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Abstrat

We present a formalism for the analysis of key-exhange protools that ombines previous

de�nitional approahes and results in a de�nition of seurity that enjoys some important analyt-

ial bene�ts: (i) any key-exhange protool that satis�es the seurity de�nition an be omposed

with symmetri enryption and authentiation funtions to provide provably seure ommunia-

tion hannels; and (ii) the de�nition allows for simple modular proofs of seurity: one an design

and prove seurity of key-exhange protools in an idealized model where the ommuniation

links are perfetly authentiated, and then translate them using general tools to obtain seurity

in the realisti setting of adversary-ontrolled links. We exemplify the usability of our results by

applying them to obtain the proof of two main lasses of key-exhange protools, DiÆe-Hellman

and key-transport, authentiated via symmetri or asymmetri tehniques.

Further ontributions of the paper inlude the formalization of \seure hannels" in the

ontext of key-exhange protools, and establishing suÆient onditions on the symmetri en-

ryption and authentiation funtions to realize these hannels.
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1 Introdution

Key-exhange protools (ke, for short) are mehanisms by whih two parties that ommuniate over

an adversarially-ontrolled network an generate a ommon seret key. ke protools are essential

for enabling the use of shared-key ryptography to protet transmitted data over inseure networks.

As suh they are a entral piee for building seure ommuniations (a.k.a \seure hannels"), and

are among the most ommonly used ryptographi protools (ontemporary examples inlude SSL,

IPSe, SSH, among others).

The design and analysis of seure ke protools has proved to be a non-trivial task, with a

large body of work written on the topi, inluding [18, 39, 12, 9, 19, 7, 8, 32, 2, 43℄ and many

more. In fat, even today, after two deades of researh, some important issues remain without

satisfatory treatment. One suh issue is how to guarantee the adequay of ke protools for their

most basi appliation: the generation of shared keys for implementing seure hannels. Providing

this guarantee (with minimal requirements from ke protools) is the main fous and objetive of

this work. The other entral goal of the paper is in simplifying the usability of the resultant seurity

de�nitions via a modular approah to the design and analysis of ke protools. We exemplify this

approah with a proof of seurity for two important lasses of ke protools.

This paper adopts a methodology for the analysis of ke protools that results from the om-

bination of two previous works in this area: Bellare and Rogaway [7℄ and Bellare, Canetti and

Krawzyk [2℄. A main ingredient in the formalization of [7℄ is the use of the indistinguishability

approah of [24℄ to de�ning seurity: roughly speaking, a key-exhange protool is alled seure if

under the allowed adversarial ations it is infeasible for the attaker to distinguish the value of a

key generated by the protool from an independent random value. Here we follow this exat same

approah but replae the adversarial model of [7℄ with an adversarial model derived from [2℄. This

ombination allows to ahieve the above two main objetives. We elaborate on these main aspets

of our work.

First, the formalization of [2℄ aptures not only the spei� needs of ke protools but rather

develops a more general model for the analysis of seurity protools. This allows formulating and

proving the statement that ke protools proven seure aording to our de�nition (we all these

protools SK-seure) an be used in standard ways to provide \seure hannels". More spei�ally,

onsider the ommon seurity pratie by whih pairs of parties establish a \seure hannel" by �rst

exhanging a session key using a ke protool and then using this key to enrypt and authentiate

the transmitted data under symmetri ryptographi funtions. We prove that if in this setting

one uses an SK-seure ke protool together with seure MAC and enryption funtions ombined

appropriately then the resultant hannel provides both authentiation and serey (in a sense that

we de�ne preisely) to the transmitted data. While this property of ensuring seure hannels seems

as an obvious requirement from a seure ke protool it turns out that formalizing and proving this

property is non-trivial. In fat, there are \seemingly seure" key exhange protools that do not

neessarily guarantee this (e.g. those that use the session key during the exhange itself), as well

as proposed de�nitions of seure key-exhange that do not suÆe to guarantee this either (e.g., the

de�nitions in [7, 10, 11, 2℄). Moreover, although several works have addressed this issue (see Setion

1.1), to the best of our knowledge the notion of seure hannels was never formalized in the ontext

of ke protools, let alone demonstrating that some de�nition of ke protools suÆes for this basi

task. Indeed, one of the ontributions of this work is a formalization of the seure hannels task.

While this formalization is not intended to provide general omposability properties for arbitrary

ryptographi settings, it arguably provides suÆient seurity guarantee for the entral task of

proteting the integrity and authentiity of ommuniations over adversarially-ontrolled links.
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Seond, the approah of [2℄ allows for a substantial simpli�ation in designing ke protools and

proving their seurity. This approah postulates a two-step methodology by whih protools an

�rst be designed and analyzed in a muh simpli�ed adversarial setting where the ommuniation

links are assumed to be ideally authentiated (i.e., the attaker is not allowed to insert or hange

information transmitted over the ommuniation links between parties). Then, in a seond step,

these protools are \automatially" transformed into seure protools in the realisti senario of

fully adversary-ontrolled ommuniations by applying a protool translation tool (or \ompiler")

alled an authentiator. Fortunately, simple and eÆient realizations of authentiators based on

di�erent ryptographi funtions exist [2℄ thus making it a useful and pratial design and analysis

tool. (We stress that our framework does not mandate this methodology; i.e., it is possible of

ourse to prove seurity of a ke protool diretly in the fully adversarial model.)

We use this approah to prove the seurity of two important lasses of key-exhange protools:

DiÆe-Hellman and key-transport protools. All one needs to do is to simply prove the seurity

of these protools in the ideal authentiated-links model and then, thanks to the above modular

approah, one obtains versions of these protools that are seure in a realisti adversary-ontrolled

network. The \authentiated" versions of the protools depend on the authentiators in use. These

an be based either on symmetri or asymmetri ryptographi tehniques (depending on the trust

model) and result in natural and pratial ke protools. The seurity guarantees that result from

these proofs are substantial as they apture many of the seurity onerns in real ommuniations

settings inluding the asynhronous nature of ontemporary networks, the run of multiple simul-

taneous sessions, resistane to man-in-the-middle and known-key attaks, maintaining seurity of

sessions even when other sessions are ompromised, and providing \perfet forward serey", i.e.,

protetion of past sessions in ase of the ompromise of long-term keying material.

1.1 Related work

Sine its introdution in the seminal work of DiÆe and Hellman [18℄ the notion of a key-exhange

protool has been the subjet of many works (see [37℄ for an extensive bibliography). Here we

mention some of the works that are more diretly related to the present work. We further expand

our disussion of these works in Appendix A.

Among the early works on this subjet we note [39, 12, 9, 19℄ as being instrumental in pointing

out to the many subtleties involved in the analysis of ke protools. The �rst omplexity-theoreti

treatment of the notion of seurity for ke protools is due to Bellare and Rogaway [7℄ who formalize

the seurity of ke protools in the realisti setting of onurrent sessions running in an adversary-

ontrolled network. As said above, [7℄ apply the indistinguishability de�nitional approah that

we follow here as well. While [7℄ foused on the shared-key model of authentiation, other works

[10, 11, 6℄ extended the tehniques to the publi-key setting. One important ontribution of [6℄ is

in noting and �xing a shortoming in the original de�nition of [7℄; this �x, that we adopt here, is

fundamental for proving our results about seure hannels.

Bellare, Canetti, and Krawzyk [2℄ present a model for studying general session-oriented seurity

protools that we adopt and extend here. They also introdue the \authentiator" tehniques that

allow for greatly simplifying the analysis of protools and that we use as a basi tool in our work. In

addition, [2℄ proposes a de�nition of seurity of ke protools rooted in the simulatability (or \ideal

third party") approah used to de�ne seurity of multiparty omputation [23, 38, 1, 13℄. While this

de�nitional approah is intuitively appealing the atual ke seurity de�nition of [2℄ omes short of

the expetations. On one hand, it seems over-restritive, in the sense that it rules out protools

that seem to provide suÆient seurity (and as demonstrated here an be safely used to obtain
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seure hannels); on the other, it is not lear whether their de�nition suÆes to prove omposition

theorems even in the restrited sense of seure hannels as dealt with in this paper.

More reently, Shoup [43℄ presents a framework for the de�nition of seurity of ke protools that

follows the basi simulatability approah as in [2℄ but introdues signi�ant modi�ations in order to

overome some of the shortomings of the ke de�nition in [2℄ as well as to seek omposability with

other ryptographi appliations. In partiular, [43℄ states as a motivational goal the onstrution

of \seure sessions" (similar to our seure hannels), and it informally laims the suÆieny of its

de�nitions to ahieve this goal. A more rigorous and omplete elaboration of that work will be

needed to assess the orretness of these laims. In addition, [43℄ di�ers from our work in several

other interesting aspets (see Appendix A).

A promising general approah for the analysis of reative protools and their onurrent om-

position has been developed by P�tzmann, Shunter and Waidner [41, 40, 42℄ and Canetti [14℄.

This approah, that follows the simulatability tradition, an be applied to the task of key exhange

to obtain a de�nition of ke protools that guarantees seure onurrent omposition with any set

of protools that make use of the generated keys. See more details in [16℄.

A subjetive disussion. The works mentioned above follow two main distint approahes to

de�ning seurity of ke protools: simulation-based and indistinguishability-based. The former is

more intuitively appealing (due to its modeling of seurity via an ideally-trusted third party), and

also appears to be more amenable to demonstrating general omposability properties of protools.

On the other hand, the omplexity of the resulting de�nitions, one all details are �lled in, is

onsiderable and makes for de�nitions that are relatively omplex to work with. In ontrast,

the indistinguishability-based approah yields de�nitions that are simpler to state and easier to

work with, however their adequay for modeling the task at hand seems less lear at �rst glane.

The results in this paper indiate the suitability of the indistinguishability-based approah in the

ontext of ke protools | if the goal is the appliation of ke protools to the spei� task of seure

hannels as de�ned here. By following this approah we gain the bene�t of simpler analysis and

easier-to-write proofs of seurity. At the same time, our work borrows from the simulation-based

approah the modularity of building proofs via the intermediate ideally-authentiated links model,

thus enjoying the \best of both worlds".

Organization. Setion 2 presents an overview of the protool and adversary models used through-

out this work. This overview is intended to introdue the elements of this model in a \reader-

friendly" way. The formal tehnial treatment appears in Setion 3. The de�nition of SK-seurity

for ke protools is presented in Setion 4. Setion 5 proves the seurity of several protools and

illustrates the modular methodology used in our analysis. Finally, in Setion 6 we introdue a

formalization of \seure hannels" and demonstrate the suitability of our notion of seurity for ke

protools for realizing seure hannels.

2 Protool and Adversary Models: An Overview

In order to to de�ne what is meant by the seurity of a key-exhange (ke) protool we �rst need

to establish a formalism for the most basi notions: what is meant by a protool in general and

a key-exhange protool in partiular, what are sessions, and what is an `attaker' against suh

protools. Here we use a formalism based on the approah of [2℄, where a general framework for

studying the seurity of session-based multi-party protools over inseure hannels is introdued.

We extend and re�ne this formalism to better �t the needs of pratial ke protools.

In order to motivate and make the formalism easier to understand, we start by providing a

3



high-level overview of our model. The preise tehnial desription appears in Setion 3. (We

note that the preise tehnial details are essential for a full development and proof of our results.

However, we reommend �rst reading this overview in order to make the tehnial part more

understandable.) After introduing the protool and adversary models we proeed to de�ne the

seurity of ke protools in Setion 4.

2.1 Protools, Sessions and Key-Exhange

Message-driven protools We onsider a set of parties (probabilisti polynomial-timemahines),

whih we usually denote by P

1

; : : : ; P

n

, interonneted by point-to-point links over whih messages

an be exhanged.

1

Protools are olletions of interative proedures, run onurrently by these

parties, that speify a partiular proessing of inoming messages and the generation of outgoing

messages. Protools are initially triggered at a party by an external \all" and later by the arrival

of messages. Upon eah of these events, and aording to the protool spei�ation, the protool

proesses information and may generate and transmit a message and/or wait for the next message

to arrive. We all these message-driven protools. (We note the asynhronous nature of protools

de�ned in this way whih reets the prevalent form of ommuniation in today's networks.)

Sessions and protool output. Protools an trigger the initiation of sub-protools (i.e. inter-

ative subroutines) or other protools, and several opies of suh protools may be simultaneously

run by eah party. We all eah opy of a protool run at a party a session. Tehnially, a session is

an interative subroutine exeuted inside a party. Eah session is identi�ed by the party that runs

it, the parties with whom the session ommuniates and by a session-identi�er. These identi�ers

are used in pratie to bind transmitted messages to their orresponding sessions. Eah invoation

of a protool (or session) at a given party reates a loal state for that session during exeution, and

produes loal outputs by that party. This output an be a quantity (e.g a session key) returned to

the alling program, or it an be the reording of a protool event (suh as a suessful or failed

termination). These loal outputs serve to represent the \history" of a protool and are important

to formalize seurity. When a session ends its run we all it omplete and assume that its loal

state is erased.

Key-exhange protools. Key-exhange (ke) protools are message-driven protools (as de�ned

above) where the ommuniation takes plae between pairs of parties and whih return, upon

ompletion, a seret key alled a session key. More spei�ally, the input to a ke protool within

eah party P

i

is of the form (P

i

; P

j

; s; role), where P

j

is the identity of another party, s is a session

id, and role an be either initiator or responder. A session within P

i

and a session within P

j

are

alled mathing if their inputs are of the form (P

i

; P

j

; s; initiator) and (P

j

; P

i

; s; responder). The

inputs are hosen by a \higher layer" protool that \alls" the ke protool. We require the alling

protool to make sure that the session id's of no two ke sessions in whih the party partiipates are

idential. Furthermore, we leave it to the alling protool to make sure that two parties that wish

to exhange a key will ativate mathing sessions. Note that this may require some ommuniation

before the atual ke sessions are ativated.

2

Upon ativation, the partners P

i

and P

j

of two mathing sessions exhange messages (the initiator

goes �rst), and eventually generate loal outputs that inlude the name of the partners of the session,

1

This formalization postulates a �xed number of parties in a network. An alternative, more general formalization

allows the adversary to adaptively inrease the number of partiipants. We prefer this simpler formalization sine

the di�erene seems inonsequential with respet to realisti ke protools.

2

Indeed, in pratie protools for setting up a seure session typially exhange some messages before the atual

ryptographi key-exhange starts. The IKE protool of the IPSEC standard is a good example [28℄.
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the session identi�er, and the value of the omputed session key. A key establishment event is

reorded only when the exhange is ompleted (this signals, in partiular, that the exhanged key

an be used by the protool that alled the ke session). We note that a session an be ompleted

at one partner but not neessarily at the other.

After desribing these `mehanis" of a ke protool we need to de�ne what is meant by a

\seure" ke protool. This is the subjet of Setion 4 and it is based on the adversarial model that

we introdue next.

2.2 The unauthentiated-links adversarial model (um)

In order to talk about the seurity of a protool we need to de�ne the adversarial setting that

determines the apabilities and possible ations of the attaker. We want these apabilities to be

as generi as possible (as opposed to, say, merely representing a list of possible attaks) while not

posing unrealisti requirements. We follow the general adversarial formalism of [2℄ but speialize

and extend it here for the ase of ke protools. Using the terminology of [2℄ we all this model the

Unauthentiated Links Model (um).

Basi attaker apabilities. We onsider a probabilisti polynomial-time (ppt)

3

attaker that

has full ontrol of the ommuniations links: it an listen to all the transmitted information, deide

what messages will reah their destination and when, hange these messages at will or injet its own

generated messages. The formalism represents this ability of the attaker by letting the attaker

be the one in harge of passing messages from one party to another. The attaker also ontrols the

sheduling of all protool events inluding the initiation of protools and message delivery.

Obtaining seret information. In addition to these basi adversarial apabilities (given \for

free" to the attaker), we let the attaker obtain seret information stored in the parties memories

via expliit attaks. We onsider all the seret information stored at a party as potentially vul-

nerable to break-ins or other forms of leakage. However, when de�ning seurity of a protool it is

important to guarantee that the leakage of some form of seret information has the least possible

e�et on the seurity of other serets. For example, we will want to guarantee that the leakage of

information spei� to one session (suh as the leakage of a session key or ephemeral state infor-

mation) will have no e�ets on the seurity of other sessions, or that even the leakage of ruial

long-term serets (suh as private keys) that are used aross multiple sessions will not neessarily

ompromise seret information from all past sessions. In order to be able to di�erentiate between

various vulnerabilities and to be able to guarantee as muh seurity as possible in the event of in-

formation exposures, we lassify attaks into three ategories depending on the type of information

aessed by the adversary:

Party orruption. The attaker an deide at any point to orrupt a party, in whih ase the attaker

learns all the internal memory of that party inluding long-term serets (suh as private keys or

master shared keys used aross di�erent sessions) and session-spei� information ontained in the

party's memory (suh as internal state of inomplete sessions and session-keys orresponding to

ompleted sessions). Sine by learning its long term serets the attaker an impersonate a party

in all all its ations then a party is onsidered ompletely ontrolled by the attaker from the time

of orruption and an, in partiular, depart arbitrarily from the protool spei�ations.

