
EÆient Password-Authentiated Key Exhange

Using Human-Memorable Passwords

Jonathan Katz

1

Rafail Ostrovsky

2

Moti Yung

3

1

Telordia Tehnologies and

Department of Computer Siene, Columbia University.

jkatz�s.olumbia.edu

2

Telordia Tehnologies, In., 445 South Street, Morristown, NJ 07960.

rafail�researh.telordia.om

3

CertCo, In.

moti�s.olumbia.edu

Abstrat. There has been muh interest in password-authentiated key-

exhange protools whih remain seure even when users hoose pass-

words from a very small spae of possible passwords (say, a ditionary

of English words). Under this assumption, one must be areful to design

protools whih annot be broken using o�-line ditionary attaks in

whih an adversary enumerates all possible passwords in an attempt to

determine the orret one. Many heuristi protools have been proposed

to solve this important problem. Only reently have formal validations of

seurity (namely, proofs in the idealized random orale and ideal ipher

models) been given for spei� onstrutions [3, 10, 22℄.

Very reently, a onstrution based on general assumptions, seure in the

standard model with human-memorable passwords, has been proposed

by Goldreih and Lindell [17℄. Their protool requires no publi parame-

ters; unfortunately, it requires tehniques from general multi-party om-

putation whih make it impratial. Thus, [17℄ only proves that solutions

are possible \in prinipal". The main question left open by their work

was �nding an eÆient solution to this fundamental problem.

We show an eÆient, 3-round, password-authentiated key exhange pro-

tool with human-memorable passwords whih is provably seure under

the Deisional DiÆe-Hellman assumption, yet requires only (roughly) 8

times more omputation than \standard" DiÆe-Hellman key exhange

[14℄ (whih provides no authentiation at all). We assume publi param-

eters available to all parties. We stress that we work in the standard

model only, and do not require a \random orale" assumption.

1 Introdution

1.1 Bakground

Protools whih allow for mutual authentiation of two parties and for gener-

ating a ryptographially-strong shared key between them (authentiated key

1

This is an expanded version of a paper whih appears in Eurorypt 2001.

exhange) underly most interations taking plae on the Internet. The impor-

tane of this primitive has been realized for some time by the seurity ommunity

(see [11℄ for exhaustive referenes), followed by an inreasing reognition that

preise de�nitions and formalization were needed. The �rst formal treatments

[4,6, 2, 20, 9, 28, 11℄ were in a model in whih partiipants already share some

ryptographially-strong information: either a seret key whih an be used for

enryption/authentiation of messages, or a publi key whih an be used for

enryption/signing of messages. The setting arising most often in pratie | in

whih (human) users are only apable of storing \human-memorable" passwords

(password-authentiated key exhange) | remains muh less studied, though

many heuristi protools exist. Indeed, only reently have formal de�nitions of

seurity for this setting appeared [3, 10, 22, 17℄.

The problem (in the standard model; i.e., without random orales) is diÆult

preisely beause it requires \bootstrapping" from a weak shared seret to a

strong one. In fat, it is not even a priori lear that a solution is possible.

Completeness results for multi-party omputation [18℄ do not diretly apply here

due to the strong adversarial model onsidered (see Setion 2). In partiular,

the adversary may ask for onurrent (arbitrarily-interleaved) exeutions of the

protool, may modify messages or even prevent their delivery, may impersonate

partiipants in the protool and at as a \man-in-the-middle", and may orrupt

all protool partiipants. Nevertheless, in a very reent paper, Goldreih and

Lindell [17℄ have shown that in priniple, this problem is solvable based on

any trapdoor permutation (leaving open the question of whether a pratial

solution is possible). We show, perhaps somewhat surprisingly, the existene

of an eÆient solution for human-memorable passwords under the Deisional

DiÆe-Hellman assumption.

1.2 The Adversarial Model

The setting is as follows (a formal disussion appears in Setion 2): two par-

ties within a larger network who share a weak (low-entropy) password wish to

authentiate eah other and generate a strong session key for proteting their

subsequent ommuniation. An adversary ontrols all ommuniation in the net-

work. Thus, messages may be tampered with, delivered out-of-order, or not de-

livered at all; the adversary may also ask for arbitrarily-interleaved exeutions of

the protool. Finally, the adversary may orrupt seleted instanes (see below) of

the partiipants and obtain the session keys generated by suessful exeutions

of the protool. The adversary sueeds if he an ause a partiipant to ompute

a session key whih the adversary an then distinguish from random.

Sine the spae of possible passwords is small, an adversary who has mon-

itored a onversation may enumerate all possible passwords and try to math

the reorded onversation to eah one. As an example, any hallenge-response

protool in whih one party sends hallenge N and the other responds with

f(password; N) is trivially suseptible to this attak, regardless of f (note that

suh an attak is not possible by a poly-time adversary, for appropriate hoie

of f , when the parties share a high-entropy password). Additionally, the fat

that the adversary an orrupt instanes and determine the atual session key

means that the protool must ensure onsisteny between the reorded onversa-

tion and these session keys, even while not revealing any information about the

password. These ompliations make this problem muh harder than the ase in

whih partiipants already share a strong key at the outset of the protool.

What does seurity mean in a model whih is inherently inseure? Indeed,

sine passwords are hosen from a small spae, an adversary an always try eah

possibility one at a time in an impersonation (on-line) attak. Thus, we say a

protool is seure (informally) if this exhaustive guessing is the best an adversary

an do. For a real-world adversary, suh on-line attaks are the hardest to mount,

and they are also the easiest to detet. It is very realisti to assume that the

number of on-line attaks an adversary is allowed is severely limited, while other

attaks (eavesdropping, o�-line password guessing) are not.

1.3 Previous Work

The problem of o�-line attaks in password-authentiated protools was �rst

noted by Bellovin and Merritt [7℄, followed by a urry of work in the seurity

ommunity providing additional solutions with heuristi arguments for their se-

urity (see [11℄ for exhaustive referenes). More reently, two formal models

for password-authentiated key exhange have been proposed: one by Bellare,

Pointheval, and Rogaway [3℄, based on [4, 6℄ with extensions suggested by [21℄;

and a seond by Boyko, MaKenzie, and Patel [10℄, following [2℄ with extensions

given in [28℄. While both models have their advantages, we hoose to work in

the �rst model and review the appropriate de�nitions in Setion 2.

These models all assume that two parties wishing to ommuniate share only

a human-memorable password; in partiular, they do not assume a publi-key

infrastruture (PKI) whih allows partiipants to generate and share publi keys.

De�nitions for seurity in this setting have also been proposed [20,9, 28℄ and, in

fat, the �rst protools resistant to o�-line ditionary attaks were given in this

model. However, the requirement of a seure PKI is a strong one, and we wish

to avoid it.

