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Abstract

We provide a concrete instance of the discrete logarithm problem on an elliptic curve over
5155 which resists all previously known attacks, but which can be solved with modest computer
resources using the Weil descent attack methodology of Frey. We report on our implementation
of index-calculus methods for hyperelliptic curves over characteristic two finite fields, and discuss
the cryptographic implications of our results.

1 Introduction

Let E be an elliptic curve defined over a finite field K = Fy». The elliptic curve discrete logarithm
problem (ECDLP) in E(K) is the following: given £, P € E(K), r = ord(P) and Q € (P), find the
integer s € [0,7—1] such that @ = sP. The ECDLP is of interest because its apparent intractability
forms the basis for the security of elliptic curve cryptographic schemes.

The elliptic curve parameters have to be carefully chosen in order to circumvent some known
attacks on the ECDLP. In order to avoid the Pohlig-Hellman [34] and Pollard’s rho [35, 32] attacks,
r should be a large prime number. To avoid the Weil pairing [27] and Tate pairing [13] attacks, r
should not divide g™ — 1 for each 1 < i < C, where C is large enough so that it is computationally
infeasible to find discrete logarithms in Fjnc. Finally, the curve should not be Fy»-anomalous (i.e.,
#E(F,n) # ¢") in order to avoid the attack of [36, 37, 38]. For the remainder of this paper, we
assume that the elliptic curve parameters satisfy these conditions. In particular, we assume that
r=q".

Frey [11, 12] first proposed using Weil descent as a means to reduce the ECDLP in elliptic
curves over characteristic two finite fields Fy» to the discrete logarithm problem in an abelian
variety over the smaller field F,. Frey’s method, which we refer to as the Weil descent attack



methodology, was further elaborated by Galbraith and Smart [14]. In 2000, Gaudry, Hess and
Smart (GHS) [17] showed how Frey’s methodology could be used to reduce any instance of the
ECDLP to an instance of the discrete logarithm problem in the Jacobian of a hyperelliptic curve
over IF,. Since subexponential-time algorithms for the latter problem are known, this could have
important implications to the security of elliptic curve cryptographic schemes.

In this paper, we focus our attention on determining the practicality of the GHS method for
solving the ECDLP in elliptic curves over Fqis5. We offer two justifications for this restriction.
First, as proven in [29], the GHS attack is certain to fail for all elliptic curves defined over Fan
where n is a prime in the interval [160, 600]. Second, a specific elliptic curve over Fyis5 is one of the
two elliptic curves allowed in an IETF standard [21] for key establishment (the other elliptic curve
is defined over Fyiss).

The remainder of the paper is organized as follows. §2 provides a brief introduction to the
relevant theory of hyperelliptic curves. The Weil descent attack methodology of Frey and the GHS
attack are described in §3. An overview of index-calculus algorithms for solving the hyperelliptic
curve discrete logarithm problem is presented in §4, and a report of our implementation for hyper-
elliptic curves over characteristic two finite fields is given in §5. The cryptographic implications of
our results are discussed in §6. Our conclusions are stated in §7.

2 Hyperelliptic Curves

We provide a brief overview of the theory of hyperelliptic curves that is relevant to this paper. For
a more detailed (but elementary) exposition, see [30].

HYPERELLIPTIC CURVES. Let k£ = IF;, denote the finite field of order ¢q. The algebraic closure of IF,
is k = Up>1 Fgn. A hyperelliptic curve C of genus g over k is defined by a non-singular equation

v + h(u)v = f(u),

where h, f € klu|, deg f = 2g + 1, and degh < g. Let L be an extension field of k. The set of
L-rational points on C is C(L) = {(x,y) : z,y € L, y* + h(z)y = f(z)} U {oo}. The opposite of
P = (z,y) € C(L) is P = (z,—y — h(z)); we also define 30 = co. Note that P € C(L). There is
no natural group law on the set of points C(L)'. Instead, one considers the Jacobian of C over k
which is a finite group.

JACOBIAN OF A HYPERELLIPTIC CURVE. The set D° of zero divisors of C is the set of formal sums
ZPeC(E) mpP, where mp € Z and only a finite number of the mp’s are non-zero. D is a group
under the addition rule >, mpP + Y npP =) (mp + np)P. Let 0 : k — k be the Frobenius map
defined by z +— 2. The map o extends to C (k) by (z,y) — (2°,y°) and 00’ + oo, and to D° by
S mpP — Y mpP°. The set of zero divisors defined over k is DY = {D € D : D" = D}. The
function field of C over k, denoted k(C'), is the field of fractions of the integral domain of polynomial
functions k[u,v]/(v? + h(u)v — f(u)). For f € k(C), the divisor of f is div(f) = > pec VPP,

!Except for the case g = 1, since a genus 1 hyperelliptic curve is precisely an elliptic curve.




where vp(f) denotes the multiplicity of P as a root of f. Now the set Pring = {div(f) : f € k(C)}
is a subgroup of DY. The Jacobian of C (over k) is the quotient group Jo (k) = DY /Prin.

