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Abstrat

This paper presents a new protool for atomi broadast in an asynhronous network with a

maximal number of Byzantine failures. It guarantees both safety and liveness without making

any timing assumptions or using any type of \failure detetor."

Under normal irumstanes, the protool runs in an \optimisti mode," with extremely low

message and omputational omplexity | essentially, just performing a Braha broadast for

eah request. In partiular, no potentially expensive publi-key ryptographi operations are

used. In rare irumstanes, the protool may briey swith to a \pessimisti mode," where

both the message and omputational omplexity are signi�antly higher than in the \optimisti

mode," but are still reasonable.

Keywords: Asynhronous Consensus, Byzantine Faults, Atomi Broadast, State Mahine

Repliation

1 Introdution

Atomi Broadast is a fundamental building blok in fault tolerant distributed omputing. By

ordering broadast requests in suh a way that two broadast requests are reeived in the same

order by all honest reipients, a synhronization mehanism is provided that deals with many of

the most problemati aspets of asynhronous networks.

We present a new protool for atomi broadast in an asynhronous network with a maximal

number of Byzantine failures. It guarantees both safety and liveness without making any timing

assumptions or using any type of \failure detetor," and its amortized message and omputational

omplexity is essentially the same as that of a simple \Braha broadast."

The FLP \impossibility" result [FLP85℄ implies that there is no protool for Byzantine agree-

ment that runs in an a priori bounded number of steps, and guarantees both safety and liveness.

Moreover, it is fairly well known that Byzantine agreement and atomi broadast are equivalent,

so that any protool for solving atomi broadast ould be used to solve Byzantine agreement, and

vie versa. However, this impossibility result does not rule out randomized protools for whih the

expeted number of steps is bounded.

There are several probabilisti protools for asynhronous Byzantine agreement in the literature.

An early protool by Ben-Or [Ben83℄ requires time exponential in the number of parties. Canetti

and Rabin [CR93℄ present a polynomial-time protool for asynhronous Byzantine agreement; how-

ever, their protool annot be used in pratie, beause of its enormous message omplexity. Cahin
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et al. [CKS00℄ give a fairly pratial polynomial-time protool for asynhronous Byzantine agree-

ment that makes use of publi-key ryptographi primitives that an be proven orret in the

\random orale" model [BR93℄, assuming a omputationally bounded adversary. The protool in

[CKS00℄ relies on a trusted dealer during system set-up, but after this, an arbitrary number of

instanes of the protool an be exeuted. Building on [CKS00℄, the paper [CKPS01℄ presents a

fairly pratial protool for atomi broadast. In some settings, the atomi broadast protool in

[CKPS01℄ may be adequate; however, beause of its heavy reliane on publi-key ryptography, it

an easily beome \ompute bound."

Our protool is inspired by the innovative work of Castro and Liskov [CL99b, CL99a, Cas00℄.

Like their protool, our protool works in two phases: an optimisti phase and a pessimisti phase.

The optimisti phase is very \lightweight" | eah request is proessed using nothing more than

a \Braha broadast" [Bra84℄ | in partiular, no publi-key ryptography is used. As long as

the network is reasonably behaved, the protool remains in the optimisti phase | even if some

number of parties, barring a designated leader, are orrupted. If there are unexpeted network

delays, or the leader is orrupted, several parties may \time out," shifting the protool into the

pessimisti phase. The pessimisti phase is somewhat more expensive than the optimisti phase |

both in terms of ommuniation and omputational omplexity. Nevertheless, it is still reasonably

pratial, although ertainly not as eÆient as the optimisti phase. The pessimisti phase leans

up any potential \mess" left by the urrent leader, after whih the optimisti phase starts again

with a new leader.

The optimisti phase of our protool is essentially the same as that of Castro and Liskov.

Therefore, we expet that in pratie, our protool is just as eÆient as theirs. However, our

pessimisti phase is quite di�erent, and makes use of randomized Byzantine agreement as well

as some additional publi-key ryptographi operations. The pessimisti phase of Castro and

Liskov makes use of publi-key ryptography as well, and it is not lear if their pessimisti phase is

signi�antly more or less eÆient than ours | determining this would require some experimentation.

Castro and Liskov's pessimisti protool is ompletely deterministi, and hene is subjet to the

FLP impossibility result. Indeed, although their protool guarantees safety, it does not guarantee

liveness, unless one makes additional timing assumptions. Our protool is randomized, and it guar-

antees both safety and liveness without making any timing assumptions at all, and without relying

on any kind of \failure detetor." This is a not just a theoretial issue: if the timing mehanism

does not work properly in Castro and Liskov's protool, the protool may yle inde�nitely, without

doing anything useful, whereas in our protool, the performane \graefully" degrades.

1.1 Other Related Work

There is a rih literature on ordering broadast hannels, inluding several implementations and a

broad theoretial basis. However, most work in the literature is done in the rash-failure model;

muh less work has been done in the Byzantine failure model.

Rampart [Rei94℄ and SeureRing [KMMS98℄ diretly transfer rash-failure protools into the

Byzantine setting by using a modi�ed failure detetor along with digital signatures. The disadvan-

tage of this approah is that it is relatively expensive, as a large number of publi-key ryptographi

operations need to be performed. Furthermore, there are attaks on the failure detetor [ACBMT95℄

that an violate the safety of these protools.

The BFS system by Castro and Liskov [CL99b℄ addresses these problems. As already mentioned,

they only require timing assumptions to guarantee liveness, while the safety properties of the

protool hold regardless of timing issues. A similar approah is taken by Doudou et al. [DGG00℄,
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but their protool is desribed and analyzed in terms of a Byzantine failure detetor. While both

[CL99b℄ and [DGG00℄ still rely extensively on expensive publi-key ryptographi operations, the

extension of BFS in [CL99a, Cas00℄ relies muh less on publi-key ryptography.

2 System Model and Problem Statement

2.1 Formal System Model

Our formal system model and de�nitions of seurity are taken from [CKS00, CKPS01℄, whih

models attaks by omputationally bounded adversaries. We refer the reader to [CKPS01℄ for

omplete details. We give only a brief summary here.

We assume a network of n parties P

1

; : : : ; P

n

, t of whih are orrupted and fully ontrolled by

an adversary. We shall assume that t < n=3. We also assume a trusted dealer that is needed only at

system set-up time. Informally, the adversary also has full ontrol over the network; the adversary

may insert, dupliate, and reorder messages at will.

More formally, at the beginning of the attak, the trusted dealer is run, initializing the internal

state of the honest parties; the initial state information for the orrupted parties is given to the

adversary. The attak then proeeds in steps. In eah step of the attak, the adversary delivers

a single message to an honest party, upon reeipt of whih the party updates its internal state

and generates one or more response messages. These response messages indiate their origin and

intended destination; however, the adversary is free to do with these messages what he wishes: to

deliver them when he wishes, in any order that he wishes; he may also deliver them more than

one, or not all. We do assume, however, that the adversary may not modify messages or \fake"

their origin. This assumption is reasonable, sine this property an be e�etively enfored quite

heaply using message authentiation odes.

