
Robustness for Free

in Unonditional Multi-Party Computation

Martin Hirt and Ueli Maurer

ETH Zurih, Switzerland

Manusript, February 12, 2001

Abstrat. We present a very eÆient multi-party omputation protool unonditionally seure

against an ative adversary. The seurity is maximal, i.e., ative orruption of up to t < n=3 of

the n players is tolerated. The ommuniation omplexity for seurely evaluating a iruit with

m multipliation gates over a �nite �eld is O(mn

2

) �eld elements, inluding the ommuniation

required for simulating broadast. This orresponds to the omplexity of the best known protools

for the passive model, where the orrupted players are guaranteed not to deviate from the protool.

Even in this model, it seems to be unavoidable that for every multipliation gate every player must

send a value to every other player, and hene the omplexity of our protool may well be optimal.

The onstant overhead fator for robustness is small and the protool is pratial.

1 Introdution

1.1 Seure multi-party omputation

Seure multi-party omputation (MPC), as introdued by Yao [Yao82℄, allows a set of n players

to ompute an arbitrary agreed funtion of their private inputs, even if an adversary may or-

rupt up to t arbitrary players. Almost any distributed ryptographi protool an be seen as a

multi-party omputation, and an be realized with a general MPC protool. Multi-party om-

putation protools are an important building blok for reduing the required trust and building

seure distributed systems. While urrently speial-purpose protools (e.g., for olletive sign-

ing) are onsidered pratial, this paper suggests also that general-purpose protools may well

be pratial for realisti appliations.

Two di�erent notions of orrupting are usually onsidered. A passive (or urious) adversary

may only read the information stored by the orrupted players, without ontrolling the player's

behavior. Hene only privay of the inputs is an issue to onsider, but not the orretness of the

result. In ontrast, an ative adversary an take full ontrol of the orrupted players. Assuring

not only the privay of the inputs, but also the orretness of the outputs (robustness) appears

to entail a substantial overhead. For instane, all known protools make (usually heavy) use of

a broadast sub-protool for whih the optimal known omplexity is O(n

2

).

We briey review the lassial results on seure MPC. Goldreih, Miali, and Wigderson

[GMW87℄ presented a protool, based on ryptographi intratability assumptions, whih allows

n players to seurely ompute an arbitrary funtion even if an ative adversary orrupts any t <

n=2 of the players. In the seure-hannels model, where bilateral seure hannels between every

pair of players are assumed, Ben-Or, Goldwasser, and Wigderson [BGW88℄ and independently

Chaum, Cr�epeau, and Damg�ard [CCD88℄ proved that unonditional seurity is possible if at most

t < n=3 of the players are orrupted. In a model where additionally physial broadast hannels

are available, unonditional seurity is ahievable if at most t < n=2 players are orrupted

[RB89,Bea91b,CDD

+

99℄.

1.2 Previous work on eÆieny

In the past, both the round omplexity and the ommuniation omplexity of seure multi-

party protool were subjet to many investigations: Protools with low round omplexity

[BB89,BFKR90,FKN94,IK00℄ su�er either from an unaeptably high ommuniation omplex-

ity (even quadrati in the number of multipliation gates), or tolerate only a very small number

of heaters.

First steps towards better ommuniation omplexity were taken by Franklin and Yung

[FY92℄ and Gennaro, Rabin, and Rabin [GRR98℄, where �rst a private but non-resilient om-

putation is performed (for the whole protool in [FY92℄, and for a segment of the protool in

[GRR98℄), and only in ase of faults the omputation is repeated with a slow but resilient pro-

tool. Although this approah an improve the best-ase omplexity of the protool (when no

adversary is present), it annot speed up the protool in the presene of a maliious adversary: a

single orrupted player an persistently enfore the robust but slow exeution, annihilating any

eÆieny gain.

Reently, Hirt, Maurer, and Przydatek [HMP00℄ proposed a new protool for perfetly seure

multi-party omputation with onsiderably better ommuniation omplexity than previous pro-

tools: A set of n players an ompute any funtion (over a �nite �eld F) whih is spei�ed as a

iruit with m multipliation gates (and any number of linear gates) by ommuniating O(mn

3

)

�eld elements, ontrasting the previously best omplexity of O(mn

6

). Subsequently, the same

omplexity was ahieved by Cramer, Damg�ard, and Nielsen [CDN01℄ in the ryptographi model

(where more heaters an be tolerated).

1.3 Contributions

The main open question in this line of researh was whether seurity against ative heaters

an be ahieved with the same ommuniation omplexity as seurity against passive heaters,

namely with O(mn

2

). We answer this question in the aÆrmative: The only (and unavoidable)

prie to to pay for ative seurity is a redution in the number of tolerable heaters (t < n=3

instead of t < n=2). The omputation omplexity of the new protool is on the order of the

ommuniation omplexity and hene not relevant. The ahieved ommuniation omplexity of

O(mn

2

) appears to be optimal. Even in the passive ase, it appears unavoidable that every

player sends a value to every other player for eah multipliation gate.

The new protool uses Beaver's iruit-randomization tehnique [Bea91a℄ and the player-

elimination framework from [HMP00℄.

2 Model

We onsider the well-known seure-hannels model as introdued in [BGW88℄: The set P =

fP

1

; : : : ; P

n

g of n players is onneted by bilateral synhronous reliable seure hannels. Broad-

ast hannels are not assumed to be available. The goal of the protool is to ompute an agreed

funtion, spei�ed as an arithmeti iruit over a �nite �eld F with jFj > n. The number of

multipliation gates in the iruit is denoted by m. To eah player P

i

a unique publi value

�

i

2 F n f0g is assigned, where for omputation eÆieny we assume that �

i

= !

i

for some n-th

root of unity ! (see Appendix B for details). The omputation of the funtion is seure with

respet to a omputationally unbounded ative adversary that is allowed to orrupt up to t of

the players, where t is a given threshold with t < n=3. One a player is orrupted, the adversary

2

an read all his information and an make the player misbehave arbitrarily. The seurity of our

protool is unonditional with an arbitrarily small probability of error. Formal de�nitions of

seurity an be found in [Can00℄ and in [MR98℄, and our protools are seure for any of these

de�nitions.

