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Abstract

We present a new family of public-key encryption schemes which combine modest computational de-
mands with provable security guarantees under only generalassumptions. The schemes may be realized
with any one-way trapdoor permutation, and provide a notionof security corresponding to semantic secu-
rity under the condition that the message space has sufficient entropy. Furthermore, these schemes can be
implemented with very few applications of the underlying one-way permutation: schemes which provide
security for message spaces inf0;1gn with minimum entropyn� ` can be realized with̀+w(k) logk
applications of the underlying one-way trapdoor permutation. Herek is the security parameter andw(k)
is any function which tends to infinity. In comparison, extant systems offering full semantic security
require roughlyn applications of the underlying one-way trapdoor permutation. Finally, we give a sim-
plified proof of a fundamental “elision lemma” of Goldwasserand Micali.

1 Introduction

Given the current state of affairs in complexity theory, thestudy of encryption has adopted a somewhat ax-
iomatic approach. A primary goal of the study is understand the basic relationship between the (complexity-
theoretic)assumptionsupon which encryption schemes can based, and theefficiencyandprivacyguarantees
offered by such schemes. Naturally, the most desirable encryption scheme is one which makes the most
modest assumptions and offers efficient encryption with strong privacy guarantees.

A variety of complexity-theoretic assumptions have been studied, which range from general assump-
tions, like the existence of a one-way function, to strong assumptions about specific (often number-theoretic)
functions. In this article, we will focus on the developmentof asymmetric encryption schemes under gen-
eral (i.e., weak) assumptions. In particular, we will assume the existence of a one-way trapdoor permutation.
(The constructions work under weaker assumptions, for example the existence of a one-way function, though
in this case the target schemes must be private-key.)

A traditionally accepted notion of security for encryptionschemes is that ofsemantic security[13],
though a number of stronger (and important) notions exist (see, e.g., [4, 9, 22, 24]). A system with semantic
security guarantees that observation ofE(m), the encryption of a messagem, offers essentially no advantage
to a bounded adversary in predictingany piece of partial information about the message m. A piece of
partial information may be some specific bit ofm, or, perhaps, a complicated function capturing some
global property ofm. Furthermore, this guarantee can be offeredregardless of the a priori distribution of
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the message m.Given a one-way trapdoor permutationf and a hard core predicate1 b for f (see e.g., [7]),
a semantically secure encryption for a messagem with n bits can be realized withn applications off . In
general, if it is possible to extractsf (k) simultaneously secure bits from a single application off to strings
with security parameterk, thenn=sf (k) evaluations off suffice. If, for example,f is taken to beRSA,
then it is known that if RSA is difficult to invert thensRSA(k) = Ω(log logk) [1, 15], so that this scheme
can be realized withO(n= log logk) applications ofRSA. The encryption schemes described below offer an
efficient analogue of semantic security for the case when theadversary’s a priori knowledge of the message
is limited.

We say that an encryption scheme offersentropically bounded securityif for all message distributions
with sufficient entropy, and all pieces of partial information h : f0;1g�!f0;1g, observation ofE(m) offers
no bounded adversary any nonnegligible advantage in prediction of h(m). If the definition is strengthened
so that it applies for all message spaces, then we exactly recover the definition of semantic security. (See
the next section for precise definitions.) We show that for message spaces with minimum entropyn� `, an
encryption scheme offering entropically bounded securitycan be realized with very few applications off ;
in particular,(`+w(k) logk)=sf (k) applications (inversions) suffice for encryption (decryption), wherek is
the security parameter,w(k) is any function that tends to infinity, andsf (k) is the number of simultaneously
secure bits which can be extracted from a single applicationof f (a one-way trapdoor permutation). When
the message space is uniform, then, this results in a system which requires onlyO(w(k) logk=sf (k)) appli-
cations of the one-way permutation, for any functionw which tends to infinity. The systems also involve a
certain amount of “overhead,” which in each case does not exceedO(npoly(logn)) time.

The above results express the complexity of encryption as a function of bothn, the message length, and
k, the security parameter. This is somewhat unusual for asymmetric schemes, which are typically used to
encrypt a key for a private-key scheme (typically of lengthk), as private-key schemes are generally (much)
more efficient than a public-key schemes. Under the assumptions we consider, however, there is no (known)
benefit to be had by applying a private-key system after key exchange, so we keep everything “under one
hood”. (Alternatively, the results which follow can be castin a private-key setting, as mentioned above.)

It is interesting to compare these results with known results adopting stronger assumptions. If factor-
ing is difficult, then a scheme of Blum and Goldwasser [6] based on the Rabin functions (x 7! x2 mod pq)
encrypt (in a semantically secure fashion) ann-bit message in timeO(nkpoly(logk)). In comparison, the
above scheme offers a weaker guarantee, analogous to semantic security when the message space hasn� `

min entropy, in timeO([`+w(k) logk℄kpoly(logk)+npoly(logn)), wherew is any function which tends
to infinity. Under assumptions of a somewhat stronger flavor,Cramer and Shoup [8] show that a constant
number of exponentiations over a group suffice to encrypt a message of lengthk, in such a way that the re-
sulting system is secure against even (adaptive) chosen ciphertext attack. In particular, they assume that the
Diffie-Hellman decision problem is hard (i.e., that the El Gamal scheme [10] is semantically secure). Pre-
vious work has also constructed efficient, secure encryption schemes (with quite strong notions of security)
under the strong assumption of availability of an ideal hashfunction [5].

