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Abstra
t

We present a formalism for the analysis of key-ex
hange proto
ols that 
ombines previous

de�nitional approa
hes and results in a de�nition of se
urity that enjoys some important analyt-

i
al bene�ts: (i) any key-ex
hange proto
ol that satis�es the se
urity de�nition 
an be 
omposed

with symmetri
 en
ryption and authenti
ation fun
tions to provide provably se
ure 
ommuni
a-

tion 
hannels; and (ii) the de�nition allows for simple modular proofs of se
urity: one 
an design

and prove se
urity of key-ex
hange proto
ols in an idealized model where the 
ommuni
ation

links are perfe
tly authenti
ated, and then translate them using general tools to obtain se
urity

in the realisti
 setting of adversary-
ontrolled links. We exemplify the usability of our results by

applying them to obtain the proof of two main 
lasses of key-ex
hange proto
ols, DiÆe-Hellman

and key-transport, authenti
ated via symmetri
 or asymmetri
 te
hniques.

Further 
ontributions of the paper in
lude the formalization of \se
ure 
hannels" in the


ontext of key-ex
hange proto
ols, and establishing suÆ
ient 
onditions on the symmetri
 en-


ryption and authenti
ation fun
tions to realize these 
hannels.
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1 Introdu
tion

Key-ex
hange proto
ols (ke, for short) are me
hanisms by whi
h two parties that 
ommuni
ate over

an adversarially-
ontrolled network 
an generate a 
ommon se
ret key. ke proto
ols are essential

for enabling the use of shared-key 
ryptography to prote
t transmitted data over inse
ure networks.

As su
h they are a 
entral pie
e for building se
ure 
ommuni
ations (a.k.a \se
ure 
hannels"), and

are among the most 
ommonly used 
ryptographi
 proto
ols (
ontemporary examples in
lude SSL,

IPSe
, SSH, among others).

The design and analysis of se
ure ke proto
ols has proved to be a non-trivial task, with a

large body of work written on the topi
, in
luding [18, 39, 12, 9, 19, 7, 8, 32, 2, 43℄ and many

more. In fa
t, even today, after two de
ades of resear
h, some important issues remain without

satisfa
tory treatment. One su
h issue is how to guarantee the adequa
y of ke proto
ols for their

most basi
 appli
ation: the generation of shared keys for implementing se
ure 
hannels. Providing

this guarantee (with minimal requirements from ke proto
ols) is the main fo
us and obje
tive of

this work. The other 
entral goal of the paper is in simplifying the usability of the resultant se
urity

de�nitions via a modular approa
h to the design and analysis of ke proto
ols. We exemplify this

approa
h with a proof of se
urity for two important 
lasses of ke proto
ols.

This paper adopts a methodology for the analysis of ke proto
ols that results from the 
om-

bination of two previous works in this area: Bellare and Rogaway [7℄ and Bellare, Canetti and

Kraw
zyk [2℄. A main ingredient in the formalization of [7℄ is the use of the indistinguishability

approa
h of [24℄ to de�ning se
urity: roughly speaking, a key-ex
hange proto
ol is 
alled se
ure if

under the allowed adversarial a
tions it is infeasible for the atta
ker to distinguish the value of a

key generated by the proto
ol from an independent random value. Here we follow this exa
t same

approa
h but repla
e the adversarial model of [7℄ with an adversarial model derived from [2℄. This


ombination allows to a
hieve the above two main obje
tives. We elaborate on these main aspe
ts

of our work.

First, the formalization of [2℄ 
aptures not only the spe
i�
 needs of ke proto
ols but rather

develops a more general model for the analysis of se
urity proto
ols. This allows formulating and

proving the statement that ke proto
ols proven se
ure a

ording to our de�nition (we 
all these

proto
ols SK-se
ure) 
an be used in standard ways to provide \se
ure 
hannels". More spe
i�
ally,


onsider the 
ommon se
urity pra
ti
e by whi
h pairs of parties establish a \se
ure 
hannel" by �rst

ex
hanging a session key using a ke proto
ol and then using this key to en
rypt and authenti
ate

the transmitted data under symmetri
 
ryptographi
 fun
tions. We prove that if in this setting

one uses an SK-se
ure ke proto
ol together with se
ure MAC and en
ryption fun
tions 
ombined

appropriately then the resultant 
hannel provides both authenti
ation and se
re
y (in a sense that

we de�ne pre
isely) to the transmitted data. While this property of ensuring se
ure 
hannels seems

as an obvious requirement from a se
ure ke proto
ol it turns out that formalizing and proving this

property is non-trivial. In fa
t, there are \seemingly se
ure" key ex
hange proto
ols that do not

ne
essarily guarantee this (e.g. those that use the session key during the ex
hange itself), as well

as proposed de�nitions of se
ure key-ex
hange that do not suÆ
e to guarantee this either (e.g., the

de�nitions in [7, 10, 11, 2℄). Moreover, although several works have addressed this issue (see Se
tion

1.1), to the best of our knowledge the notion of se
ure 
hannels was never formalized in the 
ontext

of ke proto
ols, let alone demonstrating that some de�nition of ke proto
ols suÆ
es for this basi


task. Indeed, one of the 
ontributions of this work is a formalization of the se
ure 
hannels task.

While this formalization is not intended to provide general 
omposability properties for arbitrary


ryptographi
 settings, it arguably provides suÆ
ient se
urity guarantee for the 
entral task of

prote
ting the integrity and authenti
ity of 
ommuni
ations over adversarially-
ontrolled links.
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Se
ond, the approa
h of [2℄ allows for a substantial simpli�
ation in designing ke proto
ols and

proving their se
urity. This approa
h postulates a two-step methodology by whi
h proto
ols 
an

�rst be designed and analyzed in a mu
h simpli�ed adversarial setting where the 
ommuni
ation

links are assumed to be ideally authenti
ated (i.e., the atta
ker is not allowed to insert or 
hange

information transmitted over the 
ommuni
ation links between parties). Then, in a se
ond step,

these proto
ols are \automati
ally" transformed into se
ure proto
ols in the realisti
 s
enario of

fully adversary-
ontrolled 
ommuni
ations by applying a proto
ol translation tool (or \
ompiler")


alled an authenti
ator. Fortunately, simple and eÆ
ient realizations of authenti
ators based on

di�erent 
ryptographi
 fun
tions exist [2℄ thus making it a useful and pra
ti
al design and analysis

tool. (We stress that our framework does not mandate this methodology; i.e., it is possible of


ourse to prove se
urity of a ke proto
ol dire
tly in the fully adversarial model.)

We use this approa
h to prove the se
urity of two important 
lasses of key-ex
hange proto
ols:

DiÆe-Hellman and key-transport proto
ols. All one needs to do is to simply prove the se
urity

of these proto
ols in the ideal authenti
ated-links model and then, thanks to the above modular

approa
h, one obtains versions of these proto
ols that are se
ure in a realisti
 adversary-
ontrolled

network. The \authenti
ated" versions of the proto
ols depend on the authenti
ators in use. These


an be based either on symmetri
 or asymmetri
 
ryptographi
 te
hniques (depending on the trust

model) and result in natural and pra
ti
al ke proto
ols. The se
urity guarantees that result from

these proofs are substantial as they 
apture many of the se
urity 
on
erns in real 
ommuni
ations

settings in
luding the asyn
hronous nature of 
ontemporary networks, the run of multiple simul-

taneous sessions, resistan
e to man-in-the-middle and known-key atta
ks, maintaining se
urity of

sessions even when other sessions are 
ompromised, and providing \perfe
t forward se
re
y", i.e.,

prote
tion of past sessions in 
ase of the 
ompromise of long-term keying material.

1.1 Related work

Sin
e its introdu
tion in the seminal work of DiÆe and Hellman [18℄ the notion of a key-ex
hange

proto
ol has been the subje
t of many works (see [37℄ for an extensive bibliography). Here we

mention some of the works that are more dire
tly related to the present work. We further expand

our dis
ussion of these works in Appendix A.

Among the early works on this subje
t we note [39, 12, 9, 19℄ as being instrumental in pointing

out to the many subtleties involved in the analysis of ke proto
ols. The �rst 
omplexity-theoreti


treatment of the notion of se
urity for ke proto
ols is due to Bellare and Rogaway [7℄ who formalize

the se
urity of ke proto
ols in the realisti
 setting of 
on
urrent sessions running in an adversary-


ontrolled network. As said above, [7℄ apply the indistinguishability de�nitional approa
h that

we follow here as well. While [7℄ fo
used on the shared-key model of authenti
ation, other works

[10, 11, 6℄ extended the te
hniques to the publi
-key setting. One important 
ontribution of [6℄ is

in noting and �xing a short
oming in the original de�nition of [7℄; this �x, that we adopt here, is

fundamental for proving our results about se
ure 
hannels.

Bellare, Canetti, and Kraw
zyk [2℄ present a model for studying general session-oriented se
urity

proto
ols that we adopt and extend here. They also introdu
e the \authenti
ator" te
hniques that

allow for greatly simplifying the analysis of proto
ols and that we use as a basi
 tool in our work. In

addition, [2℄ proposes a de�nition of se
urity of ke proto
ols rooted in the simulatability (or \ideal

third party") approa
h used to de�ne se
urity of multiparty 
omputation [23, 38, 1, 13℄. While this

de�nitional approa
h is intuitively appealing the a
tual ke se
urity de�nition of [2℄ 
omes short of

the expe
tations. On one hand, it seems over-restri
tive, in the sense that it rules out proto
ols

that seem to provide suÆ
ient se
urity (and as demonstrated here 
an be safely used to obtain

2



se
ure 
hannels); on the other, it is not 
lear whether their de�nition suÆ
es to prove 
omposition

theorems even in the restri
ted sense of se
ure 
hannels as dealt with in this paper.

More re
ently, Shoup [43℄ presents a framework for the de�nition of se
urity of ke proto
ols that

follows the basi
 simulatability approa
h as in [2℄ but introdu
es signi�
ant modi�
ations in order to

over
ome some of the short
omings of the ke de�nition in [2℄ as well as to seek 
omposability with

other 
ryptographi
 appli
ations. In parti
ular, [43℄ states as a motivational goal the 
onstru
tion

of \se
ure sessions" (similar to our se
ure 
hannels), and it informally 
laims the suÆ
ien
y of its

de�nitions to a
hieve this goal. A more rigorous and 
omplete elaboration of that work will be

needed to assess the 
orre
tness of these 
laims. In addition, [43℄ di�ers from our work in several

other interesting aspe
ts (see Appendix A).

A promising general approa
h for the analysis of rea
tive proto
ols and their 
on
urrent 
om-

position has been developed by P�tzmann, S
hunter and Waidner [41, 40, 42℄ and Canetti [14℄.

This approa
h, that follows the simulatability tradition, 
an be applied to the task of key ex
hange

to obtain a de�nition of ke proto
ols that guarantees se
ure 
on
urrent 
omposition with any set

of proto
ols that make use of the generated keys. See more details in [16℄.

A subje
tive dis
ussion. The works mentioned above follow two main distin
t approa
hes to

de�ning se
urity of ke proto
ols: simulation-based and indistinguishability-based. The former is

more intuitively appealing (due to its modeling of se
urity via an ideally-trusted third party), and

also appears to be more amenable to demonstrating general 
omposability properties of proto
ols.

On the other hand, the 
omplexity of the resulting de�nitions, on
e all details are �lled in, is


onsiderable and makes for de�nitions that are relatively 
omplex to work with. In 
ontrast,

the indistinguishability-based approa
h yields de�nitions that are simpler to state and easier to

work with, however their adequa
y for modeling the task at hand seems less 
lear at �rst glan
e.

The results in this paper indi
ate the suitability of the indistinguishability-based approa
h in the


ontext of ke proto
ols | if the goal is the appli
ation of ke proto
ols to the spe
i�
 task of se
ure


hannels as de�ned here. By following this approa
h we gain the bene�t of simpler analysis and

easier-to-write proofs of se
urity. At the same time, our work borrows from the simulation-based

approa
h the modularity of building proofs via the intermediate ideally-authenti
ated links model,

thus enjoying the \best of both worlds".

Organization. Se
tion 2 presents an overview of the proto
ol and adversary models used through-

out this work. This overview is intended to introdu
e the elements of this model in a \reader-

friendly" way. The formal te
hni
al treatment appears in Se
tion 3. The de�nition of SK-se
urity

for ke proto
ols is presented in Se
tion 4. Se
tion 5 proves the se
urity of several proto
ols and

illustrates the modular methodology used in our analysis. Finally, in Se
tion 6 we introdu
e a

formalization of \se
ure 
hannels" and demonstrate the suitability of our notion of se
urity for ke

proto
ols for realizing se
ure 
hannels.

2 Proto
ol and Adversary Models: An Overview

In order to to de�ne what is meant by the se
urity of a key-ex
hange (ke) proto
ol we �rst need

to establish a formalism for the most basi
 notions: what is meant by a proto
ol in general and

a key-ex
hange proto
ol in parti
ular, what are sessions, and what is an `atta
ker' against su
h

proto
ols. Here we use a formalism based on the approa
h of [2℄, where a general framework for

studying the se
urity of session-based multi-party proto
ols over inse
ure 
hannels is introdu
ed.

We extend and re�ne this formalism to better �t the needs of pra
ti
al ke proto
ols.

In order to motivate and make the formalism easier to understand, we start by providing a

3



high-level overview of our model. The pre
ise te
hni
al des
ription appears in Se
tion 3. (We

note that the pre
ise te
hni
al details are essential for a full development and proof of our results.

However, we re
ommend �rst reading this overview in order to make the te
hni
al part more

understandable.) After introdu
ing the proto
ol and adversary models we pro
eed to de�ne the

se
urity of ke proto
ols in Se
tion 4.

2.1 Proto
ols, Sessions and Key-Ex
hange

Message-driven proto
ols We 
onsider a set of parties (probabilisti
 polynomial-timema
hines),

whi
h we usually denote by P

1

; : : : ; P

n

, inter
onne
ted by point-to-point links over whi
h messages


an be ex
hanged.

1

Proto
ols are 
olle
tions of intera
tive pro
edures, run 
on
urrently by these

parties, that spe
ify a parti
ular pro
essing of in
oming messages and the generation of outgoing

messages. Proto
ols are initially triggered at a party by an external \
all" and later by the arrival

of messages. Upon ea
h of these events, and a

ording to the proto
ol spe
i�
ation, the proto
ol

pro
esses information and may generate and transmit a message and/or wait for the next message

to arrive. We 
all these message-driven proto
ols. (We note the asyn
hronous nature of proto
ols

de�ned in this way whi
h re
e
ts the prevalent form of 
ommuni
ation in today's networks.)

Sessions and proto
ol output. Proto
ols 
an trigger the initiation of sub-proto
ols (i.e. inter-

a
tive subroutines) or other proto
ols, and several 
opies of su
h proto
ols may be simultaneously

run by ea
h party. We 
all ea
h 
opy of a proto
ol run at a party a session. Te
hni
ally, a session is

an intera
tive subroutine exe
uted inside a party. Ea
h session is identi�ed by the party that runs

it, the parties with whom the session 
ommuni
ates and by a session-identi�er. These identi�ers

are used in pra
ti
e to bind transmitted messages to their 
orresponding sessions. Ea
h invo
ation

of a proto
ol (or session) at a given party 
reates a lo
al state for that session during exe
ution, and

produ
es lo
al outputs by that party. This output 
an be a quantity (e.g a session key) returned to

the 
alling program, or it 
an be the re
ording of a proto
ol event (su
h as a su

essful or failed

termination). These lo
al outputs serve to represent the \history" of a proto
ol and are important

to formalize se
urity. When a session ends its run we 
all it 
omplete and assume that its lo
al

state is erased.

Key-ex
hange proto
ols. Key-ex
hange (ke) proto
ols are message-driven proto
ols (as de�ned

above) where the 
ommuni
ation takes pla
e between pairs of parties and whi
h return, upon


ompletion, a se
ret key 
alled a session key. More spe
i�
ally, the input to a ke proto
ol within

ea
h party P

i

is of the form (P

i

; P

j

; s; role), where P

j

is the identity of another party, s is a session

id, and role 
an be either initiator or responder. A session within P

i

and a session within P

j

are


alled mat
hing if their inputs are of the form (P

i

; P

j

; s; initiator) and (P

j

; P

i

; s; responder). The

inputs are 
hosen by a \higher layer" proto
ol that \
alls" the ke proto
ol. We require the 
alling

proto
ol to make sure that the session id's of no two ke sessions in whi
h the party parti
ipates are

identi
al. Furthermore, we leave it to the 
alling proto
ol to make sure that two parties that wish

to ex
hange a key will a
tivate mat
hing sessions. Note that this may require some 
ommuni
ation

before the a
tual ke sessions are a
tivated.

2

Upon a
tivation, the partners P

i

and P

j

of two mat
hing sessions ex
hange messages (the initiator

goes �rst), and eventually generate lo
al outputs that in
lude the name of the partners of the session,

1

This formalization postulates a �xed number of parties in a network. An alternative, more general formalization

allows the adversary to adaptively in
rease the number of parti
ipants. We prefer this simpler formalization sin
e

the di�eren
e seems in
onsequential with respe
t to realisti
 ke proto
ols.

2

Indeed, in pra
ti
e proto
ols for setting up a se
ure session typi
ally ex
hange some messages before the a
tual


ryptographi
 key-ex
hange starts. The IKE proto
ol of the IPSEC standard is a good example [28℄.

4



the session identi�er, and the value of the 
omputed session key. A key establishment event is

re
orded only when the ex
hange is 
ompleted (this signals, in parti
ular, that the ex
hanged key


an be used by the proto
ol that 
alled the ke session). We note that a session 
an be 
ompleted

at one partner but not ne
essarily at the other.

After des
ribing these `me
hani
s" of a ke proto
ol we need to de�ne what is meant by a

\se
ure" ke proto
ol. This is the subje
t of Se
tion 4 and it is based on the adversarial model that

we introdu
e next.

2.2 The unauthenti
ated-links adversarial model (um)

In order to talk about the se
urity of a proto
ol we need to de�ne the adversarial setting that

determines the 
apabilities and possible a
tions of the atta
ker. We want these 
apabilities to be

as generi
 as possible (as opposed to, say, merely representing a list of possible atta
ks) while not

posing unrealisti
 requirements. We follow the general adversarial formalism of [2℄ but spe
ialize

and extend it here for the 
ase of ke proto
ols. Using the terminology of [2℄ we 
all this model the

Unauthenti
ated Links Model (um).

Basi
 atta
ker 
apabilities. We 
onsider a probabilisti
 polynomial-time (ppt)

3

atta
ker that

has full 
ontrol of the 
ommuni
ations links: it 
an listen to all the transmitted information, de
ide

what messages will rea
h their destination and when, 
hange these messages at will or inje
t its own

generated messages. The formalism represents this ability of the atta
ker by letting the atta
ker

be the one in 
harge of passing messages from one party to another. The atta
ker also 
ontrols the

s
heduling of all proto
ol events in
luding the initiation of proto
ols and message delivery.

