
Secure Multiparty Computation of Approximations

Joan Feigenbaum

?

Yuval Ishai

??

Tal Malkin

? ? ?

Kobbi Nissim

y

Martin Strauss

z

Rebecca N. Wright

x

Abstract. Approximation algorithms can sometimes be used to obtain e�cient solutions where no

e�cient exact computation is known. In particular, approximations are often useful in a distributed

setting where the inputs are held by di�erent parties and are extremely large. Furthermore, for some

applications, the parties want to cooperate to compute a function of their inputs without revealing

more information than they have to.

Suppose the function

^

f is an approximation to the function f . Secure multiparty computation of f allows

the parties to compute f without revealing more than they have to, but it requires some additional

overhead in computation and communication. Hence, if computation of f is ine�cient or just e�cient

enough to be practical, then secure computation of f may be impractically expensive. Furthermore,

a secure computation of

^

f is not necessarily as private as a secure computation of f , because the

output of

^

f may reveal more information than the output of f . In this paper, we present de�nitions

and protocols of secure multiparty approximate computation that show how to realize most of the cost

savings available by using

^

f instead of f without losing the privacy of a secure computation of f .

We make three contributions. First, we give formal de�nitions of secure multiparty approximate com-

putations. Second, we present an e�cient, sublinear-communication, private approximate computation

for the Hamming distance; we also give an e�cient, polylogarithmic-communication solution for the L

2

distance in a relaxed model. Finally, we give an e�cient private approximation of the permanent and

other related #P-hard problems.
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sive data sets, streaming algorithms, Hamming distance.
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1 Introduction

There is an increasing number and variety of real-world applications that collect a massive amount of data

and wish to make use of that data. For example, massive data sets arise in physical sciences such as biology

and astronomy, in marketing, in network operations, and in Web searches. The search for e�cient and

e�ective data mining algorithms, particularly of massive data sets, is an important emerging area of research

(cf. [DIM97,DIM00] and the many activities described therein).

Unfortunately, many useful functions are expensive to compute. Even functions that are e�ciently com-

putable for moderately sized data sets are often not e�ciently computable for massive data sets. For example,

even quadratic algorithms cannot generally be considered practical on input consisting of a terabyte of data;

such data sets are now routinely generated daily.
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Besides the size of the input, the distributed nature of data

sets can be an obstacle to computation. A single logical data set is often stored in several remote pieces, and

a computation on the data set may require prohibitively costly communication among the di�erent storage

sites. For example, several elements of a large wide-area network may gather statistics independently; these

statistics may need to be sent to a central location to be analyzed.

Another important concern, in addition to the e�ciency of a computation, is its security. In a distributed

setting, the pieces of a distributed data set may be controlled by di�erent parties who wish to collaborate

in order to compute some function of their data without fully revealing their piece of the data to the other

parties. To that end, the parties may want to compute a function of their inputs securely, i.e., so that no party

learns anything about the others' inputs except what is implied by her own output, perhaps even if some

of the other parties behave maliciously. For example, rival Internet service providers often strike \peering

agreements," in which each carries the other's Internet tra�c at no cost, as long as the characteristics of the

tra�c carried by each peer for the other are comparable. The prospective peers each have data sets describing

the characteristics of their own tra�c, and they would like to verify the similarity of these data sets without

revealing more than they have to. Several recent papers have considered the problem of privacy-preserving

data mining [AR00,LP00], recognizing that it is often desirable to perform data mining without revealing

unnecessary information about the data.

Each of the above two concerns has been previously addressed (separately): On one hand, when the cost

of an exact computation of a function f is too high, the parties may use an approximation

^

f to f . In some

cases, the communication of only a small random sample from each part of a data set stored in remote

pieces su�ces for an approximation. In other cases, the communication of the result of a local computation

depending on the entire local data set is su�cient. In both situations, the computation on the samples

typically requires less communication and less computation than an exact computation on the original data

set. On the other hand, secure multiparty computation (initiated by [Yao82,GMW87,BGW88,CCD88]) allows

a group of parties to compute a function f in such a way that no more is revealed to a party about other

parties' inputs and outputs than what is implied by her own input and output.

In this paper we address both concerns simultaneously: our goal is to construct approximation algorithms

(more e�cient than exact computation), which also maintain the privacy of the data. Note that the straight-

forward approach of simply computing an approximation

^

f via a secure multiparty computation, will not

work, as it will not necessarily be private, nor e�cient. Indeed, even when

^

f itself is e�cient, computing it

using a general-purpose secure computation is typically very expensive. Moreover, a secure computation of

^

f may still leak information about f , that follows from the output of

^

f itself. To illustrate this, consider a

function f and an approximation

^

f to f that outputs f(x

1

; : : : ; x

n

) with the last bit possibly ipped so that

that last bit is 0 if x

1

is even and 1 if x

1

is odd. Then

^

f(x

1

; : : : ; x

n

) is a good approximation but unnecessarily

reveals the parity of x

1

.

Our work

In this paper, we provide de�nitions of secure approximate multiparty computation that disallow the prob-

lems of information leakage discussed above, and we present protocols for several natural functions.

For massive data sets, distance functions are particularly important because they give a measure of simi-

larity between two data sets. For example, telephone companies may want to compute joint statistics on their

1

For example, AT&T's phone network carries about 300 million calls per day, each of which generates a few kilobytes

of billing data.
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calling data, ISPs may want to verify similar \peering" tra�c characteristics, and Web search companies

may want to compare their images of the Web. Because the exact computation of the Hamming and related

distances requires 
(n) communication, there has been much recent work on sublinear communication dis-

tance approximations. For example, Alon et al. [AMS96] and Feigenbaum et al. [FKSV99] present algorithms

for e�ciently approximating the L

2

and L

1

distances, respectively, between two massive data sets. However,

these L

p

approximations also su�er the kind of information leakage described above. In this paper, our main

technical contribution is an e�cient Hamming distance approximation that does not leak any unnecessary

information about the parties inputs. If the model is relaxed to allow linear o�ine computation (before the

parties know their inputs), we also give a private approximation for the L

2

norm (the Hamming distance is

a special case), whose online communication is extremely e�cient (polylogarithmic).

Approximation algorithms are also useful in the setting where the data involved is only moderate in

size, but the function itself is computationally di�cult. We also consider this case, and we provide a private

approximation to natural #P-hard problems, related to the permanent.

To summarize, the main contributions of this paper are as follows:

{ de�nitions of secure and private approximate multiparty computation;

{ a sublinear-communication private approximation for the Hamming distance between two bit strings;

{ a private approximation to natural #P-hard problems, related to the permanent.

We formalize the de�nition of secure multiparty approximation in Section 2. In Section 3, we present

e�cient private approximations for the Hamming distance. In Section 4, we present e�cient private ap-

proximations of #P-hard problems. We conclude in Section 5. Due to space considerations, we defer several

technical discussions to an appendix. In Appendix A, we give some motivation for our de�nition and discuss

other candidate de�nitions. In Appendix B, we give some alternate protocols for our results, including our

private approximation of the L

2

norm in the alternate o�-line communication model. In Appendix C, we

give proofs of lemmas and theorems not given in the main body.

Related results

Several existing approximation algorithms (cf. [AGMS99,FKSV99,FS00,KN97,Ind00]) for the L

p

or Hamming

distance are e�cient even for massive data sets. These algorithms all use correlated randomness between

players to reduce the communication required (more details are given in Section 3.1). However, these results

do not directly translate into communication-e�cient private approximation protocols for a variety of reasons,

as is discussed further in Section 3.2.

Since the initial presentation of an early version of this work [FFSW00], there has already been further

interest and results. Halevi et al. [HKKN01] investigate private approximations of NP-hard functions. They

show that there exist natural NP-hard functions (such as the size of the minimum vertex cover in a graph)

which do not admit non-trivial private approximation, although they admit good approximation algorithms

without the privacy restriction. They further show that this phenomenon does not hold for all NP-hard

functions, by presenting an arti�cial NP-hard function that can be privately approximated. In our paper

(Section 4), we give examples of natural #P-hard functions that admit private approximation.

The approach of constructing private sublinear-communication protocols, avoiding the transformation

from a circuit [Yao82], was initiated in the context of private information retrieval [CGKS95] and further

studied both in other speci�c contexts (e.g., [LP00]) and in more general contexts [NN01]. The latter work

presents a generic methodology for transforming protocols in the communication complexity model into pri-

vate protocols with low communication overhead. However, a straightforward application of their techniques

to existing Hamming distance approximation protocols results in a protocol requiring superpolynomial work.

2 Secure Multiparty Approximations

In this section we de�ne the notion of secure multiparty approximation. We �rst address each of the two com-

ponents separately: approximation and secure multiparty computation, giving background and notation. We

then present our de�nition of secure approximations. Some further discussion of other candidate de�nitions

(and, in some cases, their pitfalls) may be found in Appendix A.
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2.1 Approximations

An approximation requirement is any binary relation P between a deterministic real-valued function f , called

the target function, and a possibly randomized real-valued function

^

f , called the approximating function.

It de�nes which functions are considered good approximations. We say that

^

f is a P-approximation to f if

P(f;

^

f) holds. We say that an algorithm or a protocol P-approximates f if it outputs some P-approximation

of f . The most common approximation relation, referred to as h�; �i-approximation, is de�ned as follows.

De�nition 1. We say that

^

f is an h�; �i-approximation of f if for all inputs x,

Pr[(1� �)f(x) �

^

f(x) � (1 + �)f(x)] � 1� �;

where the probability is over the randomness of

^

f .

2.2 Secure Multiparty Computation

Secure multiparty computation allows two or more parties to evaluate some function of their inputs, such

that no more is revealed to a party or a set of parties about other parties' inputs and outputs, except what

is implied by their own inputs and outputs. When formally de�ning security, it is convenient to think of

an adversary which tries to gain as much advantage as it can by corrupting at most t parties during the

execution of the protocol. Security is then de�ned by requiring that whatever the adversary achieves in a

real-life execution of the protocol it can e�ciently simulate while corrupting at most t parties in an ideal

model, in which a trusted party is being used to evaluate the function. Thus, the protocol prevents the

adversary from gaining an extra advantage over what it could have gained in an ideal solution utilizing a

trusted party.

There are several notions of security with various degrees of strength. We refer the reader to, e.g.,

[Gol98,Can00,Bea91,MR91] for formal de�nitions of secure computation in di�erent settings. In this work we

will mostly deal with the special case of private computation, which assumes that the adversary is passive and

cannot modify the behavior of corrupted parties.

2

In particular, private computation is only concerned with

the information learned by the adversary, and not with the e�ect it may have on the protocol's correctness.

Our general de�nitions, however, will apply also to the case of an active adversary. We will use the term

\secure" rather than \private" whenever the discussion applies to both the active and the passive case.

Another distinction between di�erent notions of security is the emulation quality, which determines the

extent to which the output produced by the simulator in the ideal model should resemble the view of

the adversary in the real-life execution of the protocol. The three standard variants of emulation quality

considered in the literature are perfect, statistical, and computational indistinguishability. These naturally

de�ne corresponding notions of perfect, statistical, and computational security. In this work we will mostly

be concerned with the two-party case, in which only computational security can be achieved. However, our

de�nitions apply to the other variants as well.

In the following we review a somewhat simpli�ed de�nition of a private 2-party protocol. We refer the

reader to, e.g., [Gol98,Can00], for a more thorough and general treatment.

