
EÆ
ient Password-Authenti
ated Key Ex
hange

Using Human-Memorable Passwords

Jonathan Katz

1

Rafail Ostrovsky

2

Moti Yung

3

1

Tel
ordia Te
hnologies and

Department of Computer S
ien
e, Columbia University.

jkatz�
s.
olumbia.edu

2

Tel
ordia Te
hnologies, In
., 445 South Street, Morristown, NJ 07960.

rafail�resear
h.tel
ordia.
om

3

CertCo, In
.

moti�
s.
olumbia.edu

Abstra
t. There has been mu
h interest in password-authenti
ated key-

ex
hange proto
ols whi
h remain se
ure even when users
hoose pass-

words from a very small spa
e of possible passwords (say, a di
tionary

of English words). Under this assumption, one must be
areful to design

proto
ols whi
h
annot be broken using o�-line di
tionary atta
ks in

whi
h an adversary enumerates all possible passwords in an attempt to

determine the
orre
t one. Many heuristi
 proto
ols have been proposed

to solve this important problem. Only re
ently have formal validations of

se
urity (namely, proofs in the idealized random ora
le and ideal
ipher

models) been given for spe
i�

onstru
tions [3, 10, 22℄.

Very re
ently, a
onstru
tion based on general assumptions, se
ure in the

standard model with human-memorable passwords, has been proposed

by Goldrei
h and Lindell [17℄. Their proto
ol requires no publi
 parame-

ters; unfortunately, it requires te
hniques from general multi-party
om-

putation whi
h make it impra
ti
al. Thus, [17℄ only proves that solutions

are possible \in prin
ipal". The main question left open by their work

was �nding an eÆ
ient solution to this fundamental problem.

We show an eÆ
ient, 3-round, password-authenti
ated key ex
hange pro-

to
ol with human-memorable passwords whi
h is provably se
ure under

the De
isional DiÆe-Hellman assumption, yet requires only (roughly) 8

times more
omputation than \standard" DiÆe-Hellman key ex
hange

[14℄ (whi
h provides no authenti
ation at all). We assume publi
 param-

eters available to all parties. We stress that we work in the standard

model only, and do not require a \random ora
le" assumption.

1 Introdu
tion

1.1 Ba
kground

Proto
ols whi
h allow for mutual authenti
ation of two parties and for gener-

ating a
ryptographi
ally-strong shared key between them (authenti
ated key

1

This is an expanded version of a paper whi
h appears in Euro
rypt 2001.

ex
hange) underly most intera
tions taking pla
e on the Internet. The impor-

tan
e of this primitive has been realized for some time by the se
urity
ommunity

(see [11℄ for exhaustive referen
es), followed by an in
reasing re
ognition that

pre
ise de�nitions and formalization were needed. The �rst formal treatments

[4,6, 2, 20, 9, 28, 11℄ were in a model in whi
h parti
ipants already share some

ryptographi
ally-strong information: either a se
ret key whi
h
an be used for

en
ryption/authenti
ation of messages, or a publi
 key whi
h
an be used for

en
ryption/signing of messages. The setting arising most often in pra
ti
e | in

whi
h (human) users are only
apable of storing \human-memorable" passwords

(password-authenti
ated key ex
hange) | remains mu
h less studied, though

many heuristi
 proto
ols exist. Indeed, only re
ently have formal de�nitions of

se
urity for this setting appeared [3, 10, 22, 17℄.

The problem (in the standard model; i.e., without random ora
les) is diÆ
ult

pre
isely be
ause it requires \bootstrapping" from a weak shared se
ret to a

strong one. In fa
t, it is not even a priori
lear that a solution is possible.

Completeness results for multi-party
omputation [18℄ do not dire
tly apply here

due to the strong adversarial model
onsidered (see Se
tion 2). In parti
ular,

the adversary may ask for
on
urrent (arbitrarily-interleaved) exe
utions of the

proto
ol, may modify messages or even prevent their delivery, may impersonate

parti
ipants in the proto
ol and a
t as a \man-in-the-middle", and may
orrupt

all proto
ol parti
ipants. Nevertheless, in a very re
ent paper, Goldrei
h and

Lindell [17℄ have shown that in prin
iple, this problem is solvable based on

any trapdoor permutation (leaving open the question of whether a pra
ti
al

solution is possible). We show, perhaps somewhat surprisingly, the existen
e

of an eÆ
ient solution for human-memorable passwords under the De
isional

DiÆe-Hellman assumption.

1.2 The Adversarial Model

The setting is as follows (a formal dis
ussion appears in Se
tion 2): two par-

ties within a larger network who share a weak (low-entropy) password wish to

authenti
ate ea
h other and generate a strong session key for prote
ting their

subsequent
ommuni
ation. An adversary
ontrols all
ommuni
ation in the net-

work. Thus, messages may be tampered with, delivered out-of-order, or not de-

livered at all; the adversary may also ask for arbitrarily-interleaved exe
utions of

the proto
ol. Finally, the adversary may
orrupt sele
ted instan
es (see below) of

the parti
ipants and obtain the session keys generated by su

essful exe
utions

of the proto
ol. The adversary su

eeds if he
an
ause a parti
ipant to
ompute

a session key whi
h the adversary
an then distinguish from random.

Sin
e the spa
e of possible passwords is small, an adversary who has mon-

itored a
onversation may enumerate all possible passwords and try to mat
h

the re
orded
onversation to ea
h one. As an example, any
hallenge-response

proto
ol in whi
h one party sends
hallenge N and the other responds with

f(password; N) is trivially sus
eptible to this atta
k, regardless of f (note that

su
h an atta
k is not possible by a poly-time adversary, for appropriate
hoi
e

of f , when the parties share a high-entropy password). Additionally, the fa
t

that the adversary
an
orrupt instan
es and determine the a
tual session key

means that the proto
ol must ensure
onsisten
y between the re
orded
onversa-

tion and these session keys, even while not revealing any information about the

password. These
ompli
ations make this problem mu
h harder than the
ase in

whi
h parti
ipants already share a strong key at the outset of the proto
ol.

What does se
urity mean in a model whi
h is inherently inse
ure? Indeed,

sin
e passwords are
hosen from a small spa
e, an adversary
an always try ea
h

possibility one at a time in an impersonation (on-line) atta
k. Thus, we say a

proto
ol is se
ure (informally) if this exhaustive guessing is the best an adversary

an do. For a real-world adversary, su
h on-line atta
ks are the hardest to mount,

and they are also the easiest to dete
t. It is very realisti
 to assume that the

number of on-line atta
ks an adversary is allowed is severely limited, while other

atta
ks (eavesdropping, o�-line password guessing) are not.

1.3 Previous Work

The problem of o�-line atta
ks in password-authenti
ated proto
ols was �rst

noted by Bellovin and Merritt [7℄, followed by a
urry of work in the se
urity

ommunity providing additional solutions with heuristi
 arguments for their se-

urity (see [11℄ for exhaustive referen
es). More re
ently, two formal models

for password-authenti
ated key ex
hange have been proposed: one by Bellare,

Point
heval, and Rogaway [3℄, based on [4, 6℄ with extensions suggested by [21℄;

and a se
ond by Boyko, Ma
Kenzie, and Patel [10℄, following [2℄ with extensions

given in [28℄. While both models have their advantages, we
hoose to work in

the �rst model and review the appropriate de�nitions in Se
tion 2.

These models all assume that two parties wishing to
ommuni
ate share only

a human-memorable password; in parti
ular, they do not assume a publi
-key

infrastru
ture (PKI) whi
h allows parti
ipants to generate and share publi
 keys.

De�nitions for se
urity in this setting have also been proposed [20,9, 28℄ and, in

fa
t, the �rst proto
ols resistant to o�-line di
tionary atta
ks were given in this

model. However, the requirement of a se
ure PKI is a strong one, and we wish

to avoid it.