Only reently have formal validations of seurity for spei� protools ap-

peared [3, 10, 22℄. However, these validations are not proofs in the standard

model; [3℄ relies on ideal iphers, while [10,22℄ rely on random orales. More

reently, Goldreih and Lindell [17℄ have shown a protool based on general as-

sumptions whih is seure in the standard model. Interestingly, in ontrast to the

present work, their protool does not require publi parameters. Unfortunately,

their onstrution requires a non-onstant number of rounds and also requires

tehniques from generi multi-party omputation [18℄. Thus, their sheme serves

as a general plausibility result (a terminology oined in [16℄), but is muh too in-

eÆient for pratial use. Finally, as pointed out by the authors themselves, the

solution of [17℄ does not allow for onurrent exeutions of the protool between

parties using the same password.

1.4 Our Contribution

Seurity validation via proofs in the random orale and ideal ipher models are

useful, as they lend a measure of on�dene to protools whose seurity would

otherwise be only heuristi. On the other hand, proofs of seurity in these models

do not neessarily translate to real-world seurity [12℄, so it is important to have

proofs under standard ryptographi assumptions. We prove the seurity of our

onstrution using only the Deisional DiÆe-Hellman (DDH) assumption.

EÆieny is espeially important in this setting, where seurity onerns are

motivated by very pratial onsiderations (human users' inability to remem-

ber long serets). We stress that our sheme, though provably seure, is very

pratial even when ompared to heuristially-seure protools suh as [3, 10℄ or

the original DiÆe-Hellman protool [14℄ (whih does not provide any authen-

tiation). Our protool requires only three rounds and has ommuniation and

omputational omplexity only (roughly) 5-8 times greater than the above solu-

tions. Furthermore, we are able to onstrut our sheme without making stronger

assumptions (the DDH assumption is used in [14,3, 10℄).

Although our solution relies on publi-key tehniques (in fat, this is ne-

essary [20℄) we emphasize that our protool is not a \publi-key solution" (as

in [2,20, 9℄). In partiular, we do not require any partiipant to have a pub-

li key, but instead rely on one set of ommon parameters shared by everyone

in the system. This avoids problems assoiated with publi key infrastrutures

(suh as revoation, entralized trust, key management issues, et.), and also

allows new servers and lients to join the network at any time during exeution

of the protool without requiring aess to an on-line, entralized (trusted) au-

thority (in fat, they do not even need to inform anyone else of their presene).

Furthermore, no partiipants know the \seret key" assoiated with the pub-

li parameters. This eliminates the risk that ompromise of a partiipant will

ompromise the seurity of the entire system.

The onstrution given here is seure under both the notion of basi seurity

and the stronger notion of \forward seurity" (in the weak orruption model).

In this initial version we onentrate on basi seurity only, and leave the topi

of forward seurity for the �nal version.

2 Model and De�nitions

The reader is assumed to be familiar with the model of [3℄, whih is the model in

whih we prove seurity of our protool. For ompleteness, we review the main

points of their de�nition here, and refer the reader to [3℄ for more details.

Prinipals, Passwords, and Initialization.We have a �xed set of protool

partiipants (prinipals) eah of whih is either a lient C 2 Client or a server S 2

Server (Client and Server are disjoint). We let User

def

= Client [Server. Eah C 2

Client has a password pw

C

. Eah S 2 Server has a vetor PW

S

= hpw

C

i

C2Client

whih ontains the passwords of eah of the lients (we assume that all lients

share passwords with all servers). Reall that pw

C

is what lient C remembers

to log in; therefore, it is assumed to be hosen from a relatively small spae of

possible passwords.

Before the protool is run, an initialization phase ours during whih publi

parameters are set and passwords are hosen for eah lient. We assume that

passwords for eah lient are hosen independently and uniformly

2

at random

from the set f1; : : : ; Ng, where N is a onstant, independent of the seurity

parameter.

Exeution of the Protool. In the real world, protool P determines how

prinipals behave in response to signals (input) from their environment. Eah

prinipal is able to exeute the protool multiple times with di�erent partners;

this is modeled by allowing eah prinipal an unlimited number of instanes in

whih to exeute the protool (see [6℄). We denote instane i of user U as �

i

U

.

A given instane is used only one. The adversary is assumed to have omplete

ontrol over all ommuniation in the network. Thus, the adversary's interation

with the prinipals is modeled via aess to orales whose inputs may range over

U 2 User and i 2 IN; this allows the adversary to \interat with" di�erent

instanes. Global state is maintained throughout the entire exeution for eah

instane with whih the adversary interats (this global state is not diretly

visible to the adversary); the global state for an instane may be updated by

an orale during an orale all, and the orale's output may depend upon this

state. The orale types, as de�ned in [3℄, are:

{ Send(U; i;M) | This sends message M to instane �

i

U

. The orale runs this

instane as in a real exeution, maintaining state as appropriate. The output

of �

i

U

is given to the adversary in addition to other information; see [3℄.

{ Exeute(C; i; S; j) | This orale exeutes the protool between instanes �

i

C

and �

j

S

, where C 2 Client and S 2 Server, and outputs a transript of this

exeution. This transript inludes everything an adversary would see when

eavesdropping on a real-world exeution of the protool, as well as other

information; see [3℄.

{ Reveal(U; i) | This outputs the session key sk

i

U

(stored as part of the global

state) of instane �

i

U

.

{ Test(U; i) | This query is allowed only one, at any time during the adver-

sary's exeution. A random bit b is generated; if b = 1 the adversary is given

sk

i

U

, and if b = 0 the adversary is given a random session key.

Advantage of the Adversary. Event Su ours (adversary A sueeds) if

she asks a single Test query, outputs a bit b

0

, and b

0

= b (where b is the bit hosen

by the Test orale). The advantage of A in attaking protool P , is de�ned as as

Adv

ake

P;A

def

= 2Pr[Su℄ � 1. If the adversary were unrestrited, suess would be

trivial (sine the adversary ould submit a Reveal query for the same instane

submitted to the Test orale). Clearly, some restritions must be imposed. Before

desribing these, we formalize the idea of partnering. Intuitively, instanes �

i

U

2

This is for ease of presentation only, as our analysis an be extended easily to handle

arbitrary distributions, inluding users with inter-dependent passwords.

and �

j

U

0

are partnered if they have jointly run protool P . Formally, we de�ne

a session-id (sid) for eah instane, and say that two instanes are partnered

if they hold the same sid (whih is not null). Here, we de�ne the sid as the

onatenation of all messages sent and reeived by an instane (i.e., a transript

of the exeution). The following restrition may now be imposed on an adversary

whose Test query is (U; i): that a Reveal query may not be alled on (U; i) or on

(U

0

; j), where �

j

U

0

is partnered with �

i

U

. Furthermore, instane �

i

U

must have

ompleted exeution, and therefore have a non-null session key de�ned.

A poly-time adversary will be able to break any protool by attempting to

impersonate a user and trying all passwords one-by-one (the size of the password

spae is independent of the seurity parameter | indeed, this is what distin-

guishes the problem from that of [4,6℄). So, we say that a given protool is seure

when this kind of attak is the best an adversary an do. More formally, let q

send

be the number of alls the adversary makes to the Send orale. A protool is se-

ure if, when passwords are hosen from a ditionary of size N , the adversary's

advantage in attaking the protool is bounded by

O(q

send

=N) + "(k);

for some negligible funtion "(�). The �rst term represents the fat that the

adversary an (essentially) do no better than guess a password during eah all

to the Send orale

3

. In partiular, even polynomially-many alls to the Exeute

orale (i.e., passive observations of valid exeutions) and the Reveal orale (i.e.,

ompromise of short-term session keys) are of no help to an adversary; only on-

line impersonation attaks (whih are harder to mount and easier to detet) give

the adversary a non-negligible advantage.