Obtaining se
ret information. In addition to these basi
 adversarial 
apabilities (given \for

free" to the atta
ker), we let the atta
ker obtain se
ret information stored in the parties memories

via expli
it atta
ks. We 
onsider all the se
ret information stored at a party as potentially vul-

nerable to break-ins or other forms of leakage. However, when de�ning se
urity of a proto
ol it is

important to guarantee that the leakage of some form of se
ret information has the least possible

e�e
t on the se
urity of other se
rets. For example, we will want to guarantee that the leakage of

information spe
i�
 to one session (su
h as the leakage of a session key or ephemeral state infor-

mation) will have no e�e
ts on the se
urity of other sessions, or that even the leakage of 
ru
ial

long-term se
rets (su
h as private keys) that are used a
ross multiple sessions will not ne
essarily


ompromise se
ret information from all past sessions. In order to be able to di�erentiate between

various vulnerabilities and to be able to guarantee as mu
h se
urity as possible in the event of in-

formation exposures, we 
lassify atta
ks into three 
ategories depending on the type of information

a

essed by the adversary:

Party 
orruption. The atta
ker 
an de
ide at any point to 
orrupt a party, in whi
h 
ase the atta
ker

learns all the internal memory of that party in
luding long-term se
rets (su
h as private keys or

master shared keys used a
ross di�erent sessions) and session-spe
i�
 information 
ontained in the

party's memory (su
h as internal state of in
omplete sessions and session-keys 
orresponding to


ompleted sessions). Sin
e by learning its long term se
rets the atta
ker 
an impersonate a party

in all all its a
tions then a party is 
onsidered 
ompletely 
ontrolled by the atta
ker from the time

of 
orruption and 
an, in parti
ular, depart arbitrarily from the proto
ol spe
i�
ations.

Session-key query. The atta
ker provides a party's name and a session identi�er of a 
ompleted

session at that party and re
eives the value of the key generated by the named session This atta
k

provides the formal modeling for leakage of information on spe
i�
 session keys that may result from

3

When proving spe
i�
 proto
ols one 
an repla
e this generi
 ppt modeling with spe
i�
 
ryptographi
 assumptions.
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events su
h as break-ins, 
ryptanalysis, 
areless disposal of keys, et
. It will also serve, indire
tly,

to ensure that the unavoidable leakage of information produ
ed by the use of session keys in a

se
urity appli
ation (e.g., information leaked on a key by its use as an en
ryption key) will not help

in deriving further information on this and other keys.

Note: one 
ould de�ne yet another adversary operation that would provide the atta
ker with partial

information on session keys (to spe
i�
ally model information leaked via key usage), however it turns

out that su
h an addition, while adding 
omplexity to the model spe
i�
ation, does not 
hange the

power of the model sin
e session-key queries as de�ned here already suÆ
e to 
apture leakage of

any partial information on the session keys.

Session-state reveal. The atta
ker provides the name of a party and a session identi�er of a yet

in
omplete session at that party and re
eives the internal state of that session (sin
e we see sessions

as pro
edures running inside a party then the internal state of a session is well de�ned). An

important point here is what information is in
luded in the lo
al state of a session; this is to

be spe
i�ed by ea
h ke proto
ol. Therefore, our de�nition of se
urity is parameterized by the

type and amount of information revealed in this atta
k. For instan
e, the information revealed in

this way may be the exponent x used by a party to 
ompute a value g

x

in a DiÆe-Hellman key-

ex
hange proto
ol, or the random bits used to en
rypt a quantity under a probabilisti
 en
ryption

s
heme during a session. (An example where su
h state information may be vulnerable to atta
k is

appli
ations { su
h as those running in low-powered devi
es { that pre-
ompute, or upload, a �le

of pairs (x; g

x

) for use during later \real-time" establishment of ke sessions. In this 
ase one would

like to prevent that the exposure of su
h a �le, or part of it, will 
ompromise future sessions that

do not use these values.)

We stress that while the �rst two forms of atta
k, party 
orruptions and session-key queries,

are fundamental to the de�nition of se
urity of ke proto
ols, the signi�
an
e of the session-state

reveal operation depends on the se
urity model of an implementation. The di�erentiation between

party 
orruptions and session-state reveal operations assumes that 
orrupting a session state does

not imply learning about long-term se
rets; this impli
itly assumes a separate se
urity module

where the operations involving these long-term se
rets are performed. In settings where this is an

unrealisti
 assumption, our model 
an be weakened by deleting the session-state reveal operation

from the atta
ker's 
apabilities. Certainly, proto
ols proven se
ure under our model will remain

se
ure in the weakened model.

Terminology: if a session is subje
t to any of the above three atta
ks (i.e. a session-state reveal, a

session-key query or the 
orruption of the party holding the session) then the session is 
alled lo
ally

exposed. If a session or its mat
hing session is lo
ally exposed then we 
all the session exposed.

Session expiration. One important additional element in our se
urity model is the notion of

session expiration. This takes the form of a proto
ol a
tion that when a
tivated 
auses the erasure

of the named session key (and any related session state) from that party's memory. We allow a

session to be expired at one party without ne
essarily expiring the mat
hing session. The e�e
t

of this a
tion in our se
urity model is that the value of an expired session key 
annot be found

via any of the above atta
ks if these atta
ks are performed after the session expired. This has two

important 
onsequen
es: it allows us to model the 
ommon (and good) se
urity pra
ti
e of limiting

the life-time of individual session keys and it allows for a simple modeling of the notion of perfe
t

forward se
re
y (see Se
tion 4.2). We note that in order for a session to be lo
ally exposed (as

de�ned above) the atta
k against the session must happen before the session expires.

Bootstrapping the se
urity of key-ex
hange proto
ols. Key-ex
hange proto
ols, as other


ryptographi
 appli
ations, require the bootstrapping of se
urity (espe
ially for authenti
ation) via
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some assumed-se
ure means. Examples in
lude the se
ure generation of parties' private keys, the

installation of publi
 keys of other parties, or the installation of shared \master" keys. Here too

we follow the approa
h of [2℄ where the bootstrapping of the authenti
ation fun
tions is abstra
ted

into an initialization fun
tion that is run prior to the initiation of any key-ex
hange proto
ol and

that produ
es in a se
ure way (i.e. without adversarial parti
ipation) the required (long-term)

information. By abstra
ting out this initial phase we allow for the 
ombination of di�erent proto
ols

with di�erent initialization fun
tions: in parti
ular, it allows our analysis of proto
ols (su
h as

DiÆe-Hellman) to be appli
able under the two prevalent settings of authenti
ation: symmetri


and a-symmetri
 authenti
ation. Two points to note are (1) the spe
i�
ation of the initialization

fun
tion is part of the de�nition of ea
h ke proto
ol; and (2) se
ret information generated by

this fun
tion at a given party 
an be dis
overed by the atta
ker only upon 
orruption of that

party. We stress that while this abstra
tion adds to the simpli
ity and appli
ability of our analysis

te
hniques, the bootstrapping of se
urity in a
tual proto
ols is an element that must be 
arefully

analyzed (e.g., the intera
tion with a CA in the 
ase of publi
-key based proto
ols). Integrating

these expli
it elements into the model 
an be done either dire
tly as done in [43℄, or in a more

modular way via appropriate proto
ol 
omposition.

2.3 The am, proto
ol emulation and authenti
ators

A 
entral ingredient in our analyses is the methodology introdu
ed in [2℄ by whi
h one 
an design

and analyze a proto
ol under the highly-simplifying assumption that the atta
ker 
annot 
hange

information transmitted between parties, and then transform these proto
ols and their se
urity

assuran
e to the realisti
 um where the adversary has full 
ontrol of the 
ommuni
ation links. We

refer the reader to [2℄ for the details and also present a te
hni
al summary in Se
tion 3.4.

First, an adversarial model 
alled authenti
ated-links model (denoted am) is de�ned in a way

that is identi
al to the um with one fundamental di�eren
e: the atta
ker is restri
ted to only

deliver messages truly generated by the parties without any 
hange or addition to them. Then, the

notion of \emulation" is introdu
ed in order to 
apture the equivalen
e of fun
tionality between

proto
ols in di�erent adversarial models, in parti
ular between the um and am. Roughly speaking,

a proto
ol �

0

emulates proto
ol � in the um if for any adversary that intera
ts with �

0

in the um

there exists an adversary that intera
ts with � in the am su
h that the two intera
tions \look

the same" to an outside observer. Finally, spe
ial algorithms 
alled authenti
ators are developed

with the property that on input the des
ription of a proto
ol � the authenti
ator outputs the

des
ription of a proto
ol �

0

su
h that �

0

emulates proto
ol � in the um. That is, authenti
ators a
t

as an automati
 \
ompiler" that translate proto
ols in the am into equivalent (or \as se
ure as")

proto
ols in the um.

In order to simplify the 
onstru
tion of authenti
ators, [2℄ o�ers the following methodology.

First 
onsider a very simple one-
ow proto
ol in the am, 
alled mt, whose sole fun
tionality is

to transmit a single message from sender to re
ipient. Now build a restri
ted-type authenti
ator,


alled mt-authenti
ator, required to provide emulation for this parti
ular mt proto
ol only. Finally,

to any su
h mt-authenti
ator � one asso
iates an algorithm (or 
ompiler) C

�

that translates any

input proto
ol � into another proto
ol �

0

as follows: to ea
h of the messages de�ned in proto
ol

� apply the mt-authenti
ator �. It is proven in [2℄ that C

�

is an authenti
ator (i.e., the resultant

proto
ol �

0

emulates � in the um). Parti
ular realizations of mt-authenti
ators are presented in [2℄

based on di�erent type of 
ryptographi
 fun
tions (e.g., digital signatures, publi
-key en
ryption,

MAC, et
.)
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3 The models

This se
tion presents a te
hni
al des
ription of the proto
ol and adversary models used throughout

the paper. We strongly re
ommend �rst reading Se
tion 2 whi
h presents an overview of these

models and their motivation.

3.1 Message-Driven Proto
ols

An n-party message-driven proto
ol is a 
olle
tion of n programs, where ea
h program is to be

run by a di�erent party. (Formally, ea
h program is an intera
tive ppt Turing ma
hine, as de�ned

in [25℄.) Ea
h program has the following interfa
e. It is �rst invoked with some initial input

(that in
ludes the party's identity), random input, and some value for the se
urity parameter.

On
e invoked, the program waits for an a
tivation. An a
tivation 
an be 
aused by two types of

events: either the arrival of an in
oming message from the network, or an a
tion request 
oming

from other programs run by the party. (De�ning valid a
tion requests is part of the spe
i�
ation

of the proto
ol.

4

) Upon a
tivation, the program pro
esses the in
oming data, starting from its


urrent internal state, and as a result it 
an generate outgoing messages to the network and a
tion

requests to other programs run by the party. In addition, a lo
al output value is generated. On
e

the a
tivation is 
ompleted, the program waits for the next a
tivation. We regard the lo
al output

as 
umulative. That is, initially the lo
al output is empty; in ea
h a
tivation the 
urrent output

is appended to the previous one. We will let a proto
ol label some of its lo
al output as `se
ret'

(e.g. the value of a se
ret key generated by the proto
ol). This will have e�e
t on the adversary's

a
tions that we de�ne below.

An invo
ation of a proto
ol is 
alled a session. Note that a session of a proto
ol � may involve

several sessions of other proto
ols that are 
alled by �. (When treating the spe
ial 
ase of key-

ex
hange proto
ols in Se
tion 3.3 the semanti
s of sessions in that 
ontext will be given more

spe
i�
 meaning.)

3.2 The unauthenti
ated-links adversarial model (um).

The adversarial model um de�nes the atta
ker's 
apabilities and its intera
tion with a proto
ol.

Figure 1 summarizes the way proto
ols are exe
uted in the presen
e of a um adversary. Here we

des
ribe this in some more detail. Consider an n-party message-driven proto
ol �, with parties

denoted by P

1

:::P

n

. Ea
h party P

i

has input x

i

and random input r

i

. In addition, we introdu
e

an adversarial entity, 
alled a um-adversary U . (The um-adversary is another program, or a ppt

intera
tive Turing ma
hine, with an interfa
e des
ribed below.) The exe
ution of proto
ol � in the

um 
onsists of a sequen
e of a
tivations of � within di�erent parties. The a
tivations are 
ontrolled

and s
heduled by U . That is, initially the proto
ol is invoked within ea
h party with a lo
al input,

random input and a value for the se
urity parameter. Next, and upon the 
ompletion of ea
h

a
tivation, U de
ides whi
h party to a
tivate next, and on whi
h in
oming message or request. The

outgoing messages and outgoing lo
al a
tion requests be
ome known to U . Lo
al outputs be
ome

known to U ex
ept for those labeled `se
ret'.

Note that U is free to 
hoose to a
tivate any party with any a
tivation allowed by the proto
ol

and in any order. Also, U 
an a
tivate any party with any in
oming message and any spe
i�ed

4

An a
tion request 
an be, for instan
e, a request to send a message or ex
hange a key with some spe
i�ed party

(we will see spe
i�
 examples in the sequel). We assume that every message spe
i�es the sender of the message and

its intended re
ipient.
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Proto
ol exe
ution in the um

Parti
ipants: Parties P

1

; :::; P

n

running an n-party proto
ol � on inputs x

1

; :::; x

n

, respe
tively, and

an adversary U .

1. Initialization: Ea
h party P

i

invokes � on lo
al input x

i

, se
urity parameter k and random

input. Next, P

i

gets I(r; k)

i

and I(r; k)

0

, where r is randomly 
hosen.

2. While U has not terminated do:

(a) U may a
tivate � within some party, P

i

. An a
tivation 
an take two forms:

i. An a
tion request q. This a
tivation models requests or invo
ations 
oming from

other programs run by the party.

ii. An in
oming messagem with a spe
i�ed sender P

j

. This a
tivation models messages


oming from the network.

If an a
tivation o

urred then the a
tivated party P

i

runs its program and hands U the

resulting outgoing messages and a
tion requests. (We stress that U is free to 
hoose any

s
heduling of a
tivations and determine the values of in
oming messages.) Lo
al outputs

produ
ed by the proto
ol are known to U ex
ept for those labeled `se
ret'.

(b) U may 
orrupt a party P

i

. Upon 
orruption, U learns the 
urrent internal state of P

i

,

and a spe
ial message is added to P

i

's lo
al output. From this point on, P

i

is no longer

a
tivated and does not generate further lo
al output.

(
) U may issue a session-state reveal for a spe
i�ed session within some party P

i

. In this


ase, U learns the 
urrent internal state of the spe
i�ed session within P

i

. This event is

re
orded through a spe
ial note in P

i

's lo
al output.

(d) U may issue a session-output query for a spe
i�ed session within some party P

i

. In this


ase, U learns any output from the spe
i�ed session that was labeled `se
ret'. This event

is re
orded through a spe
ial note in P

i

's lo
al output.

3. The global output of the exe
ution is the 
on
atenation of the outputs of U and P

1

; :::; P

n

.

Figure 1: Proto
ol exe
ution in the um.

sender. In parti
ular, in
oming messages need not 
orrespond in any way to messages that have

been sent. (That is, U is free to generate, inje
t, modify, and deliver any message of its 
hoi
e.)

In addition to a
tivating parties and 
ontrolling the network, U 
an perform the following

a
tivities. First, it 
an 
orrupt parties at will. Upon 
orruption of P

i

, U learns the entire 
urrent

state of P

i

, in
luding any long-term se
ret, session states and se
ret session outputs in the party's

memory. From this point on, U 
an deliver any message of its 
hoi
e in whi
h P

i

is spe
i�ed as

the sender. The 
orrupted party P

i

appends a spe
ial note to its output, spe
ifying that it has

been 
orrupted. P

i

is no longer a
tivated and does not generate further lo
al output. (A 
orrupted

party is totally 
ontrolled by the adversary, and its a
tions are taken by the atta
ker itself.)

Another type of a
tivity is session-state reveal of a 
ertain session within party P

i

. The e�e
t is

that the internal state of the 
orresponding session within P

i

(i.e., the lo
al working spa
e of the

pro
edure whose invo
ation 
onstitutes the session) be
omes known to U , and a spe
ial message

is added to the party's lo
al output; no further output is generated for this session.

5

A third

5

We do not spe
ify how a session is identi�ed; this will have to be part of the spe
i�
ation of a proto
ol. In the
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adversarial a
tivity is a session-output query. By issuing su
h a query the adversary learns any

output from that session that was labeled `se
ret'. (This type of queries is parti
ularly important

in the 
ontext of key-ex
hange proto
ols below where this a
tion is 
alled a `session-key query'.)

The initialization fun
tion I. Finally, we augment the proto
ol � with an initialization fun
tion

I that models an initial phase of out-of-band and authenti
ated information ex
hange between

the parties. (This fun
tion models the ne
essary trusted bootstrapping of 
ryptographi
 fun
tions,

e.g. by letting the parties 
hoose private and publi
 keys for some asymmetri
 
rypto-system

and trustfully distributing the publi
 keys.) Fun
tion I takes a random input r and the se
urity

parameter k, and outputs a ve
tor I(r; k) = I(r; k)

0

::::I(r; k)

n

. The 
omponent I(r; k)

0

is the publi


information and be
omes known to all parties and to the adversary. For i > 0, I(r; k)

i

be
omes

known only to P

i

. Note, however, that upon 
orruption of P

i

the atta
ker learns I(r; k)

i

.

Global output. The global output of running a proto
ol in the um is the 
on
atenation of the


umulative lo
al outputs of all the parties, together with the output of the adversary. The output of

the adversary is a fun
tion of its internal states at the end of the intera
tion. We use the following

notation. Let um-adv

�;U

(k; ~x;~r) denote the output of adversary U when intera
ting with parties

running proto
ol � on se
urity parameter k, input ~x = x

1

: : : x

n

and random input ~r = r

0

: : : r

n

as des
ribed above (r

0

for U ; x

i

and r

i

for party P

i

). (The initialization fun
tion I is part of the

des
ription of proto
ol �.) Let unauth

�;U

(k; ~x;~r)

i

denote the 
umulative output of party P

i

after

running proto
ol � on se
urity parameter k, input ~x and random input ~r, and with an am-adversary

U . Let unauth

�;U

(k; ~x;~r) = um-adv

�;U

(k; ~x;~r);unauth

�;U

(k; ~x;~r)

1

: : : unauth

�;U

(k; ~x;~r)

n

. Let

unauth

�;U

(k; ~x) denote the random variable des
ribing unauth

�;U

(k; ~x;~r) when ~r is uniformly


hosen. Let unauth

�;U

denote the ensemble funauth

�;U

(k; ~x)g

k2N;~x2f0;1g

�
.

We have summarized the stru
ture of a proto
ol exe
ution in the um in Figure 1.

3.3 Key Ex
hange Proto
ols

Key-ex
hange proto
ols are a spe
ial 
ase of n-party message-driven proto
ols. As su
h they inherit

the syntax of general message-driven proto
ols as introdu
ed before. In addition, in order to


apture the spe
i�
 semanti
s of key ex
hange, and the spe
i�
 
apabilities of atta
kers against

su
h proto
ols, we spe
ify some additional syntax for these proto
ols. (The intention of this syntax

is to represent, in an abstra
t but dire
t way, the me
hani
s of key ex
hange proto
ols in a
tual

systems.)

Re
all that a message-driven proto
ol is a 
olle
tion of n programs, where ea
h program is

run by a di�erent party. (We envision that the program is invoked on
e within ea
h party at the

onset of the 
omputation and remains a
tive throughout.) On
e invoked, it is a
tivated either by a

message 
oming from the network, or by an a
tion request from other proto
ols or programs run by

the party. In the 
ase of a key-ex
hange (ke) proto
ol �, the program within ea
h party, P

i

, takes

a
tion requests of the form establish-session(P

i

; P

j

; s; role) where P

j

is another party (with whi
h a

key is to be ex
hanged), s is a string 
alled the session-id, and role 2 finitiator; responderg. (This

a
tion request will typi
ally be triggered by other proto
ols run by the party that \
all" the ke

proto
ol, see for example Se
tion 6.)