We assume that the adversary's orruptions are stati: the set of orrupted parties is hosen

one and for all at the very beginning of the attak. Making this assumption greatly simpli�es the

seurity analysis, and allows one to make use of ertain ryptographi primitives that ould not

otherwise be proven seure.

Although we have not done so, we believe it should be straightforward to prove that our atomi

broadast protool is seure in a adaptive orruption model, assuming all underlying ryptographi

primitives are seure in this model (in partiular, the ommon oin as used in [CKS00, CKPS01℄).

Beause we want to use ryptographi tehniques, it does not make sense to onsider \in�nite

runs" of protools, but rather, we only onsider attaks that terminate after some bounded amount

of steps. The number of steps in the adversary's attak, as well as the omputational omplexity

of the adversary, are assumed to be bounded by a polynomial in some seurity parameter.

Our protools are de�ned suh that they are only guaranteed to make progress to the extent to

whih the adversary atually delivers messages. To ensure that suh a protool behaves well in pra-

tie, an implementation would have to resend messages until reeiving (seure) aknowledgments

for them. We do not disuss any of these implementation details any further in this paper.

In our formal model, there is no notion of time. However, in making the transition from the

optimisti phase to the pessimisti phase of our protool, we need a way to test if an unexpetedly

large amount of time has passed sine some progress has been made by the protool. That is,

we need a \time out" mehanism. This is a bit diÆult to represent in a formal model in whih

there is no notion of time. Nevertheless, we an e�etively implement suh a \time out" as follows:

to start a timer, a party simply sends a message to itself, and when this message is delivered to

that party, the lok \times out." By representing time outs in this way, we e�etively give the
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adversary omplete ontrol of our \lok."

2.2 Some Tehnialities

As already mentioned above, there is a seurity parameter � = 0; 1; 2 : : : that is used to instantiate

a protool instane. All adversaries and protools an be modeled as Turing mahines that run in

time bounded by a polynomial in �. We make the onvention that the parameter n is bounded

by a �xed polynomial in �, independent of the adversary. We make a similar assumption on the

sizes of all messages in the protool: exessively large messages are simply never generated by or

delivered to honest parties.

We de�ne the message omplexity of a protool as the number of messages generated by all

honest parties. This is a random variable that depends on the adversary and �. We denote it by

MC (ID), where ID identi�es a partiular protool instane.

We say that a funtion �, mapping non-negative integers to non-negative reals, is negligible if

for all  > 0, there exists k

0

() � 0, suh that for all k � k

0

(): �(k) � k

�

.

We say that some quantity is negligible, if it is bounded by a negligible funtion in �.

For a given protool, a protool statisti X is a family of real-valued, non-negative random

variables fX

A

(�)g, parameterized by adversary A and seurity parameter �, where eah X

A

(�)

is a random variable on the probability spae indue by A's attak on the protool with seurity

parameter �. We allX a bounded protool statisti if for all adversaries A, there exists a polynomial

p

A

, suh that for all � � 0: X

A

(�) � p

A

(�).

The message omplexity MC (ID) is an example of a bounded protool statisti.

A bounded protool statisti X is alled uniformly bounded (by p) if there exists a �xed poly-

nomial p, suh that for all adversaries A, there is a negligible funtion �

A

, suh that for all � � 0:

Pr[X

A

(�) > p(�)℄ � �

A

(�):

A bounded protool statisti X is alled probabilistially uniformly bounded (by p) if there exists

a �xed polynomial p and a �xed negligible funtion Æ, suh that for all adversaries A, there is a

negligible funtion �

A

, suh that for all k � 0 and � � 0:

Pr[X

A

(�) � kp(�)℄ � Æ(k) + �

A

(�):

IfX is probabilistially uniformly bounded by p, then for all adversaries A, E[X

A

(�)℄ = O(p(�)),

where the big-`O' onstant is independent of the adversary. Additionally, if Y is probabilistially

uniformly bounded by q, then X � Y is probabilistially uniformly bounded by p � q, and X + Y is

probabilistially uniformly bounded by p+ q. Thus, probabilistially uniformly bounded statistis

are losed under polynomial omposition, whih makes them useful for analyzing the omposition

of several protools. The same observations apply to uniformly bounded statistis as well.

2.3 Formal De�nition of Atomi Broadast

Our de�nition of atomi broadast omes diretly from [CKPS01℄, with some modi�ation.

As we de�ne it, an atomi broadast primitive o�ers one or several broadast hannels, eah

spei�ed by some hannel identi�er ID . Before a party an use a hannel, it must be expliitly

opened. Formally speaking, this is done by the adversary.

At any point, the adversary may deliver the message (ID ; in; a-broadast;m) to some honest

party, where m is an arbitrary bit string (of bounded size). We say the party a-broadasts the

request m at this point.
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At any point, an honest party may generate an output message (ID ; out; a-deliver;m), whih

is given to the adversary. We say the party a-delivers the request m at this point.

In the above two paragraphs, the \adversary" may very well represent a higher-level protool

that the honest party is running, but sine we want our atomi broadast protool to work in an

arbitrary environment, we simply absorb this higher-level protool into the adversary.

As a matter of terminology, we adopt the following onvention: a \request" is something that

is a-broadast or a-delivered, while a \message" is something that is sent or delivered in the imple-

mentation of the protool.

To give higher level protools the option to blok the atomi broadast protool, the delivering

party waits for an aknowledgment after every a-delivery of a request. That is, the number of

a-delivered requests is equal to either the number of aknowledgments or the number of aknowl-

edgments plus one. This is neessary so that higher-level protools may satisfy a property analogous

to the eÆieny property (see De�nition 1 below). Without this ability to synhronize protool

layers, a low-level atomi broadast protool ould generate an arbitrary amount of network traÆ

without a higher-level protool ever doing anything useful.

At any point in time, for any honest party P

i

, we de�ne B

(i)

to be the set of requests that P

i

has a-broadast, and we de�ne D

(i)

to be the set of requests that P

i

has a-delivered. At any point

in time, we also de�ne D

�

= [

honest P

i

D

(i)

.

For an honest party P

i

, we say that one request in B

(i)

is older than another if P

i

a-broadast

the �rst request before it a-broadast the seond request.

In disussing the values of the sets B

(i)

, D

(i)

, or D

�

at partiular points in time, we onsider the

sequene of events E

1

; : : : ; E

k

during the adversary's attak, where eah event but the last is either

an a-broadast or a-delivery by an honest party, and the last event is a speial \end of attak" event.

The phrase \at time � ," for 1 � � � k, refers to the point in time just before event E

�

ours.

Reall that MC (ID) is the message omplexity of a protool.

De�nition 1 (Atomi Broadast). A protool for atomi broadast satis�es the following on-

ditions, for all hannels ID and all adversaries, with all but negligible probability.

Agreement: If some honest party has a-delivered m on hannel ID , then all honest parties a-

deliver m on hannel ID , provided the adversary opens hannel ID for all honest parties,

delivers all assoiated messages, and generates aknowledgments for every party that has not

yet a-delivered m on hannel ID .

Total Order: Suppose one honest party has a-delivered m

1

; : : : ;m

s

on hannel ID , and another

honest party has a-delivered m

0

1

; : : : ;m

0

s

0

on hannel ID with s � s

0

. Then m

l

= m

0

l

for

1 � l � s.

