
Simple Forward-Seure Signatures From Any Signature

Sheme

�

Hugo Krawzyk

y

Abstrat

In Crypto'99, Bellare and Miner introdued forward-seure signatures as digital sig-

nature shemes with the attrative property that exposure of the signing key at ertain

time period does not allow for the forgery of signatures from previous time periods. That

paper presented the �rst full design of an eÆient forward-seure signatures sheme, but

left open the question of building eÆient and pratial shemes based on standard sig-

natures suh as RSA or DSS. In partiular, they alled for the development of shemes

where the main size-parameters (namely, the size of the private key, publi key, and

signature) do not grow with the total number of periods for whih the publi key is to

be in use.

We present an eÆient and extremely simple onstrution of forward-seure sig-

natures based on any regular signature sheme (e.g., RSA and DSS); the resultant

signatures enjoy size-parameters that are independent of the number of periods (exept

for the inlusion of an index to the period in whih a signature is issued). The only

parameter that grows (linearly) with the number of periods is the total size of loal

non-seret memory of the signer. The forward-seurity of our shemes is diretly im-

plied by the unforgeability property of the underlying signature sheme and it requires

no extra assumptions.

Our approah an also be applied to some signature shemes with speial properties,

suh as undeniable signatures, to obtain forward-seure signatures that still enjoy the

added speial property.

�

Work done during September 1999; published in 7th ACM Conferene on Computer and Communiations

Seurity, Nov. 2000.

y

Department of Eletrial Engineering, Tehnion, Haifa, Israel. hugo�ee.tehnion.a.il

1



1 Introdution

A natural onern related to digital signatures is that the disovery of the signing key by

an attaker provides this attaker with the power to forge the signature on any message.

Not only this ompromises the seurity and validity of any signature issued after the break

but it also ompromises all past signatures. Mehanisms suh as key revoation (e.g., via

erti�ate revoation) provide some protetion against forgeries of signatures dated after the

key's exposure is disovered, but are of no help to maintain the seurity of past signatures.

One solution to this problem is the use of a (trusted) timestamping servie applied to the

signature string to validate its date of reation (e.g., [14℄). Another solution is to hange the

pair of publi-private keys related to the signature algorithm very often. A simpler approah

to solve this problem was suggested by Ross Anderson [1℄ who alled for �nding signature

shemes where signature keys expire periodially yet the publi key does not hange.

In a reent paper, Bellare and Miner [3℄ address this problem by formalizing Anderson's

proposal through the notion of forward-seure signatures, and by providing the �rst eÆient

implementation of this notion. In their model time is divided into disrete periods (say,

days, weeks, et.). As in a regular digital signature sheme there is a publi veri�ation key

and a seret signature key. However, while the publi key does not hange over time the

seret key hanges at eah new period. The reipient of a signature an verify the signature

against two parameters: orret veri�ation by the publi key and orrespondene of the

signature to a partiular period of time. Suh a signature sheme is alled forward-seure if

the exposure of the seret key at time-period t does not allow for forgery of signatures that

belong to previous time-periods. Thus, in addition to the assurane given by regular digital

signatures that the message was signed by the owner of the signing key, forward-seure

signatures also provide a proof of when (i.e. in whih period) the signature was issued.

There are many onsiderations regarding the design of forward-seure signature shemes

inluding their motivation, usage, eÆieny parameters, and the suitability of some simple

approahes to solve the problem. We omit a detailed disussion of these issues here as they

are thoroughly presented in [3℄ (the interested reader is highly enouraged to onsult that

paper). We fous in presenting our simple basi solution, its seurity, and variants.

As pointed out by [3℄ it is easy to build forward-seure shemes where one of the following

basi parameters of the sheme grows linearly with the total number of periods T : the size

of the seret key, the size of the publi key and/or the size of the signature. They also

point out to a \tree sheme" that requires O(k log T ) size, where k is a seurity parameter

(e.g., the size of the signature keys). However, it is argued in [3℄ that for a forward-seure

signature sheme to be truly pratial the size of these parameters should be independent

of the number T of periods. (It seems that a minimal dependeny with T is required if

one wants to inlude an index to the time period in whih a signature is generated { suh

information is essential to allow a seure binding between a signature and the period in

whih it was reated.) Then [3℄ present the �rst solution to satisfy this size requirement.

Their solution is based on a Fiat-Shamir-like signature sheme derived from identi�ation

2



shemes. Seurity is arefully formalized and proven based on the idealized random-orale

assumption.

Among the simple shemes pointed out by [3℄ there is one suggested by Ross Anderson

[1℄ whih an be applied to any signature sheme but whih requires a seret key whih is T

times longer than the seret key of the underlying sheme. Here we show how to implement

suh a sheme with a �xed-size seret key while preserving the simpliity and generality of

Anderson's solution. We use for that a pseudorandom generation proedure whih by itself

satis�es forward-seurity [4℄. As a result our sheme enjoys some very desirable properties

and some signi�ant advantages over the solution of [3℄:

Simpliity: our sheme is very simple and intuitive, and tehnially straightforward. This

onstitutes a oneptual and pratial advantage as reeted in the following bene�ts.

