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Abstract

In Crypto’99, Bellare and Miner introduced forward-secure signatures as digital sig-
nature schemes with the attractive property that exposure of the signing key at certain
time period does not allow for the forgery of signatures from previous time periods. That
paper presented the first full design of an efficient forward-secure signatures scheme, but
left open the question of building efficient and practical schemes based on standard sig-
natures such as RSA or DSS. In particular, they called for the development of schemes
where the main size-parameters (namely, the size of the private key, public key, and
signature) do not grow with the total number of periods for which the public key is to
be in use.

We present an efficient and extremely simple construction of forward-secure sig-
natures based on any regular signature scheme (e.g., RSA and DSS); the resultant
signatures enjoy size-parameters that are independent of the number of periods (except
for the inclusion of an index to the period in which a signature is issued). The only
parameter that grows (linearly) with the number of periods is the total size of local
non-secret memory of the signer. The forward-security of our schemes is directly im-
plied by the unforgeability property of the underlying signature scheme and it requires
no extra assumptions.

Our approach can also be applied to some signature schemes with special properties,
such as undeniable signatures, to obtain forward-secure signatures that still enjoy the
added special property.
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1 Introduction

A natural concern related to digital signatures is that the discovery of the signing key by
an attacker provides this attacker with the power to forge the signature on any message.
Not only this compromises the security and validity of any signature issued after the break
but it also compromises all past signatures. Mechanisms such as key revocation (e.g., via
certificate revocation) provide some protection against forgeries of signatures dated after the
key’s exposure is discovered, but are of no help to maintain the security of past signatures.
One solution to this problem is the use of a (trusted) timestamping service applied to the
signature string to validate its date of creation (e.g., [14]). Another solution is to change the
pair of public-private keys related to the signature algorithm very often. A simpler approach
to solve this problem was suggested by Ross Anderson [1] who called for finding signature
schemes where signature keys expire periodically yet the public key does not change.

In a recent paper, Bellare and Miner [3] address this problem by formalizing Anderson’s
proposal through the notion of forward-secure signatures, and by providing the first efficient
implementation of this notion. In their model time is divided into discrete periods (say,
days, weeks, etc.). Asin a regular digital signature scheme there is a public verification key
and a secret signature key. However, while the public key does not change over time the
secret key changes at each new period. The recipient of a signature can verify the signature
against two parameters: correct verification by the public key and correspondence of the
signature to a particular period of time. Such a signature scheme is called forward-secure if
the exposure of the secret key at time-period ¢ does not allow for forgery of signatures that
belong to previous time-periods. Thus, in addition to the assurance given by regular digital
signatures that the message was signed by the owner of the signing key, forward-secure
signatures also provide a proof of when (i.e. in which period) the signature was issued.

There are many considerations regarding the design of forward-secure signature schemes
including their motivation, usage, efficiency parameters, and the suitability of some simple
approaches to solve the problem. We omit a detailed discussion of these issues here as they
are thoroughly presented in [3] (the interested reader is highly encouraged to consult that
paper). We focus in presenting our simple basic solution, its security, and variants.

As pointed out by [3] it is easy to build forward-secure schemes where one of the following
basic parameters of the scheme grows linearly with the total number of periods T': the size
of the secret key, the size of the public key and/or the size of the signature. They also
point out to a “tree scheme” that requires O(klogT) size, where k is a security parameter
(e.g., the size of the signature keys). However, it is argued in [3] that for a forward-secure
signature scheme to be truly practical the size of these parameters should be independent
of the number T of periods. (It seems that a minimal dependency with 7' is required if
one wants to include an index to the time period in which a signature is generated — such
information is essential to allow a secure binding between a signature and the period in
which it was created.) Then [3] present the first solution to satisfy this size requirement.
Their solution is based on a Fiat-Shamir-like signature scheme derived from identification



schemes. Security is carefully formalized and proven based on the idealized random-oracle
assumption.