Only re
ently have formal validations of se
urity for spe
i�
 proto
ols ap-

peared [3, 10, 22℄. However, these validations are not proofs in the standard

model; [3℄ relies on ideal
iphers, while [10,22℄ rely on random ora
les. More

re
ently, Goldrei
h and Lindell [17℄ have shown a proto
ol based on general as-

sumptions whi
h is se
ure in the standard model. Interestingly, in
ontrast to the

present work, their proto
ol does not require publi
 parameters. Unfortunately,

their
onstru
tion requires a non-
onstant number of rounds and also requires

te
hniques from generi
 multi-party
omputation [18℄. Thus, their s
heme serves

as a general plausibility result (a terminology
oined in [16℄), but is mu
h too in-

eÆ
ient for pra
ti
al use. Finally, as pointed out by the authors themselves, the

solution of [17℄ does not allow for
on
urrent exe
utions of the proto
ol between

parties using the same password.

1.4 Our Contribution

Se
urity validation via proofs in the random ora
le and ideal
ipher models are

useful, as they lend a measure of
on�den
e to proto
ols whose se
urity would

otherwise be only heuristi
. On the other hand, proofs of se
urity in these models

do not ne
essarily translate to real-world se
urity [12℄, so it is important to have

proofs under standard
ryptographi
 assumptions. We prove the se
urity of our

onstru
tion using only the De
isional DiÆe-Hellman (DDH) assumption.

EÆ
ien
y is espe
ially important in this setting, where se
urity
on
erns are

motivated by very pra
ti
al
onsiderations (human users' inability to remem-

ber long se
rets). We stress that our s
heme, though provably se
ure, is very

pra
ti
al even when
ompared to heuristi
ally-se
ure proto
ols su
h as [3, 10℄ or

the original DiÆe-Hellman proto
ol [14℄ (whi
h does not provide any authen-

ti
ation). Our proto
ol requires only three rounds and has
ommuni
ation and

omputational
omplexity only (roughly) 5-8 times greater than the above solu-

tions. Furthermore, we are able to
onstru
t our s
heme without making stronger

assumptions (the DDH assumption is used in [14,3, 10℄).

Although our solution relies on publi
-key te
hniques (in fa
t, this is ne
-

essary [20℄) we emphasize that our proto
ol is not a \publi
-key solution" (as

in [2,20, 9℄). In parti
ular, we do not require any parti
ipant to have a pub-

li
 key, but instead rely on one set of
ommon parameters shared by everyone

in the system. This avoids problems asso
iated with publi
 key infrastru
tures

(su
h as revo
ation,
entralized trust, key management issues, et
.), and also

allows new servers and
lients to join the network at any time during exe
ution

of the proto
ol without requiring a

ess to an on-line,
entralized (trusted) au-

thority (in fa
t, they do not even need to inform anyone else of their presen
e).

Furthermore, no parti
ipants know the \se
ret key" asso
iated with the pub-

li
 parameters. This eliminates the risk that
ompromise of a parti
ipant will

ompromise the se
urity of the entire system.

The
onstru
tion given here is se
ure under both the notion of basi
 se
urity

and the stronger notion of \forward se
urity" (in the weak
orruption model).

In this initial version we
on
entrate on basi
 se
urity only, and leave the topi

of forward se
urity for the �nal version.

2 Model and De�nitions

The reader is assumed to be familiar with the model of [3℄, whi
h is the model in

whi
h we prove se
urity of our proto
ol. For
ompleteness, we review the main

points of their de�nition here, and refer the reader to [3℄ for more details.

Prin
ipals, Passwords, and Initialization.We have a �xed set of proto
ol

parti
ipants (prin
ipals) ea
h of whi
h is either a
lient C 2 Client or a server S 2

Server (Client and Server are disjoint). We let User

def

= Client [Server. Ea
h C 2

Client has a password pw

C

. Ea
h S 2 Server has a ve
tor PW

S

= hpw

C

i

C2Client

whi
h
ontains the passwords of ea
h of the
lients (we assume that all
lients

share passwords with all servers). Re
all that pw

C

is what
lient C remembers

to log in; therefore, it is assumed to be
hosen from a relatively small spa
e of

possible passwords.

Before the proto
ol is run, an initialization phase o

urs during whi
h publi

parameters are set and passwords are
hosen for ea
h
lient. We assume that

passwords for ea
h
lient are
hosen independently and uniformly

2

at random

from the set f1; : : : ; Ng, where N is a
onstant, independent of the se
urity

parameter.

Exe
ution of the Proto
ol. In the real world, proto
ol P determines how

prin
ipals behave in response to signals (input) from their environment. Ea
h

prin
ipal is able to exe
ute the proto
ol multiple times with di�erent partners;

this is modeled by allowing ea
h prin
ipal an unlimited number of instan
es in

whi
h to exe
ute the proto
ol (see [6℄). We denote instan
e i of user U as �

i

U

.

A given instan
e is used only on
e. The adversary is assumed to have
omplete

ontrol over all
ommuni
ation in the network. Thus, the adversary's intera
tion

with the prin
ipals is modeled via a

ess to ora
les whose inputs may range over

U 2 User and i 2 IN; this allows the adversary to \intera
t with" di�erent

instan
es. Global state is maintained throughout the entire exe
ution for ea
h

instan
e with whi
h the adversary intera
ts (this global state is not dire
tly

visible to the adversary); the global state for an instan
e may be updated by

an ora
le during an ora
le
all, and the ora
le's output may depend upon this

state. The ora
le types, as de�ned in [3℄, are:

{ Send(U; i;M) | This sends message M to instan
e �

i

U

. The ora
le runs this

instan
e as in a real exe
ution, maintaining state as appropriate. The output

of �

i

U

is given to the adversary in addition to other information; see [3℄.

{ Exe
ute(C; i; S; j) | This ora
le exe
utes the proto
ol between instan
es �

i

C

and �

j

S

, where C 2 Client and S 2 Server, and outputs a trans
ript of this

exe
ution. This trans
ript in
ludes everything an adversary would see when

eavesdropping on a real-world exe
ution of the proto
ol, as well as other

information; see [3℄.

{ Reveal(U; i) | This outputs the session key sk

i

U

(stored as part of the global

state) of instan
e �

i

U

.

{ Test(U; i) | This query is allowed only on
e, at any time during the adver-

sary's exe
ution. A random bit b is generated; if b = 1 the adversary is given

sk

i

U

, and if b = 0 the adversary is given a random session key.

Advantage of the Adversary. Event Su

 o

urs (adversary A su

eeds) if

she asks a single Test query, outputs a bit b

0

, and b

0

= b (where b is the bit
hosen

by the Test ora
le). The advantage of A in atta
king proto
ol P , is de�ned as as

Adv

ake

P;A

def

= 2Pr[Su

℄ � 1. If the adversary were unrestri
ted, su

ess would be

trivial (sin
e the adversary
ould submit a Reveal query for the same instan
e

submitted to the Test ora
le). Clearly, some restri
tions must be imposed. Before

des
ribing these, we formalize the idea of partnering. Intuitively, instan
es �

i

U

2

This is for ease of presentation only, as our analysis
an be extended easily to handle

arbitrary distributions, in
luding users with inter-dependent passwords.

and �

j

U

0

are partnered if they have jointly run proto
ol P . Formally, we de�ne

a session-id (sid) for ea
h instan
e, and say that two instan
es are partnered

if they hold the same sid (whi
h is not null). Here, we de�ne the sid as the

on
atenation of all messages sent and re
eived by an instan
e (i.e., a trans
ript

of the exe
ution). The following restri
tion may now be imposed on an adversary

whose Test query is (U; i): that a Reveal query may not be
alled on (U; i) or on

(U

0

; j), where �

j

U

0

is partnered with �

i

U

. Furthermore, instan
e �

i

U

must have

ompleted exe
ution, and therefore have a non-null session key de�ned.