Session-key query. The attaker provides a party's name and a session identi�er of a ompleted

session at that party and reeives the value of the key generated by the named session This attak

provides the formal modeling for leakage of information on spei� session keys that may result from

3

When proving spei� protools one an replae this generi ppt modeling with spei� ryptographi assumptions.
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events suh as break-ins, ryptanalysis, areless disposal of keys, et. It will also serve, indiretly,

to ensure that the unavoidable leakage of information produed by the use of session keys in a

seurity appliation (e.g., information leaked on a key by its use as an enryption key) will not help

in deriving further information on this and other keys.

Note: one ould de�ne yet another adversary operation that would provide the attaker with partial

information on session keys (to spei�ally model information leaked via key usage), however it turns

out that suh an addition, while adding omplexity to the model spei�ation, does not hange the

power of the model sine session-key queries as de�ned here already suÆe to apture leakage of

any partial information on the session keys.

Session-state reveal. The attaker provides the name of a party and a session identi�er of a yet

inomplete session at that party and reeives the internal state of that session (sine we see sessions

as proedures running inside a party then the internal state of a session is well de�ned). An

important point here is what information is inluded in the loal state of a session; this is to

be spei�ed by eah ke protool. Therefore, our de�nition of seurity is parameterized by the

type and amount of information revealed in this attak. For instane, the information revealed in

this way may be the exponent x used by a party to ompute a value g

x

in a DiÆe-Hellman key-

exhange protool, or the random bits used to enrypt a quantity under a probabilisti enryption

sheme during a session. (An example where suh state information may be vulnerable to attak is

appliations { suh as those running in low-powered devies { that pre-ompute, or upload, a �le

of pairs (x; g

x

) for use during later \real-time" establishment of ke sessions. In this ase one would

like to prevent that the exposure of suh a �le, or part of it, will ompromise future sessions that

do not use these values.)

We stress that while the �rst two forms of attak, party orruptions and session-key queries,

are fundamental to the de�nition of seurity of ke protools, the signi�ane of the session-state

reveal operation depends on the seurity model of an implementation. The di�erentiation between

party orruptions and session-state reveal operations assumes that orrupting a session state does

not imply learning about long-term serets; this impliitly assumes a separate seurity module

where the operations involving these long-term serets are performed. In settings where this is an

unrealisti assumption, our model an be weakened by deleting the session-state reveal operation

from the attaker's apabilities. Certainly, protools proven seure under our model will remain

seure in the weakened model.

Terminology: if a session is subjet to any of the above three attaks (i.e. a session-state reveal, a

session-key query or the orruption of the party holding the session) then the session is alled loally

exposed. If a session or its mathing session is loally exposed then we all the session exposed.

Session expiration. One important additional element in our seurity model is the notion of

session expiration. This takes the form of a protool ation that when ativated auses the erasure

of the named session key (and any related session state) from that party's memory. We allow a

session to be expired at one party without neessarily expiring the mathing session. The e�et

of this ation in our seurity model is that the value of an expired session key annot be found

via any of the above attaks if these attaks are performed after the session expired. This has two

important onsequenes: it allows us to model the ommon (and good) seurity pratie of limiting

the life-time of individual session keys and it allows for a simple modeling of the notion of perfet

forward serey (see Setion 4.2). We note that in order for a session to be loally exposed (as

de�ned above) the attak against the session must happen before the session expires.

Bootstrapping the seurity of key-exhange protools. Key-exhange protools, as other

ryptographi appliations, require the bootstrapping of seurity (espeially for authentiation) via
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some assumed-seure means. Examples inlude the seure generation of parties' private keys, the

installation of publi keys of other parties, or the installation of shared \master" keys. Here too

we follow the approah of [2℄ where the bootstrapping of the authentiation funtions is abstrated

into an initialization funtion that is run prior to the initiation of any key-exhange protool and

that produes in a seure way (i.e. without adversarial partiipation) the required (long-term)

information. By abstrating out this initial phase we allow for the ombination of di�erent protools

with di�erent initialization funtions: in partiular, it allows our analysis of protools (suh as

DiÆe-Hellman) to be appliable under the two prevalent settings of authentiation: symmetri

and a-symmetri authentiation. Two points to note are (1) the spei�ation of the initialization

funtion is part of the de�nition of eah ke protool; and (2) seret information generated by

this funtion at a given party an be disovered by the attaker only upon orruption of that

party. We stress that while this abstration adds to the simpliity and appliability of our analysis

tehniques, the bootstrapping of seurity in atual protools is an element that must be arefully

analyzed (e.g., the interation with a CA in the ase of publi-key based protools). Integrating

these expliit elements into the model an be done either diretly as done in [43℄, or in a more

modular way via appropriate protool omposition.

2.3 The am, protool emulation and authentiators

A entral ingredient in our analyses is the methodology introdued in [2℄ by whih one an design

and analyze a protool under the highly-simplifying assumption that the attaker annot hange

information transmitted between parties, and then transform these protools and their seurity

assurane to the realisti um where the adversary has full ontrol of the ommuniation links. We

refer the reader to [2℄ for the details and also present a tehnial summary in Setion 3.4.

First, an adversarial model alled authentiated-links model (denoted am) is de�ned in a way

that is idential to the um with one fundamental di�erene: the attaker is restrited to only

deliver messages truly generated by the parties without any hange or addition to them. Then, the

notion of \emulation" is introdued in order to apture the equivalene of funtionality between

protools in di�erent adversarial models, in partiular between the um and am. Roughly speaking,

a protool �

0

emulates protool � in the um if for any adversary that interats with �

0

in the um

there exists an adversary that interats with � in the am suh that the two interations \look

the same" to an outside observer. Finally, speial algorithms alled authentiators are developed

with the property that on input the desription of a protool � the authentiator outputs the

desription of a protool �

0

suh that �

0

emulates protool � in the um. That is, authentiators at

as an automati \ompiler" that translate protools in the am into equivalent (or \as seure as")

protools in the um.

In order to simplify the onstrution of authentiators, [2℄ o�ers the following methodology.

First onsider a very simple one-ow protool in the am, alled mt, whose sole funtionality is

to transmit a single message from sender to reipient. Now build a restrited-type authentiator,

alled mt-authentiator, required to provide emulation for this partiular mt protool only. Finally,

to any suh mt-authentiator � one assoiates an algorithm (or ompiler) C

�

that translates any

input protool � into another protool �

0

as follows: to eah of the messages de�ned in protool

� apply the mt-authentiator �. It is proven in [2℄ that C

�

is an authentiator (i.e., the resultant

protool �

0

emulates � in the um). Partiular realizations of mt-authentiators are presented in [2℄

based on di�erent type of ryptographi funtions (e.g., digital signatures, publi-key enryption,

MAC, et.)
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3 The models

This setion presents a tehnial desription of the protool and adversary models used throughout

the paper. We strongly reommend �rst reading Setion 2 whih presents an overview of these

models and their motivation.

3.1 Message-Driven Protools

An n-party message-driven protool is a olletion of n programs, where eah program is to be

run by a di�erent party. (Formally, eah program is an interative ppt Turing mahine, as de�ned

in [25℄.) Eah program has the following interfae. It is �rst invoked with some initial input

(that inludes the party's identity), random input, and some value for the seurity parameter.

One invoked, the program waits for an ativation. An ativation an be aused by two types of

events: either the arrival of an inoming message from the network, or an ation request oming

from other programs run by the party. (De�ning valid ation requests is part of the spei�ation

of the protool.

4

) Upon ativation, the program proesses the inoming data, starting from its

urrent internal state, and as a result it an generate outgoing messages to the network and ation

requests to other programs run by the party. In addition, a loal output value is generated. One

the ativation is ompleted, the program waits for the next ativation. We regard the loal output

as umulative. That is, initially the loal output is empty; in eah ativation the urrent output

is appended to the previous one. We will let a protool label some of its loal output as `seret'

(e.g. the value of a seret key generated by the protool). This will have e�et on the adversary's

ations that we de�ne below.

An invoation of a protool is alled a session. Note that a session of a protool � may involve

several sessions of other protools that are alled by �. (When treating the speial ase of key-

exhange protools in Setion 3.3 the semantis of sessions in that ontext will be given more

spei� meaning.)

3.2 The unauthentiated-links adversarial model (um).

The adversarial model um de�nes the attaker's apabilities and its interation with a protool.

Figure 1 summarizes the way protools are exeuted in the presene of a um adversary. Here we

desribe this in some more detail. Consider an n-party message-driven protool �, with parties

denoted by P

1

:::P

n

. Eah party P

i

has input x

i

and random input r

i

. In addition, we introdue

an adversarial entity, alled a um-adversary U . (The um-adversary is another program, or a ppt

interative Turing mahine, with an interfae desribed below.) The exeution of protool � in the

um onsists of a sequene of ativations of � within di�erent parties. The ativations are ontrolled

and sheduled by U . That is, initially the protool is invoked within eah party with a loal input,

random input and a value for the seurity parameter. Next, and upon the ompletion of eah

ativation, U deides whih party to ativate next, and on whih inoming message or request. The

outgoing messages and outgoing loal ation requests beome known to U . Loal outputs beome

known to U exept for those labeled `seret'.

Note that U is free to hoose to ativate any party with any ativation allowed by the protool

and in any order. Also, U an ativate any party with any inoming message and any spei�ed

4

An ation request an be, for instane, a request to send a message or exhange a key with some spei�ed party

(we will see spei� examples in the sequel). We assume that every message spei�es the sender of the message and

its intended reipient.
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Protool exeution in the um

Partiipants: Parties P

1

; :::; P

n

running an n-party protool � on inputs x

1

; :::; x

n

, respetively, and

an adversary U .

1. Initialization: Eah party P

i

invokes � on loal input x

i

, seurity parameter k and random

input. Next, P

i

gets I(r; k)

i

and I(r; k)

0

, where r is randomly hosen.

2. While U has not terminated do:

(a) U may ativate � within some party, P

i

. An ativation an take two forms:

i. An ation request q. This ativation models requests or invoations oming from

other programs run by the party.

ii. An inoming messagem with a spei�ed sender P

j

. This ativation models messages

oming from the network.

If an ativation ourred then the ativated party P

i

runs its program and hands U the

resulting outgoing messages and ation requests. (We stress that U is free to hoose any

sheduling of ativations and determine the values of inoming messages.) Loal outputs

produed by the protool are known to U exept for those labeled `seret'.

(b) U may orrupt a party P

i

. Upon orruption, U learns the urrent internal state of P

i

,

and a speial message is added to P

i

's loal output. From this point on, P

i

is no longer

ativated and does not generate further loal output.

() U may issue a session-state reveal for a spei�ed session within some party P

i

. In this

ase, U learns the urrent internal state of the spei�ed session within P

i

. This event is

reorded through a speial note in P

i

's loal output.

(d) U may issue a session-output query for a spei�ed session within some party P

i

. In this

ase, U learns any output from the spei�ed session that was labeled `seret'. This event

is reorded through a speial note in P

i

's loal output.

3. The global output of the exeution is the onatenation of the outputs of U and P

1

; :::; P

n

.

Figure 1: Protool exeution in the um.

sender. In partiular, inoming messages need not orrespond in any way to messages that have

been sent. (That is, U is free to generate, injet, modify, and deliver any message of its hoie.)

In addition to ativating parties and ontrolling the network, U an perform the following

ativities. First, it an orrupt parties at will. Upon orruption of P

i

, U learns the entire urrent

state of P

i

, inluding any long-term seret, session states and seret session outputs in the party's

memory. From this point on, U an deliver any message of its hoie in whih P

i

is spei�ed as

the sender. The orrupted party P

i

appends a speial note to its output, speifying that it has

been orrupted. P

i

is no longer ativated and does not generate further loal output. (A orrupted

party is totally ontrolled by the adversary, and its ations are taken by the attaker itself.)

Another type of ativity is session-state reveal of a ertain session within party P

i

. The e�et is

that the internal state of the orresponding session within P

i

(i.e., the loal working spae of the

proedure whose invoation onstitutes the session) beomes known to U , and a speial message

is added to the party's loal output; no further output is generated for this session.

5

A third

5

We do not speify how a session is identi�ed; this will have to be part of the spei�ation of a protool. In the
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adversarial ativity is a session-output query. By issuing suh a query the adversary learns any

output from that session that was labeled `seret'. (This type of queries is partiularly important

in the ontext of key-exhange protools below where this ation is alled a `session-key query'.)

The initialization funtion I. Finally, we augment the protool � with an initialization funtion

I that models an initial phase of out-of-band and authentiated information exhange between

the parties. (This funtion models the neessary trusted bootstrapping of ryptographi funtions,

e.g. by letting the parties hoose private and publi keys for some asymmetri rypto-system

and trustfully distributing the publi keys.) Funtion I takes a random input r and the seurity

parameter k, and outputs a vetor I(r; k) = I(r; k)

0

::::I(r; k)

n

. The omponent I(r; k)

0

is the publi

information and beomes known to all parties and to the adversary. For i > 0, I(r; k)

i

beomes

known only to P

i

. Note, however, that upon orruption of P

i

the attaker learns I(r; k)

i

.

Global output. The global output of running a protool in the um is the onatenation of the

umulative loal outputs of all the parties, together with the output of the adversary. The output of

the adversary is a funtion of its internal states at the end of the interation. We use the following

notation. Let um-adv

�;U

(k; ~x;~r) denote the output of adversary U when interating with parties

running protool � on seurity parameter k, input ~x = x

1

: : : x

n

and random input ~r = r

0

: : : r

n

as desribed above (r

0

for U ; x

i

and r

i

for party P

i

). (The initialization funtion I is part of the

desription of protool �.) Let unauth

�;U

(k; ~x;~r)

i

denote the umulative output of party P

i

after

running protool � on seurity parameter k, input ~x and random input ~r, and with an am-adversary

U . Let unauth

�;U

(k; ~x;~r) = um-adv

�;U

(k; ~x;~r);unauth

�;U

(k; ~x;~r)

1

: : : unauth

�;U

(k; ~x;~r)

n

. Let

unauth

�;U

(k; ~x) denote the random variable desribing unauth

�;U

(k; ~x;~r) when ~r is uniformly

hosen. Let unauth

�;U

denote the ensemble funauth

�;U

(k; ~x)g

k2N;~x2f0;1g

�
.

We have summarized the struture of a protool exeution in the um in Figure 1.

3.3 Key Exhange Protools

Key-exhange protools are a speial ase of n-party message-driven protools. As suh they inherit

the syntax of general message-driven protools as introdued before. In addition, in order to

apture the spei� semantis of key exhange, and the spei� apabilities of attakers against

suh protools, we speify some additional syntax for these protools. (The intention of this syntax

is to represent, in an abstrat but diret way, the mehanis of key exhange protools in atual

systems.)

Reall that a message-driven protool is a olletion of n programs, where eah program is

run by a di�erent party. (We envision that the program is invoked one within eah party at the

onset of the omputation and remains ative throughout.) One invoked, it is ativated either by a

message oming from the network, or by an ation request from other protools or programs run by

the party. In the ase of a key-exhange (ke) protool �, the program within eah party, P

i

, takes

ation requests of the form establish-session(P

i

; P

j

; s; role) where P

j

is another party (with whih a

key is to be exhanged), s is a string alled the session-id, and role 2 finitiator; responderg. (This

ation request will typially be triggered by other protools run by the party that \all" the ke

protool, see for example Setion 6.)

Loal outputs of a ke protool are of the form (P

i

; P

j

; s; �), where P

j

; s are as above and � is a

session key. A null value of � is interpreted as a \session abortion" and will usually represent the

termination of the session with a returned error message. Non-null session-key values are labeled

ontext of ke protools we will identify sessions via a session-id and the partners of the session; see more details in

the next setion.
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`seret'. (Reall that the loal outputs are thought of as values returned by the session to the

\alling protool" that issued the initial establish-session ativation.)

We further speify the internal struture of eah of the n programs of a ke protool, as follows.

Eah suh program, running within P

i

, onsists of a main proedure (an be thought of as a \shell")

and a speial subroutine, alled a ke-subroutine. An invoation of the ke-subroutine is alled a

ke-session and is aimed at exhanging a single key with a spei�ed party. The main proedure

proeeds as follows. Upon ativation with ation request establish-session(P

i

; P

j

; s; role), it �rst

veri�es that no ke-session was previously invoked (within P

i

) with inputs (P

i

; P

j

; s; role

0

) for some

role

0

2 finitiator; responderg (namely, the main proedure makes sure that the identity of the session

is unique among the sessions that P

i

was requested to establish with P

j

). If the veri�ation fails,

then an appropriate error message is generated. Otherwise, a ke-session is invoked with inputs

(P

i

; P

j

; s; role). From this point on, whenever the ke protool within P

i

reeives a message that

spei�es sender P

j

and session-id s, it forwards this message to the relevant ke-session within P

i

.

