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Abstra
t. We present a very eÆ
ient multi-party 
omputation proto
ol un
onditionally se
ure

against an a
tive adversary. The se
urity is maximal, i.e., a
tive 
orruption of up to t < n=3 of

the n players is tolerated. The 
ommuni
ation 
omplexity for se
urely evaluating a 
ir
uit with

m multipli
ation gates over a �nite �eld is O(mn

2

) �eld elements, in
luding the 
ommuni
ation

required for simulating broad
ast. This 
orresponds to the 
omplexity of the best known proto
ols

for the passive model, where the 
orrupted players are guaranteed not to deviate from the proto
ol.

Even in this model, it seems to be unavoidable that for every multipli
ation gate every player must

send a value to every other player, and hen
e the 
omplexity of our proto
ol may well be optimal.

The 
onstant overhead fa
tor for robustness is small and the proto
ol is pra
ti
al.

1 Introdu
tion

1.1 Se
ure multi-party 
omputation

Se
ure multi-party 
omputation (MPC), as introdu
ed by Yao [Yao82℄, allows a set of n players

to 
ompute an arbitrary agreed fun
tion of their private inputs, even if an adversary may 
or-

rupt up to t arbitrary players. Almost any distributed 
ryptographi
 proto
ol 
an be seen as a

multi-party 
omputation, and 
an be realized with a general MPC proto
ol. Multi-party 
om-

putation proto
ols are an important building blo
k for redu
ing the required trust and building

se
ure distributed systems. While 
urrently spe
ial-purpose proto
ols (e.g., for 
olle
tive sign-

ing) are 
onsidered pra
ti
al, this paper suggests also that general-purpose proto
ols may well

be pra
ti
al for realisti
 appli
ations.

Two di�erent notions of 
orrupting are usually 
onsidered. A passive (or 
urious) adversary

may only read the information stored by the 
orrupted players, without 
ontrolling the player's

behavior. Hen
e only priva
y of the inputs is an issue to 
onsider, but not the 
orre
tness of the

result. In 
ontrast, an a
tive adversary 
an take full 
ontrol of the 
orrupted players. Assuring

not only the priva
y of the inputs, but also the 
orre
tness of the outputs (robustness) appears

to entail a substantial overhead. For instan
e, all known proto
ols make (usually heavy) use of

a broad
ast sub-proto
ol for whi
h the optimal known 
omplexity is O(n

2

).

We brie
y review the 
lassi
al results on se
ure MPC. Goldrei
h, Mi
ali, and Wigderson

[GMW87℄ presented a proto
ol, based on 
ryptographi
 intra
tability assumptions, whi
h allows

n players to se
urely 
ompute an arbitrary fun
tion even if an a
tive adversary 
orrupts any t <

n=2 of the players. In the se
ure-
hannels model, where bilateral se
ure 
hannels between every

pair of players are assumed, Ben-Or, Goldwasser, and Wigderson [BGW88℄ and independently

Chaum, Cr�epeau, and Damg�ard [CCD88℄ proved that un
onditional se
urity is possible if at most

t < n=3 of the players are 
orrupted. In a model where additionally physi
al broad
ast 
hannels

are available, un
onditional se
urity is a
hievable if at most t < n=2 players are 
orrupted

[RB89,Bea91b,CDD

+

99℄.



1.2 Previous work on eÆ
ien
y

In the past, both the round 
omplexity and the 
ommuni
ation 
omplexity of se
ure multi-

party proto
ol were subje
t to many investigations: Proto
ols with low round 
omplexity

[BB89,BFKR90,FKN94,IK00℄ su�er either from an una

eptably high 
ommuni
ation 
omplex-

ity (even quadrati
 in the number of multipli
ation gates), or tolerate only a very small number

of 
heaters.

First steps towards better 
ommuni
ation 
omplexity were taken by Franklin and Yung

[FY92℄ and Gennaro, Rabin, and Rabin [GRR98℄, where �rst a private but non-resilient 
om-

putation is performed (for the whole proto
ol in [FY92℄, and for a segment of the proto
ol in

[GRR98℄), and only in 
ase of faults the 
omputation is repeated with a slow but resilient pro-

to
ol. Although this approa
h 
an improve the best-
ase 
omplexity of the proto
ol (when no

adversary is present), it 
annot speed up the proto
ol in the presen
e of a mali
ious adversary: a

single 
orrupted player 
an persistently enfor
e the robust but slow exe
ution, annihilating any

eÆ
ien
y gain.

Re
ently, Hirt, Maurer, and Przydatek [HMP00℄ proposed a new proto
ol for perfe
tly se
ure

multi-party 
omputation with 
onsiderably better 
ommuni
ation 
omplexity than previous pro-

to
ols: A set of n players 
an 
ompute any fun
tion (over a �nite �eld F) whi
h is spe
i�ed as a


ir
uit with m multipli
ation gates (and any number of linear gates) by 
ommuni
ating O(mn

3

)

�eld elements, 
ontrasting the previously best 
omplexity of O(mn

6

). Subsequently, the same


omplexity was a
hieved by Cramer, Damg�ard, and Nielsen [CDN01℄ in the 
ryptographi
 model

(where more 
heaters 
an be tolerated).

1.3 Contributions

The main open question in this line of resear
h was whether se
urity against a
tive 
heaters


an be a
hieved with the same 
ommuni
ation 
omplexity as se
urity against passive 
heaters,

namely with O(mn

2

). We answer this question in the aÆrmative: The only (and unavoidable)

pri
e to to pay for a
tive se
urity is a redu
tion in the number of tolerable 
heaters (t < n=3

instead of t < n=2). The 
omputation 
omplexity of the new proto
ol is on the order of the


ommuni
ation 
omplexity and hen
e not relevant. The a
hieved 
ommuni
ation 
omplexity of

O(mn

2

) appears to be optimal. Even in the passive 
ase, it appears unavoidable that every

player sends a value to every other player for ea
h multipli
ation gate.

The new proto
ol uses Beaver's 
ir
uit-randomization te
hnique [Bea91a℄ and the player-

elimination framework from [HMP00℄.