Generality: any seure signature sheme an be made forward-seure using our approah.

This means that we do not require the design and analysis of new digital signature shemes

speially tailored to enjoy the forward-seurity property. Instead we an use any existing

believed-to-be-seure signature sheme. In partiular, we provide forward-seure RSA and

DSS signatures (oming up with suh shemes was left as an open problem in [3℄).

Analysis: our onstrution does not neessitate of ideal assumptions suh as random orales.

Seurity is proven, in a straightforward manner, on the sole basis of a seure regular digital

signature sheme and the existene of pseudorandom funtions (the existene of the latter

is implied by the signature sheme).

EÆieny: the ost of signing in our solution is idential to the ost of signing under the

underlying signature sheme. Veri�ation requires two regular veri�ations (for veri�ation

of the message signature and a erti�ate).

Size of main parameters: Our sheme satis�es the requirement, postulated in [3℄, that the

size of the main parameters (seret key, publi key, signature) be independent of the total

number of periods T for whih the sheme is implemented. Both the seret and publi key

in our sheme are of size idential to the size of the orresponding keys in the underlying

signature sheme; the signature's size is twie the size of a regular signature. In partiular,

using suitable signature shemes (e.g. DSS) the seret key in our sheme will be onsiderably

shorter than the key in the sheme of [3℄. The only dependeny on T of the above parameters

is the inlusion in eah signature of an index to the period in whih the signature was issued.

The one aspet in whih our shemes are less eÆient than the partiular solution of [3℄ is

the size of the memory maintained by the signer: in our ase the signer keeps in memory

T \erti�ates" one for eah time period. This is usually not a real problem given that

this information has no serey requirement neither there is a need to publish it or share

it with others. Moreover, these erti�ates an be freely baked up by the signer to ensure

availability (upon retrieval from the bakup the signer an easily hek the integrity of the

erti�ates using its own publi key); even if a partiular erti�ate is eventually lost it will

only prevent the signer from generating signatures for that period but will otherwise have

no seurity e�et (in partiular, no ompromise of any signature). If in some partiular

3



setting one wants to save in this memory requirement we show how to ahieve that (see

Setion 3) at the expense of inreased omputation time and larger (by a log T fator)

signature size.

Appliability to rih signature shemes: in addition to providing forward-seurity to regular

digital signature shemes, our sheme an provide this feature to signature shemes with

added apabilities suh as undeniable signatures. We also disuss the design of forward-

seure threshold and proative signature shemes.

2 Forward-seure signatures from any signature sheme

2.1 The omponents of forward-seure signature shemes

We start with a regular digital signature sheme denoted SIG (e.g., RSA or DSS) omposed

of three algorithms: kg (the key generation algorithm), sign (the signature algorithm),

and ver (the veri�ation algorithm). Algorithm kg on input a seurity parameter and a

random string outputs a pair of publi and private keys denoted PK

0

and SK

0

, respetively.

Algorithm sign generates a signature on input a message M using the private key SK

0

.

Algorithm ver uses the publi key PK

0

and is applied to pairs M;�, its output is one of

the values valid or fail. It is required that ver returns valid if and only if � is a possible

signature of M under SK

0

.

Our goal is to design a forward-seure signature sheme based on SIG where the seret

keys evolve over T periods of time, for some pre-spei�ed number T and with eah period

being of some spei�ed duration (a day, a week, et.). We assume that the publi key of

the forward-seure sheme is to be used for a total time that does not exeed T periods

(namely, after suh T periods the publi key is expired). On the other hand, the seret

signing key hanges at the beginning of eah new period. A ore seurity requirement is

that exposure of the urrent seret key does not help the attaker in forging signatures from

previous periods. We denote the resultant forward-seure signature sheme by FWSIG.

Following the formalization of [3℄ we identify four omponents of FWSIG: fwkg, fwupd,

fwsign, fwver, whose funtionality we desribe next.

The system (or user) initially generates seret and publi parameters aording to a

key generation proedure fwkg (using a spei�ed seurity parameter); this inludes the

generation of the publi veri�ation key PK

0

(alled the base publi key) that will remain

�xed for the lifetime of the system (i.e., for T periods). The signing algorithm fwsign will

depend on a seret key that will hange with eah time period. The signing key for period t

is denoted by SK

t

and will be generated at the beginning of eah period out of information

existent in the previous period via an update proedure denoted fwupd. Given a message

M to be signed, algorithm fwsign reates a signature on M , using key SK

t

(and possibly

other publi information). Finally, algorithm fwver is used to validate signatures. Its

inputs onsist of the base publi key PK

0

, a message M , a period number t, and a signature

4



string s. It outputs valid if and only if the signature s is a legal output during period t

of algorithm fwsign applied to the message M (i.e., i� the signature was generated under

SK

t

).

We note that the veri�ation algorithm in the forward-seure setting is verifying not only

that the messageM was signed by the \owner" of publi key PK

0

but that it was spei�ally

signed during time period t. It is the apability of verifying this fat that provides the added

strength of forward-seure signature shemes relative to regular digital signature shemes.

