
Analysis of Key-Ex
hange Proto
ols and Their Use for Building

Se
ure Channels

�

Ran Canetti

y

Hugo Kraw
zyk

z

May 17, 2001

Abstra
t

We present a formalism for the analysis of key-ex
hange proto
ols that
ombines previous

de�nitional approa
hes and results in a de�nition of se
urity that enjoys some important analyt-

i
al bene�ts: (i) any key-ex
hange proto
ol that satis�es the se
urity de�nition
an be
omposed

with symmetri
 en
ryption and authenti
ation fun
tions to provide provably se
ure
ommuni
a-

tion
hannels; and (ii) the de�nition allows for simple modular proofs of se
urity: one
an design

and prove se
urity of key-ex
hange proto
ols in an idealized model where the
ommuni
ation

links are perfe
tly authenti
ated, and then translate them using general tools to obtain se
urity

in the realisti
 setting of adversary-
ontrolled links. We exemplify the usability of our results by

applying them to obtain the proof of two main
lasses of key-ex
hange proto
ols, DiÆe-Hellman

and key-transport, authenti
ated via symmetri
 or asymmetri
 te
hniques.

Further
ontributions of the paper in
lude the formalization of \se
ure
hannels" in the

ontext of key-ex
hange proto
ols, and establishing suÆ
ient
onditions on the symmetri
 en-

ryption and authenti
ation fun
tions to realize these
hannels.

�

This do
ument des
ribes work in progress. Please
he
k for future updates of this work at http://eprint.ia
r.org.

An extended abstra
t of this work appears in the pro
eedings of Euro
rypt 2001, LNCS Vol. 2045.

y

IBM T.J. Watson Resear
h Center, Yorktown Heights, New York 10598. Email:
anetti�watson.ibm.
om.

z

EE Department, Te
hnion, Haifa, Israel. Email: hugo�ee.te
hnion.a
.il. Supported by Irwin and Bethea Green

& Detroit Chapter Career Development Chair.

Contents

1 Introdu
tion 1

1.1 Related work . 2

2 Proto
ol and Adversary Models: An Overview 3

2.1 Proto
ols, Sessions and Key-Ex
hange . 4

2.2 The unauthenti
ated-links adversarial model (um) 5

2.3 The am, proto
ol emulation and authenti
ators . 7

3 The models 8

3.1 Message-Driven Proto
ols . 8

3.2 The unauthenti
ated-links adversarial model (um). 8

3.3 Key Ex
hange Proto
ols . 10

3.4 The am Model and Authenti
ators . 12

4 Session-Key Se
urity 13

4.1 De�nition of SK-Se
urity . 13

4.2 Forward Se
re
y . 15

5 SK-Se
ure Proto
ols 16

5.1 Two-move DiÆe-Hellman in the am . 18

5.2 SK-se
ure DiÆe-Hellman Proto
ol in the um . 20

5.3 A publi
-key en
ryption-based proto
ol without pfs 21

5.4 Proto
ols based on shared keys . 25

6 Appli
ations to Se
ure Channels 26

6.1 A Template Proto
ol: Network Channels . 26

6.2 Network Authenti
ation . 27

6.3 Network En
ryption . 33

6.3.1 Dis
ussion . 34

6.4 Se
ure Channels . 35

A More on Related Work 43

1 Introdu
tion

Key-ex
hange proto
ols (ke, for short) are me
hanisms by whi
h two parties that
ommuni
ate over

an adversarially-
ontrolled network
an generate a
ommon se
ret key. ke proto
ols are essential

for enabling the use of shared-key
ryptography to prote
t transmitted data over inse
ure networks.

As su
h they are a
entral pie
e for building se
ure
ommuni
ations (a.k.a \se
ure
hannels"), and

are among the most
ommonly used
ryptographi
 proto
ols (
ontemporary examples in
lude SSL,

IPSe
, SSH, among others).

The design and analysis of se
ure ke proto
ols has proved to be a non-trivial task, with a

large body of work written on the topi
, in
luding [18, 39, 12, 9, 19, 7, 8, 32, 2, 43℄ and many

more. In fa
t, even today, after two de
ades of resear
h, some important issues remain without

satisfa
tory treatment. One su
h issue is how to guarantee the adequa
y of ke proto
ols for their

most basi
 appli
ation: the generation of shared keys for implementing se
ure
hannels. Providing

this guarantee (with minimal requirements from ke proto
ols) is the main fo
us and obje
tive of

this work. The other
entral goal of the paper is in simplifying the usability of the resultant se
urity

de�nitions via a modular approa
h to the design and analysis of ke proto
ols. We exemplify this

approa
h with a proof of se
urity for two important
lasses of ke proto
ols.

This paper adopts a methodology for the analysis of ke proto
ols that results from the
om-

bination of two previous works in this area: Bellare and Rogaway [7℄ and Bellare, Canetti and

Kraw
zyk [2℄. A main ingredient in the formalization of [7℄ is the use of the indistinguishability

approa
h of [24℄ to de�ning se
urity: roughly speaking, a key-ex
hange proto
ol is
alled se
ure if

under the allowed adversarial a
tions it is infeasible for the atta
ker to distinguish the value of a

key generated by the proto
ol from an independent random value. Here we follow this exa
t same

approa
h but repla
e the adversarial model of [7℄ with an adversarial model derived from [2℄. This

ombination allows to a
hieve the above two main obje
tives. We elaborate on these main aspe
ts

of our work.

First, the formalization of [2℄
aptures not only the spe
i�
 needs of ke proto
ols but rather

develops a more general model for the analysis of se
urity proto
ols. This allows formulating and

proving the statement that ke proto
ols proven se
ure a

ording to our de�nition (we
all these

proto
ols SK-se
ure)
an be used in standard ways to provide \se
ure
hannels". More spe
i�
ally,

onsider the
ommon se
urity pra
ti
e by whi
h pairs of parties establish a \se
ure
hannel" by �rst

ex
hanging a session key using a ke proto
ol and then using this key to en
rypt and authenti
ate

the transmitted data under symmetri

ryptographi
 fun
tions. We prove that if in this setting

one uses an SK-se
ure ke proto
ol together with se
ure MAC and en
ryption fun
tions
ombined

appropriately then the resultant
hannel provides both authenti
ation and se
re
y (in a sense that

we de�ne pre
isely) to the transmitted data. While this property of ensuring se
ure
hannels seems

as an obvious requirement from a se
ure ke proto
ol it turns out that formalizing and proving this

property is non-trivial. In fa
t, there are \seemingly se
ure" key ex
hange proto
ols that do not

ne
essarily guarantee this (e.g. those that use the session key during the ex
hange itself), as well

as proposed de�nitions of se
ure key-ex
hange that do not suÆ
e to guarantee this either (e.g., the

de�nitions in [7, 10, 11, 2℄). Moreover, although several works have addressed this issue (see Se
tion

1.1), to the best of our knowledge the notion of se
ure
hannels was never formalized in the
ontext

of ke proto
ols, let alone demonstrating that some de�nition of ke proto
ols suÆ
es for this basi

task. Indeed, one of the
ontributions of this work is a formalization of the se
ure
hannels task.

While this formalization is not intended to provide general
omposability properties for arbitrary

ryptographi
 settings, it arguably provides suÆ
ient se
urity guarantee for the
entral task of

prote
ting the integrity and authenti
ity of
ommuni
ations over adversarially-
ontrolled links.

1

Se
ond, the approa
h of [2℄ allows for a substantial simpli�
ation in designing ke proto
ols and

proving their se
urity. This approa
h postulates a two-step methodology by whi
h proto
ols
an

�rst be designed and analyzed in a mu
h simpli�ed adversarial setting where the
ommuni
ation

links are assumed to be ideally authenti
ated (i.e., the atta
ker is not allowed to insert or
hange

information transmitted over the
ommuni
ation links between parties). Then, in a se
ond step,

these proto
ols are \automati
ally" transformed into se
ure proto
ols in the realisti
 s
enario of

fully adversary-
ontrolled
ommuni
ations by applying a proto
ol translation tool (or \
ompiler")

alled an authenti
ator. Fortunately, simple and eÆ
ient realizations of authenti
ators based on

di�erent
ryptographi
 fun
tions exist [2℄ thus making it a useful and pra
ti
al design and analysis

tool. (We stress that our framework does not mandate this methodology; i.e., it is possible of

ourse to prove se
urity of a ke proto
ol dire
tly in the fully adversarial model.)

We use this approa
h to prove the se
urity of two important
lasses of key-ex
hange proto
ols:

DiÆe-Hellman and key-transport proto
ols. All one needs to do is to simply prove the se
urity

of these proto
ols in the ideal authenti
ated-links model and then, thanks to the above modular

approa
h, one obtains versions of these proto
ols that are se
ure in a realisti
 adversary-
ontrolled

network. The \authenti
ated" versions of the proto
ols depend on the authenti
ators in use. These

an be based either on symmetri
 or asymmetri

ryptographi
 te
hniques (depending on the trust

model) and result in natural and pra
ti
al ke proto
ols. The se
urity guarantees that result from

these proofs are substantial as they
apture many of the se
urity
on
erns in real
ommuni
ations

settings in
luding the asyn
hronous nature of
ontemporary networks, the run of multiple simul-

taneous sessions, resistan
e to man-in-the-middle and known-key atta
ks, maintaining se
urity of

sessions even when other sessions are
ompromised, and providing \perfe
t forward se
re
y", i.e.,

prote
tion of past sessions in
ase of the
ompromise of long-term keying material.

1.1 Related work

Sin
e its introdu
tion in the seminal work of DiÆe and Hellman [18℄ the notion of a key-ex
hange

proto
ol has been the subje
t of many works (see [37℄ for an extensive bibliography). Here we

mention some of the works that are more dire
tly related to the present work. We further expand

our dis
ussion of these works in Appendix A.

Among the early works on this subje
t we note [39, 12, 9, 19℄ as being instrumental in pointing

out to the many subtleties involved in the analysis of ke proto
ols. The �rst
omplexity-theoreti

treatment of the notion of se
urity for ke proto
ols is due to Bellare and Rogaway [7℄ who formalize

the se
urity of ke proto
ols in the realisti
 setting of
on
urrent sessions running in an adversary-

ontrolled network. As said above, [7℄ apply the indistinguishability de�nitional approa
h that

we follow here as well. While [7℄ fo
used on the shared-key model of authenti
ation, other works

[10, 11, 6℄ extended the te
hniques to the publi
-key setting. One important
ontribution of [6℄ is

in noting and �xing a short
oming in the original de�nition of [7℄; this �x, that we adopt here, is

fundamental for proving our results about se
ure
hannels.

Bellare, Canetti, and Kraw
zyk [2℄ present a model for studying general session-oriented se
urity

proto
ols that we adopt and extend here. They also introdu
e the \authenti
ator" te
hniques that

allow for greatly simplifying the analysis of proto
ols and that we use as a basi
 tool in our work. In

addition, [2℄ proposes a de�nition of se
urity of ke proto
ols rooted in the simulatability (or \ideal

third party") approa
h used to de�ne se
urity of multiparty
omputation [23, 38, 1, 13℄. While this

de�nitional approa
h is intuitively appealing the a
tual ke se
urity de�nition of [2℄
omes short of

the expe
tations. On one hand, it seems over-restri
tive, in the sense that it rules out proto
ols

that seem to provide suÆ
ient se
urity (and as demonstrated here
an be safely used to obtain

2

se
ure
hannels); on the other, it is not
lear whether their de�nition suÆ
es to prove
omposition

theorems even in the restri
ted sense of se
ure
hannels as dealt with in this paper.

More re
ently, Shoup [43℄ presents a framework for the de�nition of se
urity of ke proto
ols that

follows the basi
 simulatability approa
h as in [2℄ but introdu
es signi�
ant modi�
ations in order to

over
ome some of the short
omings of the ke de�nition in [2℄ as well as to seek
omposability with

other
ryptographi
 appli
ations. In parti
ular, [43℄ states as a motivational goal the
onstru
tion

of \se
ure sessions" (similar to our se
ure
hannels), and it informally
laims the suÆ
ien
y of its

de�nitions to a
hieve this goal. A more rigorous and
omplete elaboration of that work will be

needed to assess the
orre
tness of these
laims. In addition, [43℄ di�ers from our work in several

other interesting aspe
ts (see Appendix A).

A promising general approa
h for the analysis of rea
tive proto
ols and their
on
urrent
om-

position has been developed by P�tzmann, S
hunter and Waidner [41, 40, 42℄ and Canetti [14℄.

This approa
h, that follows the simulatability tradition,
an be applied to the task of key ex
hange

to obtain a de�nition of ke proto
ols that guarantees se
ure
on
urrent
omposition with any set

of proto
ols that make use of the generated keys. See more details in [16℄.

A subje
tive dis
ussion. The works mentioned above follow two main distin
t approa
hes to

de�ning se
urity of ke proto
ols: simulation-based and indistinguishability-based. The former is

more intuitively appealing (due to its modeling of se
urity via an ideally-trusted third party), and

also appears to be more amenable to demonstrating general
omposability properties of proto
ols.

On the other hand, the
omplexity of the resulting de�nitions, on
e all details are �lled in, is

onsiderable and makes for de�nitions that are relatively
omplex to work with. In
ontrast,

the indistinguishability-based approa
h yields de�nitions that are simpler to state and easier to

work with, however their adequa
y for modeling the task at hand seems less
lear at �rst glan
e.

The results in this paper indi
ate the suitability of the indistinguishability-based approa
h in the

ontext of ke proto
ols | if the goal is the appli
ation of ke proto
ols to the spe
i�
 task of se
ure

hannels as de�ned here. By following this approa
h we gain the bene�t of simpler analysis and

easier-to-write proofs of se
urity. At the same time, our work borrows from the simulation-based

approa
h the modularity of building proofs via the intermediate ideally-authenti
ated links model,

thus enjoying the \best of both worlds".

Organization. Se
tion 2 presents an overview of the proto
ol and adversary models used through-

out this work. This overview is intended to introdu
e the elements of this model in a \reader-

friendly" way. The formal te
hni
al treatment appears in Se
tion 3. The de�nition of SK-se
urity

for ke proto
ols is presented in Se
tion 4. Se
tion 5 proves the se
urity of several proto
ols and

illustrates the modular methodology used in our analysis. Finally, in Se
tion 6 we introdu
e a

formalization of \se
ure
hannels" and demonstrate the suitability of our notion of se
urity for ke

proto
ols for realizing se
ure
hannels.

2 Proto
ol and Adversary Models: An Overview

In order to to de�ne what is meant by the se
urity of a key-ex
hange (ke) proto
ol we �rst need

to establish a formalism for the most basi
 notions: what is meant by a proto
ol in general and

a key-ex
hange proto
ol in parti
ular, what are sessions, and what is an `atta
ker' against su
h

proto
ols. Here we use a formalism based on the approa
h of [2℄, where a general framework for

studying the se
urity of session-based multi-party proto
ols over inse
ure
hannels is introdu
ed.

We extend and re�ne this formalism to better �t the needs of pra
ti
al ke proto
ols.

In order to motivate and make the formalism easier to understand, we start by providing a

3

high-level overview of our model. The pre
ise te
hni
al des
ription appears in Se
tion 3. (We

note that the pre
ise te
hni
al details are essential for a full development and proof of our results.

However, we re
ommend �rst reading this overview in order to make the te
hni
al part more

understandable.) After introdu
ing the proto
ol and adversary models we pro
eed to de�ne the

se
urity of ke proto
ols in Se
tion 4.

2.1 Proto
ols, Sessions and Key-Ex
hange

Message-driven proto
ols We
onsider a set of parties (probabilisti
 polynomial-timema
hines),

whi
h we usually denote by P

1

; : : : ; P

n

, inter
onne
ted by point-to-point links over whi
h messages

an be ex
hanged.

1

Proto
ols are
olle
tions of intera
tive pro
edures, run
on
urrently by these

parties, that spe
ify a parti
ular pro
essing of in
oming messages and the generation of outgoing

messages. Proto
ols are initially triggered at a party by an external \
all" and later by the arrival

of messages. Upon ea
h of these events, and a

ording to the proto
ol spe
i�
ation, the proto
ol

pro
esses information and may generate and transmit a message and/or wait for the next message

to arrive. We
all these message-driven proto
ols. (We note the asyn
hronous nature of proto
ols

de�ned in this way whi
h re
e
ts the prevalent form of
ommuni
ation in today's networks.)

Sessions and proto
ol output. Proto
ols
an trigger the initiation of sub-proto
ols (i.e. inter-

a
tive subroutines) or other proto
ols, and several
opies of su
h proto
ols may be simultaneously

run by ea
h party. We
all ea
h
opy of a proto
ol run at a party a session. Te
hni
ally, a session is

an intera
tive subroutine exe
uted inside a party. Ea
h session is identi�ed by the party that runs

it, the parties with whom the session
ommuni
ates and by a session-identi�er. These identi�ers

are used in pra
ti
e to bind transmitted messages to their
orresponding sessions. Ea
h invo
ation

of a proto
ol (or session) at a given party
reates a lo
al state for that session during exe
ution, and

produ
es lo
al outputs by that party. This output
an be a quantity (e.g a session key) returned to

the
alling program, or it
an be the re
ording of a proto
ol event (su
h as a su

essful or failed

termination). These lo
al outputs serve to represent the \history" of a proto
ol and are important

to formalize se
urity. When a session ends its run we
all it
omplete and assume that its lo
al

state is erased.

Key-ex
hange proto
ols. Key-ex
hange (ke) proto
ols are message-driven proto
ols (as de�ned

above) where the
ommuni
ation takes pla
e between pairs of parties and whi
h return, upon

ompletion, a se
ret key
alled a session key. More spe
i�
ally, the input to a ke proto
ol within

ea
h party P

i

is of the form (P

i

; P

j

; s; role), where P

j

is the identity of another party, s is a session

id, and role
an be either initiator or responder. A session within P

i

and a session within P

j

are

alled mat
hing if their inputs are of the form (P

i

; P

j

; s; initiator) and (P

j

; P

i

; s; responder). The

inputs are
hosen by a \higher layer" proto
ol that \
alls" the ke proto
ol. We require the
alling

proto
ol to make sure that the session id's of no two ke sessions in whi
h the party parti
ipates are

identi
al. Furthermore, we leave it to the
alling proto
ol to make sure that two parties that wish

to ex
hange a key will a
tivate mat
hing sessions. Note that this may require some
ommuni
ation

before the a
tual ke sessions are a
tivated.

2

Upon a
tivation, the partners P

i

and P

j

of two mat
hing sessions ex
hange messages (the initiator

goes �rst), and eventually generate lo
al outputs that in
lude the name of the partners of the session,

1

This formalization postulates a �xed number of parties in a network. An alternative, more general formalization

allows the adversary to adaptively in
rease the number of parti
ipants. We prefer this simpler formalization sin
e

the di�eren
e seems in
onsequential with respe
t to realisti
 ke proto
ols.

2

Indeed, in pra
ti
e proto
ols for setting up a se
ure session typi
ally ex
hange some messages before the a
tual

ryptographi
 key-ex
hange starts. The IKE proto
ol of the IPSEC standard is a good example [28℄.

4

the session identi�er, and the value of the
omputed session key. A key establishment event is

re
orded only when the ex
hange is
ompleted (this signals, in parti
ular, that the ex
hanged key

an be used by the proto
ol that
alled the ke session). We note that a session
an be
ompleted

at one partner but not ne
essarily at the other.

After des
ribing these `me
hani
s" of a ke proto
ol we need to de�ne what is meant by a

\se
ure" ke proto
ol. This is the subje
t of Se
tion 4 and it is based on the adversarial model that

we introdu
e next.

2.2 The unauthenti
ated-links adversarial model (um)

In order to talk about the se
urity of a proto
ol we need to de�ne the adversarial setting that

determines the
apabilities and possible a
tions of the atta
ker. We want these
apabilities to be

as generi
 as possible (as opposed to, say, merely representing a list of possible atta
ks) while not

posing unrealisti
 requirements. We follow the general adversarial formalism of [2℄ but spe
ialize

and extend it here for the
ase of ke proto
ols. Using the terminology of [2℄ we
all this model the

Unauthenti
ated Links Model (um).

Basi
 atta
ker
apabilities. We
onsider a probabilisti
 polynomial-time (ppt)

3

atta
ker that

has full
ontrol of the
ommuni
ations links: it
an listen to all the transmitted information, de
ide

what messages will rea
h their destination and when,
hange these messages at will or inje
t its own

generated messages. The formalism represents this ability of the atta
ker by letting the atta
ker

be the one in
harge of passing messages from one party to another. The atta
ker also
ontrols the

s
heduling of all proto
ol events in
luding the initiation of proto
ols and message delivery.