2 Model

We 
onsider the well-known se
ure-
hannels model as introdu
ed in [BGW88℄: The set P =

fP

1

; : : : ; P

n

g of n players is 
onne
ted by bilateral syn
hronous reliable se
ure 
hannels. Broad-


ast 
hannels are not assumed to be available. The goal of the proto
ol is to 
ompute an agreed

fun
tion, spe
i�ed as an arithmeti
 
ir
uit over a �nite �eld F with jFj > n. The number of

multipli
ation gates in the 
ir
uit is denoted by m. To ea
h player P

i

a unique publi
 value

�

i

2 F n f0g is assigned, where for 
omputation eÆ
ien
y we assume that �

i

= !

i

for some n-th

root of unity ! (see Appendix B for details). The 
omputation of the fun
tion is se
ure with

respe
t to a 
omputationally unbounded a
tive adversary that is allowed to 
orrupt up to t of

the players, where t is a given threshold with t < n=3. On
e a player is 
orrupted, the adversary
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an read all his information and 
an make the player misbehave arbitrarily. The se
urity of our

proto
ol is un
onditional with an arbitrarily small probability of error. Formal de�nitions of

se
urity 
an be found in [Can00℄ and in [MR98℄, and our proto
ols are se
ure for any of these

de�nitions.

3 Proto
ol Overview

The proto
ol pro
eeds in two phases: In a preparation phase, whi
h 
ould a
tually be performed

as a pre-
omputation independent of the 
ir
uit (ex
ept an upper bound on the number m of

multipli
ation gates must be known), m random triples (a

(i)

; b

(i)

; 


(i)

) (for i = 1; : : : ;m) with




(i)

= a

(i)

b

(i)

are shared among the players. In the 
omputation phase, the 
ir
uit is evaluated

gate by gate, where for ea
h multipli
ation gate one shared triple from the preparation phase is

used [Bea91a℄.

In the preparation phase, some of the players in P might be eliminated, and the sharings

are only among the set P

0

� P of remaining players. However, it will be guaranteed that the

number of 
orrupted players in P

0

is smaller than (jP

0

j � t)=2, whi
h is suÆ
ient for evaluating

the 
ir
uit.

As the underlying se
ret-sharing s
heme we use the s
heme of Shamir [Sha79℄, like in most

threshold proto
ols: A value s is t-shared among the players means that every player P

i

holds a

share s

i

, and there exists a polynomial f(x) of degree at most t su
h that f(0) = s and f(�

i

) = s

i

for i = 1; : : : ; n.

4 Preparation Phase

The goal of this phase is to generate m t-shared random triples (a

(i)

; b

(i)

; 


(i)

) with 


(i)

= a

(i)

b

(i)

in su
h a way that the adversary obtains no information about a

(i)

, b

(i)

, and 


(i)

(ex
ept that




(i)

is the produ
t of a

(i)

and b

(i)

). The generation of these triples makes extensive use of the

player-elimination framework of [HMP00℄:

Therefore, the triples are generated in blo
ks of ` = dm=ne triples. The triples of a blo
k

are generated (in parallel) in a non-robust manner; only at the end of the blo
k, 
onsisten
y

is 
he
ked jointly for all triples of the blo
k in a single veri�
ation pro
edure (fault dete
tion).

In 
ase of an in
onsisten
y, a set D � P of two players, at least one of whom is 
orrupted, is

identi�ed (fault lo
alization) and ex
luded from further 
omputations (player elimination). The

triples of the failed blo
k are dis
arded. Player elimination ensures that at most t blo
ks fail,

and hen
e in total at most (n+ t) blo
ks must be pro
essed.

More pre
isely, the 
onsisten
y veri�
ation takes pla
e in two steps. In the �rst veri�
ation

pro
edure (fault dete
tion I), the degree of all involved sharings is veri�ed. In other words, the

players jointly verify that all sharings produ
ed for generating the triples are of appropriate

degree. The se
ond veri�
ation step (fault dete
tion II) is performed only if the �rst veri�
ation

step is su

essful. Here, the players jointly verify that for every triple (a

(i)

; b

(i)

; 


(i)

), every player

shared the 
orre
t values su
h that 


(i)

= a

(i)

b

(i)

. If a fault is dete
ted (in either fault-dete
tion

pro
edure), then all triples in the a
tual blo
k are dis
arded. Furthermore, a set D � P of two

players, one of whom is 
orrupted, is found (fault lo
alization I, resp. fault lo
alization II) and

eliminated from further 
omputations. Note that in the fault-lo
alization pro
edure, the priva
y

of the triples is not maintained. Due to the 
ir
uit-randomization te
hnique [Bea91a℄, the triples


ontain 
ompletely random values unrelated with all values of the a
tual 
omputation.
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Both veri�
ation steps use n \blinding triples", and the priva
y of these triples is annihilated

in the veri�
ation pro
edure. Therefore, in ea
h blo
k, ` + 2n triples are generated. The �rst

veri�
ation step veri�es the degree of all sharings of the �rst `+n triples, using (and destroying)

the remaining n triples for blinding. The se
ond veri�
ation step veri�es the �rst ` triples, using

the remaining n triples for blinding. Note that the se
ond veri�
ation step requires that the

sharings of all `+ n involved triples are veri�ed to be 
orre
t.

During the generation of the blo
ks, players 
an be eliminated. We denote the a
tual set

of players with P

0

, the a
tual number of players with n

0

= jP

0

j, and the maximum number of


heaters in P

0

with t

0

. Without loss of generality, we assume that P

0

= fP

1

; : : : ; P

n

0

g. During

the 
omputation, the inequality 2t

0

< n

0

� t will hold as an invariant. In the beginning, P

0

= P,

n

0

= n, and t

0

= t, and trivially 2t

0

< n

0

�t is satis�ed. In player elimination, n

0

will be de
reased

by 2, and t

0

by 1. Clearly, this preserves the invariant.

0. Set P

0

= P, n

0

= n, and t

0

= t.

1. Repeat until n blo
ks (i.e., n` � m triples) su

eeded:

1.1 Generate `+ 2n

0

triples (in parallel) in a non-robust manner (Se
t. 4.1).