We will denote a forward-seure signature sheme by the quadruple FWSIG = (fwkg,

fwupd, fwsign, fwver) with the values T , the period duration, and seurity parameter

being impliit parameters. Before moving to desribe our implementation of these ompo-

nents (based on any regular signature sheme SIG) we introdue the following tehnial

tool.

2.2 A tehnial tool: forward-seure prg's

The key-refreshment (or key-evolving) paradigm of forward-seure signatures is useful for

many other ryptographi primitives with di�erent seurity impliations depending on the

appliation. Examples inlude proative systems (e.g., [16, 6, 15℄) and key exhange pro-

tools with key expiration and the related notion of \perfet forward-serey" [9℄. In our

onstrution of forward-seure signatures we use forward-seure pseudorandom generators.

Suh generators have been used in di�erent ontexts, e.g. [2, 6℄, and have simple realizations

based on regular pseudorandom generators or pseudorandom funtions. A formalization of

this notion an be found in [4℄. Here we desribe them informally and point to one simple

(generi) onstrution (other implementations are possible).

A forward-seure pseudorandom generator is one where seeds (or keys) are refreshed

periodially and where exposure of the generator's seret state at a given time period reveals

no (eÆiently omputable) information about the pseudorandom sequenes generated in

previous periods. Namely, the generator uses at eah time period t a seed (or key) k

t

to

generate a sequene r

t

whih is indistinguishable from a truly random sequene as long as

the keys k

t

0

for t

0

� t are not input to the distinguisher. In addition, the sequenes r

t

remain pseudorandom even if the distinguisher is given any key k

t

0

for t

0

> t.

We present a simple onstrution of forward-seure pseudorandom generators based on

any family F = ff

k

g of pseudorandom funtions. For simpliity we assume that the output

of the funtions f

k

is of the same length as the length of the index k; if a given pseu-

dorandom family does not have this property then it an be ahieved by simple output

trunation (if the output is longer than the key) or by applying the funtion on di�er-

ent inputs (if the key is longer than a single output of the pseudorandom funtion). In

eah time period t we generate a pseudorandom sequene r

t

, of a spei�ed length, as fol-

lows. Let k

1

be a random index to a funtion in F . In period 1 we generate a pseudo-

random sequene r

1

as f

k

1

(1); f

k

1

(2); f

k

1

(3); : : : (the funtion is applied as many times as

needed to reah the required length of r

1

). At the beginning of eah period t 2 f2; : : : ; Tg

5



we ompute k

t

= f

k

t�1

(0), and erase k

t�1

. The sequene generated at this period is

r

t

= f

k

t

(1); f

k

t

(2); f

k

t

(3); : : :. It is easy to show that the exposure of k

t

is of no help

for distinguishing the sequenes r

t

0

, t

0

< t, from randomness.

2.3 The general transformation

We now present our simple transformation of a regular signature sheme SIG into a forward-

seure sheme FWSIG. We �rst outline the method and then provide a more detailed

desription. We start with a pair of seret-publi keys for sheme SIG whih we denote

by SK

0

and PK

0

, respetively. We then reate T di�erent seret keys, one for eah time

period, using a forward-seure pseudorandom generator out of an initial random seed k

0

and the key generation algorithm kg. These seret keys are generated as signature keys

for the sheme SIG. The publi veri�ation keys orresponding to these signature keys

are also generated and a \erti�ate" is reated for eah of them; that is, for eah period

t = 1; : : : ; T we have a signature key SK

t

, a orresponding publi key PK

t

, and a erti�ate

ert

t

. Eah erti�ate ert

t

inludes the value PK

t

, the period number t, and the value

of the base publi key PK

0

(it may also inlude additional information related to user U as

well as other system parameters). Also inluded in the erti�ate is a signature under key

SK

0

omputed on the other information inluded in the erti�ate.

One all this information is generated we erase all the seret keys (inluding SK

0

), and

all the information produed by the pseudorandom generator with the exeption of the

initial seed k

0

whih we store and keep seret. We also keep all erti�ates and the publi

key PK

0

. The publi key PK

0

is treated as any other publi key in a signature sheme, for

example, it may be erti�ed via a erti�ation authority (in this ase the erti�ate may

inlude, in addition to standard erti�ate information, some spei� information related

to the forward-seure sheme suh as the number of periods, their duration, et.). The T

erti�ates are also saved by U . There is no serey requirement on them, nor the need

to make them publi. They just need to be available to U during the orresponding time

period. Changes to these erti�ates while stored an be deteted (via the veri�ation key

PK

0

). If a erti�ate is lost before the orresponding time period then U will not be able

to generate any signature during that period but this will have no e�et on the seurity

of signatures generated in other periods. In any ase guaranteeing the availability of these

erti�ates is simple; in partiular, beause of the lak of serey requirements they an be

freely bakup-ed for availability.

At the beginning of eah period t, the signature key SK

t

is omputed based on the key

of previous period and the latter is then erased. Signatures during period t are generated

using SK

t

as the signature key; the orresponding erti�ate ert

t

is appended as part of

the signature. Signature veri�ation is done using the publi key PK

t

that appears in the

erti�ate, while the erti�ate itself is validated using the base publi key PK

0

. The time

period in whih the signature was issued is veri�ed via the period number that appears in

the erti�ate.