A poly-time adversary will be able to break any proto
ol by attempting to

impersonate a user and trying all passwords one-by-one (the size of the password

spa
e is independent of the se
urity parameter | indeed, this is what distin-

guishes the problem from that of [4,6℄). So, we say that a given proto
ol is se
ure

when this kind of atta
k is the best an adversary
an do. More formally, let q

send

be the number of
alls the adversary makes to the Send ora
le. A proto
ol is se-

ure if, when passwords are
hosen from a di
tionary of size N , the adversary's

advantage in atta
king the proto
ol is bounded by

O(q

send

=N) + "(k);

for some negligible fun
tion "(�). The �rst term represents the fa
t that the

adversary
an (essentially) do no better than guess a password during ea
h
all

to the Send ora
le

3

. In parti
ular, even polynomially-many
alls to the Exe
ute

ora
le (i.e., passive observations of valid exe
utions) and the Reveal ora
le (i.e.,

ompromise of short-term session keys) are of no help to an adversary; only on-

line impersonation atta
ks (whi
h are harder to mount and easier to dete
t) give

the adversary a non-negligible advantage.

Con
rete se
urity is parti
ularly important in this setting sin
e the adver-

sary's advantage is non-negligible (assuming Send queries are made). We quan-

tify an adversary's maximumadvantage as a fun
tion of the adversary's running

time t and the number of queries made to the Send, Exe
ute, and Reveal ora
les

(q

send

; q

exe
ute

; and q

reveal

respe
tively).

3 A Provably Se
ure Proto
ol for password-AKE

3.1 Building Blo
ks

Our proto
ol and proof of se
urity rely on a number of building blo
ks. First, our

proto
ol uses the Cramer-Shoup
ryptosystem [13℄ whi
h is se
ure under adap-

tive
hosen-
iphertext atta
k. A
tually, we require an extension of the Cramer-

Shoup
ryptosystem, whi
h remains se
ure under adaptive
hosen-
iphertext

atta
k. Our extension de�nes two \types" of en
ryption:
lient-en
ryption and

3

A tighter de�nition of se
urity would require that the adversary's advantage be

bounded by q

send

=rN + "(k), where r is the minimum number of messages an ad-

versary needs to send in order to
ause (
ompletion of the proto
ol and) a non-null

session key to be de�ned. An analysis of our proof proof indi
ates that the se
urity

of our
onstru
tion is indeed tight in this respe
t.

server-en
ryption. Details appear in Appendix B. We will also need a one-time

signature s
heme [15℄ se
ure against existential forgery [19℄. Finally, our proof of

se
urity relies on the De
isional DiÆe-Hellman (DDH) assumption [14,8℄ (note

that the se
urity of the Cramer-Shoup
ryptosystem requires the DDH assump-

tion already). We review these
omponents in Appendix A, and also expli
itly

quantify their (in)se
urity whi
h is ne
essary for an expli
it analysis of the ad-

versary's maximum advantage in atta
king the key ex
hange proto
ol.

Chosen-
iphertext-se
ure en
ryption has been used previously in the
ontext

of se
ure key ex
hange [2, 20, 9, 28℄. However, as pointed out above, our proto
ol

di�ers from these works in that it does not require the assumption of a publi
-

key infrastru
ture, and no parti
ipant holds a se
ret key or publishes a publi

key. Indeed, \de
ryption" is never performed during exe
ution of our proto
ol.

3.2 The Proto
ol

A high-level des
ription of the proto
ol is given in Figure 1. Let p; q be primes

su
h that qjp�1, and let G be a subgroup ofZ

�

p

of order q in whi
h the DDH as-

sumption holds. During the initialization phase, generators g

1

; g

2

; h;
; d 2 G and

a fun
tionH from a family of universal one-way hash fun
tions [23℄ (whi
h
an be

based on any one-way fun
tion [26℄) are
hosen at random and published. Note

that this publi
 information is not an added assumption

4

; \standard" DiÆe-

Hellman key ex
hange [14℄ typi
ally assumes that parties use a �xed generator g

(although this is not ne
essary), and [3, 10℄ seem to require a publi
 generator g

for their proofs of se
urity. However, we do require that no one know the dis
rete

logarithms of any of the generators with respe
t to any other, and thus we need

either a trusted party who generates the publi
 information or else a sour
e of

randomness whi
h
an be used to publi
ly derive the information.

As part of the initialization phase, passwords are
hosen randomly for ea
h

lient. We assume that all passwords lie in (or
an be mapped to)Z

q

. For typi
al

values of jqj, this will be a valid assumption for human-memorable passwords.

Exe
ution of the proto
ol is as follows (see Figure 1): When
lient C wants

to
onne
t to server S, the
lient �rst runs the key generation algorithm for

the one-time signature s
heme, giving VK and SK. Then, the
lient
omputes

a
lient-en
ryption (see Appendix B) of g

pw

C

1

. This, along with the
lient's

name, is sent to the server as the �rst message. The server
hooses random

elements x

2

; y

2

; z

2

; w

2

fromZ

q

,
omputes �

0

using the �rst message, and forms

g

x

2

1

g

y

2

2

h

z

2

(
d

�

0

)

w

2

. The server then
omputes a server-en
ryption (see Appendix

B) of g

pw

C

1

. This is sent ba
k to the
lient as the se
ond message. The
lient

sele
ts random elements x

1

; y

1

; z

1

; w

1

from Z

q

,
omputes �

0

using the se
ond

message, and forms K = g

x

1

1

g

y

1

2

h

z

1

(
d

�

0

)

w

1

. Finally, �

0

and K are signed us-

ing the signing key whi
h was generated in the �rst step. The sid is de�ned as

the trans
ript of the entire
onversation. A formal des
ription of the proto
ol

appears in Appendix C.

4

The proto
ols of [22, 17℄, however, do not require any publi
 information.

Publi
 information: p; q; g

1

; g

2

; h;
; d;H

Client Server

(VK;SK) SigGen(1

k

)

r

1

 � Z

q

A = g

r

1

1

;B = g

r

1

2

C = h

r

1

g

pw

C

1

� = H(Client jVKjAjBjC)

D = (
d

�

)

r

1

Client j VK j A j B j C j D

-

x

2

; y

2

; z

2

; w

2

; r

2

 � Z

q

�

0

= H(Client jVKjAjBjC)

E = g

x

2

1

g

y

2

2

h

z

2

(
d

�

0

)

w

2

F = g

r

2

1

;G = g

r

2

2

I = h

r

2

g

pw

C

1

� = H(Server jEjF jGjI)

J = (
d

�

)

r

2

Server j E j F j G j I j J

�

x

1

; y

1

; z

1

; w

1

 Z

q

�

0

= H(Server jEjF jGjI)

K = g

x

1

1

g

y

1

2

h

z

1

(
d

�

0

)

w

1

Sig = Sign

SK

(�

0

j K)

K j Sig

-

I

0

= I=g

pw

C

1

sk

C

= E

r

1

F

x

1

G

y

1

(I

0

)

z

1

J

w

1

if Verify

VK

((� j K);Sig) = 1

C

0

= C=g

pw

C

1

sk

S

= K

r

2

A

x

2

B

y

2

(C

0

)

z

2

D

w

2

else sk

S

 G

Fig. 1. The proto
ol for password-AKE. See text for details.

The proto
ol des
ription in Figure 1 omits many implementation details

whi
h are important for the proof of se
urity to hold. Most important is for both

lient and server to perform a \validity
he
k" on the messages they re
eive. In

parti
ular, ea
h side should
he
k that the values they re
eive are a
tually in

the group G and are not the identity (in other words, it is required to
he
k

that the group elements indeed have order q). Note that su
h validity
he
ks are

required even for
hosen-
iphertext se
urity of the underlying Cramer-Shoup

ryptosystem.

