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Abstrat

We provide a onrete instane of the disrete logarithm problem on an ellipti urve over

F

2

155

whih resists all previously known attaks, but whih an be solved with modest omputer

resoures using the Weil desent attak methodology of Frey. We report on our implementation

of index-alulus methods for hyperellipti urves over harateristi two �nite �elds, and disuss

the ryptographi impliations of our results.

1 Introdution

Let E be an ellipti urve de�ned over a �nite �eld K = F

q

n

. The ellipti urve disrete logarithm

problem (ECDLP) in E(K) is the following: given E, P 2 E(K), r = ord(P ) and Q 2 hP i, �nd the

integer s 2 [0; r�1℄ suh that Q = sP . The ECDLP is of interest beause its apparent intratability

forms the basis for the seurity of ellipti urve ryptographi shemes.

The ellipti urve parameters have to be arefully hosen in order to irumvent some known

attaks on the ECDLP. In order to avoid the Pohlig-Hellman [34℄ and Pollard's rho [35, 32℄ attaks,

r should be a large prime number. To avoid the Weil pairing [27℄ and Tate pairing [13℄ attaks, r

should not divide q

ni

� 1 for eah 1 � i � C, where C is large enough so that it is omputationally

infeasible to �nd disrete logarithms in F

q

nC

. Finally, the urve should not be F

q

n

-anomalous (i.e.,

#E(F

q

n

) 6= q

n

) in order to avoid the attak of [36, 37, 38℄. For the remainder of this paper, we

assume that the ellipti urve parameters satisfy these onditions. In partiular, we assume that

r � q

n

.

Frey [11, 12℄ �rst proposed using Weil desent as a means to redue the ECDLP in ellipti

urves over harateristi two �nite �elds F

q

n

to the disrete logarithm problem in an abelian

variety over the smaller �eld F

q

. Frey's method, whih we refer to as the Weil desent attak
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methodology, was further elaborated by Galbraith and Smart [14℄. In 2000, Gaudry, Hess and

Smart (GHS) [17℄ showed how Frey's methodology ould be used to redue any instane of the

ECDLP to an instane of the disrete logarithm problem in the Jaobian of a hyperellipti urve

over F

q

. Sine subexponential-time algorithms for the latter problem are known, this ould have

important impliations to the seurity of ellipti urve ryptographi shemes.

In this paper, we fous our attention on determining the pratiality of the GHS method for

solving the ECDLP in ellipti urves over F

2

155
. We o�er two justi�ations for this restrition.

First, as proven in [29℄, the GHS attak is ertain to fail for all ellipti urves de�ned over F

2

n

where n is a prime in the interval [160; 600℄. Seond, a spei� ellipti urve over F

2

155
is one of the

two ellipti urves allowed in an IETF standard [21℄ for key establishment (the other ellipti urve

is de�ned over F

2

185).

The remainder of the paper is organized as follows. x2 provides a brief introdution to the

relevant theory of hyperellipti urves. The Weil desent attak methodology of Frey and the GHS

attak are desribed in x3. An overview of index-alulus algorithms for solving the hyperellipti

urve disrete logarithm problem is presented in x4, and a report of our implementation for hyper-

ellipti urves over harateristi two �nite �elds is given in x5. The ryptographi impliations of

our results are disussed in x6. Our onlusions are stated in x7.

2 Hyperellipti Curves

We provide a brief overview of the theory of hyperellipti urves that is relevant to this paper. For

a more detailed (but elementary) exposition, see [30℄.

Hyperellipti Curves. Let k = F

q

denote the �nite �eld of order q. The algebrai losure of F

q

is k =

S

n�1

F

q

n

. A hyperellipti urve C of genus g over k is de�ned by a non-singular equation

v

2

+ h(u)v = f(u);

where h; f 2 k[u℄, deg f = 2g + 1, and deg h � g. Let L be an extension �eld of k. The set of

L-rational points on C is C(L) = f(x; y) : x; y 2 L; y

2

+ h(x)y = f(x)g [ f1g. The opposite of

P = (x; y) 2 C(L) is

e

P = (x;�y � h(x)); we also de�ne f1 = 1. Note that

e

P 2 C(L). There is

no natural group law on the set of points C(L)

1

. Instead, one onsiders the Jaobian of C over k

whih is a �nite group.

Jaobian of a Hyperellipti Curve. The set D

0

of zero divisors of C is the set of formal sums

P

P2C(k)

m

P

P , where m

P

2 Z and only a �nite number of the m

P

's are non-zero. D

0

is a group

under the addition rule

P

m

P

P +

P

n

P

P =

P

(m

P

+ n

P

)P . Let � : k ! k be the Frobenius map

de�ned by x 7! x

q

. The map � extends to C(k) by (x; y) 7! (x

�

; y

�

) and 1

�

7! 1, and to D

0

by

P

m

P

P 7!

P

m

P

P

�

. The set of zero divisors de�ned over k is D

0

k

= fD 2 D

0

: D

�

= Dg. The

funtion �eld of C over k, denoted k(C), is the �eld of frations of the integral domain of polynomial

funtions k[u; v℄=(v

2

+ h(u)v � f(u)). For f 2 k(C), the divisor of f is div(f) =

P

P2C(k)

v

P

(f)P ,

1

Exept for the ase g = 1, sine a genus 1 hyperellipti urve is preisely an ellipti urve.
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where v

P

(f) denotes the multipliity of P as a root of f . Now the set Prin

k

= fdiv(f) : f 2 k(C)g

is a subgroup of D

0

k

. The Jaobian of C (over k) is the quotient group J

C

(k) = D

0

k

=Prin

k

.

Properties of the Jaobian. J

C

(k) is a �nite group. A theorem of Weil's implies that (

p

q �

1)

2g

� #J

C

(k) � (

p

q + 1)

2g

so #J

C

(k) � q

g

. If D

1

and D

2

are in the same equivalene lass of

divisors in J

C

(k) we write D

1

� D

2

. Eah equivalene lass has a unique divisor in redued form,

i.e., a divisor

P

P 6=1

m

P

P � (

P

P 6=1

m

P

)1 satisfying (i) m

P

� 0 for all P ; (ii) if m

P

� 1 and

P 6=

e

P , then m

e

P

= 0; (iii) m

P

= 0 or 1 if P =

e

P ; and (iv)

P

m

P

� g. Suh a redued divisor D

an be uniquely represented by a pair of polynomials a; b 2 k[u℄ where (i) deg b < deg a � g; (ii)

a is moni; and (iii) aj(b

2

+ bh � f). We write D = div(a; b) to mean D = gd(div(a);div(b � v))

where the gd of two divisors

P

m

P

P and

P

n

P

P is de�ned to be

P

min(m

P

; n

P

)P . The degree

of D is deg a. Cantor's algorithm [5℄ an be used to eÆiently ompute the sum of two redued

divisors, and express the sum in redued form.