The two parties will be referred to as Alice and Bob. The functionality of the protocol is speci�ed by

a (possibly randomized) mapping g from a pair of inputs (a; b) to a pair of outputs (c; d). A randomized,

synchronous protocol � proceeds by rounds, where in each round each party may send to the other party

a message based on a security parameter k, its input, its random input, and messages received in previous

rounds. At each round, each party may decide to terminate and output some value based on its entire view.

Both parties are assumed to be polynomial in the security parameter k.

3

For de�ning the privacy of � with respect to g, it is convenient to use the following notation. Let

real

�;A

(k;x) be a random variable containing the view of Alice in � on input x = (a; b) with security

2

A passive adversary can also model honest-but-curious parties, which follow the protocol but may try to infer

additional information from the messages they see.

3

This requirement e�ectively implies that the length of the input must be polynomial in the security parameter. This

standard requirement has to be relaxed in order to capture protocols where the security parameter can be smaller

than any polynomial (e.g., poly-logarithmic) in the total length of the input. We refer the reader to [CMS99] for

such de�nitions.
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parameter k, concatenated with the output of Bob. Alice's view includes her inputs, random inputs, and

all messages exchanged. (The concatenation of this view with the output of Bob serves to capture the

requirement that Alice should not learn additional information on the output of Bob; it is redundant in the

case that g is determinstic.) A similar notation is de�ned for Bob. For any e�cient algorithm S, denote by

ideal

�;A;S;g

(k; (a; b)) the output of the following process: (1) apply g to x, resulting in a pair of outputs

(c; d); (2) invoke S on (k; a; c); (3) concatenate the output of S with d. (The above process models the

interaction of an adversary corrupting Alice with the ideal model for evaluating g.) Again, this notation is

de�ned symmetrically for Bob.

De�nition 2. A protocol � is a private protocol computing g if the following properties hold:

Correctness. The pair of outputs are computationally indistinguishable from g(a; b).

Privacy. The view of an adversary corrupting a party in the real-life protocol can be simulated in an ideal

model involving a trusted party. We formalize the simulation requirement for Alice; the second simulation

requirement for Bob is symmetrical. We require the existence of an e�cient simulator S, such that for

any inputs x = (a; b), the distribution ensembles freal

�;A

(k;x)g

k2N

and fideal

�;A;S;g

(k;x)g

k2N

are

computationally indistinguishable. That is, for any family fC

k

g of polynomial-size circuits, any constant

c > 0, any su�ciently large k and and any x,

jPr[C

k

(real

�;A

(k;x)) = 1]� Pr[C

k

(ideal

�;A;S;g

(k;x))] = 1j < k

�c

It is known that any polynomial-time computable (randomized) functionality can be e�ciently and

privately computed [Yao82,GMW87]. This general feasibility result can be based on the existence of trapdoor

permutations, which will be assumed throughout the paper.

2.3 Secure Approximations

We turn to the question of de�ning secure approximations. To preclude the computation of an approximation

from leaking unnecessary information, our de�nitions require not only that the computation of the approx-

imate output does not reveal more about other parties' inputs and outputs than that approximate output,

but also that the approximate output itself does not reveal more about other parties' inputs and outputs

than the exact output does. We restrict our attention to an approximation of a deterministic function f ,

mapping an input x = (x

1

; : : : ; x

m

) (where x

i

is the i-th party's input) to a non-negative integer y.

4

A

generalization to multi-output functions is straightforward.

We will start by de�ning a notion of functional privacy on which our de�nition will rely. Informally, we

say that a (possibly randomized) approximation function

^

f is functionally private with respect to the target

function f , if the output of

^

f reveals no more information on its input than f does. Note that this is an

inherent property of the function

^

f (rather than of a particular protocol that computes

^

f). This is formalized

as follows:

De�nition 3. Let f(x) be as above, and let

^

f(x) be a possibly randomized function. We say that

^

f is

functionally t-private with respect to f if there exists an e�cient randomized algorithm S, called a simulator,

such that for every input x and 1 � i

1

; : : : ; i

t

� m, S((i

1

; x

i

1

); : : : ; (i

t

; x

i

t

); f(x)) is identically distributed

to

^

f(x).

Thus

^

f is functionally 0-private if it has a simulator S such that S(f(x)) and

^

f(x) are identically distributed.

In that case, we call

^

f functionally private with respect to f . Note that functional privacy implies functional

t-privacy, for any t � 0. Our examples in this paper are all functionally private.

Our de�nition for secure approximation requires that the protocol securely computes some functionally-

private approximation

^

f of f . Since we de�ned

^

f to be a single-output function, we will need to �x some

convention for extending it to a multi-output function. Our default interpretation of a single-output function

^

f in a multi-party setting assumes that a single value y is sampled from

^

f(x) and is output by all parties.

We stress that other conventions are possible (see Remark 1), and a more general treatment would allow

specifying an admissible collection of multi-output approximations. However, we prefer here simplicity over

generality. The above discussion is formalized by the following de�nition, which may be instantiated with

any notion of security (e.g., active or passive adversary, and computational, statistical, or perfect emulation).

4

We will also be concerned with approximations of real-valued functions. In this case, it is implicitly assumed that

the outputs of f admit some succinct representation.
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De�nition 4. Let f be a deterministic function. The protocol � is a t-secure P-approximation protocol for

f if it securely computes a (possibly randomized) function

^

f , such that

^

f is both functionally t-private with

respect to f and a P-approximation of f .

Intuitively, the functional privacy of

^

f with respect to f says that the input/output relation of the protocol

does not reveal anything except what would have been revealed by learning f , while the secure computation

of

^

f ensures that nothing additional is revealed during the computation.

Remark 1. As noted above, we assume by default that

^

f induces an m-output functionality in which each

party receives an identical instance of

^

f(x). This convention has the advantage of guaranteeing consistency

between the outputs. However, from the privacy point of view, it may be desirable to insist that outputs of

di�erent parties be independently distributed according to

^

f(x). This prevents the parties from learning ad-

ditional information about the outputs of other parties, except what would follow by learning f(x). Similarly,

some proper subset may learn identical or independent samples of

^

f(x), while the others learn nothing. We

do not impose any speci�c preference among the options, and note that our protocols can easily be modi�ed

to be secure under the appropriately-modi�ed de�nition as well.

Approximations are useful both for settings in which the inputs are small but the target function is

intractable and for settings in which the inputs are massive. In the setting of massive inputs, we will consider

sublinear approximations to functions whose exact computation requires at least linear and at most poly-

nomial resources. We consider several resources, all of which have been considered previously, for example

by [AGMS99,FKSV99,HRR98,KN97]. We seek protocols in which the total communication and the number

of rounds are small. The parties should be able to compute their protocol responses quickly, using little

storage space. Ideally, we desire that only one round of the protocol need involve raw input and that each

party can compute her message for this round in just a single pass over her input, with little space and little

time required to process each item. In theory, this allows the parties to regard their inputs as unbu�ered

data feeds that need not be stored at all, i.e., the inputs may be regarded as data streams (cf. [HRR98]).

3 Sublinear Private Approximation of the Hamming Distance

In this section we obtain a private two-party protocol for the approximate Hamming distance between two

strings. Such a protocol allows Alice, holding an input a 2 f0; 1g

n

, and Bob, holding b 2 f0; 1g

n

, to learn an

�-approximation of the Hamming distance between a; b with negligible failure probability �, without learning

additional information on the other player's input except what follows from the Hamming distance between

the inputs. Our protocol uses

~

O

�

n

1=2

=�

�

communication and 3 rounds of interaction. By contrast, an exact

computation of the Hamming distance, private or not, requires 
(n) communication [KN97].

Notation and conventions. We let d

h

(a; b) denote the Hamming distance between a; b, and w

h

(x) denote

the Hamming weight of an n-bit string x. The asymptotic notation

~

O(x) should always be read as \x �

log

O(1)

n". In the following, when referring to an approximation we will often omit the parameter �. In such

a case � should be understood to be either a constant (say 1=4) or negligible (n

�!(1)

), as will be made clear

from the context. Note that a small constant failure probability � can always be decreased to a negligible

one by

~

O(1) repetitions. Finally, k will denote a security parameter, which may be replaced either by n



for

an arbitrarily small  or by

~

O(1), depending on the strength of the cryptographic assumptions being made.

3.1 The Sketching Approach to (Non-Private) Approximations

Before describing our private protocol it is instructive to consider the non-private variant of the problem.

We �rst survey known e�cient solutions for this problem, then we explain why a naive attempt to make

these solutions private fails.

There are several known methods for approximating the Hamming distance using poly-logarithmic com-

munication [AMS96,KOR98,FKSV99,CPSV00,KN97]. More speci�cally, the best h�; �i-approximations re-

quire O(log n log(1=�)=�

2

) communication. These methods can all be viewed as based on the following sketch-

ing approach.

De�nition 5. A sketching protocol for a 2-argument function f : f0; 1g

n

� f0; 1g

n

!N is de�ned by:

5



{ A sketching function, S : f0; 1g

n

�f0; 1g

�

!f0; 1g

m

mapping one input and a random string to a sketch

consisting of a (presumably short) string.

{ A (deterministic) reconstruction function G : f0; 1g

m

� f0; 1g

m

!R, mapping a pair of sketches to an

output.

On inputs a; b, the protocol proceeds as follows. First, Alice and Bob locally compute a sketch s

A

= S(a; r)

and s

B

= S(b; r) respectively, where r is a common random input. Then, the parties exchange sketches, and

both locally output g = G(s

A

; s

B

). We denote by g(a; b) the randomized function de�ned as the output of the

protocol on inputs a; b. A sketching protocol h�; �i-approximates f if g h�; �i-approximated f .

Note that in the public random string model, the communication complexity of a sketching protocol as above

is of the order of the sketch size. In some contexts, the use of common randomness can be eliminated at a

moderate cost (cf. [New91]). In cryptographic protocols, the length of a shared random string can be taken

very small and expanded to the required length by each party using a pseudorandom number generator.

We briey review a simple e�cient sketching protocol for the Hamming distance [KOR98,CPSV00].

Example 1. (A sketching protocol for the Hamming distance.) Let the common random input de�ne

a 0/1-valued matrix R, with logn rows and n columns, in which each entry of the i-th row (independently)

takes the value 1 with probability p

i

= �

i

for some constant � depending on �. The sketching function is

de�ned by S(x;R) = Rx, where R; x are viewed as a matrix and a vector over GF(2). From the sketches

Ra,Rb the distance d

h

(a; b) can be approximated. (Roughly, the distance is estimated by observing that

(Ra)

i

= (Rb)

i

with probability close to 1/2 if d

h

(a; b)� n�

i

and with probability 1 if d

h

(a; b) << n�

i

. The

critical i can be found by sampling from repeated trials. The entire protocol can be repeated to reduce the

distortion and failure probability.) The communication complexity of this sketching protocol is O(log n).

3.2 Achieving Privacy

Our goal is to obtain a sublinear-communication private approximation protocol for the Hamming distance

function. A natural approach for achieving this goal is to �nd a general way for converting an e�cient

sketching protocol approximating a function f into a private protocol approximating f .

Suppose that the (randomized) function g produced by the sketching protocol is functionally private

with respect to f . This is indeed the case for the sketching protocol from Example 1 as well as for the other

sketching protocols for the Hamming distance proposed in the literature. Then, to approximate f privately,

it su�ces to let the players privately compute g.

