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Abstract

We present a formalism for the analysis of key-exchange protocols that combines previous
definitional approaches and results in a definition of security that enjoys some important analyt-
ical benefits: (i) any key-exchange protocol that satisfies the security definition can be composed
with symmetric encryption and authentication functions to provide provably secure communica-
tion channels; and (ii) the definition allows for simple modular proofs of security: one can design
and prove security of key-exchange protocols in an idealized model where the communication
links are perfectly authenticated, and then translate them using general tools to obtain security
in the realistic setting of adversary-controlled links. We exemplify the usability of our results by
applying them to obtain the proof of two main classes of key-exchange protocols, Diffie-Hellman
and key-transport, authenticated via symmetric or asymmetric techniques.

Further contributions of the paper include the formalization of “secure channels” in the
context of key-exchange protocols, and establishing sufficient conditions on the symmetric en-
cryption and authentication functions to realize these channels.
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1 Introduction

Key-exchange protocols (KE, for short) are mechanisms by which two parties that communicate over
an adversarially-controlled network can generate a common secret key. KE protocols are essential
for enabling the use of shared-key cryptography to protect transmitted data over insecure networks.
As such they are a central piece for building secure communications (a.k.a “secure channels”), and
are among the most commonly used cryptographic protocols (contemporary examples include SST,
IPSec, SSH, among others).

The design and analysis of secure KE protocols has proved to be a non-trivial task, with a
large body of work written on the topic, including [18, 39, 12, 9, 19, 7, 8, 32, 2, 43] and many
more. In fact, even today, after two decades of research, some important issues remain without
satisfactory treatment. One such issue is how to guarantee the adequacy of KE protocols for their
most basic application: the generation of shared keys for implementing secure channels. Providing
this guarantee (with minimal requirements from KE protocols) is the main focus and objective of
this work. The other central goal of the paper is in simplifying the usability of the resultant security
definitions via a modular approach to the design and analysis of KE protocols. We exemplify this
approach with a proof of security for two important classes of KE protocols.

This paper adopts a methodology for the analysis of KE protocols that results from the com-
bination of two previous works in this area: Bellare and Rogaway [7] and Bellare, Canetti and
Krawczyk [2]. A main ingredient in the formalization of [7] is the use of the indistinguishability
approach of [24] to defining security: roughly speaking, a key-exchange protocol is called secure if
under the allowed adversarial actions it is infeasible for the attacker to distinguish the value of a
key generated by the protocol from an independent random value. Here we follow this exact same
approach but replace the adversarial model of [7] with an adversarial model derived from [2]. This
combination allows to achieve the above two main objectives. We elaborate on these main aspects
of our work.

First, the formalization of [2] captures not only the specific needs of KE protocols but rather
develops a more general model for the analysis of security protocols. This allows formulating and
proving the statement that KE protocols proven secure according to our definition (we call these
protocols SK-secure) can be used in standard ways to provide “secure channels”. More specifically,
consider the common security practice by which pairs of parties establish a “secure channel” by first
exchanging a session key using a KE protocol and then using this key to encrypt and authenticate
the transmitted data under symmetric cryptographic functions. We prove that if in this setting
one uses an SK-secure KE protocol together with secure MAC and encryption functions combined
appropriately then the resultant channel provides both authentication and secrecy (in a sense that
we define precisely) to the transmitted data. While this property of ensuring secure channels seems
as an obvious requirement from a secure KE protocol it turns out that formalizing and proving this
property is non-trivial. In fact, there are “seemingly secure” key exchange protocols that do not
necessarily guarantee this (e.g. those that use the session key during the exchange itself), as well
as proposed definitions of secure key-exchange that do not suffice to guarantee this either (e.g., the
definitions in [7, 10, 11, 2]). Moreover, although several works have addressed this issue (see Section
1.1), to the best of our knowledge the notion of secure channels was never formalized in the context
of KE protocols, let alone demonstrating that some definition of KE protocols suffices for this basic
task. Indeed, one of the contributions of this work is a formalization of the secure channels task.
While this formalization is not intended to provide general composability properties for arbitrary
cryptographic settings, it arguably provides sufficient security guarantee for the central task of
protecting the integrity and authenticity of communications over adversarially-controlled links.



Second, the approach of [2] allows for a substantial simplification in designing KE protocols and
proving their security. This approach postulates a two-step methodology by which protocols can
first be designed and analyzed in a much simplified adversarial setting where the communication
links are assumed to be ideally authenticated (i.e., the attacker is not allowed to insert or change
information transmitted over the communication links between parties). Then, in a second step,
these protocols are “automatically” transformed into secure protocols in the realistic scenario of
fully adversary-controlled communications by applying a protocol translation tool (or “compiler”)
called an authenticator. Fortunately, simple and efficient realizations of authenticators based on
different cryptographic functions exist [2] thus making it a useful and practical design and analysis
tool. (We stress that our framework does not mandate this methodology; i.e., it is possible of
course to prove security of a KE protocol directly in the fully adversarial model.)

We use this approach to prove the security of two important classes of key-exchange protocols:
Diffie-Hellman and key-transport protocols. All one needs to do is to simply prove the security
of these protocols in the ideal authenticated-links model and then, thanks to the above modular
approach, one obtains versions of these protocols that are secure in a realistic adversary-controlled
network. The “authenticated” versions of the protocols depend on the authenticators in use. These
can be based either on symmetric or asymmetric cryptographic techniques (depending on the trust
model) and result in natural and practical KE protocols. The security guarantees that result from
these proofs are substantial as they capture many of the security concerns in real communications
settings including the asynchronous nature of contemporary networks, the run of multiple simul-
taneous sessions, resistance to man-in-the-middle and known-key attacks, maintaining security of
sessions even when other sessions are compromised, and providing “perfect forward secrecy”, i.e.,
protection of past sessions in case of the compromise of long-term keying material.

1.1 Related work

Since its introduction in the seminal work of Diffie and Hellman [18] the notion of a key-exchange
protocol has been the subject of many works (see [37] for an extensive bibliography). Here we
mention some of the works that are more directly related to the present work. We further expand
our discussion of these works in Appendix A.

Among the early works on this subject we note [39, 12, 9, 19] as being instrumental in pointing
out to the many subtleties involved in the analysis of KE protocols. The first complexity-theoretic
treatment of the notion of security for KE protocols is due to Bellare and Rogaway [7] who formalize
the security of KE protocols in the realistic setting of concurrent sessions running in an adversary-
controlled network. As said above, [7] apply the indistinguishability definitional approach that
we follow here as well. While [7] focused on the shared-key model of authentication, other works
[10, 11, 6] extended the techniques to the public-key setting. One important contribution of [6] is
in noting and fixing a shortcoming in the original definition of [7]; this fix, that we adopt here, is
fundamental for proving our results about secure channels.

Bellare, Canetti, and Krawczyk [2] present a model for studying general session-oriented security
protocols that we adopt and extend here. They also introduce the “authenticator” techniques that
allow for greatly simplifying the analysis of protocols and that we use as a basic tool in our work. In
addition, [2] proposes a definition of security of KE protocols rooted in the simulatability (or “ideal
third party”) approach used to define security of multiparty computation [23, 38, 1, 13]. While this
definitional approach is intuitively appealing the actual KE security definition of [2] comes short of
the expectations. On one hand, it seems over-restrictive, in the sense that it rules out protocols
that seem to provide sufficient security (and as demonstrated here can be safely used to obtain



secure channels); on the other, it is not clear whether their definition suffices to prove composition
theorems even in the restricted sense of secure channels as dealt with in this paper.

More recently, Shoup [43] presents a framework for the definition of security of KE protocols that
follows the basic simulatability approach as in [2] but introduces significant modifications in order to
overcome some of the shortcomings of the KE definition in [2] as well as to seek composability with
other cryptographic applications. In particular, [43] states as a motivational goal the construction
of “secure sessions” (similar to our secure channels), and it informally claims the sufficiency of its
definitions to achieve this goal. A more rigorous and complete elaboration of that work will be
needed to assess the correctness of these claims. In addition, [43] differs from our work in several
other interesting aspects (see Appendix A).

A promising general approach for the analysis of reactive protocols and their concurrent com-
position has been developed by Pfitzmann, Schunter and Waidner [41, 40, 42] and Canetti [14].
This approach, that follows the simulatability tradition, can be applied to the task of key exchange
to obtain a definition of KE protocols that guarantees secure concurrent composition with any set
of protocols that make use of the generated keys. See more details in [16].

A subjective discussion. The works mentioned above follow two main distinct approaches to
defining security of KE protocols: simulation-based and indistinguishability-based. The former is
more intuitively appealing (due to its modeling of security via an ideally-trusted third party), and
also appears to be more amenable to demonstrating general composability properties of protocols.
On the other hand, the complexity of the resulting definitions, once all details are filled in, is
considerable and makes for definitions that are relatively complex to work with. In contrast,
the indistinguishability-based approach yields definitions that are simpler to state and easier to
work with, however their adequacy for modeling the task at hand seems less clear at first glance.
The results in this paper indicate the suitability of the indistinguishability-based approach in the
context of KE protocols — if the goal is the application of KE protocols to the specific task of secure
channels as defined here. By following this approach we gain the benefit of simpler analysis and
easier-to-write proofs of security. At the same time, our work borrows from the simulation-based
approach the modularity of building proofs via the intermediate ideally-authenticated links model,
thus enjoying the “best of both worlds”.

Organization. Section 2 presents an overview of the protocol and adversary models used through-
out this work. This overview is intended to introduce the elements of this model in a “reader-
friendly” way. The formal technical treatment appears in Section 3. The definition of SK-security
for KE protocols is presented in Section 4. Section 5 proves the security of several protocols and
illustrates the modular methodology used in our analysis. Finally, in Section 6 we introduce a
formalization of “secure channels” and demonstrate the suitability of our notion of security for KE
protocols for realizing secure channels.

2 Protocol and Adversary Models: An Overview

In order to to define what is meant by the security of a key-exchange (KE) protocol we first need
to establish a formalism for the most basic notions: what is meant by a protocol in general and
a key-exchange protocol in particular, what are sessions, and what is an ‘attacker’ against such
protocols. Here we use a formalism based on the approach of [2], where a general framework for
studying the security of session-based multi-party protocols over insecure channels is introduced.
We extend and refine this formalism to better fit the needs of practical KE protocols.

In order to motivate and make the formalism easier to understand, we start by providing a



high-level overview of our model. The precise technical description appears in Section 3. (We
note that the precise technical details are essential for a full development and proof of our results.
However, we recommend first reading this overview in order to make the technical part more
understandable.) After introducing the protocol and adversary models we proceed to define the
security of KE protocols in Section 4.

2.1 Protocols, Sessions and Key-Exchange

Message-driven protocols We consider a set of parties (probabilistic polynomial-time machines),
which we usually denote by Py, ..., P,, interconnected by point-to-point links over which messages
can be exchanged.! Protocols are collections of interactive procedures, run concurrently by these
parties, that specify a particular processing of incoming messages and the generation of outgoing
messages. Protocols are initially triggered at a party by an external “call” and later by the arrival
of messages. Upon each of these events, and according to the protocol specification, the protocol
processes information and may generate and transmit a message and/or wait for the next message
to arrive. We call these message-driven protocols. (We note the asynchronous nature of protocols
defined in this way which reflects the prevalent form of communication in today’s networks.)

Sessions and protocol output. Protocols can trigger the initiation of sub-protocols (i.e. inter-
active subroutines) or other protocols, and several copies of such protocols may be simultaneously
run by each party. We call each copy of a protocol run at a party a session. Technically, a session is
an interactive subroutine executed inside a party. Each session is identified by the party that runs
it, the parties with whom the session communicates and by a session-identifier. These identifiers
are used in practice to bind transmitted messages to their corresponding sessions. Each invocation
of a protocol (or session) at a given party creates a local state for that session during execution, and
produces local outputs by that party. This output can be a quantity (e.g a session key) returned to
the calling program, or it can be the recording of a protocol event (such as a successful or failed
termination). These local outputs serve to represent the “history” of a protocol and are important
to formalize security. When a session ends its run we call it complete and assume that its local
state is erased.

Key-exchange protocols. Key-exchange (KE) protocols are message-driven protocols (as defined
above) where the communication takes place between pairs of parties and which return, upon
completion, a secret key called a session key. More specifically, the input to a KE protocol within
each party P; is of the form (P}, Pj, s, role), where P; is the identity of another party, s is a session
id, and role can be either initiator or responder. A session within P; and a session within P; are
called matching if their inputs are of the form (P, P;,s,initiator) and (Pj, P;, s, responder). The
inputs are chosen by a “higher layer” protocol that “calls” the KE protocol. We require the calling
protocol to make sure that the session id’s of no two KE sessions in which the party participates are
identical. Furthermore, we leave it to the calling protocol to make sure that two parties that wish
to exchange a key will activate matching sessions. Note that this may require some communication
before the actual KE sessions are activated.?

Upon activation, the partners P; and P; of two matching sessions exchange messages (the initiator
goes first), and eventually generate local outputs that include the name of the partners of the session,

!This formalization postulates a fixed number of parties in a network. An alternative, more general formalization
allows the adversary to adaptively increase the number of participants. We prefer this simpler formalization since
the difference seems inconsequential with respect to realistic KE protocols.

2Indeed, in practice protocols for setting up a secure session typically exchange some messages before the actual
cryptographic key-exchange starts. The IKE protocol of the IPSEC standard is a good example [28].



the session identifier, and the value of the computed session key. A key establishment event is
recorded only when the exchange is completed (this signals, in particular, that the exchanged key
can be used by the protocol that called the KE session). We note that a session can be completed
at one partner but not necessarily at the other.

After describing these ‘mechanics” of a KE protocol we need to define what is meant by a
“secure” KE protocol. This is the subject of Section 4 and it is based on the adversarial model that
we introduce next.

2.2 The unauthenticated-links adversarial model (uUm)

In order to talk about the security of a protocol we need to define the adversarial setting that
determines the capabilities and possible actions of the attacker. We want these capabilities to be
as generic as possible (as opposed to, say, merely representing a list of possible attacks) while not
posing unrealistic requirements. We follow the general adversarial formalism of [2] but specialize
and extend it here for the case of KE protocols. Using the terminology of [2] we call this model the
Unauthenticated Links Model (um).

Basic attacker capabilities. We consider a probabilistic polynomial-time (PPT)? attacker that
has full control of the communications links: it can listen to all the transmitted information, decide
what messages will reach their destination and when, change these messages at will or inject its own
generated messages. The formalism represents this ability of the attacker by letting the attacker
be the one in charge of passing messages from one party to another. The attacker also controls the
scheduling of all protocol events including the initiation of protocols and message delivery.

Obtaining secret information. In addition to these basic adversarial capabilities (given “for
free” to the attacker), we let the attacker obtain secret information stored in the parties memories
via explicit attacks. We consider all the secret information stored at a party as potentially vul-
nerable to break-ins or other forms of leakage. However, when defining security of a protocol it is
important to guarantee that the leakage of some form of secret information has the least possible
effect on the security of other secrets. For example, we will want to guarantee that the leakage of
information specific to one session (such as the leakage of a session key or ephemeral state infor-
mation) will have no effects on the security of other sessions, or that even the leakage of crucial
long-term secrets (such as private keys) that are used across multiple sessions will not necessarily
compromise secret information from all past sessions. In order to be able to differentiate between
various vulnerabilities and to be able to guarantee as much security as possible in the event of in-
formation exposures, we classify attacks into three categories depending on the type of information
accessed by the adversary:

Party corruption. The attacker can decide at any point to corrupt a party, in which case the attacker
learns all the internal memory of that party including long-term secrets (such as private keys or
master shared keys used across different sessions) and session-specific information contained in the
party’s memory (such as internal state of incomplete sessions and session-keys corresponding to
completed sessions). Since by learning its long term secrets the attacker can impersonate a party
in all all its actions then a party is considered completely controlled by the attacker from the time
of corruption and can, in particular, depart arbitrarily from the protocol specifications.

