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Abstract

We present a new family of public-key encryption schemegtvhombine modest computational de-
mands with provable security guarantees under only geassalmptions. The schemes may be realized
with any one-way trapdoor permutation, and provide a natf@®curity corresponding to semantic secu-
rity under the condition that the message space has suffaidmopy. Furthermore, these schemes can be
implemented with very few applications of the underlyingemay permutation: schemes which provide
security for message spaces{it 1}" with minimum entropyn — ¢ can be realized witlf + w(k) logk
applications of the underlying one-way trapdoor permatatHerek is the security parameter amdk)
is any function which tends to infinity. In comparison, extapstems offering full semantic security
require roughlyn applications of the underlying one-way trapdoor permatatiinally, we give a sim-
plified proof of a fundamental “elision lemma” of Goldwass@&d Micali.

1 Introduction

Given the current state of affairs in complexity theory, $iedy of encryption has adopted a somewhat ax-
iomatic approach. A primary goal of the study is understéedbiasic relationship between the (complexity-
theoretic)assumptionsipon which encryption schemes can based, andfff@encyandprivacy guarantees
offered by such schemes. Naturally, the most desirableyption scheme is one which makes the most
modest assumptions and offers efficient encryption withngfiprivacy guarantees.

A variety of complexity-theoretic assumptions have beewlietd, which range from general assump-
tions, like the existence of a one-way function, to strorgyuagptions about specific (often number-theoretic)
functions. In this article, we will focus on the developmehasymmetric encryption schemes under gen-
eral (i.e., weak) assumptions. In particular, we will assuhe existence of a one-way trapdoor permutation.
(The constructions work under weaker assumptions, for plathe existence of a one-way function, though
in this case the target schemes must be private-key.)

A traditionally accepted notion of security for encryptisnhemes is that asemantic security13],
though a number of stronger (and important) notions exés,(8.g., [4, 9, 22, 24]). A system with semantic
security guarantees that observatiorE@im), the encryption of a message offers essentially no advantage
to a bounded adversary in predictiagy piece of partial information about the message Anpiece of
partial information may be some specific bit wf or, perhaps, a complicated function capturing some
global property ofm. Furthermore, this guarantee can be offereghrdless of the a priori distribution of



the message nGiven a one-way trapdoor permutatiérand a hard core predicate for f (see e.qg., [7]),

a semantically secure encryption for a messageith n bits can be realized with applications off. In
general, if it is possible to extrast (k) simultaneously secure bits from a single applicatiorf ¢b strings
with security parametek, thenn/s; (k) evaluations off suffice. If, for example,f is taken to bersA,
then it is known that if RSA is difficult to invert thesksAk) = Q(loglogk) [1, 15], so that this scheme
can be realized witl®d(n/loglogk) applications oRsA. The encryption schemes described below offer an
efficient analogue of semantic security for the case wheadersary’s a priori knowledge of the message
is limited.

We say that an encryption scheme offergropically bounded securitiy for all message distributions
with sufficient entropy, and all pieces of partial inforneatth : {0,1}* — {0,1}, observation oE(m) offers
no bounded adversary any nonnegligible advantage in giealiof h(m). If the definition is strengthened
so that it applies for all message spaces, then we exactbhyaethe definition of semantic security. (See
the next section for precise definitions.) We show that fossage spaces with minimum entrapy- ¢, an
encryption scheme offering entropically bounded secwdy be realized with very few applications tof
in particular, (£ 4+ w(k) logk) /st (k) applications (inversions) suffice for encryption (deciyp), wherek is
the security parameten(k) is any function that tends to infinity, arsg(k) is the number of simultaneously
secure bits which can be extracted from a single applicatfoin(a one-way trapdoor permutation). When
the message space is uniform, then, this results in a systeamwequires onlyO(w(k) logk/sz (k)) appli-
cations of the one-way permutation, for any functi@mvhich tends to infinity. The systems also involve a
certain amount of “overhead,” which in each case does natezl@(npoly(logn)) time.

The above results express the complexity of encryption aa@ibn of bothn, the message length, and
k, the security parameter. This is somewhat unusual for astnerschemes, which are typically used to
encrypt a key for a private-key scheme (typically of lenkthas private-key schemes are generally (much)
more efficient than a public-key schemes. Under the assangptie consider, however, there is no (known)
benefit to be had by applying a private-key system after kehaxge, so we keep everything “under one
hood”. (Alternatively, the results which follow can be casa private-key setting, as mentioned above.)