While a general-purpose private computation protocol can be used to evaluate g, its communication

complexity will be (at least) linear in n, whereas we would like to obtain a sublinear-communication private

protocol for g. At �rst glance, the following naive protocol seems to work. Let the players exchange a common

random input r (or a succinct representation of a pseudo-random input r), and let each player locally compute

its sketch based on its input and r. Then, apply a general-purpose private computation protocol to evaluate

g = G(s

A

; s

B

) from the sketches s

A

; s

B

. The communication complexity of privately computing G can be

made linear in the circuit size of G times the security parameter [Yao86,GMW87], and so if the sketches

are short and G is not too complex the entire protocol can be implemented with sublinear communication.

However, this naive protocol generally fails to be private. Indeed, even when g is functionally private with

respect to f , knowing the output of g together with the random input r (which was used to generate this

output) can reveal additional information on the inputs. For instance, in the sketching protocol of Example 1,

Alice can deduce Rb from her input a, the output R(a� b) and the common random input R. It is not hard

to see that based on a and d

h

(a; b) alone, it is impossible to generate R; r such that R is distributed as in

Example 1 and Rb = r holds with overwhelming probability. (For instance, given that a = 0, b = e

i

, and

d

h

(a; b) = 1, r should be equal to the i-th column of R, which is impossible to guess with high probability

from a and d

h

(a; b) alone.) Thus, the view of Alice is not simulatable in the ideal model.

Unfortunately, we do not know whether the sketching method of Example 1 can be made private with

sublinear communication, nor can we obtain a private protocol from any other e�cient protocol for approxi-

mating the Hamming distance appearing in the literature. While these may still be useful in other settings for

privately computing the Hamming distance (see Appendix B.2), we will have to rely on alternative methods

for solving our problem.
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Underlying our solution is a combination of two di�erent sketching protocols with small communication

overhead (also referred to as estimators) for the Hamming distance. For both these estimators, the produced

reconstruction functions are functionally private, and we show how to privately implement them with low

communication overhead. The �rst estimator, based on sampling, is e�cient when the distance is high. To-

wards a private implementation of this estimator, we devise a special-purpose private protocol for comparing

the bits in a random location, which may be of independent interest. This protocol relies on the use of a

sublinear-communication

�

n

1

�

-OT protocol

5

[KO97,GIKM00,NP99,CMS99]. The second estimator, for which

we give several constructions, is e�cient when the distance is low, and in fact produces an exact result in

this case. In the following sections we describe each of the two private estimators, and then combine them

to obtain the �nal protocol, which works (privately and e�ciently) for any distance.

3.3 The High Distance Estimator

Suppose that d = d

h

(a; b) is guaranteed to be larger than some threshold d

min

(which will be speci�ed later).

If d

min

is large, then Alice and Bob can e�ciently approximate d by randomly sampling a small number

of bits in matching positions from their inputs. This may be viewed as the simplest form of sketching: the

random input includes several random indices, the sketch contains the bits indexed by the random input,

and the output is obtained by scaling the relative distance between the sketches. Speci�cally, Alice and Bob

count the number of di�erences � in s = O(

n

�

2

d

min

) randomly selected matching bits of their inputs and

compute the estimate g =

��n

s

. By a Cherno�-bound argument, g is an �-approximation of d. Note that the

mod-2 sum of bits in a pair of randomly selected matching positions is functionally private with respect to

d

h

(a; b) and the functional privacy of the protocol's output follows.

We will show that for this particular sketching protocol, the output function g can be privately computed

with a very small communication complexity. Our main building block is a private protocol for comparing

a randomly sampled pair of bits. Formally, this protocol computes the randomized function Sample-XOR

de�ned as

Sample-XOR(a; b) = (a

r

� b

r

; a

r

� b

r

) where r

R

 [n]

Recall that in a private computation (of either a deterministic or a randomized function) it should be possible

to simulate the view of each party based on its own input and output, but without access to the other party's

input. In particular, a protocol for Sample-XOR should keep the choice of r private from each party, since

the output reveals no information on the location of the sampled pair of bits.

Figure 1 describes a private protocol for the function Sample-XOR. Our protocol uses

�

n

1

�

-OT as a sub-

protocol. The proof of Lemma 1 appears in Appendix C.2.

Lemma 1. Private-Sample-XOR is a private protocol computing the randomized function Sample-XOR.

E�ciency.

�

n

1

�

-OT protocols with sublinear communication can be constructed from private information

retrieval (PIR) protocols [CGKS95,KO97,CMS99] using a reduction from [NP99]. Under a speci�c number-

theoretic intractability assumption called the �-Hiding Assumption [CMS99], there exists a 2-round PIR

protocol with

~

O(1) communication. Under the (more general) assumption that homomorphic public-key cryp-

tosystems exist, O(n



) communication is achieved for arbitrarily small constant  > 0 [KO97,Man98,Ste98].

It follows that Protocol Private-Sample-XOR can be implemented with 3 rounds and with the same asymptotic

communication complexity as above.

Given approximation parameters �; �, our private sampling estimator for the high distance case will be

implemented using s = O((n=d

min

) � log(1=�)=�

2

) parallel invocations of Protocol Private-Sample-XOR. As

argued above, when d = d

h

(a; b) � d

min

then an h�; �i-approximation of d can be computed from the s

outputs by multiplying their sum by n=s. Regardless of the distance between the inputs a; b, the view of

each party in these invocations can be simulated from its input and d

h

(a; b), which is su�cient to guarantee

that the protocol is indeed private with respect to d

h

. Summarizing, we have:

5

�

n

1

�

-OT (\n choose 1 Oblivious Transfer") is a private 2-party protocol for the following function: the input of the

sender is an n-bit string x and the input of the receiver is an index i 2 [n]; the output of the receiver is the bit x

i

,

and the sender has no output. Note that in the current context we only require security against a passive adversary.
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Private-Sample-XOR

1. Alice picks a random mask m

A

R

 f0; 1g and a random shift amount r

A

R

 [n].

She computes the n-bit string a

0

def

= (a << r

A

)�m

A

(where for any x 2 f0; 1g

n

; r 2 [n] and m 2 f0; 1g, we denote by x << r a cyclic shift of x by

r bits to the left, and by x�m the string whose i-th bit is x

i

�m).

Symmetrically, Bob picks m

B

R

 f0; 1g and r

B

R

 [n], and computes b

0

def

= (b << r

B

)�m

B

.

2. Alice and Bob invoke in parallel two

�

n

1

�

-OT protocols:

{ Alice retrieves z

A

def

= b

0

r

A

from Bob;

{ Bob retrieves z

B

def

= a

0

r

B

from Alice.

3. Alice sends z

0

A

def

= z

A

�m

A

to Bob. In parallel Bob sends z

0

B

def

= z

B

�m

B

to Alice.

Both parties locally output z

0

A

� z

0

B

.

Fig. 1. A private protocol for the function Sample-XOR

Lemma 2. (Private approximation for the high distance case.) Let OT be an arbitrary

�

n

1

�

-OT

protocol (with security against a passive adversary and a security parameter k). Then, there exists a protocol

for approximating d

h

(a; b) whose communication complexity is

~

O((n=d

min

)=�

2

) times that of OT , and whose

round complexity is that of OT plus 1, such that:

{ The protocol is private with respect to the function d

h

(a; b);

{ If d = d

h

(a; b) � d

min

, the protocol outputs an �-approximation of d with overwhelming probability.

In particular, under the �-Hiding Assumption there exists a 3-round protocol as above with

~

O((n=d

min

)=�

2

)

communication. Note that the messages for all the invocations of

�

n

1

�

-OT can be computed incrementally in

parallel, with a single pass over the raw data, and with storage proportional to the communication complexity.

The sampling estimator will not give a reliable estimate when the distance d is signi�cantly smaller than

d

min

because its variance will be too high (that is, it is likely that no di�erences will be detected). It will,

however, reliably indicate that d is small. In that case, Alice and Bob will know that they should use an

estimator for the low distance case, described in the next section.

3.4 The Low Distance Estimator

We describe two private protocols for the low distance case, i.e. the case that d � d

max

for some threshold

d

max

to be later speci�ed. Each of the private protocols is based on a (di�erent) sketching protocol having

the following properties:

{ The induced function g is almost determined by d

h

. That is, except with negligible probability, g(a; b)

takes a speci�c value determined by d

h

(a; b). In particular, g is functionally private with respect to d

h

.

{ If d

h

(a; b) � d

max

, then g(a; b) = d

h

(a; b) with overwhelming probability.

It is important to note that for any sketching protocol satisfying the �rst property above, a private

computation of g may proceed according to the naive approach described in Section 3.2. That is, the parties

may exchange a common random input in the clear, then locally compute the sketches based on their inputs

and the random input, and �nally apply a (general-purpose) private computation protocol for evaluating

the reconstruction function G on their sketches. (Intuitively, in this case the common random input r gives

almost no information about the inputs except what follows from g; formally, a simulator may sample r

independently of g, compute a sketch s, and then invoke the simulator for the private computation of G.)

However, for such a protocol to be communication-e�cient, it is important that G can be computed by a

small circuit, preferably linear or nearly-linear in the sketch size.

Below we describe a sketching protocol based on hashing. Its description is self-contained, and it only

requires the private computation of a very simple reconstruction function. In Appendix B.1, we give a

second protocol based on Reed-Solomon codes. Its reconstruction function G will be quite complex, and

8



consequently its private implementation will require a heavy use of generic private computation (yet its

asymptotic e�ciency will be good enough for our purposes).

A protocol based on hashing. We �rst describe this protocol under the assumption that the two parties

have access to a large common source of randomness, which in particular de�nes several independent (2-

universal) hash-functions. This assumption will be dispensed with later. Given a security parameter k, the

sketch of an input x 2 f0; 1g

n

is computed as follows:

1. Randomly partition the n bits of x into d

max

buckets. (With probability 1� 2

�
(k)

no bucket gets more

than k logn � (n=d

max

) bits, or more than k logn bits in which a; b di�er.)

2. For each of the d

max

buckets, further partition its bits into (k logn)

2

sub-buckets. (Now, if a given bucket

contains k logn di�erences, then each of its sub-buckets will contain at most one di�erence with constant

probability.) Repeat this procedure k independent times, and let B

ijh

denote the contents of the j-th

sub-bucket of the i-th bucket in the h-th invocation (where 1 � i � d

max

, 1 � j � (k logn)

2

, 1 � h � k).

3. Hash the contents of each sub-bucket B

ijh

to a k-bit string �

ijh

.

The sketch of a string x will consist of all d

max

� k

3

log

2

n strings �

ijh

obtained via the above process.

Let (�

ijh

(a); �

ijh

(b)) denote the (correlated) values of �

ijh

when the above process is applied on inputs

a; b using the same random input.

Lemma 3. Suppose that d

h

(a; b) � d

max

. Then, with probability 1� 2

�
(k)

� d

max

,

d

h

(a; b) =

d

max

X

i=1

max

1�h�k

�

�

�

1 � j � (k logn)

2

: �

ijh

(a) 6= �

ijh

(b)

	

�

�

: (1)

Proof (sketch): As noted in the description of the sketching function, each of the k attempts of secondary

hashing succeeds with a constant probability to isolate all of the bit di�erences mapped to its bucket. Hence,

with probability 1� 2

�
(k)

at least one of them succeeds. Moreover, for any instance i; j; h, the probability

of the third-level hashing mapping distinct values B

ijh

(a); B

ijh

(b) to the same k-bit string is 2

�
(k)

. The

claim follows by a union-bound argument.