Among the simple schemes pointed out by [3] there is one suggested by Ross Anderson
[1] which can be applied to any signature scheme but which requires a secret key which is T
times longer than the secret key of the underlying scheme. Here we show how to implement
such a scheme with a fized-size secret key while preserving the simplicity and generality of
Anderson’s solution. We use for that a pseudorandom generation procedure which by itself
satisfies forward-security [4]. As a result our scheme enjoys some very desirable properties
and some significant advantages over the solution of [3]:

Simplicity: our scheme is very simple and intuitive, and technically straightforward. This
constitutes a conceptual and practical advantage as reflected in the following benefits.

Generality: any secure signature scheme can be made forward-secure using our approach.
This means that we do not require the design and analysis of new digital signature schemes
specially tailored to enjoy the forward-security property. Instead we can use any existing
believed-to-be-secure signature scheme. In particular, we provide forward-secure RSA and
DSS signatures (coming up with such schemes was left as an open problem in [3]).

Analysis: our construction does not necessitate of ideal assumptions such as random oracles.
Security is proven, in a straightforward manner, on the sole basis of a secure regular digital
signature scheme and the existence of pseudorandom functions (the existence of the latter
is implied by the signature scheme).

Efficiency: the cost of signing in our solution is identical to the cost of signing under the
underlying signature scheme. Verification requires two regular verifications (for verification
of the message signature and a certificate).

Size of main parameters: Our scheme satisfies the requirement, postulated in [3], that the
size of the main parameters (secret key, public key, signature) be independent of the total
number of periods 1" for which the scheme is implemented. Both the secret and public key
in our scheme are of size identical to the size of the corresponding keys in the underlying
signature scheme; the signature’s size is twice the size of a regular signature. In particular,
using suitable signature schemes (e.g. DSS) the secret key in our scheme will be considerably
shorter than the key in the scheme of [3]. The only dependency on 7" of the above parameters
is the inclusion in each signature of an index to the period in which the signature was issued.

The one aspect in which our schemes are less efficient than the particular solution of [3] is
the size of the memory maintained by the signer: in our case the signer keeps in memory
T “certificates” one for each time period. This is usually not a real problem given that
this information has no secrecy requirement neither there is a need to publish it or share
it with others. Moreover, these certificates can be freely backed up by the signer to ensure
availability (upon retrieval from the backup the signer can easily check the integrity of the
certificates using its own public key); even if a particular certificate is eventually lost it will
only prevent the signer from generating signatures for that period but will otherwise have
no security effect (in particular, no compromise of any signature). If in some particular



setting one wants to save in this memory requirement we show how to achieve that (see
Section 3) at the expense of increased computation time and larger (by a logT factor)
signature size.

Applicability to rich signature schemes: in addition to providing forward-security to regular
digital signature schemes, our scheme can provide this feature to signature schemes with
added capabilities such as undeniable signatures. We also discuss the design of forward-
secure threshold and proactive signature schemes.

2 Forward-secure signatures from any signature scheme

2.1 The components of forward-secure signature schemes

We start with a regular digital signature scheme denoted SIG (e.g., RSA or DSS) composed
of three algorithms: KG (the key generation algorithm), SIGN (the signature algorithm),
and VER (the verification algorithm). Algorithm KG on input a security parameter and a
random string outputs a pair of public and private keys denoted PK and SKj, respectively.
Algorithm SIGN generates a signature on input a message M using the private key SKj.
Algorithm VER uses the public key PK(y and is applied to pairs M, o, its output is one of
the values VALID or FAIL. It is required that VER returns VALID if and only if ¢ is a possible
signature of M under SKj.