One a ke-session returns (typially, after a number of messages have been exhanged between

P

i

and P

j

) with output (P

i

; P

j

; s; �), the ke protool reords a session establishment event with

parameters (P

i

; P

j

; s; �) in its loal output. From these parameters only the value � of the session

key is labeled `seret'. A ke-session that returns with a non-null value of � is alled ompleted. If

� = null then the ke-session is aborted and a speial note is reorded in the loal output. It is

assumed by onvention that, one a ke-session returns, its entire loal state, exept for the output

value, is seurely erased. Note that this means that a session-state reveal after the session has

returned will produe an empty output for the attaker.

Mathing sessions. We also use the following terminology: if in an exeution of a ke protool

P

i

has a session with input (P

i

; P

j

; s; role) and party P

j

has a session with input (P

j

; P

i

; s

0

; role

0

),

and s = s

0

then we say that the two sessions are mathing. (Note that we do not require that

role 6= role

0

.) We all P

i

and P

j

the partners of session s. (Note that P

i

may have ompleted a

session with partner P

j

, while P

j

may never omplete the mathing session; ompletion of sessions

depends on the delivery of the protool's message whih is subjet to adversarial ontrol.)

Session expiration: an extension to the um. The adversarial ations against a ke protool

in the um are essentially the same as the generi um attaker desribed above, inluding party

orruption, session-state reveals, and session-output queries. For larity, we will use the term

session-key query instead of session-output query when referring to ke sessions (namely, a session-

key query on a ompleted session provides the attaker with the value of that session key, the only

seret output of a ke session). We add, however, one more element to this model. We will onsider

a protool ation alled session expiration. A session expiration ation an be sheduled by the

attaker for any ompleted session (P

i

; P

j

; s; role) within party P

i

. The e�et of this ativity is that

the seret output of the session, i.e. the session key, is erased from the party's memory. In addition,

a speial note reording the session expiration is added to P

i

's loal output, and this ke-session is

labeled expired, with the following onsequenes. Adversary U is not allowed to perform a session-

key query for an expired session. In addition, when U orrupts a party, it does not see the loal

outputs of the expired sessions (thus, upon party orruption the attaker learns the party's session-

keys for unexpired sessions only.) As explained in Setion 2 expiration of sessions is motivated by

the ommon pratie to limit the life time of session keys and, in partiular, is instrumental for

apturing the notion of perfet forward serey. Figure 1 needs to be updated by adding the session

expiration ativity to the list of possible ativities in Step 2.

Exposed sessions. Finally we introdue the following terminology. A ke-session (P

i

; P

j

; s; role)

within P

i

is alled loally exposed (within P

i

) if the attaker performed any of the following ations
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on said session: (i) a session-state reveal; (ii) a session-key query; (iii) orruption of P

i

before

session (P

i

; P

j

; s; role) expired within P

i

(this inludes the ase in whih P

i

is orrupted before the

session is even invoked or ompleted).

A ke-session is alled exposed if it is loally exposed or it has a mathing session that is loally

exposed. A session whih is not exposed is alled unexposed.

3.4 The am Model and Authentiators

The material in this Setion is taken from [2℄.

The authentiated-links adversarial model (am). The authentiated-links model of ompu-

tation is idential to the unauthentiated-links one, with the following fundamental exeption. The

am-adversary, denoted A, an ativate parties only with inoming messages that were generated

and sent by other parties in the protool. That is, the attaker annot injet or modify messages

(exept if the spei�ed sender is a orrupted party or if the message belongs to an exposed session).

In addition, any message may be delivered at most one. (Namely, A may deide not to deliver a

message at all, but if A delivers a message m then it an do so only to the proper destination of

m, only one, and without hanging m or the spei�ed sender.)

We de�ne auth

�;A

analogously to unauth

�;U

, where the omputation is arried out in the

unauthentiated-links model.

Emulation of protools. Central to the methodology of [2℄ and the urrent paper is the onept

of \protool translation", espeially between the am to the um. We want to be able to start with

any protool � that has some guaranteed funtionality (or seurity) in the am and generate out

of it a protool �

0

with equivalent funtionality in the um. For this we �rst need to formalize the

notion of \equivalene". This is done in the next de�nition from [2℄ (and whih follows a general

approah used for de�ning seure multi-party protools [23, 38, 1, 13℄).

De�nition 1 Let � and �

0

be an n-party message-driven protools. We say that �

0

emulates � in

the unauthentiated-links model if for any um-adversary U there exists an am-adversary A suh that

auth

�;A

and unauth

�

0

;U

are omputationally indistinguishable.

Armed with the emulation de�nition we an turn to de�ne what is meant by \protool transla-

tion" from am to um. This is done in the next de�nition [2℄ in terms of \ompilers" and \authen-

tiators".

De�nition 2 A ompiler C is an algorithm that takes for input desriptions of protools and outputs

desriptions of protools. An authentiator is a ompiler C where for any protool �, the protool

C(�) emulates � in the unauthentiated-links model.

Construting authentiators: the mt protool. Thus, an authentiator an take for input

protools designed for ideally authentiated links (am), and turn them into `equivalent' protools for

adversary-ontrolled unauthentiated links (um). But an suh authentiators be onstruted? The

answer is yes. The following methodology for onstruting authentiators is used in [2℄. Consider

the following simple protool, alled the message transmission (mt) protool. The protool takes

empty input. Upon ativation within P

i

on ation request send(P

i

; P

j

;m), party P

i

sends the

message (P

i

; P

j

;m) to party P

j

, and outputs ``P

i

sent m to P

j

''. Upon reeipt of a message

(P

i

; P

j

;m), P

j

outputs ``P

j

reeived m from P

i

''. When run in the am this protool represents

a perfetly authentiated message transmission protool. Now, let � be a protool that emulates mt

12



in unauthentiated networks. We all suh protools mt-authentiators and we will see that they

an be onstruted eÆiently. On the basis of �, de�ne a ompiler C

�

that on input a protool

� produes a protool �

0

= C

�

(�) de�ned as follows. When �

0

is ativated at a party P

i

it �rst

invokes �. Then, for eah message sent in protool �, protool �

0

ativates � with the ation request

for sending the same message to the same spei�ed reipient. Whenever �

0

is ativated with some

inoming message, it ativates � with the same inoming message. When � outputs ``P

i

reeived

m from P

j

'', protool � is ativated with inoming message m from P

j

. It is shown:

Theorem 3 ([2℄) Let � be an mt-authentiator. Then C

�

is an authentiator.

Thus, in order to see that authentiators an be onstruted it suÆes to show onstrutions

of mt-authentiators. This is done in [2℄ where several suh shemes are shown based on di�erent

ryptographi funtions (suh as digital signatures and enryption).

In Setion 6.2 we extend the mt protool to a setting of multiple onurrent sessions. We all

the resultant protool smt. It is straightforward to extend the proof of the above theorem to over

the ase of smt-authentiators as well.

4 Session-Key Seurity

After having de�ned the basi formal model for key-exhange protools and adversarial apabilities,

we proeed to de�ne what is meant for a key-exhange protool to be seure. While the previous

setions were largely based on the work of [2℄, our de�nition of seurity losely follows the de�nitional

approah of [7℄. The resultant notion of seurity, that we all session-key seurity (or SK-seurity),

fouses on ensuring the seurity of individual session-keys as long as the session-key value is not

obtained by the attaker via an expliit key exposure (i.e. as long as the session is unexposed { see

the terminology in the previous setion). We want to apture the idea that the attaker \does not

learn anything about the value of the key" from interating with the key-exhange protool and

attaking other sessions and parties. As it is standard in the semanti-seurity approah this is

formalized via the infeasibility to distinguish between the real value of the key and an independent

random value.

We stress that this formulation of SK-seurity is very areful about tuning the de�nition to

o�er enough strength as required for the use of key-exhange protools to realize seure hannels

(Setion 6), as well as being realisti enough to avoid over-kill requirements whih would prevent

us from proving the seurity of very useful protools (Setion 5). We further disuss these aspets

after the presentation of the de�nition.

4.1 De�nition of SK-Seurity

We �rst present the de�nition for the um. The formalization in the am is analogous. We start by

de�ning an \experiment" where the attaker U hooses a session in whih to be \tested" about

information it learned on the session-key; spei�ally, we will ask the attaker to di�erentiate the

real value of the hosen session key from a random value. (Note that this experiment is an artifat

of the de�nition of seurity, and not an integral part of the atual key-exhange protools and

adversarial intervention.)

For the sake of this experiment we extend the usual apabilities of the adversary, U , in the

um by allowing it to perform a test-session query. That is, in addition to the regular ations of U

against a key-exhange protool �, we let U to hoose, at any time during its run, a test-session
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among the sessions that are ompleted, unexpired and unexposed at the time. Let � be the value of

the orresponding session-key. We toss a oin b, b

R

 f0; 1g. If b = 0 we provide U with the value �.

Otherwise we provide U with a value r randomly hosen from the probability distribution of keys

generated by protool �. The attaker U is now allowed to ontinue with the regular ations of a

um-adversary but is not allowed to expose the test-session (namely, it is not allowed session-state

reveals, session-key queries, or partner's orruption on the test-session or its mathing session.

6

)

At the end of its run, U outputs a bit b

0

(as its guess for b).

We will refer to an attaker that is allowed test-session queries as a ke-adversary.

De�nition 4 A ke protool � is alled SK-seure if the following properties hold for any ke-

adversary U in the um.

1. Protool � satis�es the property that if two unorrupted parties omplete mathing sessions

then they both output the same key; and

2. the probability that U guesses orretly the bit b (i.e., outputs b

0

= b) is no more than 1/2 plus

a negligible fration in the seurity parameter.

If the above properties are satis�ed for all ke-adversaries in the am then we say that � is SK-seure

in the am.

The �rst ondition is a \onsisteny" requirement for sessions ompleted by two unorrupted

parties. We have no requirement on the session-key value of a session where one of the partners

was orrupted before the session ompleted { in fat, most ke protools allow a orrupted party to

strongly inuene the exhanged key. The seond ondition is the \ore property" for SK-seurity.

We note that the term `negligible' refers, as ustomary, to any funtion (in the seurity parameter)

that diminishes asymptotially faster than any polynomial fration. (This formulation allows, if

so desired, to quantify seurity via a onrete seurity treatment. In this ase one quanti�es the

attaker's power via spei� bounds on omputation time, number of orruptions, et., while its

advantage is bounded through a spei� parameter ".)

Remark. We highlight three aspets of De�nition 4.

� The attaker an keep running and attaking the protool even after reeiving the response

(either real or random) to its test-session query. This ability (whih represents a substantial

strengthening of seurity relative to [7℄, see also [6℄) is essential for proving the main property

of SK-seurity shown in this paper, namely its guarantee of seurity when used to generate

seure hannels as desribed in Setion 6. See the Appendix for histori bakground on, as

well as some tehnial rationale for this requirement.

� The attaker is not allowed to orrupt partners to the test-session or issue any other exposure

ommand against that session while unexpired. This reets the fat that there is no way

to guarantee the seure use of a session-key that was exposed via an attaker's break-in

(or ryptanalysis). In partiular, this restrition is instrumental for proving the seurity of

spei� important protools (e.g., DiÆe-Hellman key exhange) as done in Setion 5.

6

We stress, however, that the attaker is allowed to orrupt a partner to the test-session as soon as the test-session

(or its mathing session) expires at that party. See the disussion below. This may be the ase even if the other

partner has not yet expired the mathing session or not even ompleted it.
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� The above restrition on the attaker by whih it annot orrupt a partner to the test-session

is lifted as soon as the session expires at that partner. In this ase the attaker should remain

unable to distinguish between the real value of the key from a random value. This is the basis

to the guarantee of \perfet forward serey" provided by our de�nition and further disussed

in Setion 4.2.

We stress that in spite of its \ompat" formulation De�nition 4 is very powerful and an be

shown to ensure many spei� properties that are required from a good key-exhange protool (see,

for example, hapter 12 of [37℄). Some of these properties inlude the guarantee that session-keys

belong to the right probability distribution of keys (exept if one of the partners is orrupted at

time of exhange), the \authentiity" of the exhange (namely, a orret and onsistent binding

between keys and parties' identities), resistane to man-in-the-middle attaks (for protools proven

SK-seure in the um), resistane to known-key attaks, forward serey, and more. However, we

note that all these properties (whih are sometimes listed as a replaement to a formal de�nition

of seurity) in ombination do not suÆe to guarantee the most important aspet of key-exhange

seurity that SK-seurity enjoys: namely, the omposition of the key-exhange protools with

ryptographi funtions to enable seure hannels (e.g., the original de�nition of seurity in [7℄

does satisfy the above list of properties but is insuÆient to guarantee seure hannels).

We �nally remark that De�nition 4 makes seurity requirements from a ke protool only in ase

that the protool ompletes ke-sessions. No guarantee is made that ke-sessions will ever return,

or that they will not be aborted, i.e., that the orresponding session key will not be null. (In fat,

a ke protool where all ke-sessions \hang" and never return satis�es the de�nition.) One an

add an expliit termination requirement for sessions in whih the parties are unorrupted and all

messages are orretly delivered by the attaker. For simpliity, we hoose to leave the analysis of

the termination properties of protools out of the sope of the de�nition of seurity.

4.2 Forward Serey

Informally, the notion of \perfet forward serey" (pfs) [26, 19℄ is stated as the property that

\ompromise of long-term keys does not ompromise past session keys". In terms of our formalism

this means that even if a party is orrupted (in whih ase all its stored serets { short-term and

long-term { beome known to the attaker) then nothing is learned about sessions within that party

that were previously unexposed and expired before the party orruption happened.

The provision that expired session-keys remain indistinguishable from random values even if a

partner to that session is orrupted guarantees the perfet forward serey of SK-seure protools.

Put in other words, when proving a protool to be SK-seure using De�nition 4 one automatially

gets a proof that that protool guarantees pfs.

On the other hand, while pfs is a very important seurity property it is not required for

all appliation senarios, e.g., when only authentiation is required, or when short-term serey

suÆes. Indeed, it is ommon to �nd in pratie protools that do not provide pfs and still are

not onsidered inseure. One suh typial ase are \key-transport protools" in whih publi key

enryption is used to ommuniate a session-key from one party to another. (In this ase, even

if session-keys are erased from memory when no longer required, the orruption of a party may

allow an attaker to ompute, via the disovered long-term private keys, all the past session-keys.)

Due to the importane of suh protools (they are ommonly used in, e.g., SSL), and given that

ahieving pfs usually has a non-negligible omputational ost, we de�ne a notion of \SK-seurity

without pfs" by simply disallowing the protool's ation of key expiration. That is, under this
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modi�ed model, session-keys never expire. This results in a weaker notion of seurity sine now by

virtue of De�nition 4 the attaker is never allowed to orrupt a partner to the test-session (or in

other words, this weaker de�nition of seurity does not guarantee the seurity of a session-key for

whih one of the partners is ever orrupted).

De�nition 5 We say that a ke protool satis�es SK-seurity without pfs if it enjoys SK-seurity

relative to any ke-adversary in the um that is not allowed to expire keys. (Similarly, if the above

holds for any suh adversaries in the am then we say that � is SK-seure without pfs in the am.)

Setion 5.3 desribes a protool that satis�es SK-seurity without pfs but not regular SK-seurity.

5 SK-Seure Protools

This setion demonstrates the usability of our de�nition of SK-seurity for proving the seurity of

some simple and important key-exhange protools. One is the original DiÆe-Hellman protool, the

other is a simple \key transport" protool based on publi-key enryption. We �rst show that these

protools are seure in the simpler authentiated-links model (am). Then, using the methodology

from [2℄ we an apply to these protools a variety of (symmetri or asymmetri) authentiation

tehniques to obtain key-exhange protools that are seure in the realisti um model. Namely,

applying any mt-authentiator (see Setions 2.3 and 3.4) to the messages of the am-protool results

in a seure ke protool in the um. The next Theorem states that this methodology does work for

our purposes.

Theorem 6 Let � be a SK-seure key-exhange protool in the am with pfs (resp., without pfs)

and let � be an mt-authentiator. Then �

0

= C

�

(�) is a SK-seure key-exhange protool in the

um with pfs (resp., without pfs).

We remark that the following proof is somewhat more general, and proves that any authentiator

(not only mt-authentiators) is suÆient for proving the theorem.