Suppose that the reconstruction function of the sketching protocol is de�ned by the right hand side

of Eq. (1). By symmetry, the output g is already functionally private. But, because g fails to be almost

determined by d

h

over the entire range of inputs, the naive private implementation discussed in Section 3.2

cannot be used, as explained there. In this case, however, a very simple modi�cation to the reconstruction

function can �x this situation. The modi�ed reconstruction will �rst compute an estimate

~

d by applying

the right hand side of Eq. (1) to the sketches, and then it will output

~

d if

~

d � d

max

and output \fail"

otherwise. It is easy to verify that: (1) the modi�ed reconstruction function can be computed by a circuit

of size

~

O(d

max

); (2) if d = d

h

(a; b) � d

max

, then g(a; b) = d with overwhelming probability; (3) if d > d

max

then g(a; b) outputs \fail" with overwhelming probability. Finally, note that, using linear hashing, the hash

of each sub-bucket �

ijh

can be computed incrementally, requiring little space and a single pass over the data.

Based either on this hashing-based sketching protocol for the low distance case or on the sketching

protocol of Appendix B.1, a private protocol for the low distance case may be constructed as outlined in the

beginning of this section. That is, in the �rst round Alice sends to Bob a seed to a pseudo-random generator

which will be used to produce the required common randomness. Then, each party locally computes the

sketch of its input, and together they apply a general-purpose private circuit evaluation protocol to evaluate

the reconstruction function on their sketches. Using Yao's protocol [Yao86], this private computation requires

only two additional rounds. Its communication complexity is of the order of the security parameter times

the size of a circuit computing G. Summarizing, we have:

Lemma 4. (Private approximation for the low distance case.) Suppose that trapdoor permutations

exist. Then, for any 1 � d

max

� n, there exists a 3-round protocol with

~

O(k � d

max

) communication, such

that:

{ The protocol is private with respect to the function d

h

(a; b);

{ If d = d

h

(a; b) � d

max

, the protocol outputs the exact value of d with overwhelming probability;

{ If d = d

h

(a; b) > d

max

, the protocol outputs \fail" with overwhelming probability.
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3.5 The Combined Protocol

Using the protocols from Lemma 2 and Lemma 4 as subprotocols, our �nal protocol proceeds as follows.

Given the desired approximation quality � and a security parameter k:

1. Invoke the (high distance) protocol of Lemma 2 with parameters k, �, and d

min

= n

1=2

=�. Let d

1

denote

its output.

2. In parallel, invoke the (low distance) protocol of Lemma 4 with parameters k and d

max

= n

1=2

=�. Let d

2

denote its output.

3. If d

2

=\fail", output d

1

; else output d

2

.

The privacy of the combined protocol follows from the privacy of each of its two subprotocols over the

entire range of inputs. Its correctness follows from the facts that: (1) if d > d

max

then (with overwhelming

probability) the �nal output is produced by the high distance subprotocol, and, since d > d

max

� d

min

this

output is �-correct; (2) if d � d

max

, then the �nal output is produced by the low distance subprotocol, which

is guaranteed in this case to be correct with overwhelming probability. The combined protocol also requires

only a single pass over the raw data, and only small storage complexity, proportional to the communication.

Substituting the complexity parameters of the two subprotocols yields the following theorem:

Theorem 1. Suppose that the �-Hiding Assumption holds (respectively, homomorphic public-key encryption

exists). Then, the Hamming distance function can be privately �-approximated with communication complexity

~

O(n

1=2

=�) (respectively, O(n

1=2+

=�) for any constant  > 0) and 3 rounds of interaction.

In Appendix B.2, we show that it is possible to obtain improved e�ciency if a linear amount of free o�ine

communication is allowed before Alice and Bob receive their inputs.

4 E�cient Approximations of #P-hard Functions

We now turn our attention to privately approximating natural #P-hard problems, where the goal is to

achieve polynomial time private approximations. This is in contrast to problems on massive data sets that

we have been focusing on thus far, where polynomial time exact private computation is possible, and the

goal is to achieve lower complexity (sublinear in the Hamming distance case).

We start by observing that arti�cially constructing #P-hard problems which can be privately approxi-

mated is straightforward. For example, consider any #P-hard problem f(x) with output in the range [0; 2

n

].

Then g(x) = f(x) + 2

2n

is computationally equivalent to f(x), and, in particular, is computationally \inter-

esting" i� f is. Although, for many values of �, 2

2n

is a (1 � �)-factor private approximation to g(x), this

approximation doesn't approximate any interesting quantity. Thus, in general, while some exact #P-hard

problem may be interesting, its approximate version may not be.

In this section, however, we give private approximations to natural #P-hard problems, most notably the

permanent. Below we provide some motivation for this problem in our context, and sketch our approximation

solution.

The Permanent and Some Applications. The number of perfect matchings in a bipartite graph between

two sets of n vertices is equal to the permanent (over the integers) of the graph's adjacency matrix. Counting

the number of perfect matchings is a #P-hard problem. As one might expect of #P-hard problems, the

permanent has applications to a wide variety of counting problems, including some that arise naturally in

physics. Less obvious (but true nevertheless) is that many natural problems reduce to the permanent in an

approximation-preserving way, implying that a private approximation to the permanent immediately yields

private approximations to these problems. For example, the number of tilings of certain lattices can easily

be expressed as a permanent, so that an approximation to the permanent gives an approximate count of

the number of tilings. There are also problems concerning bond strength in molecules that reduce to the

permanent. For example, consider a benzoid structure, which can be represented as a connected graph whose

vertices are labeled carbon or hydrogen, subject to the following conditions (See Figure 2):

{ the graph is a subgraph of the hexagonal lattice (a bipartite graph)

{ the hydrogen atoms each have degree one (and are irrelevant)
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{ each carbon atom has degree 4, is adjacent to 2 or 3 other carbon atoms, and, in each con�guration,

has single or double bonds to each adjacent carbon atom such that the double bonds form a perfect

matching of the carbons.

The Pauling bond order of a particular C-C bond in the molecule is the expected bond order of that bond in

a randomly-chosen con�guration. Thus the Pauling bond order is given by one plus the probability that the

edge corresponding to the bond occurs in a randomly chosen perfect matching in the graph corresponding

to the carbon atoms in the molecule. This is a theoretical prediction of the physical \strength" of a bond,

e.g., the dissociation energy, that is even harder than the bond order to compute, and depends on things

like the shapes of orbits.
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Fig. 2. The �rst three diagrams depict con�gurations of single and double bonds in naphthalene, C

10

H

8

, which is used

to repel moths. The double bonds form a perfect matching of the carbon skeleton. The order of a labeled bond in the

molecule is its expected order of that bond in a con�guration chosen uniformly at random from the three possibilities,

i.e., the order of each bond is one plus the probability that it occurs in a uniformly random perfect matching. Thus,

the bonds marked a in the fourth diagram are of order 5=3 and those marked b there are of order 4=3.

Approximating the Permanent. In their seminal work [JS89], recently updated [JSV00], Jerrum, Sin-

clair and Vigoda gave an h�; �i-approximation for the permanent computable in polynomial time. We use a

modi�cation of their technique to achieve a private approximation.

Theorem 2. Suppose two players share (in any reasonable way) an n � n matrix M with non-negative

entries. There is a polynomial time protocol whereby the players can privately compute an h�; �i-approximation

to the permanent of M .

Proof (sketch): We provide here a very rough sketch of the proof, with a more technically detailed proof

in Appendix C.3.

We begin by noting that any e�ciently-computable randomized function admits an e�cient private proto-

col [Yao82,GMW87]. Thus it su�ces to show how to e�ciently approximate the permanent in a functionally

private way. To this end, we use ideas of [JSV00].

The technique [JSV00] uses a rapidly-mixing Markov chain to show how to sample from the set of all

perfect matchings on a graph from a distribution that is statistically indistinguishable from uniform. This

is then used to approximate the probability p

e

that a certain edge e is in a random matching (roughly,

by sampling random matchings and checking the fraction of them that contains e). Next the probability

11



p

e

2

je

1

that e

2

is in a random matching that contains e

1

is approximated, and so on, up to the probability

p

e

n

je

1

;::: ;e

n�1

for an edge e

n

to be in a random matching, given that e

1

; : : : ; e

n�1

are in the matching. This

is done for a sequence of edges e

1

; :::; e

n

such that each of the above probabilities is at least 1=n, so that, in

particular, fe

1

; : : : ; e

n

g is a perfect matching (an appropriate sequence of edges is itself found using Markov

chain sampling). Now, the number of perfect matchings can be written as

1=(p

e

1

p

e

2

je

1

� � � p

e

n

je

1

;::: ;e

n�1

):

Since an approximation for each probability can be found, a (non-private) approximation for the product,

and thus the permanent, follows.

In order to make the approximation private, we �rst note that the approximation for each individual

probability p

ej�

is already functionally private with respect to p

ej�

, i.e., does not leak additional information

about the graph. However, the product of approximations does potentially leak information about its factors

(e.g., the standard deviation of the product approximation depends on the factors), and thus the product of

approximations is not functionally private.

Fortunately, we are able to show how to avoid this leakage, by manipulating success probabilities in

various ways. One important process we call enriching: Given a coin with success probability p, whose value

is unknown except that p << 1=t for some real number t � 1, we can enrich the coin to have success

probability tp. Besides enriching, we will also use other constructions on success probabilities: Given coins

with success probabilities p; q and r, we can form coins with success probabilities pq, 1�p , and rp+(1�r)q.

We proceed, roughly, as follows. If the security parameter k and n are at least exponentially far apart,

we show that there's a trivial algorithm for privately approximating the permanent. Otherwise, we use the

tools described above to construct coins with success probability p

0

ej�

= p

1=n

ej�

for each probability p

ej�

, correct

to within

�

1� 2

�k

=n

�

, using its O(k)-term Taylor expansion. The joint success of these coins has success

probability M

�1=n

(1 � 2

�k

), i.e., indistinguishable from M

�1=n

, where M is the value of the permanent.

Furthermore, M

�1=n

� 1=n, so M

�1=n

(1 � �=n) can be estimated by sampling, using Lemma 5. It follows

that the �n power is M(1�O(�)).

Remarks:

� From the above proof we can conclude that p

e

, the probability that a given edge e appears in a random

perfect matching in a graph, is privately approximable with good relative error, provided the probability

is large enough (at least a negative power of n), and is privately approximable with good additive error in

any case. This follows directly from using the [JSV00] sampling techniques for approximating p

e

. From the

discussion in the proof, it is not di�cult to see that this is a #P-hard problem, since it is reducible from the

permanent.

� We note that the techniques used in the above proof may be applicable to approximate a more gen-

eral class of problems than just the permanent. Indeed, the technique of rapidly-mixing Markov chains is

inherently suited for use in functionally-private approximations, since by de�nition of \rapidly mixing," the

Markov chain supports sampling from a distribution of items that is statistically indistinguishable from uni-

form. If we then sample to estimate the fraction of items satisfying some property, the resulting estimate will

depend only on the fraction, not otherwise on the set of items or the input used to generate them. Often,

as in the case of the permanent, we don't want to estimate the fraction of objects satisfying some property,

but rather some function of several such fractions (such as their product). To this end, our techniques of

manipulating probabilities, and using j-th roots (through a Taylor expansion estimation) seem to be useful

to compute more general functions. We provide more details in Appendix C.4.

5 Conclusion

We have given formal de�nitions and techniques for secure and private approximate multiparty computations.