Validity: There are at most t honest parties P

j

with B

(j)

nD

�

6= ;, provided the adversary opens

hannel ID for all honest parties, delivers all assoiated messages, and generates all aknowl-

edgments.

Fairness: There exist a quantity �, whih is bounded by a �xed polynomial in the seurity pa-

rameter (independent of the adversary), suh that the following holds. Suppose that at some

time �

1

, there is a set S of t + 1 honest parties, suh that for all P

j

2 S, the set B

(j)

nD

�

is

non-empty. Suppose that there is a later point in time �

2

suh that the size of D

�

inreases

by more than � between times �

1

and �

2

. Then there is some P

j

2 S, suh that the oldest

request in B

(j)

nD

�

at time �

1

is in D

�

at �

2

.
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EÆieny: At any point in time, the quantity MC (ID)=(jD

�

j + 1) is probabilistially uniformly

bounded.

Integrity: Every honest party a-delivers a request m at most one on hannel ID . Moreover, if

all parties follow the protool, then m was previously a-broadast by some party on hannel

ID .

We stress that the above properties are to be interpreted as properties of a omplete run of

the adversary's attak. That is, the adversary's attak is a probabilisti experiment de�ned on

the probability spae onsisting of the random hoies of the dealer, the honest parties, and the

adversary. The outome of this experiment is a omplete history of this attak, and the above

properties are events in the above probability spae that should our with all but negligible

probability.

Validity and fairness omplement one another: validity ensures that a request that is a-broadast

by t+1 honest parties is a-delivered provided all messages and aknowledgments are delivered, and

fairness implies that suh a request is a-delivered reasonably quikly (relative to other requests) if

it is a-delivered at all. One annot expet to ahieve a stronger notion of fairness, sine if only t or

fewer honest parties a-broadast a request, an adversary an shedule messages so that the system

runs an arbitrary amount of time while keeping these parties ompletely ut o� from the rest of

the system.

3 Multivalued Validated Byzantine Agreement

Our protool builds on top of multivalued validated Byzantine agreement (i.e., the agreement is

not restrited to a binary value), as de�ned and implemented in [CKPS01℄. Similarly to atomi

broadast, every instane of suh a protool has a partiular ID . As opposed to some protools in

the literature [Rab83, TC84℄, the agreement protool we need is not allowed to fall bak on a default

value; the �nal agreement value must be legal aording to some veri�ation, whih guarantees that

it is some \useful" value. To ensure this, multivalued validated Byzantine agreement has a global,

polynomial-time omputable prediate Q

ID

known to all parties, whih is determined by a higher-

level appliation (in this ase, the atomi broadast protool). Eah party may propose a value v

that satis�es Q

ID

.

De�nition 2 (Multivalued Validated Byzantine Agreement). A protool solves validated

Byzantine agreement if it satis�es the following onditions for all adversaries, exept with negligible

probability:

External Validity: Any honest party that terminates for ID deides v suh that Q

ID

(v) holds.

Agreement: If some honest party deides v for ID , then any honest party that terminates deides v

for ID .

Liveness: If all honest parties have been ativated on ID and all assoiated messages have been

delivered, then all honest parties have deided for ID .

EÆieny: MC (ID) is probabilistially uniformly bounded.

Integrity: If all parties follow the protool, and if some party deides v for ID , then v was proposed

by some party.
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In the atomi broadast protool, we use the phrase

propose X

i

for multivalued Byzantine agreement on X

to denote the invoation of a multivalued validated Byzantine agreement protool, where X

i

is

P

i

's initial proposal, and X the resulting agreement value. The de�nition of Q

ID

is lear from the

ontext.

4 Protool onventions and notations

In this setion, we give a brief desription of a formal model of the internal struture of an honest

party, and introdue some notation for desribing the behavior of an honest party.

Reall that with eah step of an attak, the adversary delivers a message to an honest party; the

honest party then performs some omputations, updating its internal state, and possibly generating

messages. Messages delivered to a party are appended to the rear of an inoming message queue.

When ativated, the party may examine this queue, and remove any messages it wishes.

As a matter of notational onvention in desribing protools, we shall not inlude either the

origin or destination addresses in the body of a message, nor shall we inlude any authentiation

odes that may be used to ensure the authentiity of messages. However, we shall assume that

information regarding the origin of an inoming message is impliitly available to the reeiving

party.

There may be several threads of exeution for a given party, but at any point in time, at most

one is ative.

When a party is ativated, all threads are in wait states. A wait state spei�es a ondition

de�ned on the inoming message queue and other loal state variables. If one or more threads are

in a wait state whose ondition is satis�ed, one suh thread is sheduled (arbitrarily, if more than

one) to exeute, and this thread runs until it reahes another wait state. This proess ontinues

until no threads are in a wait state whose ondition is satis�ed, and then the ativation of the

party is terminated, and ontrol returns to the adversary. Of ourse, we restrit ourselves to

polynomial-time protools that always relinquish ontrol to the adversary.

That ompletes the brief desription of our formal model of the internal struture of an honest

party. We now introdue the pseudo-ode notation we will use to desribe how a thread enters a

wait state.

To enter a wait state, a thread may exeute a ommand of the form wait until ondition. Here,

ondition may be an ordinary prediate on state variables. Upon exeuting this ommand, a thread

enters a wait state with the given ondition.

We also may speify a ondition of the form reeivingmessages. In this ase, messages desribes

a set of of one or more messages satisfying a ertain prediate, possibly involving other state

variables. Upon exeuting this ommand, a thread enters a wait state, waiting for the arrival

of messages satisfying the given prediate; moreover, when this prediate beomes satis�ed, the

mathing messages are moved out of the inoming message queue, and into loal state variables. If

there is more than one set of mathing messages, one is hosen arbitrarily.

We also may speify a ondition of the form deteting messages. The semantis of this are the

same as for reeiving messages, exept that the mathing messages are opied from the inoming

message queue into loal state variables.

In addition to waiting on a single ondition, a thread may wait on a number of onditions

simultaneously by exeuting the ommand:
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ase upon ondition

1

: ation

1

; � � � upon ondition

k

: ation

k

; end ase

Here, eah ondition

i

is a ondition as above, and eah ation

i

is an ation to be exeuted when

the ondition is satis�ed. If more than one ondition is satis�ed, then an arbitrary hoie is made.

We also de�ne an abstrat timeout mehanism. Eah thread has a timer. One an view the

timer as a speial state variable that takes on two values: stopped and running. Initially, the timer

is stopped. A thread may hange this value by exeuting start timer or stop timer ommands.

A thread may also simply inspet the value of the timer. A thread may also exeute a wait until

or ase ommand with the ondition timeout. Additionally, when the adversary ativates a party,

instead of delivering a message, it may deliver a timeout signal to a thread whose timer is running;

when this happens, the timer is stopped, and if that thread is waiting on a timeout, the thread is

ativated.

This abstrat timer an be implemented quite easily in our formal system model in x2.1, whih

itself does not inlude a timer mehanism. A start timer ommand is implemented by sending a

unique message to oneself, and the adversary delivers a timeout signal by delivering this message.