PROPERTIES OF THE JACOBIAN. J¢ (k) is a finite group. A theorem of Weil’s implies that (/g —
1)% < #Jco(k) < (@ + 1)%9 so #Jc(k) = ¢9. If Dy and D, are in the same equivalence class of
divisors in Jo (k) we write Dy ~ Dy. Each equivalence class has a unique divisor in reduced form,
Le., a divisor 3 p o mpP — (3 po mp)oo satistying (i) mp > 0 for all P; (ii) if mp > 1 and
P # P, then mz = 0; (iii) mp = 0 or 1 if P = P; and (iv) > mp < g. Such a reduced divisor D
can be uniquely represented by a pair of polynomials a,b € k[u] where (i) degb < dega < g; (ii)
a is monic; and (iii) a|(b? + bh — f). We write D = div(a,b) to mean D = gcd(div(a),div(b — v))
where the ged of two divisors Y mpP and > npP is defined to be > min(mp,np)P. The degree
of D is dega. Cantor’s algorithm [5] can be used to efficiently compute the sum of two reduced
divisors, and express the sum in reduced form.

3 Weil Descent Attack

Let [ and n be positive integers. Let ¢ = 2!, and let k = F, and K = . Consider the (non-
supersingular) elliptic curve E defined over K by the equation

E:y+aey=a®+az’+b, acK,beK*

We assume that #F(K) = dr where d is small (e.g., d = 2 or d = 4) and r is prime. Hence r =~ ¢".
Let b; = 0*(b), where 0 : K — K is the Frobenius automorphism defined by « ~ o, and define

m(b) = dimp, (Spang, {(1,by°),... , (1,0,7)}). (1)

Assume now that either n is odd, or m(b) = n, or TrK/FQ(a) = 0. Gaudry, Hess and Smart [17]
showed how Weil descent can be used to reduce the ECDLP problem in the subgroup of order r
of F(K) to the discrete logarithm problem in a subgroup of order r of the Jacobian Jgo (k) of a
hyperelliptic curve C of genus g defined over k. One first constructs the Weil restriction Wg/;, of
scalars of E/, which is an n-dimensional abelian variety over k. Then, W/ is intersected with n—1
hyperplanes to obtain the hyperelliptic curve C. We call their reduction algorithm the GHS attack
on the ECDLP. The genus g of C is either 2™~! or 2™~! — 1, where m = m(b).

The discrete logarithm problem in the subgroup of order r in J(k) can be solved using Pollard’s
rho algorithm [35, 32] which has an expected running time of O(g2¢"™/?log?q/M) bit operations
where M is the number of processors available for a parallel attack. However, since the group
operation in F(K) can be performed faster than the group operation in Jo(k), it is more efficient
to apply Pollard’s rho algorithm directly in F(K). The other alternative is to use index-calculus
algorithms (see §4). These algorithms have subexponential running time for large genus curves,
and therefore may be more efficient than Pollard’s rho algorithm for some parameters of practical
interest.

In order for the GHS attack to be successful in solving the ECDLP in E(K), the discrete
logarithm problem in J¢ (k) should be tractable using the known index-calculus algorithms. Note



that 1 < m < n. In general, m ~ n whence g ~ 2"~! and #Jo(k) ~ q2n_1 and the GHS attack
fails. The GHS attack will only succeed if m is small, say m ~ log, n, because then g ~ n and
#Jco(k) =~ ¢". The formula (1) was analyzed in [29], and the following result was obtained for the
case n prime.

Theorem 1 ([29]) Let n be an odd prime, let ¢ be the multiplicative order of 2 modulo n, and
let s = (n —1)/t. Then

(i) ™+ 1 factors over Fy as (x + 1) f1f2--- fs, where the f;’s are distinct irreducible polynomials
of degree t.

(ii) Let o : Fgn — Fyn be the Frobenius map defined by = + z9. Define B = {b € Fn
(0 +1)fi(o)(b) =0 for some 1 <4 < s}, and let a € Fyn be an element of trace 1. Then for
all b € B, the elliptic curves y? + zy = 23 + b and y? + zy = 2% + ax? + b have m(b) =t + 1.

iii) The cardinality of the set B is gs(qt — 1).
(iii) y qs(q

Consider now the case ¢ = 2% and n = 31 (so ¢" = 2'%°). We have t = 5 and s = 6. It follows
from Theorem 1 that there are approximately 232 elliptic curves over Fois5 for which the GHS attack
efficiently reduces the ECDLP to the DLP in the Jacobian of a genus 31 or 32 hyperelliptic curve
defined over Fys. In §5 we provide convincing evidence that the latter problem is quite tractable,
which means that the original ECDLP is also tractable. The next section provides an overview of

index-calculus methods for the hyperelliptic curve discrete logarithm problem.

4 Index-Calculus Methods

PrROBLEM DEFINITION. Let C be a genus g hyperelliptic curve over £ = F,. The hyperelliptic
curve discrete logarithm problem (HCDLP) is the following: given C, Dy € Jco(k), r = ord(Dy),
and Dy € (Dy), find the integer s € [0, — 1] such that Dy = sD;. We shall assume that r is prime,
and #Jo(k) = .

INDEX-CALcULUS METHODS FOR HCDLP. Adleman, DeMarrais and Huang (ADH) [1] presented
the first index-calculus algorithm for solving the HCDLP. Their algorithm was described for the
case ¢ an odd prime, and was later extended by Bauer [3] to arbitrary g. The (heuristic) expected
running time of the ADH algorithm is Lg2y+1[c] for g — 0o and log ¢ < (2¢+1)°%%, where ¢ < 2.313
and Ly,[c] = O(exp((c+o0(1))y/log nloglogn)). The algorithm does not assume that the group order
#Jc(k) is known, necessitating an expensive Smith Normal Form computation on a sparse integer
matrix. Index-calculus algorithms with rigorously proved running times were presented by Muller,
Stein and Thiel [31] and Enge [7]. Their algorithms have an expected running time of L 2g+1[1.44]
and are superior, both in theory and in practice, to the ADH algorithm.

