

properties are events in the above probability spa
e that should o

ur with all but negligible

probability.

Validity and fairness
omplement one another: validity ensures that a request that is a-broad
ast

by t+1 honest parties is a-delivered provided all messages and a
knowledgments are delivered, and

fairness implies that su
h a request is a-delivered reasonably qui
kly (relative to other requests) if

it is a-delivered at all. One
annot expe
t to a
hieve a stronger notion of fairness, sin
e if only t or

fewer honest parties a-broad
ast a request, an adversary
an s
hedule messages so that the system

runs an arbitrary amount of time while keeping these parties
ompletely
ut o� from the rest of

the system.

3 Multivalued Validated Byzantine Agreement

Our proto
ol builds on top of multivalued validated Byzantine agreement (i.e., the agreement is

not restri
ted to a binary value), as de�ned and implemented in [CKPS01℄. Similarly to atomi

broad
ast, every instan
e of su
h a proto
ol has a parti
ular ID . As opposed to some proto
ols in

the literature [Rab83, TC84℄, the agreement proto
ol we need is not allowed to fall ba
k on a default

value; the �nal agreement value must be legal a

ording to some veri�
ation, whi
h guarantees that

it is some \useful" value. To ensure this, multivalued validated Byzantine agreement has a global,

polynomial-time
omputable predi
ate Q

ID

known to all parties, whi
h is determined by a higher-

level appli
ation (in this
ase, the atomi
 broad
ast proto
ol). Ea
h party may propose a value v

that satis�es Q

ID

.

De�nition 2 (Multivalued Validated Byzantine Agreement). A proto
ol solves validated

Byzantine agreement if it satis�es the following
onditions for all adversaries, ex
ept with negligible

probability:

External Validity: Any honest party that terminates for ID de
ides v su
h that Q

ID

(v) holds.

Agreement: If some honest party de
ides v for ID , then any honest party that terminates de
ides v

for ID .

Liveness: If all honest parties have been a
tivated on ID and all asso
iated messages have been

delivered, then all honest parties have de
ided for ID .

EÆ
ien
y: MC (ID) is probabilisti
ally uniformly bounded.

Integrity: If all parties follow the proto
ol, and if some party de
ides v for ID , then v was proposed

by some party.

6

In the atomi
 broad
ast proto
ol, we use the phrase

propose X

i

for multivalued Byzantine agreement on X

to denote the invo
ation of a multivalued validated Byzantine agreement proto
ol, where X

i

is

P

i

's initial proposal, and X the resulting agreement value. The de�nition of Q

ID

is
lear from the

ontext.

4 Proto
ol
onventions and notations

In this se
tion, we give a brief des
ription of a formal model of the internal stru
ture of an honest

party, and introdu
e some notation for des
ribing the behavior of an honest party.

Re
all that with ea
h step of an atta
k, the adversary delivers a message to an honest party; the

honest party then performs some
omputations, updating its internal state, and possibly generating

messages. Messages delivered to a party are appended to the rear of an in
oming message queue.

When a
tivated, the party may examine this queue, and remove any messages it wishes.

As a matter of notational
onvention in des
ribing proto
ols, we shall not in
lude either the

origin or destination addresses in the body of a message, nor shall we in
lude any authenti
ation

odes that may be used to ensure the authenti
ity of messages. However, we shall assume that

information regarding the origin of an in
oming message is impli
itly available to the re
eiving

party.

There may be several threads of exe
ution for a given party, but at any point in time, at most

one is a
tive.

When a party is a
tivated, all threads are in wait states. A wait state spe
i�es a
ondition

de�ned on the in
oming message queue and other lo
al state variables. If one or more threads are

in a wait state whose
ondition is satis�ed, one su
h thread is s
heduled (arbitrarily, if more than

one) to exe
ute, and this thread runs until it rea
hes another wait state. This pro
ess
ontinues

until no threads are in a wait state whose
ondition is satis�ed, and then the a
tivation of the

party is terminated, and
ontrol returns to the adversary. Of
ourse, we restri
t ourselves to

polynomial-time proto
ols that always relinquish
ontrol to the adversary.

That
ompletes the brief des
ription of our formal model of the internal stru
ture of an honest

party. We now introdu
e the pseudo-
ode notation we will use to des
ribe how a thread enters a

wait state.

To enter a wait state, a thread may exe
ute a
ommand of the form wait until
ondition. Here,

ondition may be an ordinary predi
ate on state variables. Upon exe
uting this
ommand, a thread

enters a wait state with the given
ondition.

We also may spe
ify a
ondition of the form re
eivingmessages. In this
ase, messages des
ribes

a set of of one or more messages satisfying a
ertain predi
ate, possibly involving other state

variables. Upon exe
uting this
ommand, a thread enters a wait state, waiting for the arrival

of messages satisfying the given predi
ate; moreover, when this predi
ate be
omes satis�ed, the

mat
hing messages are moved out of the in
oming message queue, and into lo
al state variables. If

there is more than one set of mat
hing messages, one is
hosen arbitrarily.

We also may spe
ify a
ondition of the form dete
ting messages. The semanti
s of this are the

same as for re
eiving messages, ex
ept that the mat
hing messages are
opied from the in
oming

message queue into lo
al state variables.

In addition to waiting on a single
ondition, a thread may wait on a number of
onditions

simultaneously by exe
uting the
ommand:

7

ase upon
ondition

1

: a
tion

1

; � � � upon
ondition

k

: a
tion

k

; end
ase

Here, ea
h
ondition

i

is a
ondition as above, and ea
h a
tion

i

is an a
tion to be exe
uted when

the
ondition is satis�ed. If more than one
ondition is satis�ed, then an arbitrary
hoi
e is made.

We also de�ne an abstra
t timeout me
hanism. Ea
h thread has a timer. One
an view the

timer as a spe
ial state variable that takes on two values: stopped and running. Initially, the timer

is stopped. A thread may
hange this value by exe
uting start timer or stop timer
ommands.

A thread may also simply inspe
t the value of the timer. A thread may also exe
ute a wait until

or
ase
ommand with the
ondition timeout. Additionally, when the adversary a
tivates a party,

instead of delivering a message, it may deliver a timeout signal to a thread whose timer is running;

when this happens, the timer is stopped, and if that thread is waiting on a timeout, the thread is

a
tivated.