Our goal is to design a forward-secure signature scheme based on SIG where the secret
keys evolve over I' periods of time, for some pre-specified number 7" and with each period
being of some specified duration (a day, a week, etc.). We assume that the public key of
the forward-secure scheme is to be used for a total time that does not exceed T periods
(namely, after such 7' periods the public key is expired). On the other hand, the secret
signing key changes at the beginning of each new period. A core security requirement is
that exposure of the current secret key does not help the attacker in forging signatures from
previous periods. We denote the resultant forward-secure signature scheme by FWSIG.
Following the formalization of [3] we identify four components of FWSIG: FWKG, FWUPD,
FWSIGN, FWVER, whose functionality we describe next.

The system (or user) initially generates secret and public parameters according to a
key generation procedure FWKG (using a specified security parameter); this includes the
generation of the public verification key PKj (called the base public key) that will remain
fixed for the lifetime of the system (i.e., for T" periods). The signing algorithm FWSIGN will
depend on a secret key that will change with each time period. The signing key for period ¢
is denoted by SK; and will be generated at the beginning of each period out of information
existent in the previous period via an update procedure denoted FWUPD. Given a message
M to be signed, algorithm FWSIGN creates a signature on M, using key SK; (and possibly
other public information). Finally, algorithm FWVER is used to validate signatures. Its
inputs consist of the base public key PKy, a message M, a period number ¢, and a signature



string s. It outputs VALID if and only if the signature s is a legal output during period ¢

of algorithm FWSIGN applied to the message M (i.e., iff the signature was generated under
SKy).

We note that the verification algorithm in the forward-secure setting is verifying not only
that the message M was signed by the “owner” of public key PK( but that it was specifically
signed during time period t. It is the capability of verifying this fact that provides the added
strength of forward-secure signature schemes relative to regular digital signature schemes.

We will denote a forward-secure signature scheme by the quadruple FWSIG = (FWKG,
FWUPD, FWSIGN, FWVER) with the values 7', the period duration, and security parameter
being implicit parameters. Before moving to describe our implementation of these compo-
nents (based on any regular signature scheme SIG) we introduce the following technical
tool.

2.2 A technical tool: forward-secure prg’s

The key-refreshment (or key-evolving) paradigm of forward-secure signatures is useful for
many other cryptographic primitives with different security implications depending on the
application. Examples include proactive systems (e.g., [16, 6, 15]) and key exchange pro-
tocols with key expiration and the related notion of “perfect forward-secrecy” [9]. In our
construction of forward-secure signatures we use forward-secure pseudorandom generators.
Such generators have been used in different contexts, e.g. [2, 6], and have simple realizations
based on regular pseudorandom generators or pseudorandom functions. A formalization of
this notion can be found in [4]. Here we describe them informally and point to one simple
(generic) construction (other implementations are possible).

A forward-secure pseudorandom generator is one where seeds (or keys) are refreshed
periodically and where exposure of the generator’s secret state at a given time period reveals
no (efficiently computable) information about the pseudorandom sequences generated in
previous periods. Namely, the generator uses at each time period t a seed (or key) k; to
generate a sequence r; which is indistinguishable from a truly random sequence as long as
the keys ky for ¢ < t are not input to the distinguisher. In addition, the sequences r;
remain pseudorandom even if the distinguisher is given any key ky for ¢/ > t.

We present a simple construction of forward-secure pseudorandom generators based on
any family F' = {fj} of pseudorandom functions. For simplicity we assume that the output
of the functions fj is of the same length as the length of the index k; if a given pseu-
dorandom family does not have this property then it can be achieved by simple output
truncation (if the output is longer than the key) or by applying the function on differ-
ent inputs (if the key is longer than a single output of the pseudorandom function). In
each time period t we generate a pseudorandom sequence 7, of a specified length, as fol-
lows. Let ki be a random index to a function in F. In period 1 we generate a pseudo-
random sequence 71 as fi, (1), fx, (2), f&, (3), ... (the function is applied as many times as
needed to reach the required length of r1). At the beginning of each period ¢t € {2,...,T}



we compute k; = fg, ,(0), and erase k;—1. The sequence generated at this period is
re = fr,(1), f&,(2), f,(3),.... It is easy to show that the exposure of k; is of no help
for distinguishing the sequences ry, t' < t, from randomness.