The two main theorems in the article, Theorem 3 and Theorem 4,are both instantiations of common
paradigms in cryptography. The first is an information-theoretic variant on the standard practice of encrypt-
ing a short seed which is then used for a pseudorandom generator (in our case, this will be anε-biased
space). The second is a variant of the “simple embedding schemes” often used in practice, where a message
is encrypted by applying a one-way permutation after a suitable (bijective) hash function. The scheme of
Bellare and Rogaway [5] is also theoretical evidence for thequality of such systems.

In Section 2 we give basic definitions, including a brief discussion ofε-biased spaces, universal hash
functions, and the Fourier analysis ofZn

2, which will be used in the main results, presented in Sections 3
1A hard-core predicate bfor a one-way functionf is a efficiently computable Boolean function so thatb(x) is difficult to predict

from f (x).
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and 4.

2 Definitions

For basic definitions of one-way trapdoor permutations and hard-core predicates we refer the reader to,
e.g., [26, 19]. For a one-way permutationf , we shall letsf (k) denote a lower bound on the number of
simultaneously secure hard-core predicates forf (see, e.g., [11]).

Definition 1. A public key encryption schemeis a triple (G;E;D), where

� G is an efficient probabilistic key generation algorithm, which, on input1k, produces a pair of keys,
(P;S); here P denotes the ”public key” and S the “secret key.”

� E is an efficiently computable encryption algorithm which, given a message m and public key P,
outputs c, an encryption of the message m using the key P. We will considerprobabilisticencryption
schemes, where E may also depend on a sequence of random bits,R. The encryption of m with public
key P and random string R is denoted E(m;P;R).

� D is an efficiently computable decryption algorithm which, given a ciphertext c and secret key S,
produces a message m for which E(m;P;R) = c for some R.

As mentioned in introduction,semantic securityis a standard notion of privacy for encryption schemes.

Definition 2. We say that an encryption scheme(G;E;D) possessessemantic securityif for every message
generator M and every probabilistic polynomial-time Turing machine A, there is a probabilistic polynomial-
time Turing machine B, such that for every polynomial Q, there exists an integer k0 such that8k > k0 and
8h : f0;1g�!f0;1g�, Pr[A(1k

;P;E(m;P;R)) = h(m)℄� Pr[B(1k
) = h(m)℄+

1
Q(k) where the first probability

is taken over m M(1k
), (P;S) G(1k

), R (the coin tosses of E), and coin tosses of A. The second
probability is taken over all choices of m M(1k

) and coin tosses of B.

We borrow the� � notation from [14]: whenx is a variable andSa random variable,x Sdenotes
the assignment ofx according toS. If S is simply a set, we abuse the notation by allowingS to represent
the random variable uniform onS. In the sequel, we will use the term “algorithm” to refer to a probabilistic
polynomial time Turing machine. Furthermore, “message generators,” as in the above definition, are algo-
rithms which, for eachk 2 N, produce a output in the setf0;1gn (determined by the random coins ofM),
wheren is polynomially bounded ink. Whenever a probability is expressed, as in the above definitions,
it is understood that the random coins of any algorithm appearing inside the brackets are to be included in
the probability space. When the underlying probability space of a variablex is clear from context, we may
simply writePrx[P(x)℄, or elidex altogether.

Definition 3. We say that an encryption scheme possessesindistinguishability of encryptionsif for every
message generator M, every algorithm A, and for every polynomial Q, there exists an integer k0 such that
8k > k0, Pr

�

A(1k
;P;m0;m1;E(mi;P;R)) = i

�

<

1
2 +

1
Q(k) , this probability being taken over m0 M(1k

),

m1 M(1k
), (P;S) G(1k

), i f0;1g, and selection of R.

Theorem 1. An encryption scheme is semantically secure if and only if itoffers indistinguishability of
encryptions.

The reverse implication was proven in [13]. The forward implication appears in [20, 12]. We shall
require a strengthened version of the reverse implication,which we refer to as an “elision” lemma. This
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strengthened version, discussed in Section 2.4, was originally proved in [12]. We give a streamlined proof
of this result, which avoids the sampling present in existing proofs. One consequence of this equivalence is
that if the piece of partial informationh in the definition of semantic security is restricted to be a Boolean
function, the notion of security is unchanged.

A random variablem taking values inf0;1gn hasminimum entropy n� ` when8mo 2 f0;1gn, Pr[m=

mo℄� 2�n+`. A message generatorM, which produces messages of lengthn= n(k) given 1k, is said to have
minimum entropyn� ` when the random variableM(1k

) possesses this property.

Definition 4. We say that an encryption system possesses`(k)-entropic securityif for every message gener-
ator M with minimum entropy n� `(k), and every algorithm A, there is an algorithm B, such that forevery
polynomial Q, there exists an integer k0 such that8k> k0 and8h : f0;1g�!f0;1g,

Pr[A(1k
;P;E(m;P;R)) = h(m)℄� Pr[B(1k

) = h(m)℄+

1
Q(k)

where the first probability is taken over m M(1k
), (P;S) G(1k

), and R. The second probability is taken
over m M(1k

).