Lo
al outputs of a ke proto
ol are of the form (P

i

; P

j

; s; �), where P

j

; s are as above and � is a

session key. A null value of � is interpreted as a \session abortion" and will usually represent the

termination of the session with a returned error message. Non-null session-key values are labeled


ontext of ke proto
ols we will identify sessions via a session-id and the partners of the session; see more details in

the next se
tion.
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`se
ret'. (Re
all that the lo
al outputs are thought of as values returned by the session to the

\
alling proto
ol" that issued the initial establish-session a
tivation.)

We further spe
ify the internal stru
ture of ea
h of the n programs of a ke proto
ol, as follows.

Ea
h su
h program, running within P

i

, 
onsists of a main pro
edure (
an be thought of as a \shell")

and a spe
ial subroutine, 
alled a ke-subroutine. An invo
ation of the ke-subroutine is 
alled a

ke-session and is aimed at ex
hanging a single key with a spe
i�ed party. The main pro
edure

pro
eeds as follows. Upon a
tivation with a
tion request establish-session(P

i

; P

j

; s; role), it �rst

veri�es that no ke-session was previously invoked (within P

i

) with inputs (P

i

; P

j

; s; role

0

) for some

role

0

2 finitiator; responderg (namely, the main pro
edure makes sure that the identity of the session

is unique among the sessions that P

i

was requested to establish with P

j

). If the veri�
ation fails,

then an appropriate error message is generated. Otherwise, a ke-session is invoked with inputs

(P

i

; P

j

; s; role). From this point on, whenever the ke proto
ol within P

i

re
eives a message that

spe
i�es sender P

j

and session-id s, it forwards this message to the relevant ke-session within P

i

.

On
e a ke-session returns (typi
ally, after a number of messages have been ex
hanged between

P

i

and P

j

) with output (P

i

; P

j

; s; �), the ke proto
ol re
ords a session establishment event with

parameters (P

i

; P

j

; s; �) in its lo
al output. From these parameters only the value � of the session

key is labeled `se
ret'. A ke-session that returns with a non-null value of � is 
alled 
ompleted. If

� = null then the ke-session is aborted and a spe
ial note is re
orded in the lo
al output. It is

assumed by 
onvention that, on
e a ke-session returns, its entire lo
al state, ex
ept for the output

value, is se
urely erased. Note that this means that a session-state reveal after the session has

returned will produ
e an empty output for the atta
ker.

Mat
hing sessions. We also use the following terminology: if in an exe
ution of a ke proto
ol

P

i

has a session with input (P

i

; P

j

; s; role) and party P

j

has a session with input (P

j

; P

i

; s

0

; role

0

),

and s = s

0

then we say that the two sessions are mat
hing. (Note that we do not require that

role 6= role

0

.) We 
all P

i

and P

j

the partners of session s. (Note that P

i

may have 
ompleted a

session with partner P

j

, while P

j

may never 
omplete the mat
hing session; 
ompletion of sessions

depends on the delivery of the proto
ol's message whi
h is subje
t to adversarial 
ontrol.)

Session expiration: an extension to the um. The adversarial a
tions against a ke proto
ol

in the um are essentially the same as the generi
 um atta
ker des
ribed above, in
luding party


orruption, session-state reveals, and session-output queries. For 
larity, we will use the term

session-key query instead of session-output query when referring to ke sessions (namely, a session-

key query on a 
ompleted session provides the atta
ker with the value of that session key, the only

se
ret output of a ke session). We add, however, one more element to this model. We will 
onsider

a proto
ol a
tion 
alled session expiration. A session expiration a
tion 
an be s
heduled by the

atta
ker for any 
ompleted session (P

i

; P

j

; s; role) within party P

i

. The e�e
t of this a
tivity is that

the se
ret output of the session, i.e. the session key, is erased from the party's memory. In addition,

a spe
ial note re
ording the session expiration is added to P

i

's lo
al output, and this ke-session is

labeled expired, with the following 
onsequen
es. Adversary U is not allowed to perform a session-

key query for an expired session. In addition, when U 
orrupts a party, it does not see the lo
al

outputs of the expired sessions (thus, upon party 
orruption the atta
ker learns the party's session-

keys for unexpired sessions only.) As explained in Se
tion 2 expiration of sessions is motivated by

the 
ommon pra
ti
e to limit the life time of session keys and, in parti
ular, is instrumental for


apturing the notion of perfe
t forward se
re
y. Figure 1 needs to be updated by adding the session

expiration a
tivity to the list of possible a
tivities in Step 2.

Exposed sessions. Finally we introdu
e the following terminology. A ke-session (P

i

; P

j

; s; role)

within P

i

is 
alled lo
ally exposed (within P

i

) if the atta
ker performed any of the following a
tions

11



on said session: (i) a session-state reveal; (ii) a session-key query; (iii) 
orruption of P

i

before

session (P

i

; P

j

; s; role) expired within P

i

(this in
ludes the 
ase in whi
h P

i

is 
orrupted before the

session is even invoked or 
ompleted).

A ke-session is 
alled exposed if it is lo
ally exposed or it has a mat
hing session that is lo
ally

exposed. A session whi
h is not exposed is 
alled unexposed.

3.4 The am Model and Authenti
ators

The material in this Se
tion is taken from [2℄.

The authenti
ated-links adversarial model (am). The authenti
ated-links model of 
ompu-

tation is identi
al to the unauthenti
ated-links one, with the following fundamental ex
eption. The

am-adversary, denoted A, 
an a
tivate parties only with in
oming messages that were generated

and sent by other parties in the proto
ol. That is, the atta
ker 
annot inje
t or modify messages

(ex
ept if the spe
i�ed sender is a 
orrupted party or if the message belongs to an exposed session).

In addition, any message may be delivered at most on
e. (Namely, A may de
ide not to deliver a

message at all, but if A delivers a message m then it 
an do so only to the proper destination of

m, only on
e, and without 
hanging m or the spe
i�ed sender.)

We de�ne auth

�;A

analogously to unauth

�;U

, where the 
omputation is 
arried out in the

unauthenti
ated-links model.

Emulation of proto
ols. Central to the methodology of [2℄ and the 
urrent paper is the 
on
ept

of \proto
ol translation", espe
ially between the am to the um. We want to be able to start with

any proto
ol � that has some guaranteed fun
tionality (or se
urity) in the am and generate out

of it a proto
ol �

0

with equivalent fun
tionality in the um. For this we �rst need to formalize the

notion of \equivalen
e". This is done in the next de�nition from [2℄ (and whi
h follows a general

approa
h used for de�ning se
ure multi-party proto
ols [23, 38, 1, 13℄).

De�nition 1 Let � and �

0

be an n-party message-driven proto
ols. We say that �

0

emulates � in

the unauthenti
ated-links model if for any um-adversary U there exists an am-adversary A su
h that

auth

�;A

and unauth

�

0

;U

are 
omputationally indistinguishable.

Armed with the emulation de�nition we 
an turn to de�ne what is meant by \proto
ol transla-

tion" from am to um. This is done in the next de�nition [2℄ in terms of \
ompilers" and \authen-

ti
ators".

De�nition 2 A 
ompiler C is an algorithm that takes for input des
riptions of proto
ols and outputs

des
riptions of proto
ols. An authenti
ator is a 
ompiler C where for any proto
ol �, the proto
ol

C(�) emulates � in the unauthenti
ated-links model.

Constru
ting authenti
ators: the mt proto
ol. Thus, an authenti
ator 
an take for input

proto
ols designed for ideally authenti
ated links (am), and turn them into `equivalent' proto
ols for

adversary-
ontrolled unauthenti
ated links (um). But 
an su
h authenti
ators be 
onstru
ted? The

answer is yes. The following methodology for 
onstru
ting authenti
ators is used in [2℄. Consider

the following simple proto
ol, 
alled the message transmission (mt) proto
ol. The proto
ol takes

empty input. Upon a
tivation within P

i

on a
tion request send(P

i

; P

j

;m), party P

i

sends the

message (P

i

; P

j

;m) to party P

j

, and outputs ``P

i

sent m to P

j

''. Upon re
eipt of a message

(P

i

; P

j

;m), P

j

outputs ``P

j

re
eived m from P

i

''. When run in the am this proto
ol represents

a perfe
tly authenti
ated message transmission proto
ol. Now, let � be a proto
ol that emulates mt
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in unauthenti
ated networks. We 
all su
h proto
ols mt-authenti
ators and we will see that they


an be 
onstru
ted eÆ
iently. On the basis of �, de�ne a 
ompiler C

�

that on input a proto
ol

� produ
es a proto
ol �

0

= C

�

(�) de�ned as follows. When �

0

is a
tivated at a party P

i

it �rst

invokes �. Then, for ea
h message sent in proto
ol �, proto
ol �

0

a
tivates � with the a
tion request

for sending the same message to the same spe
i�ed re
ipient. Whenever �

0

is a
tivated with some

in
oming message, it a
tivates � with the same in
oming message. When � outputs ``P

i

re
eived

m from P

j

'', proto
ol � is a
tivated with in
oming message m from P

j

. It is shown:

Theorem 3 ([2℄) Let � be an mt-authenti
ator. Then C

�

is an authenti
ator.

Thus, in order to see that authenti
ators 
an be 
onstru
ted it suÆ
es to show 
onstru
tions

of mt-authenti
ators. This is done in [2℄ where several su
h s
hemes are shown based on di�erent


ryptographi
 fun
tions (su
h as digital signatures and en
ryption).

In Se
tion 6.2 we extend the mt proto
ol to a setting of multiple 
on
urrent sessions. We 
all

the resultant proto
ol smt. It is straightforward to extend the proof of the above theorem to 
over

the 
ase of smt-authenti
ators as well.

4 Session-Key Se
urity

After having de�ned the basi
 formal model for key-ex
hange proto
ols and adversarial 
apabilities,

we pro
eed to de�ne what is meant for a key-ex
hange proto
ol to be se
ure. While the previous

se
tions were largely based on the work of [2℄, our de�nition of se
urity 
losely follows the de�nitional

approa
h of [7℄. The resultant notion of se
urity, that we 
all session-key se
urity (or SK-se
urity),

fo
uses on ensuring the se
urity of individual session-keys as long as the session-key value is not

obtained by the atta
ker via an expli
it key exposure (i.e. as long as the session is unexposed { see

the terminology in the previous se
tion). We want to 
apture the idea that the atta
ker \does not

learn anything about the value of the key" from intera
ting with the key-ex
hange proto
ol and

atta
king other sessions and parties. As it is standard in the semanti
-se
urity approa
h this is

formalized via the infeasibility to distinguish between the real value of the key and an independent

random value.

We stress that this formulation of SK-se
urity is very 
areful about tuning the de�nition to

o�er enough strength as required for the use of key-ex
hange proto
ols to realize se
ure 
hannels

(Se
tion 6), as well as being realisti
 enough to avoid over-kill requirements whi
h would prevent

us from proving the se
urity of very useful proto
ols (Se
tion 5). We further dis
uss these aspe
ts

after the presentation of the de�nition.

4.1 De�nition of SK-Se
urity

We �rst present the de�nition for the um. The formalization in the am is analogous. We start by

de�ning an \experiment" where the atta
ker U 
hooses a session in whi
h to be \tested" about

information it learned on the session-key; spe
i�
ally, we will ask the atta
ker to di�erentiate the

real value of the 
hosen session key from a random value. (Note that this experiment is an artifa
t

of the de�nition of se
urity, and not an integral part of the a
tual key-ex
hange proto
ols and

adversarial intervention.)

For the sake of this experiment we extend the usual 
apabilities of the adversary, U , in the

um by allowing it to perform a test-session query. That is, in addition to the regular a
tions of U

against a key-ex
hange proto
ol �, we let U to 
hoose, at any time during its run, a test-session
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among the sessions that are 
ompleted, unexpired and unexposed at the time. Let � be the value of

the 
orresponding session-key. We toss a 
oin b, b

R

 f0; 1g. If b = 0 we provide U with the value �.

Otherwise we provide U with a value r randomly 
hosen from the probability distribution of keys

generated by proto
ol �. The atta
ker U is now allowed to 
ontinue with the regular a
tions of a

um-adversary but is not allowed to expose the test-session (namely, it is not allowed session-state

reveals, session-key queries, or partner's 
orruption on the test-session or its mat
hing session.

6

)

At the end of its run, U outputs a bit b

0

(as its guess for b).

We will refer to an atta
ker that is allowed test-session queries as a ke-adversary.

De�nition 4 A ke proto
ol � is 
alled SK-se
ure if the following properties hold for any ke-

adversary U in the um.

1. Proto
ol � satis�es the property that if two un
orrupted parties 
omplete mat
hing sessions

then they both output the same key; and

2. the probability that U guesses 
orre
tly the bit b (i.e., outputs b

0

= b) is no more than 1/2 plus

a negligible fra
tion in the se
urity parameter.

If the above properties are satis�ed for all ke-adversaries in the am then we say that � is SK-se
ure

in the am.

The �rst 
ondition is a \
onsisten
y" requirement for sessions 
ompleted by two un
orrupted

parties. We have no requirement on the session-key value of a session where one of the partners

was 
orrupted before the session 
ompleted { in fa
t, most ke proto
ols allow a 
orrupted party to

strongly in
uen
e the ex
hanged key. The se
ond 
ondition is the \
ore property" for SK-se
urity.

We note that the term `negligible' refers, as 
ustomary, to any fun
tion (in the se
urity parameter)

that diminishes asymptoti
ally faster than any polynomial fra
tion. (This formulation allows, if

so desired, to quantify se
urity via a 
on
rete se
urity treatment. In this 
ase one quanti�es the

atta
ker's power via spe
i�
 bounds on 
omputation time, number of 
orruptions, et
., while its

advantage is bounded through a spe
i�
 parameter ".)

Remark. We highlight three aspe
ts of De�nition 4.

� The atta
ker 
an keep running and atta
king the proto
ol even after re
eiving the response

(either real or random) to its test-session query. This ability (whi
h represents a substantial

strengthening of se
urity relative to [7℄, see also [6℄) is essential for proving the main property

of SK-se
urity shown in this paper, namely its guarantee of se
urity when used to generate

se
ure 
hannels as des
ribed in Se
tion 6. See the Appendix for histori
 ba
kground on, as

well as some te
hni
al rationale for this requirement.

� The atta
ker is not allowed to 
orrupt partners to the test-session or issue any other exposure


ommand against that session while unexpired. This re
e
ts the fa
t that there is no way

to guarantee the se
ure use of a session-key that was exposed via an atta
ker's break-in

(or 
ryptanalysis). In parti
ular, this restri
tion is instrumental for proving the se
urity of

spe
i�
 important proto
ols (e.g., DiÆe-Hellman key ex
hange) as done in Se
tion 5.

6

We stress, however, that the atta
ker is allowed to 
orrupt a partner to the test-session as soon as the test-session

(or its mat
hing session) expires at that party. See the dis
ussion below. This may be the 
ase even if the other

partner has not yet expired the mat
hing session or not even 
ompleted it.
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� The above restri
tion on the atta
ker by whi
h it 
annot 
orrupt a partner to the test-session

is lifted as soon as the session expires at that partner. In this 
ase the atta
ker should remain

unable to distinguish between the real value of the key from a random value. This is the basis

to the guarantee of \perfe
t forward se
re
y" provided by our de�nition and further dis
ussed

in Se
tion 4.2.

We stress that in spite of its \
ompa
t" formulation De�nition 4 is very powerful and 
an be

shown to ensure many spe
i�
 properties that are required from a good key-ex
hange proto
ol (see,

for example, 
hapter 12 of [37℄). Some of these properties in
lude the guarantee that session-keys

belong to the right probability distribution of keys (ex
ept if one of the partners is 
orrupted at

time of ex
hange), the \authenti
ity" of the ex
hange (namely, a 
orre
t and 
onsistent binding

between keys and parties' identities), resistan
e to man-in-the-middle atta
ks (for proto
ols proven

SK-se
ure in the um), resistan
e to known-key atta
ks, forward se
re
y, and more. However, we

note that all these properties (whi
h are sometimes listed as a repla
ement to a formal de�nition

of se
urity) in 
ombination do not suÆ
e to guarantee the most important aspe
t of key-ex
hange

se
urity that SK-se
urity enjoys: namely, the 
omposition of the key-ex
hange proto
ols with


ryptographi
 fun
tions to enable se
ure 
hannels (e.g., the original de�nition of se
urity in [7℄

does satisfy the above list of properties but is insuÆ
ient to guarantee se
ure 
hannels).

We �nally remark that De�nition 4 makes se
urity requirements from a ke proto
ol only in 
ase

that the proto
ol 
ompletes ke-sessions. No guarantee is made that ke-sessions will ever return,

or that they will not be aborted, i.e., that the 
orresponding session key will not be null. (In fa
t,

a ke proto
ol where all ke-sessions \hang" and never return satis�es the de�nition.) One 
an

add an expli
it termination requirement for sessions in whi
h the parties are un
orrupted and all

messages are 
orre
tly delivered by the atta
ker. For simpli
ity, we 
hoose to leave the analysis of

the termination properties of proto
ols out of the s
ope of the de�nition of se
urity.

4.2 Forward Se
re
y

Informally, the notion of \perfe
t forward se
re
y" (pfs) [26, 19℄ is stated as the property that

\
ompromise of long-term keys does not 
ompromise past session keys". In terms of our formalism

this means that even if a party is 
orrupted (in whi
h 
ase all its stored se
rets { short-term and

long-term { be
ome known to the atta
ker) then nothing is learned about sessions within that party

that were previously unexposed and expired before the party 
orruption happened.

The provision that expired session-keys remain indistinguishable from random values even if a

partner to that session is 
orrupted guarantees the perfe
t forward se
re
y of SK-se
ure proto
ols.

Put in other words, when proving a proto
ol to be SK-se
ure using De�nition 4 one automati
ally

gets a proof that that proto
ol guarantees pfs.

On the other hand, while pfs is a very important se
urity property it is not required for

all appli
ation s
enarios, e.g., when only authenti
ation is required, or when short-term se
re
y

suÆ
es. Indeed, it is 
ommon to �nd in pra
ti
e proto
ols that do not provide pfs and still are

not 
onsidered inse
ure. One su
h typi
al 
ase are \key-transport proto
ols" in whi
h publi
 key

en
ryption is used to 
ommuni
ate a session-key from one party to another. (In this 
ase, even

if session-keys are erased from memory when no longer required, the 
orruption of a party may

allow an atta
ker to 
ompute, via the dis
overed long-term private keys, all the past session-keys.)

Due to the importan
e of su
h proto
ols (they are 
ommonly used in, e.g., SSL), and given that

a
hieving pfs usually has a non-negligible 
omputational 
ost, we de�ne a notion of \SK-se
urity

without pfs" by simply disallowing the proto
ol's a
tion of key expiration. That is, under this
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modi�ed model, session-keys never expire. This results in a weaker notion of se
urity sin
e now by

virtue of De�nition 4 the atta
ker is never allowed to 
orrupt a partner to the test-session (or in

other words, this weaker de�nition of se
urity does not guarantee the se
urity of a session-key for

whi
h one of the partners is ever 
orrupted).

De�nition 5 We say that a ke proto
ol satis�es SK-se
urity without pfs if it enjoys SK-se
urity

relative to any ke-adversary in the um that is not allowed to expire keys. (Similarly, if the above

holds for any su
h adversaries in the am then we say that � is SK-se
ure without pfs in the am.)

