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Abstra
t

We provide a 
on
rete instan
e of the dis
rete logarithm problem on an ellipti
 
urve over

F

2

155

whi
h resists all previously known atta
ks, but whi
h 
an be solved with modest 
omputer

resour
es using the Weil des
ent atta
k methodology of Frey. We report on our implementation

of index-
al
ulus methods for hyperellipti
 
urves over 
hara
teristi
 two �nite �elds, and dis
uss

the 
ryptographi
 impli
ations of our results.

1 Introdu
tion

Let E be an ellipti
 
urve de�ned over a �nite �eld K = F

q

n

. The ellipti
 
urve dis
rete logarithm

problem (ECDLP) in E(K) is the following: given E, P 2 E(K), r = ord(P ) and Q 2 hP i, �nd the

integer s 2 [0; r�1℄ su
h that Q = sP . The ECDLP is of interest be
ause its apparent intra
tability

forms the basis for the se
urity of ellipti
 
urve 
ryptographi
 s
hemes.

The ellipti
 
urve parameters have to be 
arefully 
hosen in order to 
ir
umvent some known

atta
ks on the ECDLP. In order to avoid the Pohlig-Hellman [34℄ and Pollard's rho [35, 32℄ atta
ks,

r should be a large prime number. To avoid the Weil pairing [27℄ and Tate pairing [13℄ atta
ks, r

should not divide q

ni

� 1 for ea
h 1 � i � C, where C is large enough so that it is 
omputationally

infeasible to �nd dis
rete logarithms in F

q

nC

. Finally, the 
urve should not be F

q

n

-anomalous (i.e.,

#E(F

q

n

) 6= q

n

) in order to avoid the atta
k of [36, 37, 38℄. For the remainder of this paper, we

assume that the ellipti
 
urve parameters satisfy these 
onditions. In parti
ular, we assume that

r � q

n

.

Frey [11, 12℄ �rst proposed using Weil des
ent as a means to redu
e the ECDLP in ellipti



urves over 
hara
teristi
 two �nite �elds F

q

n

to the dis
rete logarithm problem in an abelian

variety over the smaller �eld F

q

. Frey's method, whi
h we refer to as the Weil des
ent atta
k

1



methodology, was further elaborated by Galbraith and Smart [14℄. In 2000, Gaudry, Hess and

Smart (GHS) [17℄ showed how Frey's methodology 
ould be used to redu
e any instan
e of the

ECDLP to an instan
e of the dis
rete logarithm problem in the Ja
obian of a hyperellipti
 
urve

over F

q

. Sin
e subexponential-time algorithms for the latter problem are known, this 
ould have

important impli
ations to the se
urity of ellipti
 
urve 
ryptographi
 s
hemes.

In this paper, we fo
us our attention on determining the pra
ti
ality of the GHS method for

solving the ECDLP in ellipti
 
urves over F

2

155
. We o�er two justi�
ations for this restri
tion.

First, as proven in [29℄, the GHS atta
k is 
ertain to fail for all ellipti
 
urves de�ned over F

2

n

where n is a prime in the interval [160; 600℄. Se
ond, a spe
i�
 ellipti
 
urve over F

2

155
is one of the

two ellipti
 
urves allowed in an IETF standard [21℄ for key establishment (the other ellipti
 
urve

is de�ned over F

2

185).

The remainder of the paper is organized as follows. x2 provides a brief introdu
tion to the

relevant theory of hyperellipti
 
urves. The Weil des
ent atta
k methodology of Frey and the GHS

atta
k are des
ribed in x3. An overview of index-
al
ulus algorithms for solving the hyperellipti



urve dis
rete logarithm problem is presented in x4, and a report of our implementation for hyper-

ellipti
 
urves over 
hara
teristi
 two �nite �elds is given in x5. The 
ryptographi
 impli
ations of

our results are dis
ussed in x6. Our 
on
lusions are stated in x7.

2 Hyperellipti
 Curves

We provide a brief overview of the theory of hyperellipti
 
urves that is relevant to this paper. For

a more detailed (but elementary) exposition, see [30℄.

Hyperellipti
 Curves. Let k = F

q

denote the �nite �eld of order q. The algebrai
 
losure of F

q

is k =

S

n�1

F

q

n

. A hyperellipti
 
urve C of genus g over k is de�ned by a non-singular equation

v

2

+ h(u)v = f(u);

where h; f 2 k[u℄, deg f = 2g + 1, and deg h � g. Let L be an extension �eld of k. The set of

L-rational points on C is C(L) = f(x; y) : x; y 2 L; y

2

+ h(x)y = f(x)g [ f1g. The opposite of

P = (x; y) 2 C(L) is

e

P = (x;�y � h(x)); we also de�ne f1 = 1. Note that

e

P 2 C(L). There is

no natural group law on the set of points C(L)

1

. Instead, one 
onsiders the Ja
obian of C over k

whi
h is a �nite group.

Ja
obian of a Hyperellipti
 Curve. The set D

0

of zero divisors of C is the set of formal sums

P

P2C(k)

m

P

P , where m

P

2 Z and only a �nite number of the m

P

's are non-zero. D

0

is a group

under the addition rule

P

m

P

P +

P

n

P

P =

P

(m

P

+ n

P

)P . Let � : k ! k be the Frobenius map

de�ned by x 7! x

q

. The map � extends to C(k) by (x; y) 7! (x

�

; y

�

) and 1

�

7! 1, and to D

0

by

P

m

P

P 7!

P

m

P

P

�

. The set of zero divisors de�ned over k is D

0

k

= fD 2 D

0

: D

�

= Dg. The

fun
tion �eld of C over k, denoted k(C), is the �eld of fra
tions of the integral domain of polynomial

fun
tions k[u; v℄=(v

2

+ h(u)v � f(u)). For f 2 k(C), the divisor of f is div(f) =

P

P2C(k)

v

P

(f)P ,

1

Ex
ept for the 
ase g = 1, sin
e a genus 1 hyperellipti
 
urve is pre
isely an ellipti
 
urve.
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where v

P

(f) denotes the multipli
ity of P as a root of f . Now the set Prin

k

= fdiv(f) : f 2 k(C)g

is a subgroup of D

0

k

. The Ja
obian of C (over k) is the quotient group J

C

(k) = D

0

k

=Prin

k

.