1.2 Verify the 
onsisten
y of all sharings involved in the �rst `+n

0

triples (fault dete
tion I,

Se
t. 4.2). If a fault is dete
ted, identify a set D � P

0

of two players su
h that at least

one player in D is a 
heater, and set P

0

to P

0

n D, n

0

to n

0

� 2 and t

0

to t

0

� 1 (fault

lo
alization I).

1.3 If no fault was dete
ted in Step 1.2, then verify that in the �rst ` triples, every player

shared the 
orre
t values (fault dete
tion II, Se
t. 4.3). If a fault is dete
ted, identify a

set D � P

0

of two players, at least one of whom is 
orrupted, and set P

0

to P

0

nD, n

0

to

n

0

� 2 and t

0

to t

0

� 1 (fault lo
alization II).

1.4 If both veri�
ation steps were su

essful, then the generation of the blo
k was su

essful,

and the �rst ` triples 
an be used. If either veri�
ation pro
edure failed, then all triples

of the a
tual blo
k are dis
arded.

4.1 Generate one t-shared triple (a; b; 
)

The purpose of this proto
ol is to generate one t-shared triple (a; b; 
), where 
 = ab. The

generation of this triple is non-robust: veri�
ation will take pla
e only at the end of the blo
k.

In parti
ular, in order to share a value, the dealer simply 
omputes the shares and sends them

to the players; the 
onsisten
y veri�
ation of the sent shares is delayed.

The generation of the triple is straight-forward: First, the players jointly generate t

0

-sharings

of two random values a and b. This is a
hieved by having every player share two random values,

one for a and one for b, whi
h are then summed up. Then, a t

0

-sharing of 
 = ab is 
omputed

along the lines of [BGW88,GRR98℄ (passive model): Every player 
omputes the produ
t of his

share of a and his share of b. These produ
t shares de�ne a 2t

0

-sharing of 
, and 
 
an be


omputed with Lagrange interpolation. This interpolation is a linear fun
tion on the produ
t

shares. Hen
e, a t

0

-sharing of 
 
an be 
omputed as a linear 
ombination of t

0

-sharings of the

produ
t shares. Finally, the degrees of the sharings of a, b, and 
 must be in
reased from t

0

to

t. In order to do so, the players jointly generate three random sharings of 0, ea
h with degree t,

and add one of them to the t

0

-sharings of a, b, and 
, respe
tively.

Note that the proto
ol for 
omputing a sharing of 
 = ab relies on the fa
t that the degree of

the sharings of a and b is less than one third of the number of a
tual players, and it would not
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work if a and b would be shared with degree t for 3t � n

0

. On the other hand, it is important that

�nally the sharings of all blo
ks have the same degree (otherwise the multipli
ation proto
ol of

Se
tion 5 would leak information about the fa
tors), and t

0


an de
rease from blo
k to blo
k.

Therefore, �rst the triple is generated with degree t

0

, and then this degree is in
reased to t.

Proto
ol \Generate"

We give the exa
t proto
ol for generating one t-shared triple (a; b; 
):

1. The players jointly generate t

0

-sharings of random values a and b:

1.1 Every player P

i

2 P

0

sele
ts two random degree-t

0

polynomials

e

f

i

(x) and eg

i

(x), and

hands the shares ea

ij

=

e

f

i

(�

j

) and

e

b

ij

= eg

i

(�

j

) to player P

j

for j = 1; : : : ; n

0

.

1.2 The polynomial for sharing a is

e

f(x) =

P

n

0

i=1

e

f

i

(x) (thus a =

e

f(0)), and the polynomial

for sharing b is eg(x) =

P

n

0

i=1

eg

i

(x) (thus b = eg(0)), and every player P

j

2 P

0


omputes

his shares of a and b as

ea

j

=

n

0

X

i=1

ea

ij

, and

e

b

j

=

n

0

X

i=1

e

b

ij

:

2. The players jointly 
ompute a t

0

-sharing of 
 = ab:

2.1 Every player P

i

2 P

0


omputes his produ
t share ee

i

= ea

i

e

b

i

, and shares it among the

players with the random degree-t

0

polynomial

e

h

i

(x) (with

e

h

i

(0) = ee

i

), i.e., sends the

share ee

ij

=

e

h

i

(�

j

) to player P

j

for j = 1; : : : ; n

0

.

2.2 Every player P

j


omputes his share e


j

of 
 as

e


j

=

n

0

X

i=1

w

i

ee

ij

, where w

i

=

n

0

Y

j=1

j 6=i

�

j

�

j

� �

i

:

3. The players jointly in
rease the degree of the sharings of a, b, and 
 to t (this step is performed

only if t

0

< t):

3.1 Every player P

i

2 P

0

sele
ts three polynomials

�

f

i

(x), �g

i

(x),

�

h

i

(x) of degree t � 1 at

random, and sends the shares �a

ij

=

�

f

i

(�

j

),

�

b

ij

= �g

i

(�

j

), and �


ij

=

�

h

i

(�

j

) to player P

j

for j = 1; : : : ; n

0

.

3.2 Every player P

j

2 P

0


omputes his t-shares a

j

, b

j

, and 


j

of a, b, and 
, respe
tively, as

follows:

a

j

= ea

j

+ �

j

n

0

X

i=1

�a

ij

, b

j

=

e

b

j

+ �

j

n

0

X

i=1

�

b

ij

, 


j

= e


j

+ �

j

n

0

X

i=1

�


ij

:

Se
urity analysis

At the end of the blo
k, two veri�
ations will take pla
e: First, it will be veri�ed that the degree

of all sharings is as required (t

0

, respe
tively t� 1, Se
tion 4.2). Se
ond, it will be veri�ed that

in Step 2.1, every player P

i

indeed shares his 
orre
t produ
t share ee

i

= ea

i

e

b

i

(Se
tion 4.3). In

the sequel, we analyze the se
urity of the above proto
ol under the assumption that these two


onditions are satis�ed.

After Step 1, obviously the assumption that the degree of all sharings is as required imme-

diately implies that the resulting shares ea

1

; : : : ;ea

n

0

(respe
tively

e

b

1

; : : : ;

e

b

n

0

) lie on a polynomial
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of degree t

0

, and hen
e de�ne a valid sharing. Furthermore, if at least one player in P

i

2 P

0

honestly sele
ted random polynomials

e

f

i

(x) and eg

i

(x), then a and b are random and unknown

to the adversary.