6



A more areful and detailed desription of our sheme follows.

Underlying funtions: We start with a regular digital signature sheme SIG = (kg,

sign, ver), and a forward-seure pseudorandom generator fwprg whih on input k

t�1

produes a pair of pseudorandom values k

t

and r

t

. (It suÆes that eah of k

t

and r

t

are

individually pseudorandom; their joint distribution may not be pseudorandom, in partiular,

it an even be that k

t

= r

t

.)

Initialization (algorithm fwkg): Here we desribe the reation of parameters (seret

and publi) for the use of the sheme FWSIG by a user (we all it U), inluding the gener-

ation of the pair of veri�ation-signature keys and other values neessary for the operation

of the sheme. We assume the publi veri�ation key will be in use for T periods of time,

eah period being of some pre-spei�ed length (a week, month, et.). The following steps

are performed by user U before the start of period 1.

1. Given a seurity parameter � hoose a random value r and ompute (PK

0

; SK

0

) kg(�; r).

2. Choose a random seed k

0

for fwprg.

For t = 1 to T do

(k

t

; r

t

) fwprg(k

t�1

)

(SK

t

; PK

t

) kg(�; r

t

)

ert

t

 (PK

0

; t; PK

t

; sign

SK

0

(PK

0

; t; PK

t

))

3. Erase SK

0

and k

t

; r

t

; SK

t

, for t = 1; : : : ; T .

4. Store seurely (i.e., in seret storage) the value k

0

5. Store ert

t

, t = 1; : : : ; T and publish the publi key PK

0

(e.g., via a erti�ation

authority).

Update algorithm (fwupd): At the beginning of eah period t do the following:

1. (k

t

; r

t

) fwprg(k

t�1

)

2. (SK

t

; PK

t

) kg(�; r

t

)

3. retrieve ert

t

and verify that the values PK

0

and t in it are orret (i.e orrespond to

the base publi key and urrent time period t); also hek that the publi key PK

t

in

it equals the publi key generated in previous step. If any of these heks fail, abort.

4. store seretly k

t

and SK

t

and erase k

t�1

Signature algorithm (fwsign): On input message M to be signed do:

7



1. Retrieve urrent values of ert

t

and SK

t

.

2. Output the signature pair (ert

t

; �) where � = sign

SK

t

(M).

Signature verifiation algorithm (fwver): On inputs the publi key PK

0

, a message

M , a time period t, and a signature string s the veri�ation algorithm fwver proeeds as

follows:

1. Parse s into the values ert and �.

2. Parse ert to get the values (PK

0

0

; t

0

; PK

0

t

; �

0

).

3. Chek that PK

0

0

= PK

0

and t

0

= t.

4. Verify that ver

PK

0

((PK

0

; t; PK

0

t

); �

0

) = valid.

5. Verify that ver

PK

0

t

(�) = valid.

6. If all heks sueed output valid, otherwise output fail.

2.4 Main Theorem

The following theorem summarizes our result and is straightforward to prove. The notion

of unforgeability that we use for the regular underlying sheme is the strong notion of

seurity for digital signature as formalized in [13℄ (seurity against existential forgery under

adaptive hosen message attak). This notion an be extended in a natural way to apture

also forward-seurity of signatures; this extension an be found in [3℄. We omit the tehnial

formalization details here.

Theorem 1 Let SIG = (kg; sign;ver) be an unforgeable signature sheme and fwprg

be a forward-seure pseudorandom generator, then the sheme FWSIG = (fwkg, fwupd,

fwsign, fwver) onstruted above is an unforgeable forward-seure signature sheme.

To prove the theorem one assumes the seurity of the forward-seure pseudorandom

generator fwprg and the unforgeability of the underlying signature sheme SIG. Then

one shows that if a forger for the sheme FWSIG exist then one an onstrut out of it a

forger for the sheme SIG, thus reahing a ontradition. We note that a basi di�erene

between a forger against SIG and the one against FWSIG is that the former is never given

the signature key, while the latter is provided with the signature key for a period t and it

is onsidered suessful if it �nds a forgery for a signature orresponding to a period t

0

< t.

See Appendix A for a proof of Theorem 1.

We end the setion with a short analysis of the sheme's main parameters size.

8



Size of main parameters. The publi key of our forward-seure sheme is a single

regular publi key (PK

0

) for the underlying signature sheme SIG. The seret information

maintained by the system, at any given period, are the period's signing key (orresponding

to the underlying sheme SIG) and the urrent seed for fwprg. (For appliations where

savings in seret storage is of prime importane, one an slightly modify the update sheme

desribed above so that only the seed needs to be stored seretly while the signature key is

re-omputed upon need. Moreover, in some ases these two values may even be the same.)

A signature string under our sheme inludes a regular signature string under SIG and the

period's erti�ate whih inludes the period number. (Note that for parties that verify

multiple signatures for the same period, a single opy of the period's erti�ate suÆes.)