Obtaining se
ret information. In addition to these basi
 adversarial
apabilities (given \for

free" to the atta
ker), we let the atta
ker obtain se
ret information stored in the parties memories

via expli
it atta
ks. We
onsider all the se
ret information stored at a party as potentially vul-

nerable to break-ins or other forms of leakage. However, when de�ning se
urity of a proto
ol it is

important to guarantee that the leakage of some form of se
ret information has the least possible

e�e
t on the se
urity of other se
rets. For example, we will want to guarantee that the leakage of

information spe
i�
 to one session (su
h as the leakage of a session key or ephemeral state infor-

mation) will have no e�e
ts on the se
urity of other sessions, or that even the leakage of
ru
ial

long-term se
rets (su
h as private keys) that are used a
ross multiple sessions will not ne
essarily

ompromise se
ret information from all past sessions. In order to be able to di�erentiate between

various vulnerabilities and to be able to guarantee as mu
h se
urity as possible in the event of in-

formation exposures, we
lassify atta
ks into three
ategories depending on the type of information

a

essed by the adversary:

Party
orruption. The atta
ker
an de
ide at any point to
orrupt a party, in whi
h
ase the atta
ker

learns all the internal memory of that party in
luding long-term se
rets (su
h as private keys or

master shared keys used a
ross di�erent sessions) and session-spe
i�
 information
ontained in the

party's memory (su
h as internal state of in
omplete sessions and session-keys
orresponding to

ompleted sessions). Sin
e by learning its long term se
rets the atta
ker
an impersonate a party

in all all its a
tions then a party is
onsidered
ompletely
ontrolled by the atta
ker from the time

of
orruption and
an, in parti
ular, depart arbitrarily from the proto
ol spe
i�
ations.

Session-key query. The atta
ker provides a party's name and a session identi�er of a
ompleted

session at that party and re
eives the value of the key generated by the named session This atta
k

provides the formal modeling for leakage of information on spe
i�
 session keys that may result from

3

When proving spe
i�
 proto
ols one
an repla
e this generi
 ppt modeling with spe
i�

ryptographi
 assumptions.

5

events su
h as break-ins,
ryptanalysis,
areless disposal of keys, et
. It will also serve, indire
tly,

to ensure that the unavoidable leakage of information produ
ed by the use of session keys in a

se
urity appli
ation (e.g., information leaked on a key by its use as an en
ryption key) will not help

in deriving further information on this and other keys.

Note: one
ould de�ne yet another adversary operation that would provide the atta
ker with partial

information on session keys (to spe
i�
ally model information leaked via key usage), however it turns

out that su
h an addition, while adding
omplexity to the model spe
i�
ation, does not
hange the

power of the model sin
e session-key queries as de�ned here already suÆ
e to
apture leakage of

any partial information on the session keys.

Session-state reveal. The atta
ker provides the name of a party and a session identi�er of a yet

in
omplete session at that party and re
eives the internal state of that session (sin
e we see sessions

as pro
edures running inside a party then the internal state of a session is well de�ned). An

important point here is what information is in
luded in the lo
al state of a session; this is to

be spe
i�ed by ea
h ke proto
ol. Therefore, our de�nition of se
urity is parameterized by the

type and amount of information revealed in this atta
k. For instan
e, the information revealed in

this way may be the exponent x used by a party to
ompute a value g

x

in a DiÆe-Hellman key-

ex
hange proto
ol, or the random bits used to en
rypt a quantity under a probabilisti
 en
ryption

s
heme during a session. (An example where su
h state information may be vulnerable to atta
k is

appli
ations { su
h as those running in low-powered devi
es { that pre-
ompute, or upload, a �le

of pairs (x; g

x

) for use during later \real-time" establishment of ke sessions. In this
ase one would

like to prevent that the exposure of su
h a �le, or part of it, will
ompromise future sessions that

do not use these values.)

We stress that while the �rst two forms of atta
k, party
orruptions and session-key queries,

are fundamental to the de�nition of se
urity of ke proto
ols, the signi�
an
e of the session-state

reveal operation depends on the se
urity model of an implementation. The di�erentiation between

party
orruptions and session-state reveal operations assumes that
orrupting a session state does

not imply learning about long-term se
rets; this impli
itly assumes a separate se
urity module

where the operations involving these long-term se
rets are performed. In settings where this is an

unrealisti
 assumption, our model
an be weakened by deleting the session-state reveal operation

from the atta
ker's
apabilities. Certainly, proto
ols proven se
ure under our model will remain

se
ure in the weakened model.

Terminology: if a session is subje
t to any of the above three atta
ks (i.e. a session-state reveal, a

session-key query or the
orruption of the party holding the session) then the session is
alled lo
ally

exposed. If a session or its mat
hing session is lo
ally exposed then we
all the session exposed.

Session expiration. One important additional element in our se
urity model is the notion of

session expiration. This takes the form of a proto
ol a
tion that when a
tivated
auses the erasure

of the named session key (and any related session state) from that party's memory. We allow a

session to be expired at one party without ne
essarily expiring the mat
hing session. The e�e
t

of this a
tion in our se
urity model is that the value of an expired session key
annot be found

via any of the above atta
ks if these atta
ks are performed after the session expired. This has two

important
onsequen
es: it allows us to model the
ommon (and good) se
urity pra
ti
e of limiting

the life-time of individual session keys and it allows for a simple modeling of the notion of perfe
t

forward se
re
y (see Se
tion 4.2). We note that in order for a session to be lo
ally exposed (as

de�ned above) the atta
k against the session must happen before the session expires.

Bootstrapping the se
urity of key-ex
hange proto
ols. Key-ex
hange proto
ols, as other

ryptographi
 appli
ations, require the bootstrapping of se
urity (espe
ially for authenti
ation) via

6

some assumed-se
ure means. Examples in
lude the se
ure generation of parties' private keys, the

installation of publi
 keys of other parties, or the installation of shared \master" keys. Here too

we follow the approa
h of [2℄ where the bootstrapping of the authenti
ation fun
tions is abstra
ted

into an initialization fun
tion that is run prior to the initiation of any key-ex
hange proto
ol and

that produ
es in a se
ure way (i.e. without adversarial parti
ipation) the required (long-term)

information. By abstra
ting out this initial phase we allow for the
ombination of di�erent proto
ols

with di�erent initialization fun
tions: in parti
ular, it allows our analysis of proto
ols (su
h as

DiÆe-Hellman) to be appli
able under the two prevalent settings of authenti
ation: symmetri

and a-symmetri
 authenti
ation. Two points to note are (1) the spe
i�
ation of the initialization

fun
tion is part of the de�nition of ea
h ke proto
ol; and (2) se
ret information generated by

this fun
tion at a given party
an be dis
overed by the atta
ker only upon
orruption of that

party. We stress that while this abstra
tion adds to the simpli
ity and appli
ability of our analysis

te
hniques, the bootstrapping of se
urity in a
tual proto
ols is an element that must be
arefully

analyzed (e.g., the intera
tion with a CA in the
ase of publi
-key based proto
ols). Integrating

these expli
it elements into the model
an be done either dire
tly as done in [43℄, or in a more

modular way via appropriate proto
ol
omposition.

2.3 The am, proto
ol emulation and authenti
ators

A
entral ingredient in our analyses is the methodology introdu
ed in [2℄ by whi
h one
an design

and analyze a proto
ol under the highly-simplifying assumption that the atta
ker
annot
hange

information transmitted between parties, and then transform these proto
ols and their se
urity

assuran
e to the realisti
 um where the adversary has full
ontrol of the
ommuni
ation links. We

refer the reader to [2℄ for the details and also present a te
hni
al summary in Se
tion 3.4.

First, an adversarial model
alled authenti
ated-links model (denoted am) is de�ned in a way

that is identi
al to the um with one fundamental di�eren
e: the atta
ker is restri
ted to only

deliver messages truly generated by the parties without any
hange or addition to them. Then, the

notion of \emulation" is introdu
ed in order to
apture the equivalen
e of fun
tionality between

proto
ols in di�erent adversarial models, in parti
ular between the um and am. Roughly speaking,

a proto
ol �

0

emulates proto
ol � in the um if for any adversary that intera
ts with �

0

in the um

there exists an adversary that intera
ts with � in the am su
h that the two intera
tions \look

the same" to an outside observer. Finally, spe
ial algorithms
alled authenti
ators are developed

with the property that on input the des
ription of a proto
ol � the authenti
ator outputs the

des
ription of a proto
ol �

0

su
h that �

0

emulates proto
ol � in the um. That is, authenti
ators a
t

as an automati
 \
ompiler" that translate proto
ols in the am into equivalent (or \as se
ure as")

proto
ols in the um.

In order to simplify the
onstru
tion of authenti
ators, [2℄ o�ers the following methodology.

First
onsider a very simple one-
ow proto
ol in the am,
alled mt, whose sole fun
tionality is

to transmit a single message from sender to re
ipient. Now build a restri
ted-type authenti
ator,

alled mt-authenti
ator, required to provide emulation for this parti
ular mt proto
ol only. Finally,

to any su
h mt-authenti
ator � one asso
iates an algorithm (or
ompiler) C

�

that translates any

input proto
ol � into another proto
ol �

0

as follows: to ea
h of the messages de�ned in proto
ol

� apply the mt-authenti
ator �. It is proven in [2℄ that C

�

is an authenti
ator (i.e., the resultant

proto
ol �

0

emulates � in the um). Parti
ular realizations of mt-authenti
ators are presented in [2℄

based on di�erent type of
ryptographi
 fun
tions (e.g., digital signatures, publi
-key en
ryption,

MAC, et
.)

7

3 The models

This se
tion presents a te
hni
al des
ription of the proto
ol and adversary models used throughout

the paper. We strongly re
ommend �rst reading Se
tion 2 whi
h presents an overview of these

models and their motivation.

3.1 Message-Driven Proto
ols

An n-party message-driven proto
ol is a
olle
tion of n programs, where ea
h program is to be

run by a di�erent party. (Formally, ea
h program is an intera
tive ppt Turing ma
hine, as de�ned

in [25℄.) Ea
h program has the following interfa
e. It is �rst invoked with some initial input

(that in
ludes the party's identity), random input, and some value for the se
urity parameter.

On
e invoked, the program waits for an a
tivation. An a
tivation
an be
aused by two types of

events: either the arrival of an in
oming message from the network, or an a
tion request
oming

from other programs run by the party. (De�ning valid a
tion requests is part of the spe
i�
ation

of the proto
ol.

4

) Upon a
tivation, the program pro
esses the in
oming data, starting from its

urrent internal state, and as a result it
an generate outgoing messages to the network and a
tion

requests to other programs run by the party. In addition, a lo
al output value is generated. On
e

the a
tivation is
ompleted, the program waits for the next a
tivation. We regard the lo
al output

as
umulative. That is, initially the lo
al output is empty; in ea
h a
tivation the
urrent output

is appended to the previous one. We will let a proto
ol label some of its lo
al output as `se
ret'

(e.g. the value of a se
ret key generated by the proto
ol). This will have e�e
t on the adversary's

a
tions that we de�ne below.

An invo
ation of a proto
ol is
alled a session. Note that a session of a proto
ol � may involve

several sessions of other proto
ols that are
alled by �. (When treating the spe
ial
ase of key-

ex
hange proto
ols in Se
tion 3.3 the semanti
s of sessions in that
ontext will be given more

spe
i�
 meaning.)

3.2 The unauthenti
ated-links adversarial model (um).

The adversarial model um de�nes the atta
ker's
apabilities and its intera
tion with a proto
ol.

Figure 1 summarizes the way proto
ols are exe
uted in the presen
e of a um adversary. Here we

des
ribe this in some more detail. Consider an n-party message-driven proto
ol �, with parties

denoted by P

1

:::P

n

. Ea
h party P

i

has input x

i

and random input r

i

. In addition, we introdu
e

an adversarial entity,
alled a um-adversary U . (The um-adversary is another program, or a ppt

intera
tive Turing ma
hine, with an interfa
e des
ribed below.) The exe
ution of proto
ol � in the

um
onsists of a sequen
e of a
tivations of � within di�erent parties. The a
tivations are
ontrolled

and s
heduled by U . That is, initially the proto
ol is invoked within ea
h party with a lo
al input,

random input and a value for the se
urity parameter. Next, and upon the
ompletion of ea
h

a
tivation, U de
ides whi
h party to a
tivate next, and on whi
h in
oming message or request. The

outgoing messages and outgoing lo
al a
tion requests be
ome known to U . Lo
al outputs be
ome

known to U ex
ept for those labeled `se
ret'.

Note that U is free to
hoose to a
tivate any party with any a
tivation allowed by the proto
ol

and in any order. Also, U
an a
tivate any party with any in
oming message and any spe
i�ed

4

An a
tion request
an be, for instan
e, a request to send a message or ex
hange a key with some spe
i�ed party

(we will see spe
i�
 examples in the sequel). We assume that every message spe
i�es the sender of the message and

its intended re
ipient.

8

Proto
ol exe
ution in the um

Parti
ipants: Parties P

1

; :::; P

n

running an n-party proto
ol � on inputs x

1

; :::; x

n

, respe
tively, and

an adversary U .

1. Initialization: Ea
h party P

i

invokes � on lo
al input x

i

, se
urity parameter k and random

input. Next, P

i

gets I(r; k)

i

and I(r; k)

0

, where r is randomly
hosen.

2. While U has not terminated do:

(a) U may a
tivate � within some party, P

i

. An a
tivation
an take two forms:

i. An a
tion request q. This a
tivation models requests or invo
ations
oming from

other programs run by the party.

ii. An in
oming messagem with a spe
i�ed sender P

j

. This a
tivation models messages

oming from the network.

If an a
tivation o

urred then the a
tivated party P

i

runs its program and hands U the

resulting outgoing messages and a
tion requests. (We stress that U is free to
hoose any

s
heduling of a
tivations and determine the values of in
oming messages.) Lo
al outputs

produ
ed by the proto
ol are known to U ex
ept for those labeled `se
ret'.

(b) U may
orrupt a party P

i

. Upon
orruption, U learns the
urrent internal state of P

i

,

and a spe
ial message is added to P

i

's lo
al output. From this point on, P

i

is no longer

a
tivated and does not generate further lo
al output.

(
) U may issue a session-state reveal for a spe
i�ed session within some party P

i

. In this

ase, U learns the
urrent internal state of the spe
i�ed session within P

i

. This event is

re
orded through a spe
ial note in P

i

's lo
al output.

(d) U may issue a session-output query for a spe
i�ed session within some party P

i

. In this

ase, U learns any output from the spe
i�ed session that was labeled `se
ret'. This event

is re
orded through a spe
ial note in P

i

's lo
al output.

3. The global output of the exe
ution is the
on
atenation of the outputs of U and P

1

; :::; P

n

.

Figure 1: Proto
ol exe
ution in the um.

sender. In parti
ular, in
oming messages need not
orrespond in any way to messages that have

been sent. (That is, U is free to generate, inje
t, modify, and deliver any message of its
hoi
e.)

In addition to a
tivating parties and
ontrolling the network, U
an perform the following

a
tivities. First, it
an
orrupt parties at will. Upon
orruption of P

i

, U learns the entire
urrent

state of P

i

, in
luding any long-term se
ret, session states and se
ret session outputs in the party's

memory. From this point on, U
an deliver any message of its
hoi
e in whi
h P

i

is spe
i�ed as

the sender. The
orrupted party P

i

appends a spe
ial note to its output, spe
ifying that it has

been
orrupted. P

i

is no longer a
tivated and does not generate further lo
al output. (A
orrupted

party is totally
ontrolled by the adversary, and its a
tions are taken by the atta
ker itself.)

Another type of a
tivity is session-state reveal of a
ertain session within party P

i

. The e�e
t is

that the internal state of the
orresponding session within P

i

(i.e., the lo
al working spa
e of the

pro
edure whose invo
ation
onstitutes the session) be
omes known to U , and a spe
ial message

is added to the party's lo
al output; no further output is generated for this session.

5

A third

5

We do not spe
ify how a session is identi�ed; this will have to be part of the spe
i�
ation of a proto
ol. In the

9

adversarial a
tivity is a session-output query. By issuing su
h a query the adversary learns any

output from that session that was labeled `se
ret'. (This type of queries is parti
ularly important

in the
ontext of key-ex
hange proto
ols below where this a
tion is
alled a `session-key query'.)

The initialization fun
tion I. Finally, we augment the proto
ol � with an initialization fun
tion

I that models an initial phase of out-of-band and authenti
ated information ex
hange between

the parties. (This fun
tion models the ne
essary trusted bootstrapping of
ryptographi
 fun
tions,

e.g. by letting the parties
hoose private and publi
 keys for some asymmetri

rypto-system

and trustfully distributing the publi
 keys.) Fun
tion I takes a random input r and the se
urity

parameter k, and outputs a ve
tor I(r; k) = I(r; k)

0

::::I(r; k)

n

. The
omponent I(r; k)

0

is the publi

information and be
omes known to all parties and to the adversary. For i > 0, I(r; k)

i

be
omes

known only to P

i

. Note, however, that upon
orruption of P

i

the atta
ker learns I(r; k)

i

.

Global output. The global output of running a proto
ol in the um is the
on
atenation of the

umulative lo
al outputs of all the parties, together with the output of the adversary. The output of

the adversary is a fun
tion of its internal states at the end of the intera
tion. We use the following

notation. Let um-adv

�;U

(k; ~x;~r) denote the output of adversary U when intera
ting with parties

running proto
ol � on se
urity parameter k, input ~x = x

1

: : : x

n

and random input ~r = r

0

: : : r

n

as des
ribed above (r

0

for U ; x

i

and r

i

for party P

i

). (The initialization fun
tion I is part of the

des
ription of proto
ol �.) Let unauth

�;U

(k; ~x;~r)

i

denote the
umulative output of party P

i

after

running proto
ol � on se
urity parameter k, input ~x and random input ~r, and with an am-adversary

U . Let unauth

�;U

(k; ~x;~r) = um-adv

�;U

(k; ~x;~r);unauth

�;U

(k; ~x;~r)

1

: : : unauth

�;U

(k; ~x;~r)

n

. Let

unauth

�;U

(k; ~x) denote the random variable des
ribing unauth

�;U

(k; ~x;~r) when ~r is uniformly

hosen. Let unauth

�;U

denote the ensemble funauth

�;U

(k; ~x)g

k2N;~x2f0;1g

�
.

We have summarized the stru
ture of a proto
ol exe
ution in the um in Figure 1.

3.3 Key Ex
hange Proto
ols

Key-ex
hange proto
ols are a spe
ial
ase of n-party message-driven proto
ols. As su
h they inherit

the syntax of general message-driven proto
ols as introdu
ed before. In addition, in order to

apture the spe
i�
 semanti
s of key ex
hange, and the spe
i�

apabilities of atta
kers against

su
h proto
ols, we spe
ify some additional syntax for these proto
ols. (The intention of this syntax

is to represent, in an abstra
t but dire
t way, the me
hani
s of key ex
hange proto
ols in a
tual

systems.)

Re
all that a message-driven proto
ol is a
olle
tion of n programs, where ea
h program is

run by a di�erent party. (We envision that the program is invoked on
e within ea
h party at the

onset of the
omputation and remains a
tive throughout.) On
e invoked, it is a
tivated either by a

message
oming from the network, or by an a
tion request from other proto
ols or programs run by

the party. In the
ase of a key-ex
hange (ke) proto
ol �, the program within ea
h party, P

i

, takes

a
tion requests of the form establish-session(P

i

; P

j

; s; role) where P

j

is another party (with whi
h a

key is to be ex
hanged), s is a string
alled the session-id, and role 2 finitiator; responderg. (This

a
tion request will typi
ally be triggered by other proto
ols run by the party that \
all" the ke

proto
ol, see for example Se
tion 6.)

Lo
al outputs of a ke proto
ol are of the form (P

i

; P

j

; s; �), where P

j

; s are as above and � is a

session key. A null value of � is interpreted as a \session abortion" and will usually represent the

termination of the session with a returned error message. Non-null session-key values are labeled

ontext of ke proto
ols we will identify sessions via a session-id and the partners of the session; see more details in

the next se
tion.

10

`se
ret'. (Re
all that the lo
al outputs are thought of as values returned by the session to the

\
alling proto
ol" that issued the initial establish-session a
tivation.)

We further spe
ify the internal stru
ture of ea
h of the n programs of a ke proto
ol, as follows.