Properties of the Ja
obian. J

C

(k) is a �nite group. A theorem of Weil's implies that (

p

q �

1)

2g

� #J

C

(k) � (

p

q + 1)

2g

so #J

C

(k) � q

g

. If D

1

and D

2

are in the same equivalen
e 
lass of

divisors in J

C

(k) we write D

1

� D

2

. Ea
h equivalen
e 
lass has a unique divisor in redu
ed form,

i.e., a divisor

P

P 6=1

m

P

P � (

P

P 6=1

m

P

)1 satisfying (i) m

P

� 0 for all P ; (ii) if m

P

� 1 and

P 6=

e

P , then m

e

P

= 0; (iii) m

P

= 0 or 1 if P =

e

P ; and (iv)

P

m

P

� g. Su
h a redu
ed divisor D


an be uniquely represented by a pair of polynomials a; b 2 k[u℄ where (i) deg b < deg a � g; (ii)

a is moni
; and (iii) aj(b

2

+ bh � f). We write D = div(a; b) to mean D = g
d(div(a);div(b � v))

where the g
d of two divisors

P

m

P

P and

P

n

P

P is de�ned to be

P

min(m

P

; n

P

)P . The degree

of D is deg a. Cantor's algorithm [5℄ 
an be used to eÆ
iently 
ompute the sum of two redu
ed

divisors, and express the sum in redu
ed form.

3 Weil Des
ent Atta
k

Let l and n be positive integers. Let q = 2

l

, and let k = F

q

and K = F

q

n

. Consider the (non-

supersingular) ellipti
 
urve E de�ned over K by the equation

E : y

2

+ xy = x

3

+ ax

2

+ b; a 2 K, b 2 K

�

:

We assume that #E(K) = dr where d is small (e.g., d = 2 or d = 4) and r is prime. Hen
e r � q

n

.

Let b

i

= �

i

(b), where � : K ! K is the Frobenius automorphism de�ned by � 7! �

q

, and de�ne

m(b) = dim

F

2

(Span

F

2

f(1; b

1=2

0

); : : : ; (1; b

1=2

n�1

)g): (1)

Assume now that either n is odd, or m(b) = n, or Tr

K=F

2

(a) = 0. Gaudry, Hess and Smart [17℄

showed how Weil des
ent 
an be used to redu
e the ECDLP problem in the subgroup of order r

of E(K) to the dis
rete logarithm problem in a subgroup of order r of the Ja
obian J

C

(k) of a

hyperellipti
 
urve C of genus g de�ned over k. One �rst 
onstru
ts the Weil restri
tion W

E=k

of

s
alars of E, whi
h is an n-dimensional abelian variety over k. Then,W

E=k

is interse
ted with n�1

hyperplanes to obtain the hyperellipti
 
urve C. We 
all their redu
tion algorithm the GHS atta
k

on the ECDLP. The genus g of C is either 2

m�1

or 2

m�1

� 1, where m = m(b).

The dis
rete logarithm problem in the subgroup of order r in J

C

(k) 
an be solved using Pollard's

rho algorithm [35, 32℄ whi
h has an expe
ted running time of O(g

2

q

n=2

log

2

q=M) bit operations

where M is the number of pro
essors available for a parallel atta
k. However, sin
e the group

operation in E(K) 
an be performed faster than the group operation in J

C

(k), it is more eÆ
ient

to apply Pollard's rho algorithm dire
tly in E(K). The other alternative is to use index-
al
ulus

algorithms (see x4). These algorithms have subexponential running time for large genus 
urves,

and therefore may be more eÆ
ient than Pollard's rho algorithm for some parameters of pra
ti
al

interest.

In order for the GHS atta
k to be su

essful in solving the ECDLP in E(K), the dis
rete

logarithm problem in J

C

(k) should be tra
table using the known index-
al
ulus algorithms. Note

3



that 1 � m � n. In general, m � n when
e g � 2

n�1

and #J

C

(k) � q

2

n�1

and the GHS atta
k

fails. The GHS atta
k will only su

eed if m is small, say m � log

2

n, be
ause then g � n and

#J

C

(k) � q

n

. The formula (1) was analyzed in [29℄, and the following result was obtained for the


ase n prime.

Theorem 1 ([29℄) Let n be an odd prime, let t be the multipli
ative order of 2 modulo n, and

let s = (n� 1)=t. Then

(i) x

n

+1 fa
tors over F

2

as (x+1)f

1

f

2

� � � f

s

, where the f

i

's are distin
t irredu
ible polynomials

of degree t.

(ii) Let � : F

q

n

! F

q

n

be the Frobenius map de�ned by x 7! x

q

. De�ne B = fb 2 F

q

n

:

(� + 1)f

i

(�)(b) = 0 for some 1 � i � sg, and let a 2 F

q

n

be an element of tra
e 1. Then for

all b 2 B, the ellipti
 
urves y

2

+ xy = x

3

+ b and y

2

+ xy = x

3

+ ax

2

+ b have m(b) = t+ 1.

(iii) The 
ardinality of the set B is qs(q

t

� 1).

Consider now the 
ase q = 2

5

and n = 31 (so q

n

= 2

155

). We have t = 5 and s = 6. It follows

from Theorem 1 that there are approximately 2

32

ellipti
 
urves over F

2

155 for whi
h the GHS atta
k

eÆ
iently redu
es the ECDLP to the DLP in the Ja
obian of a genus 31 or 32 hyperellipti
 
urve

de�ned over F

2

5
. In x5 we provide 
onvin
ing eviden
e that the latter problem is quite tra
table,

whi
h means that the original ECDLP is also tra
table. The next se
tion provides an overview of

index-
al
ulus methods for the hyperellipti
 
urve dis
rete logarithm problem.

4 Index-Cal
ulus Methods

Problem Definition. Let C be a genus g hyperellipti
 
urve over k = F

q

. The hyperellipti



urve dis
rete logarithm problem (HCDLP) is the following: given C, D

1

2 J

C

(k), r = ord(D

1

),

and D

2

2 hD

1

i, �nd the integer s 2 [0; r�1℄ su
h that D

2

= sD

1

. We shall assume that r is prime,

and #J

C

(k) � r.

Index-Cal
ulus Methods for HCDLP. Adleman, DeMarrais and Huang (ADH) [1℄ presented

the �rst index-
al
ulus algorithm for solving the HCDLP. Their algorithm was des
ribed for the


ase q an odd prime, and was later extended by Bauer [3℄ to arbitrary q. The (heuristi
) expe
ted

running time of the ADH algorithm is L

q

2g+1 [
℄ for g !1 and log q � (2g+1)

0:98

, where 
 < 2:313

and L

n

[
℄ = O(exp((
+o(1))

p

logn log logn)). The algorithm does not assume that the group order

#J

C

(k) is known, ne
essitating an expensive Smith Normal Form 
omputation on a sparse integer

matrix. Index-
al
ulus algorithms with rigorously proved running times were presented by M�uller,

Stein and Thiel [31℄ and Enge [7℄. Their algorithms have an expe
ted running time of L

q

2g+1 [1:44℄

and are superior, both in theory and in pra
ti
e, to the ADH algorithm.