Gaudry [16], building on earlier work of Adleman, DeMarrais and Huang [1] and Hafner and
McCurley [18], presented an algorithm specifically suited for very small genus curves. Gaudry’s
algorithm has an expected running time of O(g3¢*log? ¢ + g?¢'qlog? q) bit operations. It becomes



impractical for large genera, e.g., g > 10, because of the large multiplicative factor g!. Gaudry’s
algorithm was extended and analyzed by Enge and Gaudry [8]. The extended algorithm has an
expected running time of Lys[v/2] = L j26+1[1] bit operations for g/log g — oo. The primary reason
for the improved running time over the ADH algorithm is that the order and structure of J¢ (k)
is assumed to be known, whereby one only needs to solve a sparse system of equations modulo r
instead of an expensive Smith Normal Form computation.

It is the Enge-Gaudry index-calculus algorithm that we describe and have implemented. We
first need to introduce the notions of a prime divisor and a smooth divisor.

PRIME Di1visors. A reduced divisor D = div(a,b) € Je(k) is called a prime divisor if a is
irreducible over k. The set of all prime divisors of degree < ¢ can be found as follows. For each
monic irreducible polynomial a € k[u] of degree < ¢, find the roots of v? + h(u)v — f(u) modulo
a(u). For each root b(u) (there are either 0, 1 or 2 such roots), div(a,b) is a prime divisor.
SMOOTH DIVISORS. A reduced divisor D = div(a,b) € Jc(k) can be efficiently expressed as a
sum of prime divisors as follows. First factor ¢ into monic irreducibles over k: a = af'a*---aj".
Let b = bmoda; for 1 < ¢ < L. Then D = 25:1 e;div(a;, b;). D is said to be t-smooth if
max{dega;} <t.

ENGE-GAUDRY INDEX-CALCULUS ALGORITHM. The main ideas of the Enge-Gaudry index-calculus
algorithm are the following. First build a factor base S = {P1, P, ... , P,} consisting of all prime
divisors of degree < ¢ for some bound ¢. One then performs a random walk (4 la Teske [41]) in the
set of reduced divisors equivalent to divisors of the form oD+ D9 and stores the t-smooth divisors
encountered in this walk—each ¢-smooth divisor yields a relation ;D + ;D2 ~ R; = j ei; Pj.
When w + 1 different relations have been found, one can find by linear algebra modulo r a non-
trivial linear combination E;":ﬁl vi(€i1, €izy - - €iw) = (0,0,...,0). Thus E;":ﬁl ~viR; = 0, whence

> vila; D1 + BiD2) = 0 and logp, Do = =2 viai) /(O viBi) mod 7.

5 Implementation Results

Our implementation was done in C++ using Victor Shoup’s NTL library.

5.1 Implementation Details

We provide some details of our implementation of the Enge-Gaudry index-calculus method for
solving the HCDLP in the Jacobian of genus 31 hyperelliptic curves over k = I, for ¢ = 4, 8, 16
and 32. The hyperelliptic curves over these fields are denoted C62, C93, C124 and C155. They all
have #Jc(k) = 2r where r is prime. The hyperelliptic curves were obtained by applying the GHS
attack to an instance of the ECDLP on elliptic curves K62, E93, E124 and E155 over Foe», Fyes,
Fyi24 and Fqis5, respectively. The elliptic curve and hyperelliptic curve parameters are presented
in Table 1. See Appendix A for an example of how the elliptic curves were selected, and how the
GHS attack was used to reduce an instance of the ECDLP to an instance of the HCDLP.



E62, N = 62, Faso = Fy[2]/(25%2 + 2% + 1), a = 233

b= 259+255+Z48+Z47+Z45+Z43+Z42—I—Z4O+Z39+Z38+Z37+Z36—I—Z34—I—Z30—I—229—|—227+
24222 2 20 19 18 B 16 13 12 I 10 8 26 20 2t

C62, g = 4, Fy2 = Fy[w]/(w? + w + 1)

f(u) = 53 + w212 + u8 + w?

h(u) = u3t + 630 + wu?® + u?t + w?uld 4 w?

#E62(Fys2) = #Jce2(Fy2) = 2 - 2305843007560748609

E93, N = 93, Fgos = Fy[2]/ (2% + 22+ 1),a =1

b= 2428427342054 2644 624 5614 2604 2554 2534 2514 2504 2494 248 4 24 4 2404
D e e B e o e A i
B2+ 2542342

093, ¢ = 8, Fys = Fo[w]/(w? + w + 1)

fu) = wub + wPu®? + wdub® + w3 + wiu® + wu? + wd

h(u) = w?u3! + w’u3® + u?8 + wbu?* + wb

H#E93(Fy0s) = #Jco3(Fes) = 2 - 4951760157141611728579495009

E124, N = 124, Fyios = Fy[2]/ (2% + 219 + 1), a = 21

b= 2108+2106+2102+2101-I—Zgg-I-Zg?’-|-ZS7-|-ZS5+Z75+Z70+268+267+266-|-264-|-ZG2-|-
259+258+256+255+254+Z53—I—Z51+Z50—I—Z49+Z48+Z46+Z45+Z44—I—Z42—I—Z41—I—
2042334232 4 220 4 22T 4 24 223 4 2224 220 1 18 10 4 P15 P 29428 2T
242342242