2.3 The general transformation

We now present our simple transformation of a regular signature scheme SIG into a forward-
secure scheme FWSIG. We first outline the method and then provide a more detailed
description. We start with a pair of secret-public keys for scheme SIG which we denote
by SKy and PKj, respectively. We then create T' different secret keys, one for each time
period, using a forward-secure pseudorandom generator out of an initial random seed kg
and the key generation algorithm KG. These secret keys are generated as signature keys
for the scheme SIG. The public verification keys corresponding to these signature keys
are also generated and a “certificate” is created for each of them; that is, for each period
t=1,...,T we have a signature key SK;, a corresponding public key PK}, and a certificate
CERT;. Each certificate CERT; includes the value PKj, the period number ¢, and the value
of the base public key PK| (it may also include additional information related to user U as
well as other system parameters). Also included in the certificate is a signature under key
SK computed on the other information included in the certificate.

Once all this information is generated we erase all the secret keys (including SKj), and
all the information produced by the pseudorandom generator with the exception of the
initial seed kg which we store and keep secret. We also keep all certificates and the public
key PKjy. The public key PK| is treated as any other public key in a signature scheme, for
example, it may be certified via a certification authority (in this case the certificate may
include, in addition to standard certificate information, some specific information related
to the forward-secure scheme such as the number of periods, their duration, etc.). The T’
certificates are also saved by U. There is no secrecy requirement on them, nor the need
to make them public. They just need to be available to U during the corresponding time
period. Changes to these certificates while stored can be detected (via the verification key
PKy). If a certificate is lost before the corresponding time period then U will not be able
to generate any signature during that period but this will have no effect on the security
of signatures generated in other periods. In any case guaranteeing the availability of these
certificates is simple; in particular, because of the lack of secrecy requirements they can be
freely backup-ed for availability.

At the beginning of each period t, the signature key SK; is computed based on the key
of previous period and the latter is then erased. Signatures during period ¢ are generated
using SK; as the signature key; the corresponding certificate CERT; is appended as part of
the signature. Signature verification is done using the public key PK}; that appears in the
certificate, while the certificate itself is validated using the base public key PKy. The time
period in which the signature was issued is verified via the period number that appears in
the certificate.



A more careful and detailed description of our scheme follows.

UNDERLYING FUNCTIONS: We start with a regular digital signature scheme SIG = (KaG,
SIGN, VER), and a forward-secure pseudorandom generator FWPRG which on input A,
produces a pair of pseudorandom values k; and r;. (It suffices that each of k; and ry are
individually pseudorandom; their joint distribution may not be pseudorandom, in particular,
it can even be that k; = ry.)

INITIALIZATION (ALGORITHM FWKG): Here we describe the creation of parameters (secret
and public) for the use of the scheme FWSIG by a user (we call it U), including the gener-
ation of the pair of verification-signature keys and other values necessary for the operation
of the scheme. We assume the public verification key will be in use for T periods of time,
each period being of some pre-specified length (a week, month, etc.). The following steps
are performed by user U before the start of period 1.

1. Given a security parameter x choose a random value r and compute (PK, SK()«KG(k,T).

2. Choose a random seed kg for FWPRG.
Fort =1 to T do

(k¢,ry)<—FWPRG(ki—1)
(SK}, PK;)—KG(K,T¢)
CERT;«—(PK)y, t, PK}, SIGNgk, (PKy, t, PK}))
3. Erase SKy and k;,r, SKy, fort =1,...,T.
4. Store securely (i.e., in secret storage) the value k
5. Store CERTy, t = 1,...,T and publish the public key PKj (e.g., via a certification

authority).