Corre
tness. In an honest exe
ution of the proto
ol, C and S
al
ulate iden-

ti
al session keys. To see this, �rst note that � = �

0

and � = �

0

in an honest

exe
ution. Then:

sk

C

= (g

x

2

1

g

y

2

2

h

z

2

(
d

�

)

w

2

)

r

1

g

r

2

x

1

1

g

r

2

y

1

2

h

r

2

z

1

(
d

�

)

r

2

w

1

and

sk

S

= (g

x

1

1

g

y

1

2

h

z

1

(
d

�

)

w

1

)

r

2

g

r

1

x

2

1

g

r

1

y

2

2

h

r

1

z

2

(
d

�

)

r

1

w

2

;

and one
an verify that these are equal.

Mutual Authenti
ation. We note that the proto
ol as presented above

a
hieves key ex
hange only, and not mutual authenti
ation. However, we
an

trivially add mutual authenti
ation by adding a fourth message to the proto
ol.

Details will appear in the �nal version.

3.3 Pra
ti
al Considerations

In pra
ti
e, a
ollision resistant hash fun
tion (say, SHA-1)
an be used instead of

a universal one-way hash fun
tion. This has the advantage of in
reased eÆ
ien
y,

at the expense of requiring a (possibly) stronger assumption for se
urity.

EÆ
ient one-time signatures [15℄
an be based on (presumed) one-way fun
-

tions like SHA-1 or DES. In parti
ular, one-time signatures are mu
h more ef-

�
ient than signature s
hemes whi
h are se
ure against adaptive (polynomially-

many)
hosen message atta
ks.

Client
omputation
an be redu
ed (whi
h is important when the
lient

is smart
ard-based) as follows: instead of using a one-time signature s
heme

where fresh keys need to be generated ea
h time a
onne
tion is made, a sign-

ing key/veri�
ation key
an be generated on
e (upon initialization) and used

for the lifetime of the
lient. Parti
ularly suited for su
h appli
ations are \on-

the-
y" signature s
hemes su
h as [27,24, 25℄. This initialization step may be

done by a host
omputer (with the keys then downloaded to the smart
ard) or

this step may be done o�-line before the �rst
onne
tion is made. The proof

of se
urity given in Se
tion 4 still holds. The disadvantage is that this signa-

ture s
heme is now required to be se
ure against existential forgeries even when

polynomially-manymessages are signed (and not just a single message). In some

ases, however, this tradeo� may be a

eptable.

Finally, note that we may store g

pw

C

1

at the server instead of pw

C

and thereby

avoid
omputing the exponentiation ea
h time the proto
ol is exe
uted.

4 Se
urity of the Proto
ol

We
on
entrate here on the basi
 se
urity of the proto
ol, and leave the
orre-

sponding results about forward se
urity to the full paper. The following theorem

indi
ates that the proto
ol is se
ure, sin
e all lower order terms are negligible in

k (see Appendix A for de�nitions of the lower order terms).

Theorem 1. Let P be the proto
ol of Figure 1, where passwords are
hosen from

a di
tionary of size N , and let k = jqj be the se
urity parameter. Let A be an

adversary whi
h runs in time t and asks q

exe
ute

; q

send

, and q

reveal

queries to the

respe
tive ora
les. Then:

Adv

ake

P;A

<

q

send

2N

+ 2q

send

"

sig

(k; t) + 2"

ddh

(k; t) + 2q

send

"

s

(k; t; q

send

=2)

+ 2q

send

"

hash

(k; t) +

minf2q

reveal

; q

send

g

q

+

2minfq

reveal

; q

exe
ute

g

q

2

:

It will be helpful to develop some intuition and notation before presentation

of the full proof. First, note that the Exe
ute ora
le
annot help the adversary.

The reason is that DiÆe-Hellman key ex
hange [14℄ forms the \heart" of this

proto
ol, and this is se
ure under a passive atta
k.

Next,
onsider a
tive \impersonation atta
ks" by the adversary. The proto
ol

has three
ows. When an adversary tries to impersonate a
lient (in an attempt

to determine the eventual session key of a server), the adversary must send the

�rst and third messages; when the adversary wants to impersonate a server (in

an attempt to determine the eventual session key of a
lient), the adversary must

\prompt" the
lient to generate the �rst message and must then send the se
ond

message. Consider an adversary impersonating a
lient, and let the �rst message

(whi
h
omes from the adversary) be hClientjVKjAjBjCjDi. We say this message

is valid if:

log

g

1

A = log

g

2

B = log

h

(C=g

pw

C

1

) = log

d

�

0

D; (1)

where �

0

= H(Client;VK; A;B;C), and pw

C

is the password for Client. We

de�ne valid analogously for the se
ond message of an adversary impersonating

a server (note that here the password whi
h determines validity depends upon

the name of the
lient to whi
h the adversary sends the message). We do not

de�ne any notion of validity for the third message. The following fa
t is
entral

to our proof:

Fa
t 1 When an invalid message is sent to an instan
e, the session key
om-

puted by that instan
e is information-theoreti
ally independent of all messages

sent and re
eived by that instan
e. This holds for both
lients and servers.

Proof. Consider the
ase of an adversary intera
ting with a server, with the �rst

message as above. Let �

1

def

= log

g

1

g

2

; �

2

def

= log

g

1

h; and �

3

def

= log

g

1

(
d

�

0

). Con-

sider the random values x

2

; y

2

; z

2

; w

2

(see Figure 1) used by the server instan
e

during its exe
ution. Element E of the se
ond message
onstrains these values

as follows:

log

g

1

E = x

2

+ y

2

�

1

+ z

2

�

2

+ w

2

�

3

: (2)

The session key is
al
ulated asK

r

2

multiplied by sk

0

S

= A

x

2

B

y

2

(C=g

pw

C

1

)

z

2

D

w

2

.

But we have:

log

g

1

sk

0

S

= x

2

log

g

1

A+ y

2

�

1

log

g

2

B + z

2

�

2

log

h

(C=g

pw

C

1

) +w

2

�

3

log

d

�

0

D:(3)

When equation (1) does not hold (i.e., the message is invalid), equations (2) and

(3) are linearly independent and sk

0

S

2

R

G is information-theoreti
ally indepen-

dent of the trans
ript of the exe
ution. A similar argument holds for the
ase of

an adversary intera
ting with a
lient.

Let �

i

U

be an instan
e to whi
h the adversary has sent an invalid message.

Fa
t 1 implies that the adversary has advantage 0 in distinguishing the session

key generated by this instan
e from a random session key. Thus, an adversary's

(non-zero) advantage
an
ome about only by sending a valid message to an

instan
e.

We
all a message sent by an adversary previously-used if the message was

previously output by a
lient or server running the proto
ol (that is, the adver-

sary has simply \
opied" and re-used the message), and is new otherwise. The

following lemma bounds the adversary's probability of
oming up with a new,

valid �rst or se
ond message:

Lemma 1. An adversary's probability of sending, at any point during the pro-

to
ol, a �rst or se
ond message whi
h is both new and valid is bounded by

O(q

send

=N) + "(k), for some negligible fun
tion "(�).

This lemma essentially follows from the
hosen-
iphertext se
urity (and hen
e

non-malleability) of extended Cramer-Shoup en
ryption (see [13℄ and Appendix

B). Detail appear in the full proof, below. The lemma re
e
ts the fa
t that the

adversary
an (trivially) \guess" the appropriate password

5

ea
h time he sends

a �rst or se
ond message.

The only remaining point to argue is that previously-used messages
annot

signi�
antly help the adversary. First note that if an adversary re-uses a �rst

message, the adversary will (with high probability) not be able to
ompute a

valid signature to in
lude with the third message. If an adversary re-uses a

se
ond message, the full proof indi
ates that without knowing the randomness

used to generate that message, the adversary will gain only negligible advantage.