Se
tion 5.3 des
ribes a proto
ol that satis�es SK-se
urity without pfs but not regular SK-se
urity.

5 SK-Se
ure Proto
ols

This se
tion demonstrates the usability of our de�nition of SK-se
urity for proving the se
urity of

some simple and important key-ex
hange proto
ols. One is the original DiÆe-Hellman proto
ol, the

other is a simple \key transport" proto
ol based on publi
-key en
ryption. We �rst show that these

proto
ols are se
ure in the simpler authenti
ated-links model (am). Then, using the methodology

from [2℄ we 
an apply to these proto
ols a variety of (symmetri
 or asymmetri
) authenti
ation

te
hniques to obtain key-ex
hange proto
ols that are se
ure in the realisti
 um model. Namely,

applying any mt-authenti
ator (see Se
tions 2.3 and 3.4) to the messages of the am-proto
ol results

in a se
ure ke proto
ol in the um. The next Theorem states that this methodology does work for

our purposes.

Theorem 6 Let � be a SK-se
ure key-ex
hange proto
ol in the am with pfs (resp., without pfs)

and let � be an mt-authenti
ator. Then �

0

= C

�

(�) is a SK-se
ure key-ex
hange proto
ol in the

um with pfs (resp., without pfs).

We remark that the following proof is somewhat more general, and proves that any authenti
ator

(not only mt-authenti
ators) is suÆ
ient for proving the theorem.

Proof: We start by noting that the theorem's statement does not follow dire
tly from the results of

[2℄ (spe
i�
ally from Theorem 3 in that paper) sin
e there the guarantee for se
ure transformation

between models is proven for the basi
 um and am. Here we need to extend the proof to 
apture the

additional test-session queries that we allow the ke-adversary against the ke proto
ol. Also worth

noting is that our um and am are ri
her than the ones in [2℄ (e.g. they in
lude session expiration

and session-state reveals), however it is easy to see that the proof of Theorem 3 in [2℄ will work for

these adversary a
tivities as well.

Based on these fa
ts we pro
eed to prove that if proto
ol � satis�es SK-se
urity (De�nition 4)

in the am then proto
ol �

0

= C

�

(�) satis�es that de�nition in the um. We note that the proof

is the same for the 
ases of SK-se
urity with or without pfs. Consider a proto
ol � that satis�es

De�nition 4 in the am, and let U be a ke-adversary against �

0

in the um. We �rst observe that �

0

satis�es Requirement 1 of De�nition 4 in the um with respe
t to U (otherwise the global output of

running �

0

in the um with U is easily distinguishable from the global output of running � in the

am with any am ke-adversary, in 
ontradi
tion to the fa
t that C

�

is an authenti
ator).

Next we 
on
entrate on demonstrating that �

0

satis�es Requirement 2 of De�nition 4 in the

um. Spe
i�
ally, given a ke-adversary U that guesses the bit b in the game of De�nition 4 in the

um with probability 1=2 + �, we 
onstru
t a ke-adversary A that guesses the bit b in the game of
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De�nition 4 in the am with probability 1=2 + �

0

, where �

0

is polynomial in � and in the se
urity

parameter.

The 
onstru
tion of A pro
eeds in few steps, as follows:

1. Given U , we �rst 
onstru
t a regular um-adversary U

0

against �

0

(i.e., U

0

is not allowed to

make test-session queries). Adversary U

0

runs adversary U and follows its instru
tions, with

the following ex
eption: When U 
hooses a test-session s, U

0

queries session s and 
hooses

b

R

 f0; 1g. If b = 0 then U

0

hands the key of session s to U . If b = 1 then U

0

hands U a value

drawn from the distribution of session keys. Next, U

0

returns to following the instru
tions of

U . When U halts, U

0

outputs the trans
ript of its intera
tion with U and halts.

2. Sin
e �

0

= C

�

(�), we have that there exists an adversary, A

0

in the am whose output is

indistinguishable from the output of U

0

.

3. Given adversary A

0

, we 
onstru
t the ke-adversary A promised above. Re
all that A intera
ts

in the am with the game of De�nition 4. A starts by 
hoosing a session s at random out of

the sessions initiated by A

0

. Next, A follows the instru
tions of A

0

; when the 
hosen session

s is established, A announ
es s to be its test session. In addition, if A

0

queries session s (and

session s is not yet exposed) then A feeds the obtained value for the key of session s to A

0

.

Next A returns to following the instru
tions of A

0

. When A

0

halts, A inspe
ts the output of

A

0

. Re
all that the output of A

0

mimi
s the output of U

0

, whi
h in turn des
ribes a trans
ript

of an exe
ution of U . If in that trans
ript of U the test session is session s then A outputs

the bit b

0

that U outputs in that trans
ript. Otherwise, A outputs a randomly 
hosen bit.

We analyze the su

ess probability of A under the assumption that the output of A

0

and U

0

are

identi
ally distributed. A

ounting for the fa
t that the two outputs are only 
omputationally

indistinguishable is done in standard ways.

Let ` be an upper bound on the number of sessions invoked by U , the advantage (i.e., the

probability of su

ess over 1=2) of A is 1=` times its advantage 
onditioned on the event that the

test session 
hosen by U (in the output of A

0

) equals s. For the rest of the analysis we assume that

the test session 
hosen by U (in the output of A

0

) equals s.

Let p

b

denote the probability that U outputs 1 when intera
ting with the game of De�nition 4

in the um, when the value of the \real or random" bit is b. We have that jp

real

�p

random

j � �. Also,

when run within U

0

, U outputs 1 with probability (p

real

+ p

random

)=2. Consider the following 
ases:

1. Assume that A is given the \real" key of the test session s. In this 
ase, the view of U

(within the output of A

0

that is run inside A) is distributed identi
ally to its view when U

0

intera
ts with �

0

in the um. In this 
ase U (and thus also A) outputs 1 with probability

(p

real

+ p

random

)=2.

2. Assume that A is given the \random" value for the key of the test session s. In this 
ase,

the view of U (within the output of A

0

that is run inside A) is distributed identi
ally to its

view when intera
ting in the game of De�nition 4 in the um, 
onditioned on the event that

it is given a \random" value for the key of the test session. In this 
ase U (and thus also A)

outputs 1 with probability p

random

.

It follows that, when A

0

perfe
tly simulates U

0

, the advantage of A is �=2`. 2
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5.1 Two-move DiÆe-Hellman in the am

We demonstrate that under the De
isional DiÆe-Hellman (DDH) assumption (see below) the `
las-

si
' two-move DiÆe-Hellman key-ex
hange proto
ol designed to work against eavesdroppers-only is

SK-se
ure in the am. We denote this proto
ol by 2dh and des
ribe it in Figure 2 (here and in the

sequel all exponentiations are modulo the de�ned prime p).

Using Theorem 6 we 
an apply any authenti
ator to this proto
ol to obtain a se
ure DiÆe-Hellman

ex
hange against realisti
 um atta
kers. For illustration, a parti
ular instan
e of su
h a SK-se
ure

proto
ol in the um, using digital signatures for authenti
ation, is shown in the next se
tion. Other


avors of authenti
ated DH proto
ols 
an be derived in a similar way by using other authenti
ators

(e.g. based on publi
 key en
ryption or on pre-shared keys [2℄); see Se
tion 5.4.

Proto
ol 2dh

Common information: Primes p; q, q=p�1, and g of order q in Z

�

p

.

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s), 
hooses x

R

 Z

q

and sends (P

i

; s; � = g

x

) to P

j

.

Step 2: Upon re
eipt of (P

i

; s; �) the responder, P

j

, 
hooses y

R

 Z

q

, sends (P

j

; s; � = g

y

) to P

i

,

erases y, and outputs the session key 
 = �

y

under session-id s.

Step 3: Upon re
eipt of (P

j

; s; �), party P

i


omputes 


0

= �

x

, erases x, and outputs the session

key 


0

under session-id s.

Figure 2: The two-move DiÆe-Hellman proto
ol in the am

The De
isional DiÆe-Hellman (DDH) assumption is as follows.

Assumption 7 Let k be a se
urity parameter. Let p; q be primes, where q is of length k bits

and q=p�1, and g be of order q in Z

�

p

. Then the probability distributions of quintuples Q

0

=

fhp; g; g

x

; g

y

; g

xy

i : x; y

R

 Z

q

g and Q

1

= fhp; g; g

x

; g

y

; g

z

i : x; y; z

R

 Z

q

g are 
omputationally

indistinguishable.

Theorem 8 Assuming the De
isional DiÆe-Hellman (DDH) assumption, proto
ol 2dh is SK-

se
ure in the am.

Proof: To see that the �rst requirement of De�nition 4 is satis�ed, note that if both P

i

and P

j

are un
orrupted during the ex
hange of the key and both 
omplete the proto
ol (i.e. the three

steps of the proto
ol are 
ompleted by P

i

and P

j

) then they both establish the same key (whi
h is


 = 


0

= g

xy

mod p). Note that the session identi�er s uniquely binds the values of g

x

and g

y

to

these parti
ular mat
hing sessions and di�erentiates them from other exponentials that the parties

may ex
hange in other (possibly simultaneous) sessions.

We show that the se
ond requirement of De�nition 4 is also satis�ed by proto
ol 2dh. Assume

to the 
ontrary that there is a ke-adversary A in the am against proto
ol 2dh that has a non-

negligible advantage in guessing 
orre
tly whether the response to a test-query is real or random.

Out of this atta
ker A, we 
onstru
t an algorithm D that distinguishes between the distributions

Q

0

and Q

1

with non-negligible probability; thus rea
hing a 
ontradi
tion with Assumption 7. The

input to D is denoted by (p; g; �

�

; �

�

; 


�

) and is 
hosen from Q

0

or Q

1

ea
h with probability 1/2.
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Let ` be an upper bound on the number of sessions invoked by A in any intera
tion. Algorithm D

uses adversary A as a subroutine and is des
ribed in Figure 3.

Distinguisher D

Pro
eed as follows, on input (p; g; �

�

; �

�

; 


�

):

1. Choose r

R

 f1 : : : `g.

2. Invoke A, on a simulated intera
tion in the am with parties P

1

; :::; P

n

running 2dh. Hand A

the values p; g as the publi
 parameters for the proto
ol exe
ution.

3. Whenever A a
tivates a party to establish a new session (ex
ept for the r-th session) or to

re
eive a message, follow the instru
tions of 2dh on behalf of that party. When a session is

expired at a player erase the 
orresponding session key from that player's memory. When

a party is 
orrupted or a session (other than the r-th session) is exposed, hand A all the

information 
orresponding to that party or session as in a real intera
tion.

4. When the r-th session, say (P

i

; P

j

; s), is invoked within P

i

to ex
hange a key with P

j

, let P

i

send the message (P

i

; s; �

�

) to P

j

.

5. When P

j

is invoked to re
eive (P

i

; s; �

�

), let P

j

send the message (P

j

; s; �

�

) to P

i

.

6. If session (P

i

; P

j

; s) is 
hosen by A as the test-session, then provide A with 


�

as the answer

to this query.

7. If the r-th session (P

i

; P

j

; s) is ever exposed, or if a session di�erent than the r-th session

is 
hosen as the test-session, or if A halts without 
hoosing a test-session then D outputs

b

0

R

 f0; 1g and halts.

8. If A halts and outputs a bit b

0

, then D halts and outputs b

0

too.

Figure 3: Building a distinguisher for DDH

First note that the run of A by D (up to the point where A stops or D aborts A's run) is

identi
al to a normal run of A against proto
ol 2dh.

Consider the 
ase in whi
h the test session s 
hosen by A 
oin
ides with the session 
hosen at

random by D (i.e., the r-th session as 
hosen in Step 1). In this 
ase, the response to the test-query

by A is 


�

. Thus, if the input to D 
ame from Q

0

then the response was the a
tual value of the

key ex
hanged between P

i

and P

j

during the test-session s (sin
e, by 
onstru
tion, the session key

ex
hanged in Steps 4 and 5 of Figure 3 is 


�

= g

xy

). On the other hand, if the input to D 
ame

from Q

1

then the response to the test query was a random exponentiation, i.e. a random value from

the distribution of keys generated by the proto
ol. In addition, the input to D was 
hosen with

probability 1/2 from Q

0

and with probability 1/2 from Q

1

and then the distribution of responses

provided by D to the test query of A is the same as spe
i�ed by De�nition 4. In this 
ase, the

probability that A guesses 
orre
tly whether the test value was \real" or \random" is 1=2 + " for

non-negligible ". By the above argument this is equivalent to guessing whether the input to the

distinguisher D 
ame from Q

0

or Q

1

, respe
tively. Thus, by outputting the same bit as A we get

that the distinguisherD guesses 
orre
tly the input distributionQ

0

or Q

1

with the same probability

1=2 + " as A did.

Now 
onsider the 
ase in whi
h the r-th session is not 
hosen as a test-session. In this 
ase

D always ends outputting a random bit, and thus its probability to guess 
orre
tly the input
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distribution is 1/2.

Sin
e the �rst 
ase (in whi
h the test-session and the r-th session 
oin
ide) happens with

probability 1=` while the other 
ase happens with probability 1 � 1=` we get that the overall

probability of D to guess 
orre
tly is 1=2 + "=`, and thus D su

eeds in distinguishing Q

0

from Q

1

with non-negligible advantage.

2

5.2 SK-se
ure DiÆe-Hellman Proto
ol in the um

Here we apply the signature-based authenti
ator of [2℄ to the proto
ol 2dh from Figure 2 to obtain

a DiÆe-Hellman key-ex
hange that is SK-se
ure in the um. We present the resultant proto
ol in

Figure 4 (it is very similar to a proto
ol spe
i�ed in [29℄). Its SK-se
urity follows from Theorems

6 and 8.

Proto
ol sig-dh

Initial information: Primes p; q, q=p�1, and g of order q in Z

�

p

. Ea
h player has a private key for a

signature algorithm sig, and all have the publi
 veri�
ation keys of the other players.

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s), 
hooses x

R

 Z

q

and sends (P

i

; s; � = g

x

) to P

j

.

Step 2: Upon re
eipt of (P

i

; s; �) the responder, P

j

, 
hooses y

R

 Z

q

, and sends to P

i

the message

(P

j

; s; � = g

y

) together with its signature sig

j

(P

j

; s; �; �; P

i

); it also 
omputes the session key


 = �

y

and erases y.

Step 3: Upon re
eipt of (P

j

; s; �) and P

j

's signature, party P

i

veri�es the signature and the 
or-

re
tness of the values in
luded in the signature (su
h as players identities, session id, the

value of exponentials, et
.). If the veri�
ation su

eeds then P

i

sends to P

j

the message

(P

i

; s; sig

i

(P

i

; s; �; �; P

j

)), 
omputes 


0

= �

x

, erases x, and outputs the session key 


0

under

session-id s.

Step 4: Upon re
eipt of the triple (P

i

; s; sig), P

j

veri�es P

i

's signature sig and the values it in
ludes.

If the 
he
k su

eeds it outputs the session key 
 under session-id s.

Figure 4: DiÆe-Hellman proto
ol in the um: authenti
ation via signatures.

Remarks on proto
ol sig-dh. The proto
ol is the result of applying the signature-based

authenti
ator of [2℄ to ea
h of the 
ows in the 2-pass DiÆe-Hellman proto
ol 2dh of Figure 2,

and joining (piggy-ba
king) the 
ommon 
ows. The authenti
ators use the values � and � (the

DH exponentials) as the 
hallenges required by these authenti
ators. This assumes (as spe
i�ed

in proto
ol 2dh) that these exponentials are 
hosen afresh for ea
h new ex
hange. We remark

that this dual use of � and � as exponentials and as 
hallenges is done to simplify the proto
ol but

separate 
hallenges 
ould be sent by the parties and in
luded under the signature. It is worth noting

that the identity of the destination party in
luded under the signatures is part of the spe
i�
ation

of the signature-based authenti
ator of [2℄ and is fundamental for the se
urity of proto
ol sig-dh

(without them the proto
ol is inse
ure; see [19℄).

The des
ription of sig-dh in Figure 4 assumes, as formalized in our model, that the value s of

the session-id is provided to the parties. In pra
ti
e, one usually generates the session identi�er

s as a pair (s

1

; s

2

) where s

1

is a value 
hosen by P

i

and di�erent (with very high probability)
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from all other su
h values 
hosen by P

i

in his other sessions with P

j

. Similarly, s

2

is 
hosen by P

j

with an analogous uniqueness property. These values s

1

; s

2


an be ex
hanged by the parties as a

prologue to the above proto
ol (this may be the 
ase of proto
ols that implement su
h a prologue

to ex
hange some other system information and to negotiate ex
hange parameters; see for example

[28℄). Alternatively, s

1


an be in
luded by P

i

in the �rst message of sig-dh, and s

2

be in
luded by

P

j

in the se
ond message. In any 
ase, it is important for the se
urity of the proto
ol that these

values be in
luded under the parties' signatures.

5.3 A publi
-key en
ryption-based proto
ol without pfs

The proto
ol des
ribed in this se
tion is based on publi
 key en
ryption s
hemes se
ure against


hosen 
iphertext atta
ks. We show that this proto
ol satis�es De�nition 5, i.e. SK-se
urity

without pfs, in the am. That is, the proto
ol does not provide forward se
re
y of the session keys

(an atta
ker who breaks into a party may 
ompromise all the keys ex
hanged by this party in the

past even if these keys are erased from that party's memory). Formally, we 
onsider that session

keys never expire. The proto
ol 
an be made into a SK-se
ure without pfs proto
ol in the um by

using any authenti
ator (Theorem 6).

Let (G;E;D) be a key-generation, en
ryption and de
ryption algorithms, respe
tively, of a

publi
-key en
ryption s
heme se
ure against 
hosen 
iphertext atta
ks (CCA). (See, for instan
e,

[20, 4, 17℄). Let k be the se
urity parameter. Assume that ea
h party P

i

has invoked G(k) to get

a pair (e

i

; d

i

) of en
ryption and de
ryption keys, and all parties have the publi
 en
ryption key e

i

of the other parties. In addition, let ff

�

g

�2f0;1g

k

be a pseudorandom fun
tion family (as in [22℄).

The proto
ol, denoted en
, is des
ribed in Figure 5.

Proto
ol en


Pro
eed as follows, given se
urity parameter k.

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s), 
hooses �

R

 f0; 1g

k

and sends (P

i

; s; E

e

j

(�)) to P

j

.

Next, P

i

outputs the session key � = f

�

(P

i

; P

j

; s) under session-id s.

Step 2: Upon re
eipt of (P

i

; s; 
) the responder, P

j

, 
omputes �

0

= D

d

j

(
). If the de
ryption

algorithm does not reje
t the 
iphertext, then P

j

outputs the session key �

0

= f

�

0

(P

i

; P

j

; s)

under session-id s.

Figure 5: A ke proto
ol based on CCA-se
ure en
ryption.

Remark. For ensuring the se
urity of proto
ol en
 we need to assume that the de
ryption

operation �

0

= D

d

j

(
) (in
luding the validity 
he
k for the 
iphertext 
) and the 
omputation

of the pseudorandom value f

�

0

(P

i

; P

j

; s) in Step 2 are performed su
h that neither the long-term

de
ryption key d

j

or the temporary value �

0

appear as part of the state of session s. Namely, we

need to assume that these operations are done in a separate se
ure module and only the value

�

0

= f

�

0

(P

i

; P

j

; s) is returned to the session state. The assumption that long-term private keys are

not part of the session state is a fundamental requirement in a model as ours that di�erentiates

session-state 
orruptions from total 
orruptions (see Se
tion 2.2). The need to hide �

0

from the

session state is a spe
i�
 requirement of the en
 proto
ol and it is illustrated by the following atta
k.