It is interesting to compare these results with known resaftopting stronger assumptions. If factor-
ing is difficult, then a scheme of Blum and Goldwasser [6] base the Rabin functions(— x? mod pa)
encrypt (in a semantically secure fashion)rabit message in tim®(nkpoly(logk)). In comparison, the
above scheme offers a weaker guarantee, analogous to sesenrity when the message spacemad
min entropy, in timeO([¢ + w(k) logk]k poly(logk) + npoly(logn)), wherew is any function which tends
to infinity. Under assumptions of a somewhat stronger fla@oamer and Shoup [8] show that a constant
number of exponentiations over a group suffice to encrypt ssage of length, in such a way that the re-
sulting system is secure against even (adaptive) choshertixt attack. In particular, they assume that the
Diffie-Hellman decision problem is hard (i.e., that the EInGd scheme [10] is semantically secure). Pre-
vious work has also constructed efficient, secure encryp@idemes (with quite strong notions of security)
under the strong assumption of availability of an ideal Haslation [5].

The two main theorems in the article, Theorem 3 and Theorearedboth instantiations of common
paradigms in cryptography. The first is an information-tiedio variant on the standard practice of encrypt-
ing a short seed which is then used for a pseudorandom genéiratour case, this will be ae-biased
space). The second is a variant of the “simple embeddingrsesieoften used in practice, where a message
is encrypted by applying a one-way permutation after a klatébijective) hash function. The scheme of
Bellare and Rogaway [5] is also theoretical evidence fogtaity of such systems.

In Section 2 we give basic definitions, including a brief disgion ofe-biased spaces, universal hash
functions, and the Fourier analysis 8§, which will be used in the main results, presented in Sest®n

LA hard-core predicate lfor a one-way functiorf is a efficiently computable Boolean function so thét) is difficult to predict
from f(x).



and 4.

2 Definitions

For basic definitions of one-way trapdoor permutations amdldzore predicates we refer the reader to,
e.g., [26, 19]. For a one-way permutatidn we shall lets; (k) denote a lower bound on the number of
simultaneously secure hard-core predicates fgee, e.g., [11]).

Definition 1. A public key encryption schenig a triple (G, E, D), where

e G is an efficient probabilistic key generation algorithm,igth on input1¥, produces a pair of keys,
(P,S); here P denotes the "public key” and S the “secret key”

e E is an efficiently computable encryption algorithm whichjeg a message m and public key P,
outputs ¢, an encryption of the message m using the key P. Womsider probabilisticencryption
schemes, where E may also depend on a sequence of randoRu. Bitse encryption of m with public
key P and random string R is denotednE P, R).

e D is an efficiently computable decryption algorithm whichyeg a ciphertext ¢ and secret key S,
produces a message m for whickngP,R) = c for some R.

As mentioned in introductiorsemantic securitys a standard notion of privacy for encryption schemes.

Definition 2. We say that an encryption scheii@& E, D) possessesemantic securityf for every message
generator M and every probabilistic polynomial-time Tyrimachine A, there is a probabilistic polynomial-
time Turing machine B, such that for every polynomial Q,éhexists an integergksuch thatvk > ky and
vh:{0,1}* — {0,1}*, Pr[A(1%,P,E(m;P,R)) = h(m)] < Pr[B(1¥) = h(m)] + ﬁ where the first probability

is taken over m— M(1¥), (P,S) + G(1¥), R (the coin tosses of E), and coin tosses of A. The second
probability is taken over all choices of s M(1¥) and coin tosses of B.

We borrow thel < [ notation from [14]: wherx is a variable an&a random variables < Sdenotes
the assignment of according toS. If Sis simply a set, we abuse the notation by allowBitp represent
the random variable uniform d® In the sequel, we will use the term “algorithm” to refer toralpabilistic
polynomial time Turing machine. Furthermore, “messagesgaiors,” as in the above definition, are algo-
rithms which, for eaclk € N, produce a output in the s¢0,1}" (determined by the random coins ),
wheren is polynomially bounded ikk. Whenever a probability is expressed, as in the above defigijt
it is understood that the random coins of any algorithm appganside the brackets are to be included in
the probability space. When the underlying probabilitycgpaf a variablex is clear from context, we may
simply write Pry[P(X)], or elidex altogether.

Definition 3. We say that an encryption scheme possegghstinguishability of encryptions for every
message generator M, every algorithm A, and for every pohyaloQ, there exists an integep lsuch that
vk > ko, Pr[A(1%,P,mo,my, E(M;PR)) =i] < 3+ ﬁ, this probability being taken over gn— M(1¥),

my < M(1X), (P,S) « G(1¥), i + {0,1}, and selection of R.