Proof: We start by noting that the theorem's statement does not follow diretly from the results of

[2℄ (spei�ally from Theorem 3 in that paper) sine there the guarantee for seure transformation

between models is proven for the basi um and am. Here we need to extend the proof to apture the

additional test-session queries that we allow the ke-adversary against the ke protool. Also worth

noting is that our um and am are riher than the ones in [2℄ (e.g. they inlude session expiration

and session-state reveals), however it is easy to see that the proof of Theorem 3 in [2℄ will work for

these adversary ativities as well.

Based on these fats we proeed to prove that if protool � satis�es SK-seurity (De�nition 4)

in the am then protool �

0

= C

�

(�) satis�es that de�nition in the um. We note that the proof

is the same for the ases of SK-seurity with or without pfs. Consider a protool � that satis�es

De�nition 4 in the am, and let U be a ke-adversary against �

0

in the um. We �rst observe that �

0

satis�es Requirement 1 of De�nition 4 in the um with respet to U (otherwise the global output of

running �

0

in the um with U is easily distinguishable from the global output of running � in the

am with any am ke-adversary, in ontradition to the fat that C

�

is an authentiator).

Next we onentrate on demonstrating that �

0

satis�es Requirement 2 of De�nition 4 in the

um. Spei�ally, given a ke-adversary U that guesses the bit b in the game of De�nition 4 in the

um with probability 1=2 + �, we onstrut a ke-adversary A that guesses the bit b in the game of
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De�nition 4 in the am with probability 1=2 + �

0

, where �

0

is polynomial in � and in the seurity

parameter.

The onstrution of A proeeds in few steps, as follows:

1. Given U , we �rst onstrut a regular um-adversary U

0

against �

0

(i.e., U

0

is not allowed to

make test-session queries). Adversary U

0

runs adversary U and follows its instrutions, with

the following exeption: When U hooses a test-session s, U

0

queries session s and hooses

b

R

 f0; 1g. If b = 0 then U

0

hands the key of session s to U . If b = 1 then U

0

hands U a value

drawn from the distribution of session keys. Next, U

0

returns to following the instrutions of

U . When U halts, U

0

outputs the transript of its interation with U and halts.

2. Sine �

0

= C

�

(�), we have that there exists an adversary, A

0

in the am whose output is

indistinguishable from the output of U

0

.

3. Given adversary A

0

, we onstrut the ke-adversary A promised above. Reall that A interats

in the am with the game of De�nition 4. A starts by hoosing a session s at random out of

the sessions initiated by A

0

. Next, A follows the instrutions of A

0

; when the hosen session

s is established, A announes s to be its test session. In addition, if A

0

queries session s (and

session s is not yet exposed) then A feeds the obtained value for the key of session s to A

0

.

Next A returns to following the instrutions of A

0

. When A

0

halts, A inspets the output of

A

0

. Reall that the output of A

0

mimis the output of U

0

, whih in turn desribes a transript

of an exeution of U . If in that transript of U the test session is session s then A outputs

the bit b

0

that U outputs in that transript. Otherwise, A outputs a randomly hosen bit.

We analyze the suess probability of A under the assumption that the output of A

0

and U

0

are

identially distributed. Aounting for the fat that the two outputs are only omputationally

indistinguishable is done in standard ways.

Let ` be an upper bound on the number of sessions invoked by U , the advantage (i.e., the

probability of suess over 1=2) of A is 1=` times its advantage onditioned on the event that the

test session hosen by U (in the output of A

0

) equals s. For the rest of the analysis we assume that

the test session hosen by U (in the output of A

0

) equals s.

Let p

b

denote the probability that U outputs 1 when interating with the game of De�nition 4

in the um, when the value of the \real or random" bit is b. We have that jp

real

�p

random

j � �. Also,

when run within U

0

, U outputs 1 with probability (p

real

+ p

random

)=2. Consider the following ases:

1. Assume that A is given the \real" key of the test session s. In this ase, the view of U

(within the output of A

0

that is run inside A) is distributed identially to its view when U

0

interats with �

0

in the um. In this ase U (and thus also A) outputs 1 with probability

(p

real

+ p

random

)=2.

2. Assume that A is given the \random" value for the key of the test session s. In this ase,

the view of U (within the output of A

0

that is run inside A) is distributed identially to its

view when interating in the game of De�nition 4 in the um, onditioned on the event that

it is given a \random" value for the key of the test session. In this ase U (and thus also A)

outputs 1 with probability p

random

.

It follows that, when A

0

perfetly simulates U

0

, the advantage of A is �=2`. 2

17



5.1 Two-move DiÆe-Hellman in the am

We demonstrate that under the Deisional DiÆe-Hellman (DDH) assumption (see below) the `las-

si' two-move DiÆe-Hellman key-exhange protool designed to work against eavesdroppers-only is

SK-seure in the am. We denote this protool by 2dh and desribe it in Figure 2 (here and in the

sequel all exponentiations are modulo the de�ned prime p).

Using Theorem 6 we an apply any authentiator to this protool to obtain a seure DiÆe-Hellman

exhange against realisti um attakers. For illustration, a partiular instane of suh a SK-seure

protool in the um, using digital signatures for authentiation, is shown in the next setion. Other

avors of authentiated DH protools an be derived in a similar way by using other authentiators

(e.g. based on publi key enryption or on pre-shared keys [2℄); see Setion 5.4.

Protool 2dh

Common information: Primes p; q, q=p�1, and g of order q in Z

�

p

.

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s), hooses x

R

 Z

q

and sends (P

i

; s; � = g

x

) to P

j

.

Step 2: Upon reeipt of (P

i

; s; �) the responder, P

j

, hooses y

R

 Z

q

, sends (P

j

; s; � = g

y

) to P

i

,

erases y, and outputs the session key  = �

y

under session-id s.

Step 3: Upon reeipt of (P

j

; s; �), party P

i

omputes 

0

= �

x

, erases x, and outputs the session

key 

0

under session-id s.

Figure 2: The two-move DiÆe-Hellman protool in the am

The Deisional DiÆe-Hellman (DDH) assumption is as follows.

Assumption 7 Let k be a seurity parameter. Let p; q be primes, where q is of length k bits

and q=p�1, and g be of order q in Z

�

p

. Then the probability distributions of quintuples Q

0

=

fhp; g; g

x

; g

y

; g

xy

i : x; y

R

 Z

q

g and Q

1

= fhp; g; g

x

; g

y

; g

z

i : x; y; z

R

 Z

q

g are omputationally

indistinguishable.

Theorem 8 Assuming the Deisional DiÆe-Hellman (DDH) assumption, protool 2dh is SK-

seure in the am.

Proof: To see that the �rst requirement of De�nition 4 is satis�ed, note that if both P

i

and P

j

are unorrupted during the exhange of the key and both omplete the protool (i.e. the three

steps of the protool are ompleted by P

i

and P

j

) then they both establish the same key (whih is

 = 

0

= g

xy

mod p). Note that the session identi�er s uniquely binds the values of g

x

and g

y

to

these partiular mathing sessions and di�erentiates them from other exponentials that the parties

may exhange in other (possibly simultaneous) sessions.

We show that the seond requirement of De�nition 4 is also satis�ed by protool 2dh. Assume

to the ontrary that there is a ke-adversary A in the am against protool 2dh that has a non-

negligible advantage in guessing orretly whether the response to a test-query is real or random.

Out of this attaker A, we onstrut an algorithm D that distinguishes between the distributions

Q

0

and Q

1

with non-negligible probability; thus reahing a ontradition with Assumption 7. The

input to D is denoted by (p; g; �

�

; �

�

; 

�

) and is hosen from Q

0

or Q

1

eah with probability 1/2.
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Let ` be an upper bound on the number of sessions invoked by A in any interation. Algorithm D

uses adversary A as a subroutine and is desribed in Figure 3.

Distinguisher D

Proeed as follows, on input (p; g; �

�

; �

�

; 

�

):

1. Choose r

R

 f1 : : : `g.

2. Invoke A, on a simulated interation in the am with parties P

1

; :::; P

n

running 2dh. Hand A

the values p; g as the publi parameters for the protool exeution.

3. Whenever A ativates a party to establish a new session (exept for the r-th session) or to

reeive a message, follow the instrutions of 2dh on behalf of that party. When a session is

expired at a player erase the orresponding session key from that player's memory. When

a party is orrupted or a session (other than the r-th session) is exposed, hand A all the

information orresponding to that party or session as in a real interation.

4. When the r-th session, say (P

i

; P

j

; s), is invoked within P

i

to exhange a key with P

j

, let P

i

send the message (P

i

; s; �

�

) to P

j

.

5. When P

j

is invoked to reeive (P

i

; s; �

�

), let P

j

send the message (P

j

; s; �

�

) to P

i

.

6. If session (P

i

; P

j

; s) is hosen by A as the test-session, then provide A with 

�

as the answer

to this query.

7. If the r-th session (P

i

; P

j

; s) is ever exposed, or if a session di�erent than the r-th session

is hosen as the test-session, or if A halts without hoosing a test-session then D outputs

b

0

R

 f0; 1g and halts.

8. If A halts and outputs a bit b

0

, then D halts and outputs b

0

too.

Figure 3: Building a distinguisher for DDH

First note that the run of A by D (up to the point where A stops or D aborts A's run) is

idential to a normal run of A against protool 2dh.

Consider the ase in whih the test session s hosen by A oinides with the session hosen at

random by D (i.e., the r-th session as hosen in Step 1). In this ase, the response to the test-query

by A is 

�

. Thus, if the input to D ame from Q

0

then the response was the atual value of the

key exhanged between P

i

and P

j

during the test-session s (sine, by onstrution, the session key

exhanged in Steps 4 and 5 of Figure 3 is 

�

= g

xy

). On the other hand, if the input to D ame

from Q

1

then the response to the test query was a random exponentiation, i.e. a random value from

the distribution of keys generated by the protool. In addition, the input to D was hosen with

probability 1/2 from Q

0

and with probability 1/2 from Q

1

and then the distribution of responses

provided by D to the test query of A is the same as spei�ed by De�nition 4. In this ase, the

probability that A guesses orretly whether the test value was \real" or \random" is 1=2 + " for

non-negligible ". By the above argument this is equivalent to guessing whether the input to the

distinguisher D ame from Q

0

or Q

1

, respetively. Thus, by outputting the same bit as A we get

that the distinguisherD guesses orretly the input distributionQ

0

or Q

1

with the same probability

1=2 + " as A did.

Now onsider the ase in whih the r-th session is not hosen as a test-session. In this ase

D always ends outputting a random bit, and thus its probability to guess orretly the input
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distribution is 1/2.

Sine the �rst ase (in whih the test-session and the r-th session oinide) happens with

probability 1=` while the other ase happens with probability 1 � 1=` we get that the overall

probability of D to guess orretly is 1=2 + "=`, and thus D sueeds in distinguishing Q

0

from Q

1

with non-negligible advantage.

2

5.2 SK-seure DiÆe-Hellman Protool in the um

Here we apply the signature-based authentiator of [2℄ to the protool 2dh from Figure 2 to obtain

a DiÆe-Hellman key-exhange that is SK-seure in the um. We present the resultant protool in

Figure 4 (it is very similar to a protool spei�ed in [29℄). Its SK-seurity follows from Theorems

6 and 8.

Protool sig-dh

Initial information: Primes p; q, q=p�1, and g of order q in Z

�

p

. Eah player has a private key for a

signature algorithm sig, and all have the publi veri�ation keys of the other players.

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s), hooses x

R

 Z

q

and sends (P

i

; s; � = g

x

) to P

j

.

Step 2: Upon reeipt of (P

i

; s; �) the responder, P

j

, hooses y

R

 Z

q

, and sends to P

i

the message

(P

j

; s; � = g

y

) together with its signature sig

j

(P

j

; s; �; �; P

i

); it also omputes the session key

 = �

y

and erases y.

Step 3: Upon reeipt of (P

j

; s; �) and P

j

's signature, party P

i

veri�es the signature and the or-

retness of the values inluded in the signature (suh as players identities, session id, the

value of exponentials, et.). If the veri�ation sueeds then P

i

sends to P

j

the message

(P

i

; s; sig

i

(P

i

; s; �; �; P

j

)), omputes 

0

= �

x

, erases x, and outputs the session key 

0

under

session-id s.

Step 4: Upon reeipt of the triple (P

i

; s; sig), P

j

veri�es P

i

's signature sig and the values it inludes.

If the hek sueeds it outputs the session key  under session-id s.

Figure 4: DiÆe-Hellman protool in the um: authentiation via signatures.

Remarks on protool sig-dh. The protool is the result of applying the signature-based

authentiator of [2℄ to eah of the ows in the 2-pass DiÆe-Hellman protool 2dh of Figure 2,

and joining (piggy-baking) the ommon ows. The authentiators use the values � and � (the

DH exponentials) as the hallenges required by these authentiators. This assumes (as spei�ed

in protool 2dh) that these exponentials are hosen afresh for eah new exhange. We remark

that this dual use of � and � as exponentials and as hallenges is done to simplify the protool but

separate hallenges ould be sent by the parties and inluded under the signature. It is worth noting

that the identity of the destination party inluded under the signatures is part of the spei�ation

of the signature-based authentiator of [2℄ and is fundamental for the seurity of protool sig-dh

(without them the protool is inseure; see [19℄).

The desription of sig-dh in Figure 4 assumes, as formalized in our model, that the value s of

the session-id is provided to the parties. In pratie, one usually generates the session identi�er

s as a pair (s

1

; s

2

) where s

1

is a value hosen by P

i

and di�erent (with very high probability)
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from all other suh values hosen by P

i

in his other sessions with P

j

. Similarly, s

2

is hosen by P

j

with an analogous uniqueness property. These values s

1

; s

2

an be exhanged by the parties as a

prologue to the above protool (this may be the ase of protools that implement suh a prologue

to exhange some other system information and to negotiate exhange parameters; see for example

[28℄). Alternatively, s

1

an be inluded by P

i

in the �rst message of sig-dh, and s

2

be inluded by

P

j

in the seond message. In any ase, it is important for the seurity of the protool that these

values be inluded under the parties' signatures.

5.3 A publi-key enryption-based protool without pfs

The protool desribed in this setion is based on publi key enryption shemes seure against

hosen iphertext attaks. We show that this protool satis�es De�nition 5, i.e. SK-seurity

without pfs, in the am. That is, the protool does not provide forward serey of the session keys

(an attaker who breaks into a party may ompromise all the keys exhanged by this party in the

past even if these keys are erased from that party's memory). Formally, we onsider that session

keys never expire. The protool an be made into a SK-seure without pfs protool in the um by

using any authentiator (Theorem 6).

Let (G;E;D) be a key-generation, enryption and deryption algorithms, respetively, of a

publi-key enryption sheme seure against hosen iphertext attaks (CCA). (See, for instane,

[20, 4, 17℄). Let k be the seurity parameter. Assume that eah party P

i

has invoked G(k) to get

a pair (e

i

; d

i

) of enryption and deryption keys, and all parties have the publi enryption key e

i

of the other parties. In addition, let ff

�

g

�2f0;1g

k

be a pseudorandom funtion family (as in [22℄).

The protool, denoted en, is desribed in Figure 5.

Protool en

Proeed as follows, given seurity parameter k.

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s), hooses �

R

 f0; 1g

k

and sends (P

i

; s; E

e

j

(�)) to P

j

.

Next, P

i

outputs the session key � = f

�

(P

i

; P

j

; s) under session-id s.

Step 2: Upon reeipt of (P

i

; s; ) the responder, P

j

, omputes �

0

= D

d

j

(). If the deryption

algorithm does not rejet the iphertext, then P

j

outputs the session key �

0

= f

�

0

(P

i

; P

j

; s)

under session-id s.

Figure 5: A ke protool based on CCA-seure enryption.

Remark. For ensuring the seurity of protool en we need to assume that the deryption

operation �

0

= D

d

j

() (inluding the validity hek for the iphertext ) and the omputation

of the pseudorandom value f

�

0

(P

i

; P

j

; s) in Step 2 are performed suh that neither the long-term

deryption key d

j

or the temporary value �

0

appear as part of the state of session s. Namely, we

need to assume that these operations are done in a separate seure module and only the value

�

0

= f

�

0

(P

i

; P

j

; s) is returned to the session state. The assumption that long-term private keys are

not part of the session state is a fundamental requirement in a model as ours that di�erentiates

session-state orruptions from total orruptions (see Setion 2.2). The need to hide �

0

from the

session state is a spei� requirement of the en protool and it is illustrated by the following attak.