UPDATE ALGORITHM (FWUPD): At the beginning of each period ¢t do the following:

1. (kyyry)—FWPRG(Ki—1)
2. (SKt,PKty—KG(K), ’I“t)

3. retrieve CERT, and verify that the values PKj and ¢ in it are correct (i.e correspond to
the base public key and current time period t); also check that the public key PK; in
it equals the public key generated in previous step. If any of these checks fail, abort.

4. store secretly k; and SK; and erase k;_1

SIGNATURE ALGORITHM (FWSIGN): On input message M to be signed do:



1. Retrieve current values of CERT; and SKj;.

2. Output the signature pair (CERT;, o) where o = SIGNgg, (M).

SIGNATURE VERIFICATION ALGORITHM (FWVER): On inputs the public key PK), a message
M, a time period t, and a signature string s the verification algorithm FWVER proceeds as
follows:

1. Parse s into the values CERT and o.

2. Parse CERT to get the values (PK),t', PK{,c").
3. Check that PKjy = PKy and t' = t.

4. Verify that VERpg, ((PKy,t, PK}),c’) = VALID.
5. Verify that VERpg;(0) = VALID.

6. If all checks succeed output VALID, otherwise output FAIL.

2.4 Main Theorem

The following theorem summarizes our result and is straightforward to prove. The notion
of unforgeability that we use for the regular underlying scheme is the strong notion of
security for digital signature as formalized in [13] (security against existential forgery under
adaptive chosen message attack). This notion can be extended in a natural way to capture
also forward-security of signatures; this extension can be found in [3]. We omit the technical
formalization details here.

Theorem 1 Let SIG = (KG,SIGN, VER) be an unforgeable signature scheme and FWPRG
be a forward-secure pseudorandom generator, then the scheme FWSIG = (FWKG, FWUPD,
FWSIGN, FWVER) constructed above is an unforgeable forward-secure signature scheme.

To prove the theorem one assumes the security of the forward-secure pseudorandom
generator FWPRG and the unforgeability of the underlying signature scheme SIG. Then
one shows that if a forger for the scheme FWSIG exist then one can construct out of it a
forger for the scheme SIG, thus reaching a contradiction. We note that a basic difference
between a forger against SIG and the one against FWSIG is that the former is never given
the signature key, while the latter is provided with the signature key for a period ¢ and it
is considered successful if it finds a forgery for a signature corresponding to a period ¢ < t.
See Appendix A for a proof of Theorem 1.

We end the section with a short analysis of the scheme’s main parameters size.



SIZE OF MAIN PARAMETERS. The public key of our forward-secure scheme is a single
regular public key (PKj) for the underlying signature scheme SIG. The secret information
maintained by the system, at any given period, are the period’s signing key (corresponding
to the underlying scheme SIG) and the current seed for FWPRG. (For applications where
savings in secret storage is of prime importance, one can slightly modify the update scheme
described above so that only the seed needs to be stored secretly while the signature key is
re-computed upon need. Moreover, in some cases these two values may even be the same.)
A signature string under our scheme includes a regular signature string under SIG and the
period’s certificate which includes the period number. (Note that for parties that verify
multiple signatures for the same period, a single copy of the period’s certificate suffices.)

3 Examples and Variants

DSS AnD RSA. Building a forward-secure signature scheme based on DSS is very simple.
The signature key in DSS is a random 160-bit quantity (taken modulo ¢). If one uses a
forward-secure pseudorandom generator with seed of the same size (e.g., based on SHA-1)
then the signature key and seed for a given period can be the same.!

In the case of RSA, the key generation procedure will use the value r; produced in
period t as input to a probabilistic algorithm that finds prime numbers. When the key is
re-computed at the beginning of period ¢ we will eventually find the same primes. We stress
that one can use some simple optimizations that will save prime re-computation time during
the update phase of period ¢. (For example, if one uses r; as the key to a pseudorandom
function and the tested primes are f, (1), fr,(2),... then one can store the value of the
inputs to the function where the chosen primes were found.) An RSA-based scheme where
the periodic secret key is a uniformly chosen number (rather than a pair of prime numbers)
is proposed next.