Of ourse in a pratial implementation, the timeout mehanism is implemented by using a

real lok. However, by giving the adversary omplete ontrol over the timeout mehanism in our

formal model, we e�etively make no assumptions about the auray of the lok, or about how

well loks belonging to di�erent parties are synhronized.

5 Our New Protool for Atomi Broadast

The protool operates in epohs, eah epoh e = 0; 1; 2; et., onsisting of an optimisti and a

pessimisti phase. In the optimisti phase, a designated leader is responsible to order inoming

requests by assigning sequene numbers to them and initiating a Braha broadast [Bra84℄; the

optimisti phase guarantees the agreement and total order properties, but not the validity or fairness

properties; however, the protool an e�etively determine if validity or fairness are potentially

threatened, and if so, swith to the pessimisti phase. The pessimisti phase leans up any potential

\mess" left by the urrent leader, after whih the optimisti phase starts again with a new leader.

5.1 Overview and optimisti phase

In the optimisti phase of epoh e, when a party a-broadasts a request m, it initiates the re-

quest by sending a message of the form (ID ; initiate; e;m) to the leader for epoh e. When the

leader reeives suh a message, it 0-binds a sequene number s to m by sending a message of the

form (ID ; 0-bind; e;m; s) to all parties. Sequene numbers start at zero in eah epoh. Upon

reeiving a 0-binding of s to m, an honest party 1-binds s to m by sending a message of the form

(ID ; 1-bind; e;m; s) to all parties. Upon reeiving n� t suh 1-bindings of s to m, an honest party

2-binds s to m by sending a message of the form (ID ; 2-bind; e;m; s) to all parties. A party also 2-

binds s to m if it reeives t+1 2-bindings of s to m| this has the e�et of \amplifying" 2-bindings,

whih is used to ensure agreement. Upon reeiving n� t suh 2-bindings of s to m, an honest party

a-delivers m, provided all messages with lower sequene numbers were already delivered, enough

aknowledgments have been reeived, and m was not already a-delivered.

A party only sends or reats to 0-, 1-, or 2-bindings for sequene numbers s in a \sliding window"

fw; : : : ; w+WinSize� 1g, where w is the number of requests already a-delivered in this epoh, and

WinSize is a �xed system parameter. Keeping the \ation" bounded in this way is neessary to

ensure eÆieny and fairness.
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The number of requests that any party initiates but has not yet a-delivered is bounded by a

parameter BufSize: a party will not initiate any more requests one this bound is reahed. We

denote by I the set of requests that have been initiated but not a-delivered, and we all this the

initiation queue. If suÆient time passes without anything leaving the initiation queue, the party

\times out" and omplains to all other parties. These omplaints are \ampli�ed" analogously to the

2-bindings. Upon reeiving n� t omplaints, a party enters the pessimisti phase of the protool.

This strategy will ensure validity. Keeping the size of I bounded is neessary to ensure eÆieny

and fairness.

Also to ensure fairness, a party keeps trak of the \age" of the requests in its initiation queue,

and if it appears that the oldest request is being ignored, i.e., many other requests are being a-

delivered, but not this one, then the party simply refuses to generate 1-bindings until the problem

lears up. If t + 1 parties blok in this way, they e�etively prevent the remaining parties from

making any progress in the optimisti phase, and thus, the pessimisti phase will be entered, where

the fairness problem will ultimately be resolved.

We say that an honest party P

i

ommits s to m in epoh e, if m is the sth request (ounting

from 0) that it a-delivered in this epoh, optimistially or pessimistially.

Now the details. The state variables for party P

i

are as follows.

Epoh number e: The urrent epoh number, initially zero.

Delivered set D: All requests that have been a-delivered by P

i

. It is required to ensure that requests

are not a-delivered more than one; in pratie, however, other mehanisms may be employed for

this purpose. Initially, D is empty.

Initiation queue I: The queue of requests that P

i

initiated but not yet a-delivered. Its size is

bounded by BufSize . Initially, I is empty.

Window pointer w: w is the number of requests that have been a-delivered in this epoh. Initially,

w = 0. The optimisti phase of the protool only reats to messages pertaining to requests whose

sequene number lies in the \sliding window" fw; : : : ; w+WinSize�1g. Here, WinSize is a �xed

system parameter.

Eho index sets BIND

1

and BIND

2

: The sets of sequene numbers whih P

i

has 1-bound or 2-

bound, respetively. Initially empty.

Aknowledgment ount ant: Counts the number of aknowledgments reeived for a-delivered re-

quests. Initially zero.

Complaint ag omplained : Set if P

i

has issued a omplaint. Initially false .

Initiation time it(m): For eah m 2 I, it(m) is equal to the value of w at the point in time when m

was added to I. Reset to zero aross epoh boundaries. These variables are used in ombination

with a �xed parameter Thresh to ensure fairness.

Leader index l: The index of the leader in the urrent epoh; we simply set l = (e mod n) + 1.

Initially, l = 1.

Sheduled request set SR: Only maintained by the urrent leader. It ontains the set of messages

whih have been assigned sequene numbers in this epoh. Initially, it is empty.

Next available sequene number snt: Only maintained by the leader. Value of the next available

sequene number. Initially, it is zero.

The protool for party P

i

onsists of two threads. The �rst is a trivial thread that simply ounts

aknowledgments:

9



loop forever

wait until reeiving an aknowledgment

inrement ant .

end loop

The main thread is as follows:

loop forever

ase MainSwith end ase

end loop

where the MainSwith is a sequene of upon lauses desribed in Figure 1.

5.2 Fully Asynhronous Reovery

The reovery protool tidies up all requests that were initiated under a (potentially) faulty leader.

We distinguish between three types of requests:

� Requests for whih it an be guaranteed that they have been a-delivered by an honest party.

� Requests that potentially got a-delivered by an honest party.

� Requests for whih it an be guaranteed that they have not been a-delivered by an honest

party.

For the �rst two kinds of requests, an order of delivery might already be de�ned, and has to

be preserved. The other requests have not been a-delivered at all, so the reovery protool has

omplete freedom on how to order them. They an not be left to the next leader, however, as

an adversary an always fore this leader to be thrown out as well. To guarantee eÆieny, the

reovery proedure has to ensure that some request is a-delivered in every epoh. This is preisely

the property that Castro and Liskov's protool fails to ahieve: in their protool, without imposing

additional timing assumptions, the adversary an ause the honest parties to generate an arbitrary

amount of messages before a single request is a-delivered.

Aording to the three types of requests, the reovery protool onsists of three parts.

Part 1. In the �rst part, a watermark ŝ

e

is jointly omputed. The watermark has the property that

at least one honest party optimistially ommitted the sequene number ŝ

e

, and no honest party

optimistially ommitted a sequene number higher than ŝ

e

+ 2 �WinSize.

The watermark is determined as follows. When P

i

enters the pessimisti phase of the protool,

it sends out a signed statement to all parties that indiates its highest 2-bound sequene number.