Say that �

0

is returned to the session state, then an attaker ould ompromise an unexposed session
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(P

i

; P

j

; s) as follows. It orrupts party P

l

; l 6= i; j, and initiates an en session (P

l

; P

j

; s

0

) between

the orrupted P

l

and P

j

in whih P

l

sends to P

j

the same iphertext  sent in session s from P

i

to

P

j

. One P

j

derypts  and stores the temporary value �

0

in the state of session s

0

, the attaker

performs a session-state reveal and learns �

0

. Now it an also ompute the value of the session

key orresponding to the unexposed session s. Thus, this attak (and the proof of Theorem 9)

show the are needed in speifying and implementing the en protool if we require resistane to

session-state reveals. Whether this is a realisti risk or not may depend on partiular appliations

and senarios. In any ase, if a separate module for the above operations annot be assumed then

the protool beomes inseure in our model but is still seure in a model where session states an

only be revealed via total orruptions (i.e., a weakened model where session-state reveals are not

onsidered as a separate attaker ation).

Theorem 9 If the enryption (G;E;D) is CCA-seure and the family ff

�

g

�2f0;1g

k

is pseudoran-

dom, then protool en is SK-seure without pfs in the authentiated links model (am).

Proof: It is easy to see that the �rst ondition of De�nition 4 is satis�ed by protool en (that

is, unorrupted parties that omplete mathing sessions output the same session-key). The ore of

the proof is in proving the seond ondition of De�nition 4 in the ase where keys are not expired.

We start by de�ning a \game" whih aptures the hosen-iphertext seurity of the enryption

funtion E in ombination with the pseudorandom family ff

�

g

�2f0;1g

k

. We will then show that an

attaker that breaks the SK-seurity of protool en an also win in this game and then break the

enryption funtion E. The game is de�ned in Figure 6.

The enryption game

The parties to the game are G and B (for good and bad). G possesses a pair of publi and private

keys, e and d (generated via the key generation algorithm G). B knows e but not d.

The game proeeds in phases:

Phase 0: G provides B with a hallenge iphertext 

�

= E

e

(�

0

) for �

0

R

 f0; 1g

k

.

Phase 1: B sends a pair (; t) to G who responds with f

�

(t) where � = D

d

(). This is repeated

a polynomial (in k) number of times with eah pair being hosen adaptively by B (i.e., after

seeing G's response to previous pairs).

Phase 2: B sends a test string t

�

to G. Then G hooses a random bit b

R

 f0; 1g. If b = 0 then

G responds with f

�

0

(t

�

) where �

0

is the value enrypted by G in phase 0. If b = 1 then G

responds with a random string r of the same length as f

�

0

(t

�

).

Phase 3: Same as Phase 1.

Phase 4: B outputs a bit b

0

.

And the winner is... B if and only if b = b

0

.

Figure 6: A game that aptures the CCA-seurity of the enryption funtion E

We state the following Lemma (the proof uses standard arguments and, in partiular, is similar
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to the proof of the enryption-based authentiator from [2℄).

Lemma 10 Assume that the enryption sheme (G;E;D) is CCA-seure and the family ff

�

g

�2f0;1g

k

is pseudorandom. Then if the pair (

�

; t

�

) is not queried by B during Phases 1 and 3 the probability

that B wins in the above game is no more than 1/2 plus a negligible fration.

We note that B is not allowed (in the lemma formulation) to query the pair (

�

; t

�

) but it is

allowed to inlude, separately, the values 

�

and t

�

in other pairs.

We now proeed to show that if there is an am ke-attaker A that breaks the SK-seurity of

protool en in the sense that it an distinguish between real and random values of a test session

while not being allowed to orrupt the partners to this session, then there is an eÆient algorithm

B that wins in the above game with non-negligible probability over 1/2.

We build suh B. Let G be the party against whih B plays the game. G holds a private

deryption key d and publi enryption key e. The game starts with G sending a hallenge iphertext



�

to B. Then, B proeeds to Phase 1 of the game doing the following. It builds a virtual senario for

the run of protool en, and ativates the attaker A against this virtual run. Among all n parties

in this run, B hooses one at random, all it P

�

j

. For all other virtual players B hooses private

keys (using the key generation algorithm G) and provides A with the orresponding publi keys.

B does not hoose a private key for P

�

j

; instead it provides A with e (the publi key of G) as the

publi key of P

�

j

. Also, B hooses a random session among the sessions where P

�

j

is the responder.

We denote this session as s

�

, and its initiator as P

�

i

(i.e. the hosen session is (P

i

; P

j

; s

�

)).

All operations sheduled by A are performed by B on behalf of the virtual players in the

following way. All session establishments are exeuted by B aording to the protool exept for

the establishment of session s

�

. When A shedules the establishment of session s

�

between P

�

i

and

P

�

j

, B sends the message (P

�

i

; s

�

; 

�

) to P

�

j

on behalf of P

�

i

. Here 

�

is the hallenge iphertext

provided to B by G in Phase 0.

All exposure of session keys performed by A, via session or party orruptions, that do not involve

P

�

j

as the responder are answered by B using his knowledge of private keys. When A orrupts a

party other than P

�

j

and P

�

i

, then B also provides A with the private key of that party. If a session

s 6= s

�

between a player P and P

�

j

in whih the latter ats as responder is exposed by A, then B

provides the value of that key to A in the following way. If P was unorrupted at the time that s

was established then B was the one to hoose the key � enrypted by P and then it knows it. If P

was orrupted then all B knows is the message (P; s; ) sent from P to P

�

j

as step 1 in the protool.

In this ase B presents to G (as part of Phase 1) the pair (; t) where t = (P; P

�

j

; s). The value

� returned by G is the value that B provides to A as the queried session key (note that by our

assumption in the Remark preeding the Theorem the only information exposed in a session-key

query or in session-state reveal is the value of the session key so no other information needs to be

returned by B to A).

If at any point A queries or reveals session s

�

, orrupts P

�

i

or P

�

j

, or hooses a test session

di�erent than s

�

, B proeeds as follows. It aborts the run of A and moves to Phase 2 sending an

arbitrary value t

�

to G. After getting G's response it moves diretly to Phase 4 outputting a random

bit b

0

.

If A deides to be tested on session s

�

then B moves to Phase 2 and sends to G the value

t

�

= (P

�

i

; P

�

j

; s

�

). The response from G is passed by B to A as the value of the key for session s

�

.

B enters Phase 3. It keeps running A in the same way as desribed for Phase 1 above (note

that in this ase A is not allowed to expose s

�

). When A outputs a bit b

0

and stops, then B moves

to Phase 4 and outputs the same bit b

0

as A did.
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We �rst note that the above behavior of B in the game is a legal one, namely, that it never asks

the pair (

�

; t

�

) from G in phases 1 and 3. This is easy to see sine all pairs queried by B during

these phases ontain a value t di�erent than t

�

. Indeed all the values t queried by B have the form

of a triple (P;Q; s) where P;Q are player identities and s a session identi�er. Thus, due to the

uniqueness of session-id's the value t

�

= (P

�

i

; P

�

j

; s

�

) ours only with relation to session s

�

whih

is never queried by B from G in phases 1 and 3.

Now we prove that B wins the game against G with non-negligible advantage. First, note that

in the ases where B aborts the run of A before ompletion it outputs a random bit b

0

so its hanes

to win in this ase is exatly 1/2. In the ase where A ends with output b

0

the hanes of B to win

are exatly the same as those of A to guess orretly whether the test value was real or random.

This probability is, by assumption, non-negligible over 1/2. The later ase happens whenever the

tested session hosen by A is the same s

�

hosen (randomly) by B. Sine this event happens with

non-negligible probability (1=` where ` is an upper bound on the number of sessions established in

the protool run) then the overall advantage of B is non-negligible. 2

Remarks on Protool en.

1. The derivation of the session key via a pseudorandom funtion applied to the session and

parties' identi�ers is of fundamental importane for the seurity of the protool. Had the

session key be just � then the protool would be inseure (even in the am!). In this ase the

attaker sees that P

i

sends the iphertext E

e

j

(�) to P

j

. Then party P

l

, that we assume is

ontrolled by the attaker, sends the same iphertext to P

j

. Now, P

j

has established the same

session-key with two di�erent parties. This a serious seurity aw

7

that breaks SK-seurity:

the attaker an now query P

j

for the key exhanged with P

l

and in this way to learn the key

that P

j

exhanged with P

i

.

2. The atual seurity of protool en an be improved by speifying that sessions do expire

at the initiator (and the orresponding keys removed from its memory). This preserves SK-

seurity and adds onsiderably to the pratial seurity of the protool. For example, onsider

an appliation where the initiators are mobile devies, vulnerable to the stealing of the private

key, ommuniating with a well-proteted gateway. In this ase, if we let keys to expire at

the initiator, then �nding the deryption key of suh a mobile devie is of no help to the

attaker in reovering past (expired) session keys. The attaker must break the gateway to

obtain these keys.

3. Another stronger version of this protool is obtained by letting eah party send the other a

key as in en and deriving the shared session key in a way that requires knowledge of both

enrypted keys. In this ase, the protool still does not provide pfs but (if keys are erased

from memory when the session is expired) the only way to reover a past key is to �nd the

private keys of both initiator and responder. This is the basis to the DH-less mode of SKEME

[32℄. However, note that our de�nition of SK-seurity (with pfs) would rejet suh a protool

as seure. A weakened version of the de�nition that is satis�ed by the protool is obtained if

one requires that at most one of the partners to the modi�ed session an be orrupted (and

only after the key is expired at that party).

7

[19℄ desribes an attak in whih a dishonest ustomer exploits a key-exhange weakness to defraud a bank and a

honest ustomer; the same attak an be mount here with P

j

ating as the bank, and P

i

and P

l

ating as the honest

and heating ustomers, respetively. See [19℄ for the details.
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5.4 Protools based on shared keys

In order to further illustrate the usability of our methodology we show how to apply it to key-

exhange protools that assume that the two peers initially share a seret key and use this key

to authentiate the exhange of new key material. This \key refreshment" funtionality is very

important in network seurity protools (e.g. [32, 28℄). We show examples of SK-seure protools

with and without pfs.

These examples use the following MAC-based authentiator that assumes a shared key �

ij

between a pair of parties P

i

; P

j

. Let f denote a seure MAC funtion, and �

ij

be a random key for

f hosen under seurity parameter k. The authentiator is de�ned as follows: when P

i

wants to

send a message to a reipient P

j

, the latter sends a hallenge r

R

 f0; 1g

2k

to P

i

, and P

i

sends the

message m together with the authentiation tag f

�

ij

(P

j

; r;m). The seurity of this authentiator

an be proven in a way similar to the proof of the signature-based authentiator from [2℄.

Applying this authentiator to the basi two-move DiÆe-Hellman protool 2dh in the am one

obtains (see Setion 5.1) an SK-seure DiÆe-Hellman protool (with pfs) in the um. We omit a

detailed desription of the resultant protool and just point out that it is similar to protool sig-dh

from Setion 5.2 where the digital signatures are replaed with the appliation (by P

i

and P

j

) of

the MAC funtion keyed under the shared key �

ij

.

Protool rekey

Initial information: Eah pair of players (P

i

; P

j

) share a seret pseudorandom funtion f

�

ij

.

Protool rekey in the am:

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s), hooses r

i

R

 f0; 1g

2k

and sends (P

i

; s; r

i

) to P

j

.

Step 2: Upon reeipt of (P

i

; s; r

i

), the responder P

j

hooses r

j

R

 f0; 1g

2k

and sends (P

j

; s; r

j

) to

P

i

. Then, P

j

outputs session key f

�

ij

(r

i

; r

j

)

Step 3: Upon reeipt of (P

j

; s; r

j

), player P

i

outputs session key f

�

ij

(r

i

; r

j

).

Protool rekey in the um:

Step 0: Both players derive two keys from �

ij

: �

1

= f

�

ij

(1) and �

2

= f

�

ij

(2).

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s), hooses r

i

R

 f0; 1g

2k

and sends (P

i

; s; r

i

) to P

j

.

Step 2: Upon reeipt of (P

i

; s; r

i

), the responder P

j

hooses r

j

R

 f0; 1g

2k

, omputes

t

j

= f

�

1

(P

i

; r

i

; s; r

j

) and sends (P

j

; s; r

j

; t

j

) to P

i

.

Step 3: Upon reeipt of (P

j

; s; r

j

; t

j

), player P

i

veri�es the authentiation tag t

j

and if suessful

it omputes t

i

= f

�

1

(P

j

; r

j

; s; r

i

), sends (P

i

; s; t

i

) to P

j

, and outputs session key f

�

2

(r

i

; r

j

).

Step 4: Upon reeipt of (P

i

; s; t

i

), player P

j

veri�es the authentiation tag t

i

and if suessful it

outputs session key f

�

2

(r

i

; r

j

).

Figure 7: Key-refresh protool based on a shared seret. The protool in the um is the

result of applying the MAC-based authentiator to the protool in the am

We proeed to show yet another example of the appliation of our modular methodology for

designing and proving ke protools. In this ase we show a simple and eÆient protool to derive
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a fresh session key between players P

i

and P

j

based on the ommon (\master") seret key �

ij

and

without the use of DiÆe-Hellman (the protool does not provide pfs). In Figure 7 we present

the protool in the am and the protool in the um where the latter is derived from the former by

applying the above based MAC-based authentiator to eah of the protool's messages and joining

(piggy-baking) the ommon ows. We note that in this ase we use a pseudorandom family f

rather than a mere MAC for the implementation of the authentiator.

The SK-seurity (without pfs) of the am version of rekey follows diretly from the properties

of pseudorandom funtions. The SK-seurity (without pfs) of the seond protool in the um is

the result of applying the MAC-based authentiator to the �rst protool. Note that we are using

f

�

2

with the funtionality of a pseudorandom funtion as in the am protool, and f

�

1

with the

funtionality of a MAC for the implementation of the MAC-based authentiator. As in the ase

of protool sig-dh, also here we are re-using the strings r

i

and r

j

both for key derivation and as

hallenges for the authentiator. We remark that the rekey protool in the um is similar to the

AKEP2 protool from [7℄.

We end this setion by remarking that another interesting use of our results is for analyz-

ing the password-based ke protools from [27℄. It is shown there how to build a password-based

authentiator whih is then used to authentiate a DiÆe-Hellman exhange.

6 Appliations to Seure Channels

It is ommon pratie to protet end-to-end ommuniations by letting the end parties exhange

a seret session key and then use this key to authentiate and enrypt the transmitted data under

symmetri ryptographi funtions. In order for a key-exhange protool to be onsidered seure it

needs to guarantee that the above strategy for seuring data works orretly, namely, that by using

a shared key provided by the ke protool one ahieves sound authentiation and serey. As it is

ustomary, we will refer to a link between a pair of parties that ahieves these properties as a seure

hannel. While seure hannels may have di�erent meanings in di�erent ontexts, here we restrit

our treatment to the above setting of seuring ommuniations using symmetri ryptography with

a key derived from a key-exhange protool

8

. We prove that an SK-seure key-exhange protool,

appropriately ombined with seure MAC and symmetri enryption funtions, suÆes for realizing

suh seure hannels.

6.1 A Template Protool: Network Channels

We start by formalizing a \template protool" that aptures a generi session-oriented ke-based

protool for seure hannels between pairs of parties in a multi-party setting with parties P

1

; : : : ; P

n

.

This template protool, alled NetChan, simply aptures the mehanism by whih two parties �rst

share a seret key and then use this key for seuring information they exhange. In the template

protool this exhange of information and the seurity funtions applied to it are represented

through abstrat `send' and `reeive' funtions. Later we will see spei� implementations of this

template protool where the generi `send' and `reeive' primitives are instantiated with atual

funtions (e.g., for providing authentiation and/or enryption). We will also de�ne what it means

for suh an implementation to be \seure".

De�nition of NetChan. A (session-based) network hannels protool, NetChan(�; snd; rv), is

de�ned on the basis of a ke protool �, and two generi funtions snd and rv. (A more general

8

A somewhat di�erent formalization of seure hannels appears in [14℄ (see Appendix).
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treatment an be obtained by onsidering these funtions as interative protools but we leave this

more general approah beyond the sope of the present paper.) Both snd and rv are probabilisti

funtions that take as arguments a session-key (we denote this key as a subsript to the funtion)

and a message m. The funtions may also depend on additional state information suh as a session-

id and partner identi�ers, a message identi�er, et. The output of snd is a single value m

0

, while

the output of rv is a pair (v; ok) where ok is a bit and v an arbitrary value. (The bit ok will be

used to return a veri�ation value, e.g. the result of verifying an authentiation tag.) On the basis

of suh funtions we de�ne NetChan(�; snd; rv) in Figure 8.

Protool NetChan(�; snd; rv)

NetChan(�; snd; rv) is initialized with the same initialization funtion I of the ke protool �. It an

then be invoked within a party P

i

under the following ativations:

1. establish-session(P

i

; P

j

; s; role): this triggers a ke-session under � within P

i

with partner P

j

,

session-id s and role 2 finitiator; responderg. If the ke-session ompletes P

i

reords in its loal

output \established session s with P

j

" and stores the generated session key.