Ea
h su
h program, running within P

i

,
onsists of a main pro
edure (
an be thought of as a \shell")

and a spe
ial subroutine,
alled a ke-subroutine. An invo
ation of the ke-subroutine is
alled a

ke-session and is aimed at ex
hanging a single key with a spe
i�ed party. The main pro
edure

pro
eeds as follows. Upon a
tivation with a
tion request establish-session(P

i

; P

j

; s; role), it �rst

veri�es that no ke-session was previously invoked (within P

i

) with inputs (P

i

; P

j

; s; role

0

) for some

role

0

2 finitiator; responderg (namely, the main pro
edure makes sure that the identity of the session

is unique among the sessions that P

i

was requested to establish with P

j

). If the veri�
ation fails,

then an appropriate error message is generated. Otherwise, a ke-session is invoked with inputs

(P

i

; P

j

; s; role). From this point on, whenever the ke proto
ol within P

i

re
eives a message that

spe
i�es sender P

j

and session-id s, it forwards this message to the relevant ke-session within P

i

.

On
e a ke-session returns (typi
ally, after a number of messages have been ex
hanged between

P

i

and P

j

) with output (P

i

; P

j

; s; �), the ke proto
ol re
ords a session establishment event with

parameters (P

i

; P

j

; s; �) in its lo
al output. From these parameters only the value � of the session

key is labeled `se
ret'. A ke-session that returns with a non-null value of � is
alled
ompleted. If

� = null then the ke-session is aborted and a spe
ial note is re
orded in the lo
al output. It is

assumed by
onvention that, on
e a ke-session returns, its entire lo
al state, ex
ept for the output

value, is se
urely erased. Note that this means that a session-state reveal after the session has

returned will produ
e an empty output for the atta
ker.

Mat
hing sessions. We also use the following terminology: if in an exe
ution of a ke proto
ol

P

i

has a session with input (P

i

; P

j

; s; role) and party P

j

has a session with input (P

j

; P

i

; s

0

; role

0

),

and s = s

0

then we say that the two sessions are mat
hing. (Note that we do not require that

role 6= role

0

.) We
all P

i

and P

j

the partners of session s. (Note that P

i

may have
ompleted a

session with partner P

j

, while P

j

may never
omplete the mat
hing session;
ompletion of sessions

depends on the delivery of the proto
ol's message whi
h is subje
t to adversarial
ontrol.)

Session expiration: an extension to the um. The adversarial a
tions against a ke proto
ol

in the um are essentially the same as the generi
 um atta
ker des
ribed above, in
luding party

orruption, session-state reveals, and session-output queries. For
larity, we will use the term

session-key query instead of session-output query when referring to ke sessions (namely, a session-

key query on a
ompleted session provides the atta
ker with the value of that session key, the only

se
ret output of a ke session). We add, however, one more element to this model. We will
onsider

a proto
ol a
tion
alled session expiration. A session expiration a
tion
an be s
heduled by the

atta
ker for any
ompleted session (P

i

; P

j

; s; role) within party P

i

. The e�e
t of this a
tivity is that

the se
ret output of the session, i.e. the session key, is erased from the party's memory. In addition,

a spe
ial note re
ording the session expiration is added to P

i

's lo
al output, and this ke-session is

labeled expired, with the following
onsequen
es. Adversary U is not allowed to perform a session-

key query for an expired session. In addition, when U
orrupts a party, it does not see the lo
al

outputs of the expired sessions (thus, upon party
orruption the atta
ker learns the party's session-

keys for unexpired sessions only.) As explained in Se
tion 2 expiration of sessions is motivated by

the
ommon pra
ti
e to limit the life time of session keys and, in parti
ular, is instrumental for

apturing the notion of perfe
t forward se
re
y. Figure 1 needs to be updated by adding the session

expiration a
tivity to the list of possible a
tivities in Step 2.

Exposed sessions. Finally we introdu
e the following terminology. A ke-session (P

i

; P

j

; s; role)

within P

i

is
alled lo
ally exposed (within P

i

) if the atta
ker performed any of the following a
tions

11

on said session: (i) a session-state reveal; (ii) a session-key query; (iii)
orruption of P

i

before

session (P

i

; P

j

; s; role) expired within P

i

(this in
ludes the
ase in whi
h P

i

is
orrupted before the

session is even invoked or
ompleted).

A ke-session is
alled exposed if it is lo
ally exposed or it has a mat
hing session that is lo
ally

exposed. A session whi
h is not exposed is
alled unexposed.

3.4 The am Model and Authenti
ators

The material in this Se
tion is taken from [2℄.

The authenti
ated-links adversarial model (am). The authenti
ated-links model of
ompu-

tation is identi
al to the unauthenti
ated-links one, with the following fundamental ex
eption. The

am-adversary, denoted A,
an a
tivate parties only with in
oming messages that were generated

and sent by other parties in the proto
ol. That is, the atta
ker
annot inje
t or modify messages

(ex
ept if the spe
i�ed sender is a
orrupted party or if the message belongs to an exposed session).

In addition, any message may be delivered at most on
e. (Namely, A may de
ide not to deliver a

message at all, but if A delivers a message m then it
an do so only to the proper destination of

m, only on
e, and without
hanging m or the spe
i�ed sender.)

We de�ne auth

�;A

analogously to unauth

�;U

, where the
omputation is
arried out in the

unauthenti
ated-links model.

Emulation of proto
ols. Central to the methodology of [2℄ and the
urrent paper is the
on
ept

of \proto
ol translation", espe
ially between the am to the um. We want to be able to start with

any proto
ol � that has some guaranteed fun
tionality (or se
urity) in the am and generate out

of it a proto
ol �

0

with equivalent fun
tionality in the um. For this we �rst need to formalize the

notion of \equivalen
e". This is done in the next de�nition from [2℄ (and whi
h follows a general

approa
h used for de�ning se
ure multi-party proto
ols [23, 38, 1, 13℄).

De�nition 1 Let � and �

0

be an n-party message-driven proto
ols. We say that �

0

emulates � in

the unauthenti
ated-links model if for any um-adversary U there exists an am-adversary A su
h that

auth

�;A

and unauth

�

0

;U

are
omputationally indistinguishable.

Armed with the emulation de�nition we
an turn to de�ne what is meant by \proto
ol transla-

tion" from am to um. This is done in the next de�nition [2℄ in terms of \
ompilers" and \authen-

ti
ators".

De�nition 2 A
ompiler C is an algorithm that takes for input des
riptions of proto
ols and outputs

des
riptions of proto
ols. An authenti
ator is a
ompiler C where for any proto
ol �, the proto
ol

C(�) emulates � in the unauthenti
ated-links model.

Constru
ting authenti
ators: the mt proto
ol. Thus, an authenti
ator
an take for input

proto
ols designed for ideally authenti
ated links (am), and turn them into `equivalent' proto
ols for

adversary-
ontrolled unauthenti
ated links (um). But
an su
h authenti
ators be
onstru
ted? The

answer is yes. The following methodology for
onstru
ting authenti
ators is used in [2℄. Consider

the following simple proto
ol,
alled the message transmission (mt) proto
ol. The proto
ol takes

empty input. Upon a
tivation within P

i

on a
tion request send(P

i

; P

j

;m), party P

i

sends the

message (P

i

; P

j

;m) to party P

j

, and outputs ``P

i

sent m to P

j

''. Upon re
eipt of a message

(P

i

; P

j

;m), P

j

outputs ``P

j

re
eived m from P

i

''. When run in the am this proto
ol represents

a perfe
tly authenti
ated message transmission proto
ol. Now, let � be a proto
ol that emulates mt

12

in unauthenti
ated networks. We
all su
h proto
ols mt-authenti
ators and we will see that they

an be
onstru
ted eÆ
iently. On the basis of �, de�ne a
ompiler C

�

that on input a proto
ol

� produ
es a proto
ol �

0

= C

�

(�) de�ned as follows. When �

0

is a
tivated at a party P

i

it �rst

invokes �. Then, for ea
h message sent in proto
ol �, proto
ol �

0

a
tivates � with the a
tion request

for sending the same message to the same spe
i�ed re
ipient. Whenever �

0

is a
tivated with some

in
oming message, it a
tivates � with the same in
oming message. When � outputs ``P

i

re
eived

m from P

j

'', proto
ol � is a
tivated with in
oming message m from P

j

. It is shown:

Theorem 3 ([2℄) Let � be an mt-authenti
ator. Then C

�

is an authenti
ator.

Thus, in order to see that authenti
ators
an be
onstru
ted it suÆ
es to show
onstru
tions

of mt-authenti
ators. This is done in [2℄ where several su
h s
hemes are shown based on di�erent

ryptographi
 fun
tions (su
h as digital signatures and en
ryption).

In Se
tion 6.2 we extend the mt proto
ol to a setting of multiple
on
urrent sessions. We
all

the resultant proto
ol smt. It is straightforward to extend the proof of the above theorem to
over

the
ase of smt-authenti
ators as well.

4 Session-Key Se
urity

After having de�ned the basi
 formal model for key-ex
hange proto
ols and adversarial
apabilities,

we pro
eed to de�ne what is meant for a key-ex
hange proto
ol to be se
ure. While the previous

se
tions were largely based on the work of [2℄, our de�nition of se
urity
losely follows the de�nitional

approa
h of [7℄. The resultant notion of se
urity, that we
all session-key se
urity (or SK-se
urity),

fo
uses on ensuring the se
urity of individual session-keys as long as the session-key value is not

obtained by the atta
ker via an expli
it key exposure (i.e. as long as the session is unexposed { see

the terminology in the previous se
tion). We want to
apture the idea that the atta
ker \does not

learn anything about the value of the key" from intera
ting with the key-ex
hange proto
ol and

atta
king other sessions and parties. As it is standard in the semanti
-se
urity approa
h this is

formalized via the infeasibility to distinguish between the real value of the key and an independent

random value.

We stress that this formulation of SK-se
urity is very
areful about tuning the de�nition to

o�er enough strength as required for the use of key-ex
hange proto
ols to realize se
ure
hannels

(Se
tion 6), as well as being realisti
 enough to avoid over-kill requirements whi
h would prevent

us from proving the se
urity of very useful proto
ols (Se
tion 5). We further dis
uss these aspe
ts

after the presentation of the de�nition.

4.1 De�nition of SK-Se
urity

We �rst present the de�nition for the um. The formalization in the am is analogous. We start by

de�ning an \experiment" where the atta
ker U
hooses a session in whi
h to be \tested" about

information it learned on the session-key; spe
i�
ally, we will ask the atta
ker to di�erentiate the

real value of the
hosen session key from a random value. (Note that this experiment is an artifa
t

of the de�nition of se
urity, and not an integral part of the a
tual key-ex
hange proto
ols and

adversarial intervention.)

For the sake of this experiment we extend the usual
apabilities of the adversary, U , in the

um by allowing it to perform a test-session query. That is, in addition to the regular a
tions of U

against a key-ex
hange proto
ol �, we let U to
hoose, at any time during its run, a test-session

13

among the sessions that are
ompleted, unexpired and unexposed at the time. Let � be the value of

the
orresponding session-key. We toss a
oin b, b

R

 f0; 1g. If b = 0 we provide U with the value �.

Otherwise we provide U with a value r randomly
hosen from the probability distribution of keys

generated by proto
ol �. The atta
ker U is now allowed to
ontinue with the regular a
tions of a

um-adversary but is not allowed to expose the test-session (namely, it is not allowed session-state

reveals, session-key queries, or partner's
orruption on the test-session or its mat
hing session.

6

)

At the end of its run, U outputs a bit b

0

(as its guess for b).

We will refer to an atta
ker that is allowed test-session queries as a ke-adversary.

De�nition 4 A ke proto
ol � is
alled SK-se
ure if the following properties hold for any ke-

adversary U in the um.

1. Proto
ol � satis�es the property that if two un
orrupted parties
omplete mat
hing sessions

then they both output the same key; and

2. the probability that U guesses
orre
tly the bit b (i.e., outputs b

0

= b) is no more than 1/2 plus

a negligible fra
tion in the se
urity parameter.

If the above properties are satis�ed for all ke-adversaries in the am then we say that � is SK-se
ure

in the am.

The �rst
ondition is a \
onsisten
y" requirement for sessions
ompleted by two un
orrupted

parties. We have no requirement on the session-key value of a session where one of the partners

was
orrupted before the session
ompleted { in fa
t, most ke proto
ols allow a
orrupted party to

strongly in
uen
e the ex
hanged key. The se
ond
ondition is the \
ore property" for SK-se
urity.

We note that the term `negligible' refers, as
ustomary, to any fun
tion (in the se
urity parameter)

that diminishes asymptoti
ally faster than any polynomial fra
tion. (This formulation allows, if

so desired, to quantify se
urity via a
on
rete se
urity treatment. In this
ase one quanti�es the

atta
ker's power via spe
i�
 bounds on
omputation time, number of
orruptions, et
., while its

advantage is bounded through a spe
i�
 parameter ".)

Remark. We highlight three aspe
ts of De�nition 4.

� The atta
ker
an keep running and atta
king the proto
ol even after re
eiving the response

(either real or random) to its test-session query. This ability (whi
h represents a substantial

strengthening of se
urity relative to [7℄, see also [6℄) is essential for proving the main property

of SK-se
urity shown in this paper, namely its guarantee of se
urity when used to generate

se
ure
hannels as des
ribed in Se
tion 6. See the Appendix for histori
 ba
kground on, as

well as some te
hni
al rationale for this requirement.

� The atta
ker is not allowed to
orrupt partners to the test-session or issue any other exposure

ommand against that session while unexpired. This re
e
ts the fa
t that there is no way

to guarantee the se
ure use of a session-key that was exposed via an atta
ker's break-in

(or
ryptanalysis). In parti
ular, this restri
tion is instrumental for proving the se
urity of

spe
i�
 important proto
ols (e.g., DiÆe-Hellman key ex
hange) as done in Se
tion 5.

6

We stress, however, that the atta
ker is allowed to
orrupt a partner to the test-session as soon as the test-session

(or its mat
hing session) expires at that party. See the dis
ussion below. This may be the
ase even if the other

partner has not yet expired the mat
hing session or not even
ompleted it.

14

� The above restri
tion on the atta
ker by whi
h it
annot
orrupt a partner to the test-session

is lifted as soon as the session expires at that partner. In this
ase the atta
ker should remain

unable to distinguish between the real value of the key from a random value. This is the basis

to the guarantee of \perfe
t forward se
re
y" provided by our de�nition and further dis
ussed

in Se
tion 4.2.

We stress that in spite of its \
ompa
t" formulation De�nition 4 is very powerful and
an be

shown to ensure many spe
i�
 properties that are required from a good key-ex
hange proto
ol (see,

for example,
hapter 12 of [37℄). Some of these properties in
lude the guarantee that session-keys

belong to the right probability distribution of keys (ex
ept if one of the partners is
orrupted at

time of ex
hange), the \authenti
ity" of the ex
hange (namely, a
orre
t and
onsistent binding

between keys and parties' identities), resistan
e to man-in-the-middle atta
ks (for proto
ols proven

SK-se
ure in the um), resistan
e to known-key atta
ks, forward se
re
y, and more. However, we

note that all these properties (whi
h are sometimes listed as a repla
ement to a formal de�nition

of se
urity) in
ombination do not suÆ
e to guarantee the most important aspe
t of key-ex
hange

se
urity that SK-se
urity enjoys: namely, the
omposition of the key-ex
hange proto
ols with

ryptographi
 fun
tions to enable se
ure
hannels (e.g., the original de�nition of se
urity in [7℄

does satisfy the above list of properties but is insuÆ
ient to guarantee se
ure
hannels).

We �nally remark that De�nition 4 makes se
urity requirements from a ke proto
ol only in
ase

that the proto
ol
ompletes ke-sessions. No guarantee is made that ke-sessions will ever return,

or that they will not be aborted, i.e., that the
orresponding session key will not be null. (In fa
t,

a ke proto
ol where all ke-sessions \hang" and never return satis�es the de�nition.) One
an

add an expli
it termination requirement for sessions in whi
h the parties are un
orrupted and all

messages are
orre
tly delivered by the atta
ker. For simpli
ity, we
hoose to leave the analysis of

the termination properties of proto
ols out of the s
ope of the de�nition of se
urity.

4.2 Forward Se
re
y

Informally, the notion of \perfe
t forward se
re
y" (pfs) [26, 19℄ is stated as the property that

\
ompromise of long-term keys does not
ompromise past session keys". In terms of our formalism

this means that even if a party is
orrupted (in whi
h
ase all its stored se
rets { short-term and

long-term { be
ome known to the atta
ker) then nothing is learned about sessions within that party

that were previously unexposed and expired before the party
orruption happened.

The provision that expired session-keys remain indistinguishable from random values even if a

partner to that session is
orrupted guarantees the perfe
t forward se
re
y of SK-se
ure proto
ols.

Put in other words, when proving a proto
ol to be SK-se
ure using De�nition 4 one automati
ally

gets a proof that that proto
ol guarantees pfs.

On the other hand, while pfs is a very important se
urity property it is not required for

all appli
ation s
enarios, e.g., when only authenti
ation is required, or when short-term se
re
y

suÆ
es. Indeed, it is
ommon to �nd in pra
ti
e proto
ols that do not provide pfs and still are

not
onsidered inse
ure. One su
h typi
al
ase are \key-transport proto
ols" in whi
h publi
 key

en
ryption is used to
ommuni
ate a session-key from one party to another. (In this
ase, even

if session-keys are erased from memory when no longer required, the
orruption of a party may

allow an atta
ker to
ompute, via the dis
overed long-term private keys, all the past session-keys.)

Due to the importan
e of su
h proto
ols (they are
ommonly used in, e.g., SSL), and given that

a
hieving pfs usually has a non-negligible
omputational
ost, we de�ne a notion of \SK-se
urity

without pfs" by simply disallowing the proto
ol's a
tion of key expiration. That is, under this

15

modi�ed model, session-keys never expire. This results in a weaker notion of se
urity sin
e now by

virtue of De�nition 4 the atta
ker is never allowed to
orrupt a partner to the test-session (or in

other words, this weaker de�nition of se
urity does not guarantee the se
urity of a session-key for

whi
h one of the partners is ever
orrupted).

De�nition 5 We say that a ke proto
ol satis�es SK-se
urity without pfs if it enjoys SK-se
urity

relative to any ke-adversary in the um that is not allowed to expire keys. (Similarly, if the above

holds for any su
h adversaries in the am then we say that � is SK-se
ure without pfs in the am.)

Se
tion 5.3 des
ribes a proto
ol that satis�es SK-se
urity without pfs but not regular SK-se
urity.

5 SK-Se
ure Proto
ols

This se
tion demonstrates the usability of our de�nition of SK-se
urity for proving the se
urity of

some simple and important key-ex
hange proto
ols. One is the original DiÆe-Hellman proto
ol, the

other is a simple \key transport" proto
ol based on publi
-key en
ryption. We �rst show that these

proto
ols are se
ure in the simpler authenti
ated-links model (am). Then, using the methodology

from [2℄ we
an apply to these proto
ols a variety of (symmetri
 or asymmetri
) authenti
ation

te
hniques to obtain key-ex
hange proto
ols that are se
ure in the realisti
 um model. Namely,

applying any mt-authenti
ator (see Se
tions 2.3 and 3.4) to the messages of the am-proto
ol results

in a se
ure ke proto
ol in the um. The next Theorem states that this methodology does work for

our purposes.

Theorem 6 Let � be a SK-se
ure key-ex
hange proto
ol in the am with pfs (resp., without pfs)

and let � be an mt-authenti
ator. Then �

0

= C

�

(�) is a SK-se
ure key-ex
hange proto
ol in the

um with pfs (resp., without pfs).

We remark that the following proof is somewhat more general, and proves that any authenti
ator

(not only mt-authenti
ators) is suÆ
ient for proving the theorem.

Proof: We start by noting that the theorem's statement does not follow dire
tly from the results of

[2℄ (spe
i�
ally from Theorem 3 in that paper) sin
e there the guarantee for se
ure transformation

between models is proven for the basi
 um and am. Here we need to extend the proof to
apture the

additional test-session queries that we allow the ke-adversary against the ke proto
ol. Also worth

noting is that our um and am are ri
her than the ones in [2℄ (e.g. they in
lude session expiration

and session-state reveals), however it is easy to see that the proof of Theorem 3 in [2℄ will work for

these adversary a
tivities as well.

Based on these fa
ts we pro
eed to prove that if proto
ol � satis�es SK-se
urity (De�nition 4)

in the am then proto
ol �

0

= C

�

(�) satis�es that de�nition in the um. We note that the proof

is the same for the
ases of SK-se
urity with or without pfs. Consider a proto
ol � that satis�es

De�nition 4 in the am, and let U be a ke-adversary against �

0

in the um. We �rst observe that �

0

satis�es Requirement 1 of De�nition 4 in the um with respe
t to U (otherwise the global output of

running �

0

in the um with U is easily distinguishable from the global output of running � in the

am with any am ke-adversary, in
ontradi
tion to the fa
t that C

�

is an authenti
ator).