Gaudry [16℄, building on earlier work of Adleman, DeMarrais and Huang [1℄ and Hafner and

M
Curley [18℄, presented an algorithm spe
i�
ally suited for very small genus 
urves. Gaudry's

algorithm has an expe
ted running time of O(g

3

q

2

log

2

q + g

2

g!q log

2

q) bit operations. It be
omes

4



impra
ti
al for large genera, e.g., g � 10, be
ause of the large multipli
ative fa
tor g!. Gaudry's

algorithm was extended and analyzed by Enge and Gaudry [8℄. The extended algorithm has an

expe
ted running time of L

q

g

[

p

2℄ = L

q

2g+1
[1℄ bit operations for g= log q !1. The primary reason

for the improved running time over the ADH algorithm is that the order and stru
ture of J

C

(k)

is assumed to be known, whereby one only needs to solve a sparse system of equations modulo r

instead of an expensive Smith Normal Form 
omputation.

It is the Enge-Gaudry index-
al
ulus algorithm that we des
ribe and have implemented. We

�rst need to introdu
e the notions of a prime divisor and a smooth divisor.

Prime Divisors. A redu
ed divisor D = div(a; b) 2 J

C

(k) is 
alled a prime divisor if a is

irredu
ible over k. The set of all prime divisors of degree � t 
an be found as follows. For ea
h

moni
 irredu
ible polynomial a 2 k[u℄ of degree � t, �nd the roots of v

2

+ h(u)v � f(u) modulo

a(u). For ea
h root b(u) (there are either 0, 1 or 2 su
h roots), div(a; b) is a prime divisor.

Smooth Divisors. A redu
ed divisor D = div(a; b) 2 J

C

(k) 
an be eÆ
iently expressed as a

sum of prime divisors as follows. First fa
tor a into moni
 irredu
ibles over k: a = a

e

1

1

a

e

2

2

� � � a

e

L

L

.

Let b

i

= b mod a

i

for 1 � i � L. Then D =

P

L

i=1

e

i

div(a

i

; b

i

). D is said to be t-smooth if

maxfdeg a

i

g � t.

Enge-Gaudry Index-Cal
ulus Algorithm. The main ideas of the Enge-Gaudry index-
al
ulus

algorithm are the following. First build a fa
tor base S = fP

1

; P

2

; : : : ; P

w

g 
onsisting of all prime

divisors of degree � t for some bound t. One then performs a random walk (�a la Teske [41℄) in the

set of redu
ed divisors equivalent to divisors of the form �D

1

+�D

2

and stores the t-smooth divisors

en
ountered in this walk|ea
h t-smooth divisor yields a relation �

i

D

1

+ �

i

D

2

� R

i

=

P

j

e

ij

P

j

.

When w + 1 di�erent relations have been found, one 
an �nd by linear algebra modulo r a non-

trivial linear 
ombination

P

w+1

i=1




i

(e

i1

; e

i2

; : : : ; e

iw

) = (0; 0; : : : ; 0). Thus

P

w+1

i=1




i

R

i

= 0, when
e

P




i

(�

i

D

1

+ �

i

D

2

) = 0 and log

D

1

D

2

= �(

P




i

�

i

)=(

P




i

�

i

) mod r.

5 Implementation Results

Our implementation was done in C++ using Vi
tor Shoup's NTL library.

5.1 Implementation Details

We provide some details of our implementation of the Enge-Gaudry index-
al
ulus method for

solving the HCDLP in the Ja
obian of genus 31 hyperellipti
 
urves over k = F

q

for q = 4, 8, 16

and 32. The hyperellipti
 
urves over these �elds are denoted C62, C93, C124 and C155. They all

have #J

C

(k) = 2r where r is prime. The hyperellipti
 
urves were obtained by applying the GHS

atta
k to an instan
e of the ECDLP on ellipti
 
urves E62, E93, E124 and E155 over F

2

62
, F

2

93
,

F

2

124
and F

2

155
, respe
tively. The ellipti
 
urve and hyperellipti
 
urve parameters are presented

in Table 1. See Appendix A for an example of how the ellipti
 
urves were sele
ted, and how the

GHS atta
k was used to redu
e an instan
e of the ECDLP to an instan
e of the HCDLP.
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E62, N = 62, F

2

62
= F

2

[z℄=(z

62

+ z

29

+ 1), a = z

33

b = z

59

+z

55

+z

48

+z

47

+z

45

+z

43

+z

42

+z

40

+z

39

+z

38

+z

37

+z

36

+z

34

+z

30

+z

29

+z

27

+

z

25

+z

24

+z

22

+z

21

+z

20

+z

19

+z

18

+z

16

+z

13

+z

12

+z

11

+z

10

+z

8

+z

6

+z

5

+z+1

C62, q = 4, F

2

2 = F

2

[w℄=(w

2

+ w + 1)

f(u) = u

63

+ w

2

u

62

+ u

48

+ w

2

h(u) = u

31

+ u

30

+ wu

28

+ u

24

+ w

2

u

16

+w

2

#E62(F

2

62
) = #J

C62

(F

2

2
) = 2 � 2305843007560748609

E93, N = 93, F

2

93
= F

2

[z℄=(z

93

+ z

2

+ 1), a = 1

b = z

79

+z

78

+z

73

+z

65

+z

64

+z

62

+z

61

+z

60

+z

55

+z

53

+z

51

+z

50

+z

49

+z

48

+z

41

+z

40

+

z

38

+z

37

+z

36

+z

34

+z

33

+z

29

+z

26

+z

24

+z

22

+z

21

+z

16

+z

14

+z

12

+z

11

+z

10

+z

9

+

z

8

+z

7

+z

5

+z

3

+z

C93, q = 8, F

2

3 = F

2

[w℄=(w

3

+ w + 1)

f(u) = w

4

u

63

+ w

5

u

62

+ w

5

u

60

+ w

3

u

56

+ w

5

u

48

+ wu

32

+ w

5

h(u) = w

2

u

31

+w

5

u

30

+ u

28

+ w

6

u

24

+ w

6

#E93(F

2

93
) = #J

C93

(F

2

3
) = 2 � 4951760157141611728579495009

E124, N = 124, F

2

124
= F

2

[z℄=(z

124

+ z

19

+ 1), a = z

105

b = z

108

+z

106

+z

102

+z

101

+z

99

+z

93

+z

87

+z

85

+z

75

+z

70

+z

68

+z

67

+z

66

+z

64

+z

62

+

z

59

+z

58

+z

56

+z

55

+z

54

+z

53

+z

51

+z

50

+z

49

+z

48

+z

46

+z

45

+z

44

+z

42

+z

41

+

z

40

+z

33

+z

32

+z

29

+z

27

+z

24

+z

23

+z

22

+z

20

+z

18

+z

16

+z

15

+z

14

+z

9

+z

8

+z

7

+

z

6

+z

3

+z

2

+z

C124, q = 16, F

2

4 = F

2

[w℄=(w

4

+ w + 1)