3 Weil Desent Attak

Let l and n be positive integers. Let q = 2

l

, and let k = F

q

and K = F

q

n

. Consider the (non-

supersingular) ellipti urve E de�ned over K by the equation

E : y

2

+ xy = x

3

+ ax

2

+ b; a 2 K, b 2 K

�

:

We assume that #E(K) = dr where d is small (e.g., d = 2 or d = 4) and r is prime. Hene r � q

n

.

Let b

i

= �

i

(b), where � : K ! K is the Frobenius automorphism de�ned by � 7! �

q

, and de�ne

m(b) = dim

F

2

(Span

F

2

f(1; b

1=2

0

); : : : ; (1; b

1=2

n�1

)g): (1)

Assume now that either n is odd, or m(b) = n, or Tr

K=F

2

(a) = 0. Gaudry, Hess and Smart [17℄

showed how Weil desent an be used to redue the ECDLP problem in the subgroup of order r

of E(K) to the disrete logarithm problem in a subgroup of order r of the Jaobian J

C

(k) of a

hyperellipti urve C of genus g de�ned over k. One �rst onstruts the Weil restrition W

E=k

of

salars of E, whih is an n-dimensional abelian variety over k. Then,W

E=k

is interseted with n�1

hyperplanes to obtain the hyperellipti urve C. We all their redution algorithm the GHS attak

on the ECDLP. The genus g of C is either 2

m�1

or 2

m�1

� 1, where m = m(b).

The disrete logarithm problem in the subgroup of order r in J

C

(k) an be solved using Pollard's

rho algorithm [35, 32℄ whih has an expeted running time of O(g

2

q

n=2

log

2

q=M) bit operations

where M is the number of proessors available for a parallel attak. However, sine the group

operation in E(K) an be performed faster than the group operation in J

C

(k), it is more eÆient

to apply Pollard's rho algorithm diretly in E(K). The other alternative is to use index-alulus

algorithms (see x4). These algorithms have subexponential running time for large genus urves,

and therefore may be more eÆient than Pollard's rho algorithm for some parameters of pratial

interest.

In order for the GHS attak to be suessful in solving the ECDLP in E(K), the disrete

logarithm problem in J

C

(k) should be tratable using the known index-alulus algorithms. Note
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that 1 � m � n. In general, m � n whene g � 2

n�1

and #J

C

(k) � q

2

n�1

and the GHS attak

fails. The GHS attak will only sueed if m is small, say m � log

2

n, beause then g � n and

#J

C

(k) � q

n

. The formula (1) was analyzed in [29℄, and the following result was obtained for the

ase n prime.

Theorem 1 ([29℄) Let n be an odd prime, let t be the multipliative order of 2 modulo n, and

let s = (n� 1)=t. Then

(i) x

n

+1 fators over F

2

as (x+1)f

1

f

2

� � � f

s

, where the f

i

's are distint irreduible polynomials

of degree t.

(ii) Let � : F

q

n

! F

q

n

be the Frobenius map de�ned by x 7! x

q

. De�ne B = fb 2 F

q

n

:

(� + 1)f

i

(�)(b) = 0 for some 1 � i � sg, and let a 2 F

q

n

be an element of trae 1. Then for

all b 2 B, the ellipti urves y

2

+ xy = x

3

+ b and y

2

+ xy = x

3

+ ax

2

+ b have m(b) = t+ 1.

(iii) The ardinality of the set B is qs(q

t

� 1).

Consider now the ase q = 2

5

and n = 31 (so q

n

= 2

155

). We have t = 5 and s = 6. It follows

from Theorem 1 that there are approximately 2

32

ellipti urves over F

2

155 for whih the GHS attak

eÆiently redues the ECDLP to the DLP in the Jaobian of a genus 31 or 32 hyperellipti urve

de�ned over F

2

5
. In x5 we provide onvining evidene that the latter problem is quite tratable,

whih means that the original ECDLP is also tratable. The next setion provides an overview of

index-alulus methods for the hyperellipti urve disrete logarithm problem.

4 Index-Calulus Methods

Problem Definition. Let C be a genus g hyperellipti urve over k = F

q

. The hyperellipti

urve disrete logarithm problem (HCDLP) is the following: given C, D

1

2 J

C

(k), r = ord(D

1

),

and D

2

2 hD

1

i, �nd the integer s 2 [0; r�1℄ suh that D

2

= sD

1

. We shall assume that r is prime,

and #J

C

(k) � r.

Index-Calulus Methods for HCDLP. Adleman, DeMarrais and Huang (ADH) [1℄ presented

the �rst index-alulus algorithm for solving the HCDLP. Their algorithm was desribed for the

ase q an odd prime, and was later extended by Bauer [3℄ to arbitrary q. The (heuristi) expeted

running time of the ADH algorithm is L

q

2g+1 [℄ for g !1 and log q � (2g+1)

0:98

, where  < 2:313

and L

n

[℄ = O(exp((+o(1))

p

logn log logn)). The algorithm does not assume that the group order

#J

C

(k) is known, neessitating an expensive Smith Normal Form omputation on a sparse integer

matrix. Index-alulus algorithms with rigorously proved running times were presented by M�uller,

Stein and Thiel [31℄ and Enge [7℄. Their algorithms have an expeted running time of L

q

2g+1 [1:44℄

and are superior, both in theory and in pratie, to the ADH algorithm.