Next we
on
entrate on demonstrating that �

0

satis�es Requirement 2 of De�nition 4 in the

um. Spe
i�
ally, given a ke-adversary U that guesses the bit b in the game of De�nition 4 in the

um with probability 1=2 + �, we
onstru
t a ke-adversary A that guesses the bit b in the game of

16

De�nition 4 in the am with probability 1=2 + �

0

, where �

0

is polynomial in � and in the se
urity

parameter.

The
onstru
tion of A pro
eeds in few steps, as follows:

1. Given U , we �rst
onstru
t a regular um-adversary U

0

against �

0

(i.e., U

0

is not allowed to

make test-session queries). Adversary U

0

runs adversary U and follows its instru
tions, with

the following ex
eption: When U
hooses a test-session s, U

0

queries session s and
hooses

b

R

 f0; 1g. If b = 0 then U

0

hands the key of session s to U . If b = 1 then U

0

hands U a value

drawn from the distribution of session keys. Next, U

0

returns to following the instru
tions of

U . When U halts, U

0

outputs the trans
ript of its intera
tion with U and halts.

2. Sin
e �

0

= C

�

(�), we have that there exists an adversary, A

0

in the am whose output is

indistinguishable from the output of U

0

.

3. Given adversary A

0

, we
onstru
t the ke-adversary A promised above. Re
all that A intera
ts

in the am with the game of De�nition 4. A starts by
hoosing a session s at random out of

the sessions initiated by A

0

. Next, A follows the instru
tions of A

0

; when the
hosen session

s is established, A announ
es s to be its test session. In addition, if A

0

queries session s (and

session s is not yet exposed) then A feeds the obtained value for the key of session s to A

0

.

Next A returns to following the instru
tions of A

0

. When A

0

halts, A inspe
ts the output of

A

0

. Re
all that the output of A

0

mimi
s the output of U

0

, whi
h in turn des
ribes a trans
ript

of an exe
ution of U . If in that trans
ript of U the test session is session s then A outputs

the bit b

0

that U outputs in that trans
ript. Otherwise, A outputs a randomly
hosen bit.

We analyze the su

ess probability of A under the assumption that the output of A

0

and U

0

are

identi
ally distributed. A

ounting for the fa
t that the two outputs are only
omputationally

indistinguishable is done in standard ways.

Let ` be an upper bound on the number of sessions invoked by U , the advantage (i.e., the

probability of su

ess over 1=2) of A is 1=` times its advantage
onditioned on the event that the

test session
hosen by U (in the output of A

0

) equals s. For the rest of the analysis we assume that

the test session
hosen by U (in the output of A

0

) equals s.

Let p

b

denote the probability that U outputs 1 when intera
ting with the game of De�nition 4

in the um, when the value of the \real or random" bit is b. We have that jp

real

�p

random

j � �. Also,

when run within U

0

, U outputs 1 with probability (p

real

+ p

random

)=2. Consider the following
ases:

1. Assume that A is given the \real" key of the test session s. In this
ase, the view of U

(within the output of A

0

that is run inside A) is distributed identi
ally to its view when U

0

intera
ts with �

0

in the um. In this
ase U (and thus also A) outputs 1 with probability

(p

real

+ p

random

)=2.

2. Assume that A is given the \random" value for the key of the test session s. In this
ase,

the view of U (within the output of A

0

that is run inside A) is distributed identi
ally to its

view when intera
ting in the game of De�nition 4 in the um,
onditioned on the event that

it is given a \random" value for the key of the test session. In this
ase U (and thus also A)

outputs 1 with probability p

random

.

It follows that, when A

0

perfe
tly simulates U

0

, the advantage of A is �=2`. 2

17

5.1 Two-move DiÆe-Hellman in the am

We demonstrate that under the De
isional DiÆe-Hellman (DDH) assumption (see below) the `
las-

si
' two-move DiÆe-Hellman key-ex
hange proto
ol designed to work against eavesdroppers-only is

SK-se
ure in the am. We denote this proto
ol by 2dh and des
ribe it in Figure 2 (here and in the

sequel all exponentiations are modulo the de�ned prime p).

Using Theorem 6 we
an apply any authenti
ator to this proto
ol to obtain a se
ure DiÆe-Hellman

ex
hange against realisti
 um atta
kers. For illustration, a parti
ular instan
e of su
h a SK-se
ure

proto
ol in the um, using digital signatures for authenti
ation, is shown in the next se
tion. Other

avors of authenti
ated DH proto
ols
an be derived in a similar way by using other authenti
ators

(e.g. based on publi
 key en
ryption or on pre-shared keys [2℄); see Se
tion 5.4.

Proto
ol 2dh

Common information: Primes p; q, q=p�1, and g of order q in Z

�

p

.

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s),
hooses x

R

 Z

q

and sends (P

i

; s; � = g

x

) to P

j

.

Step 2: Upon re
eipt of (P

i

; s; �) the responder, P

j

,
hooses y

R

 Z

q

, sends (P

j

; s; � = g

y

) to P

i

,

erases y, and outputs the session key
 = �

y

under session-id s.

Step 3: Upon re
eipt of (P

j

; s; �), party P

i

omputes

0

= �

x

, erases x, and outputs the session

key

0

under session-id s.

Figure 2: The two-move DiÆe-Hellman proto
ol in the am

The De
isional DiÆe-Hellman (DDH) assumption is as follows.

Assumption 7 Let k be a se
urity parameter. Let p; q be primes, where q is of length k bits

and q=p�1, and g be of order q in Z

�

p

. Then the probability distributions of quintuples Q

0

=

fhp; g; g

x

; g

y

; g

xy

i : x; y

R

 Z

q

g and Q

1

= fhp; g; g

x

; g

y

; g

z

i : x; y; z

R

 Z

q

g are
omputationally

indistinguishable.

Theorem 8 Assuming the De
isional DiÆe-Hellman (DDH) assumption, proto
ol 2dh is SK-

se
ure in the am.

Proof: To see that the �rst requirement of De�nition 4 is satis�ed, note that if both P

i

and P

j

are un
orrupted during the ex
hange of the key and both
omplete the proto
ol (i.e. the three

steps of the proto
ol are
ompleted by P

i

and P

j

) then they both establish the same key (whi
h is

 =

0

= g

xy

mod p). Note that the session identi�er s uniquely binds the values of g

x

and g

y

to

these parti
ular mat
hing sessions and di�erentiates them from other exponentials that the parties

may ex
hange in other (possibly simultaneous) sessions.

We show that the se
ond requirement of De�nition 4 is also satis�ed by proto
ol 2dh. Assume

to the
ontrary that there is a ke-adversary A in the am against proto
ol 2dh that has a non-

negligible advantage in guessing
orre
tly whether the response to a test-query is real or random.

Out of this atta
ker A, we
onstru
t an algorithm D that distinguishes between the distributions

Q

0

and Q

1

with non-negligible probability; thus rea
hing a
ontradi
tion with Assumption 7. The

input to D is denoted by (p; g; �

�

; �

�

;

�

) and is
hosen from Q

0

or Q

1

ea
h with probability 1/2.

18

Let ` be an upper bound on the number of sessions invoked by A in any intera
tion. Algorithm D

uses adversary A as a subroutine and is des
ribed in Figure 3.

Distinguisher D

Pro
eed as follows, on input (p; g; �

�

; �

�

;

�

):

1. Choose r

R

 f1 : : : `g.

2. Invoke A, on a simulated intera
tion in the am with parties P

1

; :::; P

n

running 2dh. Hand A

the values p; g as the publi
 parameters for the proto
ol exe
ution.

3. Whenever A a
tivates a party to establish a new session (ex
ept for the r-th session) or to

re
eive a message, follow the instru
tions of 2dh on behalf of that party. When a session is

expired at a player erase the
orresponding session key from that player's memory. When

a party is
orrupted or a session (other than the r-th session) is exposed, hand A all the

information
orresponding to that party or session as in a real intera
tion.

4. When the r-th session, say (P

i

; P

j

; s), is invoked within P

i

to ex
hange a key with P

j

, let P

i

send the message (P

i

; s; �

�

) to P

j

.

5. When P

j

is invoked to re
eive (P

i

; s; �

�

), let P

j

send the message (P

j

; s; �

�

) to P

i

.

6. If session (P

i

; P

j

; s) is
hosen by A as the test-session, then provide A with

�

as the answer

to this query.

7. If the r-th session (P

i

; P

j

; s) is ever exposed, or if a session di�erent than the r-th session

is
hosen as the test-session, or if A halts without
hoosing a test-session then D outputs

b

0

R

 f0; 1g and halts.

8. If A halts and outputs a bit b

0

, then D halts and outputs b

0

too.

Figure 3: Building a distinguisher for DDH

First note that the run of A by D (up to the point where A stops or D aborts A's run) is

identi
al to a normal run of A against proto
ol 2dh.

Consider the
ase in whi
h the test session s
hosen by A
oin
ides with the session
hosen at

random by D (i.e., the r-th session as
hosen in Step 1). In this
ase, the response to the test-query

by A is

�

. Thus, if the input to D
ame from Q

0

then the response was the a
tual value of the

key ex
hanged between P

i

and P

j

during the test-session s (sin
e, by
onstru
tion, the session key

ex
hanged in Steps 4 and 5 of Figure 3 is

�

= g

xy

). On the other hand, if the input to D
ame

from Q

1

then the response to the test query was a random exponentiation, i.e. a random value from

the distribution of keys generated by the proto
ol. In addition, the input to D was
hosen with

probability 1/2 from Q

0

and with probability 1/2 from Q

1

and then the distribution of responses

provided by D to the test query of A is the same as spe
i�ed by De�nition 4. In this
ase, the

probability that A guesses
orre
tly whether the test value was \real" or \random" is 1=2 + " for

non-negligible ". By the above argument this is equivalent to guessing whether the input to the

distinguisher D
ame from Q

0

or Q

1

, respe
tively. Thus, by outputting the same bit as A we get

that the distinguisherD guesses
orre
tly the input distributionQ

0

or Q

1

with the same probability

1=2 + " as A did.

Now
onsider the
ase in whi
h the r-th session is not
hosen as a test-session. In this
ase

D always ends outputting a random bit, and thus its probability to guess
orre
tly the input

19

distribution is 1/2.

Sin
e the �rst
ase (in whi
h the test-session and the r-th session
oin
ide) happens with

probability 1=` while the other
ase happens with probability 1 � 1=` we get that the overall

probability of D to guess
orre
tly is 1=2 + "=`, and thus D su

eeds in distinguishing Q

0

from Q

1

with non-negligible advantage.

2

5.2 SK-se
ure DiÆe-Hellman Proto
ol in the um

Here we apply the signature-based authenti
ator of [2℄ to the proto
ol 2dh from Figure 2 to obtain

a DiÆe-Hellman key-ex
hange that is SK-se
ure in the um. We present the resultant proto
ol in

Figure 4 (it is very similar to a proto
ol spe
i�ed in [29℄). Its SK-se
urity follows from Theorems

6 and 8.

Proto
ol sig-dh

Initial information: Primes p; q, q=p�1, and g of order q in Z

�

p

. Ea
h player has a private key for a

signature algorithm sig, and all have the publi
 veri�
ation keys of the other players.

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s),
hooses x

R

 Z

q

and sends (P

i

; s; � = g

x

) to P

j

.

Step 2: Upon re
eipt of (P

i

; s; �) the responder, P

j

,
hooses y

R

 Z

q

, and sends to P

i

the message

(P

j

; s; � = g

y

) together with its signature sig

j

(P

j

; s; �; �; P

i

); it also
omputes the session key

 = �

y

and erases y.

Step 3: Upon re
eipt of (P

j

; s; �) and P

j

's signature, party P

i

veri�es the signature and the
or-

re
tness of the values in
luded in the signature (su
h as players identities, session id, the

value of exponentials, et
.). If the veri�
ation su

eeds then P

i

sends to P

j

the message

(P

i

; s; sig

i

(P

i

; s; �; �; P

j

)),
omputes

0

= �

x

, erases x, and outputs the session key

0

under

session-id s.

Step 4: Upon re
eipt of the triple (P

i

; s; sig), P

j

veri�es P

i

's signature sig and the values it in
ludes.

If the
he
k su

eeds it outputs the session key
 under session-id s.

Figure 4: DiÆe-Hellman proto
ol in the um: authenti
ation via signatures.

Remarks on proto
ol sig-dh. The proto
ol is the result of applying the signature-based

authenti
ator of [2℄ to ea
h of the
ows in the 2-pass DiÆe-Hellman proto
ol 2dh of Figure 2,

and joining (piggy-ba
king) the
ommon
ows. The authenti
ators use the values � and � (the

DH exponentials) as the
hallenges required by these authenti
ators. This assumes (as spe
i�ed

in proto
ol 2dh) that these exponentials are
hosen afresh for ea
h new ex
hange. We remark

that this dual use of � and � as exponentials and as
hallenges is done to simplify the proto
ol but

separate
hallenges
ould be sent by the parties and in
luded under the signature. It is worth noting

that the identity of the destination party in
luded under the signatures is part of the spe
i�
ation

of the signature-based authenti
ator of [2℄ and is fundamental for the se
urity of proto
ol sig-dh

(without them the proto
ol is inse
ure; see [19℄).

The des
ription of sig-dh in Figure 4 assumes, as formalized in our model, that the value s of

the session-id is provided to the parties. In pra
ti
e, one usually generates the session identi�er

s as a pair (s

1

; s

2

) where s

1

is a value
hosen by P

i

and di�erent (with very high probability)

20

from all other su
h values
hosen by P

i

in his other sessions with P

j

. Similarly, s

2

is
hosen by P

j

with an analogous uniqueness property. These values s

1

; s

2

an be ex
hanged by the parties as a

prologue to the above proto
ol (this may be the
ase of proto
ols that implement su
h a prologue

to ex
hange some other system information and to negotiate ex
hange parameters; see for example

[28℄). Alternatively, s

1

an be in
luded by P

i

in the �rst message of sig-dh, and s

2

be in
luded by

P

j

in the se
ond message. In any
ase, it is important for the se
urity of the proto
ol that these

values be in
luded under the parties' signatures.

5.3 A publi
-key en
ryption-based proto
ol without pfs

The proto
ol des
ribed in this se
tion is based on publi
 key en
ryption s
hemes se
ure against

hosen
iphertext atta
ks. We show that this proto
ol satis�es De�nition 5, i.e. SK-se
urity

without pfs, in the am. That is, the proto
ol does not provide forward se
re
y of the session keys

(an atta
ker who breaks into a party may
ompromise all the keys ex
hanged by this party in the

past even if these keys are erased from that party's memory). Formally, we
onsider that session

keys never expire. The proto
ol
an be made into a SK-se
ure without pfs proto
ol in the um by

using any authenti
ator (Theorem 6).

Let (G;E;D) be a key-generation, en
ryption and de
ryption algorithms, respe
tively, of a

publi
-key en
ryption s
heme se
ure against
hosen
iphertext atta
ks (CCA). (See, for instan
e,

[20, 4, 17℄). Let k be the se
urity parameter. Assume that ea
h party P

i

has invoked G(k) to get

a pair (e

i

; d

i

) of en
ryption and de
ryption keys, and all parties have the publi
 en
ryption key e

i

of the other parties. In addition, let ff

�

g

�2f0;1g

k

be a pseudorandom fun
tion family (as in [22℄).

The proto
ol, denoted en
, is des
ribed in Figure 5.

Proto
ol en

Pro
eed as follows, given se
urity parameter k.

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s),
hooses �

R

 f0; 1g

k

and sends (P

i

; s; E

e

j

(�)) to P

j

.

Next, P

i

outputs the session key � = f

�

(P

i

; P

j

; s) under session-id s.

Step 2: Upon re
eipt of (P

i

; s;
) the responder, P

j

,
omputes �

0

= D

d

j

(
). If the de
ryption

algorithm does not reje
t the
iphertext, then P

j

outputs the session key �

0

= f

�

0

(P

i

; P

j

; s)

under session-id s.

Figure 5: A ke proto
ol based on CCA-se
ure en
ryption.

Remark. For ensuring the se
urity of proto
ol en
 we need to assume that the de
ryption

operation �

0

= D

d

j

(
) (in
luding the validity
he
k for the
iphertext
) and the
omputation

of the pseudorandom value f

�

0

(P

i

; P

j

; s) in Step 2 are performed su
h that neither the long-term

de
ryption key d

j

or the temporary value �

0

appear as part of the state of session s. Namely, we

need to assume that these operations are done in a separate se
ure module and only the value

�

0

= f

�

0

(P

i

; P

j

; s) is returned to the session state. The assumption that long-term private keys are

not part of the session state is a fundamental requirement in a model as ours that di�erentiates

session-state
orruptions from total
orruptions (see Se
tion 2.2). The need to hide �

0

from the

session state is a spe
i�
 requirement of the en
 proto
ol and it is illustrated by the following atta
k.

Say that �

0

is returned to the session state, then an atta
ker
ould
ompromise an unexposed session

21

(P

i

; P

j

; s) as follows. It
orrupts party P

l

; l 6= i; j, and initiates an en
 session (P

l

; P

j

; s

0

) between

the
orrupted P

l

and P

j

in whi
h P

l

sends to P

j

the same
iphertext
 sent in session s from P

i

to

P

j

. On
e P

j

de
rypts
 and stores the temporary value �

0

in the state of session s

0

, the atta
ker

performs a session-state reveal and learns �

0

. Now it
an also
ompute the value of the session

key
orresponding to the unexposed session s. Thus, this atta
k (and the proof of Theorem 9)

show the
are needed in spe
ifying and implementing the en
 proto
ol if we require resistan
e to

session-state reveals. Whether this is a realisti
 risk or not may depend on parti
ular appli
ations

and s
enarios. In any
ase, if a separate module for the above operations
annot be assumed then

the proto
ol be
omes inse
ure in our model but is still se
ure in a model where session states
an

only be revealed via total
orruptions (i.e., a weakened model where session-state reveals are not

onsidered as a separate atta
ker a
tion).

Theorem 9 If the en
ryption (G;E;D) is CCA-se
ure and the family ff

�

g

�2f0;1g

k

is pseudoran-

dom, then proto
ol en
 is SK-se
ure without pfs in the authenti
ated links model (am).

Proof: It is easy to see that the �rst
ondition of De�nition 4 is satis�ed by proto
ol en
 (that

is, un
orrupted parties that
omplete mat
hing sessions output the same session-key). The
ore of

the proof is in proving the se
ond
ondition of De�nition 4 in the
ase where keys are not expired.

We start by de�ning a \game" whi
h
aptures the
hosen-
iphertext se
urity of the en
ryption

fun
tion E in
ombination with the pseudorandom family ff

�

g

�2f0;1g

k

. We will then show that an

atta
ker that breaks the SK-se
urity of proto
ol en

an also win in this game and then break the

en
ryption fun
tion E. The game is de�ned in Figure 6.

The en
ryption game

The parties to the game are G and B (for good and bad). G possesses a pair of publi
 and private

keys, e and d (generated via the key generation algorithm G). B knows e but not d.

The game pro
eeds in phases:

Phase 0: G provides B with a
hallenge
iphertext

�

= E

e

(�

0

) for �

0

R

 f0; 1g

k

.

Phase 1: B sends a pair (
; t) to G who responds with f

�

(t) where � = D

d

(
). This is repeated

a polynomial (in k) number of times with ea
h pair being
hosen adaptively by B (i.e., after

seeing G's response to previous pairs).

Phase 2: B sends a test string t

�

to G. Then G
hooses a random bit b

R

 f0; 1g. If b = 0 then

G responds with f

�

0

(t

�

) where �

0

is the value en
rypted by G in phase 0. If b = 1 then G

responds with a random string r of the same length as f

�

0

(t

�

).

Phase 3: Same as Phase 1.

Phase 4: B outputs a bit b

0

.

And the winner is... B if and only if b = b

0

.

Figure 6: A game that
aptures the CCA-se
urity of the en
ryption fun
tion E

We state the following Lemma (the proof uses standard arguments and, in parti
ular, is similar

22

to the proof of the en
ryption-based authenti
ator from [2℄).

Lemma 10 Assume that the en
ryption s
heme (G;E;D) is CCA-se
ure and the family ff

�

g

�2f0;1g

k

is pseudorandom. Then if the pair (

�

; t

�

) is not queried by B during Phases 1 and 3 the probability

that B wins in the above game is no more than 1/2 plus a negligible fra
tion.

We note that B is not allowed (in the lemma formulation) to query the pair (

�

; t

�

) but it is

allowed to in
lude, separately, the values

�

and t

�

in other pairs.