Theorem 1. An encryption scheme is semantically secure if and only dfférs indistinguishability of
encryptions.

The reverse implication was proven in [13]. The forward iicagion appears in [20, 12]. We shall
require a strengthened version of the reverse implicatidnch we refer to as an “elision” lemma. This
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strengthened version, discussed in Section 2.4, was aligiproved in [12]. We give a streamlined proof
of this result, which avoids the sampling present in exgspnoofs. One consequence of this equivalence is
that if the piece of partial informatioh in the definition of semantic security is restricted to be @lBan
function, the notion of security is unchanged.

A random variablem taking values in{0,1}" hasminimum entropy A ¢ whenVm, € {0,1}", Prim=
me] < 2-™. A message generatdt, which produces messages of lengtk n(k) given ¥, is said to have
minimum entropyn — £ when the random variabM (1¥) possesses this property.

Definition 4. We say that an encryption system possegdgsentropic securityf for every message gener-
ator M with minimum entropy # ¢(k), and every algorithm A, there is an algorithm B, such thatdeery
polynomial Q, there exists an integey uch thatvk > ko andvh: {0,1}* — {0,1},

PriA(1%,P,E(m;P,R)) = h(m)] < Pr[B(1) = h(m)] + ﬁ
where the first probability is taken over @ M(1¥), (P,S) + G(1¥), and R. The second probability is taken
over m« M(1X).

Observe that a semantically secure encryption schemegsesggk)-entropic security for every poly-
nomial p. We will construct two encryption schemé&,, E,, Dy) and(Gp, Ep, Dy), based on any one-way
trapdoor permutation, so that

e E, possesses 0-entropic security (i.e., provides securitgnithe message space is uniform) and

requires

0 <Mtf (K) + w(k)nlog**¢ k)

st (k)

time to encrypt a message, whegé¢k) is the time required to compute a single application of the
one-way permutatiorf to a string with security paramet&r s¢ (k) is the number of simultaneously
secure bits which can be extracted from an applicatiorf ¢d strings with security parametéy
w(k) is any function which tends to infinity ik, ande > 0. In particular, the time cannot exceed
O((n+ts(k)) log?k). (Thew(k)nlog'*k term may in fact be replaced Ijogkloglogklog log logk.)

e Ep possessesentropic security (i.e., provides security when the mgssgpace has minimum entropy
n— /) and requires
(w(k) logk+ ¢
o ————
st (k)
time to encrypt a message, wherék), sq, andw are as above.

t¢ (k) + nlog?nlog Iogn>

For simplicity we will focus on the time taken tencryptin these schemes, often simply focusing our
attention on the number of applications of the underlying-aray permutation required. In these cases, de-
cryption involves inverting the one-way permutation orka lnumber of elements (and the same “overhead”
terms:O(nlognloglogn) in the above case).

Our constructions make use obiased sample spaces and universal hash functions, défihmal.

2.1 e-biased Sample Spaces

Definition 5. A sample space S {0,1}" is callede-biasedif for all nonemptya C [n] = {1,...,n},

Exp [ﬂ (—1)51
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Small probability spaces with these properties were ihjtieonstructed by Naor and Naor [21] and
Peralta [23]. We will use a construction, due to Alon, Goiclie Hastad and Peralta [2], which gives an
e-biased sample space {0,1}" of size aboul(g)z. The sample space is given as the image of a certain
functiongn m: Fom x Fom — {0, 1}". (HereFx denotes the finite field with"Zlements.) To define, let bin :

Fom — {0,1}™ be a bijection satisfying bi®) = 0™ and bin(x+y) = bin(x) ® bin(y), wherea & 3 denotes
the componentwise exclusive or@fandp. Thena(x,y) =r = (ro,...,rn_1), wherer; = (bin(x'), bin(y))»,
the inner product, modulo two, of andy. The size of the sample space &2 Let Sym C {0,1}" be the
collection of points so defined. They show that

Theorem 2 ([2]). Sym =M Omnis % L biased.

Observe that whem = [Iogne—l], D+ <e. As we will be constructing elements &, during the
encryption (and decryption) phase of our encryption schemeeanalyze the complexity of computing the
function above. First, we need to find an irreducible polyram of degreemover the finite field,. As the
degree of the polynomial will correspond to the block lengftthe encryption scheme, we can be somewhat
flexible concerning the degree of the irreducible polyndrarad use an explicit construction (rather than
rely on an algorithrfy):

Fact 1. For each ce N, the polynomial p(x) = x?™+x™+ 1, where m= 3, is irreducible over,.