AN RSA-BASED VARIANT. As a curiosity, and maybe as a basis for future forward-secure
schemes we outline the following scheme which is based on RSA-security. Its advantage
over regular RSA is that the per-period keys are just random numbers (exponents) rather
than (harder to generate) prime numbers. However, beyond being non-standard, it requires
the use of a random-oracle (for non-interactive verification).

The key generation algorithm FWKG proceeds as follows. The base keys PKp, SKy are
regular RSA keys. That is, a pair of primes p,q is generated and the public key PKj is
set to be n = pq together with a public exponent e. (There are no more prime numbers
generated in this scheme.) In addition, a fixed value w € Z* is included as part of the

!Note, however, that there is an advantage to the case where a seed cannot be derived from a signature
key: if some period’s signature key gets exposed — e.g., via a physical attack — we would still like to keep
the period’s seed secret, or otherwise all subsequent periods are compromised. Note that the signature key
may be more vulnerable than the seed given that it needs to be accessible during the whole period while the
seed is used only during the update phase.



scheme’s public key. Per-period keys are produced as follows. The secret key for period ¢
is a random number d; < n; these numbers are produced for all periods out of an initial
seed using a forward-secure pseudorandom generator FWPRG (as described in our general
scheme; in the present case, a period’s seed and signature key can be the same). The public
key for period ¢ is the value w* mod n. Once these public keys are generated, they are
certified using RSA signatures with keys PKj, SK; the key SKj is then erased (including
the primes p, ¢ and the signature exponent d).

A signature during period t on message m is produced as the string S, = m% mod n

together with a non-interactive proof that the discrete-log of Sy, to the basis m equals the
discrete-log of w¥ mod n to the basis w. (Recall that w% mod n is the certified public key
for period t.) There are known efficient zero-knowledge interactive proofs for claims of this
type which can be transformed into non-interactive proofs via the use of a “random-oracle”
(a la Fiat-Shamir).

The security analysis of such a scheme can be based on the results of [12] (where a related
scheme is used for undeniable signatures). In particular, that paper describes the relevant
(interactive) zero-knowledge proofs as well as the way one has to choose the scheme’s pa-
rameters (e.g., how to choose the primes p, ¢, which need be safe primes, or the value w).

HYBRID SCHEMES. In the general description of our schemes in Section 2 we assumed
that the same signature scheme is used in producing per-period signatures as well as for
certification signatures. We remark that this must not be the case and the two signatures
can use different underlying schemes. Or they can use the same underlying scheme (say
RSA) but with different security parameters. The previous RSA-based example is also an
example of such an hybrid scheme.

SAVING CERTIFICATE SPACE. As pointed out before, the only parameter in our scheme
that grows linearly with 7" is the amount of memory required by the signer for long-term
storage of per-period certificates. As said, this need for (non-secret) storage will be seldom a
practical problem. For completeness, however, we sketch a method for saving in the amount
of required storage at the expense of increased signature computation time and increased
(logT) signature size. As before, the public key and required secret storage are of size
independent from T'. We keep most of our general scheme unchanged except that we change
the way in which we use the base signing key to sign the per-period certificates. This change
will dispense of the need for long-term storage for all the per-period certificates.

The idea is to build a (binary) Merkle’s certification tree where the leaves are the per-
period certificate information (this includes the period’s public key and period’s number
but not a signature), while other nodes in the tree store a (collision-resistant) hash value
computed on the concatenation of the values stored in its children nodes. The only use of
the base signature key SKj is to sign the hash value in the tree’s root. We call the resultant
signature S. The signature on a per-period certificate will consist of this signature S together
with a list of the (logT) hash values corresponding to a path in the tree between the root
and the corresponding certificate’s leaf. However, instead of storing all this information
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during the T periods we will re-compute parts of it at the beginning of each period and
derive from it the signature on the current period’s certificate. Therefore, after producing
the tree and signature S during the initialization phase we erase the tree and the signing
key SKy. We do keep the signature S.