3 Protool Overview

The protool proeeds in two phases: In a preparation phase, whih ould atually be performed

as a pre-omputation independent of the iruit (exept an upper bound on the number m of

multipliation gates must be known), m random triples (a

(i)

; b

(i)

;

(i)

) (for i = 1; : : : ;m) with

(i)

= a

(i)

b

(i)

are shared among the players. In the omputation phase, the iruit is evaluated

gate by gate, where for eah multipliation gate one shared triple from the preparation phase is

used [Bea91a℄.

In the preparation phase, some of the players in P might be eliminated, and the sharings

are only among the set P

0

� P of remaining players. However, it will be guaranteed that the

number of orrupted players in P

0

is smaller than (jP

0

j � t)=2, whih is suÆient for evaluating

the iruit.

As the underlying seret-sharing sheme we use the sheme of Shamir [Sha79℄, like in most

threshold protools: A value s is t-shared among the players means that every player P

i

holds a

share s

i

, and there exists a polynomial f(x) of degree at most t suh that f(0) = s and f(�

i

) = s

i

for i = 1; : : : ; n.

4 Preparation Phase

The goal of this phase is to generate m t-shared random triples (a

(i)

; b

(i)

;

(i)

) with

(i)

= a

(i)

b

(i)

in suh a way that the adversary obtains no information about a

(i)

, b

(i)

, and

(i)

(exept that

(i)

is the produt of a

(i)

and b

(i)

). The generation of these triples makes extensive use of the

player-elimination framework of [HMP00℄:

Therefore, the triples are generated in bloks of ` = dm=ne triples. The triples of a blok

are generated (in parallel) in a non-robust manner; only at the end of the blok, onsisteny

is heked jointly for all triples of the blok in a single veri�ation proedure (fault detetion).

In ase of an inonsisteny, a set D � P of two players, at least one of whom is orrupted, is

identi�ed (fault loalization) and exluded from further omputations (player elimination). The

triples of the failed blok are disarded. Player elimination ensures that at most t bloks fail,

and hene in total at most (n+ t) bloks must be proessed.

More preisely, the onsisteny veri�ation takes plae in two steps. In the �rst veri�ation

proedure (fault detetion I), the degree of all involved sharings is veri�ed. In other words, the

players jointly verify that all sharings produed for generating the triples are of appropriate

degree. The seond veri�ation step (fault detetion II) is performed only if the �rst veri�ation

step is suessful. Here, the players jointly verify that for every triple (a

(i)

; b

(i)

;

(i)

), every player

shared the orret values suh that

(i)

= a

(i)

b

(i)

. If a fault is deteted (in either fault-detetion

proedure), then all triples in the atual blok are disarded. Furthermore, a set D � P of two

players, one of whom is orrupted, is found (fault loalization I, resp. fault loalization II) and

eliminated from further omputations. Note that in the fault-loalization proedure, the privay

of the triples is not maintained. Due to the iruit-randomization tehnique [Bea91a℄, the triples

ontain ompletely random values unrelated with all values of the atual omputation.

3

Both veri�ation steps use n \blinding triples", and the privay of these triples is annihilated

in the veri�ation proedure. Therefore, in eah blok, ` + 2n triples are generated. The �rst

veri�ation step veri�es the degree of all sharings of the �rst `+n triples, using (and destroying)

the remaining n triples for blinding. The seond veri�ation step veri�es the �rst ` triples, using

the remaining n triples for blinding. Note that the seond veri�ation step requires that the

sharings of all `+ n involved triples are veri�ed to be orret.

During the generation of the bloks, players an be eliminated. We denote the atual set

of players with P

0

, the atual number of players with n

0

= jP

0

j, and the maximum number of

heaters in P

0

with t

0

. Without loss of generality, we assume that P

0

= fP

1

; : : : ; P

n

0

g. During

the omputation, the inequality 2t

0

< n

0

� t will hold as an invariant. In the beginning, P

0

= P,

n

0

= n, and t

0

= t, and trivially 2t

0

< n

0

�t is satis�ed. In player elimination, n

0

will be dereased

by 2, and t

0

by 1. Clearly, this preserves the invariant.

0. Set P

0

= P, n

0

= n, and t

0

= t.

1. Repeat until n bloks (i.e., n` � m triples) sueeded:

1.1 Generate `+ 2n

0

triples (in parallel) in a non-robust manner (Set. 4.1).

1.2 Verify the onsisteny of all sharings involved in the �rst `+n

0

triples (fault detetion I,

Set. 4.2). If a fault is deteted, identify a set D � P

0

of two players suh that at least

one player in D is a heater, and set P

0

to P

0

n D, n

0

to n

0

� 2 and t

0

to t

0

� 1 (fault

loalization I).

1.3 If no fault was deteted in Step 1.2, then verify that in the �rst ` triples, every player

shared the orret values (fault detetion II, Set. 4.3). If a fault is deteted, identify a

set D � P

0

of two players, at least one of whom is orrupted, and set P

0

to P

0

nD, n

0

to

n

0

� 2 and t

0

to t

0

� 1 (fault loalization II).

1.4 If both veri�ation steps were suessful, then the generation of the blok was suessful,

and the �rst ` triples an be used. If either veri�ation proedure failed, then all triples

of the atual blok are disarded.

4.1 Generate one t-shared triple (a; b;)

The purpose of this protool is to generate one t-shared triple (a; b;), where = ab. The

generation of this triple is non-robust: veri�ation will take plae only at the end of the blok.

In partiular, in order to share a value, the dealer simply omputes the shares and sends them

to the players; the onsisteny veri�ation of the sent shares is delayed.

The generation of the triple is straight-forward: First, the players jointly generate t

0

-sharings

of two random values a and b. This is ahieved by having every player share two random values,

one for a and one for b, whih are then summed up. Then, a t

0

-sharing of = ab is omputed

along the lines of [BGW88,GRR98℄ (passive model): Every player omputes the produt of his

share of a and his share of b. These produt shares de�ne a 2t

0

-sharing of , and an be

omputed with Lagrange interpolation. This interpolation is a linear funtion on the produt

shares. Hene, a t

0

-sharing of an be omputed as a linear ombination of t

0

-sharings of the

produt shares. Finally, the degrees of the sharings of a, b, and must be inreased from t

0

to

t. In order to do so, the players jointly generate three random sharings of 0, eah with degree t,

and add one of them to the t

0

-sharings of a, b, and , respetively.