f(u) = w

3

u

63

+ w

7

u

60

+ w

3

u

56

+ w

3

u

48

+ 1

h(u) = w

9

u

31

+w

12

u

30

+ w

8

u

28

+ w

13

u

24

+ w

6

u

16

+ w

6

#E124(F

2

124
) = #J

C124

(F

2

4
) = 2 � 10633823966279326985483775888689817121

E155, N = 155, F

2

155
= F

2

[z℄=(z

155

+ z

62

+ 1), a = 1

b = z

16

+ z

2

+ z

C155, q = 32, F

2

5
= F

2

[w℄=(w

5

+ w

2

+ 1)

f(u) = w

4

u

63

+ w

6

u

62

+ w

15

u

60

+ w

26

u

56

+w

25

u

48

+ w

7

u

32

+ w

13

h(u) = w

2

u

31

+w

7

u

30

+ w

30

u

28

+ w

22

u

24

+ w

3

u

16

+ w

22

#E155(F

2

155) = #J

C155

(F

2

5) =

2 � 22835963083295358096932727763065266972881541089

Table 1: Hyperellipti
 
urves C62, C93, C124 and C155 of genus g = 31 over F

q

for q = 4; 8; 16 and 32.

These 
urves were obtained by applying the GHS atta
k to an instan
e of the ECDLP on ellipti
 
urves

E62, E93, E124 and E155 over F

2

62

, F

2

93

, F

2

124

and F

2

155

, respe
tively (
f. Appendix A). \EN" denotes an

ellipti
 
urve over F

2

N . The equation of EN is y

2

+ xy = x

3

+ ax

2

+ b where a; b 2 F

2

N , The equation of

CN is v

2

+ h(u)v = f(u), where h; f 2 F

q

[u℄. The prime fa
torizations of #EN(F

2

N
) and #J

CN

(F

q

) are

also listed.

6



Group Law. We implemented Cantor's algorithm [5℄ with Tenner's redu
tion algorithm [33℄ for

adding redu
ed divisors.

Random Walk. 40 integers a

0

; a

1

; : : : ; a

19

, b

0

; b

1

; : : : ; b

19

are randomly sele
ted from [0; r � 1℄,

and the divisors T

i

= a

i

D

1

+ b

i

D

2

, 0 � i � 19, are 
omputed. The walk 
ommen
es at a divisor

R

0

= �

0

D

1

+�

0

D

2

where �

0

and �

0

are randomly sele
ted from [0; r�1℄. A divisor R

i

on the walk is


omputed from the previous divisorR

i�1

as R

i

= R

i�1

+T

j

, where j is obtained by taking the integer

formed from the 5 least signi�
ant bits of the binary representation of a, where R

i�1

= div(a; b),

and redu
ing it modulo 20. Note that R

i

= �

i

D

1

+ �

i

D

2

where �

i

= (�

i�1

+ a

j

) mod r and

�

i

= (�

i�1

+b

j

) mod r. Thus the pair (�

i

; �

i

) 
an be eÆ
iently 
omputed from the pair (�

i�1

; �

i�1

).

Fa
tor Base. Let a 2 k[u℄ be a moni
 irredu
ible polynomial for whi
h

v

2

+ h(u)v � f(u) � 0 (mod a(u)) (2)

has a solution v = b(u) 2 k[u℄. Then D = div(a; b) and �D = div(a; b + h) are the only prime

divisors with �rst 
omponent a.

2

We store exa
tly one of D and �D in the fa
tor base. Let A

l

denote the number of prime divisors of degree l in the fa
tor base for 1 � l � t. Heuristi
ally, one

would expe
t that half of all equations (2) have solutions, and hen
e one expe
ts A

l

to be equal to

half the number I

q

(l) of moni
 irredu
ible polynomials of degree l in k[u℄. That is,

A

l

�

1

2

0

�

1

l

X

djl

�(l=d)q

d

1

A

; (3)

where � is the M�obius fun
tion. In fa
t, this estimate is a good one for the following reasons.

Theorem 2 of [9℄ states that if

0 � � �

1

4

and l �

1

�

log

q

(2g + 6 +

p

2); (4)

then A

l

2 [F

1

; G

1

℄ where

F

1

=

q

l

2l

�

1� q

l(��

1

2

)

�

and G

1

=

q

l

2l

�

1 + q

l(��

1

2

)

�

:

Now, by Theorem 6.5.1 of [2℄, we have

1

2

I

q

(l) 2 [F

2

; G

2

℄ where

F

2

=

q

l

2l

�

1�

2

q

l=2

�

and G

2

=

q

l

2l

:

Clearly, G

2

� G

1

. And, it is easy to see that F

1

� F

2

when (4) holds. Thus, when (4) holds, the

estimate

1

2

I

q

(l) lies in the interval [F

1

; G

1

℄ whi
h is known to 
ontain A

l

.

The following lemma gives an eÆ
iently 
omputable expression for the number of t-smooth

redu
ed divisors in J

C

(k) where C 2 fC62,C93,C124,C155g.

2

For the 
urves C62, C93, C124 and C155, h(u) is irredu
ible over k. Thus h 6� 0 (mod a) when 1 � deg a < deg h,

and so D 6= �D.
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Lemma 2 Let C 2 fC62,C93,C124,C155g. Let A

l

, 1 � l � t, denote the number of prime divisors

of degree l in the fa
tor base. Then the number of t-smooth redu
ed divisors in J

C

(k) is

M(t) =

31

X

i=1

 

[x

i

℄

t

Y

l=1

�

1 + x

l

1� x

l

�

A

l

!

;

where [ ℄ denotes the 
oeÆ
ient operator.

Proof: Suppose that a 2 k[u℄ is a t-smooth moni
 polynomial of degree � 31 for whi
h (2) has

a solution. Let a = a

e

1

1

a

e

2

2

� � � a

e

L

L

be the fa
torization of a into moni
 irredu
ibles over k. Then

the number of t-smooth redu
ed divisors in J

C

(k) having �rst 
omponent a is exa
tly 2

L

; these

divisors are D =

P

L

i=1

e

i

div(a

i

; b

i

) where ea
h b

i

is one of the two solutions to v

2

+h(u)v�f(u) � 0

(mod a

i

).

For ea
h l, 1 � l � t, let P

l

= fa(u) : div(a; b) is a prime divisor of degree lg. Note that

#P

l

= A

l

. Let 


i;j

be the number of moni
 polynomials of degree i in k[u℄ having exa
tly j distin
t

moni
 irredu
ible fa
tors all of whi
h are in

S

t

l=1

P

l

. Then

X

i;j�0




i;j

x

i

y

j

=

t

Y

l=1

�

1 + x

l

y + x

2l

y + x

3l

y + � � �

�

A

l

=

t

Y

l=1

�

1 +

x

l

y

1� x

l

�

A

l

:

Sin
e there are exa
tly two prime divisors div(a; b) for ea
h moni
 irredu
ible polynomial a in

S

t

l=1

P

l

, it follows that

M(t) =

31

X

i=1

X

j�0




i;j

2

j

=

31

X

i=1

 

[x

i

℄

t

Y

l=1

�

1 +

2x

l

1� x

l

�

A

l

!