(See [18, Exercise 3.96].) Computation @f= omp for a pair (x,y) is performed on a component
by component basis: givex, computation ofx** requires a single multiplication ifiom 2 Fo[x]/(pc).
Using fast polynomial multiplication, computing this prad takesO(mlogmloglogm) time (see [28], or
the discussion in [3, p. 232]). Apc is sparse (it has only 3 nonzero terms), reducing this resati-
ulo pc requiresO(m) time. Hence computation af(x,y) requiresO(nmlogmloglogm)) time. In or-
der for S=im o to bee-biased, we may taken = [log(n/€)]|, in which case the above running time is
O(nlog(n/¢)loglog(n/¢€)logloglog(n/€)). To simplify notation, we let, ¢ denoteoy , in the sequel, for

= [log(n/e)].

2.2 k-wise Independent Permutations

A family of permutations? C {f : X — X} is a family ofk-wise independent permutatiof&3] if for all
distincts, ..., s € X and all distinct, ...t € X,

o Pr [Vi,@(s I_L|X|—|

We will use a family of 3-wise independent permutationscdbged below. See Rees [25] for a more detailed
description.

Let V be a two-dimensional vector space o¥gra finite field. For two non-zero vectofsand w
in this space, we writ& ~ W whenV = cw for somec € F (so that the two vectors span the same one-
dimensional subspace). This is an equivalence relatiomvsite [V] for the equivalence class containing
V. Projective 2-space ovét is thenP,(F) = {[V] | V # 0}. We let GLo(F) denote the set of non-singular
2 x 2 matrices ovelf, and PGL(FF) = GL,(F)/{cl|c € F}, wherel is the identity matrix. An element
¢ of PGLy(FF) acts onP,(F) in a natural (and well-defined) way, mappifi to [@(V)]. It is not difficult
to show that for any distindti], [U2], [U2] € P2(F) and any distincfvi], V2], [2] € Po(IF), there is in fact a
unique@ € PGLy(F) so thatg([ti]) = [Vi] for eachi. In particular, PGk(F) is a 3-wise independent family

2|rreducible polynomials oveF, of degreem can be found determlnlsncally im*t€ time for anye > 0 [30]; a randomized
algorithm is known [31] which finds such a polynomial time xpectednzlog ) mtime.



of permutations. As multiplication and inversion in a finiteld [, for a primep, may be accomplished
in time O(log p(log logp)?log loglogp) time [29, 27, 16], evaluation of an elemep PGLy(Fp) also has
this complexity.

2.3 Fourier Analysis of Boolean Functions

Let L(Z3) = {f : ZJ— R} denote the set of real valued functions 8= {0,1}". Though our interest
shall be in Boolean functions, it will be temporarily coniemt to consider this richer spac&(Z5) is a
vector space oveR of dimension 2, and has a natural inner product: foyg € L(Z5), define(f,g) =
27"y xeoyn F(X)9(x). For a subsett C {1,...,n}, define the functiorkq : {0, 1}" — R so thatyy(X) =
[Maca (—1)%. These functiong, are thecharactersof Z5= {0,1}". Among their many wonderful properties
is the fact thathe characters form an orthonormal basis fofds). To see this, observe thet C [n],
Yxef013" Xa(X) = 2" whena = 0, and 0 otherwise. Furthermore, farf C [n], Xa(X)Xp(X) = Xaasp(X).
wherea @ B denotes the symmetric differencecofindf, so that(Xq,xg) = 1 whena = 3, and 0 otherwise.
Considering that there aré 2haracters, pairwise orthogonal, they sp&fi?), as promised. Any function
f : {0,1}" — R may then be written in terms of this basis:

f= Z f;(XO(

acln]

wherefy = (f,xq) is the projection off ontoxq. These coefficientdy, a C [n], are theFourier coefficients
of f, and, as we have above observed, uniquely determine theduric
Given the above, it is easy to establish Blancherelequality:

Proposition 1. Let f € L(Z]). Then||f|; =S4 f2 where||f[j5=(f,f) = 2 Sx o1 f(X2

As always, fp = Exp[f] and, when the range dfis {1}, T, f2 = || f||2 = 1. See [32] for an excellent
discussions of discrete Fourier analysis.

2.4 An Elision Lemma.

We will use an “elision” lemma for semantically secure emptign schemes, applied in the proofs of Sec-
tions 3 and 4. We use the terglision lemmao refer to an assertion that a cryptosystem offering inist
guishability of encryptions possesses the property thae#itient computation performed with observation
of E(m), an encryption, (and, perhaps, some related informatiay) &3 well have been performed without
it.