The results of Section 3 require a general-purpose private computation on inputs of size

~

O (

p

n) (resulting

in

~

O (

p

n) communication). While this is certainly better than a private computation on input of size n, the

result may still be too expensive to be considered practical. It remains open to improve these results|perhaps

to achieve log

O(1)

(n) communication, as is possible in the insecure setting [AGMS99]. Nonetheless, we think

our work represents the important step of introducing and formally understanding private approximations,

as well as a �rst step towards practical solutions.
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A Further discussion of secure approximation protocols

A.1 Discussion of De�nition 3

Intuitively, leakage to P

i

from x

i

and

^

f

i

(x) could actually take three forms: P

i

learns extra information

about P

j

's input x

j

, or about f

j

(x), or about

^

f

j

(x). However, in our restricted setting, only the �rst kind of

leakage might happen. This allows the simulator S

i

in De�nition 3 to produce a correctly distributed

^

f

i

(x)

without regard to the distribution of other players' inputs. In the more general setting, S

i

would have to

produce

^

f

i

(x) both correctly distributed and properly correlated with other players' outputs.

More formally, recall that the de�nitions for privacy of a multiparty protocol require, intuitively, that

party i's view of the protocol can be simulated including the proper correlation with the other players'

outputs . (See [Gol98,Can00] for these de�nitions and more discussion.) That is, for two parties Alice and

Bob computing f using protocol �, there are simulators S

1

and S

2

such that

f(S

1

(x

1

; f

1

(x)); f

2

(x)g

x

i

2f0;1g

�

c

� f(view

1

(ex

�

(x)); out

2

(ex

�

(x))g

x

i

2f0;1g

�

and, similarly, with the players' roles reversed, where ex

�

(x) denotes the random variable consisting of all

possible executions of the protocol � in which the input vector is x, over all possible random coin ips of the

players. Given an execution e of �, we de�ne view

i

(e) and out

i

(e) to be the view and output of P

i

.

The simpler de�nition,

S

1

(x

1

; f

1

(x))

c

� (view

1

(ex

�

(x))
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will not in general work, since, under that de�nition, there would not necessarily be simulators for protocols

in which Alice's view is correlated with Bob's input.

The analogous de�nition of functional privacy, taking into account correlation, would be that there exists

a simulator S

1

such that

(S

1

(x

1

; f

1

(x));

^

f

2

(x))

c

� (

^

f

1

(x);

^

f

2

(x));

and, similarly, with the players' roles reversed. We now argue that our simpler De�nition 3 is appropriate for

subset-learning multi-output functions

^

f based on single-output functions �, both in the independent-output

and identical-output cases. Assume the computation is a two-party computation in which both players, Alice

and Bob, receive output.

If the outputs

^

f

1

(x) and

^

f

2

(x) are independent, then our de�nition immediately implies

(S

1

(x

1

; f

1

(x));

^

f

2

(x))

c

� (

^

f

1

(x);

^

f

2

(x));

where the three occurrences of �, as

^

f

1

or

^

f

2

, are independent. On the other hand, in the identical output

case, there is indeed (perfect) correlation between Alice's and Bob's outputs. In this case, our de�nition

implies that there is a simulator S

0

for Alice such that

S

0

1

(x

1

; f(x))

c

� (

^

f

1

(x);

^

f

2

(x));

i.e., Alice learns nothing from both approximate outputs that she can't learn from her own input and the

exact output.

Our simpler de�nition also works in the m-output case provided the outputs are independent.

A weaker de�nition.

We now consider an alternate, generally weaker de�nition.

De�nition 6. Let f(x) be a deterministic function, and let � be a protocol in which exactly one of the

players, P

1

, gets a randomized output,

^

f(x). We say that � is a weakly private approximation protocol for

f if:

{ (Correctness) The output

^

f(x) is an h�; �i-approximation to f(x).

{ (Privacy) For each player i, there is a simulator S

i

for P

i

such that

S

1

(x

1

; f

1

(x))

c

� (view

1

(ex

�

(x))

and similarly for the other players.

Note that, since f is deterministic, each player's view is independent of f . Intuitively, this de�nition says

(at least) that no player's view reveals anything about other players' inputs and exact outputs not implied

her own input and exact output. It is possible that some player P

i

, i 6= 1, learns something about P

1

's

approximate output not implied by her own input (and null output).

Under this de�nition, the 3-party protocol Hamming-3 of Figure 3 for the Hamming distance

(ha

i

i; hb

i

i;?)! (?;?; kha

i

i � hb

i

ik

H

)

is private and uses just polylogarithmic communication. (Details about correctness and functional privacy

are straightforward and omitted.)

Note that the view of each of Alice and Bob is a truly random string. The view of Carol is a pair of

sketches derived from a pair of bit strings that are random except that they are at a prescribed Hamming

distance. It follows that this protocol is a weakly private approximation protocol. On the other hand (as

discussed below), it is not hard to see that Hamming-3 is not a private approximation protocol according to

De�nition 4. De�nition 6 has several merits, but also has a number of problems:

� De�nition 6 captures the intuition that the randomness in an approximation to a deterministic function

f is like a nonce and not sensitive; only the value of the function is sensitive and should not be learned by
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Hamming-3

1. Alice sends Bob a short random seed that they each expand to get a long shared pseudorandom

string.

2. They use the shared pseudorandomness to agree on a permutation � of bit positions and a random

n-bit mask, hm

i

i.

3. Using more of the shared pseudorandomness, Alice sketches ha

�(i)

+m

i

i and Bob sketches hb

�(i)

+m

i

i.

They send the short sketches to Carol. (They can use any of several appropriate sketching algorithms

here.)

4. Carol approximately reconstructs kha

�(i)

+m

i

i � hb

�(i)

+m

i

ik

H

= kha

i

i � hb

i

ik

H

.

Fig. 3. A weakly private 3-party protocol for the Hamming distance (ha

i

i; hb

i

i;?)! (?;?; kha

i

i�hb

i

ik

H

)

others. This is a reasonable assumption in some applications. In applications where De�nition 6 is reasonable,

it allows e�cient protocols such as Hamming-3, which would be excluded by the stronger De�nition 4.

� In traditional secure multiparty computation, each player's view must simulatable when concatenated

with other players' outputs, but may be unsimulatable when concatenated with other players' views. This is

because other honest players use their outputs but not their views in subsequent or parallel protocols. This

allows the intuition that \no player learns anything not implied by her own input and output," even though,

generally, each player learns about the others' views. Note that approximate output resembles traditional

output in some respects and traditional view in other respects. In particular, it is natural for players to

use approximate output in subsequent protocols, as, traditionally, they would use exact output. From this

perspective, De�nition 6 is unsatisfactory because some players can learn about the approximate outputs of

other players, which might be used in future protocols or real life.

� Observe that the above protocol is insecure against a coalition of Alice and Carol. Together, Alice and

Carol know the permutation, mask, sketching randomness, and a sketch of Bob's input. They can use this,

for example, to form a sketch of Bob's original input, whence they learn an approximation to the Hamming

weight of Bob's original input. We don't know of any two-party weakly private protocol for the Hamming

distance that is more e�cient than the protocol we give in Section 3.5, nor even a three-party weakly private

protocol in which Alice or Bob learns the approximate output. Thus, when an input holder is to learn the

approximate Hamming distance, the protocol of Section 3.5 is the best we have.

� For Hamming distance sketching protocols � of which we are aware, if the parties use � in performing

protocol Hamming-3, Alice will learn something about the bias of Carol's output. To achieve semantic security,

Alice should be able to simulate her view even if she knows that Bob's input is one of two possibilities. For

example, suppose Alice holds the zero input and knows that Bob holds one of two inputs b

1

or b

2

, of Hamming

weight d. Suppose they use an ideal sketching algorithm that produces a uniformly random result in the

range d(1 � �). Since Alice knows the random permutation, mask and randomness used in the sketching

algorithm, she knows

^

f(0; b

1

) and

^

f(0; b

2

). With probability 1=2, either both

^

f(0; b

1

) > d and

^

f(0; b

2

) > d or

both

^

f(0; b

1

) < d and

^

f(0; b

2

) < d; i.e., the approximation is, for all of Bob's inputs, too high or too low, and

Alice knows which. A similar (though less dramatic) statement can be made when Bob's inputs are more

general.

� It is problematic to modify De�nition 6 for the secure case.

� A private approximation protocol according to De�nition 4 also is a weakly private approximation

protocol according to De�nition 6. The simulators for players who do not get approximate output remain

the same. For P

1

, who does get approximate output, a simulator under De�nition 6 for P

1

's view can be

constructed by composing the hypothesized simulators under De�nition 4 for the approximate output from

the exact output and for the view from the approximate output.

� Allowing blowup by polynomial factors, a function that has a weakly private approximation protocol

according to De�nition 6 also has a private approximation protocol according to De�nition 4. This is because a

weakly private approximation protocol outputs a functionally private approximation, which can be computed

privately in polynomial time using standard techniques.
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Because De�nition 6 su�ers some problems in the sublinear context and collapses to the more conservative

De�nition 4 modulo polynomial factor blowup, we present De�nition 4 as our working de�nition, while

reserving De�nition 6 for specialized applications. Thus, even though protocol Hamming-3 is very e�cient,

we are forced at this point to abandon it as non-private in most situations.

A.2 Approximations that Yield Less Information Than Exact Computation

Our private approximation de�nition requires that

^

f leaks no more about its inputs and outputs than f

does. By de�nition, an approximation typically gives less information about the output of f than an exact

computation of f would. For some applications, one might also want to require that the approximation

function reveals strictly less than the target function: for example, that

^

f(x) does not reveal f(x). However,

it appears that the formal requirement needed would depend on the speci�c approximation requirement and

functions being considered.

We now briey (and speculatively) consider two di�erent ways of limiting the amount of information

learned about f from

^

f .

Imprecision: If the output values z

1

and z

2

are close, then the distributions on their approximations, ẑ

1

and ẑ

2

, are nearly indistinguishable. (The cost to distinguish depends on the closeness of z

1

and z

2

.)

Repeatability: Two independent samples from

^

f yield no more information than a single sample from

^

f .

Each of the above security requirements can be achieved by standard approximation techniques. Suppose

f is a real-valued function that takes on all possible outputs in a large range. For a �xed �, �rst suppose

that

^

f is a Gaussian or uniform distribution centered at f with width �. Then

^

f approximates f (under the

appropriate approximation requirement), and satis�es imprecision but not repeatability. Now suppose

^

f is

f rounded to the nearest power of (1 + �)

2

; i.e., the nearest even power of (1 + �). Then

^

f approximates f

(under the appropriate approximation requirement), and satis�es repeatability but not imprecision.

There is no way, however, to achieve simultaneously both imprecision and repeatability. If the approxima-

tion is randomized, then repeated independent samples will yield more information (at least in the statistical

and perfect senses). On the other hand, if the approximation is deterministic and non-constant then there

must be two close values, z

1

and z

2

, with di�erent approximations (and therefore z

1

and z

2

are distinguishable

by their approximations). Thus there is no de�nition of secure approximation that forces both imprecision

and repeatability without restricting the approximation requirements that can be supported.

Furthermore, it is desirable to be able to support both of the kinds of approximation described above.