Note that the protool for omputing a sharing of = ab relies on the fat that the degree of

the sharings of a and b is less than one third of the number of atual players, and it would not

4

work if a and b would be shared with degree t for 3t � n

0

. On the other hand, it is important that

�nally the sharings of all bloks have the same degree (otherwise the multipliation protool of

Setion 5 would leak information about the fators), and t

0

an derease from blok to blok.

Therefore, �rst the triple is generated with degree t

0

, and then this degree is inreased to t.

Protool \Generate"

We give the exat protool for generating one t-shared triple (a; b;):

1. The players jointly generate t

0

-sharings of random values a and b:

1.1 Every player P

i

2 P

0

selets two random degree-t

0

polynomials

e

f

i

(x) and eg

i

(x), and

hands the shares ea

ij

=

e

f

i

(�

j

) and

e

b

ij

= eg

i

(�

j

) to player P

j

for j = 1; : : : ; n

0

.

1.2 The polynomial for sharing a is

e

f(x) =

P

n

0

i=1

e

f

i

(x) (thus a =

e

f(0)), and the polynomial

for sharing b is eg(x) =

P

n

0

i=1

eg

i

(x) (thus b = eg(0)), and every player P

j

2 P

0

omputes

his shares of a and b as

ea

j

=

n

0

X

i=1

ea

ij

, and

e

b

j

=

n

0

X

i=1

e

b

ij

:

2. The players jointly ompute a t

0

-sharing of = ab:

2.1 Every player P

i

2 P

0

omputes his produt share ee

i

= ea

i

e

b

i

, and shares it among the

players with the random degree-t

0

polynomial

e

h

i

(x) (with

e

h

i

(0) = ee

i

), i.e., sends the

share ee

ij

=

e

h

i

(�

j

) to player P

j

for j = 1; : : : ; n

0

.

2.2 Every player P

j

omputes his share e

j

of as

e

j

=

n

0

X

i=1

w

i

ee

ij

, where w

i

=

n

0

Y

j=1

j 6=i

�

j

�

j

� �

i

:

3. The players jointly inrease the degree of the sharings of a, b, and to t (this step is performed

only if t

0

< t):

3.1 Every player P

i

2 P

0

selets three polynomials

�

f

i

(x), �g

i

(x),

�

h

i

(x) of degree t � 1 at

random, and sends the shares �a

ij

=

�

f

i

(�

j

),

�

b

ij

= �g

i

(�

j

), and �

ij

=

�

h

i

(�

j

) to player P

j

for j = 1; : : : ; n

0

.

3.2 Every player P

j

2 P

0

omputes his t-shares a

j

, b

j

, and

j

of a, b, and , respetively, as

follows:

a

j

= ea

j

+ �

j

n

0

X

i=1

�a

ij

, b

j

=

e

b

j

+ �

j

n

0

X

i=1

�

b

ij

,

j

= e

j

+ �

j

n

0

X

i=1

�

ij

:

Seurity analysis

At the end of the blok, two veri�ations will take plae: First, it will be veri�ed that the degree

of all sharings is as required (t

0

, respetively t� 1, Setion 4.2). Seond, it will be veri�ed that

in Step 2.1, every player P

i

indeed shares his orret produt share ee

i

= ea

i

e

b

i

(Setion 4.3). In

the sequel, we analyze the seurity of the above protool under the assumption that these two

onditions are satis�ed.

After Step 1, obviously the assumption that the degree of all sharings is as required imme-

diately implies that the resulting shares ea

1

; : : : ;ea

n

0

(respetively

e

b

1

; : : : ;

e

b

n

0

) lie on a polynomial

5

of degree t

0

, and hene de�ne a valid sharing. Furthermore, if at least one player in P

i

2 P

0

honestly seleted random polynomials

e

f

i

(x) and eg

i

(x), then a and b are random and unknown

to the adversary.

In Step 2, we need the observation that an be omputed by Lagrange interpolation

[GRR98℄:

 =

n

0

X

i=1

w

i

ee

i

, where w

i

=

n

0

Y

j=1

j 6=i

�

j

�

j

� �

i

:

Assuming that every player P

i

really shares his orret produt share ee

i

with a polynomial

e

h

i

(x)

of degree t

0

, it follows immediately that the polynomial

e

h(x) =

P

n

0

i=1

w

i

e

h

i

(x) is also of degree

t

0

, and furthermore

e

h(0) =

n

0

X

i=1

w

i

e

h

i

(0) =

n

0

X

i=1

w

i

ee

i

= :

The privay is guaranteed beause the adversary does not obtain information about more than

t

0

shares of any polynomial

e

h

i

(x) (for any i = 1; : : : ; n

0

).

Step 3 is only performed if t

0

< t. Assuming that the polynomials

�

f

i

(x), �g

i

(x), and

�

h

i

(x) of

every player P

i

2 P

0

have degree at most t� 1, it immediately follows that all the polynomials

de�ned as

�

f(x) =

n

0

X

i=1

�

f

i

(x); �g(x) =

n

0

X

i=1

�g

i

(x);

�

h(x) =

n

0

X

i=1

�

h

i

(x)

also all have degree at most t� 1. Hene, the polynomials x

�

f(x), x�g(x), and x

�

h(x) have degree

at most t, and they all share the seret 0. Thus, the sums

e

f(x) + x

�

f(x), eg(x) + x�g(x), and

e

h(x) + x

�

h(x) are of degree t and share a, b, and , respetively. The privay of the protool is

obvious for t

0

� t� 1.

Complexity analysis

We briey analyze the ommuniation omplexity of the above protool: Every sharing requires

n �eld elements to be sent, and in total there are 6n sharings, whih results in a total of 6n

2

�eld elements to be ommuniated per triple.

4.2 Veri�ation of the degrees of all sharings in a blok

The goal of this fault-detetion protool is to verify the degree of the sharings of ` + n

0

triples

in a single step, using (and destroying) another n

0

triples.