The following lemma, which generalizes the original elisiemma of [13], is due to [12]. We give
a streamlined proof which improves upon previous prooffimgense that iequires no samplingn the
part of the constructed algorithrf (in the proof below). It gives an error bound which dependy on a
natural 2-norm of the message distribution.

Lemma 1. Let (G, E, D) denote an encryption scheme possessing indistinguigyatiilencryptions. Then
for every message space M and algorithm A, there is an algariB so that for all polynomials Q all
efficiently computable f{0,1}* — {0,1}*, and every polynomial § Jko,Vk > ko and ¥Yh: {0,1}* —
{0,1}7,

PF[A(:I.k7 P, f(S, m), E(m; P, R)) = h(s7 m)] < |:>r[B(1k7 f(S, m)) _ h(S, m)] n Qzl(k) '



The first probability is taken ovem < M(1X), (P,S) «+ G(14), s+ {0,1}%®, andR. The second
probability is taken ovem « M(1¥) ands < {0,1}P®),

Proof. The algorithmB usesA as a black box: givenkland f (s,m), B proceeds as follows:

1. Selecim «+ M(1¥), (P,S) «+- G(1¥), and choose a random strilpf appropriate length,

2. ReturnA(1K,P, f(s,m),E(nT;P,R)) = v.
Observe thaPr[B(1¥, f(s,m)) = h(s,m)] = Pr[A(1, P, f(s,m), E(m; P,R)) = h(s,m)]. In this case, the lemma
is a consequence of the following claim:

Claim 1. For every message space M, efficient algorithm A, every poljal Q,, efficiently computable
f:{0,1}* — {0,1}*, and every polynomial § Jko, Vk > ko andvh: {0,1}* — {0,1}*,

PIA(LE PL(sm). E(MRR)) = hism)] < PrALY R f(sm), E(:PR) = hism)] + 5o
2

where each probability is taken over#a M(1¥), m « M(1X), (P,S) < G(1¥), s« {0,1}%®, and R.

Proof of Claim. Suppose not. Then there is a polynon@l, a message spadé, and an algorithmA, a
polynomialQ; and a functionf so thatvkg, 3k > ko,

k : . K ' B
s,fTIT,I%P [A(l 3 f(S, m)’ E(m’ P R)) o h(S, m)] > s,m,lr?{R,P [A(l P f(S, m)’ E(rd’ P, R)) - h(sa m) +€

wheree = g(k) = Q%(IO'
For a pair of messages, M, definePyy = Prsrp[A(1X,P, f(s,m), E(m; P,R)) = h(s,m)] and Py, =

)
Expny [Pmm]. Observe, then, thdrsg p[A(1%, P, f(s,m),E(m;P,R)) = h(s,m)] = Pmm, S0 that

Pr o AP (s M) E(MPR) =h(sm)| = Exp[Pnm. and
k . B B
S,m,ll':':f':R7P [A(l } P7 f (Sa m)? E(my P, R)) — h(S, m):| = Er)T(]p[Pm,*]

In particular,Expp[Pmm| — Expm[Pm+] > €.
Now, we build an algorithn which, given randommy andmy, can distinguish an encryption afy
from one ofm,. (See Definition 3.) The algorithf proceeds as follows: givamy,my anda = E(m;; P, R),

e | is chosen uniformly i{0,1}, sis chosen uniformly if0,1}"(", andR is chosen uniformly among
strings of appropriate lengtte(m;; P,R) and f (s, mg) are computed.

o A(1 f(s,mp),E(m;;P,R)) is simulated, resulting in the valug. A(1X, f(s,mp),a) is simulated, re-
sulting in the valuev.

e If v=vj, outputj; otherwise output % j.

Letl,={A(1K P, f(s,m),E(m;P,R)) |m,m € {0,1}",s€ {0,112 R} be values that algorithrA can
take, when restricted to those inputs possible winar=n. Then, forv € I, let

ﬁ#,m(v) = Eé[A(lkv P, f(57 rrf), E(m; P, R)) = V]v

)



S0 thatPy m = Exps[D5y ,(h(s,m))]. Now, for a particular paimg, my,

1 1
Pr[F (mo,my,a) =i] =5 5 Prli=i"Aj=j7-PrF(mo,my,a) = [i=ij=]]
i"=0j=0
1
:Eép[Z(ZD,SnOmO() +2(1- ZD Diro.m HZD

2L B0 Dl (5 10) ~ Dy (s 0] = 5 + i(an Promy)

where inequalityé follows becaus&xp[X]? never exceedBxp[X?] for any random variable. Then

1 1
m'irrnl[':(mo Mg, ) =i] > Exp [§+ 7 (Promo — Prroymy )

Mo, My

1 1 1 1
>+ = (Exp [Promo — Promi))? = 5 + > (Exp[Prng,mo — EXp[Prromy 1)

1 1 1 1 1 €2
:E 2 (E%P[Prrb mo — Prng,«])% = E 2 (EXP[Pm m] — Eép[Pm,*])z > > + 7T

Hence(E, D) does not offer indistinguishability of encryptions.