Neither alone gives complete information about f , and, as we now argue, both are important from compu-

tational and cryptographic standpoints. First, we consider the computational aspects. An approximation of

a value v by a Gaussian centered at v arises often in (the modeling of) physical measurements. Also, the

even power of (1 + �) nearest to v is similar to a oating point representation for v; these representations

are useful in computation. Now, we consider the cryptographic aspects. First assume that we are given an

approximation f

0

to f with a guarantee that jf

0

� f j < �2

�k

, but such that f

0

� f contains information

about an input value. As is discussed in Appendix A.3, by outputting

^

f = f

0

(1 +X)

c

� f(1 +X) (these are

statistically indistinguishable, where X is a uniform distribution centered at zero with width �), we construct

a private approximation

^

f to f . Next, suppose we are given an approximation f

0

to f and that both are

guaranteed to be far from odd powers of (1 + �). By de�ning

^

f to be f

0

rounded to the nearest even power

of (1 + �) (which equals f so rounded, by assumption about the goodness of the approximation f

0

),

^

f is a

perfectly private approximation to f .

It is possible to enforce either imprecision or repeatability via simulators and indistinguishability of

distributions. Since some applications require imprecision while others require repeatability, and since it is

not possible to achieve both simultaneously, an application should add the appropriate security requirement

to our De�nition 1, as needed.

A.3 Random Noise and Rounding

In this section, we note that the obvious approach of taking an insecure approximation and making it secure

by adding in random noise or masking the low-order bits does not generally work. There are, however, some

cases in which it can be useful. We �rst show that rounding does not generally provide functional privacy.
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Next, we show that adding random noise does provide functional privacy, but is not generally e�cient. We

then show that in the case of �nite-precision approximations to real-valued functions, adding random noise

does provide an e�cient solution.

Rounding. Consider taking an approximation

^

f for f which is good to within (1��=3) with high probability,

and rounding it down to a power of (1 + �=3). One can check that the result is in the range (1 � �)f with

high probability. But, now consider a function f whose approximation takes on all real values within a large

range, with high precision, as both the inputs and the source of randomness vary. Suppose there are two

sets of inputs to f , x and x

0

, such that f(x) = f(x

0

), x

1

= x

0

1

, but

^

f(x) and

^

f(x

0

) are distributed di�erently

(if

^

f(x)

c

�

^

f(x

0

), then

^

f already satis�es our de�nition of functional privacy with respect to f , even before

rounding, so we need not consider this). That is, for one or more t, Pr(

^

f(x) < t) 6= Pr(

^

f(x

0

) < t). Since

(x

1

; f(x)) = (x

0

1

; f(x

0

)), we require that the private approximation distributions

^

f(x) and

^

f(x

0

) be the same

for x and x

0

. But, if we are unlucky in the value(s) of t, which is likely to happen if f and

^

f take on all values

in a large range, then Pr

�

(1 + �=3)

i

�

^

f(x) < (1 + �=3)

i+1

�

6= Pr

�

(1 + �=3)

i

�

^

f(x

0

) < (1 + �=3)

i+1

�

: It

follows that

^

f rounded down to a power of (1+�=3) is not functionally private with respect to f . Nevertheless,

if

^

f (miraculously) also always satis�es (1 + �=3)

i

�

^

f � (1 + �=3)

i+1=2

, then the rounding technique will

work, as can be checked readily. Somewhat weaker conditions are also possible, but in general, rounding will

not provide functional privacy.

Adding random noise. Suppose we are given an approximation scheme for f , i.e., for any �; � > 0, we can

output a number that is within the factor (1� �) of f with probability 1� �. We can then construct a secure

approximation as follows. Given security parameter k such that two distributions are considered statistically

indistinguishable if their statistical di�erence is no more than 2

�k

, �rst construct an approximation z

0

to an

output z of f that is good to within the factor (1� 2

�k

�=2). Next, let ẑ = z

0

(1 +X), where X is uniformly

random on the interval [��=2; �=2]. One can readily check that this procedure yields an approximation scheme

for f and that the �nal output, ẑ, is a private approximation to z.

Unfortunately, this procedure is not e�cient unless the approximation z

0

is so good as to be usable to

obtain an essentially exact solution, or unless k is very small. By de�nition, if f is hard to compute then an

approximation good to within the factor (1� �) requires time more than polylog in 1=� to compute, so the

above procedure requires time more than polynomial in k. Nevertheless, if k can be taken small enough, this

procedure is a simple and straightforward solution.

Finite-Precision Approximations to Real-Valued Functions. Suppose Alice and Bob wish to com-

pute a discrete-valued or real-valued function whose speci�cation depends on real-valued functions like the

logarithm or square root. In practice, some �nite precision approximation will be used for intermediate values

as well as the �nal output, if the latter is, ideally, real-valued instead of discrete. For example, Lindell and

Pinkas [LP00] give a privacy-preserving protocol to construct a (discrete) decision tree from data shared

between Alice and Bob. The tree is constructed by starting with a single node and iteratively deciding to

replace a leaf with a binary tree of height one. The leaf to split is the one with maximum entropy gain.

That is, one needs to �nd the maximum, over all leaves, of a quantity like �x

`

ln(x

`

) where x

`

is some

arbitrary rational number associated with leaf `. They use a k-term Taylor expansion for the logarithm, i.e.,

a deterministic approximation good to within

�

1� 2

�k

�

. In general (especially using randomized approxi-

mations), one might worry that x lnx < y ln y but x

~

lnx > y

~

lny, where

~

ln denotes the approximation to the

logarithm. This would result in a di�erent discrete output. Typically, the risk to correctness is minor|all

possible outputs will be good enough|but the risk to privacy is important, since a single changed bit in a

discrete output can mean the di�erence in leaking information about private inputs.

Fortunately, there is a standard procedure to avoid these di�culties. Alice and Bob use an approximation

to within

�

1� 2

�2k

�

, then multiply (1�X), where X is uniformly random in [�2

�k

; 2

�k

]. As noted above,

the result will be functionally private. In typical computations involving elementary or algebraic functions,

correctness relies only on the existence of some

�

1� 2

�k

�

approximation, not on any particular approximation

(otherwise, a portable implementation would be di�cult for a variety of a �nite-precision computers, even

without worrying about privacy). For such computations, the technique of adding random noise will result in

a correct output. In the case of building a decision tree, for example, the ideal speci�cation is deterministic

and requires a single output from a given input. An implementation of the algorithm will produce one of
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several trees, depending on the arbitrary way �nite precision is handled. The noise-added algorithm will

produce a decision tree within the range of those considered to be correct on limited-precision machines, but

from a distribution that doesn't depend on the input.

B Additional protocols

B.1 A protocol based on Reed-Solomon codes

In this section, we describe a private sketching protocol for the Hamming distance that is correct (without

any probability of error) provided the Hamming distance is at most d

max

. This can be used in Section 3.4.

We start by describing a basic version of this protocol which, while in principle is su�cient for our needs,

has some disadvantages (such as its round complexity). We then proceed to describe the improved protocol,

achieved by modifying the basic version. We note that in the basic version the function g will be functionally

private only when the distance is low, but in the improved version it is private for any distance (satisfying

the properties discussed in the beginning of Section 3.4).

Basic Version. Let F be a �nite �eld, where jF j > n. We view the inputs a; b as vectors in F

n

. Let H be

the parity-check matrix of a Reed-Solomon code over F with distance 2d

max

+ 1, dimension n, and length

n+2d

max

. The matrix H has 2d

max

rows and n columns. For any x 2 F

n

such that w

h

(x) � d

max

, x can be

uniquely recovered from the syndrome Hx (since x can be viewed as a corrupted encoding of 0). The above

facts imply the following (non-private) sketching protocol for the Hamming distance, given the promise that

it is smaller than d

max

. The sketching function is deterministic and is de�ned by S(x) = Hx. Reconstruction

proceeds as follows. From the syndromes Ha and Hb, one can compute the syndrome H(a� b). The output

is computed by recovering a � b from its syndrome and outputting its weight. By choosing a �eld F of

size O(n), the sketch size is O(d

max

logn). As follows from the known methods for decoding Reed-Solomon

codes, the circuit complexity of the reconstruction function is

~

O(d

max

). Thus, using generic private circuit

evaluation [Yao86,GMW87], d = d

h

(a; b) can be privately computed with

~

O(k � d

max

) communication, given

the promise that d � d

max

.

The output function g induced by the above sketching protocol fails to be functionally private when the

distance is larger than d

max

. This follows from the fact that there exist x; x

0

such that w

h

(x) = w

h

(x

0

) > d

max

and yet applying the decoding procedure to Hx and Hx

0

yields a di�erent number of errors. In particular,

the above private protocol will fail to be private when the distance is large. In contrast, the privacy of

our protocol for the high distance case holds for any choice of inputs, regardless of the distance d. This

state of a�airs already allows us to obtain a �nal private protocol with the following \cautious" two-stage

structure. First, the private estimator for the high distance case is invoked. Then, only if its output provides

overwhelming evidence that the distance is too low to be reliably approximated, the low distance protocol

is invoked.

The above two-stage protocol su�ers two disadvantages. First, it fails to be private in a scenario where only

one of the two parties is supposed to learn the output (since the second party will learn partial information on

the output from the communication pattern). Second, it does not achieve the best possible round complexity.

This motivates the following modi�cation of the low-distance sketching protocol, which guarantees that the

output g is almost determined by d

h

over the entire range of inputs (see discussion in the beginning of

Section 3.4). Moreover, the circuit size of the reconstruction function will not be signi�cantly increased.

Improved Protocol. The sketching function of the modi�ed sketching protocol will use a k-bit random

input r, where r is interpreted as a key to a pseudo-random function h

r

: [n]!GF(2)

k

. The n possible

outputs of h

r

de�ne a pseudo-random k � n matrix R over GF(2), satisfying the following properties: (1)

the i-th column of R can be computed from r by a circuit of size

~

O(k); (2) for any nonzero x 2 GF(2)

n

,

the probability that Rx = 0 is negligible in k, where the probability is over the uniform choice of r from

f0; 1g

k

. (We use general pseudo-random functions for simplicity; more e�cient constructions can be based

on small-bias probability spaces [NN90].) The sketching function is de�ned by S(x; r) = (Hx;Rx; r), where

R is the k � n matrix de�ned by h

r

. Reconstruction proceeds as follows. First, Ha and Hb are used as

before to \decode" H(a� b). However, instead of only counting the number of errors, this time we will also

use their locations to test reliably whether a; b di�er exactly in the speci�ed places. Let v

e

denote the error

vector produced by the decoding algorithm from H(a� b). Note that w

h

(v

e

) � d

max

, and that v

e

= (a� b)

if and only if d

h

(a; b) � d

max

. The reconstruction procedure tests whether Ra � Rb � Rv

e

= 0. If the test
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succeeds, the reconstruction function outputs the number of errors, and otherwise it outputs \fail". From

the above properties of h

r

we may conclude: (1) reconstruction can be implemented by a circuit of size

~

O(k

O(1)

�d

max

); (2) if d = d

h

(a; b) � d

max

, g(a; b) = d with probability 1; (3) if d > d

max

, then g(a; b) outputs

\fail" with overwhelming probability. Our �nal sketching protocol thus satis�es all the desired properties,

and can therefore be computed privately and e�ciently as explained in the beginning of Section 3.4.

B.2 Protocols with O�ine Communication

In this section we obtain e�cient private approximation protocols for the following scenario. Suppose that

Alice and Bob are allowed to communicate

~

O(n) bits at zero cost before they receive their inputs. We charge

them only for online communication performed after they learn their inputs. In this model, we give private

protocols with only

~

O(1) communication cost.

We consider the L

2

distance

�

P

ja

i

� b

i

j

2

�

1=2

, where ha

i

i and hb

i

i are sequences of integers.