In Step 2, we need the observation that 
 
an be 
omputed by Lagrange interpolation

[GRR98℄:


 =

n

0

X

i=1

w

i

ee

i

, where w

i

=

n

0

Y

j=1

j 6=i

�

j

�

j

� �

i

:

Assuming that every player P

i

really shares his 
orre
t produ
t share ee

i

with a polynomial

e

h

i

(x)

of degree t

0

, it follows immediately that the polynomial

e

h(x) =

P

n

0

i=1

w

i

e

h

i

(x) is also of degree

t

0

, and furthermore

e

h(0) =

n

0

X

i=1

w

i

e

h

i

(0) =

n

0

X

i=1

w

i

ee

i

= 
:

The priva
y is guaranteed be
ause the adversary does not obtain information about more than

t

0

shares of any polynomial

e

h

i

(x) (for any i = 1; : : : ; n

0

).

Step 3 is only performed if t

0

< t. Assuming that the polynomials

�

f

i

(x), �g

i

(x), and

�

h

i

(x) of

every player P

i

2 P

0

have degree at most t� 1, it immediately follows that all the polynomials

de�ned as

�

f(x) =

n

0

X

i=1

�

f

i

(x); �g(x) =

n

0

X

i=1

�g

i

(x);

�

h(x) =

n

0

X

i=1

�

h

i

(x)

also all have degree at most t� 1. Hen
e, the polynomials x

�

f(x), x�g(x), and x

�

h(x) have degree

at most t, and they all share the se
ret 0. Thus, the sums

e

f(x) + x

�

f(x), eg(x) + x�g(x), and

e

h(x) + x

�

h(x) are of degree t and share a, b, and 
, respe
tively. The priva
y of the proto
ol is

obvious for t

0

� t� 1.

Complexity analysis

We brie
y analyze the 
ommuni
ation 
omplexity of the above proto
ol: Every sharing requires

n �eld elements to be sent, and in total there are 6n sharings, whi
h results in a total of 6n

2

�eld elements to be 
ommuni
ated per triple.

4.2 Veri�
ation of the degrees of all sharings in a blo
k

The goal of this fault-dete
tion proto
ol is to verify the degree of the sharings of ` + n

0

triples

in a single step, using (and destroying) another n

0

triples.

The basi
 idea of this proto
ol is to verify the degree of a random linear 
ombination of the

polynomials. More pre
isely, every player distributes a random 
hallenge ve
tor of length `+ n

0

with elements in F, and the 
orresponding linear 
ombinations of ea
h involved polynomial is

re
onstru
ted towards the 
hallenging player, who then 
he
ks that the resulting polynomial is

of appropriate degree. In order to preserve the priva
y of the involved polynomials, for ea
h

veri�er one additional blinding polynomial of appropriate degree is added. If a veri�er dete
ts

a fault (i.e., one of the linearly 
ombined polynomials has too high degree), then the triples of

the a
tual blo
k are dis
arded, and in a fault-lo
alization proto
ol, a set D � P

0

of two players,

at least one of whom is 
orrupted, is found and eliminated.
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Proto
ol \Fault-dete
tion I"

The following steps for verifying the degree of all sharings in one blo
k are performed in parallel,

on
e for every veri�er P

v

2 P

0

:

1. The veri�er P

v

sele
ts a random ve
tor [r

1

; : : : ; r

`+n

0

℄ with elements in F and sends it to

ea
h player P

j

2 P

0

.

2. Every player P

j


omputes and sends to P

v

the following 
orresponding linear 
ombinations

(plus the share of the blinding polynomial) for every i = 1; : : : ; n

0

:

ea

(�)

ij

=

`+n

0

X

k=1

r

k

ea

(k)

ij

+ ea

(`+n

0

+v)

ij

e

b

(�)

ij

=

`+n

0

X

k=1

r

k

e

b

(k)

ij

+

e

b

(`+n

0

+v)

ij

e


(�)

ij

=

`+n

0

X

k=1

r

k

e


(k)

ij

+ e


(`+n

0

+v)

ij

�a

(�)

ij

=

`+n

0

X

k=1

r

k

�a

(k)

ij

+ �a

(`+n

0

+v)

ij

�

b

(�)

ij

=

`+n

0

X

k=1

r

k

�

b

(k)

ij

+

�

b

(`+n

0

+v)

ij

�


(�)

ij

=

`+n

0

X

k=1

r

k

�


(k)

ij

+ �


(`+n

0

+v)

ij

3. P

v

veri�es whether for ea
h i = 1; : : : ; n

0

, the shares ea

(�)

i1

; : : : ;ea

(�)

in

0

lie on a polynomial of

degree at most t

0

. The same veri�
ation is performed for the shares

e

b

(�)

i1

; : : : ;

e

b

(�)

in

0

and for the

shares e


(�)

i1

; : : : ;e


(�)

in

0

, for i = 1; : : : ; n

0

. Furthermore, P

v

veri�es whether for ea
h i = 1; : : : ; n

0

,

the shares �a

(�)

i1

; : : : ; �a

(�)

in

0

lie on a polynomial of degree at most t� 1. The same veri�
ation

is performed for the shares

�

b

(�)

i1

; : : : ;

�

b

(�)

in

0

and for the shares �


(�)

i1

; : : : ; �


(�)

in

0

for i = 1; : : : ; n

0

.

4. Finally, P

v

broad
asts (using an appropriate sub-proto
ol) one bit a

ording to whether all

the 6n

0

veri�ed polynomials have degree at most t

0

, respe
tively t� 1 (
on�rmation), or at

least one polynomial has too high degree (
omplaint).

Proto
ol \Fault-lo
alization I"

This proto
ol is performed if and only if at least one veri�er has broad
asts a 
omplaint in Step 4

of the above fault-dete
tion proto
ol. We denote with P

v

the veri�er who has reported a fault.

If there are several su
h veri�ers, the one with the smallest index v is sele
ted.

5. The veri�er P

v

sele
ts one of the polynomials of too high degree and broad
asts the lo-


ation of the fault, 
onsisting of the index i and the \name" of the sharing (ea,

e

b, e
, �a,

�

b, or �
). Without loss of generality, we assume that the fault was observed in the sharing

ea

(�)

i1

; : : : ;ea

(�)

in

0

.