As mentioned above, the Lemma follows immediately from thedr@.

3 Security for Uniformly Distributed Message Spaces

We begin by constructing an encryption scheme offering riigcin the case when the adversary has no a
priori knowledge concerning the message (i.e., the messaaye is uniform).

As mentioned in the introduction, under the assumptionttiexe exists a one-way permutatibrthere
is a semantically secure public-key cryptosyst@n= (G, E,D), which encrypts a messagec {0,1}"
with n/s¢ (k) applications of the functiorf.

Theorem 3. Let f be a one-way trapdoor permutation, ang € (G,E,D) the associated semantically
secure encryption scheme. Define a new schgeE,, D), where G = G, and E,(m;P,(R,s)) = (m&®
One(S),E(s P,R)) wherelm| = n and s is chosen randomly in the domairogt. Decryption is immediate.
Then fore = k=), where k is the security parameter of the system, this etioryscheme offer8-entropic
security. Furthermore, the scheme require@\(X) logk/ss (k)) applications of f, where w is any function
tending to infinity. The scheme hasgrbgkloglogklogloglogk) overhead.

Proof. For simplicity, we treah as a function with rangé=+1} rather than{0,1}. From Lemma 1, we have
for every message spabkand algorithmA, there is an algorithr®’ such that for every polynomid, there
exists an integekg such thatrk > kg andvh: M — {—1,1}

1

Pr{A(1*,Pma o(s),E(s;P,R)) = h(m)] < Pr[B'(1,ma o(s)) = h(m)] + 5

We useB' to construct an algorithnB, which can predich(m) nearly as well as cah, even without
witnessingE,(m). The algorithmB, on input ¥, proceeds as follows:

e Selectm € {0,1}" randomly.



e ReturnB'(1¢,m) =v.
Observe thaPrm[B(1¥) = h(m)] = Prmm[B'(1,m) = h(m)].
Claim 2. Let Gy, be the random variabl&xpg[h(me o(s))] — Expyy [h(Y)]; then

1
<3 Exp[|Gml] .
m

Pr [B/(lk’ ) = h(m)] —Pr [B’(lk,m) =h(me G(S))}

m7

Proof. Letc(m,n7) be the random variable so thein, m') = 1 whenB' (1%, m) = h(n) and 0 ifB'(1¢,m) #

h(m'). As h(n) takes values in the s¢t-1}, we can rewritee(m,ni) = 1 + w and

Pr [B’(lk, m) = h(m)] ~Pr [B’(lk,m) — h(ma o(s))} ‘

_ Er)r(1p [B’(lTkm) <Exp [h(m')] — E>S<p h(ma 0(8))])] ‘

m

<380 ||Exe [n)] — Explma o(9)]] | = FExplical

We apply the second moment method to confisgh,[|Gr|]. Observe thaExpy,[h(m)] = h, S0

= 5 haExp[Xa(M@0(9)] = 5 haXa(m ) Exp [Xa(0(9))]

Gm—Exp[Z haXa(M® O(S x
a#£d aZD

S oD

ThenExp, [Gm] = Zqﬂ)ﬁa Exps[Xa(0(S))] Expm [Xa(M)] = 0. Now, the random variabldeai,xq(mea o(9))
andﬁBxB(m@ o(s)) are pairwise independent so that

Var G| =Var z@ﬂaxq(m) Exp[Xa(0(9))]
o7
= 3 & Explta(0(9)Varxa(m)] < &° 3 T
aZ0 S a0

by the Plancherel equality (see Section 2.3) and the fatMidxq(m)] = 1. Now, applying Chebyshev’s
inequality, we havePrm[|Gm| > A] < €222,
Selectingh = €3, we have

Exp[|Gm|] = Pr[|Gm| > A]- Max|Gu| + Pr[|Gm| < A]-A <
m m m m

Hence
Pr(B'(1, maa(s)) = h(m)] - Pr(B(1) = h(m)]| < gs%

andPr[A(1*,m® o(s), E(s P.R)) = h(m)] < Pr[B(1¥) = h(m)] + 555 + 3e3. Ase = k=1, this completes
the proof. The bound ofs| (and hence the number of applications of the underlyingwag-permutation
which are required and the running time) follows from Set&ol. O



4 Security for Entropically Rich Message Spaces

For convenience, in this section we will assume that the aggsspace i% 1 for a (known) primep. Now,
we select an artificial bijectioh : Z 1 — Po(Fp), so that

L(z):[(i)],forogzgp—l,and L(p):[(?)].