The basi idea of this protool is to verify the degree of a random linear ombination of the

polynomials. More preisely, every player distributes a random hallenge vetor of length `+ n

0

with elements in F, and the orresponding linear ombinations of eah involved polynomial is

reonstruted towards the hallenging player, who then heks that the resulting polynomial is

of appropriate degree. In order to preserve the privay of the involved polynomials, for eah

veri�er one additional blinding polynomial of appropriate degree is added. If a veri�er detets

a fault (i.e., one of the linearly ombined polynomials has too high degree), then the triples of

the atual blok are disarded, and in a fault-loalization protool, a set D � P

0

of two players,

at least one of whom is orrupted, is found and eliminated.

6

Protool \Fault-detetion I"

The following steps for verifying the degree of all sharings in one blok are performed in parallel,

one for every veri�er P

v

2 P

0

:

1. The veri�er P

v

selets a random vetor [r

1

; : : : ; r

`+n

0

℄ with elements in F and sends it to

eah player P

j

2 P

0

.

2. Every player P

j

omputes and sends to P

v

the following orresponding linear ombinations

(plus the share of the blinding polynomial) for every i = 1; : : : ; n

0

:

ea

(�)

ij

=

`+n

0

X

k=1

r

k

ea

(k)

ij

+ ea

(`+n

0

+v)

ij

e

b

(�)

ij

=

`+n

0

X

k=1

r

k

e

b

(k)

ij

+

e

b

(`+n

0

+v)

ij

e

(�)

ij

=

`+n

0

X

k=1

r

k

e

(k)

ij

+ e

(`+n

0

+v)

ij

�a

(�)

ij

=

`+n

0

X

k=1

r

k

�a

(k)

ij

+ �a

(`+n

0

+v)

ij

�

b

(�)

ij

=

`+n

0

X

k=1

r

k

�

b

(k)

ij

+

�

b

(`+n

0

+v)

ij

�

(�)

ij

=

`+n

0

X

k=1

r

k

�

(k)

ij

+ �

(`+n

0

+v)

ij

3. P

v

veri�es whether for eah i = 1; : : : ; n

0

, the shares ea

(�)

i1

; : : : ;ea

(�)

in

0

lie on a polynomial of

degree at most t

0

. The same veri�ation is performed for the shares

e

b

(�)

i1

; : : : ;

e

b

(�)

in

0

and for the

shares e

(�)

i1

; : : : ;e

(�)

in

0

, for i = 1; : : : ; n

0

. Furthermore, P

v

veri�es whether for eah i = 1; : : : ; n

0

,

the shares �a

(�)

i1

; : : : ; �a

(�)

in

0

lie on a polynomial of degree at most t� 1. The same veri�ation

is performed for the shares

�

b

(�)

i1

; : : : ;

�

b

(�)

in

0

and for the shares �

(�)

i1

; : : : ; �

(�)

in

0

for i = 1; : : : ; n

0

.

4. Finally, P

v

broadasts (using an appropriate sub-protool) one bit aording to whether all

the 6n

0

veri�ed polynomials have degree at most t

0

, respetively t� 1 (on�rmation), or at

least one polynomial has too high degree (omplaint).

Protool \Fault-loalization I"

This protool is performed if and only if at least one veri�er has broadasts a omplaint in Step 4

of the above fault-detetion protool. We denote with P

v

the veri�er who has reported a fault.

If there are several suh veri�ers, the one with the smallest index v is seleted.

5. The veri�er P

v

selets one of the polynomials of too high degree and broadasts the lo-

ation of the fault, onsisting of the index i and the \name" of the sharing (ea,

e

b, e, �a,

�

b, or �). Without loss of generality, we assume that the fault was observed in the sharing

ea

(�)

i1

; : : : ;ea

(�)

in

0

.

6. The owner P

i

of this sharing (i.e., the player who ated as dealer for this sharing) sends to the

veri�er P

v

the orret linearly ombined polynomial

e

f

(�)

i

(x) =

P

`+n

0

k=1

e

f

(k)

i

(x)+

e

f

(`+n

0

+v)

i

(x).

7. P

v

�nds the (smallest) index j suh that ea

(�)

ij

(reeived from P

j

in Step 2) does not lie on

the polynomial

e

f

(�)

i

(x) (reeived from the owner P

i

in Step 6), and broadasts j among the

players in P

0

.

8. Both P

i

and P

j

send the list ea

(1)

ij

; : : : ;ea

(`+n

0

)

ij

;ea

(`+n

0

+v)

ij

to P

v

.

9. P

v

veri�es that the linear ombination [r

1

; : : : ; r

`+n

0

℄ applied to the values reeived from

P

i

is equal to

e

f

(�)

i

(�

j

). Otherwise, P

v

broadasts the index i, and the set of players to

be eliminated is D = fP

i

; P

v

g. Analogously, P

v

veri�es the values reeived from P

j

to be

7

onsistent with ea

(�)

ij

reeived in Step 2, and in ase of failure broadasts the index j, and

D = fP

j

; P

v

g.

10. P

v

�nds the (smallest) index k suh that the values ea

(k)

ij

reeived from P

i

and P

j

di�er, and

broadasts k and both values ea

(k)

ij

from P

i

and ea

(k)

ij

from P

j

.

11. Both P

i

and P

j

broadast their value of ea

(k)

ij

.

12. If the values broadast by P

i

and P

j

di�er, then the loalized set is D = fP

i

; P

j

g. If the

value broadast by P

i

di�ers from the value that P

v

broadast (and laimed to be the value

reeived from P

i

), then D = fP

i

; P

v

g. Else, D = fP

j

; P

v

g.

Seurity analysis

It follows from simple algebra that if all players are honest, then the above fault-detetion

protool will always pass. On the other hand, if at least one of the involved sharings (in any

of the ` + n

0

triples) has too high degree, then every honest veri�er will detet this fault with

probability at least 1=jFj. For at least n

0

� t

0

� n� 2t honest players, this gives an overall error

probability of at most jFj

�(n�2t)

.

The orretness of the fault-loalization protool an be veri�ed by inspetion. There is no

privay issue in this protool; the generated triples are disarded.

Complexity analysis

The fault-detetion protool requires n(n(`+n)+6n

2

)= n

2

`+7n

3

�eld elements to be sent and

n bits to be broadast. For fault loalization, up to n+2(`+n+1) = 2`+3n+2 �eld elements

must be sent and 2 log n+ log 6 + log(`+ n+ 1) + 4 log jFj bits must be broadast.