Session-key query. The attacker provides a party’s name and a session identifier of a completed
session at that party and receives the value of the key generated by the named session This attack
provides the formal modeling for leakage of information on specific session keys that may result from

3When proving specific protocols one can replace this generic PPT modeling with specific cryptographic assumptions.



events such as break-ins, cryptanalysis, careless disposal of keys, etc. It will also serve, indirectly,
to ensure that the unavoidable leakage of information produced by the use of session keys in a
security application (e.g., information leaked on a key by its use as an encryption key) will not help
in deriving further information on this and other keys.

Note: one could define yet another adversary operation that would provide the attacker with partial
information on session keys (to specifically model information leaked via key usage), however it turns
out that such an addition, while adding complexity to the model specification, does not change the
power of the model since session-key queries as defined here already suffice to capture leakage of
any partial information on the session keys.

Session-state reveal. The attacker provides the name of a party and a session identifier of a yet
incomplete session at that party and receives the internal state of that session (since we see sessions
as procedures running inside a party then the internal state of a session is well defined). An
important point here is what information is included in the local state of a session; this is to
be specified by each KE protocol. Therefore, our definition of security is parameterized by the
type and amount of information revealed in this attack. For instance, the information revealed in
this way may be the exponent x used by a party to compute a value ¢* in a Diffie-Hellman key-
exchange protocol, or the random bits used to encrypt a quantity under a probabilistic encryption
scheme during a session. (An example where such state information may be vulnerable to attack is
applications — such as those running in low-powered devices — that pre-compute, or upload, a file
of pairs (z, g”) for use during later “real-time” establishment of KE sessions. In this case one would
like to prevent that the exposure of such a file, or part of it, will compromise future sessions that
do not use these values.)

We stress that while the first two forms of attack, party corruptions and session-key queries,
are fundamental to the definition of security of KE protocols, the significance of the session-state
reveal operation depends on the security model of an implementation. The differentiation between
party corruptions and session-state reveal operations assumes that corrupting a session state does
not imply learning about long-term secrets; this implicitly assumes a separate security module
where the operations involving these long-term secrets are performed. In settings where this is an
unrealistic assumption, our model can be weakened by deleting the session-state reveal operation
from the attacker’s capabilities. Certainly, protocols proven secure under our model will remain
secure in the weakened model.

Terminology: if a session is subject to any of the above three attacks (i.e. a session-state reveal, a
session-key query or the corruption of the party holding the session) then the session is called locally
exposed. If a session or its matching session is locally exposed then we call the session exposed.

Session expiration. One important additional element in our security model is the notion of
session expiration. This takes the form of a protocol action that when activated causes the erasure
of the named session key (and any related session state) from that party’s memory. We allow a
session to be expired at one party without necessarily expiring the matching session. The effect
of this action in our security model is that the value of an expired session key cannot be found
via any of the above attacks if these attacks are performed after the session expired. This has two
important consequences: it allows us to model the common (and good) security practice of limiting
the life-time of individual session keys and it allows for a simple modeling of the notion of perfect
forward secrecy (see Section 4.2). We note that in order for a session to be locally exposed (as
defined above) the attack against the session must happen before the session expires.

Bootstrapping the security of key-exchange protocols. Key-exchange protocols, as other
cryptographic applications, require the bootstrapping of security (especially for authentication) via



some assumed-secure means. Examples include the secure generation of parties’ private keys, the
installation of public keys of other parties, or the installation of shared “master” keys. Here too
we follow the approach of [2] where the bootstrapping of the authentication functions is abstracted
into an initialization function that is run prior to the initiation of any key-exchange protocol and
that produces in a secure way (i.e. without adversarial participation) the required (long-term)
information. By abstracting out this initial phase we allow for the combination of different protocols
with different initialization functions: in particular, it allows our analysis of protocols (such as
Diffie-Hellman) to be applicable under the two prevalent settings of authentication: symmetric
and a-symmetric authentication. Two points to note are (1) the specification of the initialization
function is part of the definition of each KE protocol; and (2) secret information generated by
this function at a given party can be discovered by the attacker only upon corruption of that
party. We stress that while this abstraction adds to the simplicity and applicability of our analysis
techniques, the bootstrapping of security in actual protocols is an element that must be carefully
analyzed (e.g., the interaction with a CA in the case of public-key based protocols). Integrating
these explicit elements into the model can be done either directly as done in [43], or in a more
modular way via appropriate protocol composition.

2.3 The AM, protocol emulation and authenticators

A central ingredient in our analyses is the methodology introduced in [2] by which one can design
and analyze a protocol under the highly-simplifying assumption that the attacker cannot change
information transmitted between parties, and then transform these protocols and their security
assurance to the realistic UM where the adversary has full control of the communication links. We
refer the reader to [2] for the details and also present a technical summary in Section 3.4.

First, an adversarial model called authenticated-links model (denoted AM) is defined in a way
that is identical to the UM with one fundamental difference: the attacker is restricted to only
deliver messages truly generated by the parties without any change or addition to them. Then, the
notion of “emulation” is introduced in order to capture the equivalence of functionality between
protocols in different adversarial models, in particular between the UM and AM. Roughly speaking,
a protocol ' emulates protocol 7 in the UM if for any adversary that interacts with «’ in the UM
there exists an adversary that interacts with 7 in the AM such that the two interactions “look
the same” to an outside observer. Finally, special algorithms called authenticators are developed
with the property that on input the description of a protocol 7w the authenticator outputs the
description of a protocol 7’ such that 7’ emulates protocol 7 in the UM. That is, authenticators act
as an automatic “compiler” that translate protocols in the AM into equivalent (or “as secure as”)
protocols in the UM.

In order to simplify the construction of authenticators, [2] offers the following methodology.
First consider a very simple one-flow protocol in the AM, called MT, whose sole functionality is
to transmit a single message from sender to recipient. Now build a restricted-type authenticator,
called MT-authenticator, required to provide emulation for this particular MT protocol only. Finally,
to any such MT-authenticator A one associates an algorithm (or compiler) C) that translates any
input protocol 7 into another protocol 7’ as follows: to each of the messages defined in protocol
7 apply the MT-authenticator A. It is proven in [2] that C) is an authenticator (i.e., the resultant
protocol 7’ emulates 7 in the UM). Particular realizations of MT-authenticators are presented in [2]
based on different type of cryptographic functions (e.g., digital signatures, public-key encryption,
MAC, etc.)



3 The models

This section presents a technical description of the protocol and adversary models used throughout
the paper. We strongly recommend first reading Section 2 which presents an overview of these
models and their motivation.

3.1 Message-Driven Protocols

An n-party message-driven protocol is a collection of n programs, where each program is to be
run by a different party. (Formally, each program is an interactive PPT Turing machine, as defined
in [25].) Each program has the following interface. It is first invoked with some initial input
(that includes the party’s identity), random input, and some value for the security parameter.
Once invoked, the program waits for an activation. An activation can be caused by two types of
events: either the arrival of an incoming message from the network, or an action request coming
from other programs run by the party. (Defining valid action requests is part of the specification
of the protocol.*) Upon activation, the program processes the incoming data, starting from its
current internal state, and as a result it can generate outgoing messages to the network and action
requests to other programs run by the party. In addition, a local output value is generated. Once
the activation is completed, the program waits for the next activation. We regard the local output
as cumulative. That is, initially the local output is empty; in each activation the current output
is appended to the previous one. We will let a protocol label some of its local output as ‘secret’
(e.g. the value of a secret key generated by the protocol). This will have effect on the adversary’s
actions that we define below.

An invocation of a protocol is called a session. Note that a session of a protocol © may involve
several sessions of other protocols that are called by w. (When treating the special case of key-
exchange protocols in Section 3.3 the semantics of sessions in that context will be given more
specific meaning.)

3.2 The unauthenticated-links adversarial model (Um).

The adversarial model UM defines the attacker’s capabilities and its interaction with a protocol.
Figure 1 summarizes the way protocols are executed in the presence of a UM adversary. Here we
describe this in some more detail. Consider an n-party message-driven protocol 7, with parties
denoted by P;...P,. Each party P; has input z; and random input r;. In addition, we introduce
an adversarial entity, called a UM-adversary Y. (The UM-adversary is another program, or a PPT
interactive Turing machine, with an interface described below.) The execution of protocol 7 in the
UM consists of a sequence of activations of 7 within different parties. The activations are controlled
and scheduled by U. That is, initially the protocol is invoked within each party with a local input,
random input and a value for the security parameter. Next, and upon the completion of each
activation, U decides which party to activate next, and on which incoming message or request. The
outgoing messages and outgoing local action requests become known to U. Local outputs become
known to U except for those labeled ‘secret’.

Note that U is free to choose to activate any party with any activation allowed by the protocol
and in any order. Also, U can activate any party with any incoming message and any specified

*An action request can be, for instance, a request to send a message or exchange a key with some specified party
(we will see specific examples in the sequel). We assume that every message specifies the sender of the message and
its intended recipient.



Protocol execution in the UM

Participants: Parties Py, ..., P, running an n-party protocol 7 on inputs z1, ..., z,, respectively, and
an adversary U.

1. Initialization: Each party P; invokes 7 on local input z;, security parameter k and random
input. Next, P; gets I(r,k); and I(r, k), where 7 is randomly chosen.

2. While ¢/ has not terminated do:

(a) U may activate 7 within some party, P;. An activation can take two forms:

i. An action request q. This activation models requests or invocations coming from
other programs run by the party.

ii. An incoming message m with a specified sender P;. This activation models messages
coming from the network.

If an activation occurred then the activated party P; runs its program and hands U/ the
resulting outgoing messages and action requests. (We stress that I/ is free to choose any
scheduling of activations and determine the values of incoming messages.) Local outputs
produced by the protocol are known to U except for those labeled ‘secret’.

(b) U may corrupt a party P;. Upon corruption, I learns the current internal state of P,
and a special message is added to P;’s local output. From this point on, P; is no longer
activated and does not generate further local output.

(¢) U may issue a session-state reveal for a specified session within some party P;. In this
case, U learns the current internal state of the specified session within P;. This event is
recorded through a special note in P;’s local output.

(d) U may issue a session-output query for a specified session within some party P;. In this
case, U learns any output from the specified session that was labeled ‘secret’. This event
is recorded through a special note in P;’s local output.

3. The global output of the execution is the concatenation of the outputs of &/ and Py, ..., P,.

Figure 1: Protocol execution in the UM.

sender. In particular, incoming messages need not correspond in any way to messages that have
been sent. (That is, U is free to generate, inject, modify, and deliver any message of its choice.)
In addition to activating parties and controlling the network, U/ can perform the following
activities. First, it can corrupt parties at will. Upon corruption of P;, U learns the entire current
state of P;, including any long-term secret, session states and secret session outputs in the party’s
memory. From this point on, I/ can deliver any message of its choice in which P; is specified as
the sender. The corrupted party P; appends a special note to its output, specifying that it has
been corrupted. P; is no longer activated and does not generate further local output. (A corrupted
party is totally controlled by the adversary, and its actions are taken by the attacker itself.)
Another type of activity is session-state reveal of a certain session within party P;. The effect is
that the internal state of the corresponding session within P; (i.e., the local working space of the
procedure whose invocation constitutes the session) becomes known to U, and a special message
is added to the party’s local output; no further output is generated for this session.® A third

5We do not specify how a session is identified; this will have to be part of the specification of a protocol. In the



adversarial activity is a session-output query. By issuing such a query the adversary learns any
output from that session that was labeled ‘secret’. (This type of queries is particularly important
in the context of key-exchange protocols below where this action is called a ‘session-key query’.)

The initialization function I. Finally, we augment the protocol = with an initialization function
I that models an initial phase of out-of-band and authenticated information exchange between
the parties. (This function models the necessary trusted bootstrapping of cryptographic functions,
e.g. by letting the parties choose private and public keys for some asymmetric crypto-system
and trustfully distributing the public keys.) Function I takes a random input r and the security
parameter k, and outputs a vector I(r,k) = I(r,k)q....I(r, k). The component I(r, k) is the public
information and becomes known to all parties and to the adversary. For ¢ > 0, I(r, k); becomes
known only to P;. Note, however, that upon corruption of P; the attacker learns I(r, k);.

Global output. The global output of running a protocol in the UM is the concatenation of the
cumulative local outputs of all the parties, together with the output of the adversary. The output of
the adversary is a function of its internal states at the end of the interaction. We use the following
notation. Let UM-ADV, y/(k,Z, ) denote the output of adversary ¢ when interacting with parties
running protocol 7 on security parameter k, input £ = z1 ...z, and random input ¥ = ro...7r,
as described above (ry for U; z; and r; for party P;). (The initialization function I is part of the
description of protocol 7.) Let UNAUTH, 4 (k, Z,7); denote the cumulative output of party P; after
running protocol 7 on security parameter k, input # and random input 7, and with an AM-adversary
U. Let UNAUTH,y(k,Z,7) = UM-ADV,y(k, %, ), UNAUTH, 34 (k, Z,7)1 ... UNAUTH, yy(k, &, 7)p. Let
UNAUTH, 1/(k,Z) denote the random variable describing UNAUTH, j/(k,Z,7) when 7 is uniformly
chosen. Let UNAUTH,j, denote the ensemble {UNAUTH, (K, T) }reN,zefo,1}+ -

We have summarized the structure of a protocol execution in the UM in Figure 1.

3.3 Key Exchange Protocols

Key-exchange protocols are a special case of n-party message-driven protocols. As such they inherit
the syntax of general message-driven protocols as introduced before. In addition, in order to
capture the specific semantics of key exchange, and the specific capabilities of attackers against
such protocols, we specify some additional syntax for these protocols. (The intention of this syntax
is to represent, in an abstract but direct way, the mechanics of key exchange protocols in actual
systems.)

Recall that a message-driven protocol is a collection of n programs, where each program is
run by a different party. (We envision that the program is invoked once within each party at the
onset of the computation and remains active throughout.) Once invoked, it is activated either by a
message coming from the network, or by an action request from other protocols or programs run by
the party. In the case of a key-exchange (KE) protocol 7, the program within each party, P;, takes
action requests of the form establish-session(P;, P}, s, role) where P; is another party (with which a
key is to be exchanged), s is a string called the session-id, and role € {initiator, responder}. (This
action request will typically be triggered by other protocols run by the party that “call” the KE
protocol, see for example Section 6.)

Local outputs of a KE protocol are of the form (P;, Pj,s, ), where P;, s are as above and & is a
session key. A null value of & is interpreted as a “session abortion” and will usually represent the
termination of the session with a returned error message. Non-null session-key values are labeled

context of KE protocols we will identify sessions via a session-id and the partners of the session; see more details in
the next section.

10



‘secret’. (Recall that the local outputs are thought of as values returned by the session to the
“calling protocol” that issued the initial establish-session activation.)