Conrete seurity is partiularly important in this setting sine the adver-

sary's advantage is non-negligible (assuming Send queries are made). We quan-

tify an adversary's maximumadvantage as a funtion of the adversary's running

time t and the number of queries made to the Send, Exeute, and Reveal orales

(q

send

; q

exeute

; and q

reveal

respetively).

3 A Provably Seure Protool for password-AKE

3.1 Building Bloks

Our protool and proof of seurity rely on a number of building bloks. First, our

protool uses the Cramer-Shoup ryptosystem [13℄ whih is seure under adap-

tive hosen-iphertext attak. Atually, we require an extension of the Cramer-

Shoup ryptosystem, whih remains seure under adaptive hosen-iphertext

attak. Our extension de�nes two \types" of enryption: lient-enryption and

3

A tighter de�nition of seurity would require that the adversary's advantage be

bounded by q

send

=rN + "(k), where r is the minimum number of messages an ad-

versary needs to send in order to ause (ompletion of the protool and) a non-null

session key to be de�ned. An analysis of our proof proof indiates that the seurity

of our onstrution is indeed tight in this respet.

server-enryption. Details appear in Appendix B. We will also need a one-time

signature sheme [15℄ seure against existential forgery [19℄. Finally, our proof of

seurity relies on the Deisional DiÆe-Hellman (DDH) assumption [14,8℄ (note

that the seurity of the Cramer-Shoup ryptosystem requires the DDH assump-

tion already). We review these omponents in Appendix A, and also expliitly

quantify their (in)seurity whih is neessary for an expliit analysis of the ad-

versary's maximum advantage in attaking the key exhange protool.

Chosen-iphertext-seure enryption has been used previously in the ontext

of seure key exhange [2, 20, 9, 28℄. However, as pointed out above, our protool

di�ers from these works in that it does not require the assumption of a publi-

key infrastruture, and no partiipant holds a seret key or publishes a publi

key. Indeed, \deryption" is never performed during exeution of our protool.

3.2 The Protool

A high-level desription of the protool is given in Figure 1. Let p; q be primes

suh that qjp�1, and let G be a subgroup ofZ

�

p

of order q in whih the DDH as-

sumption holds. During the initialization phase, generators g

1

; g

2

; h; ; d 2 G and

a funtionH from a family of universal one-way hash funtions [23℄ (whih an be

based on any one-way funtion [26℄) are hosen at random and published. Note

that this publi information is not an added assumption

4

; \standard" DiÆe-

Hellman key exhange [14℄ typially assumes that parties use a �xed generator g

(although this is not neessary), and [3, 10℄ seem to require a publi generator g

for their proofs of seurity. However, we do require that no one know the disrete

logarithms of any of the generators with respet to any other, and thus we need

either a trusted party who generates the publi information or else a soure of

randomness whih an be used to publily derive the information.

As part of the initialization phase, passwords are hosen randomly for eah

lient. We assume that all passwords lie in (or an be mapped to)Z

q

. For typial

values of jqj, this will be a valid assumption for human-memorable passwords.

Exeution of the protool is as follows (see Figure 1): When lient C wants

to onnet to server S, the lient �rst runs the key generation algorithm for

the one-time signature sheme, giving VK and SK. Then, the lient omputes

a lient-enryption (see Appendix B) of g

pw

C

1

. This, along with the lient's

name, is sent to the server as the �rst message. The server hooses random

elements x

2

; y

2

; z

2

; w

2

fromZ

q

, omputes �

0

using the �rst message, and forms

g

x

2

1

g

y

2

2

h

z

2

(d

�

0

)

w

2

. The server then omputes a server-enryption (see Appendix

B) of g

pw

C

1

. This is sent bak to the lient as the seond message. The lient

selets random elements x

1

; y

1

; z

1

; w

1

from Z

q

, omputes �

0

using the seond

message, and forms K = g

x

1

1

g

y

1

2

h

z

1

(d

�

0

)

w

1

. Finally, �

0

and K are signed us-

ing the signing key whih was generated in the �rst step. The sid is de�ned as

the transript of the entire onversation. A formal desription of the protool

appears in Appendix C.

4

The protools of [22, 17℄, however, do not require any publi information.

Publi information: p; q; g

1

; g

2

; h; ; d;H

Client Server

(VK;SK) SigGen(1

k

)

r

1

 � Z

q

A = g

r

1

1

;B = g

r

1

2

C = h

r

1

g

pw

C

1

� = H(Client jVKjAjBjC)

D = (d

�

)

r

1

Client j VK j A j B j C j D

-

x

2

; y

2

; z

2

; w

2

; r

2

 � Z

q

�

0

= H(Client jVKjAjBjC)

E = g

x

2

1

g

y

2

2

h

z

2

(d

�

0

)

w

2

F = g

r

2

1

;G = g

r

2

2

I = h

r

2

g

pw

C

1

� = H(Server jEjF jGjI)

J = (d

�

)

r

2

Server j E j F j G j I j J

�

x

1

; y

1

; z

1

; w

1

 Z

q

�

0

= H(Server jEjF jGjI)

K = g

x

1

1

g

y

1

2

h

z

1

(d

�

0

)

w

1

Sig = Sign

SK

(�

0

j K)

K j Sig

-

I

0

= I=g

pw

C

1

sk

C

= E

r

1

F

x

1

G

y

1

(I

0

)

z

1

J

w

1

if Verify

VK

((� j K);Sig) = 1

C

0

= C=g

pw

C

1

sk

S

= K

r

2

A

x

2

B

y

2

(C

0

)

z

2

D

w

2

else sk

S

 G

Fig. 1. The protool for password-AKE. See text for details.

The protool desription in Figure 1 omits many implementation details

whih are important for the proof of seurity to hold. Most important is for both

lient and server to perform a \validity hek" on the messages they reeive. In

partiular, eah side should hek that the values they reeive are atually in

the group G and are not the identity (in other words, it is required to hek

that the group elements indeed have order q). Note that suh validity heks are

required even for hosen-iphertext seurity of the underlying Cramer-Shoup

ryptosystem.

Corretness. In an honest exeution of the protool, C and S alulate iden-

tial session keys. To see this, �rst note that � = �

0

and � = �

0

in an honest

exeution. Then:

sk

C

= (g

x

2

1

g

y

2

2

h

z

2

(d

�

)

w

2

)

r

1

g

r

2

x

1

1

g

r

2

y

1

2

h

r

2

z

1

(d

�

)

r

2

w

1

and

sk

S

= (g

x

1

1

g

y

1

2

h

z

1

(d

�

)

w

1

)

r

2

g

r

1

x

2

1

g

r

1

y

2

2

h

r

1

z

2

(d

�

)

r

1

w

2

;

and one an verify that these are equal.