Say that �

0

is returned to the session state, then an atta
ker 
ould 
ompromise an unexposed session
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(P

i

; P

j

; s) as follows. It 
orrupts party P

l

; l 6= i; j, and initiates an en
 session (P

l

; P

j

; s

0

) between

the 
orrupted P

l

and P

j

in whi
h P

l

sends to P

j

the same 
iphertext 
 sent in session s from P

i

to

P

j

. On
e P

j

de
rypts 
 and stores the temporary value �

0

in the state of session s

0

, the atta
ker

performs a session-state reveal and learns �

0

. Now it 
an also 
ompute the value of the session

key 
orresponding to the unexposed session s. Thus, this atta
k (and the proof of Theorem 9)

show the 
are needed in spe
ifying and implementing the en
 proto
ol if we require resistan
e to

session-state reveals. Whether this is a realisti
 risk or not may depend on parti
ular appli
ations

and s
enarios. In any 
ase, if a separate module for the above operations 
annot be assumed then

the proto
ol be
omes inse
ure in our model but is still se
ure in a model where session states 
an

only be revealed via total 
orruptions (i.e., a weakened model where session-state reveals are not


onsidered as a separate atta
ker a
tion).

Theorem 9 If the en
ryption (G;E;D) is CCA-se
ure and the family ff

�

g

�2f0;1g

k

is pseudoran-

dom, then proto
ol en
 is SK-se
ure without pfs in the authenti
ated links model (am).

Proof: It is easy to see that the �rst 
ondition of De�nition 4 is satis�ed by proto
ol en
 (that

is, un
orrupted parties that 
omplete mat
hing sessions output the same session-key). The 
ore of

the proof is in proving the se
ond 
ondition of De�nition 4 in the 
ase where keys are not expired.

We start by de�ning a \game" whi
h 
aptures the 
hosen-
iphertext se
urity of the en
ryption

fun
tion E in 
ombination with the pseudorandom family ff

�

g

�2f0;1g

k

. We will then show that an

atta
ker that breaks the SK-se
urity of proto
ol en
 
an also win in this game and then break the

en
ryption fun
tion E. The game is de�ned in Figure 6.

The en
ryption game

The parties to the game are G and B (for good and bad). G possesses a pair of publi
 and private

keys, e and d (generated via the key generation algorithm G). B knows e but not d.

The game pro
eeds in phases:

Phase 0: G provides B with a 
hallenge 
iphertext 


�

= E

e

(�

0

) for �

0

R

 f0; 1g

k

.

Phase 1: B sends a pair (
; t) to G who responds with f

�

(t) where � = D

d

(
). This is repeated

a polynomial (in k) number of times with ea
h pair being 
hosen adaptively by B (i.e., after

seeing G's response to previous pairs).

Phase 2: B sends a test string t

�

to G. Then G 
hooses a random bit b

R

 f0; 1g. If b = 0 then

G responds with f

�

0

(t

�

) where �

0

is the value en
rypted by G in phase 0. If b = 1 then G

responds with a random string r of the same length as f

�

0

(t

�

).

Phase 3: Same as Phase 1.

Phase 4: B outputs a bit b

0

.

And the winner is... B if and only if b = b

0

.

Figure 6: A game that 
aptures the CCA-se
urity of the en
ryption fun
tion E

We state the following Lemma (the proof uses standard arguments and, in parti
ular, is similar
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to the proof of the en
ryption-based authenti
ator from [2℄).

Lemma 10 Assume that the en
ryption s
heme (G;E;D) is CCA-se
ure and the family ff

�

g

�2f0;1g

k

is pseudorandom. Then if the pair (


�

; t

�

) is not queried by B during Phases 1 and 3 the probability

that B wins in the above game is no more than 1/2 plus a negligible fra
tion.

We note that B is not allowed (in the lemma formulation) to query the pair (


�

; t

�

) but it is

allowed to in
lude, separately, the values 


�

and t

�

in other pairs.

We now pro
eed to show that if there is an am ke-atta
ker A that breaks the SK-se
urity of

proto
ol en
 in the sense that it 
an distinguish between real and random values of a test session

while not being allowed to 
orrupt the partners to this session, then there is an eÆ
ient algorithm

B that wins in the above game with non-negligible probability over 1/2.

We build su
h B. Let G be the party against whi
h B plays the game. G holds a private

de
ryption key d and publi
 en
ryption key e. The game starts with G sending a 
hallenge 
iphertext




�

to B. Then, B pro
eeds to Phase 1 of the game doing the following. It builds a virtual s
enario for

the run of proto
ol en
, and a
tivates the atta
ker A against this virtual run. Among all n parties

in this run, B 
hooses one at random, 
all it P

�

j

. For all other virtual players B 
hooses private

keys (using the key generation algorithm G) and provides A with the 
orresponding publi
 keys.

B does not 
hoose a private key for P

�

j

; instead it provides A with e (the publi
 key of G) as the

publi
 key of P

�

j

. Also, B 
hooses a random session among the sessions where P

�

j

is the responder.

We denote this session as s

�

, and its initiator as P

�

i

(i.e. the 
hosen session is (P

i

; P

j

; s

�

)).

All operations s
heduled by A are performed by B on behalf of the virtual players in the

following way. All session establishments are exe
uted by B a

ording to the proto
ol ex
ept for

the establishment of session s

�

. When A s
hedules the establishment of session s

�

between P

�

i

and

P

�

j

, B sends the message (P

�

i

; s

�

; 


�

) to P

�

j

on behalf of P

�

i

. Here 


�

is the 
hallenge 
iphertext

provided to B by G in Phase 0.

All exposure of session keys performed by A, via session or party 
orruptions, that do not involve

P

�

j

as the responder are answered by B using his knowledge of private keys. When A 
orrupts a

party other than P

�

j

and P

�

i

, then B also provides A with the private key of that party. If a session

s 6= s

�

between a player P and P

�

j

in whi
h the latter a
ts as responder is exposed by A, then B

provides the value of that key to A in the following way. If P was un
orrupted at the time that s

was established then B was the one to 
hoose the key � en
rypted by P and then it knows it. If P

was 
orrupted then all B knows is the message (P; s; 
) sent from P to P

�

j

as step 1 in the proto
ol.

In this 
ase B presents to G (as part of Phase 1) the pair (
; t) where t = (P; P

�

j

; s). The value

� returned by G is the value that B provides to A as the queried session key (note that by our

assumption in the Remark pre
eding the Theorem the only information exposed in a session-key

query or in session-state reveal is the value of the session key so no other information needs to be

returned by B to A).

If at any point A queries or reveals session s

�

, 
orrupts P

�

i

or P

�

j

, or 
hooses a test session

di�erent than s

�

, B pro
eeds as follows. It aborts the run of A and moves to Phase 2 sending an

arbitrary value t

�

to G. After getting G's response it moves dire
tly to Phase 4 outputting a random

bit b

0

.

If A de
ides to be tested on session s

�

then B moves to Phase 2 and sends to G the value

t

�

= (P

�

i

; P

�

j

; s

�

). The response from G is passed by B to A as the value of the key for session s

�

.

B enters Phase 3. It keeps running A in the same way as des
ribed for Phase 1 above (note

that in this 
ase A is not allowed to expose s

�

). When A outputs a bit b

0

and stops, then B moves

to Phase 4 and outputs the same bit b

0

as A did.
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We �rst note that the above behavior of B in the game is a legal one, namely, that it never asks

the pair (


�

; t

�

) from G in phases 1 and 3. This is easy to see sin
e all pairs queried by B during

these phases 
ontain a value t di�erent than t

�

. Indeed all the values t queried by B have the form

of a triple (P;Q; s) where P;Q are player identities and s a session identi�er. Thus, due to the

uniqueness of session-id's the value t

�

= (P

�

i

; P

�

j

; s

�

) o

urs only with relation to session s

�

whi
h

is never queried by B from G in phases 1 and 3.

Now we prove that B wins the game against G with non-negligible advantage. First, note that

in the 
ases where B aborts the run of A before 
ompletion it outputs a random bit b

0

so its 
han
es

to win in this 
ase is exa
tly 1/2. In the 
ase where A ends with output b

0

the 
han
es of B to win

are exa
tly the same as those of A to guess 
orre
tly whether the test value was real or random.

This probability is, by assumption, non-negligible over 1/2. The later 
ase happens whenever the

tested session 
hosen by A is the same s

�


hosen (randomly) by B. Sin
e this event happens with

non-negligible probability (1=` where ` is an upper bound on the number of sessions established in

the proto
ol run) then the overall advantage of B is non-negligible. 2

Remarks on Proto
ol en
.

1. The derivation of the session key via a pseudorandom fun
tion applied to the session and

parties' identi�ers is of fundamental importan
e for the se
urity of the proto
ol. Had the

session key be just � then the proto
ol would be inse
ure (even in the am!). In this 
ase the

atta
ker sees that P

i

sends the 
iphertext E

e

j

(�) to P

j

. Then party P

l

, that we assume is


ontrolled by the atta
ker, sends the same 
iphertext to P

j

. Now, P

j

has established the same

session-key with two di�erent parties. This a serious se
urity 
aw

7

that breaks SK-se
urity:

the atta
ker 
an now query P

j

for the key ex
hanged with P

l

and in this way to learn the key

that P

j

ex
hanged with P

i

.

2. The a
tual se
urity of proto
ol en
 
an be improved by spe
ifying that sessions do expire

at the initiator (and the 
orresponding keys removed from its memory). This preserves SK-

se
urity and adds 
onsiderably to the pra
ti
al se
urity of the proto
ol. For example, 
onsider

an appli
ation where the initiators are mobile devi
es, vulnerable to the stealing of the private

key, 
ommuni
ating with a well-prote
ted gateway. In this 
ase, if we let keys to expire at

the initiator, then �nding the de
ryption key of su
h a mobile devi
e is of no help to the

atta
ker in re
overing past (expired) session keys. The atta
ker must break the gateway to

obtain these keys.

3. Another stronger version of this proto
ol is obtained by letting ea
h party send the other a

key as in en
 and deriving the shared session key in a way that requires knowledge of both

en
rypted keys. In this 
ase, the proto
ol still does not provide pfs but (if keys are erased

from memory when the session is expired) the only way to re
over a past key is to �nd the

private keys of both initiator and responder. This is the basis to the DH-less mode of SKEME

[32℄. However, note that our de�nition of SK-se
urity (with pfs) would reje
t su
h a proto
ol

as se
ure. A weakened version of the de�nition that is satis�ed by the proto
ol is obtained if

one requires that at most one of the partners to the modi�ed session 
an be 
orrupted (and

only after the key is expired at that party).

7

[19℄ des
ribes an atta
k in whi
h a dishonest 
ustomer exploits a key-ex
hange weakness to defraud a bank and a

honest 
ustomer; the same atta
k 
an be mount here with P

j

a
ting as the bank, and P

i

and P

l

a
ting as the honest

and 
heating 
ustomers, respe
tively. See [19℄ for the details.
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5.4 Proto
ols based on shared keys

In order to further illustrate the usability of our methodology we show how to apply it to key-

ex
hange proto
ols that assume that the two peers initially share a se
ret key and use this key

to authenti
ate the ex
hange of new key material. This \key refreshment" fun
tionality is very

important in network se
urity proto
ols (e.g. [32, 28℄). We show examples of SK-se
ure proto
ols

with and without pfs.

These examples use the following MAC-based authenti
ator that assumes a shared key �

ij

between a pair of parties P

i

; P

j

. Let f denote a se
ure MAC fun
tion, and �

ij

be a random key for

f 
hosen under se
urity parameter k. The authenti
ator is de�ned as follows: when P

i

wants to

send a message to a re
ipient P

j

, the latter sends a 
hallenge r

R

 f0; 1g

2k

to P

i

, and P

i

sends the

message m together with the authenti
ation tag f

�

ij

(P

j

; r;m). The se
urity of this authenti
ator


an be proven in a way similar to the proof of the signature-based authenti
ator from [2℄.

Applying this authenti
ator to the basi
 two-move DiÆe-Hellman proto
ol 2dh in the am one

obtains (see Se
tion 5.1) an SK-se
ure DiÆe-Hellman proto
ol (with pfs) in the um. We omit a

detailed des
ription of the resultant proto
ol and just point out that it is similar to proto
ol sig-dh

from Se
tion 5.2 where the digital signatures are repla
ed with the appli
ation (by P

i

and P

j

) of

the MAC fun
tion keyed under the shared key �

ij

.

Proto
ol rekey

Initial information: Ea
h pair of players (P

i

; P

j

) share a se
ret pseudorandom fun
tion f

�

ij

.

Proto
ol rekey in the am:

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s), 
hooses r

i

R

 f0; 1g

2k

and sends (P

i

; s; r

i

) to P

j

.

Step 2: Upon re
eipt of (P

i

; s; r

i

), the responder P

j


hooses r

j

R

 f0; 1g

2k

and sends (P

j

; s; r

j

) to

P

i

. Then, P

j

outputs session key f

�

ij

(r

i

; r

j

)

Step 3: Upon re
eipt of (P

j

; s; r

j

), player P

i

outputs session key f

�

ij

(r

i

; r

j

).

Proto
ol rekey in the um:

Step 0: Both players derive two keys from �

ij

: �

1

= f

�

ij

(1) and �

2

= f

�

ij

(2).

Step 1: The initiator, P

i

, on input (P

i

; P

j

; s), 
hooses r

i

R

 f0; 1g

2k

and sends (P

i

; s; r

i

) to P

j

.

Step 2: Upon re
eipt of (P

i

; s; r

i

), the responder P

j


hooses r

j

R

 f0; 1g

2k

, 
omputes

t

j

= f

�

1

(P

i

; r

i

; s; r

j

) and sends (P

j

; s; r

j

; t

j

) to P

i

.

Step 3: Upon re
eipt of (P

j

; s; r

j

; t

j

), player P

i

veri�es the authenti
ation tag t

j

and if su

essful

it 
omputes t

i

= f

�

1

(P

j

; r

j

; s; r

i

), sends (P

i

; s; t

i

) to P

j

, and outputs session key f

�

2

(r

i

; r

j

).

Step 4: Upon re
eipt of (P

i

; s; t

i

), player P

j

veri�es the authenti
ation tag t

i

and if su

essful it

outputs session key f

�

2

(r

i

; r

j

).

Figure 7: Key-refresh proto
ol based on a shared se
ret. The proto
ol in the um is the

result of applying the MAC-based authenti
ator to the proto
ol in the am

We pro
eed to show yet another example of the appli
ation of our modular methodology for

designing and proving ke proto
ols. In this 
ase we show a simple and eÆ
ient proto
ol to derive
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a fresh session key between players P

i

and P

j

based on the 
ommon (\master") se
ret key �

ij

and

without the use of DiÆe-Hellman (the proto
ol does not provide pfs). In Figure 7 we present

the proto
ol in the am and the proto
ol in the um where the latter is derived from the former by

applying the above based MAC-based authenti
ator to ea
h of the proto
ol's messages and joining

(piggy-ba
king) the 
ommon 
ows. We note that in this 
ase we use a pseudorandom family f

rather than a mere MAC for the implementation of the authenti
ator.

The SK-se
urity (without pfs) of the am version of rekey follows dire
tly from the properties

of pseudorandom fun
tions. The SK-se
urity (without pfs) of the se
ond proto
ol in the um is

the result of applying the MAC-based authenti
ator to the �rst proto
ol. Note that we are using

f

�

2

with the fun
tionality of a pseudorandom fun
tion as in the am proto
ol, and f

�

1

with the

fun
tionality of a MAC for the implementation of the MAC-based authenti
ator. As in the 
ase

of proto
ol sig-dh, also here we are re-using the strings r

i

and r

j

both for key derivation and as


hallenges for the authenti
ator. We remark that the rekey proto
ol in the um is similar to the

AKEP2 proto
ol from [7℄.

We end this se
tion by remarking that another interesting use of our results is for analyz-

ing the password-based ke proto
ols from [27℄. It is shown there how to build a password-based

authenti
ator whi
h is then used to authenti
ate a DiÆe-Hellman ex
hange.

6 Appli
ations to Se
ure Channels

It is 
ommon pra
ti
e to prote
t end-to-end 
ommuni
ations by letting the end parties ex
hange

a se
ret session key and then use this key to authenti
ate and en
rypt the transmitted data under

symmetri
 
ryptographi
 fun
tions. In order for a key-ex
hange proto
ol to be 
onsidered se
ure it

needs to guarantee that the above strategy for se
uring data works 
orre
tly, namely, that by using

a shared key provided by the ke proto
ol one a
hieves sound authenti
ation and se
re
y. As it is


ustomary, we will refer to a link between a pair of parties that a
hieves these properties as a se
ure


hannel. While se
ure 
hannels may have di�erent meanings in di�erent 
ontexts, here we restri
t

our treatment to the above setting of se
uring 
ommuni
ations using symmetri
 
ryptography with

a key derived from a key-ex
hange proto
ol

8

. We prove that an SK-se
ure key-ex
hange proto
ol,

appropriately 
ombined with se
ure MAC and symmetri
 en
ryption fun
tions, suÆ
es for realizing

su
h se
ure 
hannels.

6.1 A Template Proto
ol: Network Channels

We start by formalizing a \template proto
ol" that 
aptures a generi
 session-oriented ke-based

proto
ol for se
ure 
hannels between pairs of parties in a multi-party setting with parties P

1

; : : : ; P

n

.

This template proto
ol, 
alled NetChan, simply 
aptures the me
hanism by whi
h two parties �rst

share a se
ret key and then use this key for se
uring information they ex
hange. In the template

proto
ol this ex
hange of information and the se
urity fun
tions applied to it are represented

through abstra
t `send' and `re
eive' fun
tions. Later we will see spe
i�
 implementations of this

template proto
ol where the generi
 `send' and `re
eive' primitives are instantiated with a
tual

fun
tions (e.g., for providing authenti
ation and/or en
ryption). We will also de�ne what it means

for su
h an implementation to be \se
ure".

De�nition of NetChan. A (session-based) network 
hannels proto
ol, NetChan(�; snd; r
v), is

de�ned on the basis of a ke proto
ol �, and two generi
 fun
tions snd and r
v. (A more general

8

A somewhat di�erent formalization of se
ure 
hannels appears in [14℄ (see Appendix).
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treatment 
an be obtained by 
onsidering these fun
tions as intera
tive proto
ols but we leave this

more general approa
h beyond the s
ope of the present paper.) Both snd and r
v are probabilisti


fun
tions that take as arguments a session-key (we denote this key as a subs
ript to the fun
tion)

and a message m. The fun
tions may also depend on additional state information su
h as a session-

id and partner identi�ers, a message identi�er, et
. The output of snd is a single value m

0

, while

the output of r
v is a pair (v; ok) where ok is a bit and v an arbitrary value. (The bit ok will be

used to return a veri�
ation value, e.g. the result of verifying an authenti
ation tag.) On the basis

of su
h fun
tions we de�ne NetChan(�; snd; r
v) in Figure 8.

Proto
ol NetChan(�; snd; r
v)

NetChan(�; snd; r
v) is initialized with the same initialization fun
tion I of the ke proto
ol �. It 
an

then be invoked within a party P

i

under the following a
tivations:

1. establish-session(P

i

; P

j

; s; role): this triggers a ke-session under � within P

i

with partner P

j

,

session-id s and role 2 finitiator; responderg. If the ke-session 
ompletes P

i

re
ords in its lo
al

output \established session s with P

j

" and stores the generated session key.