This abstra
t timer
an be implemented quite easily in our formal system model in x2.1, whi
h

itself does not in
lude a timer me
hanism. A start timer
ommand is implemented by sending a

unique message to oneself, and the adversary delivers a timeout signal by delivering this message.

Of
ourse in a pra
ti
al implementation, the timeout me
hanism is implemented by using a

real
lo
k. However, by giving the adversary
omplete
ontrol over the timeout me
hanism in our

formal model, we e�e
tively make no assumptions about the a

ura
y of the
lo
k, or about how

well
lo
ks belonging to di�erent parties are syn
hronized.

5 Our New Proto
ol for Atomi
 Broad
ast

The proto
ol operates in epo
hs, ea
h epo
h e = 0; 1; 2; et
.,
onsisting of an optimisti
 and a

pessimisti
 phase. In the optimisti
 phase, a designated leader is responsible to order in
oming

requests by assigning sequen
e numbers to them and initiating a Bra
ha broad
ast [Bra84℄; the

optimisti
 phase guarantees the agreement and total order properties, but not the validity or fairness

properties; however, the proto
ol
an e�e
tively determine if validity or fairness are potentially

threatened, and if so, swit
h to the pessimisti
 phase. The pessimisti
 phase
leans up any potential

\mess" left by the
urrent leader, after whi
h the optimisti
 phase starts again with a new leader.

5.1 Overview and optimisti
 phase

In the optimisti
 phase of epo
h e, when a party a-broad
asts a request m, it initiates the re-

quest by sending a message of the form (ID ; initiate; e;m) to the leader for epo
h e. When the

leader re
eives su
h a message, it 0-binds a sequen
e number s to m by sending a message of the

form (ID ; 0-bind; e;m; s) to all parties. Sequen
e numbers start at zero in ea
h epo
h. Upon

re
eiving a 0-binding of s to m, an honest party 1-binds s to m by sending a message of the form

(ID ; 1-bind; e;m; s) to all parties. Upon re
eiving n� t su
h 1-bindings of s to m, an honest party

2-binds s to m by sending a message of the form (ID ; 2-bind; e;m; s) to all parties. A party also 2-

binds s to m if it re
eives t+1 2-bindings of s to m| this has the e�e
t of \amplifying" 2-bindings,

whi
h is used to ensure agreement. Upon re
eiving n� t su
h 2-bindings of s to m, an honest party

a-delivers m, provided all messages with lower sequen
e numbers were already delivered, enough

a
knowledgments have been re
eived, and m was not already a-delivered.

A party only sends or rea
ts to 0-, 1-, or 2-bindings for sequen
e numbers s in a \sliding window"

fw; : : : ; w+WinSize� 1g, where w is the number of requests already a-delivered in this epo
h, and

WinSize is a �xed system parameter. Keeping the \a
tion" bounded in this way is ne
essary to

ensure eÆ
ien
y and fairness.

8

The number of requests that any party initiates but has not yet a-delivered is bounded by a

parameter BufSize: a party will not initiate any more requests on
e this bound is rea
hed. We

denote by I the set of requests that have been initiated but not a-delivered, and we
all this the

initiation queue. If suÆ
ient time passes without anything leaving the initiation queue, the party

\times out" and
omplains to all other parties. These
omplaints are \ampli�ed" analogously to the

2-bindings. Upon re
eiving n� t
omplaints, a party enters the pessimisti
 phase of the proto
ol.

This strategy will ensure validity. Keeping the size of I bounded is ne
essary to ensure eÆ
ien
y

and fairness.

Also to ensure fairness, a party keeps tra
k of the \age" of the requests in its initiation queue,

and if it appears that the oldest request is being ignored, i.e., many other requests are being a-

delivered, but not this one, then the party simply refuses to generate 1-bindings until the problem

lears up. If t + 1 parties blo
k in this way, they e�e
tively prevent the remaining parties from

making any progress in the optimisti
 phase, and thus, the pessimisti
 phase will be entered, where

the fairness problem will ultimately be resolved.

We say that an honest party P

i

ommits s to m in epo
h e, if m is the sth request (
ounting

from 0) that it a-delivered in this epo
h, optimisti
ally or pessimisti
ally.

Now the details. The state variables for party P

i

are as follows.

Epo
h number e: The
urrent epo
h number, initially zero.

Delivered set D: All requests that have been a-delivered by P

i

. It is required to ensure that requests

are not a-delivered more than on
e; in pra
ti
e, however, other me
hanisms may be employed for

this purpose. Initially, D is empty.

Initiation queue I: The queue of requests that P

i

initiated but not yet a-delivered. Its size is

bounded by BufSize . Initially, I is empty.

Window pointer w: w is the number of requests that have been a-delivered in this epo
h. Initially,

w = 0. The optimisti
 phase of the proto
ol only rea
ts to messages pertaining to requests whose

sequen
e number lies in the \sliding window" fw; : : : ; w+WinSize�1g. Here, WinSize is a �xed

system parameter.

E
ho index sets BIND

1

and BIND

2

: The sets of sequen
e numbers whi
h P

i

has 1-bound or 2-

bound, respe
tively. Initially empty.

A
knowledgment
ount a
nt: Counts the number of a
knowledgments re
eived for a-delivered re-

quests. Initially zero.

Complaint
ag
omplained : Set if P

i

has issued a
omplaint. Initially false .

Initiation time it(m): For ea
h m 2 I, it(m) is equal to the value of w at the point in time when m

was added to I. Reset to zero a
ross epo
h boundaries. These variables are used in
ombination

with a �xed parameter Thresh to ensure fairness.

Leader index l: The index of the leader in the
urrent epo
h; we simply set l = (e mod n) + 1.

Initially, l = 1.

S
heduled request set SR: Only maintained by the
urrent leader. It
ontains the set of messages

whi
h have been assigned sequen
e numbers in this epo
h. Initially, it is empty.

Next available sequen
e number s
nt: Only maintained by the leader. Value of the next available

sequen
e number. Initially, it is zero.