Observe that a semantically secure encryption scheme possessesp(k)-entropic security for every poly-
nomial p. We will construct two encryption schemes,(Gu;Eu;Du) and(Gb;Eb;Db), based on any one-way
trapdoor permutation, so that

� Eu possesses 0-entropic security (i.e., provides security when the message space is uniform) and
requires

O

�

w(k) log(k)
sf (k)

t f (k)+w(k)nlog1+ε k

�

time to encrypt a message, wheret f (k) is the time required to compute a single application of the
one-way permutationf to a string with security parameterk, sf (k) is the number of simultaneously
secure bits which can be extracted from an application off to strings with security parameterk,
w(k) is any function which tends to infinity ink, andε > 0. In particular, the time cannot exceed
O((n+ t f (k)) log2k). (Thew(k)nlog1+ε k term may in fact be replaced bynlogk log logk log log logk.)

� Eb possesses̀-entropic security (i.e., provides security when the message space has minimum entropy
n� `) and requires

O

�

w(k) logk+ `

sf (k)
t f (k)+nlog2 nlog logn

�

time to encrypt a message, wheret f (k), sf , andw are as above.

For simplicity we will focus on the time taken toencrypt in these schemes, often simply focusing our
attention on the number of applications of the underlying one-way permutation required. In these cases, de-
cryption involves inverting the one-way permutation on a like number of elements (and the same “overhead”
terms:O(nlognlog logn) in the above case).

Our constructions make use ofε-biased sample spaces and universal hash functions, definedbelow.

2.1 ε-biased Sample Spaces

Definition 5. A sample space S� f0;1gn is calledε-biasedif for all nonemptyα� [n℄ = f1; : : : ;ng,
�

�

�

�

�

Exp

s2S

"

∏
a2α

(�1)sa

#

�

�

�

�

�

� ε:
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Small probability spaces with these properties were initially constructed by Naor and Naor [21] and
Peralta [23]. We will use a construction, due to Alon, Goldreich, Håstad and Peralta [2], which gives an
ε-biased sample space inf0;1gn of size about(n

ε )
2. The sample space is given as the image of a certain

functionσn;m : F2m
�F2m

!f0;1gn. (HereF2n denotes the finite field with 2n elements.) To defineσ, let bin :
F2m
! f0;1gm be a bijection satisfying bin(0) = 0m and bin(x+y) = bin(x)�bin(y), whereα�β denotes

the componentwise exclusive or ofα andβ. Thenσ(x;y) = r = (r0; : : : ; rn�1), wherer i = hbin(xi
);bin(y)i2,

the inner product, modulo two, ofxi andy. The size of the sample space is 22m. Let Sn;m� f0;1gn be the
collection of points so defined. They show that

Theorem 2 ([2]). Sn;m = im σm;n is n�1
2m -biased.

Observe that whenm=

�

lognε�1
�

, n�1
2m � ε. As we will be constructing elements ofSm;n during the

encryption (and decryption) phase of our encryption scheme, we analyze the complexity of computing the
function above. First, we need to find an irreducible polynomial p of degreemover the finite fieldF2. As the
degree of the polynomial will correspond to the block lengthof the encryption scheme, we can be somewhat
flexible concerning the degree of the irreducible polynomial and use an explicit construction (rather than
rely on an algorithm2):

Fact 1. For each c2 N, the polynomial pc(x) = x2m
+xm

+1, where m= 3c, is irreducible overF2.

(See [18, Exercise 3.96].) Computation ofσ = σm;n for a pair (x;y) is performed on a component
by component basis: givenxi , computation ofxi+1 requires a single multiplication inF2m �

=

F2[x℄=(pc).
Using fast polynomial multiplication, computing this product takesO(mlogmlog logm) time (see [28], or
the discussion in [3, p. 232]). Aspc is sparse (it has only 3 nonzero terms), reducing this resultmod-
ulo pc requiresO(m) time. Hence computation ofσ(x;y) requiresO(nmlogmlog logm)) time. In or-
der for S= im σ to be ε-biased, we may takem= dlog(n=ε)e, in which case the above running time is
O(nlog(n=ε) log log(n=ε) log log log(n=ε)). To simplify notation, we letσn;ε denoteσn;m in the sequel, for
m= dlog(n=ε)e.

2.2 k-wise Independent Permutations

A family of permutationsP � f f : X! Xg is a family ofk-wise independent permutations[33] if for all
distincts1; : : : ;sk 2 X and all distinctt1; : : : ; tk 2 X,

Pr

φ2P

[8i;φ(si) = ti ℄ =
t�1

∏
i=0

1
jXj� i

:

We will use a family of 3-wise independent permutations, described below. See Rees [25] for a more detailed
description.

Let V be a two-dimensional vector space overF, a finite field. For two non-zero vectors~v and ~w
in this space, we write~v� ~w when~v = c~w for somec 2 F (so that the two vectors span the same one-
dimensional subspace). This is an equivalence relation; wewrite [~v℄ for the equivalence class containing
~v. Projective 2-space overF is thenP2(F) = f[~v℄ j~v 6=~0g. We let GL2(F) denote the set of non-singular
2� 2 matrices overF, and PGL2(F) = GL2(F)=fcIjc 2 Fg, whereI is the identity matrix. An element
φ of PGL2(F) acts onP2(F) in a natural (and well-defined) way, mapping[~v℄ to [φ(~v)℄. It is not difficult
to show that for any distinct[~u1℄; [~u2℄; [~u2℄ 2 P2(F) and any distinct[~v1℄; [~v2℄; [~v2℄ 2 P2(F), there is in fact a
uniqueφ 2 PGL2(F) so thatφ([~ui ℄) = [~vi ℄ for eachi. In particular, PGL2(F) is a 3-wise independent family

2Irreducible polynomials overF2 of degreem can be found deterministically inm4+ε time for anyε > 0 [30]; a randomized
algorithm is known [31] which finds such a polynomial time in expectedm2 logO(1)m time.
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of permutations. As multiplication and inversion in a finitefield Fp, for a primep, may be accomplished
in time O(logp(log logp)2 log log logp) time [29, 27, 16], evaluation of an elementφ 2 PGL2(Fp) also has
this complexity.