6

A solution

for the Hamming distance follows as a special case. Essentially, we verify that the protocol from [Ind00] is

functionally private and can be e�ciently implemented by a private protocol in this model.

Alice and Bob share a vector hs

i

i of n samples from a Gaussian distribution.

7

These samples are encrypted

using homomorphic public-key encryption, i.e., anyone can form an encryption E(�; �) of � that can be

decrypted only by knowing the secret key, �, and, from encryptions E(�; �) and E(�; �) of � and � for

the same secret key �, anyone can form an encryption E(� + �; �) of � + � for �. By using a threshold

homomorphic encryption scheme, Alice and Bob split � so that neither can decrypt alone but together they

can decrypt.

As prescribed in [Ind00], Alice should form

P

i

a

i

s

i

. In our context, she forms E (

P

i

a

i

s

i

; �), as follows.

She forms E(a

i

s

i

; �) from E(s

i

; �) and a

i

, in time k

O(1)

log a

i

, using the homomorphic properties of the

encryption and repeated doubling. She then forms E (

P

i

a

i

s

i

; �), using the homomorphic properties of the

encryption. Alice and Bob then form E (

P

i

s

i

(a

i

� b

i

); �), again using the homomorphic properties of the

encryption. The insecure protocol prescribes that they compute (

P

i

s

i

(a

i

� b

i

))

2

, repeat, and take medians

of means, using Lemma 5 (proven in Appendix C.1). In our setting, Alice and Bob perform the median of

means of squares of decryptions of E (

P

i

s

i

(a

i

� b

i

); �)-values using a secure multiparty computation (this

is a small circuit). Correctness is easy to verify, using the fact that the expected value of s

i

s

j

is 1 if i = j

and 0 otherwise (or see [Ind00]). Privacy of the messages is immediate by construction.

As for functional privacy, �rst observe that the result depends on h(a � b)

i

i, but not otherwise on ha

i

i

or on hb

i

i. Also, Alice and Bob are allowed to learn kha

i

i � hb

i

ik

2

, that is, the Euclidean distance between

their inputs. It is a well-known property of the Gaussian distribution that the product hs

i

i of Gaussians is

a spherically-symmetrical distribution. Functional privacy follows immediately.

C Proofs

C.1 A Folklore Lemma

The following lemma is used in several of our proofs.

Lemma 5. Let X be a real-valued random variable such that, for some c, E[X

2

] � c �var[X ]. Then, for any

�; � > 0, there exists a random variable Z such that Pr(jZ � E[X ]j � �E[X ]) � �, and Z is a function of

O(c � log(1=�)=�

2

) independent samples of X.

Proof: Let Y be the average of 8c=�

2

independent copies of X . Then E[Y ] = E[X ] and var[Y ] � �

2

E

2

[X ]=8.

By the Chebychev inequality, Pr(jY � E[X ]j > �E[X ]) �

var(Y )

�

2

E

2

[X]

�

1

8

. Let Z be the median of 4 log(1=�)

independent copies of Y . Then jZ �E[X ]j � �E[X ] i� for at least half the Y

i

's, jY

i

�E[X ]j � �E[X ]. Since,

for each i, this happens only with probability 1=8, the Cherno� inequality implies that Pr(jZ � E[X ]j �

�E[X ]) � �.

6

The square of the L

2

distance,

P

ja

i

� b

i

j

2

, is equivalent to the L

2

distance from the perspective of computation

and privacy. Henceforth, we consider the easier-to-read square of the L

2

distance.

7

Actually, the �nite-precision samples will be statistically indistinguishable from Gaussians, which is good enough.
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C.2 Proof of Lemma 1

Lemma 1 Private-Sample-XOR is a private protocol computing the randomized function Sample-XOR.

Proof (sketch): The correctness of the protocol follows by observing that z

A

= (b << r

B

)

r

A

� m

B

=

b

(r

A

+r

B

)

� m

B

and, symmetrically, z

B

= a

(r

A

+r

B

)

� m

A

(where addition of indices is taken modulo n).

Hence, both players output

z

0

A

� z

0

B

= z

A

� z

B

�m

A

�m

B

= a

(r

A

+r

B

)

� b

(r

A

+r

B

)

where r = r

A

+ r

B

is a uniformly distributed index.

The privacy of the protocol follows from the fact that in the process of obtaining the output a

(r

A

+r

B

)

�

b

(r

A

+r

B

)

, no party learns r

A

+r

B

, a

(r

A

+r

B

)

, or b

(r

A

+r

B

)

. A simulator for Alice's view may proceed as follows.

On input a 2 f0; 1g

n

and output value z 2 f0; 1g:

1. Pick at random z

0

A

; z

0

B

such that z

0

A

� z

0

B

= z, r

A

R

 [n], and m

A

R

 f0; 1g.

2. Let z

A

def

= z

0

A

� m

A

. Invoke the simulator of the

�

n

1

�

-OT protocol twice, once with Alice as a receiver

having input r

A

and output z

A

, and once with Alice as a sender having input (a << r

A

) � m

A

. Let

view

1

; view

2

denote the views produced by the two simulations.

3. Output (a; r

A

;m

A

; view

1

; view

2

; z

0

B

).

A simulator for Bob's view may be obtained similarly.

C.3 Proof of Theorem 2

In this section, we provide a more detailed proof of Theorem 2, namely that our modi�cation of the [JSV00]

result is a private approximation to the permanent.

We will use the standard polynomial-time private computation techniques to insure that the intermediate

messages are private. Thus it su�ces to show how to approximate the permanent in a functionally private

way. To this end, we use ideas of [JSV00].

The of technique [JSV00] uses a rapidly-mixing Markov chain to show how to sample from the set of all

perfect matchings on a graph from a distribution that is statistically indistinguishable from uniform. This can

be used to approximate the permanent as follows. Let p

e

denote the probability that edge e is in a random

matching, and let p

ejE

0
denote the probability that e is in a random matching given that edges in E

0

� E

are in the matching. Below we will �nd a sequence e

1

; e

2

; : : : ; e

n

of edges such that p

e

1

; p

e

2

je

1

; p

e

3

je

1

;e

2

; : : :

are all at least 1=n, so that, in particular, fe

1

; : : : ; e

n

g is a perfect matching. Write the number of perfect

matchings as

1=(p

e

1

p

e

1

je

2

� � � p

e

n

je

1

;::: ;e

n�1

):

To approximate p

e

1

, sample (nearly) uniformly from all perfect matchings in the given graph G and count the

fraction of times in which e

1

occurs. Since p

e

1

� 1=n, we can sample O

�

n

3

=�

2

�

times and get a good relative

error approximation to p

e

1

, namely, p

e

1

(1�O(�=n)). This yields an approximation of the denominator, and,

hence, the fraction, that is good to within the factor (1� O(�)). To approximate p

e

2

je

1

, consider the graph

H = G n fv

1

; v

2

g, where e

1

= fv

1

; v

2

g. Perfect matchings in H are in bijection with perfect matchings in G

in which e

1

occurs. Thus we can approximate p

e

2

je

1

by sampling perfect matchings in H and counting the

fraction of times that e

2

occurs.

To �nd a suitable sequence of edges, proceed as follows. There are at most n

2

edges and each matching

has at least n edges, so some edge is in at least 1=n of the matchings. We can �nd such an edge, e

1

, by

sampling using the Markov chain. Similarly, there are at most (n � 1)

2

edges remaining after the removal

of e

1

's endpoints, and each matching of the remaining graph has n � 1 edges, so some edge, e

2

, is in at

least 1=(n� 1) of those matchings. Again, we can �nd it by sampling. Continuing in this way generates the

sequence of edges.

It is immediate that a sampling-based approximation to p

e

1

depends only on p

e

1

, and not on the rest of

the graph. The Monte Carlo sampling-based approximation is statistically indistinguishable from depending
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only on p

e

1

. As an aside, we can conclude that the probability that a given edge is in a perfect matching in a

given graph is privately approximable with good relative error, provided the probability is large enough (at

least a negative power of n), and is privately approximable with good additive error in any case. From the

discussion above, it is not di�cult to see that the exact version of this promise problem is reducible from

any of the p

ejE

0

's, so the exact version is reducible from the permanent and is #P-hard.

But now consider two di�erent graphs, G

1

and G

2

, with the same value for the permanent but for which

the corresponding values of p

e

1

, p

e

2

je

1

, etc., are very di�erent. In general, the product of approximations

p̂

e

1

p̂

e

1

je

2

� � � p̂

e

n

je

1

;::: ;e

n�1

for graph G may have a very di�erent distribution than the product of approxima-

tions

^

p

0

e

1

^

p

0

e

1

je

2

� � �

^

p

0

e

n

je

1

; : : : ; e

n�1

for graph G

0

, even though

p

e

1

p

e

1

je

2

� � � p

e

n

je

1

;::: ;e

n�1

= p

0

e

1

p

0

e

1

je

2

� � � p

0

e

n

je

1

;::: ;e

n�1

:

As an illustration, suppose p

e

1

= p

e

2

je

1

= 1=2 but p

0

e

1

= 1 and p

0

e

2

je

1

= 1=4, so p

e

1

p

e

2

je

1

= p

0

e

1

p

0

e

2

je

1

= 1=4. If t

samples are used to approximate each factor, then one over the number of perfect matchings is approximated

as B(:5; t) �B(:5; t)=t

2

for graph G and B(:25; t)=t for graph G

0

, where B(p; t) is the number of successes in

t independent trials of an experiment with success probability p. We show that the logarithms of these two

estimators, L

1

and L

2

, respectively, are distinguishable, whence the estimators themselves are distinguishable.

The former quantity L

1

has distribution

log(1=4��(1=

p

t)) � log(1=4)� log(1 +�(1=

p

t))

� log(1=4)��(1=

p

t)

� log(1=4)�X

1

;

whereas, similarly, L

2

has distribution roughly

log(1=4)�X

2

�X

3

;

where X

1

; X

2

, and X

3

are independent and uniformly distributed on [��(1=

p

t); �(1=

p

t)]. The density

function of L

1

is a single pulse of width �(1=

p

t), whereas the density function of L

2

is the convolution of

two such pulses, i.e., an isosceles triangle of width �(1=

p

t), symmetric about log(1=4). These distributions

have the same mean, but they are statistically distinguishable unless t is exponential in k. Note that this

leakage of information would occur even if one could sample perfectly from the set of all perfect matchings;

this leakage has nothing to do with the statistical di�erence between the Markov-Chain-based sample and a

truly uniform sample.

To avoid this leakage, one might be tempted to estimate the product at once; that is, sample from the

joint distribution of perfect matchings of G, perfect matchings of G n vertices of e

1

, etc., and estimate the

probability of the joint event that e

1

occurs in a matching ofG and e

2

occurs in a matching ofGnvertices of e

1

,

etc. But, after simplifying, this amounts to estimating the probability that a random perfect matching of

G is the one matching fe

1

; : : : ; e

n

g. In general this probability is minuscule, even if each p

ejE

0

has large

probability, so the estimate will be zero, which gives no estimate for the size of the permanent.

To remedy this, we will manipulate success probabilities in various ways. One important process we

call enriching. Suppose we are given a coin with success probability p, whose value is unknown except that

p << 1=t for some real number t � 1. We enrich the coin by the factor t when we do the following experiment:

Toss the original coin a large number N of times so that we can ignore the possibility that the number S of

heads is greater than N=t. Now toss a coin with success probability tS=N . We claim that this latter coin has

success probability exactly tp.