Proof (of Theorem 1). We refer to the formal spe
i�
ation of the proto
ol as it

appears in Appendix C. The number of
lients and servers is polynomial in the

se
urity parameter, and this number is �xed in advan
e

6

and publi
.

We imagine a simulator who
ontrols all ora
les to whi
h the adversary has

a

ess. The simulator runs the proto
ol initialization as des
ribed in Appendix

C, Figure 2, in
luding sele
ting passwords for ea
h
lient

7

. The simulator answers

the adversary's ora
le queries as de�ned in Appendix C, Figures 3 and 4. The

adversary su

eeds if it
an guess the bit b that the simulator uses during the

Test query (see Se
tion 2 for additional details).

We de�ne a sequen
e of transformations P

1

; : : : to the original proto
ol P

0

,

and bound the e�e
t ea
h transformation has on the adversary's advantage.

5

The lemma assumes that passwords are
hosen uniformly at random from the pass-

word spa
e, but
an be appropriately modi�ed to handle arbitrary distributions.

6

As mentioned in Se
tion 1.4,
lients and servers
an in fa
t be dynami
ally added to

the proto
ol during exe
ution at the request of the adversary (and even with pass-

words
hosen by the adversary, when forward se
urity is
onsidered). For simpli
ity,

we fo
us on the stati

ase.

7

For simpli
ity we assume that users
hoose passwords independently and with uni-

form distribution. The analysis
an easily be modi�ed to a

ommodate arbitrary

distributions.

Then, we bound the adversary's advantage in the �nal (transformed) proto
ol;

this gives an expli
it bound on the adversary's advantage in the original proto
ol.

Consider the veri�
ation keys output by the Send

0

ora
le during the
ourse of

the proto
ol. We may restri
t ourselves to the
ase where the adversary is unable

to forge a new message/signature pair for any of these keys during the
ourse of

the proto
ol. This
an
hange the adversary's su

ess probability (as a simple

hybrid argument shows) by at most q

send

0

"

sig

(k; t) � q

send

"

sig

(k; t). We may also

restri
t ourselves to the
ase in whi
h no two messages output by the Send

1

ora
le during the
ourse of the proto
ol have identi
al asso
iated values of �,

sin
e this will o

ur with probability at most q

send

1

"

hash

(k; t) � q

send

"

hash

(k; t).

In proto
ol P

1

,
alls to the Exe
ute ora
le are answered as before, ex
ept that

C and I are
hosen at random from G. The following bounds the e�e
t on the

adversary's advantage:

Lemma 2. The adversary's su

ess probability in P

1

di�ers by at most "

ddh

(k; t)

from its advantage in P

0

.

Proof. The simulator uses the adversary as a bla
k box to distinguish DiÆe-

Hellman quadruples from random quadruples. Given quadruple (g; h; s; t) and

group G, it runs the initialization as follows:

a; b; ` Z

q

g

1

= g; g

2

= g

a

;
 = g

b

; d = g

`

H UOWH

Publish parameters (q; g

1

; g

2

; h;
; d;H) and group G

hpw

C

i

C2Client

 f1; : : : ;Ng

By a random self-redu
ibility property [28,1℄, the simulator
an generate

s

T

; t

T

(for T = 1; : : :) su
h that, if (g; h; s; t) is a DiÆe-Hellman quadruple, so

is (g; h; s

T

; t

T

); on the other hand, if (g; h; s; t) is a random quadruple, then

(g; h; s

T

; t

T

) is distributed among random quadruples with g and h �xed. The

T -th
all to Exe
ute is answered as:

Exe
ute(Client; i;Server; j) |

(VK;SK)

R

 � SigGen(1

k

) x

1

; x

2

; y

1

; y

2

; z

1

; z

2

; w

1

; w

2

R

 �Z

q

A = s

2T

; B = s

a

2T

; C = t

2T

� g

pw

C

1

� = H(Client j VKjAjBjC)

D = s

b+�`

2T

msg-out

1

 � hClient j VK j A j B j C j Di

E = g

x

1

1

g

x

1

2

h

z

1

(
d

�

)

w

1

F = s

2T+1

; G = s

a

2t+1

; I = t

2T+1

� g

pw

C

1

� = H(ServerjEjF jGjI)

J = s

b+�`

2T+1

msg-out

2

 � hServer j E j F j G j I j Ji

K = g

x

2

1

g

y

2

2

h

z

2

(
d

�

)

w

2

msg-out

3

 � hK j Sign

SK

(�jK)i

sk

j

S

 �sk

i

C

 � A

x

1

B

y

1

(C � g

�pw

C

1

)

z

1

D

w

1

F

x

2

G

y

2

(I � g

�pw

C

1

)

z

2

J

w

2

sid

j

S

 �sid

i

C

 �hmsg-out

1

j msg-out

2

jmsg-out

3

i

return hmsg-out

1

;msg-out

2

;msg-out

3

i

If (g; h; s; t) is a DiÆe-Hellman quadruple, this is an exa
t simulation of P

0

; on

the other hand, if it is a random quadruple, this is an exa
t simulation of P

1

.

In proto
ol P

2

,
alls to Exe
ute are answered as before ex
ept that the session

key is
hosen randomly from G. The adversary's view (and thus its su

ess proba-

bility) is within statisti
al distan
e minfq

reveal

; q

exe
ute

g=q

2

from the adversary's

view in proto
ol P

1

. Indeed, Fa
t 1 shows that the session key is independent

of the trans
ript of the exe
ution seen by the adversary whenever msg-out

1

or

msg-out

2

are not valid (for the appropriate password). But when C and I are

hosen randomly, the probability that both msg-out

1

and msg-out

2

are valid is

exa
tly 1=q

2

.

In proto
ol P

3

, the publi
 parameters are generated by
hoosing g

1

and g

2

randomly from G, then
hoosing x

1

; x

2

; y

1

; y

2

, and z randomly fromZ

q

and set-

ting
 = g

x

1

1

g

x

2

2

, d = g

y

1

1

g

y

2

2

, and h = g

z

1

; H is
hosen as before. Furthermore,

the Send

3

ora
le is
hanged as follows: the simulator �rst
he
ks whether �rst-

msg-in (whi
h was the message sent to the Send

1

ora
le for the same instan
e)

is previously-used (see above). If so, the
urrent query to the Send

3

ora
le is an-

swered normally. Otherwise, let �rst-msg-in = hClientjVKjAjBjCjDi. The simu-

lator
omputes � = H(ClientjVKjAjBjC) and
he
ks whether A

x

1

+y

1

�

B

x

2

+y

2

�

=

D and g

pw

C

1

A

z

= C. If so, �rst-msg-in is said to appear valid, and the query is

answered normally. If not, �rst-msg-in is said to appear non-valid, and the query

is answered normally ex
ept that the session key is
hosen randomly from G.

Calls to Send

2

(Client; i;msg-in) are answered in similar fashion. If msg-in

is previously-used, the query is answered normally. Otherwise, let msg-in =

hServerjEjF jGjIjJi.The simulator
omputes � = H(ServerjEjF jGjI) and
he
ks

whether F

x

1

+y

1

�

G

x

2

+y

2

�

= J and g

pw

C

1

F

z

= I. If so, msg-in is said to appear

valid, and the query is answered normally. If not, msg-in is said to appear non-

valid, and the query is answered normally but the session key for instan
e �

i

C

is
hosen randomly from G.

The adversary's view of this proto
ol is exa
tly equivalent to its view of

proto
ol P

2

. When �rst-msg-in or msg-in appear non-valid, they are in fa
t

not valid for password pw

C

, and Fa
t 1 shows that the resulting session key

is independent of the adversary's view. On the other hand, a message whi
h

appears valid may in fa
t be invalid, but sin
e the query is answered normally

the adversary's view is not a�e
ted.