2.3 Fourier Analysis of Boolean Functions

Let L(Zn
2) = f f : Zn

2! Rg denote the set of real valued functions onZn
2 = f0;1g

n. Though our interest
shall be in Boolean functions, it will be temporarily convenient to consider this richer space.L(Zn

2) is a
vector space overR of dimension 2n, and has a natural inner product: forf ;g 2 L(Zn

2), defineh f ;gi =
2�n ∑x2f0;1gn f (x)g(x). For a subsetα � f1; : : : ;ng, define the functionχα : f0;1gn

! R so thatχα(x) =
∏a2α(�1)xa. These functionsχα are thecharactersofZn

2= f0;1g
n. Among their many wonderful properties

is the fact thatthe characters form an orthonormal basis for L(Z

n
2). To see this, observe that8α � [n℄,

∑x2f0;1gn χα(x) = 2n when α =

/0, and 0 otherwise. Furthermore, forα;β � [n℄, χα(x)χβ(x) = χα�β(x),
whereα� β denotes the symmetric difference ofα andβ, so that




χα;χβ
�

= 1 whenα = β, and 0 otherwise.
Considering that there are 2n characters, pairwise orthogonal, they spanL(Zn

2), as promised. Any function
f : f0;1gn

! R may then be written in terms of this basis:

f = ∑
α�[n℄

bfαχα

wherebfα = h f ;χαi is the projection off ontoχα. These coefficientsbfα, α� [n℄, are theFourier coefficients
of f , and, as we have above observed, uniquely determine the function f .

Given the above, it is easy to establish thePlancherelequality:

Proposition 1. Let f 2 L(Zn
2). Thenk fk2

2 = ∑α bf 2
α, wherek fk2

2 = h f ; f i = 1
2n ∑x2 f0;1gn f (x)2.

As always,bf /0 = Exp[ f ℄ and, when the range off is f�1g, ∑α bf 2
α = k fk22 = 1: See [32] for an excellent

discussions of discrete Fourier analysis.

2.4 An Elision Lemma.

We will use an “elision” lemma for semantically secure encryption schemes, applied in the proofs of Sec-
tions 3 and 4. We use the termelision lemmato refer to an assertion that a cryptosystem offering indistin-
guishability of encryptions possesses the property that any efficient computation performed with observation
of E(m), an encryption, (and, perhaps, some related information) may as well have been performed without
it.

The following lemma, which generalizes the original elision lemma of [13], is due to [12]. We give
a streamlined proof which improves upon previous proofs in the sense that itrequires no samplingon the
part of the constructed algorithm (F, in the proof below). It gives an error bound which depends only on a
natural 2-norm of the message distribution.

Lemma 1. Let (G;E;D) denote an encryption scheme possessing indistinguishability of encryptions. Then
for every message space M and algorithm A, there is an algorithm B so that for all polynomials Q1, all
efficiently computable f: f0;1g� ! f0;1g�, and every polynomial Q2, 9k0;8k > k0 and 8h : f0;1g� !
f0;1g�,

Pr[A(1k
;P; f (s;m);E(m;P;R)) = h(s;m)℄� Pr[B(1k

; f (s;m)) = h(s;m)℄+

1
Q2(k)

:
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The first probability is taken overm M(1k
), (P;S) G(1k

), s f0;1gQ1(k), andR. The second
probability is taken overm M(1k

) ands f0;1gP(k).

Proof. The algorithmB usesA as a black box: given 1k and f (s;m), B proceeds as follows:

1. Selectm0

 M(1k
), (P;S) G(1k

), and choose a random stringRof appropriate length,

2. ReturnA(1k
;P; f (s;m);E(m0;P;R)) = v.

Observe thatPr[B(1k
; f (s;m))=h(s;m)℄=Pr[A(1k

;P; f (s;m);E(m0;P;R))=h(s;m)℄: In this case, the lemma
is a consequence of the following claim:

Claim 1. For every message space M, efficient algorithm A, every polynomial Q1, efficiently computable
f : f0;1g�!f0;1g�, and every polynomial Q2, 9k0;8k> k0 and8h : f0;1g�!f0;1g�,

Pr[A(1k
;P; f (s;m);E(m;P;R)) = h(s;m)℄� Pr[A(1k

;P; f (s;m);E(m0;P;R)) = h(s;m)℄+

1
Q2(k)

;

where each probability is taken over m M(1k
), m0

 M(1k
), (P;S) G(1k

), s f0;1gQ1(k), and R.

Proof of Claim. Suppose not. Then there is a polynomialQ2, a message spaceM, and an algorithmA, a
polynomialQ1 and a functionf so that8k0;9k> k0,

Pr

s;m;R;P

h

A(1k
;P; f (s;m);E(m;P;R)) = h(s;m)

i

> Pr

s;m;m0

;R;P

h

A(1k
;P; f (s;m);E(m0;P;R)) = h(s;m)

i

+ ε

whereε = ε(k) = 1
Q2(k)

.