We now pro
eed to show that if there is an am ke-atta
ker A that breaks the SK-se
urity of

proto
ol en
 in the sense that it
an distinguish between real and random values of a test session

while not being allowed to
orrupt the partners to this session, then there is an eÆ
ient algorithm

B that wins in the above game with non-negligible probability over 1/2.

We build su
h B. Let G be the party against whi
h B plays the game. G holds a private

de
ryption key d and publi
 en
ryption key e. The game starts with G sending a
hallenge
iphertext

�

to B. Then, B pro
eeds to Phase 1 of the game doing the following. It builds a virtual s
enario for

the run of proto
ol en
, and a
tivates the atta
ker A against this virtual run. Among all n parties

in this run, B
hooses one at random,
all it P

�

j

. For all other virtual players B
hooses private

keys (using the key generation algorithm G) and provides A with the
orresponding publi
 keys.

B does not
hoose a private key for P

�

j

; instead it provides A with e (the publi
 key of G) as the

publi
 key of P

�

j

. Also, B
hooses a random session among the sessions where P

�

j

is the responder.

We denote this session as s

�

, and its initiator as P

�

i

(i.e. the
hosen session is (P

i

; P

j

; s

�

)).

All operations s
heduled by A are performed by B on behalf of the virtual players in the

following way. All session establishments are exe
uted by B a

ording to the proto
ol ex
ept for

the establishment of session s

�

. When A s
hedules the establishment of session s

�

between P

�

i

and

P

�

j

, B sends the message (P

�

i

; s

�

;

�

) to P

�

j

on behalf of P

�

i

. Here

�

is the
hallenge
iphertext

provided to B by G in Phase 0.

All exposure of session keys performed by A, via session or party
orruptions, that do not involve

P

�

j

as the responder are answered by B using his knowledge of private keys. When A
orrupts a

party other than P

�

j

and P

�

i

, then B also provides A with the private key of that party. If a session

s 6= s

�

between a player P and P

�

j

in whi
h the latter a
ts as responder is exposed by A, then B

provides the value of that key to A in the following way. If P was un
orrupted at the time that s

was established then B was the one to
hoose the key � en
rypted by P and then it knows it. If P

was
orrupted then all B knows is the message (P; s;
) sent from P to P

�

j

as step 1 in the proto
ol.

In this
ase B presents to G (as part of Phase 1) the pair (
; t) where t = (P; P

�

j

; s). The value

� returned by G is the value that B provides to A as the queried session key (note that by our

assumption in the Remark pre
eding the Theorem the only information exposed in a session-key

query or in session-state reveal is the value of the session key so no other information needs to be

returned by B to A).

If at any point A queries or reveals session s

�

,
orrupts P

�

i

or P

�

j

, or
hooses a test session

di�erent than s

�

, B pro
eeds as follows. It aborts the run of A and moves to Phase 2 sending an

arbitrary value t

�

to G. After getting G's response it moves dire
tly to Phase 4 outputting a random

bit b

0

.

If A de
ides to be tested on session s

�

then B moves to Phase 2 and sends to G the value

t

�

= (P

�

i

; P

�

j

; s

�

). The response from G is passed by B to A as the value of the key for session s

�

.

B enters Phase 3. It keeps running A in the same way as des
ribed for Phase 1 above (note

that in this
ase A is not allowed to expose s

�

). When A outputs a bit b

0

and stops, then B moves

to Phase 4 and outputs the same bit b

0

as A did.

23

We �rst note that the above behavior of B in the game is a legal one, namely, that it never asks

the pair (

�

; t

�

) from G in phases 1 and 3. This is easy to see sin
e all pairs queried by B during

these phases
ontain a value t di�erent than t

�

. Indeed all the values t queried by B have the form

of a triple (P;Q; s) where P;Q are player identities and s a session identi�er. Thus, due to the

uniqueness of session-id's the value t

�

= (P

�

i

; P

�

j

; s

�

) o

urs only with relation to session s

�

whi
h

is never queried by B from G in phases 1 and 3.

Now we prove that B wins the game against G with non-negligible advantage. First, note that

in the
ases where B aborts the run of A before
ompletion it outputs a random bit b

0

so its
han
es

to win in this
ase is exa
tly 1/2. In the
ase where A ends with output b

0

the
han
es of B to win

are exa
tly the same as those of A to guess
orre
tly whether the test value was real or random.

This probability is, by assumption, non-negligible over 1/2. The later
ase happens whenever the

tested session
hosen by A is the same s

�

hosen (randomly) by B. Sin
e this event happens with

non-negligible probability (1=` where ` is an upper bound on the number of sessions established in

the proto
ol run) then the overall advantage of B is non-negligible. 2

Remarks on Proto
ol en
.

1. The derivation of the session key via a pseudorandom fun
tion applied to the session and

parties' identi�ers is of fundamental importan
e for the se
urity of the proto
ol. Had the

session key be just � then the proto
ol would be inse
ure (even in the am!). In this
ase the

atta
ker sees that P

i

sends the
iphertext E

e

j

(�) to P

j

. Then party P

l

, that we assume is

ontrolled by the atta
ker, sends the same
iphertext to P

j

. Now, P

j

has established the same

session-key with two di�erent parties. This a serious se
urity
aw

7

that breaks SK-se
urity:

the atta
ker
an now query P

j

for the key ex
hanged with P

l

and in this way to learn the key

that P

j

ex
hanged with P

i

.

2. The a
tual se
urity of proto
ol en

an be improved by spe
ifying that sessions do expire

at the initiator (and the
orresponding keys removed from its memory). This preserves SK-

se
urity and adds
onsiderably to the pra
ti
al se
urity of the proto
ol. For example,
onsider

an appli
ation where the initiators are mobile devi
es, vulnerable to the stealing of the private

key,
ommuni
ating with a well-prote
ted gateway. In this
ase, if we let keys to expire at

the initiator, then �nding the de
ryption key of su
h a mobile devi
e is of no help to the

atta
ker in re
overing past (expired) session keys. The atta
ker must break the gateway to

obtain these keys.

3. Another stronger version of this proto
ol is obtained by letting ea
h party send the other a

key as in en
 and deriving the shared session key in a way that requires knowledge of both

en
rypted keys. In this
ase, the proto
ol still does not provide pfs but (if keys are erased

from memory when the session is expired) the only way to re
over a past key is to �nd the

private keys of both initiator and responder. This is the basis to the DH-less mode of SKEME

[32℄. However, note that our de�nition of SK-se
urity (with pfs) would reje
t su
h a proto
ol

as se
ure. A weakened version of the de�nition that is satis�ed by the proto
ol is obtained if

one requires that at most one of the partners to the modi�ed session
an be
orrupted (and

only after the key is expired at that party).

7

[19℄ des
ribes an atta
k in whi
h a dishonest
ustomer exploits a key-ex
hange weakness to defraud a bank and a

honest
ustomer; the same atta
k
an be mount here with P

j

a
ting as the bank, and P

i

and P

l

a
ting as the honest

and
heating
ustomers, respe
tively. See [19℄ for the details.

24

5.4 Proto
ols based on shared keys

In order to further illustrate the usability of our methodology we show how to apply it to key-

ex
hange proto
ols that assume that the two peers initially share a se
ret key and use this key

to authenti
ate the ex
hange of new key material. This \key refreshment" fun
tionality is very

important in network se
urity proto
ols (e.g. [32, 28℄). We show examples of SK-se
ure proto
ols

with and without pfs.

These examples use the following MAC-based authenti
ator that assumes a shared key �

ij

between a pair of parties P

i

; P

j

. Let f denote a se
ure MAC fun
tion, and �

ij

be a random key for

f
hosen under se
urity parameter k. The authenti
ator is de�ned as follows: when P

i

wants to

send a message to a re
ipient P

j

, the latter sends a
hallenge r

R

 f0; 1g

2k

to P

i

, and P

i

sends the

message m together with the authenti
ation tag f

�

ij

(P

j

; r;m). The se
urity of this authenti
ator

an be proven in a way similar to the proof of the signature-based authenti
ator from [2℄.

Applying this authenti
ator to the basi
 two-move DiÆe-Hellman proto
ol 2dh in the am one

obtains (see Se
tion 5.1) an SK-se
ure DiÆe-Hellman proto
ol (with pfs) in the um. We omit a

detailed des
ription of the resultant proto
ol and just point out that it is similar to proto
ol sig-dh

from Se
tion 5.2 where the digital signatures are repla
ed with the appli
ation (by P

i

and P

j

) of

the MAC fun
tion keyed under the shared key �

ij

.

Proto
ol rekey

Initial information: Ea
h pair of players (P

i

; P

j

) share a se
ret pseudorandom fun
tion f

�

ij

.

Proto
ol rekey in the am:

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s),
hooses r

i

R

 f0; 1g

2k

and sends (P

i

; s; r

i

) to P

j

.

Step 2: Upon re
eipt of (P

i

; s; r

i

), the responder P

j

hooses r

j

R

 f0; 1g

2k

and sends (P

j

; s; r

j

) to

P

i

. Then, P

j

outputs session key f

�

ij

(r

i

; r

j

)

Step 3: Upon re
eipt of (P

j

; s; r

j

), player P

i

outputs session key f

�

ij

(r

i

; r

j

).

Proto
ol rekey in the um:

Step 0: Both players derive two keys from �

ij

: �

1

= f

�

ij

(1) and �

2

= f

�

ij

(2).

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s),
hooses r

i

R

 f0; 1g

2k

and sends (P

i

; s; r

i

) to P

j

.

Step 2: Upon re
eipt of (P

i

; s; r

i

), the responder P

j

hooses r

j

R

 f0; 1g

2k

,
omputes

t

j

= f

�

1

(P

i

; r

i

; s; r

j

) and sends (P

j

; s; r

j

; t

j

) to P

i

.

Step 3: Upon re
eipt of (P

j

; s; r

j

; t

j

), player P

i

veri�es the authenti
ation tag t

j

and if su

essful

it
omputes t

i

= f

�

1

(P

j

; r

j

; s; r

i

), sends (P

i

; s; t

i

) to P

j

, and outputs session key f

�

2

(r

i

; r

j

).

Step 4: Upon re
eipt of (P

i

; s; t

i

), player P

j

veri�es the authenti
ation tag t

i

and if su

essful it

outputs session key f

�

2

(r

i

; r

j

).

Figure 7: Key-refresh proto
ol based on a shared se
ret. The proto
ol in the um is the

result of applying the MAC-based authenti
ator to the proto
ol in the am

We pro
eed to show yet another example of the appli
ation of our modular methodology for

designing and proving ke proto
ols. In this
ase we show a simple and eÆ
ient proto
ol to derive

25

a fresh session key between players P

i

and P

j

based on the
ommon (\master") se
ret key �

ij

and

without the use of DiÆe-Hellman (the proto
ol does not provide pfs). In Figure 7 we present

the proto
ol in the am and the proto
ol in the um where the latter is derived from the former by

applying the above based MAC-based authenti
ator to ea
h of the proto
ol's messages and joining

(piggy-ba
king) the
ommon
ows. We note that in this
ase we use a pseudorandom family f

rather than a mere MAC for the implementation of the authenti
ator.

The SK-se
urity (without pfs) of the am version of rekey follows dire
tly from the properties

of pseudorandom fun
tions. The SK-se
urity (without pfs) of the se
ond proto
ol in the um is

the result of applying the MAC-based authenti
ator to the �rst proto
ol. Note that we are using

f

�

2

with the fun
tionality of a pseudorandom fun
tion as in the am proto
ol, and f

�

1

with the

fun
tionality of a MAC for the implementation of the MAC-based authenti
ator. As in the
ase

of proto
ol sig-dh, also here we are re-using the strings r

i

and r

j

both for key derivation and as

hallenges for the authenti
ator. We remark that the rekey proto
ol in the um is similar to the

AKEP2 proto
ol from [7℄.

We end this se
tion by remarking that another interesting use of our results is for analyz-

ing the password-based ke proto
ols from [27℄. It is shown there how to build a password-based

authenti
ator whi
h is then used to authenti
ate a DiÆe-Hellman ex
hange.

6 Appli
ations to Se
ure Channels

It is
ommon pra
ti
e to prote
t end-to-end
ommuni
ations by letting the end parties ex
hange

a se
ret session key and then use this key to authenti
ate and en
rypt the transmitted data under

symmetri

ryptographi
 fun
tions. In order for a key-ex
hange proto
ol to be
onsidered se
ure it

needs to guarantee that the above strategy for se
uring data works
orre
tly, namely, that by using

a shared key provided by the ke proto
ol one a
hieves sound authenti
ation and se
re
y. As it is

ustomary, we will refer to a link between a pair of parties that a
hieves these properties as a se
ure

hannel. While se
ure
hannels may have di�erent meanings in di�erent
ontexts, here we restri
t

our treatment to the above setting of se
uring
ommuni
ations using symmetri

ryptography with

a key derived from a key-ex
hange proto
ol

8

. We prove that an SK-se
ure key-ex
hange proto
ol,

appropriately
ombined with se
ure MAC and symmetri
 en
ryption fun
tions, suÆ
es for realizing

su
h se
ure
hannels.

6.1 A Template Proto
ol: Network Channels

We start by formalizing a \template proto
ol" that
aptures a generi
 session-oriented ke-based

proto
ol for se
ure
hannels between pairs of parties in a multi-party setting with parties P

1

; : : : ; P

n

.

This template proto
ol,
alled NetChan, simply
aptures the me
hanism by whi
h two parties �rst

share a se
ret key and then use this key for se
uring information they ex
hange. In the template

proto
ol this ex
hange of information and the se
urity fun
tions applied to it are represented

through abstra
t `send' and `re
eive' fun
tions. Later we will see spe
i�
 implementations of this

template proto
ol where the generi
 `send' and `re
eive' primitives are instantiated with a
tual

fun
tions (e.g., for providing authenti
ation and/or en
ryption). We will also de�ne what it means

for su
h an implementation to be \se
ure".

De�nition of NetChan. A (session-based) network
hannels proto
ol, NetChan(�; snd; r
v), is

de�ned on the basis of a ke proto
ol �, and two generi
 fun
tions snd and r
v. (A more general

8

A somewhat di�erent formalization of se
ure
hannels appears in [14℄ (see Appendix).

26

treatment
an be obtained by
onsidering these fun
tions as intera
tive proto
ols but we leave this

more general approa
h beyond the s
ope of the present paper.) Both snd and r
v are probabilisti

fun
tions that take as arguments a session-key (we denote this key as a subs
ript to the fun
tion)

and a message m. The fun
tions may also depend on additional state information su
h as a session-

id and partner identi�ers, a message identi�er, et
. The output of snd is a single value m

0

, while

the output of r
v is a pair (v; ok) where ok is a bit and v an arbitrary value. (The bit ok will be

used to return a veri�
ation value, e.g. the result of verifying an authenti
ation tag.) On the basis

of su
h fun
tions we de�ne NetChan(�; snd; r
v) in Figure 8.

Proto
ol NetChan(�; snd; r
v)

NetChan(�; snd; r
v) is initialized with the same initialization fun
tion I of the ke proto
ol �. It
an

then be invoked within a party P

i

under the following a
tivations:

1. establish-session(P

i

; P

j

; s; role): this triggers a ke-session under � within P

i

with partner P

j

,

session-id s and role 2 finitiator; responderg. If the ke-session
ompletes P

i

re
ords in its lo
al

output \established session s with P

j

" and stores the generated session key.

2. expire-session(P

i

; P

j

; s): P

i

marks session (P

i

; P

j

; s) (if it exists at P

i

) as expired and the

session key is erased. P

i

re
ords in its lo
al output \session s with P

j

is expired".

3. send(P

i

; P

j

; s;m): P

i

he
ks that session (P

i

; P

j

; s) has been
ompleted and not expired, if so

it
omputes m

0

= snd

�

(m), using the
orresponding session key �, sends (P

i

; s;m

0

) to P

j

, and

re
ords \sent message m to P

j

within session s" in the lo
al output.

4. On in
oming message (P

j

; s;m

0

), P

i

he
ks that the session (P

i

; P

j

; s) has been
ompleted and

not expired, if so it
omputes (m; ok) = r
v

�

(m

0

) under the
orresponding session key �. If

ok = 1 then P

i

re
ords \re
eived message m from P

j

within session s." If ok = 0 then

no further a
tion is taken.

Figure 8: A generi
 network
hannels proto
ol

We emphasize that the above de�nition of NetChan applies to either am or um adversarial

models; indeed, the atta
ker against NetChan is allowed to initiate and s
hedule any of the proto
ol

a
tivations and has all the
apabilities of an atta
ker in the
orresponding model, in
luding atta
ks

against the key-ex
hange proto
ol � (su
h as party
orruptions, session-state reveal, and session-

key queries). Also for NetChan we keep our ke
onvention that session identi�ers are
he
ked for

uniqueness. Note that NetChan has no lo
al outputs labeled `se
ret' (in parti
ular, the session key

is not part of the lo
al output of NetChan as these keys are used internally and never passed to

another proto
ol). Thus, the external fun
tionality of NetChan is as in a simple (session-based)

message ex
hange proto
ol.

6.2 Network Authenti
ation

On the basis of the above formalism, we treat the
ase of network
hannels that provide authenti-

ation of information over adversary-
ontrolled
hannels. Namely, we are interested in a NetChan

proto
ol that runs in the unauthenti
ated-links model um and yet provides authenti
ity of transmit-

ted messages. This implementation of NetChan (whi
h we
all NetAut) will be aimed at
apturing

the pra
ti
e by whi
h
ommuni
ating parties use a key-ex
hange proto
ol to establish a shared

27

session key, and use that key to authenti
ate (via a message authenti
ation fun
tion, MAC) the

information ex
hanged during that session. Namely, if P

i

and P

j

share a mat
hing session s and P

i

wants to send a message m to P

j

during that session then P

i

transmits m together with MAC

�

(m)

where � is the
orresponding session key.

Proto
ol NetAut . Let � be a ke proto
ol and let f be a MAC fun
tion. Proto
ol NetAut(�; f)

is a network
hannels proto
ol NetChan(�; snd; r
v) as de�ned in Figure 8, where fun
tions snd and

r
v are de�ned as:

� On input m, snd

�

(m) produ
es output m

0

= (m; f

�

(m)).

� On input m

0

, r
v

�

(m

0

) outputs (v; ok) as follows. If m

0

is of the form (m; t) then ok = 1 if

and only if (i) m is di�erent than all previously seen messages in the session, and (ii) (m; t)

passes the veri�
ation fun
tion of f under key �. If ok = 1 then set v = m, otherwise ok = 0

and v = null.

Note that we require the re
eiver of a message to
he
k for uniqueness of the in
oming message. This

he
k is needed to avoid \re-play" or dupli
ation of delivered messages by an atta
ker. Equivalently,

one
an think of m as the
on
atenation of the message with a unique per-message identi�er whi
h

is
omputed by the sender and
he
ked for uniqueness at the re
eiver (e.g., based on a shared

ounter between the parties). For simpli
ity and generality, in the above spe
i�
ation of proto
ol

NetAut we abstra
t out the spe
i�
 message di�erentiation me
hanism in use.

Our goal is to show that if the key-ex
hange proto
ol � is SK-se
ure and the MAC fun
tion f is

se
ure (against
hosen-message atta
ks) then the resultant network
hannels proto
ol NetAut(�; f)

provides authenti
ated transmission of information. This requirement
an be formulated under the

property that \any message re
orded by P

i

as re
eived from P

j

has been ne
essarily re
orded as

sent by P

j

, ex
ept if the pertinent session is exposed". We will a
tually strengthen this requirement

and ask that a network
hannels proto
ol provides authenti
ation if it emulates (i.e. imitates) the

transmission of messages in the ideally authenti
ated-links model am. Formally, we do so using

the notion of proto
ol emulation and the formalization (see Se
tions 2.3 and 3.4) of the message

transmission proto
ol (mt) in the am as done in [2℄. Re
all that mt is a simple proto
ol that spe
i�es

the fun
tionality of transmitting individual messages in the am. Here we extend the basi
 de�nition

of mt to a session-based message transmission proto
ol
alled smt. By proving that the network

hannels proto
ol NetAut emulates smt in the um we get the assuran
e that transmitting messages

over unauthenti
ated-links using NetAut is as se
ure as transmitting them in the presen
e of an

atta
ker that is not allowed to
hange, dupli
ate or inje
t messages over the
ommuni
ation links.

Proto
ol smt. We extend proto
ol mt from [2℄ to �t our session-based setting in whi
h trans-

mitted messages are grouped into di�erent sessions. We
all the extended proto
ol a session-based

message transmission proto
ol (smt), and de�ne it in Figure 9. (Note the stru
tural similarity be-

tween smt and NetChan { the di�eren
es are that no a
tual key-ex
hange is run in smt, and the

fun
tions snd and r
v are instantiated to simple \identity fun
tions".)