The proto
ol for party P

i

onsists of two threads. The �rst is a trivial thread that simply
ounts

a
knowledgments:

9

loop forever

wait until re
eiving an a
knowledgment

in
rement a
nt .

end loop

The main thread is as follows:

loop forever

ase MainSwit
h end
ase

end loop

where the MainSwit
h is a sequen
e of upon
lauses des
ribed in Figure 1.

5.2 Fully Asyn
hronous Re
overy

The re
overy proto
ol tidies up all requests that were initiated under a (potentially) faulty leader.

We distinguish between three types of requests:

� Requests for whi
h it
an be guaranteed that they have been a-delivered by an honest party.

� Requests that potentially got a-delivered by an honest party.

� Requests for whi
h it
an be guaranteed that they have not been a-delivered by an honest

party.

For the �rst two kinds of requests, an order of delivery might already be de�ned, and has to

be preserved. The other requests have not been a-delivered at all, so the re
overy proto
ol has

omplete freedom on how to order them. They
an not be left to the next leader, however, as

an adversary
an always for
e this leader to be thrown out as well. To guarantee eÆ
ien
y, the

re
overy pro
edure has to ensure that some request is a-delivered in every epo
h. This is pre
isely

the property that Castro and Liskov's proto
ol fails to a
hieve: in their proto
ol, without imposing

additional timing assumptions, the adversary
an
ause the honest parties to generate an arbitrary

amount of messages before a single request is a-delivered.

A

ording to the three types of requests, the re
overy proto
ol
onsists of three parts.

Part 1. In the �rst part, a watermark ŝ

e

is jointly
omputed. The watermark has the property that

at least one honest party optimisti
ally
ommitted the sequen
e number ŝ

e

, and no honest party

optimisti
ally
ommitted a sequen
e number higher than ŝ

e

+ 2 �WinSize.

The watermark is determined as follows. When P

i

enters the pessimisti
 phase of the proto
ol,

it sends out a signed statement to all parties that indi
ates its highest 2-bound sequen
e number.

Then, P

i

waits for t+ 1 signatures on sequen
e numbers s

0

su
h that s

0

is greater than or equal to

the highest sequen
e number s that P

i

ommitted during the optimisti
 phase. Let us
all su
h a set

of signatures a a strong
onsistent set of signatures for s. Sin
e P

i

already re
eived n� t 2-bindings

for s, it is assured that at least t + 1 of these
ame from honest parties, and so it will eventually

re
eive a strong
onsistent set of signatures for s. Any party that is presented with su
h a set of

signatures
an
on
lude the following: one of these signatures is from an honest party, therefore

some honest party sent a 2-binding for a sequen
e number at least s, and therefore, be
ause of the

logi
 of the sliding window, that honest party
ommitted sequen
e number (s �WinSize) in its

optimisti
 phase.

10

Figure 1: The optimisti
 phase

/* Initiate m. */

upon re
eiving a message (ID ; in; a-broad
ast;m) for some m su
h that m =2 I [D and

jIj < BufSize (note that we take the oldest su
h message �rst):

Send the message (ID ; initiate; e;m) to the leader.

Add m to I.

Set it(m) w.

/* 0-bind s
nt to m. */

upon re
eiving a message (ID ; initiate; e;m) for some m, su
h that i = l and w � s
nt <

w +WinSize and m =2 D [SR:

Send the message (ID ; 0-bind; e;m; s
nt) to all parties.

In
rement s
nt and add m to SR.

/* 1-bind s to m. */

upon re
eiving a message (ID ; 0-bind; e;m; s) from the
urrent leader for some m; s su
h that

w � s < w+WinSize and s =2 BIND

1

and ((I = ;) or (w � minfit(m) : m 2 Ig+Thresh)):

Send the message (ID ; 1-bind; e;m; s) to all parties.

Add s to BIND

1

.

/* 2-bind s to m. */

upon re
eiving n� t messages of the form (ID ; 1-bind; e;m; s) from distin
t parties that agree

on s and m, su
h that w � s < w +WinSize and s =2 BIND

2

:

Send the message (ID ; 2-bind; e;m; s) to all parties.

Add s to BIND

2

.

/* Amplify a 2-binding of s to m. */

upon dete
ting t+1 messages of the form (ID ; 2-bind; e;m; s) from distin
t parties that agree

on s and m, su
h that w � s < w +WinSize and s =2 BIND

2

:

Send the message (ID ; 2-bind; e;m; s) to all parties.

Add s to BIND

2

.

/* Commit s to m. */

upon re
eiving n� t messages of the form (ID ; 2-bind; e;m; s) from distin
t parties that agree

on s and m, su
h that s = w and a
nt � jDj and m =2 D and s 2 BIND

2

:

Output (ID ; out; a-deliver;m); in
rement w.

Add m to D, and remove it from I (if present).

stop timer.

/* Start timer. */

upon (timer not running) and (not
omplained) and (I 6= ;) and (a
nt � jDj):

start timer.

/* Complain. */

upon timeout:

if not
omplained then:

Send the message (ID ;
omplain; e) to all parties.

Set
omplained true.

/* Amplify
omplaint. */

upon dete
ting t+1 messages (ID ;
omplain; e) from distin
t parties, su
h that not
omplained :

Send the message (ID ;
omplain; e) to all parties.

Set
omplained true.

stop timer.

/* Go pessimisti
. */

upon re
eiving n� t messages (ID ;
omplain; e) from distin
t parties, su
h that
omplained :

Exe
ute the pro
edure Re
over below.

11

On
e P

i

has obtained its own strong
onsistent set for s, it signs it and sends this signed

strong
onsistent set to all parties, and
olle
ts a set M

i

of n � t signed strong
onsistent sets

from other parties. Then P

i

runs a multivalued Byzantine agreement proto
ol with input M

i

,

obtaining a
ommon set M of n� t signed strong
onsistent sets. The watermark is
omputed as

ŝ

e

= (~s �WinSize), where ~s is the maximum sequen
e number ~s for whi
h M
ontains a strong

onsistent set for ~s. We will show that no honest party
ommits a sequen
e number higher than

ŝ

e

+ (2 �WinSize) in its optimisti
 phase. And as already argued above, at least one honest party

ommits ŝ

e

in its optimisti
 phase.