2. expire-session(P

i

; P

j

; s): P

i

marks session (P

i

; P

j

; s) (if it exists at P

i

) as expired and the

session key is erased. P

i

re
ords in its lo
al output \session s with P

j

is expired".

3. send(P

i

; P

j

; s;m): P

i


he
ks that session (P

i

; P

j

; s) has been 
ompleted and not expired, if so

it 
omputes m

0

= snd

�

(m), using the 
orresponding session key �, sends (P

i

; s;m

0

) to P

j

, and

re
ords \sent message m to P

j

within session s" in the lo
al output.

4. On in
oming message (P

j

; s;m

0

), P

i


he
ks that the session (P

i

; P

j

; s) has been 
ompleted and

not expired, if so it 
omputes (m; ok) = r
v

�

(m

0

) under the 
orresponding session key �. If

ok = 1 then P

i

re
ords \re
eived message m from P

j

within session s." If ok = 0 then

no further a
tion is taken.

Figure 8: A generi
 network 
hannels proto
ol

We emphasize that the above de�nition of NetChan applies to either am or um adversarial

models; indeed, the atta
ker against NetChan is allowed to initiate and s
hedule any of the proto
ol

a
tivations and has all the 
apabilities of an atta
ker in the 
orresponding model, in
luding atta
ks

against the key-ex
hange proto
ol � (su
h as party 
orruptions, session-state reveal, and session-

key queries). Also for NetChan we keep our ke 
onvention that session identi�ers are 
he
ked for

uniqueness. Note that NetChan has no lo
al outputs labeled `se
ret' (in parti
ular, the session key

is not part of the lo
al output of NetChan as these keys are used internally and never passed to

another proto
ol). Thus, the external fun
tionality of NetChan is as in a simple (session-based)

message ex
hange proto
ol.

6.2 Network Authenti
ation

On the basis of the above formalism, we treat the 
ase of network 
hannels that provide authenti-


ation of information over adversary-
ontrolled 
hannels. Namely, we are interested in a NetChan

proto
ol that runs in the unauthenti
ated-links model um and yet provides authenti
ity of transmit-

ted messages. This implementation of NetChan (whi
h we 
all NetAut) will be aimed at 
apturing

the pra
ti
e by whi
h 
ommuni
ating parties use a key-ex
hange proto
ol to establish a shared
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session key, and use that key to authenti
ate (via a message authenti
ation fun
tion, MAC) the

information ex
hanged during that session. Namely, if P

i

and P

j

share a mat
hing session s and P

i

wants to send a message m to P

j

during that session then P

i

transmits m together with MAC

�

(m)

where � is the 
orresponding session key.

Proto
ol NetAut . Let � be a ke proto
ol and let f be a MAC fun
tion. Proto
ol NetAut(�; f)

is a network 
hannels proto
ol NetChan(�; snd; r
v) as de�ned in Figure 8, where fun
tions snd and

r
v are de�ned as:

� On input m, snd

�

(m) produ
es output m

0

= (m; f

�

(m)).

� On input m

0

, r
v

�

(m

0

) outputs (v; ok) as follows. If m

0

is of the form (m; t) then ok = 1 if

and only if (i) m is di�erent than all previously seen messages in the session, and (ii) (m; t)

passes the veri�
ation fun
tion of f under key �. If ok = 1 then set v = m, otherwise ok = 0

and v = null.

Note that we require the re
eiver of a message to 
he
k for uniqueness of the in
oming message. This


he
k is needed to avoid \re-play" or dupli
ation of delivered messages by an atta
ker. Equivalently,

one 
an think of m as the 
on
atenation of the message with a unique per-message identi�er whi
h

is 
omputed by the sender and 
he
ked for uniqueness at the re
eiver (e.g., based on a shared


ounter between the parties). For simpli
ity and generality, in the above spe
i�
ation of proto
ol

NetAut we abstra
t out the spe
i�
 message di�erentiation me
hanism in use.

Our goal is to show that if the key-ex
hange proto
ol � is SK-se
ure and the MAC fun
tion f is

se
ure (against 
hosen-message atta
ks) then the resultant network 
hannels proto
ol NetAut(�; f)

provides authenti
ated transmission of information. This requirement 
an be formulated under the

property that \any message re
orded by P

i

as re
eived from P

j

has been ne
essarily re
orded as

sent by P

j

, ex
ept if the pertinent session is exposed". We will a
tually strengthen this requirement

and ask that a network 
hannels proto
ol provides authenti
ation if it emulates (i.e. imitates) the

transmission of messages in the ideally authenti
ated-links model am. Formally, we do so using

the notion of proto
ol emulation and the formalization (see Se
tions 2.3 and 3.4) of the message

transmission proto
ol (mt) in the am as done in [2℄. Re
all that mt is a simple proto
ol that spe
i�es

the fun
tionality of transmitting individual messages in the am. Here we extend the basi
 de�nition

of mt to a session-based message transmission proto
ol 
alled smt. By proving that the network


hannels proto
ol NetAut emulates smt in the um we get the assuran
e that transmitting messages

over unauthenti
ated-links using NetAut is as se
ure as transmitting them in the presen
e of an

atta
ker that is not allowed to 
hange, dupli
ate or inje
t messages over the 
ommuni
ation links.

Proto
ol smt. We extend proto
ol mt from [2℄ to �t our session-based setting in whi
h trans-

mitted messages are grouped into di�erent sessions. We 
all the extended proto
ol a session-based

message transmission proto
ol (smt), and de�ne it in Figure 9. (Note the stru
tural similarity be-

tween smt and NetChan { the di�eren
es are that no a
tual key-ex
hange is run in smt, and the

fun
tions snd and r
v are instantiated to simple \identity fun
tions".)

Se
ure network authenti
ation proto
ols. Sin
e proto
ol smt represents a perfe
tly authen-

ti
ated ex
hange of messages, we use it as the spe
i�
ation proto
ol to de�ne what is meant for an

implementation of proto
ol NetChan to be a se
ure network authenti
ation proto
ol (for the de�nition

of the notion of \emulation" used in the following de�nition see Se
tion 3.4):

De�nition 11 Proto
ol NetChan(�; snd; r
v) is 
alled a se
ure network authenti
ation proto
ol if it

emulates proto
ol smt in the um.
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Proto
ol smt

Proto
ol smt 
an be invoked within a party P

i

under the following a
tivations:

1. establish-session(P

i

; P

j

; s): in this 
ase P

i

re
ords in its lo
al output \established session

s with P

j

".

2. expire-session(P

i

; P

j

; s): in this 
ase P

i

re
ords in its lo
al output \session s with P

j

is

expired".

3. send(P

i

; P

j

; s;m): in this 
ase P

i


he
ks that session (P

i

; P

j

; s) has been established and not

expired, if so it sends message m to P

j

together with the session-id s (i.e., the values m and s

are sent over the ideally-authenti
ated link between P

i

and P

j

); P

i

re
ords in its lo
al output

\sent message m to P

j

within session s".

4. On in
oming message (m; s) re
eived over its link from P

j

, P

i


he
ks that session (P

i

; P

j

; s) is

established and not expired, if so it re
ords in the lo
al output \re
eived message m from

P

j

within session s".

Figure 9: Proto
ol smt in the am: The spe
i�
ation proto
ol for authenti
ated session-

based message transmission.

Theorem 12 If � is a SK-se
ure key-ex
hange proto
ol in the um and f is a MAC fun
tion

se
ure against 
hosen message atta
ks, then proto
ol NetAut(�; f) is a se
ure network authenti
ation

proto
ol.

Proof: In order to show that NetAut(�; f) is a se
ure network authenti
ation proto
ol we need to

prove that NetAut(�; f) emulates smt in the um. Namely, given an atta
ker U against NetAut(�; f)

in the um we need to build an am-atta
ker, A, against smt that produ
es a proto
ol and adversary

output that is indistinguishable from the output produ
ed by the intera
tion of U with NetAut(�; f).

We de�ne A to simulate U as follows. A builds a virtual \unauthenti
ated" s
enario in whi
h it

simulates U where to ea
h party in smt 
orresponds a virtual party in the um world of NetAut(�; f).

We denote by � the smt proto
ol run in the am by A, and by �

0

the simulated virtual proto
ol

NetAut(�; f) in the um. Also, we denote by P

1

; : : : ; P

n

the parties running the smt-proto
ol �, and

by P

0

1

; : : : ; P

0

n

the 
orresponding virtual parties running �

0

.

All the a
tivations by U (su
h as invoking ke-sessions, issuing \send" a
tivations, 
orrupting

parties and sessions, et
.) are 
arried out in the virtual proto
ol �

0

through A. In parti
ular, the

a
tion of virtual parties are 
arried out by A on their behalf; this in
ludes the running of ke-session

within �

0

parties and the transmission of messages. The des
ription of A is presented in Figure 10.

The following fa
ts about the behavior of A as de�ned in Figure 10 are easy to inspe
t.

1. A is a legal atta
ker against smt in am (in parti
ular, only previously re
orded sent messages

are delivered, ex
ept if the sender is 
orrupted or the session is exposed).

2. The a
tions of U are perfe
tly simulated by A (i.e., 
arried identi
ally by A) against �

0

.

3. All sent, established and expired events re
orded in �

0

are equally re
orded in �.

4. re
eived events in � 
an di�er from those in �

0

only in the following 
ase (see Step 5 in

Figure 10): party P

0

i

re
orded \re
eived message m from P

0

j

within session s" in �

0
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Adversary A

A pro
eeds as follows when intera
ting with P

1

:::P

n

running smt in the am.

1. A initiates a 
opy of U , intera
ting with parties P

0

1

:::P

0

n

running NetAut(�; f) in the um. In

parti
ular, it evaluates the initialization fun
tion I of NetAut(�; f) on random input and hands

U the publi
 output of I .

2. Whenever U a
tivates P

0

i

with an a
tivation establish-session(P

0

i

; P

0

j

; s; role) or any a
tivation

of P

0

i

related to the run of a ke-session of proto
ol �, A performs the resultant a
tions within

P

0

i

and hands out the resultant messages to U for delivery.

3. Whenever U issues P

0

i

with one of the NetAut(�; f) a
tivations send(P

0

i

; P

0

j

; s;m), expire-

session(P

0

i

; P

0

j

; s), or with in
oming message (P

0

j

; s;m; t), A performs the resultant a
tions

of the players in �

0

a

ording to the NetAut(�; f) spe
i�
ations. Every message generated by

the parties is transferred by A to U for delivery.

4. Whenever P

0

i

re
ords one of the events \established session s with P

0

j

", \session

s with P

0

j

is expired", or \sent message m to P

0

j

within session s", then in � at-

ta
ker A issues to P

i

the a
tivation establish-session(P

i

; P

j

; s), expire-session(P

i

; P

j

; s),

send(P

i

; P

j

; s;m), respe
tively.

5. Whenever P

0

i

re
ords \re
eived message m from P

0

j

within session s", A does:

(a) If P

j

re
orded \sent message m to P

i

within session s" then A a
tivates P

i

with

in
oming message (m; s) from P

j

.

(b) Else, if P

j

is 
orrupted or session s within P

j

is lo
ally exposed, then A a
tivates P

j

with

send(P

j

; P

i

; s;m) (note that this sent event is not re
orded at P

j

by the 
onvention that

lo
ally exposed sessions do not produ
e output) and then a
tivates P

i

with in
oming

message (m; s) from P

j

.

6. Whenever U 
orrupts P

0

i

, A hands U the internal data of the simulated P

0

i

, and 
orrupts P

i

in the run of �. Whenever U issues an exposure a
tion against a session (P

0

i

; P

0

j

; s) within P

0

i

,

A hands U the 
orresponding information from the session within P

0

i

and issues the exposure

against the session (P

i

; P

j

; s) within P

i

in �.

7. When U halts, A outputs whatever U outputs and halts.

Figure 10: Emulation of smt: the am-adversary A.

but P

0

j

did not re
ord the 
orresponding sent event, and neither session s is exposed nor P

0

j

is 
orrupted. We 
all this 
ase a forgery-event.

The above fa
ts show that the simulation of U by A against the NetAut(�; f) proto
ol is perfe
t

(i.e. identi
al to a real run of U) as long as a forgery-event as de�ned above does not happen. (In

the 
ase of a forgery-event the simulation of U by A fails sin
e in �

0

party P

0

i

re
ords the re
eived

message m while in � the 
orresponding party P

i

will not re
ord it.) In Lemma 13 below we show

that this forgery-event happens with negligible probability (i.e., there is a negligible probability that

in an unexposed session of �

0

, a party P

0

i

a

epts a message from P

0

j

that the latter did not send).

Therefore, we have that the statisti
al distan
e between auth

smt;A

(k) and unauth

NetAut(�;f);U

(k)

is negligible. Consequently, NetAut(�; f) emulates smt in the um and thus it is a se
ure network

authenti
ation proto
ol. 2
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Lemma 13 If � is a SK-se
ure key-ex
hange proto
ol and f is a MAC fun
tion se
ure against


hosen message atta
ks, then for any atta
ker U running against NetAut the probability of a \forgery-

event" (as de�ned in the proof of Theorem 12) during an unexposed session is negligible.

Proof: We prove the lemma by 
ontradi
tion: if for a given atta
ker U against NetAut(�; f),

a forgery-event happens in an unexposed session with non-negligible probability then we build a

forger for the MAC fun
tion f that su

eeds with non-negligible probability. For 
onvenien
e, we

denote the above assumed non-negligible probability of a forgery-event by " (more pre
isely, this

value is a fun
tion of the se
urity parameter).

Building a forger F . The forger F has an ora
le to f that uses an unknown random key; F 
an

request from the ora
le the value of f on any message under the ora
les key and 
an also request

the veri�
ation of pairs (m; t) in whi
h 
ase the ora
le veri�es whether t is the 
orre
t value of f(m)

under the ora
le's key (the latter are 
alled \veri�
ation queries"). The goal of F is to produ
e a

MAC forgery, i.e. the value of f on a message under the key of the ora
le, without requesting the

box to 
ompute this value. F starts by building a virtual NetAut world and a
tivates U against

it (similarly as A did in the proof of Theorem 12 but without any \smt parties"). In addition,

F 
hooses a session at random (from all sessions 
ompleted during the run of the proto
ol), say

(P

i

; P

j

; s

0

). We will use the identi�er s

0

to refer to the 
hosen session or its mat
hing session. In

the 
ases where U delivers a message under the session-key of session s

0

, F does not use the a
tual

session-key as ex
hanged in the simulated proto
ol but instead it requests the ora
le to f to provide

that value of f (i.e F is e�e
tively using the ora
le key as the s

0

session-key). Similarly, F uses

the ora
le to verify whether messages sent under session s

0

possess the 
orre
t value of f (this is

needed in 
ases where U inje
ts or 
hanges the authenti
ation tags). If during simulation session

s

0

is exposed by U , then F aborts its 
omputation (i.e. it fails to forge). If at any point one of the

partners to session s

0

, say P

i

, a

epts a message as 
orre
tly MACed while the other party did not

re
ord the 
orresponding sent event (in parti
ular, F did not request the MAC of this message from

its ora
le) then F outputs the message and its MAC as sent to P

i

as a forgery against the ora
le

to the MAC fun
tion f . (Note that by the uniqueness property of sent and re
eived messages in

NetAut the message on whi
h F outputs this forgery was never queried from the MAC ora
le.)

Thus, if in the run of U by F a forgery-event happens under session s

0

then F su

eeds in

produ
ing a forgery against the MAC. We want to show that this happens with non-negligible

probability.

Re
all that we are assuming (by way of 
ontradi
tion) that in a regular run by U a forgery-event

happens with non-negligible probability ". Thus, if one 
hooses a session s

0

at random, then in a

run of U a forgery-event will happen in session s

0

with non-negligible probability too (i.e., " divided

by an upper bound on the number of sessions in the proto
ol). However, the run of U by the forger

F is not a regular run: the key used to MAC messages in session s

0

is not the real session key

ex
hanged by the parties but an independent random value. Still we 
laim that if in a run of U we

repla
e the session-key in a randomly 
hosen session s

0

with a random value then the probability

of a forgery-event in that session does not 
hange signi�
antly, i.e., it remains non-negligible (and

thus F has a non-negligible probability to break the se
urity of the MAC fun
tion f).

In order to prove this 
laim we introdu
e the following notation. If s is a session 
ompleted by

some party under a run of U , then we denote by forgery(s) the event that a forgery-event happens

during session s. We know, by assumption, that if s is 
hosen at random among all sessions under

a regular run of U then the probability of event forgery(s) is non-negligible. We want to prove

that this is the 
ase even when U is run by F . (In this 
ase, this probability, that we denote by

Prob

F

(forgery(s)), is taken over runs of U in whi
h the real session-key for s is repla
ed with a
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random value.) The remainder of the proof is devoted to proving this 
laim.

The plan for this proof is as follows. Based on U , we build a ke-adversary U

ke

against the ke

proto
ol �. Then we show that if in the modi�ed run of U as produ
ed by forger F the probability

of a forgery-event 
hanges substantially (relative to its probability in a regular run of U), then U

ke

breaks the SK-se
urity of � (i.e., it 
an 
hoose a test-session in whi
h to distinguish the real value

of the session-key from a random independent value.)

Atta
ker U

ke

runs � with n parties P

1

; : : : ; P

n

by essentially simulating the a
tions of U against

a NetAut proto
ol with proto
ol � and MAC fun
tion f . For this, U

ke

runs U against a virtual 
opy

of NetAut(�; f), denoted �

0

, with n players P

0

1

; : : : ; P

0

n

. Ea
h a
tion de
ided by U that 
on
erns the

ke proto
ol part of �

0

(su
h as session establishment, party 
orruptions, session exposure, et
.) is

applied by U

ke

against the real run of � (i.e. against parties P

1

; : : : ; P

n

). Whenever U orders an

a
tion involving the 
omputation of a MAC value by party P

0

i

using a 
ompleted and unexpired

session-key (P

0

i

; P

0

j

; s), U

ke


he
ks if it has already learned the value of that key (via a previous

session exposure). If not, U

ke

issues a session-key query against (P

i

; P

j

; s). With the value of the

learned session-key, U

ke


omputes the required value of f and hands it to U .

There is one ex
eption, however, to the above behavior of U

ke

. Among the sessions 
ompleted

in the run of �, atta
ker U

ke


hooses one at random as its test-session (e.g., U

ke


hooses at the

beginning of its run a number j 2 f1; : : : ; `g where ` is an upper bound on the number of sessions


reated by U during its run, and then U

ke


hooses the j-th 
ompleted session as its test session).

If U ends its run before the test-session is 
hosen, or if this session happens to be exposed at time

of 
ompletion (i.e., either a partner to the session is 
orrupted before 
ompletion or U issued a

session-state reveal against this session) then U

ke

stops its run without issuing a test-session query.

Otherwise, on
e the 
hosen test-session is 
ompleted, U

ke

issues a test-session query. We denote

the test-session as s

0

, and the response to the test query as v (as usual a bit b

R

 freal;randomg

is 
hosen and v is set to the real value of the session-key if b = real and to a random independent

value otherwise

9

.) Whenever U evaluates f involving the key of session s

0

, U

ke

uses v as the

value of the key for f . If at any point U produ
es a forgery-event in session s

0

(i.e. U is able to

MAC under key v a message not MACed by U

ke

) then U

ke

stops and outputs b

0

= real. If at

some point U stops its run, or if U orders the exposure of session s

0

, then U

ke

stops and outputs

b

0

R

 freal;randomg.