Se
ure network authenti
ation proto
ols. Sin
e proto
ol smt represents a perfe
tly authen-

ti
ated ex
hange of messages, we use it as the spe
i�
ation proto
ol to de�ne what is meant for an

implementation of proto
ol NetChan to be a se
ure network authenti
ation proto
ol (for the de�nition

of the notion of \emulation" used in the following de�nition see Se
tion 3.4):

De�nition 11 Proto
ol NetChan(�; snd; r
v) is
alled a se
ure network authenti
ation proto
ol if it

emulates proto
ol smt in the um.

28

Proto
ol smt

Proto
ol smt
an be invoked within a party P

i

under the following a
tivations:

1. establish-session(P

i

; P

j

; s): in this
ase P

i

re
ords in its lo
al output \established session

s with P

j

".

2. expire-session(P

i

; P

j

; s): in this
ase P

i

re
ords in its lo
al output \session s with P

j

is

expired".

3. send(P

i

; P

j

; s;m): in this
ase P

i

he
ks that session (P

i

; P

j

; s) has been established and not

expired, if so it sends message m to P

j

together with the session-id s (i.e., the values m and s

are sent over the ideally-authenti
ated link between P

i

and P

j

); P

i

re
ords in its lo
al output

\sent message m to P

j

within session s".

4. On in
oming message (m; s) re
eived over its link from P

j

, P

i

he
ks that session (P

i

; P

j

; s) is

established and not expired, if so it re
ords in the lo
al output \re
eived message m from

P

j

within session s".

Figure 9: Proto
ol smt in the am: The spe
i�
ation proto
ol for authenti
ated session-

based message transmission.

Theorem 12 If � is a SK-se
ure key-ex
hange proto
ol in the um and f is a MAC fun
tion

se
ure against
hosen message atta
ks, then proto
ol NetAut(�; f) is a se
ure network authenti
ation

proto
ol.

Proof: In order to show that NetAut(�; f) is a se
ure network authenti
ation proto
ol we need to

prove that NetAut(�; f) emulates smt in the um. Namely, given an atta
ker U against NetAut(�; f)

in the um we need to build an am-atta
ker, A, against smt that produ
es a proto
ol and adversary

output that is indistinguishable from the output produ
ed by the intera
tion of U with NetAut(�; f).

We de�ne A to simulate U as follows. A builds a virtual \unauthenti
ated" s
enario in whi
h it

simulates U where to ea
h party in smt
orresponds a virtual party in the um world of NetAut(�; f).

We denote by � the smt proto
ol run in the am by A, and by �

0

the simulated virtual proto
ol

NetAut(�; f) in the um. Also, we denote by P

1

; : : : ; P

n

the parties running the smt-proto
ol �, and

by P

0

1

; : : : ; P

0

n

the
orresponding virtual parties running �

0

.

All the a
tivations by U (su
h as invoking ke-sessions, issuing \send" a
tivations,
orrupting

parties and sessions, et
.) are
arried out in the virtual proto
ol �

0

through A. In parti
ular, the

a
tion of virtual parties are
arried out by A on their behalf; this in
ludes the running of ke-session

within �

0

parties and the transmission of messages. The des
ription of A is presented in Figure 10.

The following fa
ts about the behavior of A as de�ned in Figure 10 are easy to inspe
t.

1. A is a legal atta
ker against smt in am (in parti
ular, only previously re
orded sent messages

are delivered, ex
ept if the sender is
orrupted or the session is exposed).

2. The a
tions of U are perfe
tly simulated by A (i.e.,
arried identi
ally by A) against �

0

.

3. All sent, established and expired events re
orded in �

0

are equally re
orded in �.

4. re
eived events in �
an di�er from those in �

0

only in the following
ase (see Step 5 in

Figure 10): party P

0

i

re
orded \re
eived message m from P

0

j

within session s" in �

0

29

Adversary A

A pro
eeds as follows when intera
ting with P

1

:::P

n

running smt in the am.

1. A initiates a
opy of U , intera
ting with parties P

0

1

:::P

0

n

running NetAut(�; f) in the um. In

parti
ular, it evaluates the initialization fun
tion I of NetAut(�; f) on random input and hands

U the publi
 output of I .

2. Whenever U a
tivates P

0

i

with an a
tivation establish-session(P

0

i

; P

0

j

; s; role) or any a
tivation

of P

0

i

related to the run of a ke-session of proto
ol �, A performs the resultant a
tions within

P

0

i

and hands out the resultant messages to U for delivery.

3. Whenever U issues P

0

i

with one of the NetAut(�; f) a
tivations send(P

0

i

; P

0

j

; s;m), expire-

session(P

0

i

; P

0

j

; s), or with in
oming message (P

0

j

; s;m; t), A performs the resultant a
tions

of the players in �

0

a

ording to the NetAut(�; f) spe
i�
ations. Every message generated by

the parties is transferred by A to U for delivery.

4. Whenever P

0

i

re
ords one of the events \established session s with P

0

j

", \session

s with P

0

j

is expired", or \sent message m to P

0

j

within session s", then in � at-

ta
ker A issues to P

i

the a
tivation establish-session(P

i

; P

j

; s), expire-session(P

i

; P

j

; s),

send(P

i

; P

j

; s;m), respe
tively.

5. Whenever P

0

i

re
ords \re
eived message m from P

0

j

within session s", A does:

(a) If P

j

re
orded \sent message m to P

i

within session s" then A a
tivates P

i

with

in
oming message (m; s) from P

j

.

(b) Else, if P

j

is
orrupted or session s within P

j

is lo
ally exposed, then A a
tivates P

j

with

send(P

j

; P

i

; s;m) (note that this sent event is not re
orded at P

j

by the
onvention that

lo
ally exposed sessions do not produ
e output) and then a
tivates P

i

with in
oming

message (m; s) from P

j

.

6. Whenever U
orrupts P

0

i

, A hands U the internal data of the simulated P

0

i

, and
orrupts P

i

in the run of �. Whenever U issues an exposure a
tion against a session (P

0

i

; P

0

j

; s) within P

0

i

,

A hands U the
orresponding information from the session within P

0

i

and issues the exposure

against the session (P

i

; P

j

; s) within P

i

in �.

7. When U halts, A outputs whatever U outputs and halts.

Figure 10: Emulation of smt: the am-adversary A.

but P

0

j

did not re
ord the
orresponding sent event, and neither session s is exposed nor P

0

j

is
orrupted. We
all this
ase a forgery-event.

The above fa
ts show that the simulation of U by A against the NetAut(�; f) proto
ol is perfe
t

(i.e. identi
al to a real run of U) as long as a forgery-event as de�ned above does not happen. (In

the
ase of a forgery-event the simulation of U by A fails sin
e in �

0

party P

0

i

re
ords the re
eived

message m while in � the
orresponding party P

i

will not re
ord it.) In Lemma 13 below we show

that this forgery-event happens with negligible probability (i.e., there is a negligible probability that

in an unexposed session of �

0

, a party P

0

i

a

epts a message from P

0

j

that the latter did not send).

Therefore, we have that the statisti
al distan
e between auth

smt;A

(k) and unauth

NetAut(�;f);U

(k)

is negligible. Consequently, NetAut(�; f) emulates smt in the um and thus it is a se
ure network

authenti
ation proto
ol. 2

30

Lemma 13 If � is a SK-se
ure key-ex
hange proto
ol and f is a MAC fun
tion se
ure against

hosen message atta
ks, then for any atta
ker U running against NetAut the probability of a \forgery-

event" (as de�ned in the proof of Theorem 12) during an unexposed session is negligible.

Proof: We prove the lemma by
ontradi
tion: if for a given atta
ker U against NetAut(�; f),

a forgery-event happens in an unexposed session with non-negligible probability then we build a

forger for the MAC fun
tion f that su

eeds with non-negligible probability. For
onvenien
e, we

denote the above assumed non-negligible probability of a forgery-event by " (more pre
isely, this

value is a fun
tion of the se
urity parameter).

Building a forger F . The forger F has an ora
le to f that uses an unknown random key; F
an

request from the ora
le the value of f on any message under the ora
les key and
an also request

the veri�
ation of pairs (m; t) in whi
h
ase the ora
le veri�es whether t is the
orre
t value of f(m)

under the ora
le's key (the latter are
alled \veri�
ation queries"). The goal of F is to produ
e a

MAC forgery, i.e. the value of f on a message under the key of the ora
le, without requesting the

box to
ompute this value. F starts by building a virtual NetAut world and a
tivates U against

it (similarly as A did in the proof of Theorem 12 but without any \smt parties"). In addition,

F
hooses a session at random (from all sessions
ompleted during the run of the proto
ol), say

(P

i

; P

j

; s

0

). We will use the identi�er s

0

to refer to the
hosen session or its mat
hing session. In

the
ases where U delivers a message under the session-key of session s

0

, F does not use the a
tual

session-key as ex
hanged in the simulated proto
ol but instead it requests the ora
le to f to provide

that value of f (i.e F is e�e
tively using the ora
le key as the s

0

session-key). Similarly, F uses

the ora
le to verify whether messages sent under session s

0

possess the
orre
t value of f (this is

needed in
ases where U inje
ts or
hanges the authenti
ation tags). If during simulation session

s

0

is exposed by U , then F aborts its
omputation (i.e. it fails to forge). If at any point one of the

partners to session s

0

, say P

i

, a

epts a message as
orre
tly MACed while the other party did not

re
ord the
orresponding sent event (in parti
ular, F did not request the MAC of this message from

its ora
le) then F outputs the message and its MAC as sent to P

i

as a forgery against the ora
le

to the MAC fun
tion f . (Note that by the uniqueness property of sent and re
eived messages in

NetAut the message on whi
h F outputs this forgery was never queried from the MAC ora
le.)

Thus, if in the run of U by F a forgery-event happens under session s

0

then F su

eeds in

produ
ing a forgery against the MAC. We want to show that this happens with non-negligible

probability.

Re
all that we are assuming (by way of
ontradi
tion) that in a regular run by U a forgery-event

happens with non-negligible probability ". Thus, if one
hooses a session s

0

at random, then in a

run of U a forgery-event will happen in session s

0

with non-negligible probability too (i.e., " divided

by an upper bound on the number of sessions in the proto
ol). However, the run of U by the forger

F is not a regular run: the key used to MAC messages in session s

0

is not the real session key

ex
hanged by the parties but an independent random value. Still we
laim that if in a run of U we

repla
e the session-key in a randomly
hosen session s

0

with a random value then the probability

of a forgery-event in that session does not
hange signi�
antly, i.e., it remains non-negligible (and

thus F has a non-negligible probability to break the se
urity of the MAC fun
tion f).

In order to prove this
laim we introdu
e the following notation. If s is a session
ompleted by

some party under a run of U , then we denote by forgery(s) the event that a forgery-event happens

during session s. We know, by assumption, that if s is
hosen at random among all sessions under

a regular run of U then the probability of event forgery(s) is non-negligible. We want to prove

that this is the
ase even when U is run by F . (In this
ase, this probability, that we denote by

Prob

F

(forgery(s)), is taken over runs of U in whi
h the real session-key for s is repla
ed with a

31

random value.) The remainder of the proof is devoted to proving this
laim.

The plan for this proof is as follows. Based on U , we build a ke-adversary U

ke

against the ke

proto
ol �. Then we show that if in the modi�ed run of U as produ
ed by forger F the probability

of a forgery-event
hanges substantially (relative to its probability in a regular run of U), then U

ke

breaks the SK-se
urity of � (i.e., it
an
hoose a test-session in whi
h to distinguish the real value

of the session-key from a random independent value.)

Atta
ker U

ke

runs � with n parties P

1

; : : : ; P

n

by essentially simulating the a
tions of U against

a NetAut proto
ol with proto
ol � and MAC fun
tion f . For this, U

ke

runs U against a virtual
opy

of NetAut(�; f), denoted �

0

, with n players P

0

1

; : : : ; P

0

n

. Ea
h a
tion de
ided by U that
on
erns the

ke proto
ol part of �

0

(su
h as session establishment, party
orruptions, session exposure, et
.) is

applied by U

ke

against the real run of � (i.e. against parties P

1

; : : : ; P

n

). Whenever U orders an

a
tion involving the
omputation of a MAC value by party P

0

i

using a
ompleted and unexpired

session-key (P

0

i

; P

0

j

; s), U

ke

he
ks if it has already learned the value of that key (via a previous

session exposure). If not, U

ke

issues a session-key query against (P

i

; P

j

; s). With the value of the

learned session-key, U

ke

omputes the required value of f and hands it to U .

There is one ex
eption, however, to the above behavior of U

ke

. Among the sessions
ompleted

in the run of �, atta
ker U

ke

hooses one at random as its test-session (e.g., U

ke

hooses at the

beginning of its run a number j 2 f1; : : : ; `g where ` is an upper bound on the number of sessions

reated by U during its run, and then U

ke

hooses the j-th
ompleted session as its test session).

If U ends its run before the test-session is
hosen, or if this session happens to be exposed at time

of
ompletion (i.e., either a partner to the session is
orrupted before
ompletion or U issued a

session-state reveal against this session) then U

ke

stops its run without issuing a test-session query.

Otherwise, on
e the
hosen test-session is
ompleted, U

ke

issues a test-session query. We denote

the test-session as s

0

, and the response to the test query as v (as usual a bit b

R

 freal;randomg

is
hosen and v is set to the real value of the session-key if b = real and to a random independent

value otherwise

9

.) Whenever U evaluates f involving the key of session s

0

, U

ke

uses v as the

value of the key for f . If at any point U produ
es a forgery-event in session s

0

(i.e. U is able to

MAC under key v a message not MACed by U

ke

) then U

ke

stops and outputs b

0

= real. If at

some point U stops its run, or if U orders the exposure of session s

0

, then U

ke

stops and outputs

b

0

R

 freal;randomg.

Re
all that we want to prove that Prob

F

(forgery(s

0

)) is non-negligible. This is equivalent to

proving that the
onditional probability

� = Prob

U

ke

(forgery(s

0

) : b = random)

(now taken over the distribution of runs by U

ke

against proto
ol �) is non-negligible. In order to

show this we start by noting that the
onditional probability

� = Prob

U

ke

(forgery(s

0

) : b = real)

represents the probability that a forgery-event happens in a regular run of U (i.e. with all real

session-keys used for MAC-ing information) in a randomly sele
ted session s

0

. As said earlier, this

probability is "=` (the values " and ` are de�ned above), and then non-negligible. We end the proof

by proving that � � � (i.e. they di�er by only a negligible amount) and thus � is non-negligible.

This proof is obtained via the analysis of the probability, denoted Prob(b

0

= real), that U

ke

ends

its run with output b

0

= real (we
onsider this probability only over runs in whi
h U

ke

issues a

9

For
larity, we denote bits by real and random rather than 0; 1.

32

test-session query). We have that Prob(b

0

= real) equals

Prob(b

0

= real : forgery(s

0

))Prob(forgery(s

0

))+Prob(b

0

= real : :forgery(s

0

))Prob(:forgery(s

0

))

By the de�nition of U

ke

, Prob(b

0

= real : forgery(s

0

)) is always 1 regardless of whether b is real

or random. Similarly, Prob(b

0

= real : :forgery(s

0

)) is always 1/2 regardless of the value of b.

Now
onsider the
ase b = real; we have that

Prob(b

0

= real : b = real) =

= 1 � Prob(forgery(s

0

) : b = real) + 1=2 � Prob(:forgery(s

0

) : b = real) =

= 1 � � + 1=2 � (1� �) = 1=2 + �=2:

Similarly, for b = random we
an obtain

Prob(b

0

= real : b = random) = 1=2 + �=2:

Sin
e � is a SK-se
ure ke proto
ol we know that the di�eren
e between Prob(b

0

= real : b = real)

and Prob(b

0

= real : b = random) is negligible, or otherwise U

ke

would break the se
urity of �.

But then we have that � � � as we had to prove. 2

Thus we have
ompleted the proof of Theorem 12 showing that SK-se
urity is a suÆ
ient
on-

dition to guarantee the se
ure
omposition of key-ex
hange proto
ol with a network authenti
ation

appli
ation. One important aspe
t of the above proof is that it makes
lear the need for allowing

the atta
ker against the key-ex
hange proto
ol (U

ke

in our
ase) to keep running even after the

value of the test-session is provided to him (see the remark after De�nition 4); indeed, without that

apability the theorem is not true.

6.3 Network En
ryption

In this se
tion we treat the problem of se
re
y of
ommuni
ations, and introdu
e a de�nition of

se
re
y in the
ontext of general network
hannels proto
ols as de�ned in Se
tion 6.1. This notion of

se
re
y is used in the next subse
tion to formulate our de�nition of se
ure
hannels and to analyze

a spe
i�
 implementation of su
h
hannels using SK-se
ure ke proto
ols.

Se
ure network en
ryption proto
ols. We start by de�ning what is meant for a network

hannels proto
ol NetChan to be a \se
ure network en
ryption proto
ol". We want to
apture

the se
re
y property that the atta
ker does not learn information on messages that are ex
hanged

during unexposed sessions (see the \explanation" paragraph following the de�nition). We follow

the indistinguishability approa
h used to de�ne semanti
 se
urity of en
ryption (also used in our

de�nition of SK-se
urity). For this we augment the
apabilities of am and um atta
kers that intera
t

with a network
hannels proto
ol to in
lude the following a
tion.

We let the atta
ker A, running against NetChan, to
hoose, at some arbitrary point

during the intera
tion, a (single) test-session (P

i

; P

j

; s) among the sessions that are

ompleted, unexpired and unexposed at the time. Also, A gets to
hoose a pair of

equal-length messages m

0

;m

1

. Next, a bit b

R

 f0; 1g is
hosen (but not provided to A)

and P

i

is a
tivated with send(P

i

; P

j

; s;m

b

). This a
tivation follows the spe
i�
ation of

a regular send-a
tivation in the proto
ol ex
ept that when P

i

re
ords the sent event in

its lo
al output it does not write down the value of m

b

. Later, if P

j

is a
tivated by A

under session s with some in
oming message � and the output of r
v

�

(�) (where � is

33

the session-key of the test session s) is the pair (m

b

; ok = 1) then the re
eive-a
tivation

is re
orded by the re
ipient but the value m

b

is not written to the lo
al output. The

atta
ker A is allowed all the regular adversarial a
tions ex
ept that it is not permitted to

expose the test-session (P

i

; P

j

; s). (However, as in the
ase of SK-se
urity, the atta
ker

is allowed to
orrupt P

i

as soon as the test-session expires, and to
orrupt P

j

as soon

as the mat
hing session expires.) At the end of its run, A outputs a bit b

0

(as its guess

for b).

De�nition 14 We say that a network
hannels proto
ol is a se
ure network en
ryption proto
ol in

the um if the probability of any um-atta
ker A as des
ribed above to guess
orre
tly b (i.e., to output

b

0

= b) is no more than 1/2 plus a negligible fra
tion in the se
urity parameter.

Se
urity of a network en
ryption proto
ol is de�ned in the am in the same form provided the

atta
ker is a am-adversary with the above added
apability.

Explanation. We
larify the rationale of the above de�nition. In this de�nition we want to

apture the se
re
y property of a network
hannels proto
ol, namely, the infeasibility of the atta
ker

to learn information on messages transmitted (usually in en
rypted form) between the parties.

However, note that in our formalism of network
hannels the atta
ker gets to learn the sent and

re
eived messages by wat
hing the lo
al output of the parties (re
all that whatever is written on the

lo
al output be
omes immediately available to A); moreover, the atta
ker even gets to
hoose the

messages in sent-a
tivations. So, how
an we say that the atta
ker does not learn the ex
hanged

messages? For this, we introdu
e the test messages m

0

and m

1

that the atta
ker gets to
hoose but

not to learn whi
h one was sent. In parti
ular, in order to hide this information from the atta
ker

we spe
ify that the send and re
eive a
tivations
orresponding to the test message do not re
ord

the value of the spe
i�
 sent or re
eived message. Thus, for a proto
ol to be se
ure by our de�nition

it needs to make infeasible for the atta
ker to guess
orre
tly (i.e., with non-negligible advantage)

the sent test-message even though this atta
ker has a

ess to all other messages (in
leartext form)

that were sent and re
eived during the proto
ol.