After
omputing the watermark, all parties \
at
h up" to the watermark, i.e.,
ommit all

sequen
e numbers up to ŝ

e

, by simply waiting for t + 1
onsistent 2-bindings for ea
h sequen
e

number up to the watermark. By the logi
 of the proto
ol, sin
e one of these 2-bindings must

ome from an honest party, the
orre
t request is a-delivered. Sin
e one honest party has already

ommitted s in its optimisti
 phase, at least t+ 1 honest parties have already sent
orresponding

2-bindings, and these will eventually arrive.

Part 2. In the se
ond part, we deal with the requests that might or might not have been a-delivered

by some honest party in the optimisti
 phase of this epo
h. We have to ensure that if some honest

party has optimisti
ally a-delivered a request, then all honest parties a-deliver this request as well.

The sequen
e numbers of requests with this property lie in the interval ŝ

e

+ 1 : : : ŝ

e

+ 2 �WinSize.

Ea
h party makes a proposal that indi
ates what a
tion should be taken for all sequen
e numbers

in this
riti
al interval. Again, multivalued Byzantine agreement will be used to determine whi
h

of possibly several valid proposals should be a

epted.

To
onstru
t su
h a proposal for sequen
e number s, ea
h party P

i

does the following. Party P

i

sends out a signed statement indi
ating if it sent a 2-binding for that s, and if so, the
orresponding

request m. Then P

i

waits for a set of n� t \
onsistent" signatures for s, where any two signatures

that bind s to a request bind it to the same request, but we allow that some (or even all) signatures

bind s to no request. By the logi
 of the proto
ol, an honest party will eventually obtain su
h a

onsistent set, whi
h we
all a weak
onsistent set of signatures for s. If all signatures in this set

are on statements that indi
ate no 2-binding, then we say the set de�nes no request; otherwise, we

say it de�nes request m, where m is the unique request appearing among the signed statements in

the set. P

i

's proposal
onsists of a set of weak
onsistent sets of signatures for s. Any party that

is presented with su
h a set
an
on
lude the following: if the set de�nes no request, then no party

optimisti
ally
ommits s; if the set de�nes m, then if any honest party optimisti
ally
ommits s to

some m

0

, then m = m

0

. Note that if the set de�nes some request m, this does not imply that s was

ommitted optimisti
ally, and indeed, if s was not optimisti
ally
ommitted, then the adversary

an
onstru
t sets that de�ne di�erent requests.

Part 3. In the third part, we use a multivalued Byzantine agreement proto
ol to agree on a set

of additional requests that should be a-delivered this epo
h. This set will in
lude the (possibly

empty) initiation queues of at least n � t distin
t parties. This property will be used to ensure

fairness. Also, this set is guaranteed to be non-empty if no requests were previously a-delivered

(optimisti
ally or otherwise) in this epo
h. This property will be used to ensure eÆ
ien
y.

5.2.1 The re
overy pro
edure

We begin with some terminology.

For any party P

i

, and any message �, we denote by f�g

i

a signed version of the message, i.e.,

�
on
atenated with a valid signature under P

i

's publi
 key on �, along with P

i

's identity.

12

For any s � �1, a strong
onsistent set � for s is a set of t+ 1
orre
tly signed messages from

distin
t parties, ea
h of the form f(ID ; s-2-bind; e; s

0

)g

j

for some j and s

0

� s.

A valid watermark proposal M is a set of n� t
orre
tly signed messaged from distin
t parties,

ea
h of the form f(ID ; watermark; e;�

j

; s

j

)g

j

for some j, where �

j

is a strong
onsistent set of

signatures for s

j

. The maximum value s

j

appearing in these watermark messages is
alled the

maximum sequen
e number of M.

For any s � 0, a weak
onsistent set �

0

for s is a set of n � t
orre
tly signed messages from

distin
t parties | ea
h of the form f(ID ; w-2-bind; e; s;m

j

)g

j

for some j | su
h that either all

m

j

= ? (indi
ating no 2-binding for s), or there exists a request m and all m

j

are either m or ?.

In the former
ase, we say �

0

de�nes ?, and in the latter
ase, we say �

0

de�nes m.

A valid re
over proposal P is a set of n�t
orre
tly signed messages from distin
t parties ea
h of

the form f(ID ; re
over-request; e;Q

j

)g

j

for some j, where Q

j

is a set of at most BufSize requests.

The proto
ol for the pessimisti
 phase is presented in Figure 2.

6 Some Remarks on Implementation

The size limit BufSize on initiation queues and the window size WinSize may be arbitrarily
hosen.

Larger sizes in
rease the amount of
on
urrent a
tivity that is possible, and so will presumably

in
rease the typi
al performan
e of the system; however, a larger size may also de
rease performan
e

and fairness in the worst
ast.

When assigning sequen
e numbers, the leader should not pro
ess initiate requests on a �rst-

ome/�rst-served basis, but rather, should treat requests from di�erent parties in a fair man-

ner, using a \round robin" s
heduling poli
y among parties, and a �rst-
ome/�rst-serve poli
y

for a given party. Also, the value of Thresh should be
hosen large enough so that a party

does not inappropriately suspe
t a leader of being unfair. In parti
ular, one should
hoose

Thresh =

1

WinSize +

2

n � BufSize for appropriate
onstants

1

;

2

� 1 (and best determined

experimentally).

Time-out thresholds should of
ourse be
hosen large enough so that normal network delays will

not
ause a party to
omplain. At the beginning of a new epo
h, the time-out threshold should

perhaps be fairly high, slowly dropping as the epo
h progresses. The reason is that when one epo
h

ompletes, it may take some time for all honest parties to e�e
tively re-syn
hronize, and so it is

natural to expe
t some delays at the beginning of a new epo
h. This strategy is best determined

experimentally, of
ourse.

If the above strategies are implemented, then our proto
ol exhibits a
ertain stability prop-

erty. Informally, this means that the proto
ol will not transition from the optimisti
 phase to the

pessimisti
 phase of the
urrent epo
h, unless

� the
urrent leader is
orrupt,

� some messages between honest parties are signi�
antly delayed, or

� some honest parties are signi�
antly delayed waiting for a
knowledgments.

In parti
ular, unless the
urrent leader is
orrupted, the behavior of the
orrupted parties alone is

not suÆ
ient to make the proto
ol \go pessimisti
."