We further specify the internal structure of each of the n programs of a KE protocol, as follows.
Each such program, running within P;, consists of a main procedure (can be thought of as a “shell”)
and a special subroutine, called a KE-subroutine. An invocation of the KE-subroutine is called a
KE-session and is aimed at exchanging a single key with a specified party. The main procedure
proceeds as follows. Upon activation with action request establish-session(P;, P, s, role), it first
verifies that no KE-session was previously invoked (within P;) with inputs (P;, P}, s, role) for some
role’ € {initiator, responder} (namely, the main procedure makes sure that the identity of the session
is unique among the sessions that P; was requested to establish with P;). If the verification fails,
then an appropriate error message is generated. Otherwise, a KE-session is invoked with inputs
(P;, Pj,s,role). From this point on, whenever the KE protocol within P; receives a message that
specifies sender P; and session-id s, it forwards this message to the relevant KE-session within P;.
Once a KE-session returns (typically, after a number of messages have been exchanged between
P; and P;) with output (P;, P}, s, k), the KE protocol records a session establishment event with
parameters (P, P;, s, ) in its local output. From these parameters only the value « of the session
key is labeled ‘secret’. A KE-session that returns with a non-null value of k is called completed. If
x = null then the KE-session is aborted and a special note is recorded in the local output. It is
assumed by convention that, once a KE-session returns, its entire local state, except for the output
value, is securely erased. Note that this means that a session-state reveal after the session has
returned will produce an empty output for the attacker.

Matching sessions. We also use the following terminology: if in an execution of a KE protocol
P; has a session with input (P;, P;j, s, role) and party P; has a session with input (P}, P;, s, role’),
and s = s’ then we say that the two sessions are matching. (Note that we do not require that
role # role’.) We call P; and P; the partners of session s. (Note that P, may have completed a
session with partner P;, while P; may never complete the matching session; completion of sessions
depends on the delivery of the protocol’s message which is subject to adversarial control.)

Session expiration: an extension to the uM. The adversarial actions against a KE protocol
in the UM are essentially the same as the generic UM attacker described above, including party
corruption, session-state reveals, and session-output queries. For clarity, we will use the term
session-key query instead of session-output query when referring to KE sessions (namely, a session-
key query on a completed session provides the attacker with the value of that session key, the only
secret output of a KE session). We add, however, one more element to this model. We will consider
a protocol action called session expiration. A session expiration action can be scheduled by the
attacker for any completed session (P;, Pj, s, role) within party P;. The effect of this activity is that
the secret output of the session, i.e. the session key, is erased from the party’s memory. In addition,
a special note recording the session expiration is added to P;’s local output, and this KE-session is
labeled expired, with the following consequences. Adversary U is not allowed to perform a session-
key query for an expired session. In addition, when U corrupts a party, it does not see the local
outputs of the expired sessions (thus, upon party corruption the attacker learns the party’s session-
keys for unexpired sessions only.) As explained in Section 2 expiration of sessions is motivated by
the common practice to limit the life time of session keys and, in particular, is instrumental for
capturing the notion of perfect forward secrecy. Figure 1 needs to be updated by adding the session
expiration activity to the list of possible activities in Step 2.

Exposed sessions. Finally we introduce the following terminology. A KE-session (P, P;, s, role)
within P; is called locally exposed (within P;) if the attacker performed any of the following actions
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on said session: (i) a session-state reveal; (ii) a session-key query; (iii) corruption of P; before
session (P;, P}, s, role) expired within P; (this includes the case in which P; is corrupted before the
session is even invoked or completed).

A KE-session is called exposed if it is locally exposed or it has a matching session that is locally
exposed. A session which is not exposed is called unexposed.

3.4 The AM Model and Authenticators

The material in this Section is taken from [2].

The authenticated-links adversarial model (AM). The authenticated-links model of compu-
tation is identical to the unauthenticated-links one, with the following fundamental exception. The
AM-adversary, denoted A, can activate parties only with incoming messages that were generated
and sent by other parties in the protocol. That is, the attacker cannot inject or modify messages
(except if the specified sender is a corrupted party or if the message belongs to an exposed session).
In addition, any message may be delivered at most once. (Namely, A may decide not to deliver a
message at all, but if A delivers a message m then it can do so only to the proper destination of
m, only once, and without changing m or the specified sender.)

We define AUTH, 4 analogously to UNAUTH;/, where the computation is carried out in the
unauthenticated-links model.

Emulation of protocols. Central to the methodology of [2] and the current paper is the concept
of “protocol translation”, especially between the AM to the UM. We want to be able to start with
any protocol 7w that has some guaranteed functionality (or security) in the AM and generate out
of it a protocol 7’ with equivalent functionality in the UM. For this we first need to formalize the
notion of “equivalence”. This is done in the next definition from [2] (and which follows a general
approach used for defining secure multi-party protocols [23, 38, 1, 13]).

Definition 1 Let m and 7’ be an n-party message-driven protocols. We say that ©’' emulates 7 in
the unauthenticated-links model if for any UM-adversary U there exists an AM-adversary A such that
AUTH; 4 and UNAUTH. 3 are computationally indistinguishable.

Armed with the emulation definition we can turn to define what is meant by “protocol transla-
tion” from AM to UM. This is done in the next definition [2] in terms of “compilers” and “authen-
ticators”.

Definition 2 A compiler C is an algorithm that takes for input descriptions of protocols and outputs
descriptions of protocols. An authenticator is a compiler C where for any protocol 7, the protocol
C(w) emulates 7 in the unauthenticated-links model.

Constructing authenticators: the MT protocol. Thus, an authenticator can take for input
protocols designed for ideally authenticated links (AM), and turn them into ‘equivalent’ protocols for
adversary-controlled unauthenticated links (UM). But can such authenticators be constructed? The
answer is yes. The following methodology for constructing authenticators is used in [2]. Consider
the following simple protocol, called the message transmission (MT) protocol. The protocol takes
empty input. Upon activation within P; on action request send(FP;, Pj,m), party P; sends the
message (P;, Pj, m) to party Pj, and outputs ‘ ‘P; sent m to P;’’. Upon receipt of a message
(P;, Pj,m), Pj outputs  ‘P; received m from P;’’. When run in the AM this protocol represents
a perfectly authenticated message transmission protocol. Now, let A be a protocol that emulates MT
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in unauthenticated networks. We call such protocols MT-authenticators and we will see that they
can be constructed efficiently. On the basis of A\, define a compiler C) that on input a protocol
7 produces a protocol ' = Cy(7) defined as follows. When 7’ is activated at a party P; it first
invokes X. Then, for each message sent in protocol 7, protocol " activates A\ with the action request
for sending the same message to the same specified recipient. Whenever 7’ is activated with some
incoming message, it activates A with the same incoming message. When X outputs ¢ ¢ P; received
m from P;’’, protocol 7 is activated with incoming message m from P;. It is shown:

Theorem 3 ([2]) Let A be an MT-authenticator. Then Cy is an authenticator.

Thus, in order to see that authenticators can be constructed it suffices to show constructions
of MT-authenticators. This is done in [2] where several such schemes are shown based on different
cryptographic functions (such as digital signatures and encryption).

In Section 6.2 we extend the MT protocol to a setting of multiple concurrent sessions. We call
the resultant protocol sMT. It is straightforward to extend the proof of the above theorem to cover
the case of sMT-authenticators as well.

4 Session-Key Security

After having defined the basic formal model for key-exchange protocols and adversarial capabilities,
we proceed to define what is meant for a key-exchange protocol to be secure. While the previous
sections were largely based on the work of [2], our definition of security closely follows the definitional
approach of [7]. The resultant notion of security, that we call session-key security (or SK-security),
focuses on ensuring the security of individual session-keys as long as the session-key value is not
obtained by the attacker via an explicit key exposure (i.e. as long as the session is unezposed — see
the terminology in the previous section). We want to capture the idea that the attacker “does not
learn anything about the value of the key” from interacting with the key-exchange protocol and
attacking other sessions and parties. As it is standard in the semantic-security approach this is
formalized via the infeasibility to distinguish between the real value of the key and an independent
random value.

We stress that this formulation of SK-security is very careful about tuning the definition to
offer enough strength as required for the use of key-exchange protocols to realize secure channels
(Section 6), as well as being realistic enough to avoid over-kill requirements which would prevent
us from proving the security of very useful protocols (Section 5). We further discuss these aspects
after the presentation of the definition.

4.1 Definition of SK-Security

We first present the definition for the uM. The formalization in the AM is analogous. We start by
defining an “experiment” where the attacker U chooses a session in which to be “tested” about
information it learned on the session-key; specifically, we will ask the attacker to differentiate the
real value of the chosen session key from a random value. (Note that this experiment is an artifact
of the definition of security, and not an integral part of the actual key-exchange protocols and
adversarial intervention.)

For the sake of this experiment we extend the usual capabilities of the adversary, U, in the
UM by allowing it to perform a test-session query. That is, in addition to the regular actions of U
against a key-exchange protocol w, we let U to choose, at any time during its run, a test-session
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among the sessions that are completed, unexpired and unexposed at the time. Let s be the value of
the corresponding session-key. We toss a coin b, b & {0,1}. If b = 0 we provide U with the value .
Otherwise we provide U with a value r randomly chosen from the probability distribution of keys
generated by protocol w. The attacker U is now allowed to continue with the regular actions of a
UM-adversary but is not allowed to expose the test-session (namely, it is not allowed session-state
reveals, session-key queries, or partner’s corruption on the test-session or its matching session.®)
At the end of its run, U outputs a bit b’ (as its guess for b).

We will refer to an attacker that is allowed test-session queries as a KE-adversary.

Definition 4 A KE protocol 7 is called SK-secure if the following properties hold for any KE-
adversary U in the UM.

1. Protocol 7 satisfies the property that if two uncorrupted parties complete matching sessions
then they both output the same key; and

2. the probability that U guesses correctly the bit b (i.e., outputs b’ =b) is no more than 1/2 plus
a negligible fraction in the security parameter.

If the above properties are satisfied for all KE-adversaries in the AM then we say that w is SK-secure
in the AM.

The first condition is a “consistency” requirement for sessions completed by two uncorrupted
parties. We have no requirement on the session-key value of a session where one of the partners
was corrupted before the session completed — in fact, most KE protocols allow a corrupted party to
strongly influence the exchanged key. The second condition is the “core property” for SK-security.
We note that the term ‘negligible’ refers, as customary, to any function (in the security parameter)
that diminishes asymptotically faster than any polynomial fraction. (This formulation allows, if
so desired, to quantify security via a concrete security treatment. In this case one quantifies the
attacker’s power via specific bounds on computation time, number of corruptions, etc., while its
advantage is bounded through a specific parameter .)

Remark. We highlight three aspects of Definition 4.

e The attacker can keep running and attacking the protocol even after receiving the response
(either real or random) to its test-session query. This ability (which represents a substantial
strengthening of security relative to [7], see also [6]) is essential for proving the main property
of SK-security shown in this paper, namely its guarantee of security when used to generate
secure channels as described in Section 6. See the Appendix for historic background on, as
well as some technical rationale for this requirement.

e The attacker is not allowed to corrupt partners to the test-session or issue any other exposure
command against that session while unexpired. This reflects the fact that there is no way
to guarantee the secure use of a session-key that was exposed via an attacker’s break-in
(or cryptanalysis). In particular, this restriction is instrumental for proving the security of
specific important protocols (e.g., Diffie-Hellman key exchange) as done in Section 5.

5We stress, however, that the attacker is allowed to corrupt a partner to the test-session as soon as the test-session
(or its matching session) expires at that party. See the discussion below. This may be the case even if the other
partner has not yet expired the matching session or not even completed it.
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e The above restriction on the attacker by which it cannot corrupt a partner to the test-session
is lifted as soon as the session expires at that partner. In this case the attacker should remain
unable to distinguish between the real value of the key from a random value. This is the basis
to the guarantee of “perfect forward secrecy” provided by our definition and further discussed
in Section 4.2.

We stress that in spite of its “compact” formulation Definition 4 is very powerful and can be
shown to ensure many specific properties that are required from a good key-exchange protocol (see,
for example, chapter 12 of [37]). Some of these properties include the guarantee that session-keys
belong to the right probability distribution of keys (except if one of the partners is corrupted at
time of exchange), the “authenticity” of the exchange (namely, a correct and consistent binding
between keys and parties’ identities), resistance to man-in-the-middle attacks (for protocols proven
SK-secure in the UM), resistance to known-key attacks, forward secrecy, and more. However, we
note that all these properties (which are sometimes listed as a replacement to a formal definition
of security) in combination do not suffice to guarantee the most important aspect of key-exchange
security that SK-security enjoys: namely, the composition of the key-exchange protocols with
cryptographic functions to enable secure channels (e.g., the original definition of security in [7]
does satisfy the above list of properties but is insufficient to guarantee secure channels).

We finally remark that Definition 4 makes security requirements from a KE protocol only in case
that the protocol completes KE-sessions. No guarantee is made that KE-sessions will ever return,
or that they will not be aborted, i.e., that the corresponding session key will not be null. (In fact,
a KE protocol where all KE-sessions “hang” and never return satisfies the definition.) One can
add an explicit termination requirement for sessions in which the parties are uncorrupted and all
messages are correctly delivered by the attacker. For simplicity, we choose to leave the analysis of
the termination properties of protocols out of the scope of the definition of security.

4.2 Forward Secrecy

Informally, the notion of “perfect forward secrecy” (PFS) [26, 19] is stated as the property that
“compromise of long-term keys does not compromise past session keys”. In terms of our formalism
this means that even if a party is corrupted (in which case all its stored secrets — short-term and
long-term — become known to the attacker) then nothing is learned about sessions within that party
that were previously unexposed and expired before the party corruption happened.

The provision that ezpired session-keys remain indistinguishable from random values even if a
partner to that session is corrupted guarantees the perfect forward secrecy of SK-secure protocols.
Put in other words, when proving a protocol to be SK-secure using Definition 4 one automatically
gets a proof that that protocol guarantees PFs.

On the other hand, while PFS is a very important security property it is not required for
all application scenarios, e.g., when only authentication is required, or when short-term secrecy
suffices. Indeed, it is common to find in practice protocols that do not provide PFS and still are
not considered insecure. One such typical case are “key-transport protocols” in which public key
encryption is used to communicate a session-key from one party to another. (In this case, even
if session-keys are erased from memory when no longer required, the corruption of a party may
allow an attacker to compute, via the discovered long-term private keys, all the past session-keys.)
Due to the importance of such protocols (they are commonly used in, e.g., SSL), and given that
achieving PFS usually has a non-negligible computational cost, we define a notion of “SK-security
without PFS” by simply disallowing the protocol’s action of key expiration. That is, under this
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modified model, session-keys never expire. This results in a weaker notion of security since now by
virtue of Definition 4 the attacker is never allowed to corrupt a partner to the test-session (or in
other words, this weaker definition of security does not guarantee the security of a session-key for
which one of the partners is ever corrupted).

Definition 5 We say that a KE protocol satisfies SK-security without PFS if it enjoys SK-security
relative to any KE-adversary in the UM that is not allowed to expire keys. (Similarly, if the above
holds for any such adversaries in the AM then we say that w is SK-secure without PFS in the AM.)

Section 5.3 describes a protocol that satisfies SK-security without PFs but not regular SK-security.

5 SK-Secure Protocols

This section demonstrates the usability of our definition of SK-security for proving the security of
some simple and important key-exchange protocols. One is the original Diffie-Hellman protocol, the
other is a simple “key transport” protocol based on public-key encryption. We first show that these
protocols are secure in the simpler authenticated-links model (AM). Then, using the methodology
from [2] we can apply to these protocols a variety of (symmetric or asymmetric) authentication
techniques to obtain key-exchange protocols that are secure in the realistic UM model. Namely,
applying any MT-authenticator (see Sections 2.3 and 3.4) to the messages of the AM-protocol results
in a secure KE protocol in the UM. The next Theorem states that this methodology does work for
our purposes.