Then, P

i

waits for t+ 1 signatures on sequene numbers s

0

suh that s

0

is greater than or equal to

the highest sequene number s that P

i

ommitted during the optimisti phase. Let us all suh a set

of signatures a a strong onsistent set of signatures for s. Sine P

i

already reeived n� t 2-bindings

for s, it is assured that at least t + 1 of these ame from honest parties, and so it will eventually

reeive a strong onsistent set of signatures for s. Any party that is presented with suh a set of

signatures an onlude the following: one of these signatures is from an honest party, therefore

some honest party sent a 2-binding for a sequene number at least s, and therefore, beause of the

logi of the sliding window, that honest party ommitted sequene number (s �WinSize) in its

optimisti phase.
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Figure 1: The optimisti phase

/* Initiate m. */

upon reeiving a message (ID ; in; a-broadast;m) for some m suh that m =2 I [ D and

jIj < BufSize (note that we take the oldest suh message �rst):

Send the message (ID ; initiate; e;m) to the leader.

Add m to I.

Set it(m) w.

/* 0-bind snt to m. */

upon reeiving a message (ID ; initiate; e;m) for some m, suh that i = l and w � snt <

w +WinSize and m =2 D [ SR:

Send the message (ID ; 0-bind; e;m; snt) to all parties.

Inrement snt and add m to SR.

/* 1-bind s to m. */

upon reeiving a message (ID ; 0-bind; e;m; s) from the urrent leader for some m; s suh that

w � s < w+WinSize and s =2 BIND

1

and ((I = ;) or (w � minfit(m) : m 2 Ig+Thresh)):

Send the message (ID ; 1-bind; e;m; s) to all parties.

Add s to BIND

1

.

/* 2-bind s to m. */

upon reeiving n� t messages of the form (ID ; 1-bind; e;m; s) from distint parties that agree

on s and m, suh that w � s < w +WinSize and s =2 BIND

2

:

Send the message (ID ; 2-bind; e;m; s) to all parties.

Add s to BIND

2

.

/* Amplify a 2-binding of s to m. */

upon deteting t+1 messages of the form (ID ; 2-bind; e;m; s) from distint parties that agree

on s and m, suh that w � s < w +WinSize and s =2 BIND

2

:

Send the message (ID ; 2-bind; e;m; s) to all parties.

Add s to BIND

2

.

/* Commit s to m. */

upon reeiving n� t messages of the form (ID ; 2-bind; e;m; s) from distint parties that agree

on s and m, suh that s = w and ant � jDj and m =2 D and s 2 BIND

2

:

Output (ID ; out; a-deliver;m); inrement w.

Add m to D, and remove it from I (if present).

stop timer.

/* Start timer. */

upon (timer not running) and (not omplained) and (I 6= ;) and (ant � jDj):

start timer.

/* Complain. */

upon timeout:

if not omplained then:

Send the message (ID ; omplain; e) to all parties.

Set omplained  true.

/* Amplify omplaint. */

upon deteting t+1 messages (ID ; omplain; e) from distint parties, suh that not omplained :

Send the message (ID ; omplain; e) to all parties.

Set omplained  true.

stop timer.

/* Go pessimisti. */

upon reeiving n� t messages (ID ; omplain; e) from distint parties, suh that omplained :

Exeute the proedure Reover below.
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One P

i

has obtained its own strong onsistent set for s, it signs it and sends this signed

strong onsistent set to all parties, and ollets a set M

i

of n � t signed strong onsistent sets

from other parties. Then P

i

runs a multivalued Byzantine agreement protool with input M

i

,

obtaining a ommon set M of n� t signed strong onsistent sets. The watermark is omputed as

ŝ

e

= (~s �WinSize), where ~s is the maximum sequene number ~s for whih M ontains a strong

onsistent set for ~s. We will show that no honest party ommits a sequene number higher than

ŝ

e

+ (2 �WinSize) in its optimisti phase. And as already argued above, at least one honest party

ommits ŝ

e

in its optimisti phase.

After omputing the watermark, all parties \ath up" to the watermark, i.e., ommit all

sequene numbers up to ŝ

e

, by simply waiting for t + 1 onsistent 2-bindings for eah sequene

number up to the watermark. By the logi of the protool, sine one of these 2-bindings must

ome from an honest party, the orret request is a-delivered. Sine one honest party has already

ommitted s in its optimisti phase, at least t+ 1 honest parties have already sent orresponding

2-bindings, and these will eventually arrive.

Part 2. In the seond part, we deal with the requests that might or might not have been a-delivered

by some honest party in the optimisti phase of this epoh. We have to ensure that if some honest

party has optimistially a-delivered a request, then all honest parties a-deliver this request as well.

The sequene numbers of requests with this property lie in the interval ŝ

e

+ 1 : : : ŝ

e

+ 2 �WinSize.

Eah party makes a proposal that indiates what ation should be taken for all sequene numbers

in this ritial interval. Again, multivalued Byzantine agreement will be used to determine whih

of possibly several valid proposals should be aepted.

To onstrut suh a proposal for sequene number s, eah party P

i

does the following. Party P

i

sends out a signed statement indiating if it sent a 2-binding for that s, and if so, the orresponding

request m. Then P

i

waits for a set of n� t \onsistent" signatures for s, where any two signatures

that bind s to a request bind it to the same request, but we allow that some (or even all) signatures

bind s to no request. By the logi of the protool, an honest party will eventually obtain suh a

onsistent set, whih we all a weak onsistent set of signatures for s. If all signatures in this set

are on statements that indiate no 2-binding, then we say the set de�nes no request; otherwise, we

say it de�nes request m, where m is the unique request appearing among the signed statements in

the set. P

i

's proposal onsists of a set of weak onsistent sets of signatures for s. Any party that

is presented with suh a set an onlude the following: if the set de�nes no request, then no party

optimistially ommits s; if the set de�nes m, then if any honest party optimistially ommits s to

some m

0

, then m = m

0

. Note that if the set de�nes some request m, this does not imply that s was

ommitted optimistially, and indeed, if s was not optimistially ommitted, then the adversary

an onstrut sets that de�ne di�erent requests.

Part 3. In the third part, we use a multivalued Byzantine agreement protool to agree on a set

of additional requests that should be a-delivered this epoh. This set will inlude the (possibly

empty) initiation queues of at least n � t distint parties. This property will be used to ensure

fairness. Also, this set is guaranteed to be non-empty if no requests were previously a-delivered

(optimistially or otherwise) in this epoh. This property will be used to ensure eÆieny.

5.2.1 The reovery proedure

We begin with some terminology.

For any party P

i

, and any message �, we denote by f�g

i

a signed version of the message, i.e.,

� onatenated with a valid signature under P

i

's publi key on �, along with P

i

's identity.
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For any s � �1, a strong onsistent set � for s is a set of t+ 1 orretly signed messages from

distint parties, eah of the form f(ID ; s-2-bind; e; s

0

)g

j

for some j and s

0

� s.

A valid watermark proposal M is a set of n� t orretly signed messaged from distint parties,

eah of the form f(ID ; watermark; e;�

j

; s

j

)g

j

for some j, where �

j

is a strong onsistent set of

signatures for s

j

. The maximum value s

j

appearing in these watermark messages is alled the

maximum sequene number of M.

For any s � 0, a weak onsistent set �

0

for s is a set of n � t orretly signed messages from

distint parties | eah of the form f(ID ; w-2-bind; e; s;m

j

)g

j

for some j | suh that either all

m

j

= ? (indiating no 2-binding for s), or there exists a request m and all m

j

are either m or ?.