For a pair of messagesm;m0, definePm;m0

= Prs;R;P[A(1k
;P; f (s;m);E(m0;P;R)) = h(s;m)℄ andPm;�

=

Expm0

[Pm;m0

℄. Observe, then, thatPrs;R;P[A(1k
;P; f (s;m);E(m;P;R)) = h(s;m)℄ = Pm;m, so that

Pr

s;m;R;P

h

A(1k
;P; f (s;m);E(m;P;R)) = h(s;m)

i

=Exp

m
[Pm;m℄;and

Pr

s;m;m0

;R;P

h

A(1k
;P; f (s;m);E(m0;P;R)) = h(s;m)

i

=Exp

m
[Pm;�

℄:

In particular,Expm[Pm;m℄�Expm[Pm;�

℄> ε.
Now, we build an algorithmF which, given randomm0 andm1, can distinguish an encryption ofm0

from one ofm1. (See Definition 3.) The algorithmF proceeds as follows: givenm0;m1 andα = E(mi;P;R),

� j is chosen uniformly inf0;1g, s is chosen uniformly inf0;1gP(n), andR is chosen uniformly among
strings of appropriate length.E(mj ;P;R) and f (s;m0) are computed.

� A(1k
; f (s;m0);E(mj ;P;R)) is simulated, resulting in the valuev j . A(1k

; f (s;m0);α) is simulated, re-
sulting in the valuev.

� If v= v j , output j; otherwise output 1� j.

Let In = fA(1k
;P; f (s;m0

);E(m;P;R)) jm;m0

2 f0;1gn;s2 f0;1gQ1(n)
;Rg be values that algorithmA can

take, when restricted to those inputs possible whenjmj= n. Then, forv2 In, let

Ds
m0

;m(v) = Pr

R;P
[A(1k

;P; f (s;m0

);E(m;P;R)) = v℄;
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so thatPm0

;m = Exps[D
s
m0

;m(h(s;m
0

))℄. Now, for a particular pairm0;m1,

Pr[F(m0;m1;α) = i℄ =
1

∑
i0=0

1

∑
j 0=0

Pr[i = i0^ j = j 0℄ �Pr[F(m0;m1;α) = j 0 j i = i0; j = j 0℄

=Exp

s

�

1
4
(∑

v
Ds

m0;m0
(v)2

+2(1�∑
v

Ds
m0;m0

(v) �Ds
m0;m1

(v))+∑
v

Ds
m0;m1

(v)2
)

�

�

�

1
2
+

1
4
(Exp

s

�

Ds
m0;m0

(h(s;m0))�Ds
m0;m1

(h(s;m0))
�

)

2
=

1
2
+

1
4
(Pm0;m0�Pm0;m1)

2
:

where inequality
�

� follows becauseExp[X℄

2 never exceedsExp[X2
℄ for any random variable. Then

Pr

m0;m1
[F(m0;m1;α) = i℄� Exp

m0;m1

�

1
2
+

1
4
� (Pm0;m0�Pm0;m1)

2
�

�

1
2
+

1
4
� (Exp

m0;m1

[Pm0;m0�Pm0;m1℄)
2
=

1
2
+

1
4
� (Exp

m0

[Pm0;m0�Exp

m1

[Pm0;m1℄℄)
2

=

1
2
+

1
4
� (Exp

m0

[Pm0;m0�Pm0;�℄)
2
=

1
2
+

1
4
� (Exp

m
[Pm;m℄�Exp

m
[Pm;�

℄)

2
�

1
2
+

ε2

4
:

Hence(E;D) does not offer indistinguishability of encryptions.

As mentioned above, the Lemma follows immediately from the Claim.

3 Security for Uniformly Distributed Message Spaces

We begin by constructing an encryption scheme offering security in the case when the adversary has no a
priori knowledge concerning the message (i.e., the messagespace is uniform).

As mentioned in the introduction, under the assumption thatthere exists a one-way permutationf , there
is a semantically secure public-key cryptosystem,Cf = (G;E;D), which encrypts a messagem2 f0;1gn

with n=sf (k) applications of the functionf .

Theorem 3. Let f be a one-way trapdoor permutation, and Cf = (G;E;D) the associated semantically
secure encryption scheme. Define a new scheme(Gu;Eu;Du), where Gu = G, and Eu(m;P;(R;s)) = (m�
σn;ε(s);E(s;P;R)) wherejmj= n and s is chosen randomly in the domain ofσn;ε. Decryption is immediate.
Then forε = k�ω(1), where k is the security parameter of the system, this encryption scheme offers0-entropic
security. Furthermore, the scheme requires O(w(k) logk=sf (k)) applications of f , where w is any function
tending to infinity. The scheme has O(nlogk log logk log log logk) overhead.

Proof. For simplicity, we treath as a function with rangef�1g rather thanf0;1g. From Lemma 1, we have
for every message spaceM and algorithmA, there is an algorithmB0 such that for every polynomialP, there
exists an integerk0 such that8k> k0 and8h : M!f�1;1g

Pr[A(1k
;P;m�σ(s);E(s;P;R)) = h(m)℄� Pr[B0

(1k
;m�σ(s)) = h(m)℄+

1
P(k)

We useB0 to construct an algorithmB, which can predicth(m) nearly as well as canA, even without
witnessingEu(m). The algorithmB, on input 1k, proceeds as follows:

� Select m0

2 f0;1gn randomly.

8



� ReturnB0

(1k
;m0

) = v.