3 Examples and Variants

DSS and RSA. Building a forward-seure signature sheme based on DSS is very simple.

The signature key in DSS is a random 160-bit quantity (taken modulo q). If one uses a

forward-seure pseudorandom generator with seed of the same size (e.g., based on SHA-1)

then the signature key and seed for a given period an be the same.

1

In the ase of RSA, the key generation proedure will use the value r

t

produed in

period t as input to a probabilisti algorithm that �nds prime numbers. When the key is

re-omputed at the beginning of period t we will eventually �nd the same primes. We stress

that one an use some simple optimizations that will save prime re-omputation time during

the update phase of period t. (For example, if one uses r

t

as the key to a pseudorandom

funtion and the tested primes are f

r

t

(1); f

r

t

(2); : : : then one an store the value of the

inputs to the funtion where the hosen primes were found.) An RSA-based sheme where

the periodi seret key is a uniformly hosen number (rather than a pair of prime numbers)

is proposed next.

An RSA-based variant. As a uriosity, and maybe as a basis for future forward-seure

shemes we outline the following sheme whih is based on RSA-seurity. Its advantage

over regular RSA is that the per-period keys are just random numbers (exponents) rather

than (harder to generate) prime numbers. However, beyond being non-standard, it requires

the use of a random-orale (for non-interative veri�ation).

The key generation algorithm fwkg proeeds as follows. The base keys PK

0

; SK

0

are

regular RSA keys. That is, a pair of primes p; q is generated and the publi key PK

0

is

set to be n = pq together with a publi exponent e. (There are no more prime numbers

generated in this sheme.) In addition, a �xed value w 2 Z

�

n

is inluded as part of the

1

Note, however, that there is an advantage to the ase where a seed annot be derived from a signature

key: if some period's signature key gets exposed { e.g., via a physial attak { we would still like to keep

the period's seed seret, or otherwise all subsequent periods are ompromised. Note that the signature key

may be more vulnerable than the seed given that it needs to be aessible during the whole period while the

seed is used only during the update phase.

9



sheme's publi key. Per-period keys are produed as follows. The seret key for period t

is a random number d

t

< n; these numbers are produed for all periods out of an initial

seed using a forward-seure pseudorandom generator fwprg (as desribed in our general

sheme; in the present ase, a period's seed and signature key an be the same). The publi

key for period t is the value w

d

t

mod n. One these publi keys are generated, they are

erti�ed using RSA signatures with keys PK

0

; SK

0

; the key SK

0

is then erased (inluding

the primes p; q and the signature exponent d).

A signature during period t on message m is produed as the string S

m

= m

d

t

mod n

together with a non-interative proof that the disrete-log of S

m

to the basis m equals the

disrete-log of w

d

t

mod n to the basis w. (Reall that w

d

t

mod n is the erti�ed publi key

for period t.) There are known eÆient zero-knowledge interative proofs for laims of this

type whih an be transformed into non-interative proofs via the use of a \random-orale"

(a la Fiat-Shamir).

The seurity analysis of suh a sheme an be based on the results of [12℄ (where a related

sheme is used for undeniable signatures). In partiular, that paper desribes the relevant

(interative) zero-knowledge proofs as well as the way one has to hoose the sheme's pa-

rameters (e.g., how to hoose the primes p; q, whih need be safe primes, or the value w).

Hybrid shemes. In the general desription of our shemes in Setion 2 we assumed

that the same signature sheme is used in produing per-period signatures as well as for

erti�ation signatures. We remark that this must not be the ase and the two signatures

an use di�erent underlying shemes. Or they an use the same underlying sheme (say

RSA) but with di�erent seurity parameters. The previous RSA-based example is also an

example of suh an hybrid sheme.

Saving ertifiate spae. As pointed out before, the only parameter in our sheme

that grows linearly with T is the amount of memory required by the signer for long-term

storage of per-period erti�ates. As said, this need for (non-seret) storage will be seldom a

pratial problem. For ompleteness, however, we sketh a method for saving in the amount

of required storage at the expense of inreased signature omputation time and inreased

(log T ) signature size. As before, the publi key and required seret storage are of size

independent from T . We keep most of our general sheme unhanged exept that we hange

the way in whih we use the base signing key to sign the per-period erti�ates. This hange

will dispense of the need for long-term storage for all the per-period erti�ates.

The idea is to build a (binary) Merkle's erti�ation tree where the leaves are the per-

period erti�ate information (this inludes the period's publi key and period's number

but not a signature), while other nodes in the tree store a (ollision-resistant) hash value

omputed on the onatenation of the values stored in its hildren nodes. The only use of

the base signature key SK

0

is to sign the hash value in the tree's root. We all the resultant

signature S. The signature on a per-period erti�ate will onsist of this signature S together

with a list of the (log T ) hash values orresponding to a path in the tree between the root

and the orresponding erti�ate's leaf. However, instead of storing all this information

10



during the T periods we will re-ompute parts of it at the beginning of eah period and

derive from it the signature on the urrent period's erti�ate. Therefore, after produing

the tree and signature S during the initialization phase we erase the tree and the signing

key SK

0

. We do keep the signature S.