In the former ase, we say �

0

de�nes ?, and in the latter ase, we say �

0

de�nes m.

A valid reover proposal P is a set of n�t orretly signed messages from distint parties eah of

the form f(ID ; reover-request; e;Q

j

)g

j

for some j, where Q

j

is a set of at most BufSize requests.

The protool for the pessimisti phase is presented in Figure 2.

6 Some Remarks on Implementation

The size limit BufSize on initiation queues and the window size WinSize may be arbitrarily hosen.

Larger sizes inrease the amount of onurrent ativity that is possible, and so will presumably

inrease the typial performane of the system; however, a larger size may also derease performane

and fairness in the worst ast.

When assigning sequene numbers, the leader should not proess initiate requests on a �rst-

ome/�rst-served basis, but rather, should treat requests from di�erent parties in a fair man-

ner, using a \round robin" sheduling poliy among parties, and a �rst-ome/�rst-serve poliy

for a given party. Also, the value of Thresh should be hosen large enough so that a party

does not inappropriately suspet a leader of being unfair. In partiular, one should hoose

Thresh = 

1

WinSize + 

2

n � BufSize for appropriate onstants 

1

; 

2

� 1 (and best determined

experimentally).

Time-out thresholds should of ourse be hosen large enough so that normal network delays will

not ause a party to omplain. At the beginning of a new epoh, the time-out threshold should

perhaps be fairly high, slowly dropping as the epoh progresses. The reason is that when one epoh

ompletes, it may take some time for all honest parties to e�etively re-synhronize, and so it is

natural to expet some delays at the beginning of a new epoh. This strategy is best determined

experimentally, of ourse.

If the above strategies are implemented, then our protool exhibits a ertain stability prop-

erty. Informally, this means that the protool will not transition from the optimisti phase to the

pessimisti phase of the urrent epoh, unless

� the urrent leader is orrupt,

� some messages between honest parties are signi�antly delayed, or

� some honest parties are signi�antly delayed waiting for aknowledgments.

In partiular, unless the urrent leader is orrupted, the behavior of the orrupted parties alone is

not suÆient to make the protool \go pessimisti."

Stability is an important notion, sine one would like to avoid entering the pessimisti phase

of the protool. Although one ould, we do not attempt to formalize the notion of stability any

further here.
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Figure 2: The pessimisti phase

/* Part 1: Reover Potentially delivered Requests */

Send a the signed message f(ID ; s-2-bind; e;max(BIND

2

[ f�1g))g

i

to all parties.

wait until reeiving a strong onsistent set �

i

for w � 1.

Send the signed message f(ID ; watermark; e;�

i

; w � 1)g

i

to all parties.

wait until reeiving a valid watermark proposalM

i

.

ProposeM

i

for multivalued Byzantine agreement on a valid watermark proposalM.

Set ŝ

e

 ~s�WinSize , where ~s is the maximum sequene number ofM.

while w � ŝ

e

do:

wait until reeiving t + 1 messages of the form (ID ; 2-bind; e;m;w) from distint

parties that agree on m, suh that ant � jDj.

Output (ID ; out; a-deliver;m); inrement w.

Add m to D, and remove it from I (if present).

/* Part 2: Reover potentially delivered Requests */

For s ŝ

e

+ 1 to ŝ

e

+ (2 �WinSize) do:

If P

i

sent the message (ID ; 2-bind; e;m) for some m, set ~m m; otherwise, set ~m ?:

Send the signed message (ID ; w-2-bind; e; s; ~m) to all parties.

wait until reeiving a weak onsistent set �

0

i

for s.

Propose �

0

i

for multivalued Byzantine agreement on a weak onsistent set �

0

for s.

Let �

0

de�ne m.

If (s � w and m 2 D) or m = ?, exit the for loop and go to Part 3.

If m =2 D then:

wait until ant � jDj.

Output (ID ; out; a-deliver;m); inrement w.

Add m to D, and remove it from I (if present).

/* Part 3: Reover undelivered Requests */

If w = 0 and I 6= ; then:

Send the message (ID ; reover-help; e; I) to all parties.

If w = 0 and I = ; then:

wait until reeiving a message (ID ; reover-help; e;Q), suh that Q is a non-empty

set of at most BufSize requests, and Q \D = ;.

If w 6= 0 or I 6= ;, then set Q I.

Send the signed message f(ID ; reover-request; e;Q)g

i

to all parties.

wait until reeiving a valid reover proposal P

i

.

Propose P

i

for multivalued Byzantine agreement on a valid reover proposal P .

Sequene through the request set of P in some deterministi order, and for eah suh request

m =2 D, do the following:

wait until ant � jDj.

Output (ID ; out; a-deliver;m); inrement w.

Add m to D, and remove it from I (if present).

/* Start New Epoh */

Set e e+ 1; l  (e mod n) + 1; w  snt  0.

Set SR  BIND

1

 BIND

2

 ;.

Set omplained  false .

For eah m 2 I:

Send the message (ID ; initiate; e;m) to the leader.

Set it(m) 0.
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7 Analysis

If honest party P

i

enters epoh e, let D

(i)

e

denote the sequene of requests that honest party P

i

a-delivered at the point in time where it entered this epoh. We say onsensus holds on entry to

epoh e if for any two honest parties P

i

and P

j

that enter epoh e, D

(i)

e

= D

(j)

e

. If onsensus holds

on entry to epoh e, and any honest party does enter epoh e, we denote by D

e

the ommon value

of the D

(i)

e

, and we denote by N

e

the length of D

e

.

Reall that we say that an honest party P

i

ommits s to m in epoh e, if m is the sth request

(ounting from 0) that it a-delivered in this epoh, optimistially or pessimistially. If this ours

in the optimisti phase, we say P

i

optimistially ommits s to m.

For s � 0, we say an honest party is s-bloked if it has a-delivered s

0

� s requests, and has not

yet reeived s

0

aknowledgments.

Lemma 1. In any epoh, if two honest parties 2-bind a sequene number s, then they 2-bind s to

the same request.

Moreover, if for some s;m;m

0

, one honest party reeives a set of t+1 2-bindings of s to m and

one honest party (possible the same one) reeives a set of t+1 2-bindings of s to m

0

, then m = m

0

.

Proof. This is a fairly standard argument. If some honest party 2-binds s to m, then some honest

party (not neessarily the same one) has reeived n � t 1-bindings of s to m. But sine any two

sets of n� t parties must ontain a ommon honest party, and no party 1-binds a sequene number

more than one, if one honest party reeives n� t 1-bindings of s to m, and another reeives n� t

1-bindings of s to m

0

, then m = m

0

. That proves the �rst statement.

The seond statement follows from the �rst, and the fat that any set of t + 1 parties must

ontain an honest party. 2

Lemma 2. If all honest parties have entered epoh e, and all messages and timeouts have been

delivered, and one honest party enters the pessimisti phase of the protool in this epoh, then all

honest parties have gone pessimisti in epoh e.