C124, q = 16, Fys = Fo[w]/(w* + w + 1)

fu) = w3ub + wu® + wdud® + w3u®® + 1

h(u) — w9u31 + w12u30 + w8u28 + w13u24 + w6u16 + w6

#E124(Fg124) = #Jc124(Fos) = 2 - 10633823966279326985483775888689817121

E155, N = 155, Fyiss = Fy[2]/(2'%° + 252 + 1), a =1

b=26 422+~

C155, q = 32, Fys = Fow]/(w® + w? + 1)

f(u) — w4u63 + w6u62 + w15u60 + w26u56 + w25u48 + w7u32 + w13

h(u) = w?udl + wTud0 + w30u28 + w220t + wdul® + w22

#E155(Fqg155) = #Jc155(Fgs) =
2 - 22835963083295358096932727763065266972881541089

Table 1: Hyperelliptic curves C62, C93, C124 and C155 of genus g = 31 over F, for ¢ = 4,8,16 and 32.
These curves were obtained by applying the GHS attack to an instance of the ECDLP on elliptic curves
E62, E93, E124 and E155 over Fasz, Faos, Fa12a and Faiss, respectively (cf. Appendix A). “EN” denotes an
elliptic curve over Fon. The equation of EN is y? + zy = 2® + az? + b where a,b € Fon, The equation of
CN is v?> + h(u)v = f(u), where h, f € Fy[u]. The prime factorizations of #EN (Fo~) and #Jon (F,) are
also listed.



GrOUP LAw. We implemented Cantor’s algorithm [5] with Tenner’s reduction algorithm [33] for
adding reduced divisors.

RANDOM WALK. 40 integers ag, a1, ... , a9, b,b1,... ,big are randomly selected from [0,r — 1],
and the divisors T; = a; D1 + b; D2, 0 < 1 < 19, are computed. The walk commences at a divisor
Ry = a9D1+ By Dy where o and Sy are randomly selected from [0,7—1]. A divisor R; on the walk is
computed from the previous divisor R; 1 as R; = R; 1+1), where j is obtained by taking the integer
formed from the 5 least significant bits of the binary representation of a, where R;_; = div(a,b),
and reducing it modulo 20. Note that R; = o; Dy + 3;Dy where «; = (®j—1 + a;) mod r and
Bi = (Bi—1+0bj) mod r. Thus the pair (¢, ;) can be efficiently computed from the pair (c;_1, 8i—1).

FACTOR BASE. Let a € k[u] be a monic irreducible polynomial for which
v? 4+ h(u)v — f(u) =0 (mod a(u)) (2)

has a solution v = b(u) € k[u]. Then D = div(a,b) and —D = div(a,b + h) are the only prime

2 We store exactly one of D and —D in the factor base. Let A

divisors with first component a.
denote the number of prime divisors of degree [ in the factor base for 1 <[ < . Heuristically, one
would expect that half of all equations (2) have solutions, and hence one expects A; to be equal to

half the number I,(l) of monic irreducible polynomials of degree [ in k[u]. That is,

A (730 ul/at | 3)
d)l

where p is the Mobius function. In fact, this estimate is a good one for the following reasons.
Theorem 2 of [9] states that if

1
0<e<- and I > ~log, (29 + 6+ v2), (4)
€

1
4
then A; € [F1,G1] where

l l

F = % (1 - ql(€7%)> and G = % (1 + ql(€7%)> .

Now, by Theorem 6.5.1 of [2], we have 1I,(l) € [F», G2] where

l l
_C (2 _a
F, = 5 <1 ql/2> and Gy = TR

Clearly, G2 < G;. And, it is easy to see that F; < Fy when (4) holds. Thus, when (4) holds, the
estimate £1,(1) lies in the interval [Fy, G1] which is known to contain A;.

The following lemma gives an efficiently computable expression for the number of ¢-smooth
reduced divisors in Jo (k) where C € {C62,C93,C124,C155}.

2For the curves C62, C93, C124 and C155, h(u) is irreducible over k. Thus h Z 0 (mod a) when 1 < dega < degh,
and so D # —D.




Lemma 2 Let C € {C62,C93,C124,C155}. Let A;, 1 <1 < ¢, denote the number of prime divisors
of degree [ in the factor base. Then the number of ¢-smooth reduced divisors in J¢ (k) is

uo =3 (11 (1)),

1=1 =1

where [] denotes the coefficient operator.

Proof: Suppose that a € k[u] is a t-smooth monic polynomial of degree < 31 for which (2) has
a solution. Let a = af'aj?---aj" be the factorization of a into monic irreducibles over k. Then
the number of ¢-smooth reduced divisors in J¢ (k) having first component a is exactly 2%; these
divisors are D = Zle e;div(a;, b;) where each b; is one of the two solutions to v2 +h(u)v — f(u) = 0
(mod a;).

For each I, 1 <1 < t, let P, = {a(u) : div(a,b) is a prime divisor of degree {}. Note that
#P, = A;. Let ¢; j be the number of monic polynomials of degree 7 in k[u] having exactly j distinct
monic irreducible factors all of which are in Ule P,. Then

t t A
P Al :L‘ly 4
l 2l 3l
> Ci,szy7=||(1+l’y+$ y+u y+) :I|(1+1—xl> :

§,j>0 =1 =1

Since there are exactly two prime divisors div(a,b) for each monic irreducible polynomial a in
Uj_, B, it follows that

31 . 31 ot 9. A
u =3 -3 (W (14 25) )
=1 7>0 =1 =1

as required. O
For known values of A;, 1 <[ < t, M(t) can be efficiently obtained by computing the first 32
terms of the Taylor series expansion about x = 0 of

and then summing the coefficients of z, 22, ... , 23!