In proto
ol P

4

, the de�nition of the adversary's su

ess is
hanged:

{ If, during the
ourse of answering a Send

3

ora
le query, �rst-msg-in is new

and appears valid, the session key is set to the spe
ial value r. If the adver-

sary ever asks a Reveal query for this instan
e, the simulator halts immedi-

ately and the adversary su

eeds.

{ If, during the
ourse of answering a Send

2

ora
le query, msg-in is new and

appears valid, the session key is set to the spe
ial value r. If the adversary

ever asks a Reveal query for this instan
e, the simulator halts immediately

and the adversary su

eeds.

{ Otherwise, the adversary su

eeds, as before, by guessing the bit b.

This
an only in
rease the advantage of the adversary.

In proto
ol P

5

,
al
ulation of the session key by the Send

3

ora
le is modi�ed.

First, every time K is
omputed by the simulator when answering a
all to the

Send

2

ora
le, the simulator stores K along with its asso
iated values of x; y; z; w.

When a
all is made to the Send

3

ora
le with msg-in = hKjSigi, there are four

possibilities:

{ �rst-msg-in is new and appears valid. In this
ase the session key is set to

r and the simulator behaves as in P

4

(above).

{ �rst-msg-in is new and appears non-valid. In this
ase, the simulator
hooses

the session key randomly (as in P

3

; P

4

).

{ �rst-msg-in is previously-used and Verify

VK

((�jK); Sig) = 0. In this
ase, the

simulator
hooses the session key randomly (as in P

0

; : : : ; P

4

).

{ �rst-msg-in is previously-used and Verify

VK

((�jK); Sig) = 1. It must be the

ase that hK; Sigi was previously output by the Send

2

ora
le (sin
e we as-

sume the adversary has not forged any new message/signature pairs). The

simulator therefore knows values x

0

; y

0

; z

0

; w

0

su
h thatK = g

x

0

1

g

y

0

2

h

z

0

(
d

�

)

w

0

.

Let �rst-msg-out = hServerjEjF jGjIjJi and I

�

= I � g

�pw

C

1

. The simulator

al
ulates the session key as:

sk

i

S

 � A

x

B

y

(C

�

)

z

D

w

F

x

0

G

y

0

(I

�

)

z

0

J

w

0

:

The adversary's view is exa
tly equivalent to the adversary's view in P

4

(sin
e

K

r

does equal F

x

0

G

y

0

(I

�

)

z

0

J

w

0

when �rst-msg-out is a valid message; it is valid

sin
e it was generated by the simulator who knows the appropriate password).

In proto
ol P

6

we
hange ora
le Send

1

so that
omponent I is
hosen at

random from G. This
annot
hange the adversary's su

ess probability by

more than q

send

1

"

s

(k; t; q

send

2

+ q

send

3

). If it did, the simulator
ould break

extended-CS en
ryption under a
hosen
iphertext atta
k as follows: parame-

ters for extended-CS en
ryption be
ome the publi
 parameters for the proto-

ol. During the
ourse of the proto
ol, the simulator may determine whether

a new message appears valid by submitting it to the de
ryption ora
le and

he
king whether the returned plaintext is equal to the appropriate password.

When
alls to the Send

1

ora
le are made, the simulator submits the appropri-

ate password as the plaintext along with the server name, the value �, and

a request for a server-en
ryption (see Appendix B). In return, the simulator

is given hServerjEjF jGjIjJi (whi
h may be an en
ryption of either the appro-

priate password or a random group element) along with x; y; z; w su
h that

E = g

x

1

g

y

2

h

z

(
d

�

)

w

. A simple hybrid argument bounds the
hange in the adver-

sary's su

ess probability.

In proto
ol P

7

, the Send

2

ora
le is
hanged so that whenever msg-in was

previously-used the session key is
hosen at random from G. To ensure
on-

sisten
y

8

, the Send

3

(Server; i; �) ora
le is
hanged as follows: if sid

i

S

mat
hes

sid

j

C

for some other instan
e �

j

C

, then sk

i

S

is set equal to sk

j

C

. The statisti
al

di�eren
e between the adversary's view in this proto
ol and the previous one

8

Here we use the fa
t (see above) that values of � asso
iated with messages output

by the Send

1

ora
le do not repeat. Note that the proto
ol
an be modi�ed so that

Send

2

signs msg-in instad of � | this requires a signature on a longer message, but

improves the se
urity of the resulting proto
ol by q

send

"

hash

(k; t).

is bounded by minfq

reveal

; q

send

2

g=q. Indeed, Fa
t 1 shows that the views are

equivalent when msg-in is invalid. Furthermore, the probability that msg-in is

valid for the appropriate password is 1=q (sin
e I was
hosen at random).

In proto
ol P

8

, the Send

0

ora
le is
hanged so that
omponent C is
hosen

randomly from G. Following a similar analysis to that of proto
ol P

6

, this
annot

hange the adversary's su

ess probability by more than q

send

0

"

s

(k; t; q

send

2

+

q

send

3

). Finally, in proto
ol P

9

the Send

3

ora
le is
hanged so that a random ses-

sion key is
hosen when �rst-msg-in is previously-used. Following a similar anal-

ysis to that of proto
ol P

7

, the statisti
al di�eren
e between the adversary's view

in this proto
ol and the previous proto
ol is bounded by minfq

reveal

; q

send

3

g=q.

Consider the adversary's advantage in proto
ol P

9

. The adversary's view

is entirely independent of the passwords
hosen by the simulator unless the

adversary manages to submit a new msg-in whi
h appears valid at some point

during exe
ution of the proto
ol; i.e., su

eeds in guessing the password. The

adversary's probability of guessing the password, however, is pre
isely (q

send

2

+

q

send

3

)=N (this assumes that passwords are sele
ted uniformly; an analogous

al
ulation
an be done when this is not the
ase). The adversary's advantage

in proto
ol P

9

is thus bounded by q

send

=2N (note that the adversary must ask a

q

send

0

query for a q

send

2

query to be meaningful, and similarly must ask a q

send

1

query for a q

send

3

query to be meaningful). The adversary's advantage in the

original proto
ol is therefore bounded by the expression in Theorem 1.

5 A
knowledgments

Thanks to Yehuda Lindell, PhilipMa
Kenzie, and Steven Myers for many helpful

dis
ussions on the topi
 of password-authenti
ated key ex
hange.

Referen
es

1. M. Bellare, A. Boldyreva, and S. Mi
ali. Publi
-Key En
ryption in a Multi-User

Setting: Se
urity Proofs and Improvements. Euro
rypt 2000.

2. M. Bellare, R. Canetti, and H. Kraw
zyk. A Modular Approa
h to the Design and

Analysis of Authenti
ation and Key Ex
hange Proto
ols. STOC '98.

3. M. Bellare, D. Point
heval, and P. Rogaway. Authenti
ated Key Ex
hange Se
ure

Against Di
tionary Atta
ks. Euro
rypt 2000.

4. M. Bellare and P. Rogaway. Entity Authenti
ation and Key Distribution. Crypto

'93.

5. M. Bellare and P. Rogaway. Random Ora
les are Pra
ti
al: A Paradigm for De-

signing EÆ
ient Proto
ols. ACM CCCS '93.

6. M. Bellare and P. Rogaway. Provably Se
ure Session Key Distribution: the Three

Party Case. STOC '95.

7. S. Bellovin and M. Merritt. En
rypted Key Ex
hange: Password-Based Proto
ols

Se
ure against Di
tionary Atta
ks. IEEE Symposium on Se
urity and Priva
y,

1992.

8. D. Boneh. The De
ision DiÆe-Hellman Problem. Pro
eedings of the Third Algo-

rithmi
 Number Theory Symposium, 1998.