Later, at eah period's update phase, the signer re-omputes all erti�ates for urrent

and future periods (all information is derived from the urrent period's seed) and builds a

partial hash tree (this partial tree only inludes present and future erti�ate information).

From this tree the signer derives all the hash values needed to be inluded (together with

S) in the signature of the urrent period's erti�ate. One this list of hashes is generated

it is stored for the rest of the period (as part of the signature on the urrent erti�ate) and

the rest of the tree is erased. (To be preise, another set of log T hashes in the tree, that

are not reonstrutible in the next period, need to be stored too; we omit the details.)

Thus we have saved the need for (long-term) storage of size proportional to T , but now

the erti�ate's signature is longer (it inludes log T hashes) and the update phase is more

time onsuming. Publi and seret keys remain short as before.

Undeniable signatures. The simpliity of our transformation of a digital signature

sheme into a forward-seure one preserves many of the properties of the underlying signa-

ture sheme. A simple example of suh a property is undeniable signatures [7℄. It is easy

to verify that our transformation applied to any undeniable signature sheme will result

in forward-seure undeniable signatures (where the signature and veri�ation proedures

orrespond to those used by the undeniable signatures sheme { some of whih are arried

as an interative protool). Similarly, there are other properties of signature shemes that

are preserved by our transformation, thus resulting in forward-seure signatures that enjoy

further qualities.

Threshold and proative signatures. Here we disuss the ombination of \threshold

seurity" and forward-seurity for signature shemes. Threshold signatures [8, 10℄ are sig-

nature shemes in whih the power to sign is distributed among several parties suh that

as long as less than a spei�ed number (or threshold) of parties is orrupted, the signature

sheme remains seure. The advantage of these shemes is in making the life of an attaker

muh harder; this attaker annot �nd the key by just breaking into one loation but has to

be suessful in its attempt in several loations. By adding the forward-seurity property

to threshold signature one ould ahieve an even stronger seurity guarantee: even if at

some point the attaker is able to break into a threshold of parties, the damage of signa-

ture forgery is on�ned to the period of time between key exposure and key revoation.

That is, even suh a suessful attaker will not be able to endanger signatures orrespond-

ing to time-periods prior to the key exposure. A disussion on the design of forward-seure

threshold shemes, inluding forward-seure proative shemes, is presented in Appendix B.

11



Aknowledgment

This Researh was supported by the Fund for the Promotion of Researh at the Tehnion,

and by Irwin and Bethea Green & Detroit Chapter Career Development Chair.

A Seurity of our forward-seure shemes

For ompleteness we outline here the proof of Theorem 1.

Let FW be a forger against sheme FWSIG that sueeds with probability ". We build a

forger F against the underlying sheme SIG as follows. Let (p; s) be a pair of publi/private

keys for SIG against whih we want to produe forgeries. Forger F is given an orale O

p

that given a message returns a signature on that message under the pair (p; s). Forger

F starts by generating information orresponding to T periods of a (modi�ed) FWSIG

sheme. F �rst hooses a period number t

0

at random between 1 and T . Then it hooses

a random seed for fwprg and generates out of it T � t

0

pairs of publi/private SIG keys

following the spei�ation of the initialization algorithm fwkg. These pairs are set as the

FWSIG keys for periods t

0

+ 1; t

0

+ 2; : : : ; T . In addition, F generates t

0

� 1 random and

independent pairs of publi/private keys that it sets as the FWSIG keys for periods 1 to

t

0

� 1. For period t

0

it sets the publi key to be p. Now F hooses a pair of publi/private

SIG keys (p

0

; s

0

) and produe erti�ates signed under s

0

for all the per-period publi keys

produed above. The publi key p

0

beomes the base publi key of sheme FWSIG.

Algorithm F now runs the forger FW against the (modi�ed) FWSIG sheme de�ned

above. We let FW query for signatures orresponding to any period of its hoie exept

for the following restrition. Whenever FW asks for a signature orresponding to a period

i, it annot later ask for a signature orresponding to a previous period. Eah time FW

requests a signature (on a message of its hoie) orresponding to any period di�erent than

t

0

then F provides the requested signature using its knowledge of the signature keys for

those periods (these keys were hosen by F !) When FW asks to issue signatures for period

t

0

, then F goes to its orale O

p

to get the orresponding signatures under (p; s). When FW

deides to query the seret information for some t

0

-th period then F does the following. If

t

0

� t

0

then it aborts its run (i.e., in this ase F fails to forge). If t

0

> t

0

then F provides

FW with the seret information for that period (F knows it). F keeps running FW as

before and responds to signature requests as before. If at some point FW outputs a forgery

against a period t

00

< t

0

then F ats as follows. If t

00

6= t

0

, F aborts its run failing to forge.

Otherwise if t

00

= t

0

, F outputs the same forgery as FW did and stops. (Note that in order

for FW 's output to be onsidered a forgery it must be that FW did not ask for the forged

message to be signed during period t

0

, so in partiular F did not ask for that signature

from O

p

meaning that this is a valid forgery for F too.)