Gaudry [16℄, building on earlier work of Adleman, DeMarrais and Huang [1℄ and Hafner and

MCurley [18℄, presented an algorithm spei�ally suited for very small genus urves. Gaudry's

algorithm has an expeted running time of O(g

3

q

2

log

2

q + g

2

g!q log

2

q) bit operations. It beomes
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impratial for large genera, e.g., g � 10, beause of the large multipliative fator g!. Gaudry's

algorithm was extended and analyzed by Enge and Gaudry [8℄. The extended algorithm has an

expeted running time of L

q

g

[

p

2℄ = L

q

2g+1
[1℄ bit operations for g= log q !1. The primary reason

for the improved running time over the ADH algorithm is that the order and struture of J

C

(k)

is assumed to be known, whereby one only needs to solve a sparse system of equations modulo r

instead of an expensive Smith Normal Form omputation.

It is the Enge-Gaudry index-alulus algorithm that we desribe and have implemented. We

�rst need to introdue the notions of a prime divisor and a smooth divisor.

Prime Divisors. A redued divisor D = div(a; b) 2 J

C

(k) is alled a prime divisor if a is

irreduible over k. The set of all prime divisors of degree � t an be found as follows. For eah

moni irreduible polynomial a 2 k[u℄ of degree � t, �nd the roots of v

2

+ h(u)v � f(u) modulo

a(u). For eah root b(u) (there are either 0, 1 or 2 suh roots), div(a; b) is a prime divisor.

Smooth Divisors. A redued divisor D = div(a; b) 2 J

C

(k) an be eÆiently expressed as a

sum of prime divisors as follows. First fator a into moni irreduibles over k: a = a

e

1

1

a

e

2

2

� � � a

e

L

L

.

Let b

i

= b mod a

i

for 1 � i � L. Then D =

P

L

i=1

e

i

div(a

i

; b

i

). D is said to be t-smooth if

maxfdeg a

i

g � t.

Enge-Gaudry Index-Calulus Algorithm. The main ideas of the Enge-Gaudry index-alulus

algorithm are the following. First build a fator base S = fP

1

; P

2

; : : : ; P

w

g onsisting of all prime

divisors of degree � t for some bound t. One then performs a random walk (�a la Teske [41℄) in the

set of redued divisors equivalent to divisors of the form �D

1

+�D

2

and stores the t-smooth divisors

enountered in this walk|eah t-smooth divisor yields a relation �

i

D

1

+ �

i

D

2

� R

i

=

P

j

e

ij

P

j

.

When w + 1 di�erent relations have been found, one an �nd by linear algebra modulo r a non-

trivial linear ombination

P

w+1

i=1



i

(e

i1

; e

i2

; : : : ; e

iw

) = (0; 0; : : : ; 0). Thus

P

w+1

i=1



i

R

i

= 0, whene

P



i

(�

i

D

1

+ �

i

D

2

) = 0 and log

D

1

D

2

= �(

P



i

�

i

)=(

P



i

�

i

) mod r.

5 Implementation Results

Our implementation was done in C++ using Vitor Shoup's NTL library.

5.1 Implementation Details

We provide some details of our implementation of the Enge-Gaudry index-alulus method for

solving the HCDLP in the Jaobian of genus 31 hyperellipti urves over k = F

q

for q = 4, 8, 16

and 32. The hyperellipti urves over these �elds are denoted C62, C93, C124 and C155. They all

have #J

C

(k) = 2r where r is prime. The hyperellipti urves were obtained by applying the GHS

attak to an instane of the ECDLP on ellipti urves E62, E93, E124 and E155 over F

2

62
, F

2

93
,

F

2

124
and F

2

155
, respetively. The ellipti urve and hyperellipti urve parameters are presented

in Table 1. See Appendix A for an example of how the ellipti urves were seleted, and how the

GHS attak was used to redue an instane of the ECDLP to an instane of the HCDLP.
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E62, N = 62, F

2

62
= F

2

[z℄=(z

62

+ z

29

+ 1), a = z

33

b = z

59

+z

55

+z

48

+z

47

+z

45

+z

43

+z

42

+z

40

+z

39

+z

38

+z

37

+z

36

+z

34

+z

30

+z

29

+z

27

+

z

25

+z

24

+z

22

+z

21

+z

20

+z

19

+z

18

+z

16

+z

13

+z

12

+z

11

+z

10

+z

8

+z

6

+z

5

+z+1

C62, q = 4, F

2

2 = F

2

[w℄=(w

2

+ w + 1)

f(u) = u

63

+ w

2

u

62

+ u

48

+ w

2

h(u) = u

31

+ u

30

+ wu

28

+ u

24

+ w

2

u

16

+w

2

#E62(F

2

62
) = #J

C62

(F

2

2
) = 2 � 2305843007560748609

E93, N = 93, F

2

93
= F

2

[z℄=(z

93

+ z

2

+ 1), a = 1

b = z

79

+z

78

+z

73

+z

65

+z

64

+z

62

+z

61

+z

60

+z

55

+z

53

+z

51

+z

50

+z

49

+z

48

+z

41

+z

40

+

z

38

+z

37

+z

36

+z

34

+z

33

+z

29

+z

26

+z

24

+z

22

+z

21

+z

16

+z

14

+z

12

+z

11

+z

10

+z

9

+

z

8

+z

7

+z

5

+z

3

+z

C93, q = 8, F

2

3 = F

2

[w℄=(w

3

+ w + 1)

f(u) = w

4

u

63

+ w

5

u

62

+ w

5

u

60

+ w

3

u

56

+ w

5

u

48

+ wu

32

+ w

5

h(u) = w

2

u

31

+w

5

u

30

+ u

28

+ w

6

u

24

+ w

6

#E93(F

2

93
) = #J

C93

(F

2

3
) = 2 � 4951760157141611728579495009

E124, N = 124, F

2

124
= F

2

[z℄=(z

124

+ z

19

+ 1), a = z

105

b = z

108

+z

106

+z

102

+z

101

+z

99

+z

93

+z

87

+z

85

+z

75

+z

70

+z

68

+z

67

+z

66

+z

64

+z

62

+

z

59

+z

58

+z

56

+z

55

+z

54

+z

53

+z

51

+z

50

+z

49

+z

48

+z

46

+z

45

+z

44

+z

42

+z

41

+

z

40

+z

33

+z

32

+z

29

+z

27

+z

24

+z

23

+z

22

+z

20

+z

18

+z

16

+z

15

+z

14

+z

9

+z

8

+z

7

+

z

6

+z

3

+z

2

+z

C124, q = 16, F

2

4 = F

2

[w℄=(w

4

+ w + 1)