Theorem 6 Let m be a SK-secure key-exchange protocol in the AM with PFS (resp., without PFS)
and let A be an MT-authenticator. Then ' = C\(w) is a SK-secure key-exchange protocol in the
UM with PFS (resp., without PFS).

We remark that the following proof is somewhat more general, and proves that any authenticator
(not only MT-authenticators) is sufficient for proving the theorem.

Proof: We start by noting that the theorem’s statement does not follow directly from the results of
[2] (specifically from Theorem 3 in that paper) since there the guarantee for secure transformation
between models is proven for the basic UM and AM. Here we need to extend the proof to capture the
additional test-session queries that we allow the KE-adversary against the KE protocol. Also worth
noting is that our UM and AM are richer than the ones in [2] (e.g. they include session expiration
and session-state reveals), however it is easy to see that the proof of Theorem 3 in [2] will work for
these adversary activities as well.

Based on these facts we proceed to prove that if protocol 7 satisfies SK-security (Definition 4)
in the AM then protocol ©' = C)(x) satisfies that definition in the UM. We note that the proof
is the same for the cases of SK-security with or without PFS. Consider a protocol m that satisfies
Definition 4 in the AM, and let &/ be a KE-adversary against 7’ in the UM. We first observe that 7’
satisfies Requirement 1 of Definition 4 in the UM with respect to U (otherwise the global output of
running 7’ in the UM with U/ is easily distinguishable from the global output of running 7 in the
AM with any AM KE-adversary, in contradiction to the fact that C) is an authenticator).

Next we concentrate on demonstrating that 7' satisfies Requirement 2 of Definition 4 in the
UM. Specifically, given a KE-adversary U that guesses the bit b in the game of Definition 4 in the
UM with probability 1/2 + €, we construct a KE-adversary 4 that guesses the bit b in the game of
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Definition 4 in the AM with probability 1/2 + €/, where €' is polynomial in € and in the security
parameter.
The construction of A proceeds in few steps, as follows:

1. Given U, we first construct a regular UM-adversary U’ against 7' (i.e., U’ is not allowed to
make test-session queries). Adversary U’ runs adversary U and follows its instructions, with
the following exception: When U chooses a test-session s, U’ queries session s and chooses
b & {0,1}. If b = 0 then &’ hands the key of session s to . If b =1 then &’ hands U a value
drawn from the distribution of session keys. Next, U’ returns to following the instructions of
U. When U halts, U’ outputs the transcript of its interaction with &/ and halts.

2. Since ©' = C\(w), we have that there exists an adversary, A’ in the AM whose output is
indistinguishable from the output of I/’

3. Given adversary A’, we construct the KE-adversary A promised above. Recall that A interacts
in the AM with the game of Definition 4. A starts by choosing a session s at random out of
the sessions initiated by A’. Next, A follows the instructions of A’; when the chosen session
s is established, A announces s to be its test session. In addition, if A" queries session s (and
session s is not yet exposed) then A feeds the obtained value for the key of session s to A’
Next A returns to following the instructions of A’. When A’ halts, A inspects the output of
A’. Recall that the output of A" mimics the output of ', which in turn describes a transcript
of an execution of Y. If in that transcript of U the test session is session s then A outputs
the bit o' that U outputs in that transcript. Otherwise, A outputs a randomly chosen bit.

We analyze the success probability of A4 under the assumption that the output of A’ and U’ are
identically distributed. Accounting for the fact that the two outputs are only computationally
indistinguishable is done in standard ways.

Let ¢ be an upper bound on the number of sessions invoked by U, the advantage (i.e., the
probability of success over 1/2) of A is 1/ times its advantage conditioned on the event that the
test session chosen by U (in the output of A’) equals s. For the rest of the analysis we assume that
the test session chosen by U (in the output of A') equals s.

Let py denote the probability that i/ outputs 1 when interacting with the game of Definition 4
in the UM, when the value of the “real or random” bit is b. We have that |preal — Prandom| > €. Also,
when run within &', U outputs 1 with probability (preal + Prandom)/2. Consider the following cases:

1. Assume that A is given the “real” key of the test session s. In this case, the view of U
(within the output of A" that is run inside A) is distributed identically to its view when /'’
interacts with 7' in the umM. In this case & (and thus also A) outputs 1 with probability

(preal + prandom)/2-

2. Assume that A is given the “random” value for the key of the test session s. In this case,
the view of U (within the output of A’ that is run inside A) is distributed identically to its
view when interacting in the game of Definition 4 in the UM, conditioned on the event that
it is given a “random” value for the key of the test session. In this case U (and thus also A)
outputs 1 with probability prandom-

It follows that, when A’ perfectly simulates U’, the advantage of A is €/2¢. O
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5.1 Two-move Diffie-Hellman in the AM

We demonstrate that under the Decisional Diffie-Hellman (DDH) assumption (see below) the ‘clas-
sic’ two-move Diffie-Hellman key-exchange protocol designed to work against eavesdroppers-only is
SK-secure in the AM. We denote this protocol by 2DH and describe it in Figure 2 (here and in the
sequel all exponentiations are modulo the defined prime p).

Using Theorem 6 we can apply any authenticator to this protocol to obtain a secure Diffie-Hellman
exchange against realistic UM attackers. For illustration, a particular instance of such a SK-secure
protocol in the UM, using digital signatures for authentication, is shown in the next section. Other
flavors of authenticated DH protocols can be derived in a similar way by using other authenticators
(e.g. based on public key encryption or on pre-shared keys [2]); see Section 5.4.

Protocol 2pH

Common information: Primes p,q, ¢/p-1, and g of order ¢ in Z}.
Step 1: The initiator, P;, on input (P;, P}, s), chooses & Z, and sends (P;, s, = g%) to P;.
Step 2: Upon receipt of (P;,s,«) the responder, P;, chooses y & Zg, sends (Pj, s, = g¥) to P,

erases y, and outputs the session key v = a¥ under session-id s.

€T

Step 3: Upon receipt of (Pj,s, ), party P; computes v = 7, erases x, and outputs the session

key 4" under session-id s.

Figure 2: The two-move Diffie-Hellman protocol in the AM

The Decisional Diffie-Hellman (DDH) assumption is as follows.

Assumption 7 Let k be a security parameter. Let p,q be primes, where q is of length k bits
and q/p—1, and g be of order q in Zy. Then the probability distributions of quintuples Qo =

{(p,9.9%. g%, 9™) : m,y & Z;} and Q1 = {(p,9,9%,9Y.¢°) : Ty, 2 & Z;} are computationally
indistinguishable.

Theorem 8 Assuming the Decisional Diffie-Hellman (DDH) assumption, protocol 2DH is SK-
secure in the AM.

Proof: To see that the first requirement of Definition 4 is satisfied, note that if both P; and P;
are uncorrupted during the exchange of the key and both complete the protocol (i.e. the three
steps of the protocol are completed by P; and P;) then they both establish the same key (which is
v =7 = ¢" mod p). Note that the session identifier s uniquely binds the values of ¢* and ¢¥ to
these particular matching sessions and differentiates them from other exponentials that the parties
may exchange in other (possibly simultaneous) sessions.

We show that the second requirement of Definition 4 is also satisfied by protocol 2DH. Assume
to the contrary that there is a KE-adversary A in the AM against protocol 2DH that has a non-
negligible advantage in guessing correctly whether the response to a test-query is real or random.
Out of this attacker A, we construct an algorithm D that distinguishes between the distributions
Qo and )7 with non-negligible probability; thus reaching a contradiction with Assumption 7. The
input to D is denoted by (p, g, a*, 5*,7*) and is chosen from Qg or @ each with probability 1/2.
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Let £ be an upper bound on the number of sessions invoked by A in any interaction. Algorithm D
uses adversary A as a subroutine and is described in Figure 3.

Distinguisher D

Proceed as follows, on input (p, g, a*, 8*,v*):

1. Choose r & {1...¢}.

2. Invoke A, on a simulated interaction in the AM with parties Py, ..., P, running 2DH. Hand A
the values p, g as the public parameters for the protocol execution.

3. Whenever A activates a party to establish a new session (except for the r-th session) or to
receive a message, follow the instructions of 2DH on behalf of that party. When a session is
expired at a player erase the corresponding session key from that player’s memory. When
a party is corrupted or a session (other than the r-th session) is exposed, hand A all the
information corresponding to that party or session as in a real interaction.

4. When the r-th session, say (P;, P;, s), is invoked within P; to exchange a key with P;, let P;
send the message (P;, s,a*) to P;.

5. When P; is invoked to receive (P;,s,a*), let P; send the message (Pj, s, 3*) to P;.

6. If session (P;, Pj, s) is chosen by A as the test-session, then provide A with v* as the answer
to this query.

7. If the r-th session (P;, P;,s) is ever exposed, or if a session different than the r-th session
is chosen as the test-session, or if 4 halts without choosing a test-session then D outputs

b & {0,1} and halts.
8. If A halts and outputs a bit b, then D halts and outputs b’ too.

Figure 3: Building a distinguisher for DDH

First note that the run of A by D (up to the point where A stops or D aborts A’s run) is
identical to a normal run of A against protocol 2DH.

Consider the case in which the test session s chosen by A coincides with the session chosen at
random by D (i.e., the r-th session as chosen in Step 1). In this case, the response to the test-query
by A is v*. Thus, if the input to D came from )y then the response was the actual value of the
key exchanged between P; and P; during the test-session s (since, by construction, the session key
exchanged in Steps 4 and 5 of Figure 3 is v* = ¢"¥). On the other hand, if the input to D came
from (1 then the response to the test query was a random exponentiation, i.e. a random value from
the distribution of keys generated by the protocol. In addition, the input to D was chosen with
probability 1/2 from @y and with probability 1/2 from @ and then the distribution of responses
provided by D to the test query of A is the same as specified by Definition 4. In this case, the
probability that A4 guesses correctly whether the test value was “real” or “random” is 1/2 + ¢ for
non-negligible €. By the above argument this is equivalent to guessing whether the input to the
distinguisher D came from Qg or @1, respectively. Thus, by outputting the same bit as A we get
that the distinguisher D guesses correctly the input distribution Q) or )1 with the same probability
1/2 + ¢ as A did.

Now consider the case in which the r-th session is not chosen as a test-session. In this case
D always ends outputting a random bit, and thus its probability to guess correctly the input
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distribution is 1/2.

Since the first case (in which the test-session and the r-th session coincide) happens with
probability 1/¢ while the other case happens with probability 1 — 1/¢ we get that the overall
probability of D to guess correctly is 1/2 + /£, and thus D succeeds in distinguishing @y from Q)
with non-negligible advantage.

O

5.2 SK-secure Diffie-Hellman Protocol in the uMm

Here we apply the signature-based authenticator of [2] to the protocol 2DH from Figure 2 to obtain
a Diffie-Hellman key-exchange that is SK-secure in the UM. We present the resultant protocol in
Figure 4 (it is very similar to a protocol specified in [29]). Its SK-security follows from Theorems
6 and 8.

Protocol siG-DH

Initial information: Primes p,q, ¢/p—1, and g of order ¢ in Z;. Each player has a private key for a
signature algorithm SIG, and all have the public verification keys of the other players.

Step 1: The initiator, P;, on input (P;, P}, s), chooses & Z, and sends (P;, s, = ¢g”) to P;.

Step 2: Upon receipt of (P;, s, a) the responder, P;, chooses y pil Z4, and sends to P; the message
(Pj, s, = g¥) together with its signature s1G;(Pj, s, 8, a, P;); it also computes the session key
v = a¥ and erases y.

Step 3: Upon receipt of (P}, s, ) and P;’s signature, party P; verifies the signature and the cor-
rectness of the values included in the signature (such as players identities, session id, the
value of exponentials, etc.). If the verification succeeds then P; sends to P; the message
(P, s,81G;(P;, s,a, B, Pj)), computes ' = %, erases x, and outputs the session key 7' under
session-id s.

Step 4: Upon receipt of the triple (P;, s, sig), P; verifies P;’s signature sig and the values it includes.
If the check succeeds it outputs the session key v under session-id s.

Figure 4: Diffie-Hellman protocol in the UM: authentication via signatures.

Remarks on protocol siG-DH. The protocol is the result of applying the signature-based
authenticator of [2] to each of the flows in the 2-pass Diffie-Hellman protocol 2DH of Figure 2,
and joining (piggy-backing) the common flows. The authenticators use the values a and 3 (the
DH exponentials) as the challenges required by these authenticators. This assumes (as specified
in protocol 2DH) that these exponentials are chosen afresh for each new exchange. We remark
that this dual use of @ and  as exponentials and as challenges is done to simplify the protocol but
separate challenges could be sent by the parties and included under the signature. It is worth noting
that the identity of the destination party included under the signatures is part of the specification
of the signature-based authenticator of [2] and is fundamental for the security of protocol SIG-DH
(without them the protocol is insecure; see [19]).

The description of SiG-DH in Figure 4 assumes, as formalized in our model, that the value s of
the session-id is provided to the parties. In practice, one usually generates the session identifier
s as a pair (s1,82) where s; is a value chosen by P; and different (with very high probability)
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from all other such values chosen by P; in his other sessions with P;. Similarly, so is chosen by P;
with an analogous uniqueness property. These values s, so can be exchanged by the parties as a
prologue to the above protocol (this may be the case of protocols that implement such a prologue
to exchange some other system information and to negotiate exchange parameters; see for example
[28]). Alternatively, s; can be included by P; in the first message of SIG-DH, and s, be included by
P; in the second message. In any case, it is important for the security of the protocol that these
values be included under the parties’ signatures.

5.3 A public-key encryption-based protocol without PFs

The protocol described in this section is based on public key encryption schemes secure against
chosen ciphertext attacks. We show that this protocol satisfies Definition 5, i.e. SK-security
without PFS, in the AM. That is, the protocol does not provide forward secrecy of the session keys
(an attacker who breaks into a party may compromise all the keys exchanged by this party in the
past even if these keys are erased from that party’s memory). Formally, we consider that session
keys never expire. The protocol can be made into a SK-secure without PFS protocol in the UM by
using any authenticator (Theorem 6).

Let (G, FE,D) be a key-generation, encryption and decryption algorithms, respectively, of a
public-key encryption scheme secure against chosen ciphertext attacks (CCA). (See, for instance,
[20, 4, 17]). Let k be the security parameter. Assume that each party P; has invoked G(k) to get
a pair (e, d;) of encryption and decryption keys, and all parties have the public encryption key e;
of the other parties. In addition, let {fi},c(0,13» be a pseudorandom function family (as in [22]).
The protocol, denoted ENC, is described in Figure 5.

Protocol ENC

Proceed as follows, given security parameter k.

Step 1: The initiator, P;, on input (P;, P;, s), chooses & & {0,1}* and sends (P;, s,E.;(k)) to P;.
Next, P; outputs the session key o = f.(P;, P}, s) under session-id s.

Step 2: Upon receipt of (P;,s,c) the responder, P;, computes &' = Dg;(c). If the decryption
algorithm does not reject the ciphertext, then P; outputs the session key o' = f./(P;, P, s)
under session-id s.

Figure 5: A KE protocol based on CCA-secure encryption.