L can be computed in linear timé;" can be computed by single inversion modploHaving fixed this
bijection, we will treat the functions PGIIF,), described in Section 2.2, as if they actBp, 1.

Theorem 4. Let f be a one-way trapdoor permutation, ang € (G,E,D) the associated semantically
secure encryption scheme. Define a new sch@pgEy, D), where G = G, and B(m; P, (R, 2)) = (@(m) +
z,0,E(z P,R)) where me Zp. 1, zis chosen randomly inSZ 1, and@is chosen randomly from PG(IFp,).
(Here + is modulo p+ 1 and S is an arbitrary, but fixed subset of s@%® for example, we may take
S=1{0,1,...,2°5—1}.) Decryption is immediate. Then for=s/ + w(logk), where k is the security pa-
rameter of the system, this encryption scheme offenstropic security. Furthermore, the scheme can be
realized with no more than/s¢ (k) applications of f. Aside from these evaluations (inversjaof f, en-
cryption (decryption) has (log?nlog logn) overhead.

Proof. From Lemma 1, we know that for every message spaand algorithmA, there is a algorithni’
such that for every polynomid?, there exists an integép such thatvk > ko andvh: M — {0,1}

Pr[A(1%,P,(m) + 2, @ E(z P,R)) = h(m)] < Pr[B'(1¥,¢(m) + 2 @) = h(m)]+%_

We useB' to construct an algorithnB, which can predich(m) (nearly) as well as caA, even without
witnessingEp(m). The algorithmB, on input ¥, proceeds as follows:

¢ Selectm’ according taM, selectp € PGL,(Fp), and selecz at random irS.

e ReturnB'(1¥,@(m) +z,¢) = .

Observe thaPrm[B(1¥) = h(m)] = Prmnr o2[B' (1%, (M) + z,¢) = h(m)].
We begin by recording an analogue of Claim 2 for this crypstesyn which allows us to remove the
dependence on the behaviorBSf the proof is placed in an appendix.

Claim 3. For any function h and all algorithms’B

Pr[B/(25,9(m) +2,6) = h(m)| - Pr [B/(1,@(m)+2,) =h(m)] ‘ <

mm @,z m,,z

1
—Ex
2 m,cp!oz [

Now, for an elementp € S letS,, = {z—z mod (p+1) | z€ S}. Let

Exp[h(n)] — Exp [h(m) | @(m!) +Z = o(m) + 7]

m .z

G = Explh(m)] - Exp [h(m)|@(n) +Z = p(m)] .
m m,ZeS,

From above, it sufficies to show that for agy € S Expm(p[|GZ°(p|] is small. Now fixzg € S For a
fixed messagen € Zp1 and an elemeny € Zp 1, let By = {9 € PGLy(Fp) | @(mo) = w}. Let pm =
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Prm[m=m]. For an elementvy € Zp.1 and a permutationp € By, let A}, = S meg 1(wo+S,) Pm and
Bﬁo = Zmewl(wo+sz()) pm- h(m); then

Bl _ Exp[h(m) [ o(m) € Wo + Sy ]. )
Al m

(Herewp+ S;, denotes the sdtwg+zmod (p+1)|z€ S, }.)

Let X, be the random variable taking the valpigif @(m) € wo+ S, and 0 otherwise. TheBnepmXm =

Al andZ e 1(1) Xm = B, SO that

-1 -1
EXp [A\(}?lo] = EXp [pﬁb+zm7énbxm] = pnb—i-Zm;énb(Pr[(p(m) c Wo—l—SzO] . pm) = Pmy <1_ o > + I
(pefPWo (pEwao

HenceZst < Expges, [A] < Py (1= Z52) + 25+ < 27"+ Py Similarly, letq = Pre[h(m) = 1], then

25-1 25-1 25-1
9 —n = Exp [BR,] < d- on + Py <1—T>-
0By

Recalling that the distribution ah has minimum entropy — /4,

Expgea, BY 2t
&[([)0] — Explh(m)] < 55—,
EXp(pefPWO[AWo] meM -1
and similarly,
Ex B\(f, L(2S _
. At )
g el o 2 20, 1
Hence,