f(u) = w

3

u

63

+ w

7

u

60

+ w

3

u

56

+ w

3

u

48

+ 1

h(u) = w

9

u

31

+w

12

u

30

+ w

8

u

28

+ w

13

u

24

+ w

6

u

16

+ w

6

#E124(F

2

124
) = #J

C124

(F

2

4
) = 2 � 10633823966279326985483775888689817121

E155, N = 155, F

2

155
= F

2

[z℄=(z

155

+ z

62

+ 1), a = 1

b = z

16

+ z

2

+ z

C155, q = 32, F

2

5
= F

2

[w℄=(w

5

+ w

2

+ 1)

f(u) = w

4

u

63

+ w

6

u

62

+ w

15

u

60

+ w

26

u

56

+w

25

u

48

+ w

7

u

32

+ w

13

h(u) = w

2

u

31

+w

7

u

30

+ w

30

u

28

+ w

22

u

24

+ w

3

u

16

+ w

22

#E155(F

2

155) = #J

C155

(F

2

5) =

2 � 22835963083295358096932727763065266972881541089

Table 1: Hyperellipti urves C62, C93, C124 and C155 of genus g = 31 over F

q

for q = 4; 8; 16 and 32.

These urves were obtained by applying the GHS attak to an instane of the ECDLP on ellipti urves

E62, E93, E124 and E155 over F

2

62

, F

2

93

, F

2

124

and F

2

155

, respetively (f. Appendix A). \EN" denotes an

ellipti urve over F

2

N . The equation of EN is y

2

+ xy = x

3

+ ax

2

+ b where a; b 2 F

2

N , The equation of

CN is v

2

+ h(u)v = f(u), where h; f 2 F

q

[u℄. The prime fatorizations of #EN(F

2

N
) and #J

CN

(F

q

) are

also listed.
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Group Law. We implemented Cantor's algorithm [5℄ with Tenner's redution algorithm [33℄ for

adding redued divisors.

Random Walk. 40 integers a

0

; a

1

; : : : ; a

19

, b

0

; b

1

; : : : ; b

19

are randomly seleted from [0; r � 1℄,

and the divisors T

i

= a

i

D

1

+ b

i

D

2

, 0 � i � 19, are omputed. The walk ommenes at a divisor

R

0

= �

0

D

1

+�

0

D

2

where �

0

and �

0

are randomly seleted from [0; r�1℄. A divisor R

i

on the walk is

omputed from the previous divisorR

i�1

as R

i

= R

i�1

+T

j

, where j is obtained by taking the integer

formed from the 5 least signi�ant bits of the binary representation of a, where R

i�1

= div(a; b),

and reduing it modulo 20. Note that R

i

= �

i

D

1

+ �

i

D

2

where �

i

= (�

i�1

+ a

j

) mod r and

�

i

= (�

i�1

+b

j

) mod r. Thus the pair (�

i

; �

i

) an be eÆiently omputed from the pair (�

i�1

; �

i�1

).

Fator Base. Let a 2 k[u℄ be a moni irreduible polynomial for whih

v

2

+ h(u)v � f(u) � 0 (mod a(u)) (2)

has a solution v = b(u) 2 k[u℄. Then D = div(a; b) and �D = div(a; b + h) are the only prime

divisors with �rst omponent a.

2

We store exatly one of D and �D in the fator base. Let A

l

denote the number of prime divisors of degree l in the fator base for 1 � l � t. Heuristially, one

would expet that half of all equations (2) have solutions, and hene one expets A

l

to be equal to

half the number I

q

(l) of moni irreduible polynomials of degree l in k[u℄. That is,

A

l

�

1

2

0

�

1

l

X

djl

�(l=d)q

d

1

A

; (3)

where � is the M�obius funtion. In fat, this estimate is a good one for the following reasons.

Theorem 2 of [9℄ states that if

0 � � �

1

4

and l �

1

�

log

q

(2g + 6 +

p

2); (4)

then A

l

2 [F

1

; G

1

℄ where

F

1

=

q

l

2l

�

1� q

l(��

1

2

)

�

and G

1

=

q

l

2l

�

1 + q

l(��

1

2

)

�

:

Now, by Theorem 6.5.1 of [2℄, we have

1

2

I

q

(l) 2 [F

2

; G

2

℄ where

F

2

=

q

l

2l

�

1�

2

q

l=2

�

and G

2

=

q

l

2l

:

Clearly, G

2

� G

1

. And, it is easy to see that F

1

� F

2

when (4) holds. Thus, when (4) holds, the

estimate

1

2

I

q

(l) lies in the interval [F

1

; G

1

℄ whih is known to ontain A

l

.

The following lemma gives an eÆiently omputable expression for the number of t-smooth

redued divisors in J

C

(k) where C 2 fC62,C93,C124,C155g.

2

For the urves C62, C93, C124 and C155, h(u) is irreduible over k. Thus h 6� 0 (mod a) when 1 � deg a < deg h,

and so D 6= �D.
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Lemma 2 Let C 2 fC62,C93,C124,C155g. Let A

l

, 1 � l � t, denote the number of prime divisors

of degree l in the fator base. Then the number of t-smooth redued divisors in J

C

(k) is

M(t) =

31

X

i=1

 

[x

i

℄

t

Y

l=1

�

1 + x

l

1� x

l

�

A

l

!

;

where [ ℄ denotes the oeÆient operator.

Proof: Suppose that a 2 k[u℄ is a t-smooth moni polynomial of degree � 31 for whih (2) has

a solution. Let a = a

e

1

1

a

e

2

2

� � � a

e

L

L

be the fatorization of a into moni irreduibles over k. Then

the number of t-smooth redued divisors in J

C

(k) having �rst omponent a is exatly 2

L

; these

divisors are D =

P

L

i=1

e

i

div(a

i

; b

i

) where eah b

i

is one of the two solutions to v

2

+h(u)v�f(u) � 0

(mod a

i

).