Re
all that we want to prove that Prob

F

(forgery(s

0

)) is non-negligible. This is equivalent to

proving that the 
onditional probability

� = Prob

U

ke

(forgery(s

0

) : b = random)

(now taken over the distribution of runs by U

ke

against proto
ol �) is non-negligible. In order to

show this we start by noting that the 
onditional probability

� = Prob

U

ke

(forgery(s

0

) : b = real)

represents the probability that a forgery-event happens in a regular run of U (i.e. with all real

session-keys used for MAC-ing information) in a randomly sele
ted session s

0

. As said earlier, this

probability is "=` (the values " and ` are de�ned above), and then non-negligible. We end the proof

by proving that � � � (i.e. they di�er by only a negligible amount) and thus � is non-negligible.

This proof is obtained via the analysis of the probability, denoted Prob(b

0

= real), that U

ke

ends

its run with output b

0

= real (we 
onsider this probability only over runs in whi
h U

ke

issues a

9

For 
larity, we denote bits by real and random rather than 0; 1.
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test-session query). We have that Prob(b

0

= real) equals

Prob(b

0

= real : forgery(s

0

))Prob(forgery(s

0

))+Prob(b

0

= real : :forgery(s

0

))Prob(:forgery(s

0

))

By the de�nition of U

ke

, Prob(b

0

= real : forgery(s

0

)) is always 1 regardless of whether b is real

or random. Similarly, Prob(b

0

= real : :forgery(s

0

)) is always 1/2 regardless of the value of b.

Now 
onsider the 
ase b = real; we have that

Prob(b

0

= real : b = real) =

= 1 � Prob(forgery(s

0

) : b = real) + 1=2 � Prob(:forgery(s

0

) : b = real) =

= 1 � � + 1=2 � (1� �) = 1=2 + �=2:

Similarly, for b = random we 
an obtain

Prob(b

0

= real : b = random) = 1=2 + �=2:

Sin
e � is a SK-se
ure ke proto
ol we know that the di�eren
e between Prob(b

0

= real : b = real)

and Prob(b

0

= real : b = random) is negligible, or otherwise U

ke

would break the se
urity of �.

But then we have that � � � as we had to prove. 2

Thus we have 
ompleted the proof of Theorem 12 showing that SK-se
urity is a suÆ
ient 
on-

dition to guarantee the se
ure 
omposition of key-ex
hange proto
ol with a network authenti
ation

appli
ation. One important aspe
t of the above proof is that it makes 
lear the need for allowing

the atta
ker against the key-ex
hange proto
ol (U

ke

in our 
ase) to keep running even after the

value of the test-session is provided to him (see the remark after De�nition 4); indeed, without that


apability the theorem is not true.

6.3 Network En
ryption

In this se
tion we treat the problem of se
re
y of 
ommuni
ations, and introdu
e a de�nition of

se
re
y in the 
ontext of general network 
hannels proto
ols as de�ned in Se
tion 6.1. This notion of

se
re
y is used in the next subse
tion to formulate our de�nition of se
ure 
hannels and to analyze

a spe
i�
 implementation of su
h 
hannels using SK-se
ure ke proto
ols.

Se
ure network en
ryption proto
ols. We start by de�ning what is meant for a network


hannels proto
ol NetChan to be a \se
ure network en
ryption proto
ol". We want to 
apture

the se
re
y property that the atta
ker does not learn information on messages that are ex
hanged

during unexposed sessions (see the \explanation" paragraph following the de�nition). We follow

the indistinguishability approa
h used to de�ne semanti
 se
urity of en
ryption (also used in our

de�nition of SK-se
urity). For this we augment the 
apabilities of am and um atta
kers that intera
t

with a network 
hannels proto
ol to in
lude the following a
tion.

We let the atta
ker A, running against NetChan, to 
hoose, at some arbitrary point

during the intera
tion, a (single) test-session (P

i

; P

j

; s) among the sessions that are


ompleted, unexpired and unexposed at the time. Also, A gets to 
hoose a pair of

equal-length messages m

0

;m

1

. Next, a bit b

R

 f0; 1g is 
hosen (but not provided to A)

and P

i

is a
tivated with send(P

i

; P

j

; s;m

b

). This a
tivation follows the spe
i�
ation of

a regular send-a
tivation in the proto
ol ex
ept that when P

i

re
ords the sent event in

its lo
al output it does not write down the value of m

b

. Later, if P

j

is a
tivated by A

under session s with some in
oming message � and the output of r
v

�

(�) (where � is
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the session-key of the test session s) is the pair (m

b

; ok = 1) then the re
eive-a
tivation

is re
orded by the re
ipient but the value m

b

is not written to the lo
al output. The

atta
ker A is allowed all the regular adversarial a
tions ex
ept that it is not permitted to

expose the test-session (P

i

; P

j

; s). (However, as in the 
ase of SK-se
urity, the atta
ker

is allowed to 
orrupt P

i

as soon as the test-session expires, and to 
orrupt P

j

as soon

as the mat
hing session expires.) At the end of its run, A outputs a bit b

0

(as its guess

for b).

De�nition 14 We say that a network 
hannels proto
ol is a se
ure network en
ryption proto
ol in

the um if the probability of any um-atta
ker A as des
ribed above to guess 
orre
tly b (i.e., to output

b

0

= b) is no more than 1/2 plus a negligible fra
tion in the se
urity parameter.

Se
urity of a network en
ryption proto
ol is de�ned in the am in the same form provided the

atta
ker is a am-adversary with the above added 
apability.

Explanation. We 
larify the rationale of the above de�nition. In this de�nition we want to


apture the se
re
y property of a network 
hannels proto
ol, namely, the infeasibility of the atta
ker

to learn information on messages transmitted (usually in en
rypted form) between the parties.

However, note that in our formalism of network 
hannels the atta
ker gets to learn the sent and

re
eived messages by wat
hing the lo
al output of the parties (re
all that whatever is written on the

lo
al output be
omes immediately available to A); moreover, the atta
ker even gets to 
hoose the

messages in sent-a
tivations. So, how 
an we say that the atta
ker does not learn the ex
hanged

messages? For this, we introdu
e the test messages m

0

and m

1

that the atta
ker gets to 
hoose but

not to learn whi
h one was sent. In parti
ular, in order to hide this information from the atta
ker

we spe
ify that the send and re
eive a
tivations 
orresponding to the test message do not re
ord

the value of the spe
i�
 sent or re
eived message. Thus, for a proto
ol to be se
ure by our de�nition

it needs to make infeasible for the atta
ker to guess 
orre
tly (i.e., with non-negligible advantage)

the sent test-message even though this atta
ker has a

ess to all other messages (in 
leartext form)

that were sent and re
eived during the proto
ol.

6.3.1 Dis
ussion

One importat aspe
t of the above de�nition is the way we spe
ify the re
eive-a
tivations (at P

j

)

in whi
h the test-message m

b

is not written to the lo
al output. In order to highlight this issue

let's 
onsider �rst an alternative de�nition of se
urity of network en
ryption proto
ols. Namely,

a de�nition similar to the above de�nition with the di�eren
e that the only re
eive-a
tivation in

whi
h m

b

is not written to the lo
al output is an a
tivation where the in
oming message is identi
al

to the message, 
all it m

�

, handed to A by P

i

as the result of the test send-a
tivation. In the sequel

we refer to this variant of the de�nition as the \stri
t de�nition" (of se
ure network en
ryption

proto
ols). The reason that we have not adopted this stri
t de�nition is that we 
onsider it over-

restri
tive: for example, this de�nition 
all inse
ure any network en
ryption proto
ol that spe
i�es

that the message delivered to P

j

is di�erent from the exa
t output produ
ed by P

i

. In parti
ular, it

would invalidate any proto
ol that allows for some 
hanges to the transported messages to happen

in transit, even though su
h proto
ols are 
ommon in pra
ti
e and se
ure. For example, the AH

proto
ol from [31℄ allows some well de�ned parts of the message header, su
h as number of hops, to

be 
hanged in-route by intermediate routers. Other proto
ols allow for arbitrary or random padding

of messages just to 
omply with some standard length boundary; a 
hange in-route of su
h padding

would not be 
he
ked by the re
eiver nor should su
h 
hange impa
t the se
urity of the proto
ol.
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Thus, a better (and more realisti
) approa
h is to permit su
h possible (ino
ous) 
hanges to the

transported message, and only 
are about the 
orre
tness of the value of the message a

epted and

re
orded by the re
eiver, namely, the output of the r
v fun
tion. This is why, under our de�nition,

we 
onsider any in
oming message that \de
odes" (under r
v) to the test message m

b

as related to

the test send-a
tivation and then its de
oded value is not dis
losed to the atta
ker.

One 
onsequen
e of this de�nitional de
ision is that while De�nition 14 does not expli
itly

mention the need to ensure the uniqueness of messages or the use of message identi�ers, it a
tually

requires from a se
ure network en
ryption proto
ol to be 
areful about the way it guarantees

the uniqueness of transmitted messages. To illustrate this point 
onsider the following strategy

for atta
ker A. After a
tivating P

i

with the test send-a
tivation with messages m

0

and m

1

, A

a
tivates P

i

with another send-a
tivation with m

0

as the input message. Now, A delivers to P

j

the message resultant from the later send-a
tivation. If P

j

does not write the de
oded message

to its lo
al output then A learns that m

b

= m

0

, if P

j

does write the message then A learns that

m

b

= m

1

. Thus a se
ure network en
ryption proto
ol must make this atta
k impossible for A and,

in parti
ular, it must ensure the uniqueness of sent messages. This 
an be a
hieved by the use of

unique message identi�ers that be
ome part of the sent messages. We exemplify this me
hanism

in our realization of se
ure 
hannels in Se
tion 6.4.

Another remark 
on
erning the \stri
t de�nition" dis
ussed above is that it naturally 
orre-

sponds to the way se
urity of en
ryption fun
tions against 
hosen 
iphertext atta
ks (CCA) is

usually de�ned. (That is, the de�nition of CCA se
urity allows an atta
ker to query a de
ryption

ora
le with any input 
iphertext ex
ept for the one in whi
h the atta
ker is being tested.) While

this 
orresponden
e 
an be seen as an advantage of the \stri
t de�nition" it a
tually points to an

important issue here: CCA-se
urity is not a ne
essary notion when formalizing se
urity of network


hannels. Indeed, the CCA formulation a
tually 
arries the same drawba
ks as dis
ussed before

for the stri
t de�nition. A further illustration of these issues 
an be found in the remark after the

proof of Theorem 16.

On the 
orre
tness requirement. Noti
e that De�nition 14 does not make any \
orre
tness"

requirements from the en
ryption proto
ol. That is, it is not required that the re
ipient will output

the same message as re
orded by the sender. While this is a natural requirement for a network en-


ryption proto
ol (we want de
rypted messages to 
orrespond to the plaintext originally en
rypted)

we omit it from our de�nition sin
e our use of network en
ryption (for de�ning and realizing se
ure


hannels { see De�nition 15) appears only in 
onjun
tion with a network authenti
ation proto
ol,

and the latter already guarantees this 
orre
tness property. If one is interested in a stand-alone

use of the notion of a network en
ryption proto
ol then adding this 
orre
tness requirement to the

above de�nition is straightforward.

6.4 Se
ure Channels

We are now ready to de�ne what is meant by a \se
ure 
hannels" proto
ol.

De�nition 15 A network 
hannels proto
ol in the um is 
alled a se
ure network 
hannels proto
ol

if it is a se
ure network en
ryption proto
ol and also a se
ure network authenti
ation proto
ol.

We pro
eed to show that the network 
hannels proto
ol, denoted NetSe
 and de�ned below,

that applies en
ryption to transmitted messages and applies a se
ure MAC fun
tion to the resultant


iphertext is a se
ure 
hannels proto
ol. In the des
ription of this proto
ol we assume expli
it

message identi�ers that are part of the sent messages and make all these messages ne
essarily
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di�erent. Spe
i�
ally, the input to a send a
tivation is a pair m = (m-id; �m) where m is 
hosen by

the atta
ker at will but m-id is an identi�er that is independent from the message (
an think of it

as a message 
ounter) and is di�erent from all message identi�ers used in other send a
tivations

in the same session. In a
tual implementations of the proto
ol this unique m-id value needs to be


hosen by the sender and 
he
ked for uniqueness at the re
eiver; here we represent it as part of

the input to the send a
tivation in order to be 
onsistent with our general formalism of network


hannels from Figure 8 and to avoid the spe
i�
ation of a parti
ular message-id me
hanism. This

uniqueness of message identi�ers is assumed only for un
orrupted sessions.

The se
ure 
hannels proto
ol NetSe
. Let � be a ke proto
ol, f a MAC fun
tion, En


a symmetri
 en
ryption fun
tion, and F a family of pseudorandom fun
tions. We denote by

NetSe
(�; f;En
; F ) the network 
hannels proto
ol NetChan(�; snd; r
v), as de�ned in Figure 8,

that uses the snd and r
v fun
tions de�ned as:

� On input m = (m-id; �m), snd

�

(m) produ
es output m

0

= (m-id; 
; t) where 
 = En


�

e

( �m)

and t = f

�

a

(m-id; 
). The keys �

e

and �

a

are 
omputed as F

�

(0) and F

�

(1), respe
tively

10

.

� On input m

0

, r
v

�

(m

0

) outputs (m; ok) as follows. If m

0

is of the form (m-id; 
; t) then ok = 1

if and only if (i) m-id is di�erent than all previously seen message identi�ers in the session,

and (ii) (m-id; 
; t) passes the veri�
ation fun
tion of f under key �

a

. If ok = 1 then set

�m = En


�1

�

e

(
) and m = (m-id; �m), otherwise ok = 0 and m = null. The keys �

e

and �

a

are

de�ned as above.

That is, fun
tion snd applies an en
ryption on the message and a MAC to the 
iphertext where these

fun
tions use \
omputationally independent" keys derived from the session � via a pseudorandom

fun
tion. The fun
tion r
v does the de
ryption but only after verifying that the authenti
ation of

the 
iphertext is 
orre
t.

Note 1: We stress again our assumption that message identi�ers are di�erent for ea
h sent message

in a session (and 
he
ked for uniqueness at the re
ipient). In parti
ular, this means that an

implementation of the message id me
hanism needs to make sure that the two parties of the

session (while un
orrupted) 
hoose di�erent identi�ers for ea
h new message. This 
an a
hieved,

for example, if ea
h party 
hooses the values m-id from disjoint sets (e.g., P

i

sets the �rst bit of its

identi�ers to 0 and P

j

to 1). A
tual proto
ols 
an also spe
ify the use of \dire
tional" keys, i.e.,

the keys used for the snd fun
tion from P

i

to P

j

are di�erent (and 
omputationally independent)

from the keys used from P

j

to P

i

; in this 
ase message identi�ers need only be unique per dire
tion.

Clearly, these multiple keys 
an be derived from the session key � using a pseudorandom fun
tion.

Note 2: Message identi�ers are not prote
ted for se
re
y. Sin
e they are 
hosen independently of the

sent message this does not 
ompromise the se
re
y of the message. In parti
ular, when analyzing

the above proto
ol as a network en
ryption proto
ol, we assume that the test messages m

0

and m

1

from De�nition 14 have the same message identi�er so its exposure provides no information to the

atta
ker about whi
h message m

b

was a
tually sent.

In the following theorem we use the notion of a symmetri
 en
ryption fun
tion that is se
ure

against 
hosen-plaintext atta
ks. For a formalization of this notion see [3℄ (see also the CPA game

in Figure 11).

10

For simpli
ity we assume the en
ryption and authenti
ation fun
tions to use uniformly distributed keys of the

same length; other 
ases 
an be handled via standard key derivation methods (e.g., trun
ating the output of F ,

iterating F to produ
e longer outputs, et
.).
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Theorem 16 If � is a SK-se
ure key-ex
hange proto
ol in um, f is a MAC fun
tion se
ure against


hosen-message atta
ks, En
 a symmetri
 en
ryption fun
tion se
ure against 
hosen-plaintext at-

ta
ks, and F a se
ure family of pseudorandom fun
tions, then NetSe
(�; f;En
; F ) is a se
ure


hannels proto
ol in the um.

Proof: We 
an assume, for simpli
ity, that keys �

e

and �

a

in NetSe
(�; f;En
; F ) are dire
t

outputs of proto
ol � (and then indistinguishable from uniformly and independently 
hosen keys).

A

ounting for the fa
t that we a
tually derive them from a single session key � via a pseudorandom

fun
tion 
an be done using standard arguments.

The proof that NetSe
(�; f;En
; F ) is a se
ure network authenti
ation proto
ol follows from

Theorem 12 with one modi�
ation: here we are not applying the MAC fun
tion dire
tly to the

plaintext but on the 
iphertext. Sin
e by property of the en
ryption fun
tion we have that a


iphertext de
rypts to a unique plaintext under key �

e

then the authenti
ation of the 
iphertext

implies the authenti
ation of the plaintext message. (Formally, one 
an 
onsider a modi�
ation of

proto
ol NetAut in Theorem 12 where the fun
tion snd is de�ned to �rst en
rypt the message and

then authenti
ate the 
iphertext under the MAC fun
tion; the output of snd is the 
on
atenation

of the 
omputed 
iphertext and MAC tag. Similarly, r
v �rst 
he
ks the MAC on the 
iphertext,

and if su

essful it de
rypts the 
iphertext and outputs the plaintext message.)

The rest of the proof is devoted to proving that NetSe
(�; f;En
; F ) is a se
ure network en-


ryption proto
ol. The plan for the proof and many of the details are similar to the proof of the

network authenti
ation theorem (Theorem 12, and more spe
i�
ally of Lemma 13). We thus sket
h

the most important aspe
ts of the 
urrent proof but omit the details that are easy to 
omplete

following the network authenti
ation 
ase. Our goal here is to prove the theorem by way of 
ontra-

di
tion, namely, given an atta
ker A that breaks the se
urity of NetSe
(�; f;En
; F ) as a network

en
ryption proto
ol then we 
an build an atta
ker B that breaks the se
urity of the symmetri


en
ryption fun
tion En
 against 
hosen-plaintext atta
ks.

The CPA symmetri
 en
ryption game

The game is played by an atta
ker B with a

ess to an en
ryption ora
le E. On input m, the ora
le

returns the en
ryption of m under fun
tion En
 using a se
ret key � not provided to B. The game

pro
eeds in phases:

Phase 1: B queries E with any messages of its 
hoi
e. At any point B may 
hoose to move to

phase 2.

Phase 2: B 
hooses two equal-length messages m

0

and m

1

; a bit b is 
hosen at random and the

value 


�

= E(m

b

) is returned to B. (The value of b is not provided to B.)

Phase 3: Same as Phase 1.

Phase 4: B outputs a bit b

0

.

And the winner is... B if and only if b = b

0

.

Figure 11: CPA-se
urity of the symmetri
 en
ryption fun
tion En


In order to 
apture the CPA-se
urity of En
 (i.e., its se
urity against 
hosen-plaintext atta
ks)

we 
onsider the game des
ribed in Figure 11. By the assumption that En
 is semanti
ally se
ure
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against 
hosen-plaintext atta
ks we have that no polynomial-time atta
ker B 
an win this game with

non-negligible advantage (where \advantage" means the winning probability minus 1/2). However,

we show next how to 
onstru
t su
h atta
ker B given an atta
ker A that breaks the se
urity of

NetSe
(�; f;En
; F ) as a network en
ryption proto
ol, i.e. an atta
ker A that wins the test of

De�nition 14 against NetSe
(�; f;En
; F ) with non-negligible advantage. This proves that su
h an

atta
ker A does not exist and then NetSe
(�; f;En
; F ) is a se
ure network en
ryption proto
ol.