2. expire-session(P

i

; P

j

; s): P

i

marks session (P

i

; P

j

; s) (if it exists at P

i

) as expired and the

session key is erased. P

i

reords in its loal output \session s with P

j

is expired".

3. send(P

i

; P

j

; s;m): P

i

heks that session (P

i

; P

j

; s) has been ompleted and not expired, if so

it omputes m

0

= snd

�

(m), using the orresponding session key �, sends (P

i

; s;m

0

) to P

j

, and

reords \sent message m to P

j

within session s" in the loal output.

4. On inoming message (P

j

; s;m

0

), P

i

heks that the session (P

i

; P

j

; s) has been ompleted and

not expired, if so it omputes (m; ok) = rv

�

(m

0

) under the orresponding session key �. If

ok = 1 then P

i

reords \reeived message m from P

j

within session s." If ok = 0 then

no further ation is taken.

Figure 8: A generi network hannels protool

We emphasize that the above de�nition of NetChan applies to either am or um adversarial

models; indeed, the attaker against NetChan is allowed to initiate and shedule any of the protool

ativations and has all the apabilities of an attaker in the orresponding model, inluding attaks

against the key-exhange protool � (suh as party orruptions, session-state reveal, and session-

key queries). Also for NetChan we keep our ke onvention that session identi�ers are heked for

uniqueness. Note that NetChan has no loal outputs labeled `seret' (in partiular, the session key

is not part of the loal output of NetChan as these keys are used internally and never passed to

another protool). Thus, the external funtionality of NetChan is as in a simple (session-based)

message exhange protool.

6.2 Network Authentiation

On the basis of the above formalism, we treat the ase of network hannels that provide authenti-

ation of information over adversary-ontrolled hannels. Namely, we are interested in a NetChan

protool that runs in the unauthentiated-links model um and yet provides authentiity of transmit-

ted messages. This implementation of NetChan (whih we all NetAut) will be aimed at apturing

the pratie by whih ommuniating parties use a key-exhange protool to establish a shared
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session key, and use that key to authentiate (via a message authentiation funtion, MAC) the

information exhanged during that session. Namely, if P

i

and P

j

share a mathing session s and P

i

wants to send a message m to P

j

during that session then P

i

transmits m together with MAC

�

(m)

where � is the orresponding session key.

Protool NetAut . Let � be a ke protool and let f be a MAC funtion. Protool NetAut(�; f)

is a network hannels protool NetChan(�; snd; rv) as de�ned in Figure 8, where funtions snd and

rv are de�ned as:

� On input m, snd

�

(m) produes output m

0

= (m; f

�

(m)).

� On input m

0

, rv

�

(m

0

) outputs (v; ok) as follows. If m

0

is of the form (m; t) then ok = 1 if

and only if (i) m is di�erent than all previously seen messages in the session, and (ii) (m; t)

passes the veri�ation funtion of f under key �. If ok = 1 then set v = m, otherwise ok = 0

and v = null.

Note that we require the reeiver of a message to hek for uniqueness of the inoming message. This

hek is needed to avoid \re-play" or dupliation of delivered messages by an attaker. Equivalently,

one an think of m as the onatenation of the message with a unique per-message identi�er whih

is omputed by the sender and heked for uniqueness at the reeiver (e.g., based on a shared

ounter between the parties). For simpliity and generality, in the above spei�ation of protool

NetAut we abstrat out the spei� message di�erentiation mehanism in use.

Our goal is to show that if the key-exhange protool � is SK-seure and the MAC funtion f is

seure (against hosen-message attaks) then the resultant network hannels protool NetAut(�; f)

provides authentiated transmission of information. This requirement an be formulated under the

property that \any message reorded by P

i

as reeived from P

j

has been neessarily reorded as

sent by P

j

, exept if the pertinent session is exposed". We will atually strengthen this requirement

and ask that a network hannels protool provides authentiation if it emulates (i.e. imitates) the

transmission of messages in the ideally authentiated-links model am. Formally, we do so using

the notion of protool emulation and the formalization (see Setions 2.3 and 3.4) of the message

transmission protool (mt) in the am as done in [2℄. Reall that mt is a simple protool that spei�es

the funtionality of transmitting individual messages in the am. Here we extend the basi de�nition

of mt to a session-based message transmission protool alled smt. By proving that the network

hannels protool NetAut emulates smt in the um we get the assurane that transmitting messages

over unauthentiated-links using NetAut is as seure as transmitting them in the presene of an

attaker that is not allowed to hange, dupliate or injet messages over the ommuniation links.

Protool smt. We extend protool mt from [2℄ to �t our session-based setting in whih trans-

mitted messages are grouped into di�erent sessions. We all the extended protool a session-based

message transmission protool (smt), and de�ne it in Figure 9. (Note the strutural similarity be-

tween smt and NetChan { the di�erenes are that no atual key-exhange is run in smt, and the

funtions snd and rv are instantiated to simple \identity funtions".)

Seure network authentiation protools. Sine protool smt represents a perfetly authen-

tiated exhange of messages, we use it as the spei�ation protool to de�ne what is meant for an

implementation of protool NetChan to be a seure network authentiation protool (for the de�nition

of the notion of \emulation" used in the following de�nition see Setion 3.4):

De�nition 11 Protool NetChan(�; snd; rv) is alled a seure network authentiation protool if it

emulates protool smt in the um.
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Protool smt

Protool smt an be invoked within a party P

i

under the following ativations:

1. establish-session(P

i

; P

j

; s): in this ase P

i

reords in its loal output \established session

s with P

j

".

2. expire-session(P

i

; P

j

; s): in this ase P

i

reords in its loal output \session s with P

j

is

expired".

3. send(P

i

; P

j

; s;m): in this ase P

i

heks that session (P

i

; P

j

; s) has been established and not

expired, if so it sends message m to P

j

together with the session-id s (i.e., the values m and s

are sent over the ideally-authentiated link between P

i

and P

j

); P

i

reords in its loal output

\sent message m to P

j

within session s".

4. On inoming message (m; s) reeived over its link from P

j

, P

i

heks that session (P

i

; P

j

; s) is

established and not expired, if so it reords in the loal output \reeived message m from

P

j

within session s".

Figure 9: Protool smt in the am: The spei�ation protool for authentiated session-

based message transmission.

Theorem 12 If � is a SK-seure key-exhange protool in the um and f is a MAC funtion

seure against hosen message attaks, then protool NetAut(�; f) is a seure network authentiation

protool.

Proof: In order to show that NetAut(�; f) is a seure network authentiation protool we need to

prove that NetAut(�; f) emulates smt in the um. Namely, given an attaker U against NetAut(�; f)

in the um we need to build an am-attaker, A, against smt that produes a protool and adversary

output that is indistinguishable from the output produed by the interation of U with NetAut(�; f).

We de�ne A to simulate U as follows. A builds a virtual \unauthentiated" senario in whih it

simulates U where to eah party in smt orresponds a virtual party in the um world of NetAut(�; f).

We denote by � the smt protool run in the am by A, and by �

0

the simulated virtual protool

NetAut(�; f) in the um. Also, we denote by P

1

; : : : ; P

n

the parties running the smt-protool �, and

by P

0

1

; : : : ; P

0

n

the orresponding virtual parties running �

0

.

All the ativations by U (suh as invoking ke-sessions, issuing \send" ativations, orrupting

parties and sessions, et.) are arried out in the virtual protool �

0

through A. In partiular, the

ation of virtual parties are arried out by A on their behalf; this inludes the running of ke-session

within �

0

parties and the transmission of messages. The desription of A is presented in Figure 10.

The following fats about the behavior of A as de�ned in Figure 10 are easy to inspet.

1. A is a legal attaker against smt in am (in partiular, only previously reorded sent messages

are delivered, exept if the sender is orrupted or the session is exposed).

2. The ations of U are perfetly simulated by A (i.e., arried identially by A) against �

0

.

3. All sent, established and expired events reorded in �

0

are equally reorded in �.

4. reeived events in � an di�er from those in �

0

only in the following ase (see Step 5 in

Figure 10): party P

0

i

reorded \reeived message m from P

0

j

within session s" in �

0
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Adversary A

A proeeds as follows when interating with P

1

:::P

n

running smt in the am.

1. A initiates a opy of U , interating with parties P

0

1

:::P

0

n

running NetAut(�; f) in the um. In

partiular, it evaluates the initialization funtion I of NetAut(�; f) on random input and hands

U the publi output of I .

2. Whenever U ativates P

0

i

with an ativation establish-session(P

0

i

; P

0

j

; s; role) or any ativation

of P

0

i

related to the run of a ke-session of protool �, A performs the resultant ations within

P

0

i

and hands out the resultant messages to U for delivery.

3. Whenever U issues P

0

i

with one of the NetAut(�; f) ativations send(P

0

i

; P

0

j

; s;m), expire-

session(P

0

i

; P

0

j

; s), or with inoming message (P

0

j

; s;m; t), A performs the resultant ations

of the players in �

0

aording to the NetAut(�; f) spei�ations. Every message generated by

the parties is transferred by A to U for delivery.

4. Whenever P

0

i

reords one of the events \established session s with P

0

j

", \session

s with P

0

j

is expired", or \sent message m to P

0

j

within session s", then in � at-

taker A issues to P

i

the ativation establish-session(P

i

; P

j

; s), expire-session(P

i

; P

j

; s),

send(P

i

; P

j

; s;m), respetively.

5. Whenever P

0

i

reords \reeived message m from P

0

j

within session s", A does:

(a) If P

j

reorded \sent message m to P

i

within session s" then A ativates P

i

with

inoming message (m; s) from P

j

.

(b) Else, if P

j

is orrupted or session s within P

j

is loally exposed, then A ativates P

j

with

send(P

j

; P

i

; s;m) (note that this sent event is not reorded at P

j

by the onvention that

loally exposed sessions do not produe output) and then ativates P

i

with inoming

message (m; s) from P

j

.

6. Whenever U orrupts P

0

i

, A hands U the internal data of the simulated P

0

i

, and orrupts P

i

in the run of �. Whenever U issues an exposure ation against a session (P

0

i

; P

0

j

; s) within P

0

i

,

A hands U the orresponding information from the session within P

0

i

and issues the exposure

against the session (P

i

; P

j

; s) within P

i

in �.

7. When U halts, A outputs whatever U outputs and halts.

Figure 10: Emulation of smt: the am-adversary A.

but P

0

j

did not reord the orresponding sent event, and neither session s is exposed nor P

0

j

is orrupted. We all this ase a forgery-event.

The above fats show that the simulation of U by A against the NetAut(�; f) protool is perfet

(i.e. idential to a real run of U) as long as a forgery-event as de�ned above does not happen. (In

the ase of a forgery-event the simulation of U by A fails sine in �

0

party P

0

i

reords the reeived

message m while in � the orresponding party P

i

will not reord it.) In Lemma 13 below we show

that this forgery-event happens with negligible probability (i.e., there is a negligible probability that

in an unexposed session of �

0

, a party P

0

i

aepts a message from P

0

j

that the latter did not send).

Therefore, we have that the statistial distane between auth

smt;A

(k) and unauth

NetAut(�;f);U

(k)

is negligible. Consequently, NetAut(�; f) emulates smt in the um and thus it is a seure network

authentiation protool. 2
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Lemma 13 If � is a SK-seure key-exhange protool and f is a MAC funtion seure against

hosen message attaks, then for any attaker U running against NetAut the probability of a \forgery-

event" (as de�ned in the proof of Theorem 12) during an unexposed session is negligible.

Proof: We prove the lemma by ontradition: if for a given attaker U against NetAut(�; f),

a forgery-event happens in an unexposed session with non-negligible probability then we build a

forger for the MAC funtion f that sueeds with non-negligible probability. For onveniene, we

denote the above assumed non-negligible probability of a forgery-event by " (more preisely, this

value is a funtion of the seurity parameter).

Building a forger F . The forger F has an orale to f that uses an unknown random key; F an

request from the orale the value of f on any message under the orales key and an also request

the veri�ation of pairs (m; t) in whih ase the orale veri�es whether t is the orret value of f(m)

under the orale's key (the latter are alled \veri�ation queries"). The goal of F is to produe a

MAC forgery, i.e. the value of f on a message under the key of the orale, without requesting the

box to ompute this value. F starts by building a virtual NetAut world and ativates U against

it (similarly as A did in the proof of Theorem 12 but without any \smt parties"). In addition,

F hooses a session at random (from all sessions ompleted during the run of the protool), say

(P

i

; P

j

; s

0

). We will use the identi�er s

0

to refer to the hosen session or its mathing session. In

the ases where U delivers a message under the session-key of session s

0

, F does not use the atual

session-key as exhanged in the simulated protool but instead it requests the orale to f to provide

that value of f (i.e F is e�etively using the orale key as the s

0

session-key). Similarly, F uses

the orale to verify whether messages sent under session s

0

possess the orret value of f (this is

needed in ases where U injets or hanges the authentiation tags). If during simulation session

s

0

is exposed by U , then F aborts its omputation (i.e. it fails to forge). If at any point one of the

partners to session s

0

, say P

i

, aepts a message as orretly MACed while the other party did not

reord the orresponding sent event (in partiular, F did not request the MAC of this message from

its orale) then F outputs the message and its MAC as sent to P

i

as a forgery against the orale

to the MAC funtion f . (Note that by the uniqueness property of sent and reeived messages in

NetAut the message on whih F outputs this forgery was never queried from the MAC orale.)

Thus, if in the run of U by F a forgery-event happens under session s

0

then F sueeds in

produing a forgery against the MAC. We want to show that this happens with non-negligible

probability.

Reall that we are assuming (by way of ontradition) that in a regular run by U a forgery-event

happens with non-negligible probability ". Thus, if one hooses a session s

0

at random, then in a

run of U a forgery-event will happen in session s

0

with non-negligible probability too (i.e., " divided

by an upper bound on the number of sessions in the protool). However, the run of U by the forger

F is not a regular run: the key used to MAC messages in session s

0

is not the real session key

exhanged by the parties but an independent random value. Still we laim that if in a run of U we

replae the session-key in a randomly hosen session s

0

with a random value then the probability

of a forgery-event in that session does not hange signi�antly, i.e., it remains non-negligible (and

thus F has a non-negligible probability to break the seurity of the MAC funtion f).

In order to prove this laim we introdue the following notation. If s is a session ompleted by

some party under a run of U , then we denote by forgery(s) the event that a forgery-event happens

during session s. We know, by assumption, that if s is hosen at random among all sessions under

a regular run of U then the probability of event forgery(s) is non-negligible. We want to prove

that this is the ase even when U is run by F . (In this ase, this probability, that we denote by

Prob

F

(forgery(s)), is taken over runs of U in whih the real session-key for s is replaed with a
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random value.) The remainder of the proof is devoted to proving this laim.

The plan for this proof is as follows. Based on U , we build a ke-adversary U

ke

against the ke

protool �. Then we show that if in the modi�ed run of U as produed by forger F the probability

of a forgery-event hanges substantially (relative to its probability in a regular run of U), then U

ke

breaks the SK-seurity of � (i.e., it an hoose a test-session in whih to distinguish the real value

of the session-key from a random independent value.)

Attaker U

ke

runs � with n parties P

1

; : : : ; P

n

by essentially simulating the ations of U against

a NetAut protool with protool � and MAC funtion f . For this, U

ke

runs U against a virtual opy

of NetAut(�; f), denoted �

0

, with n players P

0

1

; : : : ; P

0

n

. Eah ation deided by U that onerns the

ke protool part of �

0

(suh as session establishment, party orruptions, session exposure, et.) is

applied by U

ke

against the real run of � (i.e. against parties P

1

; : : : ; P

n

). Whenever U orders an

ation involving the omputation of a MAC value by party P

0

i

using a ompleted and unexpired

session-key (P

0

i

; P

0

j

; s), U

ke

heks if it has already learned the value of that key (via a previous

session exposure). If not, U

ke

issues a session-key query against (P

i

; P

j

; s). With the value of the

learned session-key, U

ke

omputes the required value of f and hands it to U .

There is one exeption, however, to the above behavior of U

ke

. Among the sessions ompleted

in the run of �, attaker U

ke

hooses one at random as its test-session (e.g., U

ke

hooses at the

beginning of its run a number j 2 f1; : : : ; `g where ` is an upper bound on the number of sessions

reated by U during its run, and then U

ke

hooses the j-th ompleted session as its test session).

If U ends its run before the test-session is hosen, or if this session happens to be exposed at time

of ompletion (i.e., either a partner to the session is orrupted before ompletion or U issued a

session-state reveal against this session) then U

ke

stops its run without issuing a test-session query.