6.3.1 Dis
ussion

One importat aspe
t of the above de�nition is the way we spe
ify the re
eive-a
tivations (at P

j

)

in whi
h the test-message m

b

is not written to the lo
al output. In order to highlight this issue

let's
onsider �rst an alternative de�nition of se
urity of network en
ryption proto
ols. Namely,

a de�nition similar to the above de�nition with the di�eren
e that the only re
eive-a
tivation in

whi
h m

b

is not written to the lo
al output is an a
tivation where the in
oming message is identi
al

to the message,
all it m

�

, handed to A by P

i

as the result of the test send-a
tivation. In the sequel

we refer to this variant of the de�nition as the \stri
t de�nition" (of se
ure network en
ryption

proto
ols). The reason that we have not adopted this stri
t de�nition is that we
onsider it over-

restri
tive: for example, this de�nition
all inse
ure any network en
ryption proto
ol that spe
i�es

that the message delivered to P

j

is di�erent from the exa
t output produ
ed by P

i

. In parti
ular, it

would invalidate any proto
ol that allows for some
hanges to the transported messages to happen

in transit, even though su
h proto
ols are
ommon in pra
ti
e and se
ure. For example, the AH

proto
ol from [31℄ allows some well de�ned parts of the message header, su
h as number of hops, to

be
hanged in-route by intermediate routers. Other proto
ols allow for arbitrary or random padding

of messages just to
omply with some standard length boundary; a
hange in-route of su
h padding

would not be
he
ked by the re
eiver nor should su
h
hange impa
t the se
urity of the proto
ol.

34

Thus, a better (and more realisti
) approa
h is to permit su
h possible (ino
ous)
hanges to the

transported message, and only
are about the
orre
tness of the value of the message a

epted and

re
orded by the re
eiver, namely, the output of the r
v fun
tion. This is why, under our de�nition,

we
onsider any in
oming message that \de
odes" (under r
v) to the test message m

b

as related to

the test send-a
tivation and then its de
oded value is not dis
losed to the atta
ker.

One
onsequen
e of this de�nitional de
ision is that while De�nition 14 does not expli
itly

mention the need to ensure the uniqueness of messages or the use of message identi�ers, it a
tually

requires from a se
ure network en
ryption proto
ol to be
areful about the way it guarantees

the uniqueness of transmitted messages. To illustrate this point
onsider the following strategy

for atta
ker A. After a
tivating P

i

with the test send-a
tivation with messages m

0

and m

1

, A

a
tivates P

i

with another send-a
tivation with m

0

as the input message. Now, A delivers to P

j

the message resultant from the later send-a
tivation. If P

j

does not write the de
oded message

to its lo
al output then A learns that m

b

= m

0

, if P

j

does write the message then A learns that

m

b

= m

1

. Thus a se
ure network en
ryption proto
ol must make this atta
k impossible for A and,

in parti
ular, it must ensure the uniqueness of sent messages. This
an be a
hieved by the use of

unique message identi�ers that be
ome part of the sent messages. We exemplify this me
hanism

in our realization of se
ure
hannels in Se
tion 6.4.

Another remark
on
erning the \stri
t de�nition" dis
ussed above is that it naturally
orre-

sponds to the way se
urity of en
ryption fun
tions against
hosen
iphertext atta
ks (CCA) is

usually de�ned. (That is, the de�nition of CCA se
urity allows an atta
ker to query a de
ryption

ora
le with any input
iphertext ex
ept for the one in whi
h the atta
ker is being tested.) While

this
orresponden
e
an be seen as an advantage of the \stri
t de�nition" it a
tually points to an

important issue here: CCA-se
urity is not a ne
essary notion when formalizing se
urity of network

hannels. Indeed, the CCA formulation a
tually
arries the same drawba
ks as dis
ussed before

for the stri
t de�nition. A further illustration of these issues
an be found in the remark after the

proof of Theorem 16.

On the
orre
tness requirement. Noti
e that De�nition 14 does not make any \
orre
tness"

requirements from the en
ryption proto
ol. That is, it is not required that the re
ipient will output

the same message as re
orded by the sender. While this is a natural requirement for a network en-

ryption proto
ol (we want de
rypted messages to
orrespond to the plaintext originally en
rypted)

we omit it from our de�nition sin
e our use of network en
ryption (for de�ning and realizing se
ure

hannels { see De�nition 15) appears only in
onjun
tion with a network authenti
ation proto
ol,

and the latter already guarantees this
orre
tness property. If one is interested in a stand-alone

use of the notion of a network en
ryption proto
ol then adding this
orre
tness requirement to the

above de�nition is straightforward.

6.4 Se
ure Channels

We are now ready to de�ne what is meant by a \se
ure
hannels" proto
ol.

De�nition 15 A network
hannels proto
ol in the um is
alled a se
ure network
hannels proto
ol

if it is a se
ure network en
ryption proto
ol and also a se
ure network authenti
ation proto
ol.

We pro
eed to show that the network
hannels proto
ol, denoted NetSe
 and de�ned below,

that applies en
ryption to transmitted messages and applies a se
ure MAC fun
tion to the resultant

iphertext is a se
ure
hannels proto
ol. In the des
ription of this proto
ol we assume expli
it

message identi�ers that are part of the sent messages and make all these messages ne
essarily

35

di�erent. Spe
i�
ally, the input to a send a
tivation is a pair m = (m-id; �m) where m is
hosen by

the atta
ker at will but m-id is an identi�er that is independent from the message (
an think of it

as a message
ounter) and is di�erent from all message identi�ers used in other send a
tivations

in the same session. In a
tual implementations of the proto
ol this unique m-id value needs to be

hosen by the sender and
he
ked for uniqueness at the re
eiver; here we represent it as part of

the input to the send a
tivation in order to be
onsistent with our general formalism of network

hannels from Figure 8 and to avoid the spe
i�
ation of a parti
ular message-id me
hanism. This

uniqueness of message identi�ers is assumed only for un
orrupted sessions.

The se
ure
hannels proto
ol NetSe
. Let � be a ke proto
ol, f a MAC fun
tion, En

a symmetri
 en
ryption fun
tion, and F a family of pseudorandom fun
tions. We denote by

NetSe
(�; f;En
; F) the network
hannels proto
ol NetChan(�; snd; r
v), as de�ned in Figure 8,

that uses the snd and r
v fun
tions de�ned as:

� On input m = (m-id; �m), snd

�

(m) produ
es output m

0

= (m-id;
; t) where
 = En

�

e

(�m)

and t = f

�

a

(m-id;
). The keys �

e

and �

a

are
omputed as F

�

(0) and F

�

(1), respe
tively

10

.

� On input m

0

, r
v

�

(m

0

) outputs (m; ok) as follows. If m

0

is of the form (m-id;
; t) then ok = 1

if and only if (i) m-id is di�erent than all previously seen message identi�ers in the session,

and (ii) (m-id;
; t) passes the veri�
ation fun
tion of f under key �

a

. If ok = 1 then set

�m = En

�1

�

e

(
) and m = (m-id; �m), otherwise ok = 0 and m = null. The keys �

e

and �

a

are

de�ned as above.

That is, fun
tion snd applies an en
ryption on the message and a MAC to the
iphertext where these

fun
tions use \
omputationally independent" keys derived from the session � via a pseudorandom

fun
tion. The fun
tion r
v does the de
ryption but only after verifying that the authenti
ation of

the
iphertext is
orre
t.

Note 1: We stress again our assumption that message identi�ers are di�erent for ea
h sent message

in a session (and
he
ked for uniqueness at the re
ipient). In parti
ular, this means that an

implementation of the message id me
hanism needs to make sure that the two parties of the

session (while un
orrupted)
hoose di�erent identi�ers for ea
h new message. This
an a
hieved,

for example, if ea
h party
hooses the values m-id from disjoint sets (e.g., P

i

sets the �rst bit of its

identi�ers to 0 and P

j

to 1). A
tual proto
ols
an also spe
ify the use of \dire
tional" keys, i.e.,

the keys used for the snd fun
tion from P

i

to P

j

are di�erent (and
omputationally independent)

from the keys used from P

j

to P

i

; in this
ase message identi�ers need only be unique per dire
tion.

Clearly, these multiple keys
an be derived from the session key � using a pseudorandom fun
tion.

Note 2: Message identi�ers are not prote
ted for se
re
y. Sin
e they are
hosen independently of the

sent message this does not
ompromise the se
re
y of the message. In parti
ular, when analyzing

the above proto
ol as a network en
ryption proto
ol, we assume that the test messages m

0

and m

1

from De�nition 14 have the same message identi�er so its exposure provides no information to the

atta
ker about whi
h message m

b

was a
tually sent.

In the following theorem we use the notion of a symmetri
 en
ryption fun
tion that is se
ure

against
hosen-plaintext atta
ks. For a formalization of this notion see [3℄ (see also the CPA game

in Figure 11).

10

For simpli
ity we assume the en
ryption and authenti
ation fun
tions to use uniformly distributed keys of the

same length; other
ases
an be handled via standard key derivation methods (e.g., trun
ating the output of F ,

iterating F to produ
e longer outputs, et
.).

36

Theorem 16 If � is a SK-se
ure key-ex
hange proto
ol in um, f is a MAC fun
tion se
ure against

hosen-message atta
ks, En
 a symmetri
 en
ryption fun
tion se
ure against
hosen-plaintext at-

ta
ks, and F a se
ure family of pseudorandom fun
tions, then NetSe
(�; f;En
; F) is a se
ure

hannels proto
ol in the um.

Proof: We
an assume, for simpli
ity, that keys �

e

and �

a

in NetSe
(�; f;En
; F) are dire
t

outputs of proto
ol � (and then indistinguishable from uniformly and independently
hosen keys).

A

ounting for the fa
t that we a
tually derive them from a single session key � via a pseudorandom

fun
tion
an be done using standard arguments.

The proof that NetSe
(�; f;En
; F) is a se
ure network authenti
ation proto
ol follows from

Theorem 12 with one modi�
ation: here we are not applying the MAC fun
tion dire
tly to the

plaintext but on the
iphertext. Sin
e by property of the en
ryption fun
tion we have that a

iphertext de
rypts to a unique plaintext under key �

e

then the authenti
ation of the
iphertext

implies the authenti
ation of the plaintext message. (Formally, one
an
onsider a modi�
ation of

proto
ol NetAut in Theorem 12 where the fun
tion snd is de�ned to �rst en
rypt the message and

then authenti
ate the
iphertext under the MAC fun
tion; the output of snd is the
on
atenation

of the
omputed
iphertext and MAC tag. Similarly, r
v �rst
he
ks the MAC on the
iphertext,

and if su

essful it de
rypts the
iphertext and outputs the plaintext message.)

The rest of the proof is devoted to proving that NetSe
(�; f;En
; F) is a se
ure network en-

ryption proto
ol. The plan for the proof and many of the details are similar to the proof of the

network authenti
ation theorem (Theorem 12, and more spe
i�
ally of Lemma 13). We thus sket
h

the most important aspe
ts of the
urrent proof but omit the details that are easy to
omplete

following the network authenti
ation
ase. Our goal here is to prove the theorem by way of
ontra-

di
tion, namely, given an atta
ker A that breaks the se
urity of NetSe
(�; f;En
; F) as a network

en
ryption proto
ol then we
an build an atta
ker B that breaks the se
urity of the symmetri

en
ryption fun
tion En
 against
hosen-plaintext atta
ks.

The CPA symmetri
 en
ryption game

The game is played by an atta
ker B with a

ess to an en
ryption ora
le E. On input m, the ora
le

returns the en
ryption of m under fun
tion En
 using a se
ret key � not provided to B. The game

pro
eeds in phases:

Phase 1: B queries E with any messages of its
hoi
e. At any point B may
hoose to move to

phase 2.

Phase 2: B
hooses two equal-length messages m

0

and m

1

; a bit b is
hosen at random and the

value

�

= E(m

b

) is returned to B. (The value of b is not provided to B.)

Phase 3: Same as Phase 1.

Phase 4: B outputs a bit b

0

.

And the winner is... B if and only if b = b

0

.

Figure 11: CPA-se
urity of the symmetri
 en
ryption fun
tion En

In order to
apture the CPA-se
urity of En
 (i.e., its se
urity against
hosen-plaintext atta
ks)

we
onsider the game des
ribed in Figure 11. By the assumption that En
 is semanti
ally se
ure

37

against
hosen-plaintext atta
ks we have that no polynomial-time atta
ker B
an win this game with

non-negligible advantage (where \advantage" means the winning probability minus 1/2). However,

we show next how to
onstru
t su
h atta
ker B given an atta
ker A that breaks the se
urity of

NetSe
(�; f;En
; F) as a network en
ryption proto
ol, i.e. an atta
ker A that wins the test of

De�nition 14 against NetSe
(�; f;En
; F) with non-negligible advantage. This proves that su
h an

atta
ker A does not exist and then NetSe
(�; f;En
; F) is a se
ure network en
ryption proto
ol.

(A pre
ise quanti�ed relation between the su

ess probability of B and A
an be easily derived

from the proof arguments below.)

Building B given A. Phase 1. B starts by building a virtual NetSe
(�; f;En
; F) world (in
luding

the
hoi
e of initial information for the parties) and a
tivates A against it. In addition, B
hooses

a session at random (from all sessions
ompleted during the virtual run of NetSe
(�; f;En
; F))

under A, say (P

i

; P

j

; s

0

). We will use the identi�er s

0

to refer to the
hosen session or its mat
hing

session. All a
tions by A (a
tivations or
orruptions) that do not involve session s

0

are
arried by

B using the spe
i�
ation of NetSe
(�; f;En
; F) and based on the full knowledge that B has of the

information held by the parties in the proto
ol. If at any point session s

0

is exposed by A (this

may happen as long as the session is unexpired at P

i

or P

j

) then B outputs a random bit b

0

and

stops. When A a
tivates the establishment of the ke session s

0

between P

i

and P

j

, B a
tivates

P

i

and P

j

with the normal operations for session-key establishment as in proto
ol �. When A

a
tivates P

i

or P

j

with a send-a
tivation under session s

0

and input message m = (m-id; �m), B

does not use the a
tual key shared in session s

0

to
ompute the outgoing message m

0

. Instead, B

omputes m

0

= (m-id;
; t) where
 = E(�m) (i.e., B uses the en
ryption ora
le for the en
ryption

of messages under session s

0

) and t = f

�

a

(m-id;
) where �

a

is a key that B
hooses independently

and at random for use as the MAC key during session s

0

.

Re
eive-a
tivations under session s

0

are handled by B (during Phase 1) as follows. Say P

j

is

a
tivated with in
oming message m

0

= (m-id;
; t) under session s

0

, then B
he
ks m-id for validity

and if valid it uses its knowledge of �

a

to verify the authenti
ation tag t. If any of these veri�
ations

fail then P

j

sets ok = 0 and m = null. If the veri�
ation is su

essful, in parti
ular the triple

(m-id;
; t) passes the veri�
ation of f

�

a

, then (ex
ept for a negligible probability of forgery against

the MAC) the pair (m-id;
) was in
luded in the output of a previous send-a
tivation under session

s

0

in whi
h
ase B already knows the plaintext en
rypted under
iphertext
 and
an re
ord the

re
eption of the message in P

j

's lo
al input.

If at any point A
hooses a test session (a

ording to De�nition 14) di�erent than s

0

then B outputs

a random bit b

0

and stops. If s

0

is
hosen by A as the test session and messages m

0

and m

1

are

provided by A then B moves to phase 2.

Phase 2. Sin
e we assume message-identi�ers that are independent from the message then we have

that the test messages m

0

and m

1

hosen by A have the same message identi�er, whi
h we denote

by m-id

�

. Namely, m

0

= (m-id

�

; �m

0

) and m

1

= (m-id

�

; �m

1

). Now, B uses the messages �m

0

and �m

1

as its own test messages to ora
le E in the CPA game. Let

�

be the value returned to B as the

ora
le response to this test. B then hands to A the triple (m-id

�

;

�

; t

�

) where t

�

= f

�

a

(m-id

�

;

�

).

As spe
i�ed in De�nition 14, P

i

does not re
ord the a
tual value of �m

b

(whi
h B does not know

anyway). Now, B moves to phase 3.

Phase 3. The a
tions of B in Phase 3 are similar to Phase 1 ex
ept that now A may a
tivate P

j

with in
oming message
ontaining (m-id

�

;

�

) for whi
h B does not know its de
ryption. In this

ase, B �rst
he
ks the validity of the authenti
ation tag in the in
oming message. If it fails then no

a
tion is needed. If it is su

essful then P

j

re
ords the re
eption of the message in its lo
al output

but without spe
ifying the de
rypted message sin
e this message is m

b

whi
h, by spe
i�
ation of

38

De�nition 14, P

j

does not write to its lo
al output (thus, B does not need to know m

b

).

Phase 4. Whenever A stops its run with output b

0

, B moves to phase 4 and stops with the same

output b

0

as A.

Analysis of B. It is easy to verify that B as de�ned above is a legal atta
ker in the CPA game of

Figure 11. We need to show that B has non-negligible advantage in winning that game. Proving

this is similar to the analysis of the su

ess probability of forger F in the proof of Lemma 13. First,

we
laim that the event in whi
h the session s

0

hosen at random by B is also the test session

hosen by A has non-negligible probability to o

ur (simply be
ause there are only polynomially

many sessions). Se
ond, we note that if s

0

is
hosen by A as the test session and B
arries the

a
tions of A related to session s

0

using the a
tual session key ex
hanged by P

i

and P

j

in that

session then the advantage of B to guess b
orre
tly is the same as for A to guess
orre
tly (sin
e

in this
ase the simulation of A by B is perfe
t) and then non-negligible. So, the main argument is

to show that repla
ing the a
tual session keys (for authenti
ation and for en
ryption) from session

s

0

with the random independent key �

a

hosen by B for the MAC and the random independet

key used by ora
le E for its en
ryptions does not signi�
antly
hange the odds of A to win. This

fa
t follows from the SK-se
urity of the ke proto
ol � and its proof is similar to the proof of the

analogous fa
t in Lemma 13 (with B and A taking the roles of F and U , respe
tively).

2

On the (non) ne
essity of CCA-se
urity. The above Theorem shows that se
urity against

hosen-plaintext atta
ks (CPA) is all we need to require from the fun
tion En
 in order to imple-

ment se
ure
hannels. This is an important property sin
e most symmetri
 en
ryption fun
tions

and modes used in pra
ti
e are CPA-se
ure but not se
ure against
hosen-
iphertext atta
ks (CCA).

Also worth noting is that even the
ombination of the MAC fun
tion f on top of En
 does not ne
es-

sarily result in a CCA-se
ure fun
tion (namely, the fun
tion snd de�ned under NetSe
(�; f;En
; F)

is not ne
essarily CCA-se
ure when
onsidered as an en
ryption fun
tion with keys �

e

and �

a

).

To see this
onsider a MAC fun
tion with the property that
ipping the least signi�
ant bit of an

authenti
ation tag does not
hange the validity of the tag. In this
ase the resultant
omposed

fun
tion snd is not CCA-se
ure while it suÆ
es (by virtue of the above theorem) for implementing

se
ure
hannels.

This example also helps to emphasize the over-restri
tive
hara
ter of the \stri
t de�nition" of a

se
ure network en
ryption proto
ol as dis
ussed in Se
tion 6.3.1. Indeed, it is easy to see that

in order for proto
ol NetSe
 to satisfy this stri
t de�nition one has to make sure that the snd

fun
tion in proto
ol NetSe
 is CCA-se
ure. In parti
ular, the above example shows that the as-

sumption that f is a se
ure MAC fun
tion is not enough to prove the network en
ryption se
urity

of NetSe
(�; f;En
; F) under the stri
t de�nition. Su
h a de�nition would require a stronger no-

tion of a MAC where in addition to the regular unforgeability requirements one requires that the

atta
ker
annot
hange a given valid pair (m; t) (where m is a message and t a valid authenti
ation

tag) into another valid pair (m; t

0

) with t 6= t

0

. When inspe
ting the NetSe
 proto
ol one
an easily

see that this extra requirement from the MAC fun
tion is not a real se
urity ne
essity but just the

arti�
ial result of the unne
essarily restri
tive nature of the stri
t de�nition.

The order of en
ryption and authenti
ation. Re
ent results in [33℄ show that if the en
ryption

fun
tion is assumed to be se
ure against
hosen-plaintext atta
ks (as in the above Theorem) then

the ordering of �rst applying the en
ryption fun
tion and then the authenti
ation fun
tion (as in

NetSe
(�; f;En
; F)) is instrumental for guaranteeing se
ure
hannels. It is shown in [33℄ that other

ommon orderings of the fun
tions (in whi
h authenti
ation is applied dire
tly to the plaintext)

annot ensure se
ure
hannels even if the key-ex
hange proto
ol in use is (ideally) se
ure.

39

Referen
es

[1℄ D. Beaver, \Se
ure Multi-party Proto
ols and Zero-Knowledge Proof Systems Tolerating a

Faulty Minority", J. Cryptology (1991) 4: 75-122.

[2℄ M. Bellare, R. Canetti and H. Kraw
zyk, \A modular approa
h to the design and analysis

of authenti
ation and key-ex
hange proto
ols", 30th STOC, 1998.