4.3 Veri�ation that all players share the orret produt shares

It remains to verify that in eah triple k = 1; : : : ; `, every player P

i

shared the orret produt

share ee

(k)

i

= ea

(k)

i

e

b

(k)

i

(Step 2.1 of protool Generate). Sine it is already veri�ed that the sharings

of all fator shares are of degree t

0

, it is suÆient to verify that the shares ee

(k)

1

; : : : ; ee

(k)

n

0

lie on a

polynomial of degree at most 2t

0

. Note that the at least n

0

� t

0

> 2t

0

shares of the honest players

uniquely de�ne this polynomial. The key idea of this veri�ation protool is the same as in the

previous veri�ation protool: Every veri�er P

v

distributes a random hallenge vetor, and the

orresponding linear ombination of the polynomials (plus one blinding polynomial) is opened

towards P

v

. If a fault is deteted, then a set D of two players (one of whom is orrupted) an

be found with the fault-loalization protool.

Protool \Fault-detetion II"

The following steps are performed for eah veri�er P

v

2 P

0

in parallel.

1. The veri�er P

v

selets a random vetor [r

1

; : : : ; r

`

℄ with elements in F and sends it to eah

player P

j

2 P

0

.

2. Every player P

j

omputes and sends to P

v

the following linear ombinations (with blinding)

for every i = 1; : : : ; n

0

:

ee

(�)

ij

=

`

X

k=1

r

k

ee

(k)

ij

+ ee

(`+v)

ij

:

8

3. P

v

veri�es whether for eah i = 1; : : : ; n

0

the shares ee

(�)

i1

; : : : ; ee

(�)

in

0

lie on a polynomial of

degree at most t

0

, and if so, whether the serets ee

�

1

; : : : ; ee

�

n

0

of the above sharings (omputed

by interpolating the orresponding share-shares) lie on a polynomial of degree at most 2t

0

.

P

v

broadasts one bits aording to whether all polynomials have appropriate degree (on�r-

mation), or at least one polynomial has too high degree (omplaint).

Protool \Fault-loalization II"

We denote with P

v

the veri�er who has reported a fault in Step 3 of the above fault-detetion

protool. If there are several suh veri�ers, the one with the smallest index v is seleted.

4. If in Step 3, the degree of one of the seond-level sharings ee

(�)

i1

; : : : ; ee

(�)

in

0

was too high, then

P

v

applies error-orretion to �nd the smallest index j suh that ee

(�)

ij

must be orreted

(f. Appendix B). Sine all sharings have been veri�ed to have orret degree, P

v

an onlude

that P

j

has sent the wrong value ee

(�)

ij

. P

v

broadasts the index j, and the set of players to

be eliminated is D = fP

j

; P

v

g (and the following steps need not be performed).

5. Every player P

i

sends to P

v

all his fator shares ea

(1)

i

; : : : ;ea

(`)

i

;ea

(`+v)

i

and

e

b

(1)

i

; : : : ;

e

b

(`)

i

;

e

b

(`+v)

i

.

6. P

v

veri�es for every k = 1; : : : ; `; ` + v whether the shares ea

(k)

1

; : : : ;ea

(k)

n

0

lie on a polynomial

of degree t

0

. If not, then P

v

applies error-orretion and �nds and broadasts the (smallest)

index j suh that ea

(k)

j

must be orreted. The set of players to be eliminated is D = fP

j

; P

v

g.

The same veri�ation is performed for the shares

e

b

(k)

1

; : : : ;

e

b

(k)

n

0

for k = 1; : : : ; `; `+ v.

7. P

v

veri�es for every i = 1; : : : ; n

0

whether the value ee

�

i

omputed in Step 4 is orret, i.e.,

whether

ee

�

i

?

=

`

X

k=1

r

k

ea

(k)

i

e

b

(k)

i

+ ea

(`+v)

i

e

b

(`+v)

i

:

This test will fail for at least one i, and P

v

broadasts this index i. The players in D = fP

i

; P

v

g

are eliminated.

Seurity analysis

It follows from simple algebra that if all players are honest, then the above fault-detetion

protool will always pass. On the other hand, if the degree of at least one of the involved

sharings is higher than 2t

0

, then every honest veri�er will detet this fault with probability at

least 1=jFj. For at least n

0

� t

0

� n� 2t honest players, this makes an overall error probability

of at most jFj

�(n�2t)

.

The orretness of the fault-loalization protool an be veri�ed by inspetion. There is no

privay issue in this protool; the generated triples are disarded.

Complexity analysis

The fault-detetion protool requires n(n`+n

2

) = n

2

`+n

3

elements to be sent, and n bits to be

broadast. The fault-loalization protool requires 2n(`+ 1) �eld elements to be sent and log n

bits to be broadast.

5 Computation Phase

The evaluation of the iruit is along the lines of the protool of [Bea91a℄. Slight modi�ations

are needed beause the degree t of the sharings and the upper bound t

0

on the number of

9

heaters need not be equal. Furthermore, speial fous is given to the fat that in our protool,

also eliminated players must be able to give input to and reeive output from the omputation.

From the preparation phase, we have m random triples (a

(i)

; b

(i)

;

(i)

) with

(i)

= a

(i)

b

(i)

,

where the sharings are of degree t among the set P

0

of players. The number of orrupted players

in P

0

is at most t

0

with 2t

0

< n

0

� t, where n

0

= jP

0

j. This is suÆient for eÆient omputation

of the iruit.

5.1 Input sharing

First, every player who has input seret-shares it (with degree t) among the set P

0

of players.

We use the veri�able seret-sharing protool of [BGW88℄ (with perfet seurity), with a slight

modi�ation to support t 6= t

0

. The dealer is denoted by P, and the seret to be shared by s. We

do not assume that P 2 P

0

(neither P 2 P).

1. The dealer P selets at random a polynomial f(x; y) of degree t in both variables, with

p(0; 0) = s, and sends the polynomials f

i

(x) = f(�

i

; x) and g

i

(x) = p(x; �

i

) to player P

i

for

i = 1; : : : ; n

0

.

2. Every player P

i

2 P

0

sends to P

j

for j = i+ 1; : : : ; n

0

the values f

i

(�

j

) and g

i

(�

j

).