;

as required. �

For known values of A

l

, 1 � l � t, M(t) 
an be eÆ
iently obtained by 
omputing the �rst 32

terms of the Taylor series expansion about x = 0 of

t

Y

l=1

�

1 + x

l

1� x

l

�

A

l

;

and then summing the 
oeÆ
ients of x; x

2

; : : : ; x

31

.

Smoothness Bound Sele
tion. The divisors en
ountered in the random walk all lie in the

prime order subgroup hD

1

i of order r. We make the heuristi
 (and reasonable) assumption that

the proportion of t-smooth divisors in hD

1

i is the same as the proportion of t-smooth divisors in the

full group J

C

(k). Then, the expe
ted number of random walk iterations before a t-smooth divisor

is en
ountered is E(t) = #J

C

(k)=M(t). Table 2 presents, for various 
hoi
es of the smoothness

bound t, the fa
tor base size F (t), E(t), and the expe
ted number T (t) = (F (t)+5)E(t) of random

walk iterations to generate F (t)+5 relations

3

. In the table, an asterisk signi�es that the fa
tor base

3

Some of the relations generated may be linearly dependent on previous relations. Heuristi
ally, we expe
t that if

F (t) + 5 relations are generated, then the resulting system of linear equations will have a unique solution.
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size F (t) was estimated using (3). Taking into a

ount both the expe
ted running time and the

storage requirements for the fa
tor base, it appears that the optimal 
hoi
es of smoothness bounds

are t = 7; 5; 5 and 4 for C62, C93, C124 and C155, respe
tively.

Smoothness Testing. Given a redu
ed divisor D = div(a; b), a(u) is �rst subje
ted to a

square-free fa
torization algorithm (e.g., see [2℄). The square-free portion a(u) is then tested for

t-smoothness using the fa
t that x

q

l

�x is the produ
t of all moni
 irredu
ible polynomials in F

q

[x℄

of degree dividing l. If a(u) is indeed t-smooth, then the fa
torization is obtained using the Cantor-

Zassenhaus fa
toring algorithm [6℄. Table 3 presents the time to generate and test 10,000 
andidate

redu
ed divisors for C62, C93, C124 and C155. Generating a 
andidate essentially involves one

appli
ation of the Ja
obian group law, while testing a 
andidate involves a square-free fa
torization

and a distin
t degree fa
torization. Also listed in Table 3 is the proportion of time spent on the

Ja
obian group law and on the smoothness testing.

Parallelization. The relation gathering portion of the algorithm 
an be e�e
tively parallelized,

i.e., yielding a fa
tor-m speedup whenm pro
essors are used. A di�erent random walk is performed

on ea
h ma
hine (i.e., with di�erent divisors T

0

; T

1

; : : : ; T

19

and di�erent initial divisors R

0

). Any

relations are reported to a 
entral pro
essor whi
h also dis
ards dupli
ates.

Linear Algebra. For C62, C93, and C124, we used our unoptimized implementation of Wiede-

mann's algorithm [42℄ as des
ribed in [23℄ to 
ompute a ve
tor in the kernel of the matrix modulo

the large prime divisor r of the group order. For C155, it will be ne
essary to optimize our imple-

mentation and most likely add stru
tured Gaussian elimination [25℄ to redu
e the size of the matrix

before applying Wiedemann. Nevertheless, we do not anti
ipate major diÆ
ulties with this stage

of the algorithm. Joux and Ler
ier [22℄ report on performing stru
tured Gaussian elimination on a

sparse matrix with 2,900,000 rows, followed by Lan
zos on a 172; 049� 171; 061 matrix, all modulo

a 100-de
imal digit prime. This was a parallel 
omputation (four 500Mhz De
 Alpha pro
essors),

and took 20 days. By 
omparison, the sparse matrix for the C155 dis
rete logarithm 
omputation

has only 136,528 rows, and the linear algebra is performed modulo a 155-bit prime. Thus, the linear

algebra stage of the dis
rete logarithm 
omputations for C155 is well within the realm of feasibility.

5.2 Numeri
al Experiments

Table 4 presents timings from our experiments with solving instan
es of the HCDLP in the genus

31 
urves C62, C93 and C124. Note that the average number of random walk iterations before a

smooth divisor is en
ountered is very 
lose to the predi
ted numbers in Table 2.

From Table 4, we 
on
lude that the HCDLP for ea
h of the three 
urves C62, C93 and C124 is

quite tra
table. In fa
t, the HCDLP in C124 (and hen
e also the ECDLP in E124; 
f. Appendix A)

was solved in far less CPU time that the estimated 200,000 days on a single 450MHz Pentium PC

expended on solving the signi�
antly easier Certi
om ECC2-108K ECDLP 
hallenge

4

[19℄.

4

Koblitz 
urves [24, 40℄ are ellipti
 
urves de�ned over F

2

. ECC2-108K is an instan
e of the ECDLP in a Koblitz


urve of order twi
e a prime over F

2

109

. By exploiting properties of the Frobenius endomorphism, Pollard's rho
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Curve t F (t) E(t) T (t)

C62 1 2 2324438515686238 16271069609803669

2 4 27837587014206 250538283127858

3 14 1794233002 34090427031

4 42 2889490 135806029

5 144 36296 5408075

6 474 2614 1251872

7 1644 421 694997

8 *5724 117 672969

9 *20284 46 932866

10 *72661 23 1647615

C93 1 4 1:15035222 � 10

22

1:3531699 � 10

23

2 16 5594986379814614 117494713976106894

3 100 2237298251 234916316328

4 596 1830509 1100135670

5 3872 28668 111146195

6 *25670 2139 54917739

7 *175466 370 64977373

8 *1223786 107 130753664

C124 1 8 3:33693830 � 10

28

4:33801984 � 10

28

2 64 6:48579145 � 10

15

4:44751961 � 10

18

3 744 1781948118 1334679140141

4 8872 1498799 13304838571

5 113728 25876 2942900859

6 *1511468 2001 3024499495

7 *20685428 354 7320993345

8 *289116788 103 29880384177

C155 1 16 1:15149568 � 10

32

2:24181409 � 10

32

2 256 4105255075208737 1071471574629480605

3 5712 1549820999 8860326649526

4 136528 1378374 188193560220

5 *3491968 24746 86410841791

6 *92967640 1945 180781004858

7 *2547234664 347 883799233900

8 *71266645874 102 7257807696673

Table 2: For ea
h of the 
urves C62, C93, C124, C155, this table lists the fa
tor base size F (t), the expe
ted

number E(t) of random walk iterations before a t-smooth divisor is en
ountered, and the expe
ted number

T (t) = (F (t) + 5)E(t) of random walk iterations to generate F (t) + 5 relations for various 
hoi
es of the

smoothness bound t. An asterisk signi�es that F (t) is an estimate of the fa
tor base size.
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Smoothness Time to generate Proportion of Proportion of

bound and test 10,000 time spent on time spent on

Curve t 
andidate divisors Ja
obian arithmeti
 smoothness testing

C62 7 54.0 40% 60%

C93 5 67.4 38% 62%

C124 5 89.0 32% 68%

C155 4 120.7 25% 75%

Table 3: Time (in se
) to generate and test 10,000 
andidate redu
ed divisors for t-smoothness on a single

1GHz Pentium III workstation having 512 MBytes of RAM.