Mutual Authentiation. We note that the protool as presented above

ahieves key exhange only, and not mutual authentiation. However, we an

trivially add mutual authentiation by adding a fourth message to the protool.

Details will appear in the �nal version.

3.3 Pratial Considerations

In pratie, a ollision resistant hash funtion (say, SHA-1) an be used instead of

a universal one-way hash funtion. This has the advantage of inreased eÆieny,

at the expense of requiring a (possibly) stronger assumption for seurity.

EÆient one-time signatures [15℄ an be based on (presumed) one-way fun-

tions like SHA-1 or DES. In partiular, one-time signatures are muh more ef-

�ient than signature shemes whih are seure against adaptive (polynomially-

many) hosen message attaks.

Client omputation an be redued (whih is important when the lient

is smartard-based) as follows: instead of using a one-time signature sheme

where fresh keys need to be generated eah time a onnetion is made, a sign-

ing key/veri�ation key an be generated one (upon initialization) and used

for the lifetime of the lient. Partiularly suited for suh appliations are \on-

the-y" signature shemes suh as [27,24, 25℄. This initialization step may be

done by a host omputer (with the keys then downloaded to the smartard) or

this step may be done o�-line before the �rst onnetion is made. The proof

of seurity given in Setion 4 still holds. The disadvantage is that this signa-

ture sheme is now required to be seure against existential forgeries even when

polynomially-manymessages are signed (and not just a single message). In some

ases, however, this tradeo� may be aeptable.

Finally, note that we may store g

pw

C

1

at the server instead of pw

C

and thereby

avoid omputing the exponentiation eah time the protool is exeuted.

4 Seurity of the Protool

We onentrate here on the basi seurity of the protool, and leave the orre-

sponding results about forward seurity to the full paper. The following theorem

indiates that the protool is seure, sine all lower order terms are negligible in

k (see Appendix A for de�nitions of the lower order terms).

Theorem 1. Let P be the protool of Figure 1, where passwords are hosen from

a ditionary of size N , and let k = jqj be the seurity parameter. Let A be an

adversary whih runs in time t and asks q

exeute

; q

send

, and q

reveal

queries to the

respetive orales. Then:

Adv

ake

P;A

<

q

send

2N

+ 2q

send

"

sig

(k; t) + 2"

ddh

(k; t) + 2q

send

"

s

(k; t; q

send

=2)

+ 2q

send

"

hash

(k; t) +

minf2q

reveal

; q

send

g

q

+

2minfq

reveal

; q

exeute

g

q

2

:

It will be helpful to develop some intuition and notation before presentation

of the full proof. First, note that the Exeute orale annot help the adversary.

The reason is that DiÆe-Hellman key exhange [14℄ forms the \heart" of this

protool, and this is seure under a passive attak.

Next, onsider ative \impersonation attaks" by the adversary. The protool

has three ows. When an adversary tries to impersonate a lient (in an attempt

to determine the eventual session key of a server), the adversary must send the

�rst and third messages; when the adversary wants to impersonate a server (in

an attempt to determine the eventual session key of a lient), the adversary must

\prompt" the lient to generate the �rst message and must then send the seond

message. Consider an adversary impersonating a lient, and let the �rst message

(whih omes from the adversary) be hClientjVKjAjBjCjDi. We say this message

is valid if:

log

g

1

A = log

g

2

B = log

h

(C=g

pw

C

1

) = log

d

�

0

D; (1)

where �

0

= H(Client;VK; A;B;C), and pw

C

is the password for Client. We

de�ne valid analogously for the seond message of an adversary impersonating

a server (note that here the password whih determines validity depends upon

the name of the lient to whih the adversary sends the message). We do not

de�ne any notion of validity for the third message. The following fat is entral

to our proof:

Fat 1 When an invalid message is sent to an instane, the session key om-

puted by that instane is information-theoretially independent of all messages

sent and reeived by that instane. This holds for both lients and servers.

Proof. Consider the ase of an adversary interating with a server, with the �rst

message as above. Let �

1

def

= log

g

1

g

2

; �

2

def

= log

g

1

h; and �

3

def

= log

g

1

(d

�

0

). Con-

sider the random values x

2

; y

2

; z

2

; w

2

(see Figure 1) used by the server instane

during its exeution. Element E of the seond message onstrains these values

as follows:

log

g

1

E = x

2

+ y

2

�

1

+ z

2

�

2

+ w

2

�

3

: (2)

The session key is alulated asK

r

2

multiplied by sk

0

S

= A

x

2

B

y

2

(C=g

pw

C

1

)

z

2

D

w

2

.

But we have:

log

g

1

sk

0

S

= x

2

log

g

1

A+ y

2

�

1

log

g

2

B + z

2

�

2

log

h

(C=g

pw

C

1

) +w

2

�

3

log

d

�

0

D:(3)

When equation (1) does not hold (i.e., the message is invalid), equations (2) and

(3) are linearly independent and sk

0

S

2

R

G is information-theoretially indepen-

dent of the transript of the exeution. A similar argument holds for the ase of

an adversary interating with a lient.

Let �

i

U

be an instane to whih the adversary has sent an invalid message.

Fat 1 implies that the adversary has advantage 0 in distinguishing the session

key generated by this instane from a random session key. Thus, an adversary's

(non-zero) advantage an ome about only by sending a valid message to an

instane.

We all a message sent by an adversary previously-used if the message was

previously output by a lient or server running the protool (that is, the adver-

sary has simply \opied" and re-used the message), and is new otherwise. The

following lemma bounds the adversary's probability of oming up with a new,

valid �rst or seond message:

Lemma 1. An adversary's probability of sending, at any point during the pro-

tool, a �rst or seond message whih is both new and valid is bounded by

O(q

send

=N) + "(k), for some negligible funtion "(�).

This lemma essentially follows from the hosen-iphertext seurity (and hene

non-malleability) of extended Cramer-Shoup enryption (see [13℄ and Appendix

B). Detail appear in the full proof, below. The lemma reets the fat that the

adversary an (trivially) \guess" the appropriate password

5

eah time he sends

a �rst or seond message.

The only remaining point to argue is that previously-used messages annot

signi�antly help the adversary. First note that if an adversary re-uses a �rst

message, the adversary will (with high probability) not be able to ompute a

valid signature to inlude with the third message. If an adversary re-uses a

seond message, the full proof indiates that without knowing the randomness

used to generate that message, the adversary will gain only negligible advantage.

Proof (of Theorem 1). We refer to the formal spei�ation of the protool as it

appears in Appendix C. The number of lients and servers is polynomial in the

seurity parameter, and this number is �xed in advane

6

and publi.

We imagine a simulator who ontrols all orales to whih the adversary has

aess. The simulator runs the protool initialization as desribed in Appendix

C, Figure 2, inluding seleting passwords for eah lient

7

. The simulator answers

the adversary's orale queries as de�ned in Appendix C, Figures 3 and 4. The

adversary sueeds if it an guess the bit b that the simulator uses during the

Test query (see Setion 2 for additional details).