6. The owner P

i

of this sharing (i.e., the player who a
ted as dealer for this sharing) sends to the

veri�er P

v

the 
orre
t linearly 
ombined polynomial

e

f

(�)

i

(x) =

P

`+n

0

k=1

e

f

(k)

i

(x)+

e

f

(`+n

0

+v)

i

(x).

7. P

v

�nds the (smallest) index j su
h that ea

(�)

ij

(re
eived from P

j

in Step 2) does not lie on

the polynomial

e

f

(�)

i

(x) (re
eived from the owner P

i

in Step 6), and broad
asts j among the

players in P

0

.

8. Both P

i

and P

j

send the list ea

(1)

ij

; : : : ;ea

(`+n

0

)

ij

;ea

(`+n

0

+v)

ij

to P

v

.

9. P

v

veri�es that the linear 
ombination [r

1

; : : : ; r

`+n

0

℄ applied to the values re
eived from

P

i

is equal to

e

f

(�)

i

(�

j

). Otherwise, P

v

broad
asts the index i, and the set of players to

be eliminated is D = fP

i

; P

v

g. Analogously, P

v

veri�es the values re
eived from P

j

to be

7




onsistent with ea

(�)

ij

re
eived in Step 2, and in 
ase of failure broad
asts the index j, and

D = fP

j

; P

v

g.

10. P

v

�nds the (smallest) index k su
h that the values ea

(k)

ij

re
eived from P

i

and P

j

di�er, and

broad
asts k and both values ea

(k)

ij

from P

i

and ea

(k)

ij

from P

j

.

11. Both P

i

and P

j

broad
ast their value of ea

(k)

ij

.

12. If the values broad
ast by P

i

and P

j

di�er, then the lo
alized set is D = fP

i

; P

j

g. If the

value broad
ast by P

i

di�ers from the value that P

v

broad
ast (and 
laimed to be the value

re
eived from P

i

), then D = fP

i

; P

v

g. Else, D = fP

j

; P

v

g.

Se
urity analysis

It follows from simple algebra that if all players are honest, then the above fault-dete
tion

proto
ol will always pass. On the other hand, if at least one of the involved sharings (in any

of the ` + n

0

triples) has too high degree, then every honest veri�er will dete
t this fault with

probability at least 1=jFj. For at least n

0

� t

0

� n� 2t honest players, this gives an overall error

probability of at most jFj

�(n�2t)

.

The 
orre
tness of the fault-lo
alization proto
ol 
an be veri�ed by inspe
tion. There is no

priva
y issue in this proto
ol; the generated triples are dis
arded.

Complexity analysis

The fault-dete
tion proto
ol requires n(n(`+n)+6n

2

)= n

2

`+7n

3

�eld elements to be sent and

n bits to be broad
ast. For fault lo
alization, up to n+2(`+n+1) = 2`+3n+2 �eld elements

must be sent and 2 log n+ log 6 + log(`+ n+ 1) + 4 log jFj bits must be broad
ast.

4.3 Veri�
ation that all players share the 
orre
t produ
t shares

It remains to verify that in ea
h triple k = 1; : : : ; `, every player P

i

shared the 
orre
t produ
t

share ee

(k)

i

= ea

(k)

i

e

b

(k)

i

(Step 2.1 of proto
ol Generate). Sin
e it is already veri�ed that the sharings

of all fa
tor shares are of degree t

0

, it is suÆ
ient to verify that the shares ee

(k)

1

; : : : ; ee

(k)

n

0

lie on a

polynomial of degree at most 2t

0

. Note that the at least n

0

� t

0

> 2t

0

shares of the honest players

uniquely de�ne this polynomial. The key idea of this veri�
ation proto
ol is the same as in the

previous veri�
ation proto
ol: Every veri�er P

v

distributes a random 
hallenge ve
tor, and the


orresponding linear 
ombination of the polynomials (plus one blinding polynomial) is opened

towards P

v

. If a fault is dete
ted, then a set D of two players (one of whom is 
orrupted) 
an

be found with the fault-lo
alization proto
ol.

Proto
ol \Fault-dete
tion II"

The following steps are performed for ea
h veri�er P

v

2 P

0

in parallel.

1. The veri�er P

v

sele
ts a random ve
tor [r

1

; : : : ; r

`

℄ with elements in F and sends it to ea
h

player P

j

2 P

0

.

2. Every player P

j


omputes and sends to P

v

the following linear 
ombinations (with blinding)

for every i = 1; : : : ; n

0

:

ee

(�)

ij

=

`

X

k=1

r

k

ee

(k)

ij

+ ee

(`+v)

ij

:

8



3. P

v

veri�es whether for ea
h i = 1; : : : ; n

0

the shares ee

(�)

i1

; : : : ; ee

(�)

in

0

lie on a polynomial of

degree at most t

0

, and if so, whether the se
rets ee

�

1

; : : : ; ee

�

n

0

of the above sharings (
omputed

by interpolating the 
orresponding share-shares) lie on a polynomial of degree at most 2t

0

.

P

v

broad
asts one bits a

ording to whether all polynomials have appropriate degree (
on�r-

mation), or at least one polynomial has too high degree (
omplaint).

Proto
ol \Fault-lo
alization II"

We denote with P

v

the veri�er who has reported a fault in Step 3 of the above fault-dete
tion

proto
ol. If there are several su
h veri�ers, the one with the smallest index v is sele
ted.

4. If in Step 3, the degree of one of the se
ond-level sharings ee

(�)

i1

; : : : ; ee

(�)

in

0

was too high, then

P

v

applies error-
orre
tion to �nd the smallest index j su
h that ee

(�)

ij

must be 
orre
ted

(
f. Appendix B). Sin
e all sharings have been veri�ed to have 
orre
t degree, P

v


an 
on
lude

that P

j

has sent the wrong value ee

(�)

ij

. P

v

broad
asts the index j, and the set of players to

be eliminated is D = fP

j

; P

v

g (and the following steps need not be performed).