[3℄ M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, \A
on
rete se
urity treatment of sym-

metri
 en
ryption: Analysis of the DES modes of operation", Pro
eedings of the 38th Sym-

posium on Foundations of Computer S
ien
e, IEEE, 1997.

[4℄ M. Bellare, A. Desai, D. Point
heval, and P. Rogaway, \Relations Among Notions of Se
urity

for Publi
-Key En
ryption S
hemes", Advan
es in Cryptology - CRYPTO'98 Pro
eedings,

Le
ture Notes in Computer S
ien
e Vol. 1462, H. Kraw
zyk, ed., Springer-Verlag, 1998, pp.

26{45.

[5℄ M. Bellare and C. Namprempre, \Authenti
ated en
ryption: Relations among notions and

analysis of the generi

omposition paradigm", Advan
es in Cryptology - ASIACRYPT'00

Pro
eedings, Le
ture Notes in Computer S
ien
e Vol. xxxx, T. Okamoto, ed., Springer-

Verlag, 2000.

[6℄ M. Bellare, E. Petrank, C. Ra
ko� and P. Rogaway, \Authenti
ated key ex
hange in the

publi
 key model," manus
ript 1995{96.

[7℄ M. Bellare and P. Rogaway, \Entity authenti
ation and key distribution", Advan
es in

Cryptology, - CRYPTO'93, Le
ture Notes in Computer S
ien
e Vol. 773, D. Stinson ed,

Springer-Verlag, 1994, pp. 232-249.

[8℄ M. Bellare and P. Rogaway, \Provably se
ure session key distribution{ the three party
ase,"

Annual Symposium on the Theory of Computing (STOC), 1995.

[9℄ R. Bird, I. Gopal, A. Herzberg, P. Janson, S. Kutten, R. Molva and M. Yung, \Systemati

design of two-party authenti
ation proto
ols," IEEE Journal on Sele
ted Areas in Commu-

ni
ations (spe
ial issue on Se
ure Communi
ations), 11(5):679{693, June 1993. (Preliminary

version: Crypto'91.)

[10℄ S. Blake-Wilson, D. Johnson and A. Menezes, \Key ex
hange proto
ols and their se
urity

analysis," Pro
eedings of the sixth IMA International Conferen
e on Cryptography and

Coding, 1997.

[11℄ S. Blake-Wilson and A. Menezes, \Entity authenti
ation and key transport proto
ols em-

ploying asymmetri
 te
hniques", Se
urity Proto
ols Workshop, 1997.

[12℄ M. Burrows, M. Abadi and R. Needham, \A logi
 for authenti
ation," DEC Systems Re-

sear
h Center Te
hni
al Report 39, February 1990. Earlier versions in Pro
eedings of the

Se
ond Conferen
e on Theoreti
al Aspe
ts of Reasoning about Knowledge, 1988, and Pro-

eedings of the Twelfth ACM Symposium on Operating Systems Prin
iples, 1989.

[13℄ R. Canetti, \Se
urity and Composition of Multiparty Cryptographi
 Proto
ols", Journal of

Cryptology, Vol. 13, No. 1, 2000.

40

[14℄ R. Canetti, \A uni�ed framework for analyzing se
urity of Proto
ols", manus
ript, 2000.

Available at http://eprint.ia
r.org/2000/067.

[15℄ R. Canetti, S. Halevi and A. Herzberg, \How to Maintain Authenti
ated Communi
ation",

Journal of Cryptology, Winter 2000. Preliminary version at 16th Symp. on Prin
iples of

Distributed Computing (PODC), ACM, 1997, pp. 15-25.

[16℄ R. Canetti and H. Kraw
zyk, \Proving se
ure
omposition of key-ex
hange proto
ols with

any appli
ation", in preparation.

[17℄ R. Cramer and V. Shoup, \A pra
ti
al publi
-key
ryptosystem provably se
ure against

adaptive
hosen
iphertext atta
k", Advan
es in Cryptology - CRYPTO'98 Pro
eedings,

Le
ture Notes in Computer S
ien
e Vol. 1462, H. Kraw
zyk, ed., Springer-Verlag, 1998.

[18℄ W. DiÆe and M. Hellman, \New dire
tions in
ryptography," IEEE Trans. Info. Theory

IT-22, November 1976, pp. 644{654.

[19℄ W. DiÆe, P. van Oors
hot and M. Wiener, \Authenti
ation and authenti
ated key ex-

hanges", Designs, Codes and Cryptography, 2, 1992, pp. 107{125.

[20℄ D. Dolev, C. Dwork and M. Naor, Non-malleable
ryptography, SICOMP, to appear. Pre-

liminary version in 23rd STOC, 1991.

[21℄ O. Goldrei
h, \Foundations of Cryptography (Fragments of a book)", Weizmann Inst. of

S
ien
e, 1995. (Available at http://philby.u
sd.edu/
ryptolib.html)

[22℄ O. Goldrei
h, S. Goldwasser and S. Mi
ali, \How to
onstru
t random fun
tions," Journal

of the ACM, Vol. 33, No. 4, 210{217, (1986).

[23℄ S. Goldwasser, and L. Levin, \Fair Computation of General Fun
tions in Presen
e of Im-

moral Majority", CRYPTO '90, LNCS 537, Springer-Verlag, 1990.

[24℄ S. Goldwasser and S. Mi
ali, Probabilisti
 en
ryption, JCSS, Vol. 28, No 2, April 1984, pp.

270-299.

[25℄ S. Goldwasser, S. Mi
ali and C. Ra
ko�, \The Knowledge Complexity of Intera
tive Proof

Systems", SIAM Journal on Comput., Vol. 18, No. 1, 1989, pp. 186-208.

[26℄ C.G. G�unther, \An identity-based key-ex
hange proto
ol", Advan
es in Cryptology - EU-

ROCRYPT'89, Le
ture Notes in Computer S
ien
e Vol. 434, Springer-Verlag, 1990, pp.

29-37.

[27℄ S. Halevi, and H. Kraw
zyk, \Publi
-Key Cryptography and Password Proto
ols", ACM

Transa
tions on Information and System Se
urity, Vol. 2, No. 3, August 1999, pp. 230{268.

[28℄ D. Harkins and D. Carrel, ed., \The Internet Key Ex
hange (IKE)", RFC 2409, November

1998.

[29℄ ISO/IEC IS 9798-3, \Entity authenti
ation me
hanisms | Part 3: Entity authenti
ation

using asymmetri
 te
hniques", 1993.

[30℄ J. Katz and M. Yung, \Complete
hara
terization of se
urity notions for probabilisti

private-key en
ryption", Pro
eedings of the 32nd Annual ACM Symposium on Theory of

Computing, 2000.

41

[31℄ S. Kent and R. Atkinson, \Se
urity Ar
hite
ture for the Internet Proto
ol", Request for

Comments 2401, Nov. 1998.

[32℄ H. Kraw
zyk, \SKEME: A Versatile Se
ure Key Ex
hange Me
hanism for Internet,", Pro-

eedings of the 1996 Internet So
iety Symposium on Network and Distributed System Se-

urity, Feb. 1996, pp. 114-127.

[33℄ H. Kraw
zyk, \The order of en
ryption and authenti
ation for prote
ting
ommuni
ations

(Or: how se
ure is SSL?)", to appear Crypto 2001.

[34℄ C. H. Lim and P.J. Lee, \A Key Re
overy Atta
k on Dis
rete Log-based S
hemes Using

a Prime Order Subgroup", Advan
es in Cryptology { CRYPTO 97 Pro
eedings, Le
ture

Notes in Computer S
ien
e, Springer-Verlag Vol. 1294, B. Kaliski, ed, 1997, pp. 249{263.

[35℄ P. Lin
oln, J. Mit
hell, M. Mit
hell, A. S
hedrov, \A Probabilisti
 Poly-time Framework for

Proto
ol Analysis", 5th ACM Conf. on Computer and System Se
urity, 1998.

[36℄ S. Lu
ks, \Open key ex
hange: How to defeat di
tionary atta
ks without en
rypting publi

keys," Pro
eedings of the 1997 Se
urity Proto
ols Workshop, 1997.

[37℄ A. Menezes, P. Van Oors
hot and S. Vanstone, \Handbook of Applied Cryptography," CRC

Press, 1996.

[38℄ S. Mi
ali and P. Rogaway, \Se
ure Computation", unpublished manus
ript, 1992. Prelimi-

nary version in CRYPTO 91.

[39℄ R. Needham and M. S
hroeder, \Using en
ryption for authenti
ation in large networks of

omputers," Communi
ations of the ACM, Vol. 21, No. 12, De
ember 1978, pp. 993{999.

[40℄ B. P�tzmann, M. S
hunter and M. Waidner, \Se
ure Rea
tive Systems", IBM Resear
h

Report RZ 3206 (#93252), IBM Resear
h, Zuri
h, May 2000.

[41℄ B. P�tzmann and M. Waidner, \A General Framework for Formal Notions of `Se
ure' Sys-

tem", Hildesheimer Informatik-Beri
hte 11/94 Institut fr Informatik, Universitt Hildesheim,

April 1994.

[42℄ B. P�tzmann and M. Waidner, \A model for asyn
hronous rea
tive systems and its appli-

ation to se
ure message transmission", IEEE Se
urity and Priva
y Symposium, May 2001.

Earlier version available in IBM Resear
h Report RZ 3304 (#93350), IBM Resear
h, Zuri
h,

De
ember 2000.

[43℄ V. Shoup, \On Formal Models for Se
ure Key Ex
hange", Theory of Cryptography Library,

1999. Available at: http://philby.u
sd.edu/
ryptolib/1999/99-12.html.

[44℄ V. Shoup and A. Rubin. \Session key distribution using smart
ards", Advan
es in Cryp-

tology { EUROCRYPT 96 Pro
eedings, Le
ture Notes in Computer S
ien
e Vol. 1070,

Springer-Verlag, U. Maurer, ed, 1995.

42

A More on Related Work

We provide some more details on several de�nitional works on ke that are
losely related to the

present work.

On the work of Bellare and Rogaway [7, 8℄. The �rst
omplexity-based formalization of se
ure

ke proto
ols (i.e., the �rst de�nitions that take into
onsideration the
omputational limitations of

an adversary and allow for an analysis that
onsiders non-idealized
ryptographi
 primitives) was

presented by Bellare and Rogaway in [7, 8℄, in the
ontext of shared long-term keys. These works

postulate an adversary in
harge of all
ommuni
ations, and expli
itly model
on
urrent sessions

by
reating a model where the adversary is surrounded by \ora
les" that represent sessions within

parties. In su
h a model, querying an ora
le represents delivery of a message or the
orruption

of a session. Their method of de�ning se
urity is based on the method used for de�ning semanti

se
urity of en
ryption fun
tions [24℄: the adversary should be unable to distinguish, with non-

negligible probability, between the key of a
hosen session and an independent random value. They

prove the se
urity of spe
i�
 authenti
ation and key ex
hange proto
ols under these de�nitions.

Various works extend the [7, 8℄ framework to other settings and problems; for example, Shoup and

Rubin to smart
ard settings [44℄; Lu
ks to
onsider di
tionary atta
ks [36℄; Blake-Wilson, Johnson

and Menezes [10, 11℄ for the publi
 key setting.

The original formalization of [7, 8℄ was later demonstrated to have a se
urity
aw, by Ra
ko�

(personal
ommuni
ation, 1995). In an unpublished work, Bellare, Petrank, Ra
ko� and Rogaway

[6℄ proposed a �x for this
aw. Our de�nition of se
urity (Se
tion 4) follows essentially that �xed

version of the [7, 8℄ de�nition, but
ast in the proto
ol and adversary framework used here. Next,

we sket
h the Ra
ko� atta
k whi
h is instru
tive for pointing out to the subtleties involved in the

formalization of se
urity for key-ex
hange proto
ols.

In the de�nitions of [7, 8℄, the adversary points to an unexposed session of its
hoi
e, and

re
eives a value k

b

, where k

0

is the real session key of this session, k

1

is an independently
hosen

random value, and b is a randomly
hosen bit that is unknown to the adversary. The se
urity

requirement is that the adversary is unable to predi
t b with non-negligible advantage over one

half. The original version of these de�nitions requires that the adversary outputs its guess for b

immediately after it obtains the test value. Ra
ko� has noti
ed that this requirement is not strong

enough: Consider your favorite se
ure key-ex
hange proto
ol �. Now, add to the spe
i�
ations of

the proto
ol the following instru
tion for the party that
ompletes �rst the session establishment

a

ording to proto
ol �: if at any point this party re
eives a message with the value MAC

�

(0),

where MAC is a se
ure message authenti
ation fun
tion and � the established session-key, then

the party publi
izes (say via a further message in the proto
ol) the value of �. However, the

proto
ol never instru
ts any party to
arry out su
h an instru
tion. As a result the proto
ol
an be

shown to pass the weakened de�nition. On the other hand, it is
lear that su
h a proto
ol
annot

be
omposed se
urely with an authenti
ation appli
ation that uses the session key for MAC-ing

information (sin
e su
h an appli
ation
ould produ
e the value MAC

�

(0) that
an be used to expose

�).

The �x to the de�nition, proposed by [6℄, is to let the adversary to
ontinue intera
ting with the

proto
ol even after the test value is re
eived and before the guess is made. We stress that, although

no atta
ks against the �xed de�nition were known, up till now it was never demonstrated that

this de�nition (or any other) is \suÆ
iently strong" for guaranteeing the se
urity of the
ommon

appli
ations that use key ex
hange.

On the work of Bellare, Canetti and Kraw
zyk [2℄. A somewhat di�erent approa
h to

43

de�ning se
ure ke proto
ols is taken in the work of Bellare, Canetti and Kraw
zyk [2℄. First they

spe
ify an adversarial model (
alled the unauthenti
ated-links model (um)) that represents the
apa-

bilities of the adversary in real-life networks. (As in [7, 8℄, this model also postulates independent

sessions and adversarially
ontrolled
ommuni
ation. However it is di�erent in that it dire
tly rep-

resents a
ommuni
ation network and a

ounts in a natural way to the fa
t that other proto
ols

an be running in the same system.) In this model they formalize the notion of authenti
ators,

i.e., \
ompilers" that transform proto
ols that assume ideally-authenti
ated
ommuni
ation into

\equivalent" proto
ols in the um. (Authenti
ators are also formalized, in a di�erent
ontext, in

[15℄.) In our work we borrow from [2℄ the above proto
ol and adversarial models, and demonstrate

the usefulness of the authenti
ators notion for designing and analyzing proto
ols.

In addition to the above basi
 models, [2℄ also treat the issue of se
urity of ke proto
ols.

For this they formulate an \ideal ke pro
ess" that is meant to
apture the expe
ted properties

of a ke proto
ol, and require that a se
ure ke proto
ol will \emulate" the ideal pro
ess. Their

notion of emulation is in
uen
ed by general de�nitions of se
urity of multi-party proto
ols [23,

38, 1, 13℄. They also
onsider the use of ke for maintaining authenti
ated
ommuni
ation. In

parti
ular, they
laim that the standard method of
ombining a ke proto
ol with a shared-key

message authenti
ation
ode (MACs) results in a se
ure authenti
ator. However, while the basi

approa
h of the [2℄ de�nition of ke is intuitive and attra
tive, their a
tual de�nition of se
ure

ke proto
ols has several subtle short
omings. One
onsequen
e is that,
ontrary to their
laims,

their de�nition of ke seems insuÆ
ient to prove the se
urity of the above-mentioned appli
ation to

onstru
ting authenti
ators (via ke and MAC). Another
onsequen
e is that their de�nition seems

to be somewhat \over-restri
tive", in the sense that it rules out ke proto
ols that seem \intuitively

se
ure" and even provide se
ure
omposition with appli
ations. In parti
ular, Propositions 9 and

10 from [2℄ are in
orre
t.

On the work of Shoup [43℄. Shoup's de�nitions are based on the simulatability approa
h of

[2℄ with some signi�
ant modi�
ations. Three levels of se
urity are presented: Stati
 se
urity (i.e.,

se
urity against adversaries that
orrupt parties only at the onset of the
omputation), adaptive

se
urity (where the adversary obtains only the long-term information of a newly
orrupted party)

and strongly adaptive se
urity where the adversary obtains all the private information of
orrupted

parties. (Oddly, strongly adaptive se
urity does not imply adaptive se
urity.) In addition, two

de�nitions based on the indistinguishability approa
h of Bellare and Rogaway [7℄ are presented.

The �rst is aimed at
apturing se
urity without perfe
t forward se
re
y (PFS), and is shown

to be equivalent to the stati
 variant of the simulation-based de�nition. The se
ond is aimed

at
apturing se
urity with PFS, and is
laimed to be equivalent to the adaptive variant of the

simulation-based de�nition. SuÆ
ien
y of the de�nitions to
onstru
ting se
ure-
hannel proto
ols

is informally argued, but is not proved nor rigorously
laimed.

While the �rst variant of the indistinguishability-based de�nition is roughly equivalent to the

non-PFS variant presented here (modulo the general di�eren
es mentioned below), the se
ond

variant is stri
tly weaker than our PFS formulation of SK-se
urity. Spe
i�
ally, the de�nition in

[43℄ a

epts as se
ure proto
ols that do not erase sensitive ephemeral data (e.g. proto
ol DHKE-1

in [43℄), while the de�nition here treats these proto
ols as inse
ure.

There are several other te
hni
al and methodologi
al di�eren
es between the two works that we

mention next. (a) A major methodologi
al di�eren
e is our use of the authenti
ated-links model

and authenti
ators as a simplifying analysis tool. While our formalization of se
urity does not

mandate the use of this methodology we
arefully build our de�nitions to a

ommodate the use

of this tool. (b) Shoup allows the adversary a more general atta
k than session-key query, namely

44

an appli
ation atta
k that reveals an arbitrary fun
tion of the key. Our modeling does not de�ne

this expli
it atta
k as it is subsumed by the session-key query
apability and, in parti
ular, sin
e

it is not ne
essary for guaranteeing se
ure
hannels. (
) Here we
onsider an additional adversarial

behavior that is not treated in [43℄. Spe
i�
ally, we prote
t against adversaries that obtain the

internal state of
orrupted sessions (even without fully
orrupting the
orresponding parties) by

requiring that su
h exposure will not
ompromise other proto
ol sessions run by the same parties.

This prote
tion is not guaranteed by some proto
ols suggested in [43℄ (e.g., proto
ol DHKE).

(d) The treatment of the intera
tion with the
erti�
ate authority (CA) in the
ase of publi
-key

based authenti
ation. In [43℄ the intera
tion with the CA is an integral part of every ke proto
ol,

whereas here this intera
tion with the CA is treated as a separate proto
ol. We make this
hoi
e

for further modularity and ease of proof. Yet, as we already remarked in Se
tion 2.2, the CA

proto
ol needs to be taken into
onsideration with any full spe
i�
ation and analysis of a
tual ke

proto
ols. (e) The treatment of the session-id's. In [43℄ the session-id's are arti�
ially given to

the parties by the model whi
h results, in our view, in a more
umbersome formalization of the

se
urity
onditions. In
ontrast, here we adopt a more natural approa
h where the session-id's are

generated by the
alling proto
ol and se
urity is guaranteed only when these session-id's satisfy

some minimal (and easy to implement)
onditions. In parti
ular, this formalism
an be satis�ed

by letting the parties jointly generate the session-id (as is
ommon in pra
ti
e).

On the works of P�tzmann, S
hunter and Waidner [41, 40, 42℄ and Canetti [14℄. These

works provide general frameworks for studying the se
urity of
ryptographi
 proto
ols in several

models of
omputation, and prove some
omposition theorems with respe
t to proto
ols that satisfy

their respe
tive de�nitions of se
urity. The proposed frameworks are natural
andidates for de�ning

and studying se
ure key-ex
hange proto
ols and their appli
ation to providing se
ure
hannels. In

parti
ular, Canetti [14℄ de�nes se
ure key ex
hange proto
ols, as well as proto
ols for providing

\se
ure sessions" within his framework, and uses his general
omposition theorem in order to obtain

similar results as the ones provided here (i.e., that the standard use of ke proto
ols for se
uring

ommuni
ation sessions result in a good \se
ure sessions" proto
ol). The [14℄ de�nition of se
ure

ke proto
ols implies the de�nition here. However, it is somewhat over-restri
tive, as it implies the

de�nitions of both [2℄ and [43℄. (In parti
ular, we do not know how to show that Proto
ol en
 from

Se
tion 5.3 satis�es this de�nition.) In [16℄ we investigate a relaxed version of the [14℄ de�nition

of key ex
hange, that is equivalent to the de�nition here and at the same time enjoys the general

omposability properties provided by the [14℄ framework.

45