Stability is an important notion, sin
e one would like to avoid entering the pessimisti
 phase

of the proto
ol. Although one
ould, we do not attempt to formalize the notion of stability any

further here.

13

Figure 2: The pessimisti
 phase

/* Part 1: Re
over Potentially delivered Requests */

Send a the signed message f(ID ; s-2-bind; e;max(BIND

2

[f�1g))g

i

to all parties.

wait until re
eiving a strong
onsistent set �

i

for w � 1.

Send the signed message f(ID ; watermark; e;�

i

; w � 1)g

i

to all parties.

wait until re
eiving a valid watermark proposalM

i

.

ProposeM

i

for multivalued Byzantine agreement on a valid watermark proposalM.

Set ŝ

e

 ~s�WinSize , where ~s is the maximum sequen
e number ofM.

while w � ŝ

e

do:

wait until re
eiving t + 1 messages of the form (ID ; 2-bind; e;m;w) from distin
t

parties that agree on m, su
h that a
nt � jDj.

Output (ID ; out; a-deliver;m); in
rement w.

Add m to D, and remove it from I (if present).

/* Part 2: Re
over potentially delivered Requests */

For s ŝ

e

+ 1 to ŝ

e

+ (2 �WinSize) do:

If P

i

sent the message (ID ; 2-bind; e;m) for some m, set ~m m; otherwise, set ~m ?:

Send the signed message (ID ; w-2-bind; e; s; ~m) to all parties.

wait until re
eiving a weak
onsistent set �

0

i

for s.

Propose �

0

i

for multivalued Byzantine agreement on a weak
onsistent set �

0

for s.

Let �

0

de�ne m.

If (s � w and m 2 D) or m = ?, exit the for loop and go to Part 3.

If m =2 D then:

wait until a
nt � jDj.

Output (ID ; out; a-deliver;m); in
rement w.

Add m to D, and remove it from I (if present).

/* Part 3: Re
over undelivered Requests */

If w = 0 and I 6= ; then:

Send the message (ID ; re
over-help; e; I) to all parties.

If w = 0 and I = ; then:

wait until re
eiving a message (ID ; re
over-help; e;Q), su
h that Q is a non-empty

set of at most BufSize requests, and Q \D = ;.

If w 6= 0 or I 6= ;, then set Q I.

Send the signed message f(ID ; re
over-request; e;Q)g

i

to all parties.

wait until re
eiving a valid re
over proposal P

i

.

Propose P

i

for multivalued Byzantine agreement on a valid re
over proposal P .

Sequen
e through the request set of P in some deterministi
 order, and for ea
h su
h request

m =2 D, do the following:

wait until a
nt � jDj.

Output (ID ; out; a-deliver;m); in
rement w.

Add m to D, and remove it from I (if present).

/* Start New Epo
h */

Set e e+ 1; l (e mod n) + 1; w s
nt 0.

Set SR BIND

1

 BIND

2

 ;.

Set
omplained false .

For ea
h m 2 I:

Send the message (ID ; initiate; e;m) to the leader.

Set it(m) 0.

14

7 Analysis

If honest party P

i

enters epo
h e, let D

(i)

e

denote the sequen
e of requests that honest party P

i

a-delivered at the point in time where it entered this epo
h. We say
onsensus holds on entry to

epo
h e if for any two honest parties P

i

and P

j

that enter epo
h e, D

(i)

e

= D

(j)

e

. If
onsensus holds

on entry to epo
h e, and any honest party does enter epo
h e, we denote by D

e

the
ommon value

of the D

(i)

e

, and we denote by N

e

the length of D

e

.

Re
all that we say that an honest party P

i

ommits s to m in epo
h e, if m is the sth request

(
ounting from 0) that it a-delivered in this epo
h, optimisti
ally or pessimisti
ally. If this o

urs

in the optimisti
 phase, we say P

i

optimisti
ally
ommits s to m.

For s � 0, we say an honest party is s-blo
ked if it has a-delivered s

0

� s requests, and has not

yet re
eived s

0

a
knowledgments.

Lemma 1. In any epo
h, if two honest parties 2-bind a sequen
e number s, then they 2-bind s to

the same request.

Moreover, if for some s;m;m

0

, one honest party re
eives a set of t+1 2-bindings of s to m and

one honest party (possible the same one) re
eives a set of t+1 2-bindings of s to m

0

, then m = m

0

.

Proof. This is a fairly standard argument. If some honest party 2-binds s to m, then some honest

party (not ne
essarily the same one) has re
eived n � t 1-bindings of s to m. But sin
e any two

sets of n� t parties must
ontain a
ommon honest party, and no party 1-binds a sequen
e number

more than on
e, if one honest party re
eives n� t 1-bindings of s to m, and another re
eives n� t

1-bindings of s to m

0

, then m = m

0

. That proves the �rst statement.

The se
ond statement follows from the �rst, and the fa
t that any set of t + 1 parties must

ontain an honest party. 2

Lemma 2. If all honest parties have entered epo
h e, and all messages and timeouts have been

delivered, and one honest party enters the pessimisti
 phase of the proto
ol in this epo
h, then all

honest parties have gone pessimisti
 in epo
h e.

Proof. An honest party enters the pessimisti
 phase of an epo
h if it re
eives n � t
omplaint

messages. This implies that at least t+1 honest parties have sent a
omplaint message, thus every

honest party will eventually re
eive at least t + 1
omplaint messages. This will
ause all honest

parties to send out
omplaint messages, thus all honest parties eventually re
eive at least n � t

omplaints and thus will go pessimisti
. 2

Lemma 3. Suppose that
onsensus holds on entry to some epo
h e, that some honest party has

entered this epo
h, and that no honest party has gone pessimisti
 in this epo
h. The following

onditions hold.

lo
al
onsisten
y: If some honest party
ommits s to m, any honest party that also
ommits s,

also
ommits s to m.

lo
al
ompleteness: If some honest party
ommits s to m, and all messages and timeouts have

been delivered, and all honest parties have entered epo
h e, and no honest party is (N

e

+ s)-

blo
ked, then all honest parties have
ommitted s.

lo
al deadlo
k-freeness: If all messages, timeouts, and a
knowledgments have been delivered,

and all honest parties have entered epo
h e, then at most t honest parties have non-empty

initiation queues.