9. M. Boyarsky. Publi
-Key Cryptography and Password Proto
ols: The Multi-User

Case. ACM CCCS '99.

10. V. Boyko, P. Ma
Kenzie, and S. Patel. Provably Se
ure Password-Authenti
ated

Key Ex
hange Using DiÆe-Hellman. Euro
rypt 2000.

11. V. Boyko. On All-or-Nothing Transforms and Password-Authenti
ated Key Ex-

hange Proto
ols. PhD Thesis, MIT, Department of Ele
tri
al Engineering and

Computer S
ien
e, Cambridge, MA, 2000.

12. R. Canetti, O. Goldrei
h, and S. Halevi. The Random Ora
le Methodology, Revis-

ited. STOC '98.

13. R. Cramer and V. Shoup. A Pra
ti
al Publi
 Key Cryptosystem Provably Se
ure

Against Chosen Ciphertext Atta
k. Crypto '98.

14. W. DiÆe and M. Hellman. New Dire
tions in Cryptography. IEEE Trans. Info.

Theory, 22(6): 644{654, 1976.

15. S. Even, O. Goldrei
h, and S. Mi
ali. On-Line/O�-Line Digital Signatures. Crypto

'89.

16. O. Goldrei
h. On the Foundations of Modern Cryptography. Crypto '97.

17. O. Goldrei
h and Y. Lindell. Personal Communi
ation and Crypto 2000 Rump

Session. Session-Key Generation using Human Passwords Only. Available at

http://eprint.ia
r.org/2000/057.

18. O. Goldrei
h, S. Mi
ali, and A. Wigderson. How to Play Any Mental Game, or a

Completeness Theorem for Proto
ols with an Honest Majority. STOC '87.

19. S. Goldwasser, R. Rivest, and S. Mi
ali. A Digital Signature S
heme Se
ure Against

Adaptive Chosen Message Atta
ks. SIAM J. Comp. 17(2): 281{308, 1988.

20. S. Halevi and H. Kraw
zyk. Publi
-Key Cryptography and Password Proto
ols.

ACM Transa
tions on Information and System Se
urity, 2(3): 230{268, 1999.

21. S. Lu
ks. Open Key Ex
hange: How to Defeat Di
tionary Atta
ks Without En-

rypting Publi
 Keys. Pro
eedings of the Workshop on Se
urity Proto
ols, 1997.

22. P. Ma
Kenzie, S. Patel, and R. Swaminathan. Password-Authenti
ated Key Ex-

hange Based on RSA. Asia
rypt 2000.

23. M. Naor and M. Yung. Universal One-Way Hash Fun
tions and Their Crypto-

graphi
 Appli
ations. STOC '89.

24. G. Poupard and J. Stern. Se
urity Analysis of a Pra
ti
al \on the
y" Authenti-

ation and Signature Generation. Euro
rypt '98.

25. G. Poupard and J. Stern. On the Fly Signatures Based on Fa
toring. ACM CCCS

'99.

26. J. Rompel. One-Way Fun
tions are Ne
essary and SuÆ
ient for Se
ure Signatures.

STOC '90

27. C.-P. S
hnorr. EÆ
ient Signature Generation by Smart
ards. J. Crypto. 4(3): 161{

174 (1991).

28. V. Shoup. On Formal Models for Se
ure Key Ex
hange. Available at

http://philby.u
sd.edu/
ryptolib.

A Building Blo
ks

De
isional Diffie-Hellman (DDH) Assumption (see [8℄). For
on
reteness,

we let G be a subgroup of Z

�

p

of order q where p; q are prime, qjp � 1, and

jqj = k, the se
urity parameter. Let g be a generator of G. The DDH assumption

states that it is infeasible for an adversary to distinguish between the following

distributions:

fx; y; z Z

q

: (g

x

; g

y

; g

xz

; g

yz

)g and fx; y; z; w Z

q

: (g

x

; g

y

; g

z

; g

w

)g:

More pre
isely,
hoose at random one of the above distributions and give ad-

versary A an element
hosen from this distribution. The adversary su

eeds by

guessing whi
h distribution was
hosen; the advantage is de�ned as usual. Let

"

ddh

(k; t) be the maximumadvantage of any adversary whi
h runs in time t. The

DDH assumption is that for t = poly(k), the advantage "

ddh

(k; t) is negligible.

One-Time Digital Signatures (see [19,15℄). Let SigGen(1

k

) be a probabilis-

ti
 algorithm generating a publi
 veri�
ation key/private signing key (VK; SK).

Signing message M is denoted by Sig Sign

SK

(M), and veri�
ation is de-

noted by b = Verify

PK

(M; Sig) (the signature is
orre
t if b = 1). Consider

the following experiment: SigGen(1

k

) is run to generate (VK; SK). Message M

is
hosen, and the signature Sig Sign

SK

(M) is
omputed. Adversary A is

given (PK;M; Sig) and outputs a pair (M

0

; Sig

0

) whi
h is not equal to the mes-

sage/signature pair it was given. The adversary's advantage is de�ned as the

probability that Verify

PK

(M

0

; Sig

0

) = 1. Let "

sig

(k; t) be the maximum possible

advantage of any adversary whi
h runs in time t. The assumption is that for

t = poly(k), this value is negligible. Note that a signature s
heme meeting this

requirement
an be
onstru
ted [15, 26℄ given any one way fun
tion

9

.

Extended Cramer-Shoup En
ryption ([13℄). The Cramer-Shoup
ryptosys-

tem is an en
ryption s
heme se
ure under adaptive
hosen
iphertext atta
k (see

[13℄ for formal de�nitions). We extend their
ryptosystem, as dis
ussed in Ap-

pendix B; our extension remains se
ure under adaptive
hosen
iphertext atta
k.

The extension gives two \types" of en
ryption algorithms: a
lient-en
ryption

algorithm and a server-en
ryption algorithm, both using the identi
al publi

parameters.

Consider the following experiment: ExtCSGen(1

k

) is run to generate publi

key/private key pair (pk; sk). Adversary A is given pk and is also given a

ess to a

de
ryption ora
le whi
h, given
iphertext C, returns the
orresponding plaintext

P (or ? if the
iphertext is invalid). The adversary outputs a plaintext x, and

may request either a
lient-en
ryption or a server-en
ryption of x. A random

bit b is
hosen; if b = 0 the adversary is given a random en
ryption (of the

type requested) of x, while if b = 1 the adversary is given a random en
ryption

(of the type requested) of a random element. The adversary may
ontinue to

submit queries to the de
ryption ora
le, but
annot ask for de
ryption of the

hallenge
iphertext. The adversary su

eeds by guessing b; the advantage is

de�ned as usual. Let "

s

(k; t; d) be the maximum possible advantage of any

adversary whi
h runs in time t and asks at most d de
ryption ora
le queries. In

[13℄ (see also Appendix B) it is proved that for t; d = poly(k), the advantage

"

s

(k; t; d) is negligible (under the DDH assumption). A
on
rete se
urity bound

an be found in [1℄.

9

The DDH assumption implies that f(x) = g

x

is a one-way fun
tion.

The Cramer-Shoup
ryptosystem uses a universal one-way hash (UOWH)

fun
tion [23℄ as part of its publi
 key. We quantify the se
urity of this fun
tion

as follows: an adversary outputs an element u after whi
h a random fun
tion

H is sele
ted a

ording to some algorithm UOWH(1

k

). Let "

hash

(k; t) be the

maximum advantage of any adversary whi
h runs in time t in �nding a u

0

6= u

su
h that H(u) = H(u

0

). Note that UOWH fun
tions
an be
onstru
ted from

any one-way fun
tion.

B Extended Cramer-Shoup En
ryption

We
onsider here an extension of the Cramer-Shoup en
ryption s
heme [13℄

whi
h is
hosen-
iphertext se
ure. No new te
hniques are used, and the proof of

se
urity for the modi�ed s
heme is exa
tly the same as for the original with the

ex
eption of a few details whi
h one must be
areful to get right.