Observe thatPrm[B(1k
) = h(m)℄ = Prm;m0

[B0

(1k
;m0

) = h(m)℄.

Claim 2. Let Gm be the random variableExps[h(m�σ(s))℄�Expm0
[h(m0

)℄; then
�

�

�

�

Pr

m;m0

h

B0

(1k
;m0

) = h(m)

i

�Pr

m;s

h

B0

(1k
;m) = h(m�σ(s))

i

�

�

�

�

�

1
2
Exp

m
[jGmj℄ :

Proof. Let c(m;m0

) be the random variable so thatc(m;m0

) = 1 whenB0

(1k
;m) = h(m0

) and 0 ifB0

(1k
;m) 6=

h(m0

). As h(m0

) takes values in the setf�1g, we can rewritec(m;m0

) =

1
2 +

B0

(1k
;m)h(m0

)

2 and

�

�

�

�

Pr

m;m0

h

B0

(1k
;m0

) = h(m)

i

�Pr

m;s

h

B0

(1k
;m) = h(m�σ(s))

i

�

�

�

�

=

�

�

�

�

Exp

m

�

B0

(1k
;m)

2

�

Exp

m0

�

h(m0

)

�

�Exp

s
[h(m�σ(s))℄

��

�

�

�

�

�

1
2
Exp

m

�

�

�

�

�

Exp

m0

�

h(m0

)

�

�Exp

s
[h(m�σ(s))℄

�

�

�

�

�

=

1
2
Exp

m
[jGmj℄ :

We apply the second moment method to controlExpm[jGmj℄. Observe thatExpm[h(m)℄ =

bh/0, so

Gm = Exp

s

"

∑
α 6= /0

bhαχα(m�σ(s))

#

= ∑
α 6= /0

bhαExp
s

[χα(m�σ(s))℄ = ∑
α 6= /0

bhαχα(m)Exp

s
[χα(σ(s))℄

ThenExpm[Gm℄ = ∑α 6= /0bhαExps[χα(σ(s))℄Expm[χα(m)℄ = 0. Now, the random variablesbhαχα(m�σ(s))
andbhβχβ(m�σ(s)) are pairwise independent so that

Var

m
[Gm℄ =Var

"

∑
α 6= /0

bhαχα(m)Exp

s
[χα(σ(s))℄

#

= ∑
α 6= /0

bh2
αExp

s
[χα(σ(s))℄2Var[χα(m))℄� ε2 ∑

α 6= /0

bh2
α � ε2

by the Plancherel equality (see Section 2.3) and the fact that Var [χα(m)℄ = 1. Now, applying Chebyshev’s
inequality, we havePrm [jGmj> λ℄< ε2λ�2.

Selectingλ = ε 2
3 , we have

Exp

m
[jGmj℄ = Pr

m
[jGmj> λ℄ �max

m
jGmj+Pr

m
[jGmj � λ℄ �λ�

ε2

λ2 �2+(1�
ε2

λ2) �λ� 3ε
2
3
:

Hence
�

�

�

�

Pr

m;s
[B0

(1k
;m�σ(s)) = h(m)℄�Pr

m
[B(1k

) = h(m)℄

�

�

�

�

<

3
2

ε
2
3

andPr[A(1k
;m�σ(s);E(s;P;R)) = h(m)℄ � Pr[B(1k

) = h(m)℄+

1
P(k) +

3
2ε

2
3
: As ε = k�ω(1), this completes

the proof. The bound onjsj (and hence the number of applications of the underlying one-way permutation
which are required and the running time) follows from Section 2.1.
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4 Security for Entropically Rich Message Spaces

For convenience, in this section we will assume that the message space isZp+1 for a (known) primep. Now,
we select an artificial bijectionL : Zp+1! P2(Fp), so that

L(z) =

��

1
z

��

; for 0� z� p�1; and L(p) =

��

0
1

��

:

L can be computed in linear time;L�1 can be computed by single inversion modulop. Having fixed this
bijection, we will treat the functions PGL2(Fp), described in Section 2.2, as if they act onZp+1.

Theorem 4. Let f be a one-way trapdoor permutation, and Cf = (G;E;D) the associated semantically
secure encryption scheme. Define a new scheme(Gb;Eb;Db), where Gb =G, and Eb(m;P;(R;z)) = (φ(m)+

z;φ;E(z;P;R)) where m2Zp+1, z is chosen randomly in S�Zp+1, andφ is chosen randomly from PGL2(Fp).
(Here + is modulo p+ 1 and S is an arbitrary, but fixed subset of size2s, for example, we may take
S= f0;1; : : : ;2s

� 1g.) Decryption is immediate. Then for s= `+ω(logk), where k is the security pa-
rameter of the system, this encryption scheme offers`-entropic security. Furthermore, the scheme can be
realized with no more than s=sf (k) applications of f . Aside from these evaluations (inversions) of f , en-
cryption (decryption) has O(nlog2 nlog logn) overhead.

Proof. From Lemma 1, we know that for every message spaceM and algorithmA, there is a algorithmB0

such that for every polynomialP, there exists an integerk0 such that8k> k0 and8h : M!f0;1g

Pr[A(1k
;P;φ(m)+z;φ;E(z;P;R)) = h(m)℄� Pr[B0

(1k
;φ(m)+z;φ) = h(m)℄+

1
P(k)

:

We useB0 to construct an algorithmB, which can predicth(m) (nearly) as well as canA, even without
witnessingEb(m). The algorithmB, on input 1k, proceeds as follows:

� Selectm0 according toM, selectφ 2 PGL2(Fp), and selectzat random inS.