What is the probability of F to sueed in forging? If FW sueeds with probability "

then F sueeds at least with probability roughly "=T . This argument is outlined as follows.

12



First, the view of (the modi�ed) FWSIG that F produes for FW is omputationally

indistinguishable from the view of FW under a real run of FWSIG (where all keys are

produed out of a single initial seed for fwprg). Indeed, using standard tehniques it is

straightforward to show that if a distinguisher exists for these two views of FW then we

an onstrut a distinguisher for fwprg. Next, onditioned on F hoosing the value of t

0

as the period for whih FW will eventually output a forgery, we have that the probability

that F outputs a forgery against (s; p) is the same probability that FW sueeds in forging,

i.e., probability ". Sine hoosing the \right" t

0

happens with probability 1=T we get that

"=T is an approximate lower bound on the forging probability of F . (The \approximate"

omes from the negligible probability with whih the above mentioned views of FW an be

suesfully distinguished.)

B On forward-seure threshold and proative shemes

It is easy to design forward-seure threshold signatures if one is willing to maintain, at

eah partiipant, an amount of seret information that grows linearly with the number of

time periods T . We start by skething suh a sheme and later show how to improve its

eÆieny. For onretenes, we assume a threshold signature sheme with a distributed key

generation (DKG) protool [17, 5, 11℄ (entralized key generation shemes an be used too

but are less attrative). We assume n parties running the threshold sheme: P

1

; : : : ; P

n

.

1. Using protool DKG the parties jointly generate base private and publi signature

keys SK

0

; PK

0

. The result of this omputation is that eah player P

i

holds a share x

i

of the base signature key while the base publi key is known to all players. The latter

is then published as the base publi key of the forward-seure threshold signature

sheme.

2. The joint key generation proedure DKG is repeated T times among the n players

to produe seret shares (denoted x

i

(t); i = 1; : : : ; n; t = 1; : : : ; T ) for T di�erent

signature keys (these will at as the per-period signature keys) and the orresponding

publi keys. Per-period erti�ates for these publi keys are produed and signed,

jointly by the players (using shares x

i

), under the base signature key SK

0

. Eah

player P

i

erases the share x

i

that orresponds to the base signature key SK

0

, and

stores the T seret shares x

i

(t); t = 1; : : : ; T .

3. During period t signatures are jointly produed by the players using the orresponding

shares x

i

(t). These shares are erased at the end of the period.

It is easy to see that this proess ahieves both the threshold property and forward-seurity.

We show how to relax the requirement that eah party stores T shares by using a

forward-seure pseudorandom generator fwprg. However, this solution will only work

13



against eavesdroppers

2

(i.e., the attaker is allowed to learn all information in the memory

of a orrupted party but is not allowed to hange the behavior of that party). Step 1 above

is not hanged. In Step 2, eah player P

i

starts with a random seed s

i

for fwprg. From

this seed, P

i

derives T forward-seure pseudorandom values s

i

(t); t = 1; : : : ; T , that he uses

as the random input required for eah of the T runs of DKG. Per-period erti�ates are

produed as before. However, not only shares of the base signature key are erased as before

but also other seret information (inluding the pseudorandom values s

i

(t) and shares x

i

(t))

leaving only the seed s

i

to be held seretly by player P

i

, i = 1; : : : ; T . Then, at the beginning

of eah period a player P

i

omputes the new state s

i

(t) for fwprg and erases the previous

state. The n players then run DKG to (re)produe the t-th period shares x

i

(t).

3

These

shares are used during the period to jointly sign messages.

An advaned variant of threshold signatures is the so-alled proative signature shemes

[15℄. In this ontext, time is partitioned into time periods (as with forward seurity) and a

mobile attaker is onsidered whih may ontrol a party during some time periods but leave

the party unorrupted during other periods. In proative threshold shemes, the sharing of

the seret signature key is refreshed periodially, in suh a way that the attaker now needs

to break into a threshold of parties during a single time period (suh as a day or week)

before it an forge signatures.

One an see that the �rst straightforward solution to forward-seure threshold signatures

presented above (where a party stores all shares for future periods) an be proativized. This

requires that at the beginning of eah time period, when we perform the update operations

required for forward-seurity, we also perform share refreshment operations for all the shares

stored in a player's memory (i.e., the shares for all pending periods are refreshed). While

the eÆieny of this approah an be questioned, it does satisfy the properties of proative

forward-seure signature shemes.

Finally, we onsider the proativization of our seond solution to forward-seure thresh-

old shemes (the one involving a forward-seure pseudorandom generator). In this ase,

refreshing future shares as before seems hard, if at all possible. Indeed, when the attaker

orrupts a party, it learns the urrent state of fwprg as held by that party and then it

learns all future shares; also those to be used after the attaker leaves the party. Yet,

there is a possible diretion to provide proativeness in this setting. The idea is that the

pseudorandom states s

i

(t) as used in the above seond solution will not be generated using

a forward-seure pseudorandom generator (as disussed in this paper) but rather using a

proative pseudorandom protool as desribed in [6℄. Assuming an eavesdropper-only at-

taker, this protool onstitutes a distributed pseudorandom generation proedure that is

immune to mobile break-ins, and whih provides eah player with a pseudorandom value

whih is unpreditable for the adversary (exept, of ourse, for values provided to players

2

This severe restrition on the ations of the attaker is required during initialization and update phases;

at other times both rash and maliious faults are also allowed.