3. Every player P

j

broadasts one bit aording to whether all reeived values are onsistent

with the polynomials f

j

(x) and g

j

(x) (on�rmation) or not (omplaint).

4. If no player has broadast a omplaint, then the seret-sharing is �nished, and the share of

player P

j

is f

j

(0). Otherwise, every player P

j

who has omplaint broadasts a bit vetor of

length n

0

, where a 1-bit in position i means that one of the values reeived from P

i

was not

onsistent with f

j

(x) or g

j

(x). The dealer P must answer all omplaints by broadasting the

orret values f(�

i

; �

j

) and f(�

j

; �

i

).

5. Every player P

i

heks whether the values broadast by the dealer in Step 4 are onsistent

with his polynomials f

i

(x) and g

i

(x), and broadasts either a on�rmation or an ausation.

The dealer P answers every ausation by broadasting both polynomials f

i

(x) and g

i

(x) of

the ausing player P

i

, and P

i

replaes his polynomials by the broadast ones.

6. Every player P

i

heks whether the polynomials broadast by the dealer in Step 5 are on-

sistent with his polynomials f

i

(x) and g

i

(x), and broadasts either a on�rmation or an

ausation.

7. If in Steps 5 and 6, there are in total at most t

0

ausations, then every player P

i

takes f

i

(0)

as his share of s. Otherwise, learly the dealer is faulty, and the players take a default sharing

(e.g., the onstant sharing of 0).

It is lear that an honest player never auses an honest dealer. On the other hand, if there

are at most t

0

ausations, then the polynomials of at least n

0

� 2t

0

> t honest players are

onsistent, and these polynomials uniquely de�ne the polynomial f(x; y) with degree t. Hene,

the polynomials of all honest players are onsistent, and their shares f

1

(0); : : : ; f

n

0

(0) lie on a

polynomial of degree t.

This protool ommuniates 3n

2

�eld elements, and it broadasts n bits (in the best ase),

respetively n

2

+ 3n+ 2t

2

log jFj bits (in the worst ase).

5.2 Evaluation of the iruit

The iruit is evaluated gate by gate. Linear gates an be evaluated without any ommuniation

due to the linearity of the used sharing. Multipliation gates are evaluated aording to [Bea91a℄:

10

Assume that the fators x and y are t-shared among the players. Furthermore, a t-shared triple

(a; b;) with = ab is used. The produt xy an be written as follows:

xy = ((x� a) + a)((y � b) + b) = ((x� a)(y � b)) + (x� a)b+ (y � b)a+ :

The players in P

0

reonstrut the di�erenes d

x

= x� a and d

y

= y � b. This reonstrution is

possible beause 2t

0

< n

0

� t (f. Appendix B). Note that reonstruting these values does not

give any information about x or y, beause a and b are random. Then, the following equation

holds:

xy = d

x

d

y

+ d

x

b+ d

y

a+ :

This equation is linear in a, b, and , and we an ompute linear ombinations on shared values

without ommuniation. This means that the players an ompute the above linear ombination

on their respetive shares of x and y and they reeive a t-sharing of the produt xy. More details

an be found in [Bea91a℄.

This multipliation protool requires two seret-reonstrutions per multipliation gate.

Seret-reonstrution requires every player in P

0

to send his share to every other player (who then

applies error-orretion to the reeived shares and interpolates the seret). The ommuniation

osts per multipliation gate are hene 2n

2

. Broadast is not needed.

5.3 Output reonstrution

Any player P an reeive output (not only players in P

0

or in P). In order to reonstrut a

shared value x towards player P, every player in P

0

sends his share of x to P, who then applies

error-orretion and interpolation to ompute the output x. In the error-orretion proedure,

up to (n

0

� t� 1)=2 � t

0

errors an be orreted (see Appendix B).

Reonstruting one value requires n �eld elements of ommuniation, and no broadast.

5.4 Probabilisti funtions

The presented protool is for deterministi funtions only. In order to apture probabilisti

funtions, one an generate one (or several) bloks with single values a

(i)

only (with simpli�ed

veri�ation), and use these values as shared randomness.

Alternatively, but somewhat wastefully, one just piks the value a

(i)

from a shared triple

(a

(i)

; b

(i)

;

(i)

), and disards the rest of the triple. Then, m denotes the number of multipliation

gates plus the number of \randomness gates".

5.5 On-going omputations

In an on-going omputation, inputs and outputs an be given and reeived at any time during

the omputation, not only at the beginning and at the end. Furthermore, it might even not be

spei�ed beforehand whih funtion will be omputed. And example of an on-going omputation

is the simulation of a fair stok market.

In ontrast to the protool of [HMP00℄, the proposed protool an easily be extended to

apture the senario of on-going omputations. First, the players generate ` triples (a; b;) with

 = ab, and perform the omputation until all triples are exhausted. Then, a new blok of `

triples is generated, and so on.

11

6 Complexity Analysis

A detailed omplexity analysis is given in Appendix A. Here we summarize the most important

results: Let n denote the number of players, F the �eld over whih the funtion (iruit) is

de�ned, m the number of multipliation gates in the iruit, C

d

the depth of the iruit, n

I

the number of inputs and n

O

the number of outputs of the funtion. Evaluating this iruit

seurely with respet to an ative adversary orrupting any t < n=3 of the players is possible

with ommuniating 14mn

2

+O(n

I

n

4

+n

O

n+n

4

) �eld elements. The number of ommuniation

rounds is C

d

+O(n

2

). All omplexities inlude the osts for simulating broadast.

This omplexity should be ompared with the omplexity of the most eÆient protools.

In the seure-hannels model, the most eÆient protool for unonditionally seure multi-party

protools [HMP00℄ requires O(mn

3

) �eld elements in O(C

d

+ n

2

) rounds (where both hidden

onstants are slightly higher than ours).

For ompleteness, we also ompare the omplexity of our protool with the omplexity of

the most eÆient protool for the ryptographi model [CDN01℄. This protool requires a om-

muniation omplexity of O(mn

3

) �eld elements in O(C

d

n) rounds. The high round omplexity

results from the fat that the protool invokes a broadast sub-protool for eah multipliation

gate. The most eÆient broadast protools requireO(n) rounds. Constant-round broadast pro-

tools are known [FM88℄, but they have higher ommuniation omplexities and would results

in a ommuniation omplexity of O(mn

5

) �eld elements.