Otherwise, one the hosen test-session is ompleted, U

ke

issues a test-session query. We denote

the test-session as s

0

, and the response to the test query as v (as usual a bit b

R

 freal;randomg

is hosen and v is set to the real value of the session-key if b = real and to a random independent

value otherwise

9

.) Whenever U evaluates f involving the key of session s

0

, U

ke

uses v as the

value of the key for f . If at any point U produes a forgery-event in session s

0

(i.e. U is able to

MAC under key v a message not MACed by U

ke

) then U

ke

stops and outputs b

0

= real. If at

some point U stops its run, or if U orders the exposure of session s

0

, then U

ke

stops and outputs

b

0

R

 freal;randomg.

Reall that we want to prove that Prob

F

(forgery(s

0

)) is non-negligible. This is equivalent to

proving that the onditional probability

� = Prob

U

ke

(forgery(s

0

) : b = random)

(now taken over the distribution of runs by U

ke

against protool �) is non-negligible. In order to

show this we start by noting that the onditional probability

� = Prob

U

ke

(forgery(s

0

) : b = real)

represents the probability that a forgery-event happens in a regular run of U (i.e. with all real

session-keys used for MAC-ing information) in a randomly seleted session s

0

. As said earlier, this

probability is "=` (the values " and ` are de�ned above), and then non-negligible. We end the proof

by proving that � � � (i.e. they di�er by only a negligible amount) and thus � is non-negligible.

This proof is obtained via the analysis of the probability, denoted Prob(b

0

= real), that U

ke

ends

its run with output b

0

= real (we onsider this probability only over runs in whih U

ke

issues a

9

For larity, we denote bits by real and random rather than 0; 1.
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test-session query). We have that Prob(b

0

= real) equals

Prob(b

0

= real : forgery(s

0

))Prob(forgery(s

0

))+Prob(b

0

= real : :forgery(s

0

))Prob(:forgery(s

0

))

By the de�nition of U

ke

, Prob(b

0

= real : forgery(s

0

)) is always 1 regardless of whether b is real

or random. Similarly, Prob(b

0

= real : :forgery(s

0

)) is always 1/2 regardless of the value of b.

Now onsider the ase b = real; we have that

Prob(b

0

= real : b = real) =

= 1 � Prob(forgery(s

0

) : b = real) + 1=2 � Prob(:forgery(s

0

) : b = real) =

= 1 � � + 1=2 � (1� �) = 1=2 + �=2:

Similarly, for b = random we an obtain

Prob(b

0

= real : b = random) = 1=2 + �=2:

Sine � is a SK-seure ke protool we know that the di�erene between Prob(b

0

= real : b = real)

and Prob(b

0

= real : b = random) is negligible, or otherwise U

ke

would break the seurity of �.

But then we have that � � � as we had to prove. 2

Thus we have ompleted the proof of Theorem 12 showing that SK-seurity is a suÆient on-

dition to guarantee the seure omposition of key-exhange protool with a network authentiation

appliation. One important aspet of the above proof is that it makes lear the need for allowing

the attaker against the key-exhange protool (U

ke

in our ase) to keep running even after the

value of the test-session is provided to him (see the remark after De�nition 4); indeed, without that

apability the theorem is not true.

6.3 Network Enryption

In this setion we treat the problem of serey of ommuniations, and introdue a de�nition of

serey in the ontext of general network hannels protools as de�ned in Setion 6.1. This notion of

serey is used in the next subsetion to formulate our de�nition of seure hannels and to analyze

a spei� implementation of suh hannels using SK-seure ke protools.

Seure network enryption protools. We start by de�ning what is meant for a network

hannels protool NetChan to be a \seure network enryption protool". We want to apture

the serey property that the attaker does not learn information on messages that are exhanged

during unexposed sessions (see the \explanation" paragraph following the de�nition). We follow

the indistinguishability approah used to de�ne semanti seurity of enryption (also used in our

de�nition of SK-seurity). For this we augment the apabilities of am and um attakers that interat

with a network hannels protool to inlude the following ation.

We let the attaker A, running against NetChan, to hoose, at some arbitrary point

during the interation, a (single) test-session (P

i

; P

j

; s) among the sessions that are

ompleted, unexpired and unexposed at the time. Also, A gets to hoose a pair of

equal-length messages m

0

;m

1

. Next, a bit b

R

 f0; 1g is hosen (but not provided to A)

and P

i

is ativated with send(P

i

; P

j

; s;m

b

). This ativation follows the spei�ation of

a regular send-ativation in the protool exept that when P

i

reords the sent event in

its loal output it does not write down the value of m

b

. Later, if P

j

is ativated by A

under session s with some inoming message � and the output of rv

�

(�) (where � is
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the session-key of the test session s) is the pair (m

b

; ok = 1) then the reeive-ativation

is reorded by the reipient but the value m

b

is not written to the loal output. The

attaker A is allowed all the regular adversarial ations exept that it is not permitted to

expose the test-session (P

i

; P

j

; s). (However, as in the ase of SK-seurity, the attaker

is allowed to orrupt P

i

as soon as the test-session expires, and to orrupt P

j

as soon

as the mathing session expires.) At the end of its run, A outputs a bit b

0

(as its guess

for b).

De�nition 14 We say that a network hannels protool is a seure network enryption protool in

the um if the probability of any um-attaker A as desribed above to guess orretly b (i.e., to output

b

0

= b) is no more than 1/2 plus a negligible fration in the seurity parameter.

Seurity of a network enryption protool is de�ned in the am in the same form provided the

attaker is a am-adversary with the above added apability.

Explanation. We larify the rationale of the above de�nition. In this de�nition we want to

apture the serey property of a network hannels protool, namely, the infeasibility of the attaker

to learn information on messages transmitted (usually in enrypted form) between the parties.

However, note that in our formalism of network hannels the attaker gets to learn the sent and

reeived messages by wathing the loal output of the parties (reall that whatever is written on the

loal output beomes immediately available to A); moreover, the attaker even gets to hoose the

messages in sent-ativations. So, how an we say that the attaker does not learn the exhanged

messages? For this, we introdue the test messages m

0

and m

1

that the attaker gets to hoose but

not to learn whih one was sent. In partiular, in order to hide this information from the attaker

we speify that the send and reeive ativations orresponding to the test message do not reord

the value of the spei� sent or reeived message. Thus, for a protool to be seure by our de�nition

it needs to make infeasible for the attaker to guess orretly (i.e., with non-negligible advantage)

the sent test-message even though this attaker has aess to all other messages (in leartext form)

that were sent and reeived during the protool.

6.3.1 Disussion

One importat aspet of the above de�nition is the way we speify the reeive-ativations (at P

j

)

in whih the test-message m

b

is not written to the loal output. In order to highlight this issue

let's onsider �rst an alternative de�nition of seurity of network enryption protools. Namely,

a de�nition similar to the above de�nition with the di�erene that the only reeive-ativation in

whih m

b

is not written to the loal output is an ativation where the inoming message is idential

to the message, all it m

�

, handed to A by P

i

as the result of the test send-ativation. In the sequel

we refer to this variant of the de�nition as the \strit de�nition" (of seure network enryption

protools). The reason that we have not adopted this strit de�nition is that we onsider it over-

restritive: for example, this de�nition all inseure any network enryption protool that spei�es

that the message delivered to P

j

is di�erent from the exat output produed by P

i

. In partiular, it

would invalidate any protool that allows for some hanges to the transported messages to happen

in transit, even though suh protools are ommon in pratie and seure. For example, the AH

protool from [31℄ allows some well de�ned parts of the message header, suh as number of hops, to

be hanged in-route by intermediate routers. Other protools allow for arbitrary or random padding

of messages just to omply with some standard length boundary; a hange in-route of suh padding

would not be heked by the reeiver nor should suh hange impat the seurity of the protool.
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Thus, a better (and more realisti) approah is to permit suh possible (inoous) hanges to the

transported message, and only are about the orretness of the value of the message aepted and

reorded by the reeiver, namely, the output of the rv funtion. This is why, under our de�nition,

we onsider any inoming message that \deodes" (under rv) to the test message m

b

as related to

the test send-ativation and then its deoded value is not dislosed to the attaker.

One onsequene of this de�nitional deision is that while De�nition 14 does not expliitly

mention the need to ensure the uniqueness of messages or the use of message identi�ers, it atually

requires from a seure network enryption protool to be areful about the way it guarantees

the uniqueness of transmitted messages. To illustrate this point onsider the following strategy

for attaker A. After ativating P

i

with the test send-ativation with messages m

0

and m

1

, A

ativates P

i

with another send-ativation with m

0

as the input message. Now, A delivers to P

j

the message resultant from the later send-ativation. If P

j

does not write the deoded message

to its loal output then A learns that m

b

= m

0

, if P

j

does write the message then A learns that

m

b

= m

1

. Thus a seure network enryption protool must make this attak impossible for A and,

in partiular, it must ensure the uniqueness of sent messages. This an be ahieved by the use of

unique message identi�ers that beome part of the sent messages. We exemplify this mehanism

in our realization of seure hannels in Setion 6.4.

Another remark onerning the \strit de�nition" disussed above is that it naturally orre-

sponds to the way seurity of enryption funtions against hosen iphertext attaks (CCA) is

usually de�ned. (That is, the de�nition of CCA seurity allows an attaker to query a deryption

orale with any input iphertext exept for the one in whih the attaker is being tested.) While

this orrespondene an be seen as an advantage of the \strit de�nition" it atually points to an

important issue here: CCA-seurity is not a neessary notion when formalizing seurity of network

hannels. Indeed, the CCA formulation atually arries the same drawbaks as disussed before

for the strit de�nition. A further illustration of these issues an be found in the remark after the

proof of Theorem 16.

On the orretness requirement. Notie that De�nition 14 does not make any \orretness"

requirements from the enryption protool. That is, it is not required that the reipient will output

the same message as reorded by the sender. While this is a natural requirement for a network en-

ryption protool (we want derypted messages to orrespond to the plaintext originally enrypted)

we omit it from our de�nition sine our use of network enryption (for de�ning and realizing seure

hannels { see De�nition 15) appears only in onjuntion with a network authentiation protool,

and the latter already guarantees this orretness property. If one is interested in a stand-alone

use of the notion of a network enryption protool then adding this orretness requirement to the

above de�nition is straightforward.

6.4 Seure Channels

We are now ready to de�ne what is meant by a \seure hannels" protool.

De�nition 15 A network hannels protool in the um is alled a seure network hannels protool

if it is a seure network enryption protool and also a seure network authentiation protool.

We proeed to show that the network hannels protool, denoted NetSe and de�ned below,

that applies enryption to transmitted messages and applies a seure MAC funtion to the resultant

iphertext is a seure hannels protool. In the desription of this protool we assume expliit

message identi�ers that are part of the sent messages and make all these messages neessarily
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di�erent. Spei�ally, the input to a send ativation is a pair m = (m-id; �m) where m is hosen by

the attaker at will but m-id is an identi�er that is independent from the message (an think of it

as a message ounter) and is di�erent from all message identi�ers used in other send ativations

in the same session. In atual implementations of the protool this unique m-id value needs to be

hosen by the sender and heked for uniqueness at the reeiver; here we represent it as part of

the input to the send ativation in order to be onsistent with our general formalism of network

hannels from Figure 8 and to avoid the spei�ation of a partiular message-id mehanism. This

uniqueness of message identi�ers is assumed only for unorrupted sessions.

The seure hannels protool NetSe. Let � be a ke protool, f a MAC funtion, En

a symmetri enryption funtion, and F a family of pseudorandom funtions. We denote by

NetSe(�; f;En; F ) the network hannels protool NetChan(�; snd; rv), as de�ned in Figure 8,

that uses the snd and rv funtions de�ned as:

� On input m = (m-id; �m), snd

�

(m) produes output m

0

= (m-id; ; t) where  = En

�

e

( �m)

and t = f

�

a

(m-id; ). The keys �

e

and �

a

are omputed as F

�

(0) and F

�

(1), respetively

10

.

� On input m

0

, rv

�

(m

0

) outputs (m; ok) as follows. If m

0

is of the form (m-id; ; t) then ok = 1

if and only if (i) m-id is di�erent than all previously seen message identi�ers in the session,

and (ii) (m-id; ; t) passes the veri�ation funtion of f under key �

a

. If ok = 1 then set

�m = En

�1

�

e

() and m = (m-id; �m), otherwise ok = 0 and m = null. The keys �

e

and �

a

are

de�ned as above.

That is, funtion snd applies an enryption on the message and a MAC to the iphertext where these

funtions use \omputationally independent" keys derived from the session � via a pseudorandom

funtion. The funtion rv does the deryption but only after verifying that the authentiation of

the iphertext is orret.

Note 1: We stress again our assumption that message identi�ers are di�erent for eah sent message

in a session (and heked for uniqueness at the reipient). In partiular, this means that an

implementation of the message id mehanism needs to make sure that the two parties of the

session (while unorrupted) hoose di�erent identi�ers for eah new message. This an ahieved,

for example, if eah party hooses the values m-id from disjoint sets (e.g., P

i

sets the �rst bit of its

identi�ers to 0 and P

j

to 1). Atual protools an also speify the use of \diretional" keys, i.e.,

the keys used for the snd funtion from P

i

to P

j

are di�erent (and omputationally independent)

from the keys used from P

j

to P

i

; in this ase message identi�ers need only be unique per diretion.

Clearly, these multiple keys an be derived from the session key � using a pseudorandom funtion.

Note 2: Message identi�ers are not proteted for serey. Sine they are hosen independently of the

sent message this does not ompromise the serey of the message. In partiular, when analyzing

the above protool as a network enryption protool, we assume that the test messages m

0

and m

1

from De�nition 14 have the same message identi�er so its exposure provides no information to the

attaker about whih message m

b

was atually sent.

In the following theorem we use the notion of a symmetri enryption funtion that is seure

against hosen-plaintext attaks. For a formalization of this notion see [3℄ (see also the CPA game

in Figure 11).

10

For simpliity we assume the enryption and authentiation funtions to use uniformly distributed keys of the

same length; other ases an be handled via standard key derivation methods (e.g., trunating the output of F ,

iterating F to produe longer outputs, et.).
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Theorem 16 If � is a SK-seure key-exhange protool in um, f is a MAC funtion seure against

hosen-message attaks, En a symmetri enryption funtion seure against hosen-plaintext at-

taks, and F a seure family of pseudorandom funtions, then NetSe(�; f;En; F ) is a seure

hannels protool in the um.

Proof: We an assume, for simpliity, that keys �

e

and �

a

in NetSe(�; f;En; F ) are diret

outputs of protool � (and then indistinguishable from uniformly and independently hosen keys).

Aounting for the fat that we atually derive them from a single session key � via a pseudorandom

funtion an be done using standard arguments.

The proof that NetSe(�; f;En; F ) is a seure network authentiation protool follows from

Theorem 12 with one modi�ation: here we are not applying the MAC funtion diretly to the

plaintext but on the iphertext. Sine by property of the enryption funtion we have that a

iphertext derypts to a unique plaintext under key �

e

then the authentiation of the iphertext

implies the authentiation of the plaintext message. (Formally, one an onsider a modi�ation of

protool NetAut in Theorem 12 where the funtion snd is de�ned to �rst enrypt the message and

then authentiate the iphertext under the MAC funtion; the output of snd is the onatenation

of the omputed iphertext and MAC tag. Similarly, rv �rst heks the MAC on the iphertext,

and if suessful it derypts the iphertext and outputs the plaintext message.)

The rest of the proof is devoted to proving that NetSe(�; f;En; F ) is a seure network en-

ryption protool. The plan for the proof and many of the details are similar to the proof of the

network authentiation theorem (Theorem 12, and more spei�ally of Lemma 13). We thus sketh

the most important aspets of the urrent proof but omit the details that are easy to omplete

following the network authentiation ase. Our goal here is to prove the theorem by way of ontra-

dition, namely, given an attaker A that breaks the seurity of NetSe(�; f;En; F ) as a network

enryption protool then we an build an attaker B that breaks the seurity of the symmetri

enryption funtion En against hosen-plaintext attaks.

The CPA symmetri enryption game

The game is played by an attaker B with aess to an enryption orale E. On input m, the orale

returns the enryption of m under funtion En using a seret key � not provided to B. The game

proeeds in phases:

Phase 1: B queries E with any messages of its hoie. At any point B may hoose to move to

phase 2.

Phase 2: B hooses two equal-length messages m

0

and m

1

; a bit b is hosen at random and the

value 

�

= E(m

b

) is returned to B. (The value of b is not provided to B.)

Phase 3: Same as Phase 1.

Phase 4: B outputs a bit b

0

.

And the winner is... B if and only if b = b

0

.