For eah l, 1 � l � t, let P

l

= fa(u) : div(a; b) is a prime divisor of degree lg. Note that

#P

l

= A

l

. Let 

i;j

be the number of moni polynomials of degree i in k[u℄ having exatly j distint

moni irreduible fators all of whih are in

S

t

l=1

P

l

. Then

X

i;j�0



i;j

x

i

y

j

=

t

Y

l=1

�

1 + x

l

y + x

2l

y + x

3l

y + � � �

�

A

l

=

t

Y

l=1

�

1 +

x

l

y

1� x

l

�

A

l

:

Sine there are exatly two prime divisors div(a; b) for eah moni irreduible polynomial a in

S

t

l=1

P

l

, it follows that

M(t) =

31

X

i=1

X

j�0



i;j

2

j

=

31

X

i=1

 

[x

i

℄

t

Y

l=1

�

1 +

2x

l

1� x

l

�

A

l

!

;

as required. �

For known values of A

l

, 1 � l � t, M(t) an be eÆiently obtained by omputing the �rst 32

terms of the Taylor series expansion about x = 0 of

t

Y

l=1

�

1 + x

l

1� x

l

�

A

l

;

and then summing the oeÆients of x; x

2

; : : : ; x

31

.

Smoothness Bound Seletion. The divisors enountered in the random walk all lie in the

prime order subgroup hD

1

i of order r. We make the heuristi (and reasonable) assumption that

the proportion of t-smooth divisors in hD

1

i is the same as the proportion of t-smooth divisors in the

full group J

C

(k). Then, the expeted number of random walk iterations before a t-smooth divisor

is enountered is E(t) = #J

C

(k)=M(t). Table 2 presents, for various hoies of the smoothness

bound t, the fator base size F (t), E(t), and the expeted number T (t) = (F (t)+5)E(t) of random

walk iterations to generate F (t)+5 relations

3

. In the table, an asterisk signi�es that the fator base

3

Some of the relations generated may be linearly dependent on previous relations. Heuristially, we expet that if

F (t) + 5 relations are generated, then the resulting system of linear equations will have a unique solution.
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size F (t) was estimated using (3). Taking into aount both the expeted running time and the

storage requirements for the fator base, it appears that the optimal hoies of smoothness bounds

are t = 7; 5; 5 and 4 for C62, C93, C124 and C155, respetively.

Smoothness Testing. Given a redued divisor D = div(a; b), a(u) is �rst subjeted to a

square-free fatorization algorithm (e.g., see [2℄). The square-free portion a(u) is then tested for

t-smoothness using the fat that x

q

l

�x is the produt of all moni irreduible polynomials in F

q

[x℄

of degree dividing l. If a(u) is indeed t-smooth, then the fatorization is obtained using the Cantor-

Zassenhaus fatoring algorithm [6℄. Table 3 presents the time to generate and test 10,000 andidate

redued divisors for C62, C93, C124 and C155. Generating a andidate essentially involves one

appliation of the Jaobian group law, while testing a andidate involves a square-free fatorization

and a distint degree fatorization. Also listed in Table 3 is the proportion of time spent on the

Jaobian group law and on the smoothness testing.

Parallelization. The relation gathering portion of the algorithm an be e�etively parallelized,

i.e., yielding a fator-m speedup whenm proessors are used. A di�erent random walk is performed

on eah mahine (i.e., with di�erent divisors T

0

; T

1

; : : : ; T

19

and di�erent initial divisors R

0

). Any

relations are reported to a entral proessor whih also disards dupliates.

Linear Algebra. For C62, C93, and C124, we used our unoptimized implementation of Wiede-

mann's algorithm [42℄ as desribed in [23℄ to ompute a vetor in the kernel of the matrix modulo

the large prime divisor r of the group order. For C155, it will be neessary to optimize our imple-

mentation and most likely add strutured Gaussian elimination [25℄ to redue the size of the matrix

before applying Wiedemann. Nevertheless, we do not antiipate major diÆulties with this stage

of the algorithm. Joux and Lerier [22℄ report on performing strutured Gaussian elimination on a

sparse matrix with 2,900,000 rows, followed by Lanzos on a 172; 049� 171; 061 matrix, all modulo

a 100-deimal digit prime. This was a parallel omputation (four 500Mhz De Alpha proessors),

and took 20 days. By omparison, the sparse matrix for the C155 disrete logarithm omputation

has only 136,528 rows, and the linear algebra is performed modulo a 155-bit prime. Thus, the linear

algebra stage of the disrete logarithm omputations for C155 is well within the realm of feasibility.

5.2 Numerial Experiments

Table 4 presents timings from our experiments with solving instanes of the HCDLP in the genus

31 urves C62, C93 and C124. Note that the average number of random walk iterations before a

smooth divisor is enountered is very lose to the predited numbers in Table 2.

From Table 4, we onlude that the HCDLP for eah of the three urves C62, C93 and C124 is

quite tratable. In fat, the HCDLP in C124 (and hene also the ECDLP in E124; f. Appendix A)

was solved in far less CPU time that the estimated 200,000 days on a single 450MHz Pentium PC

expended on solving the signi�antly easier Certiom ECC2-108K ECDLP hallenge

4

[19℄.

4

Koblitz urves [24, 40℄ are ellipti urves de�ned over F

2

. ECC2-108K is an instane of the ECDLP in a Koblitz

urve of order twie a prime over F

2

109

. By exploiting properties of the Frobenius endomorphism, Pollard's rho
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Curve t F (t) E(t) T (t)

C62 1 2 2324438515686238 16271069609803669

2 4 27837587014206 250538283127858

3 14 1794233002 34090427031

4 42 2889490 135806029

5 144 36296 5408075

6 474 2614 1251872

7 1644 421 694997

8 *5724 117 672969

9 *20284 46 932866

10 *72661 23 1647615

C93 1 4 1:15035222 � 10

22

1:3531699 � 10

23

2 16 5594986379814614 117494713976106894

3 100 2237298251 234916316328

4 596 1830509 1100135670

5 3872 28668 111146195

6 *25670 2139 54917739

7 *175466 370 64977373

8 *1223786 107 130753664

C124 1 8 3:33693830 � 10

28

4:33801984 � 10

28

2 64 6:48579145 � 10

15

4:44751961 � 10

18

3 744 1781948118 1334679140141

4 8872 1498799 13304838571

5 113728 25876 2942900859

6 *1511468 2001 3024499495

7 *20685428 354 7320993345

8 *289116788 103 29880384177

C155 1 16 1:15149568 � 10

32

2:24181409 � 10

32

2 256 4105255075208737 1071471574629480605

3 5712 1549820999 8860326649526

4 136528 1378374 188193560220

5 *3491968 24746 86410841791

6 *92967640 1945 180781004858

7 *2547234664 347 883799233900

8 *71266645874 102 7257807696673

Table 2: For eah of the urves C62, C93, C124, C155, this table lists the fator base size F (t), the expeted

number E(t) of random walk iterations before a t-smooth divisor is enountered, and the expeted number