Remark. For ensuring the security of protocol ENC we need to assume that the decryption
operation k' = Dy (c) (including the validity check for the ciphertext c) and the computation
of the pseudorandom value f,/(P;, P;,s) in Step 2 are performed such that neither the long-term
decryption key d; or the temporary value x’ appear as part of the state of session s. Namely, we
need to assume that these operations are done in a separate secure module and only the value
o' = f (P, Pj,s) is returned to the session state. The assumption that long-term private keys are
not part of the session state is a fundamental requirement in a model as ours that differentiates
session-state corruptions from total corruptions (see Section 2.2). The need to hide ' from the
session state is a specific requirement of the ENC protocol and it is illustrated by the following attack.
Say that x’ is returned to the session state, then an attacker could compromise an unexposed session
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(P;, P}, s) as follows. It corrupts party Pl # i, 7, and initiates an ENC session (P}, Pj, s’) between
the corrupted P, and P; in which P, sends to P; the same ciphertext ¢ sent in session s from P; to
Pj. Once P; decrypts ¢ and stores the temporary value s’ in the state of session s', the attacker
performs a session-state reveal and learns x’. Now it can also compute the value of the session
key corresponding to the unexposed session s. Thus, this attack (and the proof of Theorem 9)
show the care needed in specifying and implementing the ENC protocol if we require resistance to
session-state reveals. Whether this is a realistic risk or not may depend on particular applications
and scenarios. In any case, if a separate module for the above operations cannot be assumed then
the protocol becomes insecure in our model but is still secure in a model where session states can
only be revealed via total corruptions (i.e., a weakened model where session-state reveals are not
considered as a separate attacker action).

Theorem 9 If the encryption (G, E,D) is CCA-secure and the family {fn}ne{oyl}k s pseudoran-
dom, then protocol ENC is SK-secure without PFS in the authenticated links model (AM).

Proof: Tt is easy to see that the first condition of Definition 4 is satisfied by protocol ENC (that
is, uncorrupted parties that complete matching sessions output the same session-key). The core of
the proof is in proving the second condition of Definition 4 in the case where keys are not expired.

We start by defining a “game” which captures the chosen-ciphertext security of the encryption
function E' in combination with the pseudorandom family {fx},c(0,13+- We will then show that an
attacker that breaks the SK-security of protocol ENC can also win in this game and then break the
encryption function E. The game is defined in Figure 6.

The encryption game

The parties to the game are G and B (for good and bad). G possesses a pair of public and private
keys, e and d (generated via the key generation algorithm G). B knows e but not d.
The game proceeds in phases:

Phase 0: G provides B with a challenge ciphertext ¢* = E, (ko) for ko < {0, 1}*.

Phase 1: B sends a pair (¢,t) to G who responds with f,.(t) where kK = Dg4(c). This is repeated
a polynomial (in k) number of times with each pair being chosen adaptively by B (i.e., after
seeing G’s response to previous pairs).

Phase 2: B sends a test string t* to G. Then G chooses a random bit b <& {0,1}. If b = 0 then
G responds with fy, (t*) where kg is the value encrypted by G in phase 0. If b = 1 then G
responds with a random string r of the same length as f, (t*).

Phase 3: Same as Phase 1.
Phase 4: B outputs a bit b'.
And the winner is... B if and only if b = b'.

Figure 6: A game that captures the CCA-security of the encryption function F

We state the following Lemma, (the proof uses standard arguments and, in particular, is similar

22



to the proof of the encryption-based authenticator from [2]).

Lemma 10 Assume that the encryption scheme (G, E, D) is CCA-secure and the family { fi}.c (o1
is pseudorandom. Then if the pair (c*,t*) is not queried by B during Phases 1 and 3 the probability
that B wins in the above game is no more than 1/2 plus a negligible fraction.

We note that B is not allowed (in the lemma formulation) to query the pair (¢*,¢*) but it is
allowed to include, separately, the values ¢* and t* in other pairs.

We now proceed to show that if there is an AM KE-attacker A that breaks the SK-security of
protocol ENC in the sense that it can distinguish between real and random values of a test session
while not being allowed to corrupt the partners to this session, then there is an efficient algorithm
B that wins in the above game with non-negligible probability over 1/2.

We build such B. Let G be the party against which B plays the game. G holds a private
decryption key d and public encryption key e. The game starts with G sending a challenge ciphertext
c* to B. Then, B proceeds to Phase 1 of the game doing the following. It builds a virtual scenario for
the run of protocol ENC, and activates the attacker A against this virtual run. Among all n parties
in this run, B chooses one at random, call it P;. For all other virtual players B chooses private
keys (using the key generation algorithm G) and provides A with the corresponding public keys.
B does not choose a private key for P instead it provides A with e (the public key of G) as the
public key of P;. Also, B chooses a random session among the sessions where P} is the responder.
We denote this session as s*, and its initiator as P;* (i.e. the chosen session is (P;, Pj, s*)).

All operations scheduled by A are performed by B on behalf of the virtual players in the
following way. All session establishments are executed by B according to the protocol except for
the establishment of session s*. When A schedules the establishment of session s* between P;* and
P}, B sends the message (P;,s*,c*) to P/ on behalf of P;". Here c* is the challenge ciphertext
provided to B by G in Phase 0.

All exposure of session keys performed by A, via session or party corruptions, that do not involve
P as the responder are answered by B using his knowledge of private keys. When A corrupts a
party other than P} and P, then B also provides A with the private key of that party. If a session
s # s* between a player P and P} in which the latter acts as responder is exposed by A, then B
provides the value of that key to A in the following way. If P was uncorrupted at the time that s
was established then B was the one to choose the key x encrypted by P and then it knows it. If P
was corrupted then all B knows is the message (P, s,c) sent from P to P; as step 1 in the protocol.
In this case B presents to G (as part of Phase 1) the pair (c,t) where t = (P, Pf,s). The value
o returned by G is the value that B provides to A as the queried session key (note that by our
assumption in the Remark preceding the Theorem the only information exposed in a session-key
query or in session-state reveal is the value of the session key so no other information needs to be
returned by B to A).

If at any point A queries or reveals session s*, corrupts P or Py, or chooses a test session
different than s*, B proceeds as follows. It aborts the run of A4 and moves to Phase 2 sending an
arbitrary value t* to G. After getting G’s response it moves directly to Phase 4 outputting a random
bit b'.

If A decides to be tested on session s* then B moves to Phase 2 and sends to G the value
t* = (P, P}, s"). The response from G is passed by B to A as the value of the key for session s*.

B enters Phase 3. Tt keeps running A in the same way as described for Phase 1 above (note
that in this case A is not allowed to expose s*). When A outputs a bit &’ and stops, then B moves
to Phase 4 and outputs the same bit b’ as A did.
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We first note that the above behavior of B in the game is a legal one, namely, that it never asks
the pair (¢*,t*) from G in phases 1 and 3. This is easy to see since all pairs queried by B during
these phases contain a value ¢ different than ¢*. Indeed all the values ¢ queried by B have the form
of a triple (P,Q,s) where P, are player identities and s a session identifier. Thus, due to the
uniqueness of session-id’s the value t* = (P}, Py, s*) occurs only with relation to session s* which
is never queried by B from G in phases 1 and 3.

Now we prove that B wins the game against G with non-negligible advantage. First, note that
in the cases where B aborts the run of A before completion it outputs a random bit b so its chances
to win in this case is exactly 1/2. In the case where A ends with output &’ the chances of B to win
are exactly the same as those of A to guess correctly whether the test value was real or random.
This probability is, by assumption, non-negligible over 1/2. The later case happens whenever the
tested session chosen by A is the same s* chosen (randomly) by B. Since this event happens with
non-negligible probability (1/¢ where £ is an upper bound on the number of sessions established in
the protocol run) then the overall advantage of B is non-negligible. O

Remarks on Protocol ENC.

1. The derivation of the session key via a pseudorandom function applied to the session and
parties’ identifiers is of fundamental importance for the security of the protocol. Had the
session key be just x then the protocol would be insecure (even in the AM!). In this case the
attacker sees that P; sends the ciphertext (k) to P;. Then party Fj, that we assume is
controlled by the attacker, sends the same ciphertext to P;. Now, P; has established the same
session-key with two different parties. This a serious security flaw’ that breaks SK-security:
the attacker can now query P; for the key exchanged with P, and in this way to learn the key
that P; exchanged with P;.

2. The actual security of protocol ENC can be improved by specifying that sessions do expire
at the initiator (and the corresponding keys removed from its memory). This preserves SK-
security and adds considerably to the practical security of the protocol. For example, consider
an application where the initiators are mobile devices, vulnerable to the stealing of the private
key, communicating with a well-protected gateway. In this case, if we let keys to expire at
the initiator, then finding the decryption key of such a mobile device is of no help to the
attacker in recovering past (expired) session keys. The attacker must break the gateway to
obtain these keys.

3. Another stronger version of this protocol is obtained by letting each party send the other a
key as in ENC and deriving the shared session key in a way that requires knowledge of both
encrypted keys. In this case, the protocol still does not provide PFs but (if keys are erased
from memory when the session is expired) the only way to recover a past key is to find the
private keys of both initiator and responder. This is the basis to the DH-less mode of SKEME
[32]. However, note that our definition of SK-security (with PFS) would reject such a protocol
as secure. A weakened version of the definition that is satisfied by the protocol is obtained if
one requires that at most one of the partners to the modified session can be corrupted (and
only after the key is expired at that party).

"119] describes an attack in which a dishonest customer exploits a key-exchange weakness to defraud a bank and a
honest customer; the same attack can be mount here with P; acting as the bank, and P; and P, acting as the honest
and cheating customers, respectively. See [19] for the details.
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5.4 Protocols based on shared keys

In order to further illustrate the usability of our methodology we show how to apply it to key-
exchange protocols that assume that the two peers initially share a secret key and use this key
to authenticate the exchange of new key material. This “key refreshment” functionality is very
important in network security protocols (e.g. [32, 28]). We show examples of SK-secure protocols
with and without PFs.

These examples use the following MAC-based authenticator that assumes a shared key &;;
between a pair of parties P;, P;. Let f denote a secure MAC function, and «;; be a random key for
f chosen under security parameter k. The authenticator is defined as follows: when P, wants to
send a message to a recipient P;, the latter sends a challenge r & {0,1}%F to P;, and P; sends the
message m together with the authentication tag fy,. (Pj,r,m). The security of this authenticator
can be proven in a way similar to the proof of the signature-based authenticator from [2].

Applying this authenticator to the basic two-move Diffie-Hellman protocol 2DH in the AM one
obtains (see Section 5.1) an SK-secure Diffie-Hellman protocol (with PFS) in the um. We omit a
detailed description of the resultant protocol and just point out that it is similar to protocol SIG-DH
from Section 5.2 where the digital signatures are replaced with the application (by P; and Pj) of
the MAC function keyed under the shared key ;;.

Protocol REKEY

Initial information: Each pair of players (P;, P;) share a secret pseudorandom function f,;.
Protocol REKEY in the AM:
Step 1: The initiator, P;, on input (P;, P}, s), chooses r; & {0,1}?* and sends (P;, s,r;) to P;.

Step 2: Upon receipt of (P;,s,r;), the responder P; chooses r; & {0,1}?* and sends (P}, s,r;) to
P;. Then, P; outputs session key f,. (r,7;)

Step 3: Upon receipt of (Pj,s,r;), player P; outputs session key fi,, (ri,7;).

Protocol REKEY in the uMm:
Step 0: Both players derive two keys from ;;: k1 = fx;; (1) and k2 = f;(2).
Step 1: The initiator, P;, on input (P;, P}, s), chooses r; & {0,1}?* and sends (P;, s,r;) to P;.

Step 2: Upon receipt of (P;, s, r;), the responder P; chooses r; & {0,1}?*, computes
t; = fr.(Pi,ri,s,r;) and sends (P}, s,rj,t;) to P;.

Step 3: Upon receipt of (Pj,s,rj,t;), player P; verifies the authentication tag ¢; and if successful
it computes t; = f., (Pj,rj,s,ri), sends (P;, s, t;) to P;, and outputs session key fy, (r:,7;).

Step 4: Upon receipt of (P;,s,t;), player P; verifies the authentication tag ¢; and if successful it
outputs session key f,(ri,7;).

Figure 7: Key-refresh protocol based on a shared secret. The protocol in the UM is the
result of applying the MAC-based authenticator to the protocol in the AM

We proceed to show yet another example of the application of our modular methodology for
designing and proving KE protocols. In this case we show a simple and efficient protocol to derive
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a fresh session key between players P; and P; based on the common (“master”) secret key x;; and
without the use of Diffie-Hellman (the protocol does not provide PFs). In Figure 7 we present
the protocol in the AM and the protocol in the UM where the latter is derived from the former by
applying the above based MAC-based authenticator to each of the protocol’s messages and joining
(piggy-backing) the common flows. We note that in this case we use a pseudorandom family f
rather than a mere MAC for the implementation of the authenticator.

The SK-security (without PFs) of the AM version of REKEY follows directly from the properties
of pseudorandom functions. The SK-security (without PFS) of the second protocol in the UM is
the result of applying the MAC-based authenticator to the first protocol. Note that we are using
fr, with the functionality of a pseudorandom function as in the AM protocol, and f,, with the
functionality of a MAC for the implementation of the MAC-based authenticator. As in the case
of protocol SIG-DH, also here we are re-using the strings r; and r; both for key derivation and as
challenges for the authenticator. We remark that the REKEY protocol in the UM is similar to the
AKEP?2 protocol from [7].

We end this section by remarking that another interesting use of our results is for analyz-
ing the password-based KE protocols from [27]. It is shown there how to build a password-based
authenticator which is then used to authenticate a Diffie-Hellman exchange.

6 Applications to Secure Channels

It is common practice to protect end-to-end communications by letting the end parties exchange
a secret session key and then use this key to authenticate and encrypt the transmitted data under
symmetric cryptographic functions. In order for a key-exchange protocol to be considered secure it
needs to guarantee that the above strategy for securing data works correctly, namely, that by using
a shared key provided by the KE protocol one achieves sound authentication and secrecy. As it is
customary, we will refer to a link between a pair of parties that achieves these properties as a secure
channel. While secure channels may have different meanings in different contexts, here we restrict
our treatment to the above setting of securing communications using symmetric cryptography with
a key derived from a key-exchange protocol®. We prove that an SK-secure key-exchange protocol,
appropriately combined with secure MAC and symmetric encryption functions, suffices for realizing
such secure channels.

6.1 A Template Protocol: Network Channels

We start by formalizing a “template protocol” that captures a generic session-oriented KE-based
protocol for secure channels between pairs of parties in a multi-party setting with parties Py, ..., P,.
This template protocol, called NetChan, simply captures the mechanism by which two parties first
share a secret key and then use this key for securing information they exchange. In the template
protocol this exchange of information and the security functions applied to it are represented
through abstract ‘send’ and ‘receive’ functions. Later we will see specific implementations of this
template protocol where the generic ‘send’ and ‘receive’ primitives are instantiated with actual
functions (e.g., for providing authentication and/or encryption). We will also define what it means
for such an implementation to be “secure”.

Definition of NetChan. A (session-based) network channels protocol, NetChan(m,snd,rcv), is
defined on the basis of a KE protocol 7, and two generic functions snd and rcv. (A more general

8A somewhat different formalization of secure channels appears in [14] (see Appendix).
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treatment can be obtained by considering these functions as interactive protocols but we leave this
more general approach beyond the scope of the present paper.) Both snd and rcv are probabilistic
functions that take as arguments a session-key (we denote this key as a subscript to the function)
and a message m. The functions may also depend on additional state information such as a session-
id and partner identifiers, a message identifier, etc. The output of snd is a single value m', while
the output of rcv is a pair (v,0k) where ok is a bit and v an arbitrary value. (The bit ok will be
used to return a verification value, e.g. the result of verifying an authentication tag.) On the basis
of such functions we define NetChan(n,snd, rcv) in Figure 8.

Protocol NetChan(r,snd,rcv)

NetChan(7,snd, rcv) is initialized with the same initialization function I of the KE protocol 7. It can
then be invoked within a party P; under the following activations:

1. establish-session(P;, P}, s,role): this triggers a KE-session under 7 within P; with partner P;,
session-id s and role € {initiator, responder}. If the KE-session completes P; records in its local
output “established session s with P;” and stores the generated session key.