5. Every player P

i

sends to P

v

all his fa
tor shares ea

(1)

i

; : : : ;ea

(`)

i

;ea

(`+v)

i

and

e

b

(1)

i

; : : : ;

e

b

(`)

i

;

e

b

(`+v)

i

.

6. P

v

veri�es for every k = 1; : : : ; `; ` + v whether the shares ea

(k)

1

; : : : ;ea

(k)

n

0

lie on a polynomial

of degree t

0

. If not, then P

v

applies error-
orre
tion and �nds and broad
asts the (smallest)

index j su
h that ea

(k)

j

must be 
orre
ted. The set of players to be eliminated is D = fP

j

; P

v

g.

The same veri�
ation is performed for the shares

e

b

(k)

1

; : : : ;

e

b

(k)

n

0

for k = 1; : : : ; `; `+ v.

7. P

v

veri�es for every i = 1; : : : ; n

0

whether the value ee

�

i


omputed in Step 4 is 
orre
t, i.e.,

whether

ee

�

i

?

=

`

X

k=1

r

k

ea

(k)

i

e

b

(k)

i

+ ea

(`+v)

i

e

b

(`+v)

i

:

This test will fail for at least one i, and P

v

broad
asts this index i. The players in D = fP

i

; P

v

g

are eliminated.

Se
urity analysis

It follows from simple algebra that if all players are honest, then the above fault-dete
tion

proto
ol will always pass. On the other hand, if the degree of at least one of the involved

sharings is higher than 2t

0

, then every honest veri�er will dete
t this fault with probability at

least 1=jFj. For at least n

0

� t

0

� n� 2t honest players, this makes an overall error probability

of at most jFj

�(n�2t)

.

The 
orre
tness of the fault-lo
alization proto
ol 
an be veri�ed by inspe
tion. There is no

priva
y issue in this proto
ol; the generated triples are dis
arded.

Complexity analysis

The fault-dete
tion proto
ol requires n(n`+n

2

) = n

2

`+n

3

elements to be sent, and n bits to be

broad
ast. The fault-lo
alization proto
ol requires 2n(`+ 1) �eld elements to be sent and log n

bits to be broad
ast.

5 Computation Phase

The evaluation of the 
ir
uit is along the lines of the proto
ol of [Bea91a℄. Slight modi�
ations

are needed be
ause the degree t of the sharings and the upper bound t

0

on the number of
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heaters need not be equal. Furthermore, spe
ial fo
us is given to the fa
t that in our proto
ol,

also eliminated players must be able to give input to and re
eive output from the 
omputation.

From the preparation phase, we have m random triples (a

(i)

; b

(i)

; 


(i)

) with 


(i)

= a

(i)

b

(i)

,

where the sharings are of degree t among the set P

0

of players. The number of 
orrupted players

in P

0

is at most t

0

with 2t

0

< n

0

� t, where n

0

= jP

0

j. This is suÆ
ient for eÆ
ient 
omputation

of the 
ir
uit.

5.1 Input sharing

First, every player who has input se
ret-shares it (with degree t) among the set P

0

of players.

We use the veri�able se
ret-sharing proto
ol of [BGW88℄ (with perfe
t se
urity), with a slight

modi�
ation to support t 6= t

0

. The dealer is denoted by P, and the se
ret to be shared by s. We

do not assume that P 2 P

0

(neither P 2 P).

1. The dealer P sele
ts at random a polynomial f(x; y) of degree t in both variables, with

p(0; 0) = s, and sends the polynomials f

i

(x) = f(�

i

; x) and g

i

(x) = p(x; �

i

) to player P

i

for

i = 1; : : : ; n

0

.

2. Every player P

i

2 P

0

sends to P

j

for j = i+ 1; : : : ; n

0

the values f

i

(�

j

) and g

i

(�

j

).

3. Every player P

j

broad
asts one bit a

ording to whether all re
eived values are 
onsistent

with the polynomials f

j

(x) and g

j

(x) (
on�rmation) or not (
omplaint).

4. If no player has broad
ast a 
omplaint, then the se
ret-sharing is �nished, and the share of

player P

j

is f

j

(0). Otherwise, every player P

j

who has 
omplaint broad
asts a bit ve
tor of

length n

0

, where a 1-bit in position i means that one of the values re
eived from P

i

was not


onsistent with f

j

(x) or g

j

(x). The dealer P must answer all 
omplaints by broad
asting the


orre
t values f(�

i

; �

j

) and f(�

j

; �

i

).

5. Every player P

i


he
ks whether the values broad
ast by the dealer in Step 4 are 
onsistent

with his polynomials f

i

(x) and g

i

(x), and broad
asts either a 
on�rmation or an a

usation.

The dealer P answers every a

usation by broad
asting both polynomials f

i

(x) and g

i

(x) of

the a

using player P

i

, and P

i

repla
es his polynomials by the broad
ast ones.

6. Every player P

i


he
ks whether the polynomials broad
ast by the dealer in Step 5 are 
on-

sistent with his polynomials f

i

(x) and g

i

(x), and broad
asts either a 
on�rmation or an

a

usation.

7. If in Steps 5 and 6, there are in total at most t

0

a

usations, then every player P

i

takes f

i

(0)

as his share of s. Otherwise, 
learly the dealer is faulty, and the players take a default sharing

(e.g., the 
onstant sharing of 0).

It is 
lear that an honest player never a

uses an honest dealer. On the other hand, if there

are at most t

0

a

usations, then the polynomials of at least n

0

� 2t

0

> t honest players are


onsistent, and these polynomials uniquely de�ne the polynomial f(x; y) with degree t. Hen
e,

the polynomials of all honest players are 
onsistent, and their shares f

1

(0); : : : ; f

n

0

(0) lie on a

polynomial of degree t.

This proto
ol 
ommuni
ates 3n

2

�eld elements, and it broad
asts n bits (in the best 
ase),

respe
tively n

2

+ 3n+ 2t

2

log jFj bits (in the worst 
ase).