(A pre
ise quanti�ed relation between the su

ess probability of B and A 
an be easily derived

from the proof arguments below.)

Building B given A. Phase 1. B starts by building a virtual NetSe
(�; f;En
; F ) world (in
luding

the 
hoi
e of initial information for the parties) and a
tivates A against it. In addition, B 
hooses

a session at random (from all sessions 
ompleted during the virtual run of NetSe
(�; f;En
; F ))

under A, say (P

i

; P

j

; s

0

). We will use the identi�er s

0

to refer to the 
hosen session or its mat
hing

session. All a
tions by A (a
tivations or 
orruptions) that do not involve session s

0

are 
arried by

B using the spe
i�
ation of NetSe
(�; f;En
; F ) and based on the full knowledge that B has of the

information held by the parties in the proto
ol. If at any point session s

0

is exposed by A (this

may happen as long as the session is unexpired at P

i

or P

j

) then B outputs a random bit b

0

and

stops. When A a
tivates the establishment of the ke session s

0

between P

i

and P

j

, B a
tivates

P

i

and P

j

with the normal operations for session-key establishment as in proto
ol �. When A

a
tivates P

i

or P

j

with a send-a
tivation under session s

0

and input message m = (m-id; �m), B

does not use the a
tual key shared in session s

0

to 
ompute the outgoing message m

0

. Instead, B


omputes m

0

= (m-id; 
; t) where 
 = E( �m) (i.e., B uses the en
ryption ora
le for the en
ryption

of messages under session s

0

) and t = f

�

a

(m-id; 
) where �

a

is a key that B 
hooses independently

and at random for use as the MAC key during session s

0

.

Re
eive-a
tivations under session s

0

are handled by B (during Phase 1) as follows. Say P

j

is

a
tivated with in
oming message m

0

= (m-id; 
; t) under session s

0

, then B 
he
ks m-id for validity

and if valid it uses its knowledge of �

a

to verify the authenti
ation tag t. If any of these veri�
ations

fail then P

j

sets ok = 0 and m = null. If the veri�
ation is su

essful, in parti
ular the triple

(m-id; 
; t) passes the veri�
ation of f

�

a

, then (ex
ept for a negligible probability of forgery against

the MAC) the pair (m-id; 
) was in
luded in the output of a previous send-a
tivation under session

s

0

in whi
h 
ase B already knows the plaintext en
rypted under 
iphertext 
 and 
an re
ord the

re
eption of the message in P

j

's lo
al input.

If at any point A 
hooses a test session (a

ording to De�nition 14) di�erent than s

0

then B outputs

a random bit b

0

and stops. If s

0

is 
hosen by A as the test session and messages m

0

and m

1

are

provided by A then B moves to phase 2.

Phase 2. Sin
e we assume message-identi�ers that are independent from the message then we have

that the test messages m

0

and m

1


hosen by A have the same message identi�er, whi
h we denote

by m-id

�

. Namely, m

0

= (m-id

�

; �m

0

) and m

1

= (m-id

�

; �m

1

). Now, B uses the messages �m

0

and �m

1

as its own test messages to ora
le E in the CPA game. Let 


�

be the value returned to B as the

ora
le response to this test. B then hands to A the triple (m-id

�

; 


�

; t

�

) where t

�

= f

�

a

(m-id

�

; 


�

).

As spe
i�ed in De�nition 14, P

i

does not re
ord the a
tual value of �m

b

(whi
h B does not know

anyway). Now, B moves to phase 3.

Phase 3. The a
tions of B in Phase 3 are similar to Phase 1 ex
ept that now A may a
tivate P

j

with in
oming message 
ontaining (m-id

�

; 


�

) for whi
h B does not know its de
ryption. In this


ase, B �rst 
he
ks the validity of the authenti
ation tag in the in
oming message. If it fails then no

a
tion is needed. If it is su

essful then P

j

re
ords the re
eption of the message in its lo
al output

but without spe
ifying the de
rypted message sin
e this message is m

b

whi
h, by spe
i�
ation of
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De�nition 14, P

j

does not write to its lo
al output (thus, B does not need to know m

b

).

Phase 4. Whenever A stops its run with output b

0

, B moves to phase 4 and stops with the same

output b

0

as A.

Analysis of B. It is easy to verify that B as de�ned above is a legal atta
ker in the CPA game of

Figure 11. We need to show that B has non-negligible advantage in winning that game. Proving

this is similar to the analysis of the su

ess probability of forger F in the proof of Lemma 13. First,

we 
laim that the event in whi
h the session s

0


hosen at random by B is also the test session


hosen by A has non-negligible probability to o

ur (simply be
ause there are only polynomially

many sessions). Se
ond, we note that if s

0

is 
hosen by A as the test session and B 
arries the

a
tions of A related to session s

0

using the a
tual session key ex
hanged by P

i

and P

j

in that

session then the advantage of B to guess b 
orre
tly is the same as for A to guess 
orre
tly (sin
e

in this 
ase the simulation of A by B is perfe
t) and then non-negligible. So, the main argument is

to show that repla
ing the a
tual session keys (for authenti
ation and for en
ryption) from session

s

0

with the random independent key �

a


hosen by B for the MAC and the random independet

key used by ora
le E for its en
ryptions does not signi�
antly 
hange the odds of A to win. This

fa
t follows from the SK-se
urity of the ke proto
ol � and its proof is similar to the proof of the

analogous fa
t in Lemma 13 (with B and A taking the roles of F and U , respe
tively).

2

On the (non) ne
essity of CCA-se
urity. The above Theorem shows that se
urity against


hosen-plaintext atta
ks (CPA) is all we need to require from the fun
tion En
 in order to imple-

ment se
ure 
hannels. This is an important property sin
e most symmetri
 en
ryption fun
tions

and modes used in pra
ti
e are CPA-se
ure but not se
ure against 
hosen-
iphertext atta
ks (CCA).

Also worth noting is that even the 
ombination of the MAC fun
tion f on top of En
 does not ne
es-

sarily result in a CCA-se
ure fun
tion (namely, the fun
tion snd de�ned under NetSe
(�; f;En
; F )

is not ne
essarily CCA-se
ure when 
onsidered as an en
ryption fun
tion with keys �

e

and �

a

).

To see this 
onsider a MAC fun
tion with the property that 
ipping the least signi�
ant bit of an

authenti
ation tag does not 
hange the validity of the tag. In this 
ase the resultant 
omposed

fun
tion snd is not CCA-se
ure while it suÆ
es (by virtue of the above theorem) for implementing

se
ure 
hannels.

This example also helps to emphasize the over-restri
tive 
hara
ter of the \stri
t de�nition" of a

se
ure network en
ryption proto
ol as dis
ussed in Se
tion 6.3.1. Indeed, it is easy to see that

in order for proto
ol NetSe
 to satisfy this stri
t de�nition one has to make sure that the snd

fun
tion in proto
ol NetSe
 is CCA-se
ure. In parti
ular, the above example shows that the as-

sumption that f is a se
ure MAC fun
tion is not enough to prove the network en
ryption se
urity

of NetSe
(�; f;En
; F ) under the stri
t de�nition. Su
h a de�nition would require a stronger no-

tion of a MAC where in addition to the regular unforgeability requirements one requires that the

atta
ker 
annot 
hange a given valid pair (m; t) (where m is a message and t a valid authenti
ation

tag) into another valid pair (m; t

0

) with t 6= t

0

. When inspe
ting the NetSe
 proto
ol one 
an easily

see that this extra requirement from the MAC fun
tion is not a real se
urity ne
essity but just the

arti�
ial result of the unne
essarily restri
tive nature of the stri
t de�nition.

The order of en
ryption and authenti
ation. Re
ent results in [33℄ show that if the en
ryption

fun
tion is assumed to be se
ure against 
hosen-plaintext atta
ks (as in the above Theorem) then

the ordering of �rst applying the en
ryption fun
tion and then the authenti
ation fun
tion (as in

NetSe
(�; f;En
; F )) is instrumental for guaranteeing se
ure 
hannels. It is shown in [33℄ that other


ommon orderings of the fun
tions (in whi
h authenti
ation is applied dire
tly to the plaintext)


annot ensure se
ure 
hannels even if the key-ex
hange proto
ol in use is (ideally) se
ure.
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A More on Related Work

We provide some more details on several de�nitional works on ke that are 
losely related to the

present work.

On the work of Bellare and Rogaway [7, 8℄. The �rst 
omplexity-based formalization of se
ure

ke proto
ols (i.e., the �rst de�nitions that take into 
onsideration the 
omputational limitations of

an adversary and allow for an analysis that 
onsiders non-idealized 
ryptographi
 primitives) was

presented by Bellare and Rogaway in [7, 8℄, in the 
ontext of shared long-term keys. These works

postulate an adversary in 
harge of all 
ommuni
ations, and expli
itly model 
on
urrent sessions

by 
reating a model where the adversary is surrounded by \ora
les" that represent sessions within

parties. In su
h a model, querying an ora
le represents delivery of a message or the 
orruption

of a session. Their method of de�ning se
urity is based on the method used for de�ning semanti


se
urity of en
ryption fun
tions [24℄: the adversary should be unable to distinguish, with non-

negligible probability, between the key of a 
hosen session and an independent random value. They

prove the se
urity of spe
i�
 authenti
ation and key ex
hange proto
ols under these de�nitions.

Various works extend the [7, 8℄ framework to other settings and problems; for example, Shoup and

Rubin to smart 
ard settings [44℄; Lu
ks to 
onsider di
tionary atta
ks [36℄; Blake-Wilson, Johnson

and Menezes [10, 11℄ for the publi
 key setting.

The original formalization of [7, 8℄ was later demonstrated to have a se
urity 
aw, by Ra
ko�

(personal 
ommuni
ation, 1995). In an unpublished work, Bellare, Petrank, Ra
ko� and Rogaway

[6℄ proposed a �x for this 
aw. Our de�nition of se
urity (Se
tion 4) follows essentially that �xed

version of the [7, 8℄ de�nition, but 
ast in the proto
ol and adversary framework used here. Next,

we sket
h the Ra
ko� atta
k whi
h is instru
tive for pointing out to the subtleties involved in the

formalization of se
urity for key-ex
hange proto
ols.

In the de�nitions of [7, 8℄, the adversary points to an unexposed session of its 
hoi
e, and

re
eives a value k

b

, where k

0

is the real session key of this session, k

1

is an independently 
hosen

random value, and b is a randomly 
hosen bit that is unknown to the adversary. The se
urity

requirement is that the adversary is unable to predi
t b with non-negligible advantage over one

half. The original version of these de�nitions requires that the adversary outputs its guess for b

immediately after it obtains the test value. Ra
ko� has noti
ed that this requirement is not strong

enough: Consider your favorite se
ure key-ex
hange proto
ol �. Now, add to the spe
i�
ations of

the proto
ol the following instru
tion for the party that 
ompletes �rst the session establishment

a

ording to proto
ol �: if at any point this party re
eives a message with the value MAC

�

(0),

where MAC is a se
ure message authenti
ation fun
tion and � the established session-key, then

the party publi
izes (say via a further message in the proto
ol) the value of �. However, the

proto
ol never instru
ts any party to 
arry out su
h an instru
tion. As a result the proto
ol 
an be

shown to pass the weakened de�nition. On the other hand, it is 
lear that su
h a proto
ol 
annot

be 
omposed se
urely with an authenti
ation appli
ation that uses the session key for MAC-ing

information (sin
e su
h an appli
ation 
ould produ
e the value MAC

�

(0) that 
an be used to expose

�).

The �x to the de�nition, proposed by [6℄, is to let the adversary to 
ontinue intera
ting with the

proto
ol even after the test value is re
eived and before the guess is made. We stress that, although

no atta
ks against the �xed de�nition were known, up till now it was never demonstrated that

this de�nition (or any other) is \suÆ
iently strong" for guaranteeing the se
urity of the 
ommon

appli
ations that use key ex
hange.

On the work of Bellare, Canetti and Kraw
zyk [2℄. A somewhat di�erent approa
h to
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de�ning se
ure ke proto
ols is taken in the work of Bellare, Canetti and Kraw
zyk [2℄. First they

spe
ify an adversarial model (
alled the unauthenti
ated-links model (um)) that represents the 
apa-

bilities of the adversary in real-life networks. (As in [7, 8℄, this model also postulates independent

sessions and adversarially 
ontrolled 
ommuni
ation. However it is di�erent in that it dire
tly rep-

resents a 
ommuni
ation network and a

ounts in a natural way to the fa
t that other proto
ols


an be running in the same system.) In this model they formalize the notion of authenti
ators,

i.e., \
ompilers" that transform proto
ols that assume ideally-authenti
ated 
ommuni
ation into

\equivalent" proto
ols in the um. (Authenti
ators are also formalized, in a di�erent 
ontext, in

[15℄.) In our work we borrow from [2℄ the above proto
ol and adversarial models, and demonstrate

the usefulness of the authenti
ators notion for designing and analyzing proto
ols.

In addition to the above basi
 models, [2℄ also treat the issue of se
urity of ke proto
ols.

For this they formulate an \ideal ke pro
ess" that is meant to 
apture the expe
ted properties

of a ke proto
ol, and require that a se
ure ke proto
ol will \emulate" the ideal pro
ess. Their

notion of emulation is in
uen
ed by general de�nitions of se
urity of multi-party proto
ols [23,

38, 1, 13℄. They also 
onsider the use of ke for maintaining authenti
ated 
ommuni
ation. In

parti
ular, they 
laim that the standard method of 
ombining a ke proto
ol with a shared-key

message authenti
ation 
ode (MACs) results in a se
ure authenti
ator. However, while the basi


approa
h of the [2℄ de�nition of ke is intuitive and attra
tive, their a
tual de�nition of se
ure

ke proto
ols has several subtle short
omings. One 
onsequen
e is that, 
ontrary to their 
laims,

their de�nition of ke seems insuÆ
ient to prove the se
urity of the above-mentioned appli
ation to


onstru
ting authenti
ators (via ke and MAC). Another 
onsequen
e is that their de�nition seems

to be somewhat \over-restri
tive", in the sense that it rules out ke proto
ols that seem \intuitively

se
ure" and even provide se
ure 
omposition with appli
ations. In parti
ular, Propositions 9 and

10 from [2℄ are in
orre
t.

On the work of Shoup [43℄. Shoup's de�nitions are based on the simulatability approa
h of

[2℄ with some signi�
ant modi�
ations. Three levels of se
urity are presented: Stati
 se
urity (i.e.,

se
urity against adversaries that 
orrupt parties only at the onset of the 
omputation), adaptive

se
urity (where the adversary obtains only the long-term information of a newly 
orrupted party)

and strongly adaptive se
urity where the adversary obtains all the private information of 
orrupted

parties. (Oddly, strongly adaptive se
urity does not imply adaptive se
urity.) In addition, two

de�nitions based on the indistinguishability approa
h of Bellare and Rogaway [7℄ are presented.

The �rst is aimed at 
apturing se
urity without perfe
t forward se
re
y (PFS), and is shown

to be equivalent to the stati
 variant of the simulation-based de�nition. The se
ond is aimed

at 
apturing se
urity with PFS, and is 
laimed to be equivalent to the adaptive variant of the

simulation-based de�nition. SuÆ
ien
y of the de�nitions to 
onstru
ting se
ure-
hannel proto
ols

is informally argued, but is not proved nor rigorously 
laimed.

While the �rst variant of the indistinguishability-based de�nition is roughly equivalent to the

non-PFS variant presented here (modulo the general di�eren
es mentioned below), the se
ond

variant is stri
tly weaker than our PFS formulation of SK-se
urity. Spe
i�
ally, the de�nition in

[43℄ a

epts as se
ure proto
ols that do not erase sensitive ephemeral data (e.g. proto
ol DHKE-1

in [43℄), while the de�nition here treats these proto
ols as inse
ure.

There are several other te
hni
al and methodologi
al di�eren
es between the two works that we

mention next. (a) A major methodologi
al di�eren
e is our use of the authenti
ated-links model

and authenti
ators as a simplifying analysis tool. While our formalization of se
urity does not

mandate the use of this methodology we 
arefully build our de�nitions to a

ommodate the use

of this tool. (b) Shoup allows the adversary a more general atta
k than session-key query, namely
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an appli
ation atta
k that reveals an arbitrary fun
tion of the key. Our modeling does not de�ne

this expli
it atta
k as it is subsumed by the session-key query 
apability and, in parti
ular, sin
e

it is not ne
essary for guaranteeing se
ure 
hannels. (
) Here we 
onsider an additional adversarial

behavior that is not treated in [43℄. Spe
i�
ally, we prote
t against adversaries that obtain the

internal state of 
orrupted sessions (even without fully 
orrupting the 
orresponding parties) by

requiring that su
h exposure will not 
ompromise other proto
ol sessions run by the same parties.

This prote
tion is not guaranteed by some proto
ols suggested in [43℄ (e.g., proto
ol DHKE).

(d) The treatment of the intera
tion with the 
erti�
ate authority (CA) in the 
ase of publi
-key

based authenti
ation. In [43℄ the intera
tion with the CA is an integral part of every ke proto
ol,

whereas here this intera
tion with the CA is treated as a separate proto
ol. We make this 
hoi
e

for further modularity and ease of proof. Yet, as we already remarked in Se
tion 2.2, the CA

proto
ol needs to be taken into 
onsideration with any full spe
i�
ation and analysis of a
tual ke

proto
ols. (e) The treatment of the session-id's. In [43℄ the session-id's are arti�
ially given to

the parties by the model whi
h results, in our view, in a more 
umbersome formalization of the

se
urity 
onditions. In 
ontrast, here we adopt a more natural approa
h where the session-id's are

generated by the 
alling proto
ol and se
urity is guaranteed only when these session-id's satisfy

some minimal (and easy to implement) 
onditions. In parti
ular, this formalism 
an be satis�ed

by letting the parties jointly generate the session-id (as is 
ommon in pra
ti
e).

On the works of P�tzmann, S
hunter and Waidner [41, 40, 42℄ and Canetti [14℄. These

works provide general frameworks for studying the se
urity of 
ryptographi
 proto
ols in several

models of 
omputation, and prove some 
omposition theorems with respe
t to proto
ols that satisfy

their respe
tive de�nitions of se
urity. The proposed frameworks are natural 
andidates for de�ning

and studying se
ure key-ex
hange proto
ols and their appli
ation to providing se
ure 
hannels. In

parti
ular, Canetti [14℄ de�nes se
ure key ex
hange proto
ols, as well as proto
ols for providing

\se
ure sessions" within his framework, and uses his general 
omposition theorem in order to obtain

similar results as the ones provided here (i.e., that the standard use of ke proto
ols for se
uring


ommuni
ation sessions result in a good \se
ure sessions" proto
ol). The [14℄ de�nition of se
ure

ke proto
ols implies the de�nition here. However, it is somewhat over-restri
tive, as it implies the

de�nitions of both [2℄ and [43℄. (In parti
ular, we do not know how to show that Proto
ol en
 from

Se
tion 5.3 satis�es this de�nition.) In [16℄ we investigate a relaxed version of the [14℄ de�nition

of key ex
hange, that is equivalent to the de�nition here and at the same time enjoys the general


omposability properties provided by the [14℄ framework.
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