Curve C62 C93 C124

Smoothness bound t 7 5 5

Fa
tor base size 1,644 3,872 113,728

Time to generate fa
tor base 20s 34s 12m 3s

Number of relations generated 1,649 3,877 113,733

Avg. no. of iterations per relation 400 28,050 25,576

Total CPU time to generate all relations 1h 49m 29s 15d 20h 6m 379d 2h 1m

Time to solve linear system 46s 6m 23s 3d 17h 55m

Table 4: Timings from our experiments with implementing the Enge-Gaudry index-
al
ulus algorithm for

solving instan
es of the HCDLP in the genus 31 
urves C62, C93 and C124 (see Table 1). The timings

for fa
tor base generation and for solving the sparse linear system were obtained using a single 800MHz

Pentium III workstation with 512 MBytes of RAM. The timings for relation generation for C62 and C93

were obtained using a 
luster of 12 550MHz Pentium III workstations ea
h having 256 MBytes of RAM. The

timing for relation generation for C124 was obtained using a 
luster of 16 400MHz Pentium II pro
essors, 26

450MHz Pentium II pro
essors, 66 550MHz Pentium III pro
essors, and 100 1GHz Pentium III pro
essors.

Se
onds, minutes, hours, and days are denoted by \s", \m", \h", and \d", respe
tively.
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Curve C62 C93 C124 C155

Smoothness bound t 7 5 5 4

Fa
tor base size 1,644 3,872 113,728 136,528

Time to generate fa
tor base 15s 26s 9m 17s 8m 58s

Number of relations generated 1,649 3,877 113,733 136,533

Total CPU time to generate all relations (1h 3m) (8d 16h) (303d) (26,290d)

Time to solve linear system (1m) (6m) (3d 12m) (5d)

Table 5: Time to solve instan
es of the HCDLP on C62, C93, C124 and C155. The times for fa
tor base

generation are a
tual times obtained on a single 1GHz Pentium III workstation with 512 MBytes of RAM.

The times for generating relations are estimates on a single 1GHz Pentium III workstation with 512 MBytes

of RAM. These estimates were derived from our estimates for the number of random walk iterations required

(see Table 2), and the a
tual time to generate and test a 
andidate divisor for smoothness (see Table 3).

The times for solving the sparse linear system are estimates for a 1GHz Pentium III workstation.

We did not solve an instan
e of the HCDLP in C155. However, we argue that this problem

is quite feasible. For a smoothness bound of t = 4, the fa
tor base size is F (4) = 136; 528. From

Table 2, the expe
ted number of random walk iterations before a smooth divisor is en
ountered is

E(4) = 1; 378; 374. Thus the expe
ted number of random walk iterations before F (4) + 5 relations

are obtained is E(4)(F (4)+5) � 1:88�10

11

. Sin
e the average time to generate and test a 
andidate

divisor is 1:207� 10

�2

se
 on a 1GHz Pentium III workstation (see Table 3), the expe
ted time to

generate the relations on a single su
h ma
hine is approximately 26,290 days. The time to solve

the resulting sparse linear system 
an be ignored sin
e, as argued in x5.1, it is at most a 
ouple of

days. The estimated time for the C155 HCDLP 
omputation is 
ompared to the estimated time

for the C62, C93 and C124 
omputations on the same workstation in Table 5.

We 
an 
on
lude that instan
es of the HCDLP in C155 
an be solved in about one month using

a network of 1,000 1GHz Pentium III workstations. This is the same order of magnitude as the

work required to perform exhaustive sear
h on the DES key spa
e (estimated time is 110,000 days

on a single 450MHz Pentium PC [19℄), and less that the estimated time of 200,000 days on a single

450MHz Pentium PC spent on the Certi
om ECC2-108K ECDLP 
hallenge [19℄.

5.3 Further Optimizations

We did not make signi�
ant e�orts to optimize our implementation. The following are some ways

in whi
h our implementation 
ould be improved.

1. Experiment with di�erent methods for sele
ting prime divisors for the fa
tor base. For exam-

ple, we might start with an empty fa
tor base and add prime divisors as they are en
ountered

as fa
tors of smooth divisors.

algorithm for the ECDLP in Koblitz 
urves over F

2

m


an be sped up by a fa
tor of

p

m [15, 43℄. The expe
ted

number of ellipti
 
urve operations to solve the ECC2-108K 
hallenge using Pollard's rho algorithm is 1:5� 10

16

.
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2. Experiment with the large prime variant for generating relations. In addition to storing the

fa
torizations of the t-smooth divisors, we also store \partial relations" whi
h arise from

random divisors whi
h are t-smooth ex
ept for one irredu
ible fa
tor of high degree. Any

two partial relations 
ontaining the same large irredu
ible fa
tor 
an be 
ombined to yield

a relation. This method has been su

essfully employed in other index-
al
ulus algorithms

(e.g., see [26℄), and initial experiments indi
ate that it may be useful in our setting as well.

3. Experiment with Bernstein's methods [4℄ for fast smoothness testing.

4. Experiment with sieving methods (see [10℄) to determine if they 
an be used to generate

relations faster than the random walk method.

6 Cryptographi
 Impli
ations

Our experiments with our non-optimized implementation of index-
al
ulus methods for the HCDLP

in C155 indi
ate that the HCDLP for genus 31 hyperellipti
 
urves over F

2

5
is quite tra
table. Now,

the ECDLP in the parti
ular ellipti
 
urve E155 over F

2

155 (see Table 1) is intra
table using Pollard's

rho algorithm sin
e the expe
ted number of ellipti
 
urve operations is

p

�2

154

=4 � 2

77

. However,

sin
e the GHS atta
k 
an eÆ
iently redu
e instan
es of the ECDLP in E155 to instan
es of the

HCDLP in genus 31 hyperellipti
 
urves over F

2

5
, we 
on
lude that the ECDLP in E155 is indeed

tra
table.