15

lo
al unique delivery: Any honest party a-delivers ea
h request at most on
e in this epo
h.

Proof. If some honest party
ommits s to m, then it has re
eived n � t 2-bindings of s to m. At

least t + 1 of these are from honest parties. Moreover, by Lemma 1, any set of t + 1
onsistent

2-bindings for s that an honest party re
eives are 2-bindings to s.

Lo
al
onsisten
y is now immediate.

If lo
al
ompleteness does not hold, let us
hoose s to be the minimal s for whi
h this it does

not hold.

Consider any honest party P

i

. We want to show that in fa
t, P

i

has
ommitted s, yielding a

ontradi
tion.

By the minimality of s, it is easy to verify that the lo
al value of w for any honest party P

j

is

at least s. Sin
e t + 1 honest parties have 2-bound s to m, these 2-bindings will be re
eived at a

point in time where s lies in P

j

's window. So if P

j

will itself 2-bind s to m. Therefore all honest

parties have 2-bound s to m, and P

i

has re
eived these 2-bindings while s was in its sliding window.

Be
ause
onsensus holds on entry to epo
h e, and by the
onsisten
y part of this lemma, and by

the minimality of s, it follows that all honest parties' D sets are equal at the point in time when

w = s (lo
ally), and in parti
ular m =2 D at this point in time, and so is not \�ltered out" as a

dupli
ate. Also, P

i

has re
eived suÆ
ient a
knowledgments, and so
ommits s to m.

Suppose lo
al deadlo
k-freeness does not hold. Then the t + 1 honest parties would
ertainly

have sent
omplaint messages, and it is easy to verify that this would eventually
ause all parties

to
omplain, and hen
e go pessimisti
. This
ontradi
ts our assumption that no party has gone

pessimisti
.

Unique delivery is
lear from inspe
tion, as dupli
ates are expli
itly \�ltered" in the optimisti

phase. 2

Lemma 4. If all honest parties have entered the pessimisti
 phase of epo
h e, and all messages

and timeouts have been delivered, then all honest parties have agreed on a watermark ŝ

e

.

Proof. When an honest party P

i

enters Part 1 of the pessimisti
 phase in some epo
h, it will

eventually obtain a strong
onsistent set �

i

for w � 1. To see this, observe that when P

i

waits for

strong
onsistent set �

i

, it has already a-delivered sequen
e number w � 1, and hen
e has re
eived

n � t 2-bindings for w � 1. Of these, at least t + 1
ame from honest parties who, when they

eventually enter the pessimisti
 phase for this epo
h, will send an s-2-bind message with a sequen
e

number at least w � 1. These t+ 1 s-2-bind messages form a strong
onsistent set for w � 1.

Thus, all honest parties eventually obtain strong
onsistent sets, and send
orresponding water-

mark messages. Thus, all honest parties eventually obtain valid watermark proposals, and enter the

multivalued Byzantine agreement with these proposals, and so by the liveness property of Byzan-

tine agreement, all parties eventually agree on a
ommon watermark proposal M with maximum

sequen
e number ~s = ŝ

e

+WinSize. 2

Lemma 5. If some honest party has
omputed ŝ

e

, then

(i) some honest party has optimisti
ally
ommitted sequen
e number ŝ

e

, and

(ii) no honest party has optimisti
ally
ommitted sequen
e number ŝ

e

+ 2 �WinSize + 1.

16

Proof. Let ~s = ŝ

e

+WinSize. To prove (i), note that M
ontains a strong
onsistent set for ~s. The

existen
e of a strong
onsistent set for ~s implies that at least one honest party 2-bound ~s, whi
h

implies that this party has optimisti
ally
ommitted ŝ

e

, be
ause of the sliding window logi
.

To prove (ii), suppose some honest party P

j

optimisti
ally
ommits ŝ

e

+ 2 � WinSize + 1 =

~s + WinSize + 1. Then by the logi
 of the optimisti
 proto
ol, P

j

must have re
eived n � t 2-

bindings for ~s+WinSize + 1, and so there must be a set S of t+ 1 honest parties who sent these

2-bindings. By the logi
 of the sliding window, ea
h party in S has optimisti
ally
ommitted ~s+1,

and so has sent out a strong
onsistent set for a sequen
e number greater than ~s. By a standard

ounting argument, M must
ontain a
ontribution from some member of S, and therefore the

maximum sequen
e number of M is greater than ~s, whi
h is a
ontradi
tion. 2

Lemma 6. Suppose ŝ

e

has been
omputed by some honest party. Let s be in the range ŝ

e

+1 : : : ŝ

e

+

2 �WinSize.

(i) If all honest parties generate w-2-bind messages for s, these messages form a weak
onsistent

set for s.

(ii) If one honest party optimisti
ally
ommits s to m, then any weak
onsistent set for s de�nes

m.

Proof. Part (i) follows dire
tly from Lemma 1.

To prove (ii), if an honest party optimisti
ally
ommitted s to m in epo
h e, then he re
eived

t+ 1 2-bindings of s to m from honest parties. Any set of n� t w-2-bind messages must
ontain a

ontribution from one of these t+ 1 parties, and hen
e de�nes m. 2

Lemma 7. Suppose that
onsensus holds on entry to some epo
h e, and that some honest party

has entered the pessimisti
 phase in this epo
h.

lo
al
onsisten
y: If some honest party
ommits s to m, any honest party that also
ommits s,

also
ommits s to m.

lo
al
ompleteness: If some honest party
ommits s to m, and all messages and timeouts have

been delivered, and all honest parties have entered epo
h e, and no honest party is (N

e

+ s)-

blo
ked, then all honest parties have
ommitted s.

lo
al deadlo
k-freeness: If all messages, timeouts, and a
knowledgments have been delivered,

and all honest parties have entered epo
h e, then all parties have entered epo
h e+ 1.

boundary
onsisten
y: If some honest party P

i

ommits s in epo
h e, and some honest party P

j

has entered epo
h e+ 1, then P

j

ommits s in epo
h e.

e+ 1
onsensus: Consensus holds on entry to epo
h e+ 1.

at least one delivery: If some party enters epo
h e + 1, then N

e+1

� N

e

+ 1 (i.e., at least one

request is delivered in epo
h e).

boundary
ompleteness: If some honest party enters epo
h e+1, and all messages and timeouts

have been delivered, and all honest parties have entered epo
h e, and no honest party is

(N

e+1

� 1)-blo
ked, then all honest parties have entered epo
h e+ 1.

lo
al unique delivery: Any honest party a-delivers ea
h request at most on
e in this epo
h.