SMOOTHNESS BOUND SELECTION. The divisors encountered in the random walk all lie in the
prime order subgroup (D;) of order r. We make the heuristic (and reasonable) assumption that
the proportion of ¢-smooth divisors in (D) is the same as the proportion of t-smooth divisors in the
full group Jc (k). Then, the expected number of random walk iterations before a ¢-smooth divisor
is encountered is E(t) = #Jc(k)/M(t). Table 2 presents, for various choices of the smoothness
bound ¢, the factor base size F(t), E(t), and the expected number T'(t) = (F(t) +5)E(t) of random
walk iterations to generate F(t)+5 relations®. In the table, an asterisk signifies that the factor base

3Some of the relations generated may be linearly dependent on previous relations. Heuristically, we expect that if
F(t) + 5 relations are generated, then the resulting system of linear equations will have a unique solution.



size F'(t) was estimated using (3). Taking into account both the expected running time and the
storage requirements for the factor base, it appears that the optimal choices of smoothness bounds
are t =17,5,5 and 4 for C62, C93, C124 and C155, respectively.

SMOOTHNESS TESTING. Given a reduced divisor D = div(a,b), a(u) is first subjected to a
square-free factorization algorithm (e.g., see [2]). The square-free portion @(u) is then tested for
t-smoothness using the fact that 24 — 1 is the product of all monic irreducible polynomials in F,[z]
of degree dividing [. If @(u) is indeed t-smooth, then the factorization is obtained using the Cantor-
Zassenhaus factoring algorithm [6]. Table 3 presents the time to generate and test 10,000 candidate
reduced divisors for C62, C93, C124 and C155. Generating a candidate essentially involves one
application of the Jacobian group law, while testing a candidate involves a square-free factorization
and a distinct degree factorization. Also listed in Table 3 is the proportion of time spent on the
Jacobian group law and on the smoothness testing.

PARALLELIZATION. The relation gathering portion of the algorithm can be effectively parallelized,
i.e., yielding a factor-m speedup when m processors are used. A different random walk is performed
on each machine (i.e., with different divisors T, T}, ...,T19 and different initial divisors Ry). Any
relations are reported to a central processor which also discards duplicates.

LINEAR ALGEBRA. For C62, C93, and C124, we used our unoptimized implementation of Wiede-
mann’s algorithm [42] as described in [23] to compute a vector in the kernel of the matrix modulo
the large prime divisor r of the group order. For C155, it will be necessary to optimize our imple-
mentation and most likely add structured Gaussian elimination [25] to reduce the size of the matrix
before applying Wiedemann. Nevertheless, we do not anticipate major difficulties with this stage
of the algorithm. Joux and Lercier [22] report on performing structured Gaussian elimination on a
sparse matrix with 2,900,000 rows, followed by Lanczos on a 172,049 x 171,061 matrix, all modulo
a 100-decimal digit prime. This was a parallel computation (four 500 Mhz Dec Alpha processors),
and took 20 days. By comparison, the sparse matrix for the C155 discrete logarithm computation
has only 136,528 rows, and the linear algebra is performed modulo a 155-bit prime. Thus, the linear
algebra stage of the discrete logarithm computations for C155 is well within the realm of feasibility.

5.2 Numerical Experiments

Table 4 presents timings from our experiments with solving instances of the HCDLP in the genus
31 curves C62, C93 and C124. Note that the average number of random walk iterations before a
smooth divisor is encountered is very close to the predicted numbers in Table 2.

From Table 4, we conclude that the HCDLP for each of the three curves C62, C93 and C124 is
quite tractable. In fact, the HCDLP in C124 (and hence also the ECDLP in E124; cf. Appendix A)
was solved in far less CPU time that the estimated 200,000 days on a single 450 MHz Pentium PC
expended on solving the significantly easier Certicom ECC2-108K ECDLP challenge?* [19].

“Koblitz curves [24, 40] are elliptic curves defined over Fo. ECC2-108K is an instance of the ECDLP in a Koblitz
curve of order twice a prime over Fyi00. By exploiting properties of the Frobenius endomorphism, Pollard’s rho




Curve | t F(t) E(t) T(t)
C62 1 2 2324438515686238 16271069609803669
2 4 27837587014206 250538283127858
3 14 1794233002 34090427031
4 42 2889490 135806029
5 144 36296 5408075
6 474 2614 1251872
7 1644 421 694997
8 *5724 117 672969
9 *20284 46 932866
10 *72661 23 1647615
C93 1 4 1.15035222 x 10%? 1.3531699 x 1023
2 16 5594986379814614 117494713976106894
3 100 2237298251 234916316328
4 596 1830509 1100135670
5 3872 28668 111146195
6 *25670 2139 54917739
7 *175466 370 64977373
8 *1223786 107 130753664
C124 | 1 8 3.33693830 x 10?8 4.33801984 x 10?8
2 64 6.48579145 x 1015 4.44751961 x 10'8
3 744 1781948118 1334679140141
4 8872 1498799 13304838571
5 113728 25876 2942900859
6 *1511468 2001 3024499495
7 *20685428 354 7320993345
8 *289116788 103 29880384177
C155 | 1 16 1.15149568 x 1032 2.24181409 x 1032
2 256 4105255075208737 1071471574629480605
3 5712 1549820999 8860326649526
4 136528 1378374 188193560220
5 *3491968 24746 86410841791
6 *92967640 1945 180781004858
7 *2547234664 347 883799233900
8 *71266645874 102 7257807696673