We de�ne a sequene of transformations P

1

; : : : to the original protool P

0

,

and bound the e�et eah transformation has on the adversary's advantage.

5

The lemma assumes that passwords are hosen uniformly at random from the pass-

word spae, but an be appropriately modi�ed to handle arbitrary distributions.

6

As mentioned in Setion 1.4, lients and servers an in fat be dynamially added to

the protool during exeution at the request of the adversary (and even with pass-

words hosen by the adversary, when forward seurity is onsidered). For simpliity,

we fous on the stati ase.

7

For simpliity we assume that users hoose passwords independently and with uni-

form distribution. The analysis an easily be modi�ed to aommodate arbitrary

distributions.

Then, we bound the adversary's advantage in the �nal (transformed) protool;

this gives an expliit bound on the adversary's advantage in the original protool.

Consider the veri�ation keys output by the Send

0

orale during the ourse of

the protool. We may restrit ourselves to the ase where the adversary is unable

to forge a new message/signature pair for any of these keys during the ourse of

the protool. This an hange the adversary's suess probability (as a simple

hybrid argument shows) by at most q

send

0

"

sig

(k; t) � q

send

"

sig

(k; t). We may also

restrit ourselves to the ase in whih no two messages output by the Send

1

orale during the ourse of the protool have idential assoiated values of �,

sine this will our with probability at most q

send

1

"

hash

(k; t) � q

send

"

hash

(k; t).

In protool P

1

, alls to the Exeute orale are answered as before, exept that

C and I are hosen at random from G. The following bounds the e�et on the

adversary's advantage:

Lemma 2. The adversary's suess probability in P

1

di�ers by at most "

ddh

(k; t)

from its advantage in P

0

.

Proof. The simulator uses the adversary as a blak box to distinguish DiÆe-

Hellman quadruples from random quadruples. Given quadruple (g; h; s; t) and

group G, it runs the initialization as follows:

a; b; ` Z

q

g

1

= g; g

2

= g

a

; = g

b

; d = g

`

H UOWH

Publish parameters (q; g

1

; g

2

; h; ; d;H) and group G

hpw

C

i

C2Client

 f1; : : : ;Ng

By a random self-reduibility property [28,1℄, the simulator an generate

s

T

; t

T

(for T = 1; : : :) suh that, if (g; h; s; t) is a DiÆe-Hellman quadruple, so

is (g; h; s

T

; t

T

); on the other hand, if (g; h; s; t) is a random quadruple, then

(g; h; s

T

; t

T

) is distributed among random quadruples with g and h �xed. The

T -th all to Exeute is answered as:

Exeute(Client; i;Server; j) |

(VK;SK)

R

 � SigGen(1

k

) x

1

; x

2

; y

1

; y

2

; z

1

; z

2

; w

1

; w

2

R

 �Z

q

A = s

2T

; B = s

a

2T

; C = t

2T

� g

pw

C

1

� = H(Client j VKjAjBjC)

D = s

b+�`

2T

msg-out

1

 � hClient j VK j A j B j C j Di

E = g

x

1

1

g

x

1

2

h

z

1

(d

�

)

w

1

F = s

2T+1

; G = s

a

2t+1

; I = t

2T+1

� g

pw

C

1

� = H(ServerjEjF jGjI)

J = s

b+�`

2T+1

msg-out

2

 � hServer j E j F j G j I j Ji

K = g

x

2

1

g

y

2

2

h

z

2

(d

�

)

w

2

msg-out

3

 � hK j Sign

SK

(�jK)i

sk

j

S

 �sk

i

C

 � A

x

1

B

y

1

(C � g

�pw

C

1

)

z

1

D

w

1

F

x

2

G

y

2

(I � g

�pw

C

1

)

z

2

J

w

2

sid

j

S

 �sid

i

C

 �hmsg-out

1

j msg-out

2

jmsg-out

3

i

return hmsg-out

1

;msg-out

2

;msg-out

3

i

If (g; h; s; t) is a DiÆe-Hellman quadruple, this is an exat simulation of P

0

; on

the other hand, if it is a random quadruple, this is an exat simulation of P

1

.

In protool P

2

, alls to Exeute are answered as before exept that the session

key is hosen randomly from G. The adversary's view (and thus its suess proba-

bility) is within statistial distane minfq

reveal

; q

exeute

g=q

2

from the adversary's

view in protool P

1

. Indeed, Fat 1 shows that the session key is independent

of the transript of the exeution seen by the adversary whenever msg-out

1

or

msg-out

2

are not valid (for the appropriate password). But when C and I are

hosen randomly, the probability that both msg-out

1

and msg-out

2

are valid is

exatly 1=q

2

.

In protool P

3

, the publi parameters are generated by hoosing g

1

and g

2

randomly from G, then hoosing x

1

; x

2

; y

1

; y

2

, and z randomly fromZ

q

and set-

ting = g

x

1

1

g

x

2

2

, d = g

y

1

1

g

y

2

2

, and h = g

z

1

; H is hosen as before. Furthermore,

the Send

3

orale is hanged as follows: the simulator �rst heks whether �rst-

msg-in (whih was the message sent to the Send

1

orale for the same instane)

is previously-used (see above). If so, the urrent query to the Send

3

orale is an-

swered normally. Otherwise, let �rst-msg-in = hClientjVKjAjBjCjDi. The simu-

lator omputes � = H(ClientjVKjAjBjC) and heks whether A

x

1

+y

1

�

B

x

2

+y

2

�

=

D and g

pw

C

1

A

z

= C. If so, �rst-msg-in is said to appear valid, and the query is

answered normally. If not, �rst-msg-in is said to appear non-valid, and the query

is answered normally exept that the session key is hosen randomly from G.

Calls to Send

2

(Client; i;msg-in) are answered in similar fashion. If msg-in

is previously-used, the query is answered normally. Otherwise, let msg-in =

hServerjEjF jGjIjJi.The simulator omputes � = H(ServerjEjF jGjI) and heks

whether F

x

1

+y

1

�

G

x

2

+y

2

�

= J and g

pw

C

1

F

z

= I. If so, msg-in is said to appear

valid, and the query is answered normally. If not, msg-in is said to appear non-

valid, and the query is answered normally but the session key for instane �

i

C

is hosen randomly from G.

The adversary's view of this protool is exatly equivalent to its view of

protool P

2

. When �rst-msg-in or msg-in appear non-valid, they are in fat

not valid for password pw

C

, and Fat 1 shows that the resulting session key

is independent of the adversary's view. On the other hand, a message whih

appears valid may in fat be invalid, but sine the query is answered normally

the adversary's view is not a�eted.

In protool P

4

, the de�nition of the adversary's suess is hanged:

{ If, during the ourse of answering a Send

3

orale query, �rst-msg-in is new

and appears valid, the session key is set to the speial value r. If the adver-

sary ever asks a Reveal query for this instane, the simulator halts immedi-

ately and the adversary sueeds.