To see this, observe that if t = 1 then the statement is true, since the constructed coin can be viewed

as a random trial from among the N tosses of the original coin. (In fact, an arbitrary trial of the original

coin would have the right probability, p.) Write the probability that the constructed coin succeeds as p =

P

s

Pr(1jS = s) Pr(S = s) =

P

s

s

N

Pr(S = s). On the other hand, for general t, the probability of success of

the constructed coin is

X

s

ts

N

Pr(S = s) = t

X

s

s

N

Pr(S = s)

= tp:
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Note that enriching is only possible if the original probability, p, is at least 1=n

O(1)

. This prevents us

from directly enriching the probability p

e

1

p

e

2

je

1

� � � p

e

n

je

1

;::: ;e

n�1

. Also, enriching increases the number of

original coin tosses by a factor of the security parameter, k. This prevents us from enriching recursively to

more than constant depth, so we cannot enrich p

e

1

p

e

2

je

1

� � � p

e

n

je

1

;::: ;e

n�1

by writing this product as a tree of

bounded-fanin products and enriching the output of each such bounded-fanin product.

Thus, besides enriching, we will need to do other constructions on success probabilities. Given coins with

success probabilities p; q and r, we can form a coin with success probability pq by taking the joint event,

probability 1� p by taking the complementary event, probability t, for known t � 1, by constructing from

scratch, and probability rp+ (1� r)q, by ipping r and then either ipping p or q.

Before proceeding, we note that if k and n are more than exponentially far apart, there's a trivial

algorithm. First, if the security parameter k is tiny, so that 2

k

< n, then we can use the noise-adding

technique of Section A.3. In time polynomial in n and �, estimate each factor to within

�

1�O

�

�=

�

n2

k

���

.

This estimates the product to within

�

1�O

�

�=2

k

��

. Finally, multiply by some noise in the range (1�O(�)).

The result will be good to the within the factor (1�O(�)) and, for any two matrices with the same permanent,

the statistical di�erence between the output distributions will be at most 2

�k

. On the other hand, if k is

huge, so that 2

n

< k, then, as shown by Ryser in [Minc82], we can solve the permanent problem exactly in

time polynomial in k.

We return now to permanents. Sample each probability p

e

i

je

1

;::: ;e

i�1

to determine its rough value, then

scale it up to 
(1) by enrichment. This uses a factor O(k) more samples from each distribution of matchings.

Keep track of the chosen scaling factor, �. For x at least 
(1), a O(k)-term Taylor expansion for x

1=n

around

x = 1, i.e.,

P

(�1)

j

�

1=n

j

�

(1 � x)

j

, will have error bounded by 2

�2k

� 2

�k

=n. (Recall we are assuming that

n < 2

k

.) The coe�cient of (1� x)

j

is

(�1)

j

�

1=n

j

�

= (�1)

j

�

1

n

� �

1

n

� 1

� �

1

n

� 2

�

� � �

�

1

n

� j + 1

�

j!

= �

�

1

n

� �

1�

1

n

� �

2�

1

n

�

� � �

�

j � 1�

1

n

�

j!

= �

1

nj

�

1�

1

n

��

1�

1

2n

�

� � �

�

1�

1

(j � 1)n

�

;

i.e., at most 1=(nj) in absolute value, and negative. Thus the sum of the absolute values of all but the

leading coe�cient in a O(k)-term Taylor series is at most

P

k

j=1

1

nj

�

log k

n

, which we can assume is less than

1, since, otherwise, if k > 2

n

, we can solve the permanent exactly in time polynomial in k. That is, the

O(k)-term Taylor series is 1 less a subconvex combination of x; x

2

; : : : ; x

k

. Thus, given a coin with unknown

success probability p at least 
(1), we can construct, using the p; q ! pq, p! 1� p, p! tp+ (1� t)q and

t constructions, an experiment whose success probability is p

1=n

(1 � 2

�k

=n), using at most O(k) original

samples, enough to evaluate a polynomial of degree k. Enriching p from �(1=n) to 
(1) requires an additional

factor of k samples. Finally, we can divide out by �

1=n

� 1 by using the p! tp construction. This way we'll

have constructed p

0

ej�

= p

1=n

ej�

for each probability p

ej�

.

As an illustration, consider the three-term expansion to the square root of x at x = 1, namely

p

x � T (x) = 1�

(1� x)

2

�

(1� x)

2

8

:

Suppose event A has probability p and suppose F

t

(a coin ip) has success probability t. Rewrite T (x) using

Horner's rule to decrease the number of multiplications and using convex combinations instead of sums,

getting

T (x) = 1�

�

(1� x)

1 + (1� x)=4

2

�

:

Let (A ? B : C) denote the experiment of performing A, if it is successful then performing and outputting

the result of B, otherwise performing and outputting the result of C. The following event, which can be
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constructed directly from the above form for T (x), has success probability T (p), where each occurrence of

A and F is independent.

A(F

1=2

? F

1

: AF

1=4

): (2)

For the polynomial of degree two, Experiment (2) uses just two A experiments and constantly-many other

experiments for each A experiment, though, in general, constructing F

t

from F

1=2

may require 
(k) repe-

titions to achieve the desired accuracy. The coe�cients other than the leading 1 sum to less than 1, so the

sum of this part of the series can be implemented using the (� ? � : �) construction and the construction of

taking a joint event with some F

t

.

Ideally, the joint distribution p

0

e

1

; p

0

e

2

je

1

; � � � will have success probability M

�1=n

, where M is the per-

manent. If each factor has success probability correct to within

�

1� 2

�k

=n

�

, then the joint event will have

success probability correct to within

�

1� 2

�k

�

. That is, for any two graphs with the same number M of

perfect matchings and whatever arbitrary choices we make in scaling probabilities to 
(1), we will con-

struct an experiment with success probability statistically indistinguishable fromM

�1=n

. This analysis is for

privacy|a bad guy making exponentially-many samples won't be able to distinguish the success probability

from M

�1=n

. With regard to correctness, we won't be able to recover all that accuracy using only a polyno-

mial number of samples, but we will be able to recover su�cient accuracy. Note that, since each probability

p

ej�

is between 1=n and 1, so is their geometric mean,M

�1=n

. Thus the average of n coin tosses will have the

same mean, M

�1=n

, and variance at most M

�1=n

=n, which is at most O

�

�

M

�1=n

�

2

�

. We can then apply

Lemma 5 with distortion �=n and error probability �, getting M

�1=n

(1� O(�=n)) with probability at least

1� �. It follows that the �n power is M(1�O(�)).

C.4 General Techniques Based on Monte Carlo Methods

In Section 4, we gave a private approximation protocol for the permanent of a matrix shared by two players.

In this appendix, we generalize those techniques.

We consider intractable functions f(a; b) that have polynomial-time approximation schemes. In this con-

text, we seek a private approximation protocol with polynomially-bounded communication and computation,

but we do not otherwise constrain the communication or computation. Therefore, we need only provide a

functionally private approximation

^

f to f ; we can then draw upon the polynomial-time secure multiparty

computation literature to compute

^

f privately or securely.

In this section we consider only h�; �i-approximations. Other approximation requirements can be consid-

ered, too.

In the following, we assume that there is an underlying size n and security parameter k. Computations

must be correct to within the factor (1� �) with probability 3=4. Two distributions are \statistically indis-

tinguishable" if their statistical di�erence is at most 2

�k

(and a condition of similar strength in k applies

for computational indistinguishability). \Polynomial time" means time polynomial in n; k, and 1=�, and is

denoted here by \poly." As usual, the failure probability 3=4 can be boosted up to 1 � � by performing

O(log(1=�)) repetitions.

We begin with a de�nition that says  is an approximation-preserving function.

De�nition 7. A deterministic real function  is polynomially relatively continuous if, for all x and for all

� > 0, there exists � > 1= poly such that  (x(1� �)) �  (x)(1� �).

Lemma 6. Let  be a polynomially relatively continuous function that is easy to compute and to invert. Sup-

pose f(a; b) =  (Pr(E)), Pr(E) � 1= poly, where E is an event (parameterized by a and b) under a probability

distribution, D, such that, in polynomial time, one can sample from a distribution that is computationally

indistinguishable from D. Then f(a; b) has a functionally private approximation computable in polynomial

time.

Proof. One can estimate Pr(E) to within the factor (1� �) in polynomial time using Lemma 5, then apply

 . To see that this is functionally private, note that from f(a; b) alone (even without an additional input

a or b), a simulator can construct an 
(k)-bit approximation to Pr(E) =  

�1

(f(a; b)). It can then sample

from a distribution with success probability indistinguishable from Pr(E), and apply  . The result follows.
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In general, as in the case of the permanent, a Monte Carlo Markov chain approach to approximations

involves making several estimates from separate Markov chain experiments and combining the estimates in

an arbitrary way. While we cannot claim that any function with a Monte Carlo Markov chain-based approx-

imation also has a functionally private approximation, we do exhibit functionally private approximations for

a large class of such functions.

Lemma 7. Let  be a polynomially relatively continuous function that is easy to compute and to invert.

Suppose f(a; b) =  (� (Pr(E

1

);Pr(E

2

); : : :Pr(E

j

))), where each event has probability at least 1= poly in a

probability distribution that can be nearly sampled in polynomial time, and where � is a polynomial-sized,

constant-depth arithmetic formula with gates of the following form:

{ t! 1� t

{ t

1

; t

2

! t

1

t

2

{ ? ! r, where r 2 [1= poly; 1� 1= poly]

{ (t

1

; t

2

; : : : ; t

`

)!

P

i

r

i

t

i

, where

P

i

r

i

= 1

{ t! t

r

, for 1= poly � r � 1

{ t! rt, for r � 1, under the promise that rt < 1� 1= poly.

{ (t

1

; t

2

; : : : ; t

`

)!

Q

i

t

r

i

i

, where

P

i

r

i

= 1 and each r

i

> 1= poly.

Then f(a; b) has a functionally private approximation that can be computed in polynomial time.

For example, in our proof of the private approximability of the permanent, each event is the occurrence of

an edge in a random matching of a particular graph, � is a single gate formula consisting of the geometric

mean of n inputs, and  is the �n power.

Proof. We show that each gate in � with size s below it satis�es the following invariant: If each input

takes values in [1= poly; 1 � 1= poly], each input can be approximated in polynomial time by sampling,

and, for each input, there's a polynomial-time-constructible Bernoulli experiment with success probability

indistinguishable from the ideal value, then the output satis�es the same three conditions:

{ it takes values in [1= poly; 1� 1= poly],

{ it can be approximated in polynomial time by sampling,

{ it has associated with it a Bernoulli experiment with success probability indistinguishable from the ideal

value.

The �rst conclusion is clear for each of the gates. The second conclusion follows from the �rst and third and

Lemma 5. As for the third conclusion, we consider the allowed types of gates in turn. We show, for each gate

g, that we can construct an experiment with success probability indistinguishable from the output value of

g, given coins with success probabilities equal to the input values to g, such that the total number of coins

required by g is polynomial. This is easy to do for each gate, using the techniques of Section C.3 where

necessary.

As in Lemma 6, it follows that we can estimate f by estimating � and then applying  . Also as in

Lemma 6, to see that this approximation is functionally private, from f(a; b), a simulator can compute

 

�1

(f(a; b)) = � (Pr(E

1

);Pr(E

2

); : : :Pr(E

j

)), sample from a distribution with success probability  

�1

(f(a; b)),

then apply  . The result follows.
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