� ReturnB0

(1k
;φ(m0

)+z;φ) = v.

Observe thatPrm[B(1k
) = h(m)℄ = Prm;m0

;φ;z[B0

(1k
;φ(m0

)+z;φ) = h(m)℄.
We begin by recording an analogue of Claim 2 for this cryptosystem which allows us to remove the

dependence on the behavior ofB0; the proof is placed in an appendix.

Claim 3. For any function h and all algorithms B0,

�

�

�

�

Pr

m;m0

;φ;z

h

B0

(1k
;φ(m)+z;φ) = h(m0

)

i

� Pr

m;φ;z

h

B0

(1k
;φ(m)+z;φ) = h(m)

i

�

�

�

�

�

1
2
Exp

m;φ;z

"

�

�

�

�

�

Exp

m0

[h(m0

)℄�Exp

m0

;z0

�

h(m0

) φ(m0

)+z0 = φ(m)+z
�

�

�

�

�

�

#

Now, for an elementz0 2 S, let Sz0 = fz�z0 mod(p+1) j z2 Sg. Let

Gz0
m;φ = Exp

m0

[h(m0

)℄� Exp

m0

;z02Sz0

�

h(m0

) φ(m0

)+z0 = φ(m)

�

:

From above, it sufficies to show that for anyz0 2 S, Expm;φ[jG
z0
m;φj℄ is small. Now fix z0 2 S. For a

fixed messagem0 2 Zp+1 and an elementw 2 Zp+1, let Pw = fφ 2 PGL2(Fp) j φ(m0) = wg. Let pmi =

10



Prm[m = mi℄. For an elementw0 2 Zp+1 and a permutationφ 2 Pw0, let Aφ
w0 = ∑m2φ�1

(w0+Sz0)
pm and

Bφ
w0 = ∑m2φ�1

(w0+Sz0)
pm �h(m); then

Bφ
w0

Aφ
w0

= Exp

m
[h(m) j φ(m) 2 w0+Sz0℄ : (1)

(Herew0+Sz0 denotes the setfw0+z mod(p+1)jz2 Sz0g.)
Let Xm be the random variable taking the valuepm if φ(m) 2w0+Sz0, and 0 otherwise. ThenΣm2MXm=

Aφ
w0 andΣm2h�1

(1)Xm = Bφ
w0 so that

Exp

φ2Pw0

[Aφ
w0
℄ = Exp

φ2Pw0

[pm0 +Σm6=m0Xm℄ = pm0 +Σm6=m0(Pr[φ(m) 2w0+Sz0℄ � pm) = pm0

�

1�
2s
�1
2n

�

+

2s
�1
2n :

Hence2s
�1
2n � Expφ2Pw0

[Aφ
w0℄� pm0

�

1� 2s
�1
2n

�

+

2s
�1
2n � 2�n+s

+ pm0. Similarly, letq= Prm[h(m) = 1℄, then

q�
2s
�1
2n � Exp

φ2Pw0

[Bφ
w0
℄� q�

2s
�1
2n + pm0

�

1�
2s
�1
2n

�

:

Recalling that the distribution ofmhas minimum entropyn� `,

Expφ2Pw0
[Bφ

w0℄

Expφ2Pw0
[Aφ

w0℄

�Exp

m2M
[h(m)℄�

2`

2s
�1

;

and similarly,
Expφ2Pw0

[Bφ
w0℄

Expφ2Pw0
[Aφ

w0℄

�Exp

m2M
[h(m)℄�

q� (2s
�1)

2s
+2npm0�1

�q��2�s+`

:

Hence,
�

�

�

�

�

�

Expφ2Pw0
[Bφ

w0℄

Expφ2Pw0
[Aφ

w0℄

�Exp

m2M
[h(m)℄

�

�

�

�

�

�

� 2�2�s+`

:

We wish to insure thatAφ
w0 andBφ

w0 are close to their expected vales. In preparation for applying Cheby-
shev’s inequality, we compute their variances. We have

Var

φ2Pw0

[Aφ
w0
℄ = Var[Σm2MXm℄ = Σm6=m0(Var[Xm℄)+Σm1 6=m2 6=m0Cov[Xm1;Xm2℄:

Now, Σm6=m0Var[Xm℄ � Σm6=m0Exp[X
2
m℄ � 2�n+s

� Σm2M(p2
m) � 2�2n+s+`, and these variables are pairwise

negatively correlated (so thatCov[Xm1;Xm2℄< 0 for m1 6= m2, both distinct fromm0). Then,Varφ2Pw0
[Aφ

w0℄<

2�2n+s+`. Similarly,Varφ2Pw0
[Bφ

w0℄< q�2�2n+s+`. Observe that 3-wise independence is required here.
By Chebyshev’s inequality we have

Pr

φ2Pw0

�

�

�Aφ
w0
�Exp[Aφ

w0
℄

�

�

� δa
�

�

Var[Aφ
w0℄

δ2
a

<

2s

22n�`

�δ2
a
; (2)

and

Pr

φ2Pw0

�

�

�Bφ
w0
�Exp[Bφ

w0
℄

�

�

� δb
�

�

Var[Bφ
w0℄

δ2
b

<

q�2s

22n�`

�δ2
b

: (3)
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When both
�

�

�

Aφ
w0�Expφ2Pw0

[Aφ
w0℄

�

�

�

� δa and
�

�

�

Bφ
w0�Expφ2Pw0

[Bφ
w0℄

�

�

�

� δb, we have, in particular, from equa-

tion (1),
�

�

�

�

�

�

Expφ2Pw0
[Bφ

w0℄

Expφ2Pw0
[Aφ

w0℄

�Exp

m
[h(m)jφ(m) 2 w0+Sz0℄

�

�

�

�

�

�

�

2(δa+δb)