{ If, during the ourse of answering a Send

2

orale query, msg-in is new and

appears valid, the session key is set to the speial value r. If the adversary

ever asks a Reveal query for this instane, the simulator halts immediately

and the adversary sueeds.

{ Otherwise, the adversary sueeds, as before, by guessing the bit b.

This an only inrease the advantage of the adversary.

In protool P

5

, alulation of the session key by the Send

3

orale is modi�ed.

First, every time K is omputed by the simulator when answering a all to the

Send

2

orale, the simulator stores K along with its assoiated values of x; y; z; w.

When a all is made to the Send

3

orale with msg-in = hKjSigi, there are four

possibilities:

{ �rst-msg-in is new and appears valid. In this ase the session key is set to

r and the simulator behaves as in P

4

(above).

{ �rst-msg-in is new and appears non-valid. In this ase, the simulator hooses

the session key randomly (as in P

3

; P

4

).

{ �rst-msg-in is previously-used and Verify

VK

((�jK); Sig) = 0. In this ase, the

simulator hooses the session key randomly (as in P

0

; : : : ; P

4

).

{ �rst-msg-in is previously-used and Verify

VK

((�jK); Sig) = 1. It must be the

ase that hK; Sigi was previously output by the Send

2

orale (sine we as-

sume the adversary has not forged any new message/signature pairs). The

simulator therefore knows values x

0

; y

0

; z

0

; w

0

suh thatK = g

x

0

1

g

y

0

2

h

z

0

(d

�

)

w

0

.

Let �rst-msg-out = hServerjEjF jGjIjJi and I

�

= I � g

�pw

C

1

. The simulator

alulates the session key as:

sk

i

S

 � A

x

B

y

(C

�

)

z

D

w

F

x

0

G

y

0

(I

�

)

z

0

J

w

0

:

The adversary's view is exatly equivalent to the adversary's view in P

4

(sine

K

r

does equal F

x

0

G

y

0

(I

�

)

z

0

J

w

0

when �rst-msg-out is a valid message; it is valid

sine it was generated by the simulator who knows the appropriate password).

In protool P

6

we hange orale Send

1

so that omponent I is hosen at

random from G. This annot hange the adversary's suess probability by

more than q

send

1

"

s

(k; t; q

send

2

+ q

send

3

). If it did, the simulator ould break

extended-CS enryption under a hosen iphertext attak as follows: parame-

ters for extended-CS enryption beome the publi parameters for the proto-

ol. During the ourse of the protool, the simulator may determine whether

a new message appears valid by submitting it to the deryption orale and

heking whether the returned plaintext is equal to the appropriate password.

When alls to the Send

1

orale are made, the simulator submits the appropri-

ate password as the plaintext along with the server name, the value �, and

a request for a server-enryption (see Appendix B). In return, the simulator

is given hServerjEjF jGjIjJi (whih may be an enryption of either the appro-

priate password or a random group element) along with x; y; z; w suh that

E = g

x

1

g

y

2

h

z

(d

�

)

w

. A simple hybrid argument bounds the hange in the adver-

sary's suess probability.

In protool P

7

, the Send

2

orale is hanged so that whenever msg-in was

previously-used the session key is hosen at random from G. To ensure on-

sisteny

8

, the Send

3

(Server; i; �) orale is hanged as follows: if sid

i

S

mathes

sid

j

C

for some other instane �

j

C

, then sk

i

S

is set equal to sk

j

C

. The statistial

di�erene between the adversary's view in this protool and the previous one

8

Here we use the fat (see above) that values of � assoiated with messages output

by the Send

1

orale do not repeat. Note that the protool an be modi�ed so that

Send

2

signs msg-in instad of � | this requires a signature on a longer message, but

improves the seurity of the resulting protool by q

send

"

hash

(k; t).

is bounded by minfq

reveal

; q

send

2

g=q. Indeed, Fat 1 shows that the views are

equivalent when msg-in is invalid. Furthermore, the probability that msg-in is

valid for the appropriate password is 1=q (sine I was hosen at random).

In protool P

8

, the Send

0

orale is hanged so that omponent C is hosen

randomly from G. Following a similar analysis to that of protool P

6

, this annot

hange the adversary's suess probability by more than q

send

0

"

s

(k; t; q

send

2

+

q

send

3

). Finally, in protool P

9

the Send

3

orale is hanged so that a random ses-

sion key is hosen when �rst-msg-in is previously-used. Following a similar anal-

ysis to that of protool P

7

, the statistial di�erene between the adversary's view

in this protool and the previous protool is bounded by minfq

reveal

; q

send

3

g=q.

Consider the adversary's advantage in protool P

9

. The adversary's view

is entirely independent of the passwords hosen by the simulator unless the

adversary manages to submit a new msg-in whih appears valid at some point

during exeution of the protool; i.e., sueeds in guessing the password. The

adversary's probability of guessing the password, however, is preisely (q

send

2

+

q

send

3

)=N (this assumes that passwords are seleted uniformly; an analogous

alulation an be done when this is not the ase). The adversary's advantage

in protool P

9

is thus bounded by q

send

=2N (note that the adversary must ask a

q

send

0

query for a q

send

2

query to be meaningful, and similarly must ask a q

send

1

query for a q

send

3

query to be meaningful). The adversary's advantage in the

original protool is therefore bounded by the expression in Theorem 1.

5 Aknowledgments

Thanks to Yehuda Lindell, PhilipMaKenzie, and Steven Myers for many helpful

disussions on the topi of password-authentiated key exhange.

Referenes

1. M. Bellare, A. Boldyreva, and S. Miali. Publi-Key Enryption in a Multi-User

Setting: Seurity Proofs and Improvements. Eurorypt 2000.

2. M. Bellare, R. Canetti, and H. Krawzyk. A Modular Approah to the Design and

Analysis of Authentiation and Key Exhange Protools. STOC '98.

3. M. Bellare, D. Pointheval, and P. Rogaway. Authentiated Key Exhange Seure

Against Ditionary Attaks. Eurorypt 2000.

4. M. Bellare and P. Rogaway. Entity Authentiation and Key Distribution. Crypto

'93.

5. M. Bellare and P. Rogaway. Random Orales are Pratial: A Paradigm for De-

signing EÆient Protools. ACM CCCS '93.

6. M. Bellare and P. Rogaway. Provably Seure Session Key Distribution: the Three

Party Case. STOC '95.

7. S. Bellovin and M. Merritt. Enrypted Key Exhange: Password-Based Protools

Seure against Ditionary Attaks. IEEE Symposium on Seurity and Privay,

1992.

8. D. Boneh. The Deision DiÆe-Hellman Problem. Proeedings of the Third Algo-

rithmi Number Theory Symposium, 1998.

9. M. Boyarsky. Publi-Key Cryptography and Password Protools: The Multi-User

Case. ACM CCCS '99.

10. V. Boyko, P. MaKenzie, and S. Patel. Provably Seure Password-Authentiated

Key Exhange Using DiÆe-Hellman. Eurorypt 2000.

11. V. Boyko. On All-or-Nothing Transforms and Password-Authentiated Key Ex-

hange Protools. PhD Thesis, MIT, Department of Eletrial Engineering and

Computer Siene, Cambridge, MA, 2000.