Finally, we ompare the protool with the most eÆient known protool for passive seurity,

namely [BGW88℄ with the simpli�ation of [GRR98℄. This protool ommuniatesmn

2

+O(n

I

n+

n

O

n) �eld elements. Hene, providing robustness an be ahieved with a ommuniation overhead

of about fator 14.

7 Conlusions and Open Problems

We have presented a protool for seure multi-party omputation unonditionally seure against

an ative adversary whih is (up to a small onstant fator) as eÆient as protools with passive

seurity. The protool provides some (arbitrarily small) probability of error. Note that due to the

player-elimination tehnique, this error-probability does not grow with the length of the protool

(like in all previous MPC protools with error probability), but only in the upper bound t of

the number of orrupted players.

It remains open whether quadrati omplexity an also be ahieved in the model of an ative

omputationally-bounded adversary (ryptographi model), where up to t < n=2 of the players

may be orrupted. The most eÆient result for this model requires ommuniation of O(n

3

) �eld

elements (and O(n) rounds!) per multipliation gate [CDN01℄.

Also, it would be interesting to ombine the tehniques of this paper with tehniques of papers

with protools that require a onstant number of rounds only (but have a high ommuniation

omplexity), to ahieve a multi-party protool whih has both low ommuniation omplexity

and very low round omplexity.

Furthermore, the presented protool is for the synhronous model. Some real-world networks

appear to be more appropriately modeled by the asynhronous model, and the protool must be

adapted for this setting. It seems that this an be done along the lines of [BCG93,Can95,SR00℄.

Finally, it would be interesting to have a proof that quadrati omplexity is optimal for

passive seurity. This would immediately imply that the protool of this paper is optimally

eÆient (up to a onstant fator).

12

Referenes

[BB89℄ J. Bar-Ilan and D. Beaver. Non-ryptographi fault-tolerant omputing in a onstant number of rounds

of interation. In Pro. 8th ACM Symposium on Priniples of Distributed Computing (PODC), pp.

201{210, Aug. 1989.

[BCG93℄ M. Ben-Or, R. Canetti, and O. Goldreih. Asynhronous seure omputation. In Pro. 25th ACM

Symposium on the Theory of Computing (STOC), pp. 52{61, 1993.

[Bea91a℄ D. Beaver. EÆient multiparty protools using iruit randomization. In Advanes in Cryptology |

CRYPTO '91, volume 576 of Leture Notes in Computer Siene, pp. 420{432, 1991.

[Bea91b℄ D. Beaver. Seure multiparty protools and zero-knowledge proof systems tolerating a faulty minority.

Journal of Cryptology, pp. 75{122, 1991.

[BFKR90℄ D. Beaver, J. Feigenbaum, J. Kilian, and P. Rogaway. Seurity with low ommuniation overhead. In

Advanes in Cryptology | CRYPTO '90, volume 537 of Leture Notes in Computer Siene. Springer-

Verlag, 1990.

[BGP89℄ P. Berman, J. A. Garay, and K. J. Perry. Towards optimal distributed onsensus (extended abstrat).

In Pro. 21st ACM Symposium on the Theory of Computing (STOC), pp. 410{415, 1989.

[BGW88℄ M. Ben-Or, S. Goldwasser, and A. Wigderson. Completeness theorems for non-ryptographi fault-

tolerant distributed omputation. In Pro. 20th ACM Symposium on the Theory of Computing (STOC),

pp. 1{10, 1988.

[Bla84℄ R. E. Blahut. Theory and Pratie of Error Control Codes. Addison-Wesley, 1984.

[Can95℄ R. Canetti. Studies in Seure Multiparty Computation and Appliations. PhD thesis, Weizmann

Institute of Siene, Rehovot 76100, Israel, June 1995.

[Can00℄ R. Canetti. Seurity and omposition of multiparty ryptographi protools. Journal of Cryptology,

13(1):143{202, 2000.

[CCD88℄ D. Chaum, C. Cr�epeau, and I. Damg�ard. Multiparty unonditionally seure protools (extended ab-

strat). In Pro. 20th ACM Symposium on the Theory of Computing (STOC), pp. 11{19, 1988.

[CDD

+

99℄ R. Cramer, I. Damg�ard, S. Dziembowski, M. Hirt, and T. Rabin. EÆient multiparty omputations

seure against an adaptive adversary. In Advanes in Cryptology | EUROCRYPT '99, volume 1592

of Leture Notes in Computer Siene, pp. 311{326, 1999.

[CDN01℄ R. Cramer, I. Damg�ard, and J. B. Nielsen. Multiparty omputation from threshold homomorphi

enryption. In Advanes in Cryptology | EUROCRYPT '01, Leture Notes in Computer Siene,

2001. To appear.

[FKN94℄ U. Feige, J. Kilian, and M. Naor. A minimal model for seure omputation. In Pro. 26th ACM

Symposium on the Theory of Computing (STOC), pp. 554{563, 1994.

[FM88℄ P. Feldman and S. Miali. Optimal algorithms for Byzantine agreement. In Pro. 20th ACM Symposium

on the Theory of Computing (STOC), pp. 148{161, 1988.

[FY92℄ M. K. Franklin and M. Yung. Communiation omplexity of seure omputation. In Pro. 24th ACM

Symposium on the Theory of Computing (STOC), pp. 699{710, 1992.

[GMW87℄ O. Goldreih, S. Miali, and A.Wigderson. How to play any mental game | a ompleteness theorem for

protools with honest majority. In Pro. 19th ACM Symposium on the Theory of Computing (STOC),

pp. 218{229, 1987.

[GRR98℄ R. Gennaro, M. O. Rabin, and T. Rabin. Simpli�ed VSS and fast-trak multiparty omputations with

appliations to threshold ryptography. In Pro. 17th ACM Symposium on Priniples of Distributed

Computing (PODC), pp. 101{111, 1998.

[HMP00℄ M. Hirt, U. Maurer, and B. Przydatek. EÆient seure multi-party omputation. In T. Okamoto, editor,

Advanes in Cryptology | ASIACRYPT '00, volume 1976 of Leture Notes in Computer Siene, pp.