T (t) = (F (t) + 5)E(t) of random walk iterations to generate F (t) + 5 relations for various hoies of the

smoothness bound t. An asterisk signi�es that F (t) is an estimate of the fator base size.
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Smoothness Time to generate Proportion of Proportion of

bound and test 10,000 time spent on time spent on

Curve t andidate divisors Jaobian arithmeti smoothness testing

C62 7 54.0 40% 60%

C93 5 67.4 38% 62%

C124 5 89.0 32% 68%

C155 4 120.7 25% 75%

Table 3: Time (in se) to generate and test 10,000 andidate redued divisors for t-smoothness on a single

1GHz Pentium III workstation having 512 MBytes of RAM.

Curve C62 C93 C124

Smoothness bound t 7 5 5

Fator base size 1,644 3,872 113,728

Time to generate fator base 20s 34s 12m 3s

Number of relations generated 1,649 3,877 113,733

Avg. no. of iterations per relation 400 28,050 25,576

Total CPU time to generate all relations 1h 49m 29s 15d 20h 6m 379d 2h 1m

Time to solve linear system 46s 6m 23s 3d 17h 55m

Table 4: Timings from our experiments with implementing the Enge-Gaudry index-alulus algorithm for

solving instanes of the HCDLP in the genus 31 urves C62, C93 and C124 (see Table 1). The timings

for fator base generation and for solving the sparse linear system were obtained using a single 800MHz

Pentium III workstation with 512 MBytes of RAM. The timings for relation generation for C62 and C93

were obtained using a luster of 12 550MHz Pentium III workstations eah having 256 MBytes of RAM. The

timing for relation generation for C124 was obtained using a luster of 16 400MHz Pentium II proessors, 26

450MHz Pentium II proessors, 66 550MHz Pentium III proessors, and 100 1GHz Pentium III proessors.

Seonds, minutes, hours, and days are denoted by \s", \m", \h", and \d", respetively.

11



Curve C62 C93 C124 C155

Smoothness bound t 7 5 5 4

Fator base size 1,644 3,872 113,728 136,528

Time to generate fator base 15s 26s 9m 17s 8m 58s

Number of relations generated 1,649 3,877 113,733 136,533

Total CPU time to generate all relations (1h 3m) (8d 16h) (303d) (26,290d)

Time to solve linear system (1m) (6m) (3d 12m) (5d)

Table 5: Time to solve instanes of the HCDLP on C62, C93, C124 and C155. The times for fator base

generation are atual times obtained on a single 1GHz Pentium III workstation with 512 MBytes of RAM.

The times for generating relations are estimates on a single 1GHz Pentium III workstation with 512 MBytes

of RAM. These estimates were derived from our estimates for the number of random walk iterations required

(see Table 2), and the atual time to generate and test a andidate divisor for smoothness (see Table 3).

The times for solving the sparse linear system are estimates for a 1GHz Pentium III workstation.

We did not solve an instane of the HCDLP in C155. However, we argue that this problem

is quite feasible. For a smoothness bound of t = 4, the fator base size is F (4) = 136; 528. From

Table 2, the expeted number of random walk iterations before a smooth divisor is enountered is

E(4) = 1; 378; 374. Thus the expeted number of random walk iterations before F (4) + 5 relations

are obtained is E(4)(F (4)+5) � 1:88�10

11

. Sine the average time to generate and test a andidate

divisor is 1:207� 10

�2

se on a 1GHz Pentium III workstation (see Table 3), the expeted time to

generate the relations on a single suh mahine is approximately 26,290 days. The time to solve

the resulting sparse linear system an be ignored sine, as argued in x5.1, it is at most a ouple of

days. The estimated time for the C155 HCDLP omputation is ompared to the estimated time

for the C62, C93 and C124 omputations on the same workstation in Table 5.

We an onlude that instanes of the HCDLP in C155 an be solved in about one month using

a network of 1,000 1GHz Pentium III workstations. This is the same order of magnitude as the

work required to perform exhaustive searh on the DES key spae (estimated time is 110,000 days

on a single 450MHz Pentium PC [19℄), and less that the estimated time of 200,000 days on a single

450MHz Pentium PC spent on the Certiom ECC2-108K ECDLP hallenge [19℄.

5.3 Further Optimizations

We did not make signi�ant e�orts to optimize our implementation. The following are some ways

in whih our implementation ould be improved.

1. Experiment with di�erent methods for seleting prime divisors for the fator base. For exam-

ple, we might start with an empty fator base and add prime divisors as they are enountered

as fators of smooth divisors.

algorithm for the ECDLP in Koblitz urves over F

2

m

an be sped up by a fator of

p

m [15, 43℄. The expeted

number of ellipti urve operations to solve the ECC2-108K hallenge using Pollard's rho algorithm is 1:5� 10

16

.
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2. Experiment with the large prime variant for generating relations. In addition to storing the

fatorizations of the t-smooth divisors, we also store \partial relations" whih arise from

random divisors whih are t-smooth exept for one irreduible fator of high degree. Any

two partial relations ontaining the same large irreduible fator an be ombined to yield

a relation. This method has been suessfully employed in other index-alulus algorithms

(e.g., see [26℄), and initial experiments indiate that it may be useful in our setting as well.

3. Experiment with Bernstein's methods [4℄ for fast smoothness testing.

4. Experiment with sieving methods (see [10℄) to determine if they an be used to generate

relations faster than the random walk method.

6 Cryptographi Impliations

Our experiments with our non-optimized implementation of index-alulus methods for the HCDLP

in C155 indiate that the HCDLP for genus 31 hyperellipti urves over F

2

5
is quite tratable. Now,

the ECDLP in the partiular ellipti urve E155 over F

2

155 (see Table 1) is intratable using Pollard's

rho algorithm sine the expeted number of ellipti urve operations is

p

�2

154

=4 � 2

77

. However,

sine the GHS attak an eÆiently redue instanes of the ECDLP in E155 to instanes of the

HCDLP in genus 31 hyperellipti urves over F

2

5
, we onlude that the ECDLP in E155 is indeed

tratable.