12. R. Canetti, O. Goldreih, and S. Halevi. The Random Orale Methodology, Revis-

ited. STOC '98.

13. R. Cramer and V. Shoup. A Pratial Publi Key Cryptosystem Provably Seure

Against Chosen Ciphertext Attak. Crypto '98.

14. W. DiÆe and M. Hellman. New Diretions in Cryptography. IEEE Trans. Info.

Theory, 22(6): 644{654, 1976.

15. S. Even, O. Goldreih, and S. Miali. On-Line/O�-Line Digital Signatures. Crypto

'89.

16. O. Goldreih. On the Foundations of Modern Cryptography. Crypto '97.

17. O. Goldreih and Y. Lindell. Personal Communiation and Crypto 2000 Rump

Session. Session-Key Generation using Human Passwords Only. Available at

http://eprint.iar.org/2000/057.

18. O. Goldreih, S. Miali, and A. Wigderson. How to Play Any Mental Game, or a

Completeness Theorem for Protools with an Honest Majority. STOC '87.

19. S. Goldwasser, R. Rivest, and S. Miali. A Digital Signature Sheme Seure Against

Adaptive Chosen Message Attaks. SIAM J. Comp. 17(2): 281{308, 1988.

20. S. Halevi and H. Krawzyk. Publi-Key Cryptography and Password Protools.

ACM Transations on Information and System Seurity, 2(3): 230{268, 1999.

21. S. Luks. Open Key Exhange: How to Defeat Ditionary Attaks Without En-

rypting Publi Keys. Proeedings of the Workshop on Seurity Protools, 1997.

22. P. MaKenzie, S. Patel, and R. Swaminathan. Password-Authentiated Key Ex-

hange Based on RSA. Asiarypt 2000.

23. M. Naor and M. Yung. Universal One-Way Hash Funtions and Their Crypto-

graphi Appliations. STOC '89.

24. G. Poupard and J. Stern. Seurity Analysis of a Pratial \on the y" Authenti-

ation and Signature Generation. Eurorypt '98.

25. G. Poupard and J. Stern. On the Fly Signatures Based on Fatoring. ACM CCCS

'99.

26. J. Rompel. One-Way Funtions are Neessary and SuÆient for Seure Signatures.

STOC '90

27. C.-P. Shnorr. EÆient Signature Generation by Smartards. J. Crypto. 4(3): 161{

174 (1991).

28. V. Shoup. On Formal Models for Seure Key Exhange. Available at

http://philby.usd.edu/ryptolib.

A Building Bloks

Deisional Diffie-Hellman (DDH) Assumption (see [8℄). For onreteness,

we let G be a subgroup of Z

�

p

of order q where p; q are prime, qjp � 1, and

jqj = k, the seurity parameter. Let g be a generator of G. The DDH assumption

states that it is infeasible for an adversary to distinguish between the following

distributions:

fx; y; z Z

q

: (g

x

; g

y

; g

xz

; g

yz

)g and fx; y; z; w Z

q

: (g

x

; g

y

; g

z

; g

w

)g:

More preisely, hoose at random one of the above distributions and give ad-

versary A an element hosen from this distribution. The adversary sueeds by

guessing whih distribution was hosen; the advantage is de�ned as usual. Let

"

ddh

(k; t) be the maximumadvantage of any adversary whih runs in time t. The

DDH assumption is that for t = poly(k), the advantage "

ddh

(k; t) is negligible.

One-Time Digital Signatures (see [19,15℄). Let SigGen(1

k

) be a probabilis-

ti algorithm generating a publi veri�ation key/private signing key (VK; SK).

Signing message M is denoted by Sig Sign

SK

(M), and veri�ation is de-

noted by b = Verify

PK

(M; Sig) (the signature is orret if b = 1). Consider

the following experiment: SigGen(1

k

) is run to generate (VK; SK). Message M

is hosen, and the signature Sig Sign

SK

(M) is omputed. Adversary A is

given (PK;M; Sig) and outputs a pair (M

0

; Sig

0

) whih is not equal to the mes-

sage/signature pair it was given. The adversary's advantage is de�ned as the

probability that Verify

PK

(M

0

; Sig

0

) = 1. Let "

sig

(k; t) be the maximum possible

advantage of any adversary whih runs in time t. The assumption is that for

t = poly(k), this value is negligible. Note that a signature sheme meeting this

requirement an be onstruted [15, 26℄ given any one way funtion

9

.

Extended Cramer-Shoup Enryption ([13℄). The Cramer-Shoup ryptosys-

tem is an enryption sheme seure under adaptive hosen iphertext attak (see

[13℄ for formal de�nitions). We extend their ryptosystem, as disussed in Ap-

pendix B; our extension remains seure under adaptive hosen iphertext attak.

The extension gives two \types" of enryption algorithms: a lient-enryption

algorithm and a server-enryption algorithm, both using the idential publi

parameters.

Consider the following experiment: ExtCSGen(1

k

) is run to generate publi

key/private key pair (pk; sk). Adversary A is given pk and is also given aess to a

deryption orale whih, given iphertext C, returns the orresponding plaintext

P (or ? if the iphertext is invalid). The adversary outputs a plaintext x, and

may request either a lient-enryption or a server-enryption of x. A random

bit b is hosen; if b = 0 the adversary is given a random enryption (of the

type requested) of x, while if b = 1 the adversary is given a random enryption

(of the type requested) of a random element. The adversary may ontinue to

submit queries to the deryption orale, but annot ask for deryption of the

hallenge iphertext. The adversary sueeds by guessing b; the advantage is

de�ned as usual. Let "

s

(k; t; d) be the maximum possible advantage of any

adversary whih runs in time t and asks at most d deryption orale queries. In

[13℄ (see also Appendix B) it is proved that for t; d = poly(k), the advantage

"

s

(k; t; d) is negligible (under the DDH assumption). A onrete seurity bound

an be found in [1℄.

9

The DDH assumption implies that f(x) = g

x

is a one-way funtion.

The Cramer-Shoup ryptosystem uses a universal one-way hash (UOWH)

funtion [23℄ as part of its publi key. We quantify the seurity of this funtion

as follows: an adversary outputs an element u after whih a random funtion

H is seleted aording to some algorithm UOWH(1

k

). Let "

hash

(k; t) be the

maximum advantage of any adversary whih runs in time t in �nding a u

0

6= u

suh that H(u) = H(u

0

). Note that UOWH funtions an be onstruted from

any one-way funtion.

B Extended Cramer-Shoup Enryption

We onsider here an extension of the Cramer-Shoup enryption sheme [13℄

whih is hosen-iphertext seure. No new tehniques are used, and the proof of

seurity for the modi�ed sheme is exatly the same as for the original with the

exeption of a few details whih one must be areful to get right.

Publi parameters are generators g

1

; g

2

; h = g

z

1

; = g

x

1

1

g

x

2

2

; d = g

y

1

1

g

y

2

2

2 G

along with a universal one-way hash funtion H. Ciphertexts are of the form:

hAjBjCjDjEjF i. Deryption is done as in [13℄: �rst, � = H(A;B;C;D;E) is

omputed, and the following ondition is heked:

C

x

1

+y

1

�

D

x

2

+y

2

�

?