2. expire-session(P;, Pj,s): P; marks session (P;, P;,s) (if it exists at P;) as expired and the
session key is erased. P; records in its local output “session s with P; is expired”.

3. send(P;, P;,s,m): P; checks that session (P;, P, s) has been completed and not expired, if so
it computes m' = snd,;(m), using the corresponding session key &, sends (P;, s,m’) to P;, and
records “sent message m to P; within session s” in the local output.

4. On incoming message (Pj, s,m’), P; checks that the session (P;, P;, s) has been completed and
not expired, if so it computes (m,ok) = rcv,(m') under the corresponding session key x. If
ok = 1 then P; records “received message m from P; within session s.” If ok = 0 then
no further action is taken.

Figure 8: A generic network channels protocol

We emphasize that the above definition of NetChan applies to either AM or UM adversarial
models; indeed, the attacker against NetChan is allowed to initiate and schedule any of the protocol
activations and has all the capabilities of an attacker in the corresponding model, including attacks
against the key-exchange protocol 7 (such as party corruptions, session-state reveal, and session-
key queries). Also for NetChan we keep our KE convention that session identifiers are checked for
uniqueness. Note that NetChan has no local outputs labeled ‘secret’ (in particular, the session key
is not part of the local output of NetChan as these keys are used internally and never passed to
another protocol). Thus, the external functionality of NetChan is as in a simple (session-based)
message exchange protocol.

6.2 Network Authentication

On the basis of the above formalism, we treat the case of network channels that provide authenti-
cation of information over adversary-controlled channels. Namely, we are interested in a NetChan
protocol that runs in the unauthenticated-links model UM and yet provides authenticity of transmit-
ted messages. This implementation of NetChan (which we call NetAut) will be aimed at capturing
the practice by which communicating parties use a key-exchange protocol to establish a shared
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session key, and use that key to authenticate (via a message authentication function, MAC) the
information exchanged during that session. Namely, if P; and P; share a matching session s and P;
wants to send a message m to P; during that session then P; transmits m together with MAC,(m)
where & is the corresponding session key.

Protocol NetAut . Let m be a KE protocol and let f be a MAC function. Protocol NetAut(r, f)
is a network channels protocol NetChan(m,snd, rcv) as defined in Figure 8, where functions snd and
rcv are defined as:

e On input m, snd,(m) produces output m' = (m, fx(m)).

e On input m/, rcvg(m') outputs (v,ok) as follows. If m' is of the form (m,t) then ok = 1 if
and only if (i) m is different than all previously seen messages in the session, and (ii) (m,t)
passes the verification function of f under key . If ok = 1 then set v = m, otherwise ok = 0
and v = null.

Note that we require the receiver of a message to check for uniqueness of the incoming message. This
check is needed to avoid “re-play” or duplication of delivered messages by an attacker. Equivalently,
one can think of m as the concatenation of the message with a unique per-message identifier which
is computed by the sender and checked for uniqueness at the receiver (e.g., based on a shared
counter between the parties). For simplicity and generality, in the above specification of protocol
NetAut we abstract out the specific message differentiation mechanism in use.

Our goal is to show that if the key-exchange protocol 7 is SK-secure and the MAC function f is
secure (against chosen-message attacks) then the resultant network channels protocol NetAut(m, f)
provides authenticated transmission of information. This requirement can be formulated under the
property that “any message recorded by P; as received from P; has been necessarily recorded as
sent by P;, except if the pertinent session is exposed”. We will actually strengthen this requirement
and ask that a network channels protocol provides authentication if it emulates (i.e. imitates) the
transmission of messages in the ideally authenticated-links model AM. Formally, we do so using
the notion of protocol emulation and the formalization (see Sections 2.3 and 3.4) of the message
transmission protocol (MT) in the AM as done in [2]. Recall that MT is a simple protocol that specifies
the functionality of transmitting individual messages in the AM. Here we extend the basic definition
of MT to a session-based message transmission protocol called sMT. By proving that the network
channels protocol NetAut emulates SMT in the UM we get the assurance that transmitting messages
over unauthenticated-links using NetAut is as secure as transmitting them in the presence of an
attacker that is not allowed to change, duplicate or inject messages over the communication links.

Protocol sMT. We extend protocol MT from [2] to fit our session-based setting in which trans-
mitted messages are grouped into different sessions. We call the extended protocol a session-based
message transmission protocol (SMT), and define it in Figure 9. (Note the structural similarity be-
tween SMT and NetChan — the differences are that no actual key-exchange is run in SMT, and the
functions snd and rcv are instantiated to simple “identity functions”.)

Secure network authentication protocols. Since protocol SMT represents a perfectly authen-
ticated exchange of messages, we use it as the specification protocol to define what is meant for an
implementation of protocol NetChan to be a secure network authentication protocol (for the definition
of the notion of “emulation” used in the following definition see Section 3.4):

Definition 11 Protocol NetChan(m,snd, rcv) is called a secure network authentication protocol if it
emulates protocol SMT in the UM.
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Protocol smT

Protocol SMT can be invoked within a party P; under the following activations:

1. establish-session(P;, P;, s): in this case P; records in its local output “established session
s with P;”.

2. expire-session(P;, Pj, s): in this case P; records in its local output “session s with P; is
expired”.

3. send(P;, P;,s,m): in this case P; checks that session (P;, P;j, s) has been established and not
expired, if so it sends message m to P; together with the session-id s (i.e., the values m and s

are sent over the ideally-authenticated link between P; and P;); P; records in its local output
“sent message m to P; within session s”.

4. On incoming message (m, s) received over its link from P;, P; checks that session (P;, P}, s) is
established and not expired, if so it records in the local output “received message m from
P; within session s”.

Figure 9: Protocol SMT in the AM: The specification protocol for authenticated session-
based message transmission.

Theorem 12 If 7 is a SK-secure key-exchange protocol in the UM and f is a MAC function
secure against chosen message attacks, then protocol NetAut(w, f) is a secure network authentication
protocol.

Proof: In order to show that NetAut(m, f) is a secure network authentication protocol we need to
prove that NetAut(w, f) emulates SMT in the UM. Namely, given an attacker U against NetAut(w, f)
in the UM we need to build an AM-attacker, A, against SMT that produces a protocol and adversary
output that is indistinguishable from the output produced by the interaction of & with NetAut(r, f).
We define A to simulate U as follows. A builds a virtual “unauthenticated” scenario in which it
simulates U where to each party in SMT corresponds a virtual party in the um world of NetAut(m, f).
We denote by p the sSMT protocol run in the AM by A, and by y’ the simulated virtual protocol
NetAut(m, f) in the uM. Also, we denote by P,..., P, the parties running the SMT-protocol u, and
by P{,..., P! the corresponding virtual parties running u'.

All the activations by U (such as invoking KE-sessions, issuing “send” activations, corrupting
parties and sessions, etc.) are carried out in the virtual protocol u' through A. In particular, the
action of virtual parties are carried out by A on their behalf; this includes the running of KE-session
within p’ parties and the transmission of messages. The description of A is presented in Figure 10.

The following facts about the behavior of A as defined in Figure 10 are easy to inspect.

1. Ais a legal attacker against SMT in AM (in particular, only previously recorded sent messages
are delivered, except if the sender is corrupted or the session is exposed).

2. The actions of U are perfectly simulated by A (i.e., carried identically by A) against u'.
3. All sent, established and expired events recorded in y' are equally recorded in p.

4. received events in p can differ from those in y' only in the following case (see Step 5 in

Figure 10): party P/ recorded “received message m from P]’ within session s” in p'
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Adversary A

A proceeds as follows when interacting with P;...P, running SMT in the AM.

1. A initiates a copy of U, interacting with parties P|...P} running NetAut(w, f) in the UM. In

particular, it evaluates the initialization function I of NetAut(7, f) on random input and hands
U the public output of I.

. Whenever U activates P; with an activation establish-session(P;, P}, s,role) or any activation
of P} related to the run of a KE-session of protocol 7, A performs the resultant actions within
P! and hands out the resultant messages to U for delivery.

. Whenever U issues P; with one of the NetAut(w, f) activations send(P;, P;,s,m), expire-
session(P}, P}, s), or with incoming message (Pj,s,m,t), A performs the resultant actions
of the players in u' according to the NetAut(w, f) specifications. Every message generated by

the parties is transferred by A to U for delivery.

. Whenever P; records one of the events “established session s with P”, “session
s with P} is expired”, or “sent message m to P within session s”, then in p at-
tacker A issues to P; the activation establish-session(P;, P;,s), expire-session(P;, P;,s),
send(P;, P;, s, m), respectively.

. Whenever P/ records “received message m from P] within session s”, A does:

(a) If P; recorded “sent message m to P; within session s” then A activates P; with
incoming message (m, s) from P;.

(b) Else, if P; is corrupted or session s within P; is locally exposed, then A activates P; with
send(P;, P;, s,m) (note that this sent event is not recorded at P; by the convention that
locally exposed sessions do not produce output) and then activates P; with incoming
message (m, s) from P;.

. Whenever U corrupts P}, A hands U the internal data of the simulated P/, and corrupts P;

in the run of . Whenever I/ issues an exposure action against a session (P/, Pj, s) within P},

A hands U the corresponding information from the session within P] and issues the exposure

against the session (P;, P, s) within P; in p.

. When U halts, A outputs whatever U/ outputs and halts.

Figure 10: Emulation of sSMT: the AM-adversary A.

but Pj’- did not record the corresponding sent event, and neither session s is exposed nor P]’

is corrupted. We call this case a forgery-event.

The above facts show that the simulation of U by A against the NetAut(r, f) protocol is perfect
(i.e. identical to a real run of ) as long as a forgery-event as defined above does not happen. (In
the case of a forgery-event the simulation of U by A fails since in p' party P! records the received
message m while in y the corresponding party P; will not record it.) In Lemma 13 below we show
that this forgery-event happens with negligible probability (i.e., there is a negligible probability that
in an unexposed session of 1/, a party P; accepts a message from P} that the latter did not send).
Therefore, we have that the statistical distance between AUTHgMT, 4(k) and UNAUTHetaut(r, £) 14 (K)
is negligible. Consequently, NetAut(m, f) emulates SMT in the UM and thus it is a secure network

authentication protocol.
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Lemma 13 If m is a SK-secure key-exchange protocol and f is a MAC function secure against
chosen message attacks, then for any attacker U running against NetAut the probability of a “forgery-
event” (as defined in the proof of Theorem 12) during an unezxposed session is negligible.

Proof: We prove the lemma by contradiction: if for a given attacker U against NetAut(mw, f),
a forgery-event happens in an unexposed session with non-negligible probability then we build a
forger for the MAC function f that succeeds with non-negligible probability. For convenience, we
denote the above assumed non-negligible probability of a forgery-event by ¢ (more precisely, this
value is a function of the security parameter).

Building o forger F. The forger F' has an oracle to f that uses an unknown random key; F' can
request from the oracle the value of f on any message under the oracles key and can also request
the verification of pairs (m,t) in which case the oracle verifies whether ¢ is the correct value of f(m)
under the oracle’s key (the latter are called “verification queries”). The goal of F is to produce a
MAC forgery, i.e. the value of f on a message under the key of the oracle, without requesting the
box to compute this value. F' starts by building a virtual NetAut world and activates U against
it (similarly as A did in the proof of Theorem 12 but without any “SMT parties”). In addition,
F chooses a session at random (from all sessions completed during the run of the protocol), say
(P;, Pj, s0). We will use the identifier sq to refer to the chosen session or its matching session. In
the cases where U delivers a message under the session-key of session sg, F' does not use the actual
session-key as exchanged in the simulated protocol but instead it requests the oracle to f to provide
that value of f (i.e F is effectively using the oracle key as the sg session-key). Similarly, F' uses
the oracle to verify whether messages sent under session sy possess the correct value of f (this is
needed in cases where U injects or changes the authentication tags). If during simulation session
s0 is exposed by U, then F' aborts its computation (i.e. it fails to forge). If at any point one of the
partners to session sg, say P;, accepts a message as correctly MACed while the other party did not
record the corresponding sent event (in particular, F' did not request the MAC of this message from
its oracle) then F' outputs the message and its MAC as sent to P; as a forgery against the oracle
to the MAC function f. (Note that by the uniqueness property of sent and received messages in
NetAut the message on which F' outputs this forgery was never queried from the MAC oracle.)

Thus, if in the run of U by F a forgery-event happens under session sy then F' succeeds in
producing a forgery against the MAC. We want to show that this happens with non-negligible
probability.

Recall that we are assuming (by way of contradiction) that in a regular run by U a forgery-event
happens with non-negligible probability €. Thus, if one chooses a session sy at random, then in a
run of U a forgery-event will happen in session sy with non-negligible probability too (i.e., ¢ divided
by an upper bound on the number of sessions in the protocol). However, the run of U by the forger
F is not a reqular run: the key used to MAC messages in session sy is not the real session key
exchanged by the parties but an independent random value. Still we claim that if in a run of U we
replace the session-key in a randomly chosen session sy with a random value then the probability
of a forgery-event in that session does not change significantly, i.e., it remains non-negligible (and
thus F' has a non-negligible probability to break the security of the MAC function f).

In order to prove this claim we introduce the following notation. If s is a session completed by
some party under a run of U, then we denote by forgery(s) the event that a forgery-event happens
during session s. We know, by assumption, that if s is chosen at random among all sessions under
a regular run of U then the probability of event forgery(s) is non-negligible. We want to prove
that this is the case even when U is run by F. (In this case, this probability, that we denote by
Probp(forgery(s)), is taken over runs of U in which the real session-key for s is replaced with a
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random value.) The remainder of the proof is devoted to proving this claim.

The plan for this proof is as follows. Based on U, we build a KE-adversary Uiy against the KE
protocol . Then we show that if in the modified run of ¢ as produced by forger F' the probability
of a forgery-event changes substantially (relative to its probability in a regular run of I/), then Uy,
breaks the SK-security of 7 (i.e., it can choose a test-session in which to distinguish the real value
of the session-key from a random independent value.)

Attacker Uggy runs 7 with n parties P, ..., P, by essentially simulating the actions of U against
a NetAut protocol with protocol 7 and MAC function f. For this, Uy runs U against a virtual copy
of NetAut(r, f), denoted u', with n players Pj, ..., P!. Each action decided by U that concerns the
KE protocol part of ' (such as session establishment, party corruptions, session exposure, etc.) is
applied by Ugr against the real run of 7 (i.e. against parties Pi,..., P,;). Whenever U orders an
action involving the computation of a MAC value by party P/ using a completed and unexpired
session-key (Pi’,P]{ ,8), Uxr checks if it has already learned the value of that key (via a previous
session exposure). If not, Uy issues a session-key query against (P;, Pj,s). With the value of the
learned session-key, Uy computes the required value of f and hands it to U.

There is one exception, however, to the above behavior of Uxy. Among the sessions completed
in the run of m, attacker Uxy chooses one at random as its test-session (e.g., Uxg chooses at the
beginning of its run a number j € {1,...,¢} where £ is an upper bound on the number of sessions
created by U during its run, and then Uy chooses the j-th completed session as its test session).
If U ends its run before the test-session is chosen, or if this session happens to be exposed at time
of completion (i.e., either a partner to the session is corrupted before completion or U issued a
session-state reveal against this session) then Uy stops its run without issuing a test-session query.
Otherwise, once the chosen test-session is completed, Uy issues a test-session query. We denote
the test-session as sg, and the response to the test query as v (as usual a bit b & {REAL,RANDOM}
is chosen and v is set to the real value of the session-key if b = REAL and to a random independent
value otherwise”.) Whenever U evaluates f involving the key of session sq, Uxp uses v as the
value of the key for f. If at any point U/ produces a forgery-event in session sy (i.e. U is able to
MAC under key v a message not MACed by Uxg) then Uxy stops and outputs b’ = REAL. If at
some point U/ stops its run, or if U orders the exposure of session sg, then Uy stops and outputs
v & {REAL, RANDOM]}.