143{161. Springer-Verlag, De. 2000.

[IK00℄ Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with appliations to

round-eÆient seure omputation. In Pro. 41st IEEE Symposium on the Foundations of Computer

Siene (FOCS), Ot. 2000.

[MR98℄ S. Miali and P. Rogaway. Seure omputation: The information theoreti ase. Manusript, 1998.

Former version: Seure omputation, In Advanes in Cryptology | CRYPTO '91, volume 576 of Leture

Note in Computer Siene, pp. 392{404, Springer-Verlag, 1991.

[RB89℄ T. Rabin and M. Ben-Or. Veri�able seret sharing and multiparty protools with honest majority. In

Pro. 21st ACM Symposium on the Theory of Computing (STOC), pp. 73{85, 1989.

[Sha79℄ A. Shamir. How to share a seret. Communiations of the ACM, 22:612{613, 1979.

13

[SR00℄ K. Srinathan and C. P. Rangan. EÆient asynhronous seure multiparty distributed omputation. In

Indorypt 2000, Leture Notes in Computer Siene, De. 2000.

[Yao82℄ A. C. Yao. Protools for seure omputations. In Pro. 23rd IEEE Symposium on the Foundations of

Computer Siene (FOCS), pp. 160{164. IEEE, 1982.

A Detailed Complexity Analysis

We summarize the omplexities of all involved sub-protools. For eah sub-protool, we indiate

both the message omplexity (MC, in ommuniated �eld elements) and the broadast omplex-

ity (BC, in bits) of the protool involved one, and speify how often the protool is alled at

least (when no adversary is present) and at most (when the orrupted players misbehave in the

most e�etive way). The omplexity of the veri�able seret-sharing protool of [BGW88℄, whih

is used for giving input, depends on whether or not some of the players misbehave. We list both

omplexities.

In the table, n denotes the number of players, t the upper bound on the number of atively

orrupted players, m the total number of multipliation gates, ` the number of multipliation

gates per blok, n

I

the number of inputs to the funtion, and n

O

the number of outputs of the

funtion.

The indiated omplexities are upper bounds: In partiular, when a player has to send a

message to all players, we ount this as n messages (instead of n� 1).

What

MC

(�eld elements)

BC

(bits)

#Calls

(min. . .max)

Generate triples 6n

2

|

n(`+2n) . . .

(n+t)(`+2n)

(1)

Fault detetion I `n

2

+ 7n

3

n n . . .n+t (2)

Fault loalization I 2`+ 3n+ 2

2 log n+ 4 log jFj

+log(`+n+1) + log 6

0 . . . t (3)

Fault detetion II `n

2

+ n

3

n n . . .n+t (4)

Fault loalization II 2`n+ 2n log n 0 . . . t (5)

Give input (best) 3n

2

n n

I

(6)

Give input (worst) 3n

2

n

2

+ 3n + 2t

2

log jFj n

I

(7)

Multiply 2n

2

| m (8)

Get output n | n

O

(9)

We add up the above omplexities for ` � m=n+1, n � 4, and t � n=3. In order to simplify

the expressions, some of the terms are slightly rounded up.

In the best ase (when no heating ours), 10mn

2

+ 22n

4

+ 3n

I

n

2

+ n

O

n �eld elements are

ommuniated and 2n

2

+ n

I

n bits are broadast. Applying the broadast protool of [BGP89℄

(whih ommuniates 9n

2

bits for broadasting one bit), this results in a total omplexity of less

than 10mn

2

log jFj + 22n

4

(log jFj + 1) + n

I

n

2

(3 log jFj + 9n) + n

O

n log jFj bits.

In the worst ase, the protool ommuniates 13mn

2

+30n

4

+3n

I

n

2

+n

O

n �eld elements and

broadasts 3n

2

+2n log jFj+

n

3

logm+n

I

n

2

log jFj bits. Simulating broadast with [BGP89℄, this

gives less than 14mn

2

log jFj + 35n

4

(log jFj + 1) + 9n

I

n

4

log jFj + n

O

n log jFj bits. This is about

14mn

2

+O(n

I

n

4

+ n

O

n+ n

4

) �eld elements.

14

B Error-orretion with Erasures

In the protool of this paper, we often need to interpolate a shared value from a subset of

the shares. In this appendix, we briey summarize the tehniques used for performing these

interpolations eÆiently.

We assume that to eah player P

i

2 P a unique value �

i

2 F n f0g is assigned. We say that

a seret s is t-shared among the players in P if there exists a degree-t polynomial f(x) with

f(0) = s, and every player P

i

2 P holds a share s

i

= f(�

i

). It is well-known that orreting

up to t

f

faulty shares in a odeword s

1

; : : : ; s

n

is possible as long as 2t

f

< n� t. Furthermore,

when �

i

= !

i

(for i = 1; : : : ; n) for an n-th root of unity !, the shares s

1

; : : : ; s

n

orrespond to a

odeword in a Reed-Solomon ode of length n with minimum distane n�t, and error-orretion

an be performed eÆiently (polynomial in n).

This error-orretion proedure an be slightly generalized to apture erasures in the ode-

word: Error-orretion in a Reed-Solomon ode is possible and eÆient if up to t

f

shares are

faulty and up to t

e

shares are omitted (erasures), as long as 2t

f

+ t

e

< n � t (see e.g. [Bla84,

Set. 9.2℄ for details).

This generalized proedure an be used for two purposes: First, instead of requiring existene

of an n-th root of unity in F, it is suÆient to require existene of an �n-th root of unity for some

�n � n. The �n� n missing shares in eah sharing are treated as erasures of the ode. Note that

an n-th root of unity exists in F if and only if n divides jFj � 1, and for many settings of n and

F, suh a root simply does not exist.

Seond, it aptures the setting with player elimination. After a sequene of k player elimina-

tions, we have n

0

= n� 2k remaining players, where up to t

0

= t� k of them are orrupted. The

n

0

shares of the remaining players de�ne a odeword with t

e

= �n�n

0

= �n�n+2k erasures and

t

f

= t

0

= t�k faults. Suh a sharing an be interpolated eÆiently for 2(t�k)+(�n�n+2k) < �n�t,

whih is satis�ed for t < n=3.

15