17

Proof (sket
h). The same proof in the lo
al
onsisten
y part of Lemma 3 implies in this
ase as

well that any two parties that optimisti
ally
ommit s,
ommit s to the same request.

If one honest party goes pessimisti
, then by Lemma 2, all honest parties eventually go pes-

simisti
. By Lemma 4, all honest parties eventually
ompute a
ommon watermark ŝ

e

.

By Lemma 5, part (i), all parties will eventually move through the loop in Part 1 of the

pessimisti
 phase. To see this, note that sin
e some honest party has optimisti
ally
ommitted s

for all s up to ŝ

e

, t + 1 honest parties have 2-bound s to m, and so when these 2-bindings are

delivered to any honest party, that party
an
ommit s. Note also that these
ommitments are

onsistent, and no party a-delivers a request twi
e, sin
e we are only delivering requests that have

been optimisti
ally a-delivered, and these are guaranteed to be
onsistent and dupli
ate-free.

By Lemma 6, part (i), all parties will eventually move through the loop in Part 2 of the

pessimisti
 phase, sin
e all of the weak
onsistent sets that they need will eventually be available.

Lemma 5, part (ii), and Lemma 6, part (ii), together imply that any request that is optimisti
ally

a-delivered by some honest party will be a-delivered in Part 2 of the pessimisti
 phase in the same

order by all honest parties.

Note that on entry to Part 3,
onsensus holds: all honest parties have exa
tly the same value

D as they rea
h this point. If no requests were a-delivered either optimisti
ally or in Parts 1 or 2,

then all honest parties will send out a non-empty re
over request. This will ensure that at least

one request is a-delivered in this epo
h. To implement this strategy, if an honest party's initiation

queue is empty, it waits for an appropriate re
over help message. To see that this wait eventually

terminates, note that one honest party, say P

i

, must have timed out while holding a non-empty

initiation queue (otherwise, no party
ould have gone pessimisti
). But sin
e no requests were

a-delivered prior to Part 3, P

i

sends out a re
over help message. Thus, all honest parties move

through Part 3 of the pessimisti
 phase
onsistently and without obstru
tion.

All of the
laims in the lemma
an be easily veri�ed, given the above dis
ussion. 2

Theorem 8. Our proto
ol satis�es the agreement, total order, integrity, eÆ
ien
y, and validity

properties of De�nition 1 for atomi
 broad
ast.

Proof. We �rst de�ne some auxiliary notions.

Let us say that an honest party P

i

globally
ommits a sequen
e number s to a request m, if m

is the sth request (
ounting from zero) a-delivered by P

i

.

We then de�ne
onsisten
y,
ompleteness, deadlo
k-freeness, and unique delivery as follows.

onsisten
y: If some honest party globally
ommits s to m, any honest party that also globally

ommits s, also globally
ommits s to m.

ompleteness: If some honest party globally
ommits s to m, and all messages and timeouts

have been delivered, and no honest party is s-blo
ked, then all honest parties have globally

ommitted s.

deadlo
k-freeness: If all messages, timeouts, and a
knowledgments have been delivered, then all

honest parties are in the optimisti
 phase of the same epo
h, and at most t honest parties

have non-empty initiation queues.

unique delivery: Any honest party a-delivers ea
h request at most.

One
an prove by a
ompletely routine indu
tion argument, using Lemmas 7 and 3, that
on-

sisten
y,
ompleteness, deadlo
k-freeness, and unique delivery hold.

18

It is
lear that
onsisten
y,
ompleteness, and deadlo
k-freeness imply the total order, agreement,

and validity properties in De�nition 1.

The integrity property trivially follows from unique delivery, and by simple inspe
tion of the

proto
ol along with the fa
t that the multivalued validated Byzantine agreement proto
ol also

satis�es a
orresponding integrity property.

EÆ
ien
y is also follows from the at least one delivery property in Lemma 7, and by simple

inspe
tion of the proto
ol. 2

Theorem 9. The fairness
ondition of De�nition 1 holds with � = WinSize+Thresh+2 �PBound,

where PBound = 2 �WinSize + (n� t) � BufSize.

Proof. Observe that PBound is an upper bound on the number of requests that
an be a-delivered

by any honest party in Parts 2 and 3 of the pessimisti
 phase of the proto
ol.

We refer the reader to x2.3 for de�nitions of the values B

(i)

, D

(i)

, and D

�

that are relevant to

the fairness de�nition.

Let us re
all here the meaning of the phrase \at time � ." We
onsider the sequen
e of events

E

1

; : : : ; E

k

during the adversary's atta
k, where ea
h event but the last is either an a-broad
ast or

a-delivery by an honest party, and the last event is a spe
ial \end of atta
k" event. The phrase \at

time � ," for 1 � � � k, refers to the point in time just before event E

�

o

urs.

In our analysis, we need to
onsider the values of several state variables at time � besides B

(i)

,

D

(i)

, and D

�

. For these purposes, we simply take the above interpretation of time quite literally,

so that the value of any state variable at time � is the value it has at the point in time just prior

to event E

�

.

At any time � , let us de�ne D

�

(�) to be the value of D

�

at time � . Also, de�ne e

max

(�) to be

the maximum value of the epo
h number e for any honest party at time � .

Suppose that at some time �

0

, there is a set S of t+ 1 honest parties su
h that for all P

j

2 S,

the sets B

(j)

nD

�

are non-empty at time �

0

. For ea
h P

j

in S, let m

j

denote the oldest request in

B

(j)

nD

�

at time �

0

.

Clearly, either m

j

lies in P

j

's initiation queue at time �

1

, or P

j

is
urrently in the pessimisti

phase of some epo
h, its initiation queue is empty, and m

j

will enter its initiation queue as soon

as P

j

enters its next epo
h.