Table 2: For each of the curves C62, C93, C124, C155, this table lists the factor base size F(t), the expected
number E(t) of random walk iterations before a ¢t-smooth divisor is encountered, and the expected number
T(t) = (F(t) + 5)E(t) of random walk iterations to generate F'(t) + 5 relations for various choices of the
smoothness bound ¢. An asterisk signifies that F(t) is an estimate of the factor base size.
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Smoothness | Time to generate Proportion of Proportion of
bound and test 10,000 time spent on time spent on
Curve t candidate divisors | Jacobian arithmetic | smoothness testing
C62 7 54.0 40% 60%
C93 5 67.4 38% 62%
Cl124 5 89.0 32% 68%
C155 4 120.7 25% 75%

Table 3: Time (in sec) to generate and test 10,000 candidate reduced divisors for ¢-smoothness on a single
1 GHz Pentium III workstation having 512 MBytes of RAM.

Curve C62 C93 C124
Smoothness bound ¢ 7 ) )
Factor base size 1,644 3,872 113,728
Time to generate factor base 20s 34s 12m 3s
Number of relations generated 1,649 3,877 113,733
Avg. no. of iterations per relation 400 28,050 25,576
Total CPU time to generate all relations || 1h 49m 29s | 15d 20h 6m | 379d 2h 1m
Time to solve linear system 46s 6m 23s | 3d 17h 55m

Table 4: Timings from our experiments with implementing the Enge-Gaudry index-calculus algorithm for
solving instances of the HCDLP in the genus 31 curves C62, C93 and C124 (see Table 1). The timings
for factor base generation and for solving the sparse linear system were obtained using a single 800 MHz
Pentium IIT workstation with 512 MBytes of RAM. The timings for relation generation for C62 and C93
were obtained using a cluster of 12 550 MHz Pentium III workstations each having 256 MBytes of RAM. The
timing for relation generation for C124 was obtained using a cluster of 16 400 MHz Pentium II processors, 26
450 MHz Pentium II processors, 66 550 MHz Pentium III processors, and 100 1 GHz Pentium III processors.

“

Seconds, minutes, hours, and days are denoted by “s”, “m”, “h”, and “d”, respectively.
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Curve C62 C93 C124 C155
Smoothness bound ¢ 7 ) ) 4
Factor base size 1,644 3,872 113,728 136,528
Time to generate factor base 15s 26s 9m 17s 8m 58s
Number of relations generated 1,649 3,877 113,733 136,533
Total CPU time to generate all relations || (1h 3m) | (8d 16h) (303d) | (26,290d)
Time to solve linear system (1m) (6m) | (3d 12m) (5d)

Table 5: Time to solve instances of the HCDLP on C62, C93, C124 and C155. The times for factor base
generation are actual times obtained on a single 1 GHz Pentium III workstation with 512 MBytes of RAM.
The times for generating relations are estimates on a single 1 GHz Pentium III workstation with 512 MBytes
of RAM. These estimates were derived from our estimates for the number of random walk iterations required
(see Table 2), and the actual time to generate and test a candidate divisor for smoothness (see Table 3).

The times for solving the sparse linear system are estimates for a 1 GHz Pentium III workstation.

We did not solve an instance of the HCDLP in C155. However, we argue that this problem
is quite feasible. For a smoothness bound of ¢t = 4, the factor base size is F'(4) = 136,528. From
Table 2, the expected number of random walk iterations before a smooth divisor is encountered is
E(4) =1,378,374. Thus the expected number of random walk iterations before F'(4) + 5 relations
are obtained is F(4)(F (4)+5) ~ 1.88x 10!, Since the average time to generate and test a candidate
divisor is 1.207 x 1072 sec on a 1 GHz Pentium I1I workstation (see Table 3), the expected time to
generate the relations on a single such machine is approximately 26,290 days. The time to solve
the resulting sparse linear system can be ignored since, as argued in §5.1, it is at most a couple of
days. The estimated time for the C155 HCDLP computation is compared to the estimated time
for the C62, C93 and C124 computations on the same workstation in Table 5.

We can conclude that instances of the HCDLP in C155 can be solved in about one month using
a network of 1,000 1 GHz Pentium III workstations. This is the same order of magnitude as the
work required to perform exhaustive search on the DES key space (estimated time is 110,000 days
on a single 450 MHz Pentium PC [19]), and less that the estimated time of 200,000 days on a single
450 MHz Pentium PC spent on the Certicom ECC2-108K ECDLP challenge [19].

5.3 Further Optimizations

We did not make significant efforts to optimize our implementation. The following are some ways
in which our implementation could be improved.

1. Experiment with different methods for selecting prime divisors for the factor base. For exam-
ple, we might start with an empty factor base and add prime divisors as they are encountered
as factors of smooth divisors.

algorithm for the ECDLP in Koblitz curves over Fam can be sped up by a factor of \/m [15, 43]. The expected
number of elliptic curve operations to solve the ECC2-108K challenge using Pollard’s rho algorithm is 1.5 x 10'6.
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2. Experiment with the large prime variant for generating relations. In addition to storing the
factorizations of the ¢-smooth divisors, we also store “partial relations” which arise from
random divisors which are #-smooth except for one irreducible factor of high degree. Any
two partial relations containing the same large irreducible factor can be combined to yield
a relation. This method has been successfully employed in other index-calculus algorithms
(e.g., see [26]), and initial experiments indicate that it may be useful in our setting as well.