Even though the GHS attak only appears to be appliable to an insigni�ant proportion (2

32

out of the 2

156

ellipti ellipti urves over F

2

155
), we feel that aution must be exerised when

seleting ellipti urves over F

2

155
for ryptographi use.

The partiular ellipti urve over F

2

155
inluded in the IETF standard [21℄ is y

2

+ xy = x

3

+ b,

where

b = w

18

+ w

17

+ w

16

+ w

13

+ w

12

+ w

9

+ w

8

+w

7

+ w

3

+ w

2

+ w + 1

and F

2

155
= F

2

[w℄=(w

155

+ w

62

+ 1). Let � : F

2

155
! F

2

155
be the Frobenius map de�ned by

x 7! x

2

5

. The smallest degree fator f(x) of x

31

+ 1 over F

2

for whih f(�)(b) = 0 is f(x) =

(x

31

+ 1)=(x

5

+ x

3

+ 1). It follows from [29, Theorem 6℄ that the GHS attak redues the ECDLP

in E(F

2

155
) to the HCDLP in the Jaobian of a genus 2

35

or 2

35

� 1 hyperellipti urve over F

2

5
.

Hene this partiular ellipti urve does not suumb to our approah of reduing the ECDLP to

the HCDLP over F

2

5
.

An open question is whether the GHS attak an be applied to all ellipti urves over F

2

155 . As

shown in [29℄, exept for the Koblitz urves

5

, the GHS attak redues the ECDLP in ellipti urves

over F

2

155
to the HCDLP in Jaobians of genus 15 or 16 urves over F

2

31
. Smart [39℄ argues that

Gaudry's algorithm (with the fator base onsisting only a fration of the prime redued divisors

of degree 1) is infeasible given today's omputer tehnology. However, [39℄ did not onsider (in any

5

The GHS attak an be proven to fail for Koblitz urves|the attak only yields information about the desired

logarithm modulo #E(F

2

).
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detail) the appliability of the other index-alulus methods. In partiular, large-prime variants

and sieving methods were not onsidered. While it is likely that the known index-alulus methods

are indeed infeasible for this problem, further study and experimentation is needed before this an

be onluded with ertainty.

Another possibility for attaking the general ECDLP for ellipti urves over F

2

155
, of ourse,

is if the Weil desent methodology an be exploited to yield another way (i.e., di�erent from the

GHS attak) of reduing the ECDLP for ellipti urves over F

2

155
to Jaobians of low genus urves

(perhaps not hyperellipti) for whih subexponential-time index-alulus methods an be found.

We have no evidene to make a onjeture about the existene of suh a possibility, however we

would expet that it is muh more likely for suh a method to exist for ellipti urves over �elds

F

2

m

where m is omposite (e.g, m = 155), than for ellipti urves over �elds F

2

m

where m is prime.

Some evidene for this is provided by the omplete failure of the GHS attak for the ECDLP in

ellipti urves over F

2

m

where m is prime [29℄.

7 Conlusions

We have implemented the GHS Weil desent attak and the Gaudry-Enge index-alulus method

for the HCDLP. We were suessful in solving spei� disrete logarithm problems in ellipti urves

over F

2

62
, F

2

93
and F

2

124
. Our experiments, though far from being optimized, indiate that our

spei� logarithm problem in F

2

155
is tratable. The ECDLP instane over F

2

155
is the �rst onrete

instane of the ECDLP whih resists all previously known attaks, but whih an be solved using

the Weil desent attak methodology of Frey.

While the GHS attak is only known to apply to an insigni�ant proportion of all ellipti urves

over F

2

155
, our results provide some evidene that ellipti urves over F

2

155
should be used with

aution and preferably avoided altogether.

We emphasize that our omputational results annot be extended to solve ryptographially

interesting instanes of the ECDLP for ellipti urves over �elds F

2

m

where m 2 [160; 600℄ is prime,

sine the GHS attak is ine�etive in these ases [29℄.
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A Ellipti Curve and Hyperellipti Curve Seletion

This setion desribes how the ellipti urve E124 was seleted, and how a random instane of the

ECDLP in E124 was generated and redued to an instane of the HCDLP in C124. The other

ellipti urves and hyperellipti urves listed in Table 1 were generated in an analagous manner.

Ellipti Curve Generation. Let n = 31, and q = 2

4

. Let a be an arbitrary element of trae 1

in F

2

124
. The order of 2 modulo n is t = 5. The ellipti urve E124 was hosen by seleting random

elements b 2 B (where B is de�ned in Theorem 1(ii)) until the number of F

2

124
-rational points on

y

2

+ xy = x

3

+ ax

2

+ b is twie a prime. By Theorem 1 we know that m(b) = t+ 1 = 6 and hene

the GHS attak will redue any instane of the ECDLP in E124 to an instane of the HCDLP in

a genus 31 or 32 hyperellipti urve over F

2

4 .

The elements of F

2

124
are represented as binary polynomials modulo the irreduible polynomial

z

124

+ z

19

+ 1. The de�ning equation for the ellipti urve E124 is y

2

+ xy = x

3

+ ax

2

+ b where

a = z

105

and

b = z

108

+z

106

+z

102

+z

101

+z

99

+z

93

+z

87

+z

85

+z

75

+z

70

+z

68

+z

67

+z

66

+z

64

+z

62

+z

59

+

z

58

+z

56

+z

55

+z

54

+z

53

+z

51

+z

50

+z

49

+z

48

+z

46

+z

45

+z

44

+z

42

+z

41

+z

40

+z

33

+z

32

+

z

29

+z

27

+z

24

+z

23

+z

22

+z

20

+z

18

+z

16

+z

15

+z

14

+z

9

+z

8

+z

7

+z

6

+z

3

+z

2

+z:

The number of F

2

124
-rational points on E124 is 2r, where

r = 10633823966279326985483775888689817121

is prime.

ECDLP Instane Generation. We seleted two points P;Q from E124(F

2

124
) veri�ably at

random as follows. We �rst de�ned 124-bit integers m

1

and m

2

to be the 124 rightmost bits of

the 160-bit outputs of the SHA-1 ryptographi hash funtion with inputs the strings \" and \a",

respetively

6

. We identify a 124-bit integer  = 

123

2

123

+ 

122

2

122

+ � � � + 

0

with the element



123

z

123

+ 

122

z

122

+ � � � + 

0

of F

2

124 . Then, for eah i 2 f1; 2g, we de�ne n

i

to be the smallest

integer � m

i

for whih the �eld element orresponding to n

i

is the x-oordinate of some point of

order r in E124(F

2

124
); for suh an n

i

we arbitrarily selet one of the two possible y-oordinates.