Recall that we want to prove that Probp(forgery(sp)) is non-negligible. This is equivalent to
proving that the conditional probability

a = Proby,, (forgery(so) : b = RANDOM)

(now taken over the distribution of runs by Uy against protocol ) is non-negligible. In order to
show this we start by noting that the conditional probability

B = Proby, (forgery(so) : b = REAL)

represents the probability that a forgery-event happens in a regular run of U (i.e. with all real
session-keys used for MAC-ing information) in a randomly selected session sg. As said earlier, this
probability is /¢ (the values € and £ are defined above), and then non-negligible. We end the proof
by proving that « = 8 (i.e. they differ by only a negligible amount) and thus « is non-negligible.
This proof is obtained via the analysis of the probability, denoted Prob(b' = REAL), that Uy ends
its run with output o = REAL (we consider this probability only over runs in which Uy issues a

°For clarity, we denote bits by REAL and RANDOM rather than 0, 1.
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test-session query). We have that Prob(b’ = REAL) equals
Prob(b' = REAL : forgery(so)) Prob(forgery(sg))+Prob(b’ = REAL : =forgery(sg))Prob(—=forgery(so))

By the definition of Uy, Prob(b’ = REAL : forgery(sp)) is always 1 regardless of whether b is REAL
or RANDOM. Similarly, Prob(b’ = REAL : —forgery(sg)) is always 1/2 regardless of the value of b.
Now consider the case b = REAL; we have that

Prob(b' = REAL : b = REAL) =
= 1- Prob(forgery(so) : b = REAL) + 1/2 - Prob(—forgery(sp) : b = REAL) =
=1-p+1/2-(1-p0) =1/2+ /2.

Similarly, for b = RANDOM we can obtain
Prob(b' = REAL : b = RANDOM) = 1/2 + /2.

Since 7 is a SK-secure KE protocol we know that the difference between Prob(b' = REAL : b = REAL)
and Prob(b' = REAL : b = RANDOM) is negligible, or otherwise Uy would break the security of .
But then we have that a ~ 3 as we had to prove. O

Thus we have completed the proof of Theorem 12 showing that SK-security is a sufficient con-
dition to guarantee the secure composition of key-exchange protocol with a network authentication
application. One important aspect of the above proof is that it makes clear the need for allowing
the attacker against the key-exchange protocol (Uxp in our case) to keep running even after the
value of the test-session is provided to him (see the remark after Definition 4); indeed, without that
capability the theorem is not true.

6.3 Network Encryption

In this section we treat the problem of secrecy of communications, and introduce a definition of
secrecy in the context of general network channels protocols as defined in Section 6.1. This notion of
secrecy is used in the next subsection to formulate our definition of secure channels and to analyze
a specific implementation of such channels using SK-secure KE protocols.

Secure network encryption protocols. We start by defining what is meant for a network
channels protocol NetChan to be a “secure network encryption protocol”. We want to capture
the secrecy property that the attacker does not learn information on messages that are exchanged
during unexposed sessions (see the “explanation” paragraph following the definition). We follow
the indistinguishability approach used to define semantic security of encryption (also used in our
definition of SK-security). For this we augment the capabilities of AM and UM attackers that interact
with a network channels protocol to include the following action.

We let the attacker A, running against NetChan, to choose, at some arbitrary point
during the interaction, a (single) test-session (P;, Pj,s) among the sessions that are
completed, unexpired and unexposed at the time. Also, A gets to choose a pair of
equal-length messages mg, m1. Next, a bit b & {0,1} is chosen (but not provided to A)
and P; is activated with send(P;, Pj, s, m;). This activation follows the specification of
a regular send-activation in the protocol except that when P; records the sent event in
its local output it does not write down the value of m;. Later, if P; is activated by A
under session s with some incoming message p and the output of rcv,(p) (where & is
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the session-key of the test session s) is the pair (mp, ok = 1) then the receive-activation
is recorded by the recipient but the value m; is not written to the local output. The
attacker A is allowed all the regular adversarial actions except that it is not permitted to
expose the test-session (P;, Pj,s). (However, as in the case of SK-security, the attacker
is allowed to corrupt P; as soon as the test-session expires, and to corrupt P; as soon
as the matching session expires.) At the end of its run, A outputs a bit b’ (as its guess
for b).

Definition 14 We say that a network channels protocol is a secure network encryption protocol in
the UM if the probability of any UM-attacker A as described above to guess correctly b (i.e., to output
b =b) is no more than 1/2 plus a negligible fraction in the security parameter.

Security of a network encryption protocol is defined in the AM in the same form provided the
attacker is a AM-adversary with the above added capability.

Explanation. We clarify the rationale of the above definition. In this definition we want to
capture the secrecy property of a network channels protocol, namely, the infeasibility of the attacker
to learn information on messages transmitted (usually in encrypted form) between the parties.
However, note that in our formalism of network channels the attacker gets to learn the sent and
received messages by watching the local output of the parties (recall that whatever is written on the
local output becomes immediately available to A); moreover, the attacker even gets to choose the
messages in sent-activations. So, how can we say that the attacker does not learn the exchanged
messages? For this, we introduce the test messages my and m; that the attacker gets to choose but
not to learn which one was sent. In particular, in order to hide this information from the attacker
we specify that the send and receive activations corresponding to the test message do not record
the value of the specific sent or received message. Thus, for a protocol to be secure by our definition
it needs to make infeasible for the attacker to guess correctly (i.e., with non-negligible advantage)
the sent test-message even though this attacker has access to all other messages (in cleartext form)
that were sent and received during the protocol.

6.3.1 Discussion

One importat aspect of the above definition is the way we specify the receive-activations (at P;)
in which the test-message my is not written to the local output. In order to highlight this issue
let’s consider first an alternative definition of security of network encryption protocols. Namely,
a definition similar to the above definition with the difference that the only receive-activation in
which my, is not written to the local output is an activation where the incoming message is identical
to the message, call it m*, handed to A by P; as the result of the test send-activation. In the sequel
we refer to this variant of the definition as the “strict definition” (of secure network encryption
protocols). The reason that we have not adopted this strict definition is that we consider it over-
restrictive: for example, this definition call insecure any network encryption protocol that specifies
that the message delivered to P; is different from the exact output produced by P;. In particular, it
would invalidate any protocol that allows for some changes to the transported messages to happen
in transit, even though such protocols are common in practice and secure. For example, the AH
protocol from [31] allows some well defined parts of the message header, such as number of hops, to
be changed in-route by intermediate routers. Other protocols allow for arbitrary or random padding
of messages just to comply with some standard length boundary; a change in-route of such padding
would not be checked by the receiver nor should such change impact the security of the protocol.
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Thus, a better (and more realistic) approach is to permit such possible (inocous) changes to the
transported message, and only care about the correctness of the value of the message accepted and
recorded by the receiver, namely, the output of the rcv function. This is why, under our definition,
we consider any incoming message that “decodes” (under rcv) to the test message my, as related to
the test send-activation and then its decoded value is not disclosed to the attacker.

One consequence of this definitional decision is that while Definition 14 does not explicitly
mention the need to ensure the uniqueness of messages or the use of message identifiers, it actually
requires from a secure network encryption protocol to be careful about the way it guarantees
the uniqueness of transmitted messages. To illustrate this point consider the following strategy
for attacker A. After activating P; with the test send-activation with messages mgy and mi, A
activates P; with another send-activation with mg as the input message. Now, A delivers to P;
the message resultant from the later send-activation. If P; does not write the decoded message
to its local output then A learns that mj = my, if P; does write the message then A learns that
my = mq. Thus a secure network encryption protocol must make this attack impossible for A and,
in particular, it must ensure the uniqueness of sent messages. This can be achieved by the use of
unique message identifiers that become part of the sent messages. We exemplify this mechanism
in our realization of secure channels in Section 6.4.

Another remark concerning the “strict definition” discussed above is that it naturally corre-
sponds to the way security of encryption functions against chosen ciphertext attacks (CCA) is
usually defined. (That is, the definition of CCA security allows an attacker to query a decryption
oracle with any input ciphertext except for the one in which the attacker is being tested.) While
this correspondence can be seen as an advantage of the “strict definition” it actually points to an
important issue here: CCA-security is not a necessary notion when formalizing security of network
channels. Indeed, the CCA formulation actually carries the same drawbacks as discussed before
for the strict definition. A further illustration of these issues can be found in the remark after the
proof of Theorem 16.

On the correctness requirement. Notice that Definition 14 does not make any “correctness”
requirements from the encryption protocol. That is, it is not required that the recipient will output
the same message as recorded by the sender. While this is a natural requirement for a network en-
cryption protocol (we want decrypted messages to correspond to the plaintext originally encrypted)
we omit it from our definition since our use of network encryption (for defining and realizing secure
channels — see Definition 15) appears only in conjunction with a network authentication protocol,
and the latter already guarantees this correctness property. If one is interested in a stand-alone
use of the notion of a network encryption protocol then adding this correctness requirement to the
above definition is straightforward.

6.4 Secure Channels

We are now ready to define what is meant by a “secure channels” protocol.

Definition 15 A network channels protocol in the UM is called a secure network channels protocol
if it is a secure network encryption protocol and also a secure network authentication protocol.

We proceed to show that the network channels protocol, denoted NetSec and defined below,
that applies encryption to transmitted messages and applies a secure MAC function to the resultant
ciphertext is a secure channels protocol. In the description of this protocol we assume ezplicit
message identifiers that are part of the sent messages and make all these messages necessarily
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different. Specifically, the input to a send activation is a pair m = (m-id, m) where m is chosen by
the attacker at will but m-id is an identifier that is independent from the message (can think of it
as a message counter) and is different from all message identifiers used in other send activations
in the same session. In actual implementations of the protocol this unique m-id value needs to be
chosen by the sender and checked for uniqueness at the receiver; here we represent it as part of
the input to the send activation in order to be consistent with our general formalism of network
channels from Figure 8 and to avoid the specification of a particular message-id mechanism. This
uniqueness of message identifiers is assumed only for uncorrupted sessions.

The secure channels protocol NetSec. Let m be a KE protocol, f a MAC function, ENC
a symmetric encryption function, and F' a family of pseudorandom functions. We denote by
NetSec(r, f, ENC, F') the network channels protocol NetChan(m,snd,rcv), as defined in Figure 8,
that uses the snd and rcv functions defined as:

e On input m = (m-id, m), snd,(m) produces output m' = (m-id,c,t) where ¢ = ENC,, ()
and t = f,, (m-id,c). The keys k. and k, are computed as F(0) and F (1), respectively'?.

e On input m’, rcv,(m') outputs (m,ok) as follows. If m’ is of the form (m-id, ¢,t) then ok = 1
if and only if (i) m-id is different than all previously seen message identifiers in the session,
and (ii) (m-id,c,t) passes the verification function of f under key r,. If ok = 1 then set
m = ENc,!(c) and m = (m-id,m), otherwise ok = 0 and m = null. The keys k. and &, are
defined as above.

That is, function snd applies an encryption on the message and a MAC to the ciphertext where these
functions use “computationally independent” keys derived from the session k via a pseudorandom
function. The function rcv does the decryption but only after verifying that the authentication of
the ciphertext is correct.

Note 1: We stress again our assumption that message identifiers are different for each sent message
in a session (and checked for uniqueness at the recipient). In particular, this means that an
implementation of the message id mechanism needs to make sure that the two parties of the
session (while uncorrupted) choose different identifiers for each new message. This can achieved,
for example, if each party chooses the values m-id from disjoint sets (e.g., P; sets the first bit of its
identifiers to 0 and P; to 1). Actual protocols can also specify the use of “directional” keys, i.e.,
the keys used for the snd function from P; to P; are different (and computationally independent)
from the keys used from P; to P;; in this case message identifiers need only be unique per direction.
Clearly, these multiple keys can be derived from the session key « using a pseudorandom function.

Note 2: Message identifiers are not protected for secrecy. Since they are chosen independently of the
sent message this does not compromise the secrecy of the message. In particular, when analyzing
the above protocol as a network encryption protocol, we assume that the test messages my and my
from Definition 14 have the same message identifier so its exposure provides no information to the
attacker about which message m; was actually sent.

In the following theorem we use the notion of a symmetric encryption function that is secure
against chosen-plaintext attacks. For a formalization of this notion see [3] (see also the CPA game
in Figure 11).

OFor simplicity we assume the encryption and authentication functions to use uniformly distributed keys of the
same length; other cases can be handled via standard key derivation methods (e.g., truncating the output of F,
iterating F' to produce longer outputs, etc.).
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Theorem 16 If 7 is a SK-secure key-exchange protocol in UM, f is a MAC function secure against
chosen-message attacks, ENC a symmetric encryption function secure against chosen-plaintext at-
tacks, and F a secure family of pseudorandom functions, then NetSec(w, f,ENC, F) is a secure
channels protocol in the UM.

Proof: We can assume, for simplicity, that keys k. and k, in NetSec(w, f, ENC, F)) are direct
outputs of protocol 7 (and then indistinguishable from uniformly and independently chosen keys).
Accounting for the fact that we actually derive them from a single session key x via a pseudorandom
function can be done using standard arguments.

The proof that NetSec(w, f, ENC, F) is a secure network authentication protocol follows from
Theorem 12 with one modification: here we are not applying the MAC function directly to the
plaintext but on the ciphertext. Since by property of the encryption function we have that a
ciphertext decrypts to a unique plaintext under key k. then the authentication of the ciphertext
implies the authentication of the plaintext message. (Formally, one can consider a modification of
protocol NetAut in Theorem 12 where the function snd is defined to first encrypt the message and
then authenticate the ciphertext under the MAC function; the output of snd is the concatenation
of the computed ciphertext and MAC tag. Similarly, rcv first checks the MAC on the ciphertext,
and if successful it decrypts the ciphertext and outputs the plaintext message.)

The rest of the proof is devoted to proving that NetSec(w, f, ENC, F) is a secure network en-
cryption protocol. The plan for the proof and many of the details are similar to the proof of the
network authentication theorem (Theorem 12, and more specifically of Lemma 13). We thus sketch
the most important aspects of the current proof but omit the details that are easy to complete
following the network authentication case. Our goal here is to prove the theorem by way of contra-
diction, namely, given an attacker 4 that breaks the security of NetSec(w, f, ENC, F') as a network
encryption protocol then we can build an attacker B that breaks the security of the symmetric
encryption function ENC against chosen-plaintext attacks.

The CPA symmetric encryption game

The game is played by an attacker B with access to an encryption oracle E. On input m, the oracle
returns the encryption of m under function ENC using a secret key & not provided to B. The game
proceeds in phases:

Phase 1: B queries F with any messages of its choice. At any point B may choose to move to
phase 2.

Phase 2: B chooses two equal-length messages mg and my; a bit b is chosen at random and the
value ¢* = E(my) is returned to B. (The value of b is not provided to B.)

Phase 3: Same as Phase 1.
Phase 4: B outputs a bit b'.
And the winner is... B if and only if b = b'.