Expφ2Pw0
[Aφ

w0℄

� 2(δa+δb) �2
n�s

;

(assuming thatδa;δb < 1=2). Whenδa = δb =
ε1

4�2n�s , this is the statement that
�

�

�

�

Exp

m
[h(m)jφ(m) 2w0+Sz0℄�Exp

m
[h(m)℄

�

�

�

�

< ε1+2�2�s+`

For thisz0, we say that(φ;w) is anε-concealed pairif jExpm[h(m)jφ(m) 2 w+Sz0℄�Expm[h(m)℄j < ε.
From inequalities (2) and (3), for any fixedw0 andε1 > 0 we see that

Pr

φ2Pw0

h

(φ;w0) is not an(ε1+2�2�s+`

)-concealed pair
i

�

2�2s

22n�`

�δ2
a
<

25

ε2
1 �2

s�`

:

Now, for any fixed fixedm0 andε > 2�2�s+`,

Pr

φ
[(φ;φ(m0)) is anε-concealed pair℄ = Σwi

�

Pr[φ 2 Pwi ℄ � Prφ2Pwi

[(φ;wi) is anε-concealed pair℄

�

� 1�
25

ε2
�2s�`

�4ε+4�2�s+`

:

For a random pair(m;φ), we will (lower) bound the probability that(φ;φ(m)) is anε-concealed pair forz0,
since

Exp

m;φ

h

�

�

�

Gz0
m;φ

�

�

�

i

� εPr
m;φ

[(φ;φ(m)) is ε-concealed℄+ (1�Pr

m;φ
[(φ;φ(m)) is ε-concealed℄):

For specificmand random choice ofφ, we defineYm to be the random variable taking the value 1 if(φ;φ(m))

is anε-concealed pair, and 0 otherwise. Now,

Pr

m;φ
[(φ;φ(m)) is anε-concealed pair℄ = Exp

m;φ
[Ym℄ = Σmi pmi �Exp

φ
[Ymi ℄

= Pr

φ
[(φ;φ(m)) is anε-concealed pair℄

� 1�
25

ε2
�2s�`

�4ε+4�2�s+`

;

so that for allε > 2 �2�s+`, Expm;φ(jG
z0
m;φj) � ε(1� δ)+ δ < ε+ δ, whereδ =

25

ε2
�2s�`

�4ε+4�2�s+`

. Selectε =

4�2
�s+`

3 . Ass= `+ω(logk), we can be guaranteed thatε = k�ω(1) and so for allz, Expm;φ

h

�

�

�

Gz
m;φ

�

�

�

i

= k�ω(1)
:

Hence,Expm;φ;z

h

�

�

�

Gz
m;φ

�

�

�

i

= k�ω(1)
; which, considering the above claim, completes the proof. The bound on

the number of applications of the underlying one-way permutation follows immediately from the definition
of s.
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A Proof of Claim 3

Proof. Proof of Claim 3
�

�

�

�

Pr

m;m0

;φ;z

h

B0

(1k
;φ(m)+z;φ) = h(m0

)

i

� Pr

m;φ;z

h

B0

(1k
;φ(m)+z;φ) = h(m)

i

�

�

�

�

=

�

�

�

�

�

Exp

m;m0

;φ;z

�

1+B0

(1k
;φ(m)+z;φ)h(m0

)

2
�

1+B0

(1k
;φ(m)+z;φ)h(m)

2

�

�

�

�

�

�

=

1
2

�

�

�

�

�

Exp

m;m0

;φ;z

h

B0

(1k
;φ(m)+z;φ)h(m0

)

i

�Exp

m;φ;z

h

B0

(1k
;φ(m)+z;φ)h(m)

i

�

�

�

�

�

=

1
2

�

�

�

�

�

Exp

φ;m;z

�

B0

(1k
;φ(m)+z;φ)

�

Exp

m0

[h(m0

)℄�h(m)

��

�

�

�

�

�

=

1
2

�

�

�

�

�

Exp

φ

"

∑
e2Zp+1

Pr

m;z
[φ(m)+z= e℄ �B0

(1k
;e;φ)Exp

m;z

��

Exp

m0

[h(m0

)℄�h(m)

�

φ(m)+z= e

�

#

�

�

�

�

�

�

1
2
Exp

φ

�

∑
e
Pr

m;z
[φ(m)+z= e℄ �

�

�

�

�

Exp

m0

[h(m)℄�Exp
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�

�

�

�

Observe now that for any functionsf : Zp+1! R andg : Zp+1! Zp+1,

∑
e
Pr

x
[g(x) = e℄Exp

x
[ f (g(x)) j g(x) = e℄ = Exp

x
[ f (g(x))℄:

Then the above is equal to

1
2
Exp

φ;m;z

"

�

�

�

�

�

Exp

m
[h(m)℄�Exp

m0

;z0

�

h(m0

) φ(m0

)+z0 = φ(m)+z
�

�

�

�

�

�

#

:
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