In this way, we derive the following two points:

P = (19166289931116350914892435465096922889;

3954926638115710237279327107877298663);

Q = (14152416137154867042654754006541690809;

15733241592903071723351565426494711869):

The ECDLP hallenge is to �nd the integer l 2 [0; r � 1℄ suh that Q = lP . Note that sine P and

Q were (pseudo)randomly generated, the disrete logarithm l is not known a priori by us.

6

These two strings are ommonly used as inputs to generate test vetors for hash funtions. For example, see

Table 9.6 of [28℄.
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HCDLP Instane Generation. Hess's KASH program [20℄ for the Weil restrition represents

ellipti urve points as zero divisors. For tehnial reasons, he exludes the point at in�nity from

ourring in the support of the divisors. Thus, instead of representing an ellipti urve point P by

a zero divisor (P )� (1), we represent P by the equivalent zero divisor (P +R)� (R), where R is

an arbitrary point on the urve. We arbitrarily seleted the following point of order r:

R = (11949386922129241854287919257049811485;

13819702817838731027194193290120801107):

Let P

1

= P+R, P

2

= Q+R and P

3

= R. Hess's KASH program was used to redue (E124; P

1

; P

2

; P

3

)

to (C124;D

1

;D

2

;D

3

), where C124 is a genus-31 hyperellipti urve over F

2

4
and D

1

, D

2

, D

3

are

divisors in J

C124

(F

2

4
). The elements of F

2

4
are represented as binary polynomials modulo the

irreduible polynomial w

4

+ w + 1. The Weierstrass equation for the hyperellipti urve C124 is

v

2

+ h(u)v = f(u), where

f(u) = w

6

u

63

+ w

14

u

60

+w

6

u

56

+ w

6

u

48

+ 1;

h(u) = w

3

u

31

+ w

9

u

30

+ wu

28

+ w

11

u

24

+ w

12

u

16

+ w

12

:

The divisors D

1

, D

2

and D

3

are:

D

1

= div(u

31

+w

6

u

30

+w

4

u

29

+w

5

u

28

+w

10

u

27

+w

3

u

26

+w

14

u

25

+w

4

u

24

+w

14

u

23

+u

22

+w

5

u

21

+

w

9

u

20

+w

14

u

19

+w

4

u

18

+w

14

u

17

+w

12

u

16

+w

6

u

15

+w

14

u

14

+w

7

u

13

+w

7

u

12

+w

2

u

11

+w

7

u

10

+

w

13

u

9

+w

7

u

8

+u

7

+w

9

u

6

+w

14

u

5

+w

3

u

4

+w

2

u

3

+w

10

u

2

+w

9

u+1; u

30

+w

8

u

29

+wu

28

+w

8

u

27

+

w

14

u

26

+w

5

u

24

+w

10

u

23

+w

4

u

22

+w

8

u

21

+w

9

u

19

+w

2

u

18

+w

3

u

16

+w

5

u

15

+w

13

u

14

+w

11

u

13

+

w

7

u

12

+u

11

+w

8

u

10

+u

9

+w

2

u

8

+w

6

u

7

+u

6

+wu

5

+w

9

u

4

+w

13

u

3

+w

2

u+w

7

),

D

2

= div(u

31

+w

12

u

30

+w

3

u

29

+w

8

u

28

+w

12

u

27

+w

14

u

26

+w

13

u

25

+w

9

u

24

+w

7

u

23

+w

12

u

22

+u

20

+

w

3

u

18

+w

12

u

17

+u

16

+w

12

u

15

+w

3

u

14

+w

9

u

13

+w

6

u

12

+w

9

u

11

+w

7

u

10

+w

2

u

9

+w

8

u

8

+

w

11

u

7

+w

9

u

6

+w

12

u

5

+w

10

u

4

+w

11

u

3

+w

11

u

2

+w

11

u+1; w

14

u

29

+w

6

u

28

+u

27

+w

11

u

26

+

w

11

u

25

+w

4

u

24

+w

14

u

22

+w

5

u

21

+w

3

u

20

+w

14

u

19

+w

5

u

18

+w

2

u

17

+w

8

u

15

+u

14

+w

4

u

13

+

w

7

u

12

+w

10

u

11

+w

6

u

10

+w

4

u

9

+w

2

u

8

+w

14

u

7

+wu

6

+w

11

u

4

+w

11

u

3

+w

2

u

2

+w

9

u+w

6

),

D

3

= div(u

31

+w

14

u

30

+w

5

u

28

+u

27

+w

8

u

26

+w

11

u

25

+w

13

u

24

+w

2

u

23

+w

5

u

22

+w

9

u

21

+w

7

u

20

+

w

12

u

19

+w

4

u

18

+w

9

u

17

+w

13

u

16

+w

4

u

15

+w

13

u

14

+u

12

+wu

11

+w

3

u

10

+w

6

u

9

+w

8

u

8

+w

7

u

7

+

w

14

u

6

+u

5

+w

5

u

4

+w

9

u

2

+w

7

u+w

9

; w

7

u

30

+w

3

u

29

+w

4

u

28

+wu

27

+w

6

u

26

+w

7

u

25

+wu

23

+

w

6

u

22

+w

7

u

21

+w

9

u

19

+w

9

u

18

+w

2

u

16

+w

5

u

15

+w

2

u

13

+w

5

u

12

+u

11

+w

6

u

10

+u

9

+w

2

u

8

+

w

5

u

7

+w

7

u

6

+w

2

u

5

+w

9

u

4

+w

2

u

3

+w

7

u

2

+w

3

u+w

13

).

Our task is to solve the following logarithm problem in J

C124

(F

2

4
): �nd the integer l 2 [0; r � 1℄

suh that (D

2

�D

3

) = l(D

1

�D

3

).

ECDLP and HCDLP Solutions. Our implementation of the Enge-Gaudry algorithm obtained

l = 289697194482016303350776099807354482:

Finally, we veri�ed that Q = lP on E124.
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