Publi
 parameters are generators g

1

; g

2

; h = g

z

1

;
 = g

x

1

1

g

x

2

2

; d = g

y

1

1

g

y

2

2

2 G

along with a universal one-way hash fun
tion H. Ciphertexts are of the form:

hAjBjCjDjEjF i. De
ryption is done as in [13℄: �rst, � = H(A;B;C;D;E) is

omputed, and the following
ondition is
he
ked:

C

x

1

+y

1

�

D

x

2

+y

2

�

?

= F:

If it fails output ?. Otherwise, output the plaintext E=C

z

.

The essential di�eren
e lies in the de�nition of the en
ryption ora
le. The

adversary submits a plaintext m but also submits additional information, and

the en
ryption ora
le returns some side information in addition to the
iphertext.

More pre
isely, the adversary in
ludes a bit b 2 f0; 1g, whi
h determines whether

the plaintext is en
rypted via
lient-en
ryption or server-en
ryption. For the

ase of
lient-en
ryption, the adversary also in
ludes Client 2 Client. For the

ase of server-en
ryption, the adversary in
ludes Server 2 Server and a value

� 2Z

q

. The en
ryption ora
le sets m

0

= m with probability 1=2 and
hooses m

0

randomly from G otherwise. En
ryption is then
arried out as follows:

Client-en
ryption(m

0

;Client)

(VK; SK) SigGen(1

k

)

A = Client;B = VK

r Z

q

C = g

r

1

;D = g

r

2

;E = h

r

m

0

� = H(A;B;C;D;E)

F = (
d

�

)

r

return(hA;B;C;D;E; F i; SK)

Server-en
ryption(m

0

; Server; �)

x; y; z; w; r Z

q

A = Server;B = g

x

1

g

y

2

h

z

(
d

�

)

w

C = g

r

1

;D = g

r

2

;E = h

r

m

0

� = H(A;B;C;D;E)

F = (
d

�

)

r

return(hA;B;C;D;E; F i; x; y; z; w)

Theorem 2. The en
ryption s
heme outlined above is se
ure (in the sense of

indistinguishability) under an adaptive
hosen
iphertext atta
k.

Sket
h of Proof (Informal) The proof of se
urity exa
tly follows [13℄, and

it
an be easily veri�ed that the additional information given to the adversary

does not improve her advantage. One point requiring
areful
onsideration is

the adversary's probability of �nding a
ollision in H. If H is
ollision resistant

(a stronger assumption than being universal one-way), there is nothing left to

prove. If H is universal one-way, however, it
an �rst be noted that VK or B

ould be sele
ted by a simulator before H is given to it (if the simulator prepares

the publi
 key su
h that it knows log

g

1

g

2

it
an produ
e a representation of B

for any value � given to it by the adversary). But, we must also deal with the

fa
t that the adversary gets to
hoose A (and the bit b whi
h determines whether

lient-en
ryption or server-en
ryption is used) after seeing H. However, sin
e the

set User is �xed in advan
e, and (at worst) of size polynomial in the se
urity

parameter, the simulator
an \guess" the adversary's
hoi
es in advan
e (before

being given H) and this will only a�e
t the simulator's probability of �nding a

ollision by a polynomial fa
tor (details omitted).

C Formal Spe
i�
ation of the Proto
ol

Initialize(1

k

) |

Sele
t p; q prime with jpj = k and qjp� 1; this de�nes group G

Choose random generators g

1

; g

2

; h;
; d G

H UOWHF

Publish parameters (q; p; g

1

; g

2

; h;
; d;H)

hpw

C

i

C2Client

 f1; : : : ;Ng

Fig. 2. Spe
i�
ation of proto
ol initialization.

Exe
ute(Client; i;Server; j) |

(VK;SK)

R

 � SigGen(1

k

) x

1

; x

2

; y

1

; y

2

; z

1

; z

2

; w

1

; w

2

; r

1

; r

2

R

 �Z

q

A = g

r

1

1

; B = g

r

1

2

; C = h

r

1

g

pw

C

1

� = H(Client j VKjAjBjC)

D = (
d

�

)

r

1

msg-out

1

 � hClient j VK j A j B j C j Di

E = g

x

1

1

g

x

1

2

h

z

1

(
d

�

)

w

1

F = g

r

2

1

; G = g

r

2

2

; I = h

r

2

g

pw

C

1

� = H(Server j EjF jGjI)

J = (
d

�

)

r

2

msg-out

2

 � hServer j E j F j G j I j Ji

K = g

x

2

1

g

y

2

2

h

z

2

(
d

�

)

w

2

msg-out

3

 � hK j Sign

SK

(�jK)i

sk

j

S

 �sk

i

C

 � A

x

1

B

y

1

(C � g

�pw

C

1

)

z

1

D

w

1

F

x

2

G

y

2

(I � g

�pw

C

1

)

z

2

J

w

2

sid

j

S

 �sid

i

C

 �hmsg-out

1

jmsg-out

2

jmsg-out

3

i

return hmsg-out

1

;msg-out

2

;msg-out

3

i

Reveal(User; i) |

return sk

i

U

Test(User; i) |

b

R

 � f0; 1g; sk G

if b = 0 return sk else return sk

i

U

Fig. 3. Spe
i�
ation of the Exe
ute, Reveal, and Test ora
les to whi
h the adversary has

a

ess. Note that q; g

1

; g

2

; h;
; d;H are publi
, and G is the underlying group. Subs
ript

S refers to the server, and C to the
lient.

Send

0

(Client; i;Server) |

(VK;SK)

R

 � SigGen(1

k

) r

R

 �Z

q

A = g

r

1

; B = g

r

2

; C = h

r

g

pw

C

1

� = H(ClientjVKjAjBjC)

msg-out � hClient j VK j A j B j C j (
d

�

)

r

i

state

i

C

 � hSK; r;msg-outi

return msg-out

Send

1

(Server; i; hClient;VK; A;B;C;Di) |

x;y; z;w; r

R

 �Z

q

� = H(ClientjVKjAjBjC) E = g

x

1

g

y

2

h

z

(
d

�

)

w

F = g

r

1

; G = g

r

2

; I = h

r

g

pw

C

1

� = H(Server j EjF jGjI)

msg-out � hServer j E j F j G j I j (
d

�

)

r

i

state

i

S

 �hmsg-in; x;y; z;w; r; �;msg-outi

return msg-out

Send

2

(Client; i; hServer; E;F;G; I; Ji) |

hSK; r;�rst-msg-outi �state

i

C

� = H(ServerjEjF jGjI)

x;y; z;w

R

 �Z

q

K = g

x

1

g

y

2

h

z

(
d

�

)

w

msg-out � hK j Sign

SK

(�jK)i sid

i

C

 �h�rst-msg-out j msg-in jmsg-outi

I

�

= I � g

�pw

C

1

sk

i

C

 � E

r

F

x

G

y

(I

�

)

z

J

w

return msg-out

Send

3

(Server; i; hK;Sigi) |

h�rst-msg-in; x; y; z;w; r; �;�rst-msg-outi �state

i

S

hVK; A;B;C;Di � �rst-msg-in

sid

i

S

 �h�rst-msg-in j �rst-msg-out jmsg-ini

if Verify

VK

((�jK);Sig) = 1

C

�

= C � g

pw

C

1

sk

i

S

 � A

x

B

y

(C

�

)

z

D

w

K

r

else

sk

i

S

R

 � G

return "

Fig. 4. Spe
i�
ation of the Send ora
les to whi
h the adversary has a

ess. Note that

q; g

1

; g

2

; h;
; d;H are publi
, and G is the underlying group. Subs
ript S refers to the

server, and C to the
lient. The third argument to the Send ora
les is denoted msg-in.