Exp BY
Expyern, [Bio] Exp[h(m)]| < 2. 275+,

EXp(peLPWO [A\(/’i/o] meM

We wish to insure tha, andBy, are close to their expected vales. In preparation for apgl@iheby-
shev’s inequality, we compute their variances. We have

m\e/r?’r [AW] = Var[ZmemXm] = Zmymo(Var[Xm]) + Zmyszmpme Cov[Xmy , Ximy -

Wo

NOW, Zmzme VarXm] < Emzm Exp[X2] < 2-™S. Sew(p?,) < 2725t and these variables are pairwise
negatively correlated (so th@&bv[Xm,, Xm,] < 0 for my # mp, both distinct fronmy). Then Vargeg, [AR] <

2-2nistl Similarly, Varges,, [BW,] < q-22"st¢_ Observe that 3-wise independence is required here.
By Chebyshev’s inequality we have

Var[AR] 2
P P —Exp[AY ]| > 8,] < 0
(PE’-’SWO HA\NO Xp[ o” = a] = 5% < 22n—(_6§’

(2)

and

Var[B\(l’ilo] q i 25
(pEPr_,fWO HB\(/E/O — EXP[B\(/?/OH > 6b] < 5% 22—, 6t2).

(3)

11



When both|AR, — Expge,, (AR
tion (1),

< 84 and‘B\‘,’Co — Expges,, [Bio]

< &y, we have, in particular, from equa-

EXP(pefPWO [B\(/’ilo]

ooy PSP € o S,]| <

(assuming thad,, &, < 1/2). Whend, = & = this is the statement that

2FI Sy

Explh(m)o(m) € o + Sy] — Explh(m]| <5122 >
For thisz, we say thafg,w) is ang-concealed paiif |Expy,[h(m)|@(m) € w+ S;;] — Expy[h(M)]] < €.
From inequalities (2) and (3), for any fixeg ande; > 0 we see that

2.28 25
22n—L . 5% < 8% .os—t"

Pr {((p, Wp) iS not an(e; + 2-2*S+Z)—concealed pa}rg
PRy,

Now, for any fixed fixedny ande > 225+,

Pr[(@,¢(mp)) is ane-concealed pajr= %, (Pr[(pe P ] - PQE [(¢,w;) is ane-concealed pa]ib
®

Wi

25
>1-— .
=T 5 _4gt 4.2 51

For a random paifm, @), we will (lower) bound the probability thdtp, ¢(m)) is ane-concealed pair fozy,
since

ZO - _ _ . _
Efqﬁ’ HGmcpH < Srlr::,(rp[((p’ @(m)) is e-concealed (1 rE:[p[(cp, ©(m)) is e-concealef).

For specifionand random choice af, we defineYy, to be the random variable taking the value (gif(m))
is ane-concealed pair, and 0 otherwise. Now,

Pr[(¢,@(m)) is ane-concealed pajr= Exp[Ym] = Zm Pm - Exp[Ym]
me ¢

= Pr[(@,(m)) is ane-concealed pajr
®

25
>1- ,
T 2250 4e+4.2-sH
SO that for alle > 2. 275+ Expmq,(|G o) <€(1-0)+d<e+d, whered = WZMW Selecte =

4.273" . Ass=(+w(logk), we can be guaranteed treat k%) and so for alkz, Expy HG H =k @),

Hence Expp, g, HGﬁwH = k1), which, considering the above claim, completes the prooé Bdund on

the number of applications of the underlying one-way peation follows immediately from the definition
of s. O
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A Proof of Claim 3

Proof. Proof of Claim 3

P [ a(m 2.0 =) - Pr (Bt otm +2.0) = hm)]|
e [l+B’(1k,(p(m)+Z,(P)h(rd) B 1+B’(1k,(p(m)+z,(p)h(m)]
B m7n)1(7l(3p,z 2 2
2| B [B(a 0tm) + 2 h()] — Exp [B/(2%,0(m) + 2 @)
mm @,z m,,z
1 !
3 |Ere [Bt5etm +20) (Esplnt))—him) )| ‘
! Ex Prio(m) +z=¢€]-B'(1¥, e, ¢) Ex [(Ex [h(rrf)]—h(m))‘(p(m)Jrz:e]
2 (pp eeZZpHmz T m,? mp
<3800 |3 protm) + 2= ¢l [Explh(m] - Explh(m) [ a(m) + 2|

Observe now that for any functiorfs: Zp1 — R andg: Zp1 — Zp,1,
> Prigx) = €e[Exp[f(g(x)) | 9(x) = € = Exp[f(g(x))].
e

Then the above is equal to

Exp[h(m)] — Exp [h(m) |@(n) + Z = @(m) + Z]

m .,z

1
= Exp
2omz [
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