5.2 Evaluation of the 
ir
uit

The 
ir
uit is evaluated gate by gate. Linear gates 
an be evaluated without any 
ommuni
ation

due to the linearity of the used sharing. Multipli
ation gates are evaluated a

ording to [Bea91a℄:
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Assume that the fa
tors x and y are t-shared among the players. Furthermore, a t-shared triple

(a; b; 
) with 
 = ab is used. The produ
t xy 
an be written as follows:

xy = ((x� a) + a)((y � b) + b) = ((x� a)(y � b)) + (x� a)b+ (y � b)a+ 
:

The players in P

0

re
onstru
t the di�eren
es d

x

= x� a and d

y

= y � b. This re
onstru
tion is

possible be
ause 2t

0

< n

0

� t (
f. Appendix B). Note that re
onstru
ting these values does not

give any information about x or y, be
ause a and b are random. Then, the following equation

holds:

xy = d

x

d

y

+ d

x

b+ d

y

a+ 
:

This equation is linear in a, b, and 
, and we 
an 
ompute linear 
ombinations on shared values

without 
ommuni
ation. This means that the players 
an 
ompute the above linear 
ombination

on their respe
tive shares of x and y and they re
eive a t-sharing of the produ
t xy. More details


an be found in [Bea91a℄.

This multipli
ation proto
ol requires two se
ret-re
onstru
tions per multipli
ation gate.

Se
ret-re
onstru
tion requires every player in P

0

to send his share to every other player (who then

applies error-
orre
tion to the re
eived shares and interpolates the se
ret). The 
ommuni
ation


osts per multipli
ation gate are hen
e 2n

2

. Broad
ast is not needed.

5.3 Output re
onstru
tion

Any player P 
an re
eive output (not only players in P

0

or in P). In order to re
onstru
t a

shared value x towards player P, every player in P

0

sends his share of x to P, who then applies

error-
orre
tion and interpolation to 
ompute the output x. In the error-
orre
tion pro
edure,

up to (n

0

� t� 1)=2 � t

0

errors 
an be 
orre
ted (see Appendix B).

Re
onstru
ting one value requires n �eld elements of 
ommuni
ation, and no broad
ast.

5.4 Probabilisti
 fun
tions

The presented proto
ol is for deterministi
 fun
tions only. In order to 
apture probabilisti


fun
tions, one 
an generate one (or several) blo
ks with single values a

(i)

only (with simpli�ed

veri�
ation), and use these values as shared randomness.

Alternatively, but somewhat wastefully, one just pi
ks the value a

(i)

from a shared triple

(a

(i)

; b

(i)

; 


(i)

), and dis
ards the rest of the triple. Then, m denotes the number of multipli
ation

gates plus the number of \randomness gates".

5.5 On-going 
omputations

In an on-going 
omputation, inputs and outputs 
an be given and re
eived at any time during

the 
omputation, not only at the beginning and at the end. Furthermore, it might even not be

spe
i�ed beforehand whi
h fun
tion will be 
omputed. And example of an on-going 
omputation

is the simulation of a fair sto
k market.

In 
ontrast to the proto
ol of [HMP00℄, the proposed proto
ol 
an easily be extended to


apture the s
enario of on-going 
omputations. First, the players generate ` triples (a; b; 
) with


 = ab, and perform the 
omputation until all triples are exhausted. Then, a new blo
k of `

triples is generated, and so on.
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6 Complexity Analysis

A detailed 
omplexity analysis is given in Appendix A. Here we summarize the most important

results: Let n denote the number of players, F the �eld over whi
h the fun
tion (
ir
uit) is

de�ned, m the number of multipli
ation gates in the 
ir
uit, C

d

the depth of the 
ir
uit, n

I

the number of inputs and n

O

the number of outputs of the fun
tion. Evaluating this 
ir
uit

se
urely with respe
t to an a
tive adversary 
orrupting any t < n=3 of the players is possible

with 
ommuni
ating 14mn

2

+O(n

I

n

4

+n

O

n+n

4

) �eld elements. The number of 
ommuni
ation

rounds is C

d

+O(n

2

). All 
omplexities in
lude the 
osts for simulating broad
ast.

This 
omplexity should be 
ompared with the 
omplexity of the most eÆ
ient proto
ols.

In the se
ure-
hannels model, the most eÆ
ient proto
ol for un
onditionally se
ure multi-party

proto
ols [HMP00℄ requires O(mn

3

) �eld elements in O(C

d

+ n

2

) rounds (where both hidden


onstants are slightly higher than ours).

For 
ompleteness, we also 
ompare the 
omplexity of our proto
ol with the 
omplexity of

the most eÆ
ient proto
ol for the 
ryptographi
 model [CDN01℄. This proto
ol requires a 
om-

muni
ation 
omplexity of O(mn

3

) �eld elements in O(C

d

n) rounds. The high round 
omplexity

results from the fa
t that the proto
ol invokes a broad
ast sub-proto
ol for ea
h multipli
ation

gate. The most eÆ
ient broad
ast proto
ols requireO(n) rounds. Constant-round broad
ast pro-

to
ols are known [FM88℄, but they have higher 
ommuni
ation 
omplexities and would results

in a 
ommuni
ation 
omplexity of O(mn

5

) �eld elements.

Finally, we 
ompare the proto
ol with the most eÆ
ient known proto
ol for passive se
urity,

namely [BGW88℄ with the simpli�
ation of [GRR98℄. This proto
ol 
ommuni
atesmn

2

+O(n

I

n+

n

O

n) �eld elements. Hen
e, providing robustness 
an be a
hieved with a 
ommuni
ation overhead

of about fa
tor 14.

7 Con
lusions and Open Problems

We have presented a proto
ol for se
ure multi-party 
omputation un
onditionally se
ure against

an a
tive adversary whi
h is (up to a small 
onstant fa
tor) as eÆ
ient as proto
ols with passive

se
urity. The proto
ol provides some (arbitrarily small) probability of error. Note that due to the

player-elimination te
hnique, this error-probability does not grow with the length of the proto
ol

(like in all previous MPC proto
ols with error probability), but only in the upper bound t of

the number of 
orrupted players.

It remains open whether quadrati
 
omplexity 
an also be a
hieved in the model of an a
tive


omputationally-bounded adversary (
ryptographi
 model), where up to t < n=2 of the players

may be 
orrupted. The most eÆ
ient result for this model requires 
ommuni
ation of O(n

3

) �eld

elements (and O(n) rounds!) per multipli
ation gate [CDN01℄.