Proof. An honest party enters the pessimisti phase of an epoh if it reeives n � t omplaint

messages. This implies that at least t+1 honest parties have sent a omplaint message, thus every

honest party will eventually reeive at least t + 1 omplaint messages. This will ause all honest

parties to send out omplaint messages, thus all honest parties eventually reeive at least n � t

omplaints and thus will go pessimisti. 2

Lemma 3. Suppose that onsensus holds on entry to some epoh e, that some honest party has

entered this epoh, and that no honest party has gone pessimisti in this epoh. The following

onditions hold.

loal onsisteny: If some honest party ommits s to m, any honest party that also ommits s,

also ommits s to m.

loal ompleteness: If some honest party ommits s to m, and all messages and timeouts have

been delivered, and all honest parties have entered epoh e, and no honest party is (N

e

+ s)-

bloked, then all honest parties have ommitted s.

loal deadlok-freeness: If all messages, timeouts, and aknowledgments have been delivered,

and all honest parties have entered epoh e, then at most t honest parties have non-empty

initiation queues.
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loal unique delivery: Any honest party a-delivers eah request at most one in this epoh.

Proof. If some honest party ommits s to m, then it has reeived n � t 2-bindings of s to m. At

least t + 1 of these are from honest parties. Moreover, by Lemma 1, any set of t + 1 onsistent

2-bindings for s that an honest party reeives are 2-bindings to s.

Loal onsisteny is now immediate.

If loal ompleteness does not hold, let us hoose s to be the minimal s for whih this it does

not hold.

Consider any honest party P

i

. We want to show that in fat, P

i

has ommitted s, yielding a

ontradition.

By the minimality of s, it is easy to verify that the loal value of w for any honest party P

j

is

at least s. Sine t + 1 honest parties have 2-bound s to m, these 2-bindings will be reeived at a

point in time where s lies in P

j

's window. So if P

j

will itself 2-bind s to m. Therefore all honest

parties have 2-bound s to m, and P

i

has reeived these 2-bindings while s was in its sliding window.

Beause onsensus holds on entry to epoh e, and by the onsisteny part of this lemma, and by

the minimality of s, it follows that all honest parties' D sets are equal at the point in time when

w = s (loally), and in partiular m =2 D at this point in time, and so is not \�ltered out" as a

dupliate. Also, P

i

has reeived suÆient aknowledgments, and so ommits s to m.

Suppose loal deadlok-freeness does not hold. Then the t + 1 honest parties would ertainly

have sent omplaint messages, and it is easy to verify that this would eventually ause all parties

to omplain, and hene go pessimisti. This ontradits our assumption that no party has gone

pessimisti.

Unique delivery is lear from inspetion, as dupliates are expliitly \�ltered" in the optimisti

phase. 2

Lemma 4. If all honest parties have entered the pessimisti phase of epoh e, and all messages

and timeouts have been delivered, then all honest parties have agreed on a watermark ŝ

e

.

Proof. When an honest party P

i

enters Part 1 of the pessimisti phase in some epoh, it will

eventually obtain a strong onsistent set �

i

for w � 1. To see this, observe that when P

i

waits for

strong onsistent set �

i

, it has already a-delivered sequene number w � 1, and hene has reeived

n � t 2-bindings for w � 1. Of these, at least t + 1 ame from honest parties who, when they

eventually enter the pessimisti phase for this epoh, will send an s-2-bind message with a sequene

number at least w � 1. These t+ 1 s-2-bind messages form a strong onsistent set for w � 1.

Thus, all honest parties eventually obtain strong onsistent sets, and send orresponding water-

mark messages. Thus, all honest parties eventually obtain valid watermark proposals, and enter the

multivalued Byzantine agreement with these proposals, and so by the liveness property of Byzan-

tine agreement, all parties eventually agree on a ommon watermark proposal M with maximum

sequene number ~s = ŝ

e

+WinSize. 2

Lemma 5. If some honest party has omputed ŝ

e

, then

(i) some honest party has optimistially ommitted sequene number ŝ

e

, and

(ii) no honest party has optimistially ommitted sequene number ŝ

e

+ 2 �WinSize + 1.
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Proof. Let ~s = ŝ

e

+WinSize. To prove (i), note that M ontains a strong onsistent set for ~s. The

existene of a strong onsistent set for ~s implies that at least one honest party 2-bound ~s, whih

implies that this party has optimistially ommitted ŝ

e

, beause of the sliding window logi.

To prove (ii), suppose some honest party P

j

optimistially ommits ŝ

e

+ 2 � WinSize + 1 =

~s + WinSize + 1. Then by the logi of the optimisti protool, P

j

must have reeived n � t 2-

bindings for ~s+WinSize + 1, and so there must be a set S of t+ 1 honest parties who sent these

2-bindings. By the logi of the sliding window, eah party in S has optimistially ommitted ~s+1,

and so has sent out a strong onsistent set for a sequene number greater than ~s. By a standard

ounting argument, M must ontain a ontribution from some member of S, and therefore the

maximum sequene number of M is greater than ~s, whih is a ontradition. 2

Lemma 6. Suppose ŝ

e

has been omputed by some honest party. Let s be in the range ŝ

e

+1 : : : ŝ

e

+

2 �WinSize.

(i) If all honest parties generate w-2-bind messages for s, these messages form a weak onsistent

set for s.

(ii) If one honest party optimistially ommits s to m, then any weak onsistent set for s de�nes

m.

Proof. Part (i) follows diretly from Lemma 1.

To prove (ii), if an honest party optimistially ommitted s to m in epoh e, then he reeived

t+ 1 2-bindings of s to m from honest parties. Any set of n� t w-2-bind messages must ontain a

ontribution from one of these t+ 1 parties, and hene de�nes m. 2

Lemma 7. Suppose that onsensus holds on entry to some epoh e, and that some honest party

has entered the pessimisti phase in this epoh.

loal onsisteny: If some honest party ommits s to m, any honest party that also ommits s,

also ommits s to m.

loal ompleteness: If some honest party ommits s to m, and all messages and timeouts have

been delivered, and all honest parties have entered epoh e, and no honest party is (N

e

+ s)-

bloked, then all honest parties have ommitted s.

loal deadlok-freeness: If all messages, timeouts, and aknowledgments have been delivered,

and all honest parties have entered epoh e, then all parties have entered epoh e+ 1.

boundary onsisteny: If some honest party P

i

ommits s in epoh e, and some honest party P

j

has entered epoh e+ 1, then P

j

ommits s in epoh e.

e+ 1 onsensus: Consensus holds on entry to epoh e+ 1.

at least one delivery: If some party enters epoh e + 1, then N

e+1

� N

e

+ 1 (i.e., at least one

request is delivered in epoh e).

boundary ompleteness: If some honest party enters epoh e+1, and all messages and timeouts

have been delivered, and all honest parties have entered epoh e, and no honest party is

(N

e+1

� 1)-bloked, then all honest parties have entered epoh e+ 1.

loal unique delivery: Any honest party a-delivers eah request at most one in this epoh.
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Proof (sketh). The same proof in the loal onsisteny part of Lemma 3 implies in this ase as

well that any two parties that optimistially ommit s, ommit s to the same request.

If one honest party goes pessimisti, then by Lemma 2, all honest parties eventually go pes-

simisti. By Lemma 4, all honest parties eventually ompute a ommon watermark ŝ

e

.