Even though the GHS atta
k only appears to be appli
able to an insigni�
ant proportion (2

32

out of the 2

156

ellipti
 ellipti
 
urves over F

2

155
), we feel that 
aution must be exer
ised when

sele
ting ellipti
 
urves over F

2

155
for 
ryptographi
 use.

The parti
ular ellipti
 
urve over F

2

155
in
luded in the IETF standard [21℄ is y

2

+ xy = x

3

+ b,

where

b = w

18

+ w

17

+ w

16

+ w

13

+ w

12

+ w

9

+ w

8

+w

7

+ w

3

+ w

2

+ w + 1

and F

2

155
= F

2

[w℄=(w

155

+ w

62

+ 1). Let � : F

2

155
! F

2

155
be the Frobenius map de�ned by

x 7! x

2

5

. The smallest degree fa
tor f(x) of x

31

+ 1 over F

2

for whi
h f(�)(b) = 0 is f(x) =

(x

31

+ 1)=(x

5

+ x

3

+ 1). It follows from [29, Theorem 6℄ that the GHS atta
k redu
es the ECDLP

in E(F

2

155
) to the HCDLP in the Ja
obian of a genus 2

35

or 2

35

� 1 hyperellipti
 
urve over F

2

5
.

Hen
e this parti
ular ellipti
 
urve does not su

umb to our approa
h of redu
ing the ECDLP to

the HCDLP over F

2

5
.

An open question is whether the GHS atta
k 
an be applied to all ellipti
 
urves over F

2

155 . As

shown in [29℄, ex
ept for the Koblitz 
urves

5

, the GHS atta
k redu
es the ECDLP in ellipti
 
urves

over F

2

155
to the HCDLP in Ja
obians of genus 15 or 16 
urves over F

2

31
. Smart [39℄ argues that

Gaudry's algorithm (with the fa
tor base 
onsisting only a fra
tion of the prime redu
ed divisors

of degree 1) is infeasible given today's 
omputer te
hnology. However, [39℄ did not 
onsider (in any

5

The GHS atta
k 
an be proven to fail for Koblitz 
urves|the atta
k only yields information about the desired

logarithm modulo #E(F

2

).

13



detail) the appli
ability of the other index-
al
ulus methods. In parti
ular, large-prime variants

and sieving methods were not 
onsidered. While it is likely that the known index-
al
ulus methods

are indeed infeasible for this problem, further study and experimentation is needed before this 
an

be 
on
luded with 
ertainty.

Another possibility for atta
king the general ECDLP for ellipti
 
urves over F

2

155
, of 
ourse,

is if the Weil des
ent methodology 
an be exploited to yield another way (i.e., di�erent from the

GHS atta
k) of redu
ing the ECDLP for ellipti
 
urves over F

2

155
to Ja
obians of low genus 
urves

(perhaps not hyperellipti
) for whi
h subexponential-time index-
al
ulus methods 
an be found.

We have no eviden
e to make a 
onje
ture about the existen
e of su
h a possibility, however we

would expe
t that it is mu
h more likely for su
h a method to exist for ellipti
 
urves over �elds

F

2

m

where m is 
omposite (e.g, m = 155), than for ellipti
 
urves over �elds F

2

m

where m is prime.

Some eviden
e for this is provided by the 
omplete failure of the GHS atta
k for the ECDLP in

ellipti
 
urves over F

2

m

where m is prime [29℄.

7 Con
lusions

We have implemented the GHS Weil desent atta
k and the Gaudry-Enge index-
al
ulus method

for the HCDLP. We were su

essful in solving spe
i�
 dis
rete logarithm problems in ellipti
 
urves

over F

2

62
, F

2

93
and F

2

124
. Our experiments, though far from being optimized, indi
ate that our

spe
i�
 logarithm problem in F

2

155
is tra
table. The ECDLP instan
e over F

2

155
is the �rst 
on
rete

instan
e of the ECDLP whi
h resists all previously known atta
ks, but whi
h 
an be solved using

the Weil des
ent atta
k methodology of Frey.

While the GHS atta
k is only known to apply to an insigni�
ant proportion of all ellipti
 
urves

over F

2

155
, our results provide some eviden
e that ellipti
 
urves over F

2

155
should be used with


aution and preferably avoided altogether.

We emphasize that our 
omputational results 
annot be extended to solve 
ryptographi
ally

interesting instan
es of the ECDLP for ellipti
 
urves over �elds F

2

m

where m 2 [160; 600℄ is prime,

sin
e the GHS atta
k is ine�e
tive in these 
ases [29℄.
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A Ellipti
 Curve and Hyperellipti
 Curve Sele
tion

This se
tion des
ribes how the ellipti
 
urve E124 was sele
ted, and how a random instan
e of the

ECDLP in E124 was generated and redu
ed to an instan
e of the HCDLP in C124. The other

ellipti
 
urves and hyperellipti
 
urves listed in Table 1 were generated in an analagous manner.

Ellipti
 Curve Generation. Let n = 31, and q = 2

4

. Let a be an arbitrary element of tra
e 1

in F

2

124
. The order of 2 modulo n is t = 5. The ellipti
 
urve E124 was 
hosen by sele
ting random

elements b 2 B (where B is de�ned in Theorem 1(ii)) until the number of F

2

124
-rational points on

y

2

+ xy = x

3

+ ax

2

+ b is twi
e a prime. By Theorem 1 we know that m(b) = t+ 1 = 6 and hen
e

the GHS atta
k will redu
e any instan
e of the ECDLP in E124 to an instan
e of the HCDLP in

a genus 31 or 32 hyperellipti
 
urve over F

2

4 .

The elements of F

2

124
are represented as binary polynomials modulo the irredu
ible polynomial

z

124

+ z

19

+ 1. The de�ning equation for the ellipti
 
urve E124 is y

2

+ xy = x

3

+ ax

2

+ b where

a = z

105

and

b = z

108

+z

106

+z

102

+z

101

+z

99

+z

93

+z

87

+z

85

+z

75

+z

70

+z

68

+z

67

+z

66

+z

64

+z

62

+z

59

+

z

58

+z

56

+z

55

+z

54

+z

53

+z

51

+z

50

+z

49

+z

48

+z

46

+z

45

+z

44

+z

42

+z

41

+z

40

+z

33

+z

32

+

z

29

+z

27

+z

24

+z

23

+z

22

+z

20

+z

18

+z

16

+z

15

+z

14

+z

9

+z

8

+z

7

+z

6

+z

3

+z

2

+z:

The number of F

2

124
-rational points on E124 is 2r, where

r = 10633823966279326985483775888689817121

is prime.