Also, it would be interesting to 
ombine the te
hniques of this paper with te
hniques of papers

with proto
ols that require a 
onstant number of rounds only (but have a high 
ommuni
ation


omplexity), to a
hieve a multi-party proto
ol whi
h has both low 
ommuni
ation 
omplexity

and very low round 
omplexity.

Furthermore, the presented proto
ol is for the syn
hronous model. Some real-world networks

appear to be more appropriately modeled by the asyn
hronous model, and the proto
ol must be

adapted for this setting. It seems that this 
an be done along the lines of [BCG93,Can95,SR00℄.

Finally, it would be interesting to have a proof that quadrati
 
omplexity is optimal for

passive se
urity. This would immediately imply that the proto
ol of this paper is optimally

eÆ
ient (up to a 
onstant fa
tor).
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A Detailed Complexity Analysis

We summarize the 
omplexities of all involved sub-proto
ols. For ea
h sub-proto
ol, we indi
ate

both the message 
omplexity (MC, in 
ommuni
ated �eld elements) and the broad
ast 
omplex-

ity (BC, in bits) of the proto
ol involved on
e, and spe
ify how often the proto
ol is 
alled at

least (when no adversary is present) and at most (when the 
orrupted players misbehave in the

most e�e
tive way). The 
omplexity of the veri�able se
ret-sharing proto
ol of [BGW88℄, whi
h

is used for giving input, depends on whether or not some of the players misbehave. We list both


omplexities.

In the table, n denotes the number of players, t the upper bound on the number of a
tively


orrupted players, m the total number of multipli
ation gates, ` the number of multipli
ation

gates per blo
k, n

I

the number of inputs to the fun
tion, and n

O

the number of outputs of the

fun
tion.

The indi
ated 
omplexities are upper bounds: In parti
ular, when a player has to send a

message to all players, we 
ount this as n messages (instead of n� 1).

What

MC

(�eld elements)

BC

(bits)

#Calls

(min. . .max)

Generate triples 6n

2

|

n(`+2n) . . .

(n+t)(`+2n)

(1)

Fault dete
tion I `n

2

+ 7n

3

n n . . .n+t (2)

Fault lo
alization I 2`+ 3n+ 2

2 log n+ 4 log jFj

+log(`+n+1) + log 6

0 . . . t (3)

Fault dete
tion II `n

2

+ n

3

n n . . .n+t (4)

Fault lo
alization II 2`n+ 2n log n 0 . . . t (5)

Give input (best) 3n

2

n n

I

(6)

Give input (worst) 3n

2

n

2

+ 3n + 2t

2

log jFj n

I

(7)

Multiply 2n

2

| m (8)

Get output n | n

O

(9)

We add up the above 
omplexities for ` � m=n+1, n � 4, and t � n=3. In order to simplify

the expressions, some of the terms are slightly rounded up.

In the best 
ase (when no 
heating o

urs), 10mn

2

+ 22n

4

+ 3n

I

n

2

+ n

O

n �eld elements are


ommuni
ated and 2n

2

+ n

I

n bits are broad
ast. Applying the broad
ast proto
ol of [BGP89℄

(whi
h 
ommuni
ates 9n

2

bits for broad
asting one bit), this results in a total 
omplexity of less

than 10mn

2

log jFj + 22n

4

(log jFj + 1) + n

I

n

2

(3 log jFj + 9n) + n

O

n log jFj bits.

In the worst 
ase, the proto
ol 
ommuni
ates 13mn

2

+30n

4

+3n

I

n

2

+n

O

n �eld elements and

broad
asts 3n

2

+2n log jFj+

n

3

logm+n

I

n

2

log jFj bits. Simulating broad
ast with [BGP89℄, this

gives less than 14mn

2

log jFj + 35n

4

(log jFj + 1) + 9n

I

n

4

log jFj + n

O

n log jFj bits. This is about

14mn

2

+O(n

I

n

4

+ n

O

n+ n

4

) �eld elements.
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B Error-
orre
tion with Erasures

In the proto
ol of this paper, we often need to interpolate a shared value from a subset of

the shares. In this appendix, we brie
y summarize the te
hniques used for performing these

interpolations eÆ
iently.

We assume that to ea
h player P

i

2 P a unique value �

i

2 F n f0g is assigned. We say that

a se
ret s is t-shared among the players in P if there exists a degree-t polynomial f(x) with

f(0) = s, and every player P

i

2 P holds a share s

i

= f(�

i

). It is well-known that 
orre
ting

up to t

f

faulty shares in a 
odeword s

1

; : : : ; s

n

is possible as long as 2t

f

< n� t. Furthermore,

when �

i

= !

i

(for i = 1; : : : ; n) for an n-th root of unity !, the shares s

1

; : : : ; s

n


orrespond to a


odeword in a Reed-Solomon 
ode of length n with minimum distan
e n�t, and error-
orre
tion


an be performed eÆ
iently (polynomial in n).

This error-
orre
tion pro
edure 
an be slightly generalized to 
apture erasures in the 
ode-

word: Error-
orre
tion in a Reed-Solomon 
ode is possible and eÆ
ient if up to t

f

shares are

faulty and up to t

e

shares are omitted (erasures), as long as 2t

f

+ t

e

< n � t (see e.g. [Bla84,

Se
t. 9.2℄ for details).

This generalized pro
edure 
an be used for two purposes: First, instead of requiring existen
e

of an n-th root of unity in F, it is suÆ
ient to require existen
e of an �n-th root of unity for some

�n � n. The �n� n missing shares in ea
h sharing are treated as erasures of the 
ode. Note that

an n-th root of unity exists in F if and only if n divides jFj � 1, and for many settings of n and

F, su
h a root simply does not exist.

Se
ond, it 
aptures the setting with player elimination. After a sequen
e of k player elimina-

tions, we have n

0

= n� 2k remaining players, where up to t

0

= t� k of them are 
orrupted. The

n

0

shares of the remaining players de�ne a 
odeword with t

e

= �n�n

0

= �n�n+2k erasures and

t

f

= t

0

= t�k faults. Su
h a sharing 
an be interpolated eÆ
iently for 2(t�k)+(�n�n+2k) < �n�t,

whi
h is satis�ed for t < n=3.
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