By Lemma 5, part (i), all parties will eventually move through the loop in Part 1 of the

pessimisti phase. To see this, note that sine some honest party has optimistially ommitted s

for all s up to ŝ

e

, t + 1 honest parties have 2-bound s to m, and so when these 2-bindings are

delivered to any honest party, that party an ommit s. Note also that these ommitments are

onsistent, and no party a-delivers a request twie, sine we are only delivering requests that have

been optimistially a-delivered, and these are guaranteed to be onsistent and dupliate-free.

By Lemma 6, part (i), all parties will eventually move through the loop in Part 2 of the

pessimisti phase, sine all of the weak onsistent sets that they need will eventually be available.

Lemma 5, part (ii), and Lemma 6, part (ii), together imply that any request that is optimistially

a-delivered by some honest party will be a-delivered in Part 2 of the pessimisti phase in the same

order by all honest parties.

Note that on entry to Part 3, onsensus holds: all honest parties have exatly the same value

D as they reah this point. If no requests were a-delivered either optimistially or in Parts 1 or 2,

then all honest parties will send out a non-empty reover request. This will ensure that at least

one request is a-delivered in this epoh. To implement this strategy, if an honest party's initiation

queue is empty, it waits for an appropriate reover help message. To see that this wait eventually

terminates, note that one honest party, say P

i

, must have timed out while holding a non-empty

initiation queue (otherwise, no party ould have gone pessimisti). But sine no requests were

a-delivered prior to Part 3, P

i

sends out a reover help message. Thus, all honest parties move

through Part 3 of the pessimisti phase onsistently and without obstrution.

All of the laims in the lemma an be easily veri�ed, given the above disussion. 2

Theorem 8. Our protool satis�es the agreement, total order, integrity, eÆieny, and validity

properties of De�nition 1 for atomi broadast.

Proof. We �rst de�ne some auxiliary notions.

Let us say that an honest party P

i

globally ommits a sequene number s to a request m, if m

is the sth request (ounting from zero) a-delivered by P

i

.

We then de�ne onsisteny, ompleteness, deadlok-freeness, and unique delivery as follows.

onsisteny: If some honest party globally ommits s to m, any honest party that also globally

ommits s, also globally ommits s to m.

ompleteness: If some honest party globally ommits s to m, and all messages and timeouts

have been delivered, and no honest party is s-bloked, then all honest parties have globally

ommitted s.

deadlok-freeness: If all messages, timeouts, and aknowledgments have been delivered, then all

honest parties are in the optimisti phase of the same epoh, and at most t honest parties

have non-empty initiation queues.

unique delivery: Any honest party a-delivers eah request at most.

One an prove by a ompletely routine indution argument, using Lemmas 7 and 3, that on-

sisteny, ompleteness, deadlok-freeness, and unique delivery hold.
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It is lear that onsisteny, ompleteness, and deadlok-freeness imply the total order, agreement,

and validity properties in De�nition 1.

The integrity property trivially follows from unique delivery, and by simple inspetion of the

protool along with the fat that the multivalued validated Byzantine agreement protool also

satis�es a orresponding integrity property.

EÆieny is also follows from the at least one delivery property in Lemma 7, and by simple

inspetion of the protool. 2

Theorem 9. The fairness ondition of De�nition 1 holds with � = WinSize+Thresh+2 �PBound,

where PBound = 2 �WinSize + (n� t) � BufSize.

Proof. Observe that PBound is an upper bound on the number of requests that an be a-delivered

by any honest party in Parts 2 and 3 of the pessimisti phase of the protool.

We refer the reader to x2.3 for de�nitions of the values B

(i)

, D

(i)

, and D

�

that are relevant to

the fairness de�nition.

Let us reall here the meaning of the phrase \at time � ." We onsider the sequene of events

E

1

; : : : ; E

k

during the adversary's attak, where eah event but the last is either an a-broadast or

a-delivery by an honest party, and the last event is a speial \end of attak" event. The phrase \at

time � ," for 1 � � � k, refers to the point in time just before event E

�

ours.

In our analysis, we need to onsider the values of several state variables at time � besides B

(i)

,

D

(i)

, and D

�

. For these purposes, we simply take the above interpretation of time quite literally,

so that the value of any state variable at time � is the value it has at the point in time just prior

to event E

�

.

At any time � , let us de�ne D

�

(�) to be the value of D

�

at time � . Also, de�ne e

max

(�) to be

the maximum value of the epoh number e for any honest party at time � .

Suppose that at some time �

0

, there is a set S of t+ 1 honest parties suh that for all P

j

2 S,

the sets B

(j)

nD

�

are non-empty at time �

0

. For eah P

j

in S, let m

j

denote the oldest request in

B

(j)

nD

�

at time �

0

.

Clearly, either m

j

lies in P

j

's initiation queue at time �

1

, or P

j

is urrently in the pessimisti

phase of some epoh, its initiation queue is empty, and m

j

will enter its initiation queue as soon

as P

j

enters its next epoh.

Consider any point in time �

1

> �

0

suh that jD

�

(�

1

)�D

�

(�

0

)j = PBound . (If there is no suh

time �

1

, we are done.) If some m

j

is in D

�

(�

1

), we are done; so we assume from now on that no m

j

is in D

�

(�

1

).

If some honest party is in the pessimisti phase of epoh e

max

(�

0

) at time �

0

, then sine jD

�

(�

1

)�

D

�

(�

0

)j = PBound , we must have e

max

(�

1

) > e

max

(�

0

). Therefore, for all parties P

j

2 S that are

in epoh e

max

(�

1

) at time �

1

, it must hold that m

j

is in P

j

's initiation queue at time �

1

.

At any point in time after �

1

, if m

j

lies in P

j

's initiation queue, the value of it(m

j

) is the

minimum among all requests in its initiation queue.

We de�ne the quantity it

max

as follows: if no party in S is in epoh e

max

(�

1

) at time �

1

, then

it

max

is 0; otherwise, it

max

is the maximum value of it(m

j

) for any party P

j

in S that is in epoh

e

max

(�

1

) at time �

1

.

An honest party that a-delivers \too many" requests, none of whih lie in its initiation queue,

will refuse to send 1-bindings. The preise statement of this is as follows.

Consider any point in time �

2

> �

1

. For any party P

j

2 S, if P

j

has not a-delivered m

j

at time �

2

, then P

j

has not generated any 1-bindings in epoh e

max

(�

1

) for sequene numbers

it

max

+WinSize + Thresh or above at time �

2

.
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Further suppose that at time �

2

, no m

j

is in D

�

(�

2

). Then we laim that no party has entered

epoh e

max

(�) + 1. To see this, note that in Part 3 of the pessimisti phase, sine a valid reover

proposal must ontain ontributions from n � t parties, one of these must ome from a party P

j

in S, who would have ontributed a reover request ontaining m

j

. Also, sine no party P

j

in

S issued 1-bindings for sequene numbers it

max

+ WinSize + Thresh or above, no honest party

ould have optimistially ommitted suh a sequene number. Therefore, jD

�

(�

2

) � D

�

(�

1

)j �

WinSize + Thresh + PBound . 2
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