3. Experiment with Bernstein’s methods [4] for fast smoothness testing.

4. Experiment with sieving methods (see [10]) to determine if they can be used to generate
relations faster than the random walk method.

6 Cryptographic Implications

Our experiments with our non-optimized implementation of index-calculus methods for the HCDLP
in C155 indicate that the HCDLP for genus 31 hyperelliptic curves over Fys is quite tractable. Now,
the ECDLP in the particular elliptic curve E155 over Fyis5 (see Table 1) is intractable using Pollard’s
rho algorithm since the expected number of elliptic curve operations is /72154 /4 =~ 277. However,
since the GHS attack can efficiently reduce instances of the ECDLP in E155 to instances of the
HCDLP in genus 31 hyperelliptic curves over Fqos, we conclude that the ECDLP in E155 is indeed
tractable.

Even though the GHS attack only appears to be applicable to an insignificant proportion (232
out of the 256 elliptic elliptic curves over Fyis5), we feel that caution must be exercised when
selecting elliptic curves over Fy155 for cryptographic use.

The particular elliptic curve over Fy155 included in the IETF standard [21] is y? + zy = 2 + b,
where

b=w® + "+ + WP+ w2+ + "+t w1

and Foiss = Fo[w]/(w'®® + w® 4+ 1). Let o : Fyiss — Faiss be the Frobenius map defined by
2+~ 2z2°. The smallest degree factor f(z) of z3' + 1 over F, for which f(o)(b) = 0 is f(z) =
(231 + 1) /(2 + 23 + 1). It follows from [29, Theorem 6] that the GHS attack reduces the ECDLP
in F(Fy155) to the HCDLP in the Jacobian of a genus 23° or 23° — 1 hyperelliptic curve over Fys.
Hence this particular elliptic curve does not succumb to our approach of reducing the ECDLP to
the HCDLP over Fys.

An open question is whether the GHS attack can be applied to all elliptic curves over Fqis5. As
shown in [29], except for the Koblitz curves®, the GHS attack reduces the ECDLP in elliptic curves
over Fyi55 to the HCDLP in Jacobians of genus 15 or 16 curves over Fosi. Smart [39] argues that
Gaudry’s algorithm (with the factor base consisting only a fraction of the prime reduced divisors
of degree 1) is infeasible given today’s computer technology. However, [39] did not consider (in any

5The GHS attack can be proven to fail for Koblitz curves—the attack only yields information about the desired
logarithm modulo #E(F3).
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detail) the applicability of the other index-calculus methods. In particular, large-prime variants
and sieving methods were not considered. While it is likely that the known index-calculus methods
are indeed infeasible for this problem, further study and experimentation is needed before this can
be concluded with certainty.

Another possibility for attacking the general ECDLP for elliptic curves over Fyiss, of course,
is if the Weil descent methodology can be exploited to yield another way (i.e., different from the
GHS attack) of reducing the ECDLP for elliptic curves over Fyis5 to Jacobians of low genus curves
(perhaps not hyperelliptic) for which subexponential-time index-calculus methods can be found.
We have no evidence to make a conjecture about the existence of such a possibility, however we
would expect that it is much more likely for such a method to exist for elliptic curves over fields
Fom where m is composite (e.g, m = 155), than for elliptic curves over fields Fom where m is prime.
Some evidence for this is provided by the complete failure of the GHS attack for the ECDLP in
elliptic curves over Fom where m is prime [29].

7 Conclusions

We have implemented the GHS Weil desent attack and the Gaudry-Enge index-calculus method
for the HCDLP. We were successful in solving specific discrete logarithm problems in elliptic curves
over Faos2, Foos and Foi2a. Our experiments, though far from being optimized, indicate that our
specific logarithm problem in Fq155 is tractable. The ECDLP instance over Fy155 is the first concrete
instance of the ECDLP which resists all previously known attacks, but which can be solved using
the Weil descent attack methodology of Frey.

While the GHS attack is only known to apply to an insignificant proportion of all elliptic curves
over Fa155, our results provide some evidence that elliptic curves over Fsis5 should be used with
caution and preferably avoided altogether.

We emphasize that our computational results cannot be extended to solve cryptographically
interesting instances of the ECDLP for elliptic curves over fields Fom where m € [160, 600] is prime,
since the GHS attack is ineffective in these cases [29].
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A Elliptic Curve and Hyperelliptic Curve Selection

This section describes how the elliptic curve E124 was selected, and how a random instance of the
ECDLP in E124 was generated and reduced to an instance of the HCDLP in C124. The other
elliptic curves and hyperelliptic curves listed in Table 1 were generated in an analagous manner.

ELLipTic CURVE GENERATION. Let n = 31, and ¢ = 2%. Let a be an arbitrary element of trace 1
in Fyi24. The order of 2 modulo n is ¢ = 5. The elliptic curve E124 was chosen by selecting random
elements b € B (where B is defined in Theorem 1(ii)) until the number of Fyi24-rational points on
y? + 2y = 2° + az® + b is twice a prime. By Theorem 1 we know that m(b) = ¢ + 1 = 6 and hence
the GHS attack will reduce any instance of the ECDLP in E124 to an instance of the HCDLP in
a genus 31 or 32 hyperelliptic curve over Foa.