3

Note that if we had let orrupted players to deviate from their normal behavior during runs of DKG we

ould have ended with shares that are di�erent than those reated during Step 2.

14



urrently ontrolled by the attaker). It is easy to see that replaing fwprg in the above

forward-seure threshold solution with suh a proative pseudorandom protool results in

a forward-seure proative signature sheme.

Referenes

[1℄ Anderson, R., Invited leture, Fourth Annual Conferene on Computer and Commu-

niations Seurity, ACM, 1997.

[2℄ Beaver, D., and Haber, S., \Cryptographi protools provably seure against dynami

adversaries", Eurorypt '92, LNCS No. 658, pages 307{323.

[3℄ Bellare, M., and Miner, S., \A Forward-Seure Digital Signature Sheme",

Advanes in Cryptology { CRYPTO 99 Proeedings, Leture Notes in Com-

puter Siene, Vol. 1666, Springer-Verlag, M. Wiener, ed, 1999, pp. 431-438.

Full version: Theory of Cryptography Library: Reord 99-16, September 1999,

http://philby.usd.edu/ryptolib.html.

[4℄ Bellare, M., and Yee, B., \Design and Appliation of Pseudorandom Number Genera-

tors with Forward Seurity", manusript.

[5℄ Boneh, D., and Franklin, M., \EÆient generation of shared RSA keys", Advanes in

Cryptology { CRYPTO 97 Proeedings, Leture Notes in Computer Siene, Springer-

Verlag Vol. 1294, B. Kaliski, ed, 1997, pp. 425{439.

[6℄ Canetti, R., and Herzberg, A., \Maintaining Seurity in the Presene of Transient

Faults", Advanes in Cryptology { CRYPTO 94 Proeedings, Leture Notes in Com-

puter Siene Vol. 839, Springer-Verlag, Y. G. Desmedt, ed, 1994, pp. 425-438.

[7℄ Chaum, D. and Van Antwerpen, H., \Undeniable signatures", Advanes in Cryptology

| Crypto '89 Proeedings, Leture Notes in Computer Siene Vol. 435, Springer-

Verlag, G. Brassard, ed., 1989, pp. 212{217.

[8℄ Desmedt, Y. and Frankel, Y., \Threshold ryptosystems", Advanes in Cryptology |

Crypto '89 Proeedings, Leture Notes in Computer Siene Vol. 435, Springer-Verlag,

G. Brassard, ed., 1989, pp. 307{315.

[9℄ W. DiÆe, P. van Oorshot and M. Wiener, \Authentiation and authentiated key

exhanges", Designs, Codes and Cryptography, 2, 1992, pp. 107{125.

[10℄ Gennaro, R., Jareki, S., Krawzyk H., and Rabin, T., \Robust Threshold DSS Sig-

natures", Advanes in Cryptology { EUROCRYPT 96 Proeedings, Leture Notes in

Computer Siene Vol. 1070, Springer-Verlag, U. Maurer, ed, 1995, pp. 354{371.

15



[11℄ Gennaro, R., Jareki, S., Krawzyk H., and Rabin, T., \Seure Distributed Key Gen-

eration for Disrete-Log Based Cryptosystems", Advanes in Cryptology { EURO-

CRYPT 99 Proeedings, Leture Notes in Computer Siene Vol. 1592, Springer-Verlag,

J. Stern, ed, 1999, pp. 293{308.

[12℄ Gennaro, R., Krawzyk H., and Rabin, T., \RSA-based Undeniable Signatures", Ad-

vanes in Cryptology { CRYPTO 97 Proeedings, Leture Notes in Computer Siene,

Springer-Verlag Vol. 1294, B. Kaliski, ed, 1997, pp. 132-149.

[13℄ Goldwasser, S., Miali, S., and Rivest, R.L., \A digital signature sheme seure against

adaptive hosen-message attaks", SIAM J. Computing, 17(2):281{308, April 1988.

[14℄ Haber, S. and Stornetta, W., \How to Time-Stamp a Digital Doument", Advanes in

Cryptology { CRYPTO 90 Proeedings, Leture Notes in Computer Siene Vol. 537,

Springer-Verlag, A. J. Menezes and S. Vanstone, ed., 1990.

[15℄ Herzberg A., Jakobsson, M., Jareki, S., Krawzyk H., and Yung, M., \Proative Publi

Key and Signature Systems", in Pro. of the 4th ACM Conferene on Computer and

Communiations Seurity, 1997, pp. 100{110.

[16℄ R. Ostrovsky and M. Yung, \How to withstand mobile virus attaks", Pro. of the

10th ACM Symposium on the Priniples of Distributed Computing, 1991, pp. 51-61.

[17℄ Pedersen, T., \A threshold ryptosystem without a trusted party", Advanes in Cryp-

tology | Eurorypt '91, LNCS No. 547, pages 522{526.

16