Consider any point in time �

1

> �

0

su
h that jD

�

(�

1

)�D

�

(�

0

)j = PBound . (If there is no su
h

time �

1

, we are done.) If some m

j

is in D

�

(�

1

), we are done; so we assume from now on that no m

j

is in D

�

(�

1

).

If some honest party is in the pessimisti
 phase of epo
h e

max

(�

0

) at time �

0

, then sin
e jD

�

(�

1

)�

D

�

(�

0

)j = PBound , we must have e

max

(�

1

) > e

max

(�

0

). Therefore, for all parties P

j

2 S that are

in epo
h e

max

(�

1

) at time �

1

, it must hold that m

j

is in P

j

's initiation queue at time �

1

.

At any point in time after �

1

, if m

j

lies in P

j

's initiation queue, the value of it(m

j

) is the

minimum among all requests in its initiation queue.

We de�ne the quantity it

max

as follows: if no party in S is in epo
h e

max

(�

1

) at time �

1

, then

it

max

is 0; otherwise, it

max

is the maximum value of it(m

j

) for any party P

j

in S that is in epo
h

e

max

(�

1

) at time �

1

.

An honest party that a-delivers \too many" requests, none of whi
h lie in its initiation queue,

will refuse to send 1-bindings. The pre
ise statement of this is as follows.

Consider any point in time �

2

> �

1

. For any party P

j

2 S, if P

j

has not a-delivered m

j

at time �

2

, then P

j

has not generated any 1-bindings in epo
h e

max

(�

1

) for sequen
e numbers

it

max

+WinSize + Thresh or above at time �

2

.

19

Further suppose that at time �

2

, no m

j

is in D

�

(�

2

). Then we
laim that no party has entered

epo
h e

max

(�) + 1. To see this, note that in Part 3 of the pessimisti
 phase, sin
e a valid re
over

proposal must
ontain
ontributions from n � t parties, one of these must
ome from a party P

j

in S, who would have
ontributed a re
over request
ontaining m

j

. Also, sin
e no party P

j

in

S issued 1-bindings for sequen
e numbers it

max

+ WinSize + Thresh or above, no honest party

ould have optimisti
ally
ommitted su
h a sequen
e number. Therefore, jD

�

(�

2

) � D

�

(�

1

)j �

WinSize + Thresh + PBound . 2

Referen
es

[ACBMT95℄ E. An
eaume, B. Charron-Bost, P. Minet, and S. Toueg. On the formal spe
i�
a-

tion of group membership servi
es. Te
hni
al Report TR95-1534, Cornell University,

Computer S
ien
e Department, August 25, 1995.

[Ben83℄ M. Ben-Or. Another advantage of free
hoi
e:
ompletely asyn
hronous agreement

proto
ols. In Pro
. 2nd ACM Symp. on Prin
iples of Distributed Computing, pages

27{30, 1983.

[BR93℄ M. Bellare and P. Rogaway. Random ora
les are pra
ti
al: A paradigm for design-

ing eÆ
ient proto
ols. In Pro
. 1st ACM Conf. on Computer and Communi
ations

Se
urity, pages 62{73, 1993.

[Bra84℄ G. Bra
ha. An asyn
hronous [(n � 1)=3℄-resilient
onsensus proto
ol. In Pro
. 3rd

ACM Symp. on Prin
iples of Distributed Computing, pages 154{162, 1984.

[Cas00℄ M. Castro. Pra
ti
al Byzantine Fault Toleran
e. PhD thesis, Massa
husetts Institute

of Te
hnology, November 2000.

[CKPS01℄ C. Ca
hin, K. Kursawe, F. Petzold, and V. Shoup. Se
ure and eÆ
ient asyn
hronous

broad
ast proto
ols. Cryptology ePrint Ar
hive, Report 2001/006, 2001. http://

eprint.ia
r.org.

[CKS00℄ C. Ca
hin, K. Kursawe, and V. Shoup. Random Ora
les in Constantinople: Pra
ti
al

Asyn
hronous Byzantine Agreement using Cryptography. In Pro
. 19th ACM Symp.

on Prin
iples of Distributed Computing, pages 123{132, 2000.

[CL99a℄ M. Castro and B. Liskov. Authenti
ated Byzantine fault toleran
e without publi
-key

ryptography. Te
hni
al Memo MIT/LCS/TM-589, MIT Laboratory for Computer

S
ien
e, June 1999.

[CL99b℄ M. Castro and B. Liskov. Pra
ti
al Byzantine fault toleran
e. In Pro
. 3rd Symp.

Operating Systems Design and Implementation, 1999.

[CR93℄ R. Canetti and T. Rabin. Fast asyn
hronous Byzantine agreement with optimal

resilien
e. In Pro
. 25th ACM Symp. on Theory of Computing, pages 42 { 51, 1993.

[DGG00℄ A. Doudou, R. Guerraoui, and B. Garbinato. Abstra
tions for devising Byzantine-

resilient state ma
hine repli
ation. In Pro
. 19th IEEE Symp. on Reliable Distributed

Systems, 2000.

20

[FLP85℄ M. J. Fis
her, N. A. Lyn
h, and M. S. Paterson. Impossibility of distributed
onsensus

with one faulty pro
ess. J. ACM, 32(2):374{382, 1985.

[KMMS98℄ K. P. Kihlstrom, L. E. Moser, and P. M. Melliar-Smith. The Se
ureRing proto
ols for

se
uring group
ommuni
ation. In Pro
. 31st IEEE International Conf. on System

S
ien
es, pages 317{326, 1998.

[Rab83℄ M. O. Rabin. Randomized Byzantine generals. In Pro
. 24th Symp. on Foundations

of Computer S
ien
e, pages 403{409, 1983.

[Rei94℄ M. K. Reiter. Se
ure agreement proto
ols: Reliable and atomi
 group multi
ast in

Rampart. In Pro
. 2nd ACM Conf. on Computer and Communi
ation Se
urity, pages

68{80, 1994.

[TC84℄ R. Turpin and B. A. Coan. Extending binary Byzantine Agreement to multivalued

Byzantine Agreement. Information Pro
essing Letters, 18(2):73{76, 1984.

21