The elements of Fy124 are represented as binary polynomials modulo the irreducible polynomial
2124 4+ 219 1 1. The defining equation for the elliptic curve E124 is y? + 2y = 23 + az? + b where
a= 2% and

h = 2108+2106+2102+2101—|—299+293+287—|—285—|—Z75+Z70—|—Z68+267+266+264+Z62+259+
B R e o A A P I L
S294,27 4 24 234 22, 20 18, 16 15, 14, 9, 8, 7, 6, 3, 2,
The number of Fyi2a-rational points on E124 is 2r, where
= 10633823966279326985483775888689817121
is prime.

ECDLP INSTANCE GENERATION. We selected two points P,Q from E124(Fyi24) verifiably at
random as follows. We first defined 124-bit integers m; and mgy to be the 124 rightmost bits of

(13 a‘n-d- LGa77,

the 160-bit outputs of the SHA-1 cryptographic hash function with inputs the strings
respectively®. We identify a 124-bit integer ¢ = 12322 + ¢1222'%? 4 .-+ + ¢y with the element
123223 + 129222 + .-+ + ¢y of Foi2a. Then, for each i € {1,2}, we define n; to be the smallest
integer > m; for which the field element corresponding to n; is the xz-coordinate of some point of
order r in E124(Fyi24); for such an n; we arbitrarily select one of the two possible y-coordinates.

In this way, we derive the following two points:

P = (19166289931116350914892435465096922889,
3954926638115710237279327107877298663),

(14152416137154867042654754006541690809,
15733241592903071723351565426494711869).

Q

The ECDLP challenge is to find the integer [ € [0, — 1] such that @Q = [P. Note that since P and
(Q were (pseudo)randomly generated, the discrete logarithm [ is not known a priori by us.

5These two strings are commonly used as inputs to generate test vectors for hash functions. For example, see
Table 9.6 of [28].
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HCDLP INSTANCE GENERATION. Hess’s KASH program [20] for the Weil restriction represents
elliptic curve points as zero divisors. For technical reasons, he excludes the point at infinity from
occurring in the support of the divisors. Thus, instead of representing an elliptic curve point P by
a zero divisor (P) — (00), we represent P by the equivalent zero divisor (P + R) — (R), where R is
an arbitrary point on the curve. We arbitrarily selected the following point of order r:

R = (11949386922129241854287919257049811485,
13819702817838731027194193290120801107).

Let P, = P+R, P, = Q+R and P; = R. Hess’s KASH program was used to reduce (E124, Py, P, P3)
to (C124, Dy, Do, D3), where C124 is a genus-31 hyperelliptic curve over Fys and Dy, D, D3 are
divisors in Jc24(F4). The elements of Fya are represented as binary polynomials modulo the
irreducible polynomial w* 4+ w + 1. The Weierstrass equation for the hyperelliptic curve C124 is
v? + h(u)v = f(u), where

f(u) — w6u63+w14u60 +w6u56+w6u48+1,

h(u) — w3u31+w9u30+wu28+w11u24+w12u16+w12‘

The divisors D1, Dy and D3 are:

Dy = div(u3 +wb 13 +wlu? +wdu w0027 +pdu26 4 wltu wtul 2 a2 et 4
w2u29 4 419 a8 a4l 12016 B0 w4 T B T w2 w2 T w04
whBud +w ud +u” +wub +wtte® +wtut +w? v+t fu +wdu+ 1, w0 +wdu +wu?d +wdu? +
w26 45428 100,23 4224 842 9019 20 18 B 6 By 1B w13 My 13 4
w7u12—|—u11—i—wsuw—i-ug+w2u8+w6u7+u6+wu5+w9u4+w13u3+w2u+w7),

Dy = div(u3 +w2u30 +wdu2 +wbu28 w2027 +wltu26 w325 du2t w2+ 2u2 +u20+
w38 2417 1016 412015 4314 913 B 12 9w T w0 w2u? +wduS +
w7 +w?ub +w'2ud +wlOul +w S+ w2+t ut 1w u? +wbu?8 +u?T ot u26+
w25 28 022 4P 02 3120 419 P 18 20t T BB Mty 13
w7u12+w10u11+w6u10+w4u9+w2u8+w14u7+wu6+w11u4+w11u3+w2u2+w9u+w6),

D3 = div(u3! +wu30+wdu?8 +u?7 +wdu0 +w w25 4w B u? 4 w?u?3 +wdu2 +wu?t +w w0+
w2019 4wt 18 90 T 4w B30 15 13 M 12 1 30 B S ud 4w Tu T +
w14u6+u5+w5u4+w9u2+w7u+w9, w w30+ wdu?? Fwtu Fwu? Fwbu0 w u?d Fwu?3 4
w22 40742 w909 90w 2u B0 w23 B 2wt B 100 w208+
w5u7—|—w7u6+w2u5+w9u4+w2u3+w7u2+w3u+w13).

Our task is to solve the following logarithm problem in Jcj24(Fo4): find the integer I € [0, — 1]

such that (D2 — D3) = l(Dl — D3)

ECDLP anp HCDLP SorLuTioNs. Our implementation of the Enge-Gaudry algorithm obtained
[ =289697194482016303350776099807354482.

Finally, we verified that @Q = [P on E124.
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