ECDLP Instan
e Generation. We sele
ted two points P;Q from E124(F

2

124
) veri�ably at

random as follows. We �rst de�ned 124-bit integers m

1

and m

2

to be the 124 rightmost bits of

the 160-bit outputs of the SHA-1 
ryptographi
 hash fun
tion with inputs the strings \" and \a",

respe
tively

6

. We identify a 124-bit integer 
 = 


123

2

123

+ 


122

2

122

+ � � � + 


0

with the element




123

z

123

+ 


122

z

122

+ � � � + 


0

of F

2

124 . Then, for ea
h i 2 f1; 2g, we de�ne n

i

to be the smallest

integer � m

i

for whi
h the �eld element 
orresponding to n

i

is the x-
oordinate of some point of

order r in E124(F

2

124
); for su
h an n

i

we arbitrarily sele
t one of the two possible y-
oordinates.

In this way, we derive the following two points:

P = (19166289931116350914892435465096922889;

3954926638115710237279327107877298663);

Q = (14152416137154867042654754006541690809;

15733241592903071723351565426494711869):

The ECDLP 
hallenge is to �nd the integer l 2 [0; r � 1℄ su
h that Q = lP . Note that sin
e P and

Q were (pseudo)randomly generated, the dis
rete logarithm l is not known a priori by us.

6

These two strings are 
ommonly used as inputs to generate test ve
tors for hash fun
tions. For example, see

Table 9.6 of [28℄.
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HCDLP Instan
e Generation. Hess's KASH program [20℄ for the Weil restri
tion represents

ellipti
 
urve points as zero divisors. For te
hni
al reasons, he ex
ludes the point at in�nity from

o

urring in the support of the divisors. Thus, instead of representing an ellipti
 
urve point P by

a zero divisor (P )� (1), we represent P by the equivalent zero divisor (P +R)� (R), where R is

an arbitrary point on the 
urve. We arbitrarily sele
ted the following point of order r:

R = (11949386922129241854287919257049811485;

13819702817838731027194193290120801107):

Let P

1

= P+R, P

2

= Q+R and P

3

= R. Hess's KASH program was used to redu
e (E124; P

1

; P

2

; P

3

)

to (C124;D

1

;D

2

;D

3

), where C124 is a genus-31 hyperellipti
 
urve over F

2

4
and D

1

, D

2

, D

3

are

divisors in J

C124

(F

2

4
). The elements of F

2

4
are represented as binary polynomials modulo the

irredu
ible polynomial w

4

+ w + 1. The Weierstrass equation for the hyperellipti
 
urve C124 is

v

2

+ h(u)v = f(u), where

f(u) = w

6

u

63

+ w

14

u

60

+w

6

u

56

+ w

6

u

48

+ 1;

h(u) = w

3

u

31

+ w

9

u

30

+ wu

28

+ w

11

u

24

+ w

12

u

16

+ w

12

:

The divisors D

1

, D

2

and D

3

are:

D

1

= div(u

31

+w

6

u

30

+w

4

u

29

+w

5

u

28

+w

10

u

27

+w

3

u

26

+w

14

u

25

+w

4

u

24

+w

14

u

23

+u

22

+w

5

u

21

+

w

9

u

20

+w

14

u

19

+w

4

u

18

+w

14

u

17

+w

12

u

16

+w

6

u

15

+w

14

u

14

+w

7

u

13

+w

7

u

12

+w

2

u

11

+w

7

u

10

+

w

13

u

9

+w

7

u

8

+u

7

+w

9

u

6

+w

14

u

5

+w

3

u

4

+w

2

u

3

+w

10

u

2

+w

9

u+1; u

30

+w

8

u

29

+wu

28

+w

8

u

27

+

w

14

u

26

+w

5

u

24

+w

10

u

23

+w

4

u

22

+w

8

u

21

+w

9

u

19

+w

2

u

18

+w

3

u

16

+w

5

u

15

+w

13

u

14

+w

11

u

13

+

w

7

u

12

+u

11

+w

8

u

10

+u

9

+w

2

u

8

+w

6

u

7

+u

6

+wu

5

+w

9

u

4

+w

13

u

3

+w

2

u+w

7

),

D

2

= div(u

31

+w

12

u

30

+w

3

u

29

+w

8

u

28

+w

12

u

27

+w

14

u

26

+w

13

u

25

+w

9

u

24

+w

7

u

23

+w

12

u

22

+u

20

+

w

3

u

18

+w

12

u

17

+u

16

+w

12

u

15

+w

3

u

14

+w

9

u

13

+w

6

u

12

+w

9

u

11

+w

7

u

10

+w

2

u

9

+w

8

u

8

+

w

11

u

7

+w

9

u

6

+w

12

u

5

+w

10

u

4

+w

11

u

3

+w

11

u

2

+w

11

u+1; w

14

u

29

+w

6

u

28

+u

27

+w

11

u

26

+

w

11

u

25

+w

4

u

24

+w

14

u

22

+w

5

u

21

+w

3

u

20

+w

14

u

19

+w

5

u

18

+w

2

u

17

+w

8

u

15

+u

14

+w

4

u

13

+

w

7

u

12

+w

10

u

11

+w

6

u

10

+w

4

u

9

+w

2

u

8

+w

14

u

7

+wu

6

+w

11

u

4

+w

11

u

3

+w

2

u

2

+w

9

u+w

6

),

D

3

= div(u

31

+w

14

u

30

+w

5

u

28

+u

27

+w

8

u

26

+w

11

u

25

+w

13

u

24

+w

2

u

23

+w

5

u

22

+w

9

u

21

+w

7

u

20

+

w

12

u

19

+w

4

u

18

+w

9

u

17

+w

13

u

16

+w

4

u

15

+w

13

u

14

+u

12

+wu

11

+w

3

u

10

+w

6

u

9

+w

8

u

8

+w

7

u

7

+

w

14

u

6

+u

5

+w

5

u

4

+w

9

u

2

+w

7

u+w

9

; w

7

u

30

+w

3

u

29

+w

4

u

28

+wu

27

+w

6

u

26

+w

7

u

25

+wu

23

+

w

6

u

22

+w

7

u

21

+w

9

u

19

+w

9

u

18

+w

2

u

16

+w

5

u

15

+w

2

u

13

+w

5

u

12

+u

11

+w

6

u

10

+u

9

+w

2

u

8

+

w

5

u

7

+w

7

u

6

+w

2

u

5

+w

9

u

4

+w

2

u

3

+w

7

u

2

+w

3

u+w

13

).

Our task is to solve the following logarithm problem in J

C124

(F

2

4
): �nd the integer l 2 [0; r � 1℄

su
h that (D

2

�D

3

) = l(D

1

�D

3

).

ECDLP and HCDLP Solutions. Our implementation of the Enge-Gaudry algorithm obtained

l = 289697194482016303350776099807354482:

Finally, we veri�ed that Q = lP on E124.
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