Figure 11: CPA-security of the symmetric encryption function ENC

In order to capture the CPA-security of ENC (i.e., its security against chosen-plaintext attacks)
we consider the game described in Figure 11. By the assumption that ENC is semantically secure
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against chosen-plaintext attacks we have that no polynomial-time attacker B can win this game with
non-negligible advantage (where “advantage” means the winning probability minus 1/2). However,
we show next how to construct such attacker B given an attacker A that breaks the security of
NetSec(m, f, ENC, F') as a network encryption protocol, i.e. an attacker A4 that wins the test of
Definition 14 against NetSec(r, f, ENC, F) with non-negligible advantage. This proves that such an
attacker A does not exist and then NetSec(w, f, ENC, F') is a secure network encryption protocol.
(A precise quantified relation between the success probability of B and A can be easily derived
from the proof arguments below.)

Building B given A. Phase 1. B starts by building a virtual NetSec(r, f, ENC, F) world (including
the choice of initial information for the parties) and activates A against it. In addition, B chooses
a session at random (from all sessions completed during the virtual run of NetSec(7, f, ENC, F))
under A, say (P;, Pj, so). We will use the identifier sy to refer to the chosen session or its matching
session. All actions by A (activations or corruptions) that do not involve session sg are carried by
B using the specification of NetSec(m, f, ENC, F') and based on the full knowledge that B has of the
information held by the parties in the protocol. If at any point session sq is exposed by A (this
may happen as long as the session is unexpired at P; or P;) then B outputs a random bit " and
stops. When A activates the establishment of the KE session sy between P; and P;j, B activates
P; and P; with the normal operations for session-key establishment as in protocol m. When A
activates P; or P; with a send-activation under session sg and input message m = (m-id, m), B
does not use the actual key shared in session sy to compute the outgoing message m’. Instead, B
computes m' = (m-id,c,t) where ¢ = E(m) (i.e., B uses the encryption oracle for the encryption
of messages under session sg) and t = f,_(m-id,c) where k, is a key that B chooses independently
and at random for use as the MAC key during session s.

Receive-activations under session sy are handled by B (during Phase 1) as follows. Say P; is
activated with incoming message m' = (m-id, ¢, t) under session sg, then B checks m-id for validity
and if valid it uses its knowledge of k, to verify the authentication tag t. If any of these verifications
fail then P; sets ok = 0 and m = null. If the verification is successful, in particular the triple
(m-id, c,t) passes the verification of f, , then (except for a negligible probability of forgery against
the MAC) the pair (m-id, c) was included in the output of a previous send-activation under session
so in which case B already knows the plaintext encrypted under ciphertext ¢ and can record the
reception of the message in P;’s local input.

If at any point A chooses a test session (according to Definition 14) different than so then B outputs
a random bit b’ and stops. If sy is chosen by A as the test session and messages my and m, are
provided by A then B moves to phase 2.

Phase 2. Since we assume message-identifiers that are independent from the message then we have
that the test messages mg and m; chosen by A have the same message identifier, which we denote
by m-id*. Namely, mq = (m-id*,mo) and my = (m-id*,m1). Now, B uses the messages mgy and mq
as its own test messages to oracle £ in the CPA game. Let ¢* be the value returned to B as the
oracle response to this test. B then hands to A the triple (m-id*, ¢*,t*) where t* = f, (m-id*, c*).
As specified in Definition 14, P; does not record the actual value of m; (which B does not know
anyway). Now, B moves to phase 3.

Phase 3. The actions of B in Phase 3 are similar to Phase 1 except that now A4 may activate P;
with incoming message containing (m-id*, c*) for which B does not know its decryption. In this
case, B first checks the validity of the authentication tag in the incoming message. If it fails then no
action is needed. If it is successful then P; records the reception of the message in its local output
but without specifying the decrypted message since this message is m; which, by specification of
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Definition 14, P; does not write to its local output (thus, B does not need to know ms).
Phase 4. Whenever A stops its run with output &', B moves to phase 4 and stops with the same
output b’ as A.

Analysis of B. 1Tt is easy to verify that B as defined above is a legal attacker in the CPA game of
Figure 11. We need to show that B has non-negligible advantage in winning that game. Proving
this is similar to the analysis of the success probability of forger F' in the proof of Lemma 13. First,
we claim that the event in which the session sy chosen at random by B is also the test session
chosen by A has non-negligible probability to occur (simply because there are only polynomially
many sessions). Second, we note that if sy is chosen by A as the test session and B carries the
actions of A related to session sy using the actual session key exchanged by P; and P; in that
session then the advantage of B to guess b correctly is the same as for A to guess correctly (since
in this case the simulation of A by B is perfect) and then non-negligible. So, the main argument is
to show that replacing the actual session keys (for authentication and for encryption) from session
sg with the random independent key k, chosen by B for the MAC and the random independet
key used by oracle E for its encryptions does not significantly change the odds of A to win. This
fact follows from the SK-security of the KE protocol 7 and its proof is similar to the proof of the
analogous fact in Lemma 13 (with B and A taking the roles of F' and U, respectively).

O

On the (non) necessity of CCA-security. The above Theorem shows that security against
chosen-plaintext attacks (CPA) is all we need to require from the function ENC in order to imple-
ment secure channels. This is an important property since most symmetric encryption functions
and modes used in practice are CPA-secure but not secure against chosen-ciphertext attacks (CCA).
Also worth noting is that even the combination of the MAC function f on top of ENC does not neces-
sarily result in a CCA-secure function (namely, the function snd defined under NetSec(7, f, ENC, F))
is not necessarily CCA-secure when considered as an encryption function with keys k. and k).
To see this consider a MAC function with the property that flipping the least significant bit of an
authentication tag does not change the validity of the tag. In this case the resultant composed
function snd is not CCA-secure while it suffices (by virtue of the above theorem) for implementing
secure channels.

This example also helps to emphasize the over-restrictive character of the “strict definition” of a
secure network encryption protocol as discussed in Section 6.3.1. Indeed, it is easy to see that
in order for protocol NetSec to satisfy this strict definition one has to make sure that the snd
function in protocol NetSec is CCA-secure. In particular, the above example shows that the as-
sumption that f is a secure MAC function is not enough to prove the network encryption security
of NetSec(m, f, ENC, F') under the strict definition. Such a definition would require a stronger no-
tion of a MAC where in addition to the regular unforgeability requirements one requires that the
attacker cannot change a given valid pair (m,t) (where m is a message and ¢ a valid authentication
tag) into another valid pair (m,t') with ¢ # ¢'. When inspecting the NetSec protocol one can easily
see that this extra requirement from the MAC function is not a real security necessity but just the
artificial result of the unnecessarily restrictive nature of the strict definition.

The order of encryption and authentication. Recent results in [33] show that if the encryption
function is assumed to be secure against chosen-plaintext attacks (as in the above Theorem) then
the ordering of first applying the encryption function and then the authentication function (as in
NetSec(m, f, ENC, F')) is instrumental for guaranteeing secure channels. It is shown in [33] that other
common orderings of the functions (in which authentication is applied directly to the plaintext)
cannot ensure secure channels even if the key-exchange protocol in use is (ideally) secure.
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A More on Related Work

We provide some more details on several definitional works on KE that are closely related to the
present work.

On the work of Bellare and Rogaway [7, 8]. The first complexity-based formalization of secure
KE protocols (i.e., the first definitions that take into consideration the computational limitations of
an adversary and allow for an analysis that considers non-idealized cryptographic primitives) was
presented by Bellare and Rogaway in [7, 8], in the context of shared long-term keys. These works
postulate an adversary in charge of all communications, and explicitly model concurrent sessions
by creating a model where the adversary is surrounded by “oracles” that represent sessions within
parties. In such a model, querying an oracle represents delivery of a message or the corruption
of a session. Their method of defining security is based on the method used for defining semantic
security of encryption functions [24]: the adversary should be unable to distinguish, with non-
negligible probability, between the key of a chosen session and an independent random value. They
prove the security of specific authentication and key exchange protocols under these definitions.
Various works extend the [7, 8] framework to other settings and problems; for example, Shoup and
Rubin to smart card settings [44]; Lucks to consider dictionary attacks [36]; Blake-Wilson, Johnson
and Menezes [10, 11] for the public key setting.

The original formalization of [7, 8] was later demonstrated to have a security flaw, by Rackoff
(personal communication, 1995). In an unpublished work, Bellare, Petrank, Rackoff and Rogaway
[6] proposed a fix for this flaw. Our definition of security (Section 4) follows essentially that fixed
version of the [7, 8] definition, but cast in the protocol and adversary framework used here. Next,
we sketch the Rackoff attack which is instructive for pointing out to the subtleties involved in the
formalization of security for key-exchange protocols.

In the definitions of [7, 8], the adversary points to an unexposed session of its choice, and
receives a value kp, where kg is the real session key of this session, ky is an independently chosen
random value, and b is a randomly chosen bit that is unknown to the adversary. The security
requirement is that the adversary is unable to predict b with non-negligible advantage over one
half. The original version of these definitions requires that the adversary outputs its guess for b
immediately after it obtains the test value. Rackoff has noticed that this requirement is not strong
enough: Consider your favorite secure key-exchange protocol 7. Now, add to the specifications of
the protocol the following instruction for the party that completes first the session establishment
according to protocol 7: if at any point this party receives a message with the value MAC,(0),
where MAC is a secure message authentication function and k the established session-key, then
the party publicizes (say via a further message in the protocol) the value of k. However, the
protocol never instructs any party to carry out such an instruction. As a result the protocol can be
shown to pass the weakened definition. On the other hand, it is clear that such a protocol cannot
be composed securely with an authentication application that uses the session key for MAC-ing
information (since such an application could produce the value MAC, (0) that can be used to expose
K).

The fix to the definition, proposed by [6], is to let the adversary to continue interacting with the
protocol even after the test value is received and before the guess is made. We stress that, although
no attacks against the fixed definition were known, up till now it was never demonstrated that
this definition (or any other) is “sufficiently strong” for guaranteeing the security of the common
applications that use key exchange.

On the work of Bellare, Canetti and Krawczyk [2]. A somewhat different approach to
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defining secure KE protocols is taken in the work of Bellare, Canetti and Krawczyk [2]. First they
specify an adversarial model (called the unauthenticated-links model (UM)) that represents the capa-
bilities of the adversary in real-life networks. (As in [7, 8], this model also postulates independent
sessions and adversarially controlled communication. However it is different in that it directly rep-
resents a communication network and accounts in a natural way to the fact that other protocols
can be running in the same system.) In this model they formalize the notion of authenticators,
i.e., “compilers” that transform protocols that assume ideally-authenticated communication into
“equivalent” protocols in the uM. (Authenticators are also formalized, in a different context, in
[15].) In our work we borrow from [2] the above protocol and adversarial models, and demonstrate
the usefulness of the authenticators notion for designing and analyzing protocols.

In addition to the above basic models, [2] also treat the issue of security of KE protocols.
For this they formulate an “ideal KE process” that is meant to capture the expected properties
of a KE protocol, and require that a secure KE protocol will “emulate” the ideal process. Their
notion of emulation is influenced by general definitions of security of multi-party protocols [23,
38, 1, 13]. They also consider the use of KE for maintaining authenticated communication. In
particular, they claim that the standard method of combining a KE protocol with a shared-key
message authentication code (MACs) results in a secure authenticator. However, while the basic
approach of the [2] definition of KE is intuitive and attractive, their actual definition of secure
KE protocols has several subtle shortcomings. One consequence is that, contrary to their claims,
their definition of KE seems insufficient to prove the security of the above-mentioned application to
constructing authenticators (via KE and MAC). Another consequence is that their definition seems
to be somewhat “over-restrictive”, in the sense that it rules out KE protocols that seem “intuitively
secure” and even provide secure composition with applications. In particular, Propositions 9 and
10 from [2] are incorrect.

On the work of Shoup [43]. Shoup’s definitions are based on the simulatability approach of
[2] with some significant modifications. Three levels of security are presented: Static security (i.e.,
security against adversaries that corrupt parties only at the onset of the computation), adaptive
security (where the adversary obtains only the long-term information of a newly corrupted party)
and strongly adaptive security where the adversary obtains all the private information of corrupted
parties. (Oddly, strongly adaptive security does not imply adaptive security.) In addition, two
definitions based on the indistinguishability approach of Bellare and Rogaway [7] are presented.
The first is aimed at capturing security without perfect forward secrecy (PFS), and is shown
to be equivalent to the static variant of the simulation-based definition. The second is aimed
at capturing security with PFS, and is claimed to be equivalent to the adaptive variant of the
simulation-based definition. Sufficiency of the definitions to constructing secure-channel protocols
is informally argued, but is not proved nor rigorously claimed.

While the first variant of the indistinguishability-based definition is roughly equivalent to the
non-PFS variant presented here (modulo the general differences mentioned below), the second
variant is strictly weaker than our PFS formulation of SK-security. Specifically, the definition in
[43] accepts as secure protocols that do not erase sensitive ephemeral data (e.g. protocol DHKE-1
in [43]), while the definition here treats these protocols as insecure.

There are several other technical and methodological differences between the two works that we
mention next. (a) A major methodological difference is our use of the authenticated-links model
and authenticators as a simplifying analysis tool. While our formalization of security does not
mandate the use of this methodology we carefully build our definitions to accommodate the use
of this tool. (b) Shoup allows the adversary a more general attack than session-key query, namely
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an application attack that reveals an arbitrary function of the key. Our modeling does not define
this explicit attack as it is subsumed by the session-key query capability and, in particular, since
it is not necessary for guaranteeing secure channels. (c) Here we consider an additional adversarial
behavior that is not treated in [43]. Specifically, we protect against adversaries that obtain the
internal state of corrupted sessions (even without fully corrupting the corresponding parties) by
requiring that such exposure will not compromise other protocol sessions run by the same parties.
This protection is not guaranteed by some protocols suggested in [43] (e.g., protocol DHKE).

(d) The treatment of the interaction with the certificate authority (CA) in the case of public-key
based authentication. In [43] the interaction with the CA is an integral part of every KE protocol,
whereas here this interaction with the CA is treated as a separate protocol. We make this choice
for further modularity and ease of proof. Yet, as we already remarked in Section 2.2, the CA
protocol needs to be taken into consideration with any full specification and analysis of actual KE
protocols. (e) The treatment of the session-id’s. In [43] the session-id’s are artificially given to
the parties by the model which results, in our view, in a more cumbersome formalization of the
security conditions. In contrast, here we adopt a more natural approach where the session-id’s are
generated by the calling protocol and security is guaranteed only when these session-id’s satisfy
some minimal (and easy to implement) conditions. In particular, this formalism can be satisfied
by letting the parties jointly generate the session-id (as is common in practice).

On the works of Pfitzmann, Schunter and Waidner [41, 40, 42] and Canetti [14]. These
works provide general frameworks for studying the security of cryptographic protocols in several
models of computation, and prove some composition theorems with respect to protocols that satisfy
their respective definitions of security. The proposed frameworks are natural candidates for defining
and studying secure key-exchange protocols and their application to providing secure channels. In
particular, Canetti [14] defines secure key exchange protocols, as well as protocols for providing
“secure sessions” within his framework, and uses his general composition theorem in order to obtain
similar results as the ones provided here (i.e., that the standard use of KE protocols for securing
communication sessions result in a good “secure sessions” protocol). The [14] definition of secure
KE protocols implies the definition here. However, it is somewhat over-restrictive, as it implies the
definitions of both [2] and [43]. (In particular, we do not know how to show that Protocol ENC from
Section 5.3 satisfies this definition.) In [16] we investigate a relaxed version of the [14] definition
of key exchange, that is equivalent to the definition here and at the same time enjoys the general
composability properties provided by the [14] framework.
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