Figure 11: CPA-seurity of the symmetri enryption funtion En

In order to apture the CPA-seurity of En (i.e., its seurity against hosen-plaintext attaks)

we onsider the game desribed in Figure 11. By the assumption that En is semantially seure
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against hosen-plaintext attaks we have that no polynomial-time attaker B an win this game with

non-negligible advantage (where \advantage" means the winning probability minus 1/2). However,

we show next how to onstrut suh attaker B given an attaker A that breaks the seurity of

NetSe(�; f;En; F ) as a network enryption protool, i.e. an attaker A that wins the test of

De�nition 14 against NetSe(�; f;En; F ) with non-negligible advantage. This proves that suh an

attaker A does not exist and then NetSe(�; f;En; F ) is a seure network enryption protool.

(A preise quanti�ed relation between the suess probability of B and A an be easily derived

from the proof arguments below.)

Building B given A. Phase 1. B starts by building a virtual NetSe(�; f;En; F ) world (inluding

the hoie of initial information for the parties) and ativates A against it. In addition, B hooses

a session at random (from all sessions ompleted during the virtual run of NetSe(�; f;En; F ))

under A, say (P

i

; P

j

; s

0

). We will use the identi�er s

0

to refer to the hosen session or its mathing

session. All ations by A (ativations or orruptions) that do not involve session s

0

are arried by

B using the spei�ation of NetSe(�; f;En; F ) and based on the full knowledge that B has of the

information held by the parties in the protool. If at any point session s

0

is exposed by A (this

may happen as long as the session is unexpired at P

i

or P

j

) then B outputs a random bit b

0

and

stops. When A ativates the establishment of the ke session s

0

between P

i

and P

j

, B ativates

P

i

and P

j

with the normal operations for session-key establishment as in protool �. When A

ativates P

i

or P

j

with a send-ativation under session s

0

and input message m = (m-id; �m), B

does not use the atual key shared in session s

0

to ompute the outgoing message m

0

. Instead, B

omputes m

0

= (m-id; ; t) where  = E( �m) (i.e., B uses the enryption orale for the enryption

of messages under session s

0

) and t = f

�

a

(m-id; ) where �

a

is a key that B hooses independently

and at random for use as the MAC key during session s

0

.

Reeive-ativations under session s

0

are handled by B (during Phase 1) as follows. Say P

j

is

ativated with inoming message m

0

= (m-id; ; t) under session s

0

, then B heks m-id for validity

and if valid it uses its knowledge of �

a

to verify the authentiation tag t. If any of these veri�ations

fail then P

j

sets ok = 0 and m = null. If the veri�ation is suessful, in partiular the triple

(m-id; ; t) passes the veri�ation of f

�

a

, then (exept for a negligible probability of forgery against

the MAC) the pair (m-id; ) was inluded in the output of a previous send-ativation under session

s

0

in whih ase B already knows the plaintext enrypted under iphertext  and an reord the

reeption of the message in P

j

's loal input.

If at any point A hooses a test session (aording to De�nition 14) di�erent than s

0

then B outputs

a random bit b

0

and stops. If s

0

is hosen by A as the test session and messages m

0

and m

1

are

provided by A then B moves to phase 2.

Phase 2. Sine we assume message-identi�ers that are independent from the message then we have

that the test messages m

0

and m

1

hosen by A have the same message identi�er, whih we denote

by m-id

�

. Namely, m

0

= (m-id

�

; �m

0

) and m

1

= (m-id

�

; �m

1

). Now, B uses the messages �m

0

and �m

1

as its own test messages to orale E in the CPA game. Let 

�

be the value returned to B as the

orale response to this test. B then hands to A the triple (m-id

�

; 

�

; t

�

) where t

�

= f

�

a

(m-id

�

; 

�

).

As spei�ed in De�nition 14, P

i

does not reord the atual value of �m

b

(whih B does not know

anyway). Now, B moves to phase 3.

Phase 3. The ations of B in Phase 3 are similar to Phase 1 exept that now A may ativate P

j

with inoming message ontaining (m-id

�

; 

�

) for whih B does not know its deryption. In this

ase, B �rst heks the validity of the authentiation tag in the inoming message. If it fails then no

ation is needed. If it is suessful then P

j

reords the reeption of the message in its loal output

but without speifying the derypted message sine this message is m

b

whih, by spei�ation of
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De�nition 14, P

j

does not write to its loal output (thus, B does not need to know m

b

).

Phase 4. Whenever A stops its run with output b

0

, B moves to phase 4 and stops with the same

output b

0

as A.

Analysis of B. It is easy to verify that B as de�ned above is a legal attaker in the CPA game of

Figure 11. We need to show that B has non-negligible advantage in winning that game. Proving

this is similar to the analysis of the suess probability of forger F in the proof of Lemma 13. First,

we laim that the event in whih the session s

0

hosen at random by B is also the test session

hosen by A has non-negligible probability to our (simply beause there are only polynomially

many sessions). Seond, we note that if s

0

is hosen by A as the test session and B arries the

ations of A related to session s

0

using the atual session key exhanged by P

i

and P

j

in that

session then the advantage of B to guess b orretly is the same as for A to guess orretly (sine

in this ase the simulation of A by B is perfet) and then non-negligible. So, the main argument is

to show that replaing the atual session keys (for authentiation and for enryption) from session

s

0

with the random independent key �

a

hosen by B for the MAC and the random independet

key used by orale E for its enryptions does not signi�antly hange the odds of A to win. This

fat follows from the SK-seurity of the ke protool � and its proof is similar to the proof of the

analogous fat in Lemma 13 (with B and A taking the roles of F and U , respetively).

2

On the (non) neessity of CCA-seurity. The above Theorem shows that seurity against

hosen-plaintext attaks (CPA) is all we need to require from the funtion En in order to imple-

ment seure hannels. This is an important property sine most symmetri enryption funtions

and modes used in pratie are CPA-seure but not seure against hosen-iphertext attaks (CCA).

Also worth noting is that even the ombination of the MAC funtion f on top of En does not nees-

sarily result in a CCA-seure funtion (namely, the funtion snd de�ned under NetSe(�; f;En; F )

is not neessarily CCA-seure when onsidered as an enryption funtion with keys �

e

and �

a

).

To see this onsider a MAC funtion with the property that ipping the least signi�ant bit of an

authentiation tag does not hange the validity of the tag. In this ase the resultant omposed

funtion snd is not CCA-seure while it suÆes (by virtue of the above theorem) for implementing

seure hannels.

This example also helps to emphasize the over-restritive harater of the \strit de�nition" of a

seure network enryption protool as disussed in Setion 6.3.1. Indeed, it is easy to see that

in order for protool NetSe to satisfy this strit de�nition one has to make sure that the snd

funtion in protool NetSe is CCA-seure. In partiular, the above example shows that the as-

sumption that f is a seure MAC funtion is not enough to prove the network enryption seurity

of NetSe(�; f;En; F ) under the strit de�nition. Suh a de�nition would require a stronger no-

tion of a MAC where in addition to the regular unforgeability requirements one requires that the

attaker annot hange a given valid pair (m; t) (where m is a message and t a valid authentiation

tag) into another valid pair (m; t

0

) with t 6= t

0

. When inspeting the NetSe protool one an easily

see that this extra requirement from the MAC funtion is not a real seurity neessity but just the

arti�ial result of the unneessarily restritive nature of the strit de�nition.

The order of enryption and authentiation. Reent results in [33℄ show that if the enryption

funtion is assumed to be seure against hosen-plaintext attaks (as in the above Theorem) then

the ordering of �rst applying the enryption funtion and then the authentiation funtion (as in

NetSe(�; f;En; F )) is instrumental for guaranteeing seure hannels. It is shown in [33℄ that other

ommon orderings of the funtions (in whih authentiation is applied diretly to the plaintext)

annot ensure seure hannels even if the key-exhange protool in use is (ideally) seure.
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A More on Related Work

We provide some more details on several de�nitional works on ke that are losely related to the

present work.

On the work of Bellare and Rogaway [7, 8℄. The �rst omplexity-based formalization of seure

ke protools (i.e., the �rst de�nitions that take into onsideration the omputational limitations of

an adversary and allow for an analysis that onsiders non-idealized ryptographi primitives) was

presented by Bellare and Rogaway in [7, 8℄, in the ontext of shared long-term keys. These works

postulate an adversary in harge of all ommuniations, and expliitly model onurrent sessions

by reating a model where the adversary is surrounded by \orales" that represent sessions within

parties. In suh a model, querying an orale represents delivery of a message or the orruption

of a session. Their method of de�ning seurity is based on the method used for de�ning semanti

seurity of enryption funtions [24℄: the adversary should be unable to distinguish, with non-

negligible probability, between the key of a hosen session and an independent random value. They

prove the seurity of spei� authentiation and key exhange protools under these de�nitions.

Various works extend the [7, 8℄ framework to other settings and problems; for example, Shoup and

Rubin to smart ard settings [44℄; Luks to onsider ditionary attaks [36℄; Blake-Wilson, Johnson

and Menezes [10, 11℄ for the publi key setting.

The original formalization of [7, 8℄ was later demonstrated to have a seurity aw, by Rako�

(personal ommuniation, 1995). In an unpublished work, Bellare, Petrank, Rako� and Rogaway

[6℄ proposed a �x for this aw. Our de�nition of seurity (Setion 4) follows essentially that �xed

version of the [7, 8℄ de�nition, but ast in the protool and adversary framework used here. Next,

we sketh the Rako� attak whih is instrutive for pointing out to the subtleties involved in the

formalization of seurity for key-exhange protools.

In the de�nitions of [7, 8℄, the adversary points to an unexposed session of its hoie, and

reeives a value k

b

, where k

0

is the real session key of this session, k

1

is an independently hosen

random value, and b is a randomly hosen bit that is unknown to the adversary. The seurity

requirement is that the adversary is unable to predit b with non-negligible advantage over one

half. The original version of these de�nitions requires that the adversary outputs its guess for b

immediately after it obtains the test value. Rako� has notied that this requirement is not strong

enough: Consider your favorite seure key-exhange protool �. Now, add to the spei�ations of

the protool the following instrution for the party that ompletes �rst the session establishment

aording to protool �: if at any point this party reeives a message with the value MAC

�

(0),

where MAC is a seure message authentiation funtion and � the established session-key, then

the party publiizes (say via a further message in the protool) the value of �. However, the

protool never instruts any party to arry out suh an instrution. As a result the protool an be

shown to pass the weakened de�nition. On the other hand, it is lear that suh a protool annot

be omposed seurely with an authentiation appliation that uses the session key for MAC-ing

information (sine suh an appliation ould produe the value MAC

�

(0) that an be used to expose

�).

The �x to the de�nition, proposed by [6℄, is to let the adversary to ontinue interating with the

protool even after the test value is reeived and before the guess is made. We stress that, although

no attaks against the �xed de�nition were known, up till now it was never demonstrated that

this de�nition (or any other) is \suÆiently strong" for guaranteeing the seurity of the ommon

appliations that use key exhange.

On the work of Bellare, Canetti and Krawzyk [2℄. A somewhat di�erent approah to
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de�ning seure ke protools is taken in the work of Bellare, Canetti and Krawzyk [2℄. First they

speify an adversarial model (alled the unauthentiated-links model (um)) that represents the apa-

bilities of the adversary in real-life networks. (As in [7, 8℄, this model also postulates independent

sessions and adversarially ontrolled ommuniation. However it is di�erent in that it diretly rep-

resents a ommuniation network and aounts in a natural way to the fat that other protools

an be running in the same system.) In this model they formalize the notion of authentiators,

i.e., \ompilers" that transform protools that assume ideally-authentiated ommuniation into

\equivalent" protools in the um. (Authentiators are also formalized, in a di�erent ontext, in

[15℄.) In our work we borrow from [2℄ the above protool and adversarial models, and demonstrate

the usefulness of the authentiators notion for designing and analyzing protools.

In addition to the above basi models, [2℄ also treat the issue of seurity of ke protools.

For this they formulate an \ideal ke proess" that is meant to apture the expeted properties

of a ke protool, and require that a seure ke protool will \emulate" the ideal proess. Their

notion of emulation is inuened by general de�nitions of seurity of multi-party protools [23,

38, 1, 13℄. They also onsider the use of ke for maintaining authentiated ommuniation. In

partiular, they laim that the standard method of ombining a ke protool with a shared-key

message authentiation ode (MACs) results in a seure authentiator. However, while the basi

approah of the [2℄ de�nition of ke is intuitive and attrative, their atual de�nition of seure

ke protools has several subtle shortomings. One onsequene is that, ontrary to their laims,

their de�nition of ke seems insuÆient to prove the seurity of the above-mentioned appliation to

onstruting authentiators (via ke and MAC). Another onsequene is that their de�nition seems

to be somewhat \over-restritive", in the sense that it rules out ke protools that seem \intuitively

seure" and even provide seure omposition with appliations. In partiular, Propositions 9 and

10 from [2℄ are inorret.

On the work of Shoup [43℄. Shoup's de�nitions are based on the simulatability approah of

[2℄ with some signi�ant modi�ations. Three levels of seurity are presented: Stati seurity (i.e.,

seurity against adversaries that orrupt parties only at the onset of the omputation), adaptive

seurity (where the adversary obtains only the long-term information of a newly orrupted party)

and strongly adaptive seurity where the adversary obtains all the private information of orrupted

parties. (Oddly, strongly adaptive seurity does not imply adaptive seurity.) In addition, two

de�nitions based on the indistinguishability approah of Bellare and Rogaway [7℄ are presented.

The �rst is aimed at apturing seurity without perfet forward serey (PFS), and is shown

to be equivalent to the stati variant of the simulation-based de�nition. The seond is aimed

at apturing seurity with PFS, and is laimed to be equivalent to the adaptive variant of the

simulation-based de�nition. SuÆieny of the de�nitions to onstruting seure-hannel protools

is informally argued, but is not proved nor rigorously laimed.

While the �rst variant of the indistinguishability-based de�nition is roughly equivalent to the

non-PFS variant presented here (modulo the general di�erenes mentioned below), the seond

variant is stritly weaker than our PFS formulation of SK-seurity. Spei�ally, the de�nition in

[43℄ aepts as seure protools that do not erase sensitive ephemeral data (e.g. protool DHKE-1

in [43℄), while the de�nition here treats these protools as inseure.

There are several other tehnial and methodologial di�erenes between the two works that we

mention next. (a) A major methodologial di�erene is our use of the authentiated-links model

and authentiators as a simplifying analysis tool. While our formalization of seurity does not

mandate the use of this methodology we arefully build our de�nitions to aommodate the use

of this tool. (b) Shoup allows the adversary a more general attak than session-key query, namely
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an appliation attak that reveals an arbitrary funtion of the key. Our modeling does not de�ne

this expliit attak as it is subsumed by the session-key query apability and, in partiular, sine

it is not neessary for guaranteeing seure hannels. () Here we onsider an additional adversarial

behavior that is not treated in [43℄. Spei�ally, we protet against adversaries that obtain the

internal state of orrupted sessions (even without fully orrupting the orresponding parties) by

requiring that suh exposure will not ompromise other protool sessions run by the same parties.

This protetion is not guaranteed by some protools suggested in [43℄ (e.g., protool DHKE).

(d) The treatment of the interation with the erti�ate authority (CA) in the ase of publi-key

based authentiation. In [43℄ the interation with the CA is an integral part of every ke protool,

whereas here this interation with the CA is treated as a separate protool. We make this hoie

for further modularity and ease of proof. Yet, as we already remarked in Setion 2.2, the CA

protool needs to be taken into onsideration with any full spei�ation and analysis of atual ke

protools. (e) The treatment of the session-id's. In [43℄ the session-id's are arti�ially given to

the parties by the model whih results, in our view, in a more umbersome formalization of the

seurity onditions. In ontrast, here we adopt a more natural approah where the session-id's are

generated by the alling protool and seurity is guaranteed only when these session-id's satisfy

some minimal (and easy to implement) onditions. In partiular, this formalism an be satis�ed

by letting the parties jointly generate the session-id (as is ommon in pratie).

On the works of P�tzmann, Shunter and Waidner [41, 40, 42℄ and Canetti [14℄. These

works provide general frameworks for studying the seurity of ryptographi protools in several

models of omputation, and prove some omposition theorems with respet to protools that satisfy

their respetive de�nitions of seurity. The proposed frameworks are natural andidates for de�ning

and studying seure key-exhange protools and their appliation to providing seure hannels. In

partiular, Canetti [14℄ de�nes seure key exhange protools, as well as protools for providing

\seure sessions" within his framework, and uses his general omposition theorem in order to obtain

similar results as the ones provided here (i.e., that the standard use of ke protools for seuring

ommuniation sessions result in a good \seure sessions" protool). The [14℄ de�nition of seure

ke protools implies the de�nition here. However, it is somewhat over-restritive, as it implies the

de�nitions of both [2℄ and [43℄. (In partiular, we do not know how to show that Protool en from

Setion 5.3 satis�es this de�nition.) In [16℄ we investigate a relaxed version of the [14℄ de�nition

of key exhange, that is equivalent to the de�nition here and at the same time enjoys the general

omposability properties provided by the [14℄ framework.
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