= F:

If it fails output ?. Otherwise, output the plaintext E=C

z

.

The essential di�erene lies in the de�nition of the enryption orale. The

adversary submits a plaintext m but also submits additional information, and

the enryption orale returns some side information in addition to the iphertext.

More preisely, the adversary inludes a bit b 2 f0; 1g, whih determines whether

the plaintext is enrypted via lient-enryption or server-enryption. For the

ase of lient-enryption, the adversary also inludes Client 2 Client. For the

ase of server-enryption, the adversary inludes Server 2 Server and a value

� 2Z

q

. The enryption orale sets m

0

= m with probability 1=2 and hooses m

0

randomly from G otherwise. Enryption is then arried out as follows:

Client-enryption(m

0

;Client)

(VK; SK) SigGen(1

k

)

A = Client;B = VK

r Z

q

C = g

r

1

;D = g

r

2

;E = h

r

m

0

� = H(A;B;C;D;E)

F = (d

�

)

r

return(hA;B;C;D;E; F i; SK)

Server-enryption(m

0

; Server; �)

x; y; z; w; r Z

q

A = Server;B = g

x

1

g

y

2

h

z

(d

�

)

w

C = g

r

1

;D = g

r

2

;E = h

r

m

0

� = H(A;B;C;D;E)

F = (d

�

)

r

return(hA;B;C;D;E; F i; x; y; z; w)

Theorem 2. The enryption sheme outlined above is seure (in the sense of

indistinguishability) under an adaptive hosen iphertext attak.

Sketh of Proof (Informal) The proof of seurity exatly follows [13℄, and

it an be easily veri�ed that the additional information given to the adversary

does not improve her advantage. One point requiring areful onsideration is

the adversary's probability of �nding a ollision in H. If H is ollision resistant

(a stronger assumption than being universal one-way), there is nothing left to

prove. If H is universal one-way, however, it an �rst be noted that VK or B

ould be seleted by a simulator before H is given to it (if the simulator prepares

the publi key suh that it knows log

g

1

g

2

it an produe a representation of B

for any value � given to it by the adversary). But, we must also deal with the

fat that the adversary gets to hoose A (and the bit b whih determines whether

lient-enryption or server-enryption is used) after seeing H. However, sine the

set User is �xed in advane, and (at worst) of size polynomial in the seurity

parameter, the simulator an \guess" the adversary's hoies in advane (before

being given H) and this will only a�et the simulator's probability of �nding a

ollision by a polynomial fator (details omitted).

C Formal Spei�ation of the Protool

Initialize(1

k

) |

Selet p; q prime with jpj = k and qjp� 1; this de�nes group G

Choose random generators g

1

; g

2

; h; ; d G

H UOWHF

Publish parameters (q; p; g

1

; g

2

; h; ; d;H)

hpw

C

i

C2Client

 f1; : : : ;Ng

Fig. 2. Spei�ation of protool initialization.

Exeute(Client; i;Server; j) |

(VK;SK)

R

 � SigGen(1

k

) x

1

; x

2

; y

1

; y

2

; z

1

; z

2

; w

1

; w

2

; r

1

; r

2

R

 �Z

q

A = g

r

1

1

; B = g

r

1

2

; C = h

r

1

g

pw

C

1

� = H(Client j VKjAjBjC)

D = (d

�

)

r

1

msg-out

1

 � hClient j VK j A j B j C j Di

E = g

x

1

1

g

x

1

2

h

z

1

(d

�

)

w

1

F = g

r

2

1

; G = g

r

2

2

; I = h

r

2

g

pw

C

1

� = H(Server j EjF jGjI)

J = (d

�

)

r

2

msg-out

2

 � hServer j E j F j G j I j Ji

K = g

x

2

1

g

y

2

2

h

z

2

(d

�

)

w

2

msg-out

3

 � hK j Sign

SK

(�jK)i

sk

j

S

 �sk

i

C

 � A

x

1

B

y

1

(C � g

�pw

C

1

)

z

1

D

w

1

F

x

2

G

y

2

(I � g

�pw

C

1

)

z

2

J

w

2

sid

j

S

 �sid

i

C

 �hmsg-out

1

jmsg-out

2

jmsg-out

3

i

return hmsg-out

1

;msg-out

2

;msg-out

3

i

Reveal(User; i) |

return sk

i

U

Test(User; i) |

b

R

 � f0; 1g; sk G

if b = 0 return sk else return sk

i

U

Fig. 3. Spei�ation of the Exeute, Reveal, and Test orales to whih the adversary has

aess. Note that q; g

1

; g

2

; h; ; d;H are publi, and G is the underlying group. Subsript

S refers to the server, and C to the lient.

Send

0

(Client; i;Server) |

(VK;SK)

R

 � SigGen(1

k

) r

R

 �Z

q

A = g

r

1

; B = g

r

2

; C = h

r

g

pw

C

1

� = H(ClientjVKjAjBjC)

msg-out � hClient j VK j A j B j C j (d

�

)

r

i

state

i

C

 � hSK; r;msg-outi

return msg-out

Send

1

(Server; i; hClient;VK; A;B;C;Di) |

x;y; z;w; r

R

 �Z

q

� = H(ClientjVKjAjBjC) E = g

x

1

g

y

2

h

z

(d

�

)

w

F = g

r

1

; G = g

r

2

; I = h

r

g

pw

C

1

� = H(Server j EjF jGjI)

msg-out � hServer j E j F j G j I j (d

�

)

r

i

state

i

S

 �hmsg-in; x;y; z;w; r; �;msg-outi

return msg-out

Send

2

(Client; i; hServer; E;F;G; I; Ji) |

hSK; r;�rst-msg-outi �state

i

C

� = H(ServerjEjF jGjI)

x;y; z;w

R

 �Z

q

K = g

x

1

g

y

2

h

z

(d

�

)

w

msg-out � hK j Sign

SK

(�jK)i sid

i

C

 �h�rst-msg-out j msg-in jmsg-outi

I

�

= I � g

�pw

C

1

sk

i

C

 � E

r

F

x

G

y

(I

�

)

z

J

w

return msg-out

Send

3

(Server; i; hK;Sigi) |

h�rst-msg-in; x; y; z;w; r; �;�rst-msg-outi �state

i

S

hVK; A;B;C;Di � �rst-msg-in

sid

i

S

 �h�rst-msg-in j �rst-msg-out jmsg-ini

if Verify

VK

((�jK);Sig) = 1

C

�

= C � g

pw

C

1

sk

i

S

 � A

x

B

y

(C

�

)

z

D

w

K

r

else

sk

i

S

R

 � G

return "

Fig. 4. Spei�ation of the Send orales to whih the adversary has aess. Note that

q; g

1

; g

2

; h; ; d;H are publi, and G is the underlying group. Subsript S refers to the

server, and C to the lient. The third argument to the Send orales is denoted msg-in.