Later, at each period’s update phase, the signer re-computes all certificates for current
and future periods (all information is derived from the current period’s seed) and builds a
partial hash tree (this partial tree only includes present and future certificate information).
From this tree the signer derives all the hash values needed to be included (together with
S) in the signature of the current period’s certificate. Once this list of hashes is generated
it is stored for the rest of the period (as part of the signature on the current certificate) and
the rest of the tree is erased. (To be precise, another set of log 7" hashes in the tree, that
are not reconstructible in the next period, need to be stored too; we omit the details.)

Thus we have saved the need for (long-term) storage of size proportional to T', but now
the certificate’s signature is longer (it includes log T hashes) and the update phase is more
time consuming. Public and secret keys remain short as before.

UNDENIABLE SIGNATURES. The simplicity of our transformation of a digital signature
scheme into a forward-secure one preserves many of the properties of the underlying signa-
ture scheme. A simple example of such a property is undeniable signatures [7]. It is easy
to verify that our transformation applied to any undeniable signature scheme will result
in forward-secure undeniable signatures (where the signature and verification procedures
correspond to those used by the undeniable signatures scheme — some of which are carried
as an interactive protocol). Similarly, there are other properties of signature schemes that
are preserved by our transformation, thus resulting in forward-secure signatures that enjoy
further qualities.

THRESHOLD AND PROACTIVE SIGNATURES. Here we discuss the combination of “threshold
security” and forward-security for signature schemes. Threshold signatures [8, 10] are sig-
nature schemes in which the power to sign is distributed among several parties such that
as long as less than a specified number (or threshold) of parties is corrupted, the signature
scheme remains secure. The advantage of these schemes is in making the life of an attacker
much harder; this attacker cannot find the key by just breaking into one location but has to
be successful in its attempt in several locations. By adding the forward-security property
to threshold signature one could achieve an even stronger security guarantee: even if at
some point the attacker is able to break into a threshold of parties, the damage of signa-
ture forgery is confined to the period of time between key exposure and key revocation.
That is, even such a successful attacker will not be able to endanger signatures correspond-
ing to time-periods prior to the key exposure. A discussion on the design of forward-secure
threshold schemes, including forward-secure proactive schemes, is presented in Appendix B.

11



Acknowledgment

This Research was supported by the Fund for the Promotion of Research at the Technion,
and by Irwin and Bethea Green & Detroit Chapter Career Development Chair.

A Security of our forward-secure schemes

For completeness we outline here the proof of Theorem 1.

Let FW be a forger against scheme FWSIG that succeeds with probability e. We build a
forger F against the underlying scheme SIG as follows. Let (p, s) be a pair of public/private
keys for SIG against which we want to produce forgeries. Forger F' is given an oracle O,
that given a message returns a signature on that message under the pair (p,s). Forger
F starts by generating information corresponding to 7' periods of a (modified) FWSIG
scheme. F' first chooses a period number ¢y at random between 1 and 7. Then it chooses
a random seed for FWPRG and generates out of it T — ¢y pairs of public/private SIG keys
following the specification of the initialization algorithm FWKG. These pairs are set as the
FWSIG keys for periods tg + 1,29 + 2,...,7T. In addition, F' generates typ — 1 random and
independent pairs of public/private keys that it sets as the FWSIG keys for periods 1 to
to — 1. For period ¢ it sets the public key to be p. Now F' chooses a pair of public/private
SIG keys (p', s") and produce certificates signed under s’ for all the per-period public keys
produced above. The public key p’ becomes the base public key of scheme FWSIG.

Algorithm F' now runs the forger FW against the (modified) FWSIG scheme defined
above. We let FFW query for signatures corresponding to any period of its choice except
for the following restriction. Whenever F'W asks for a signature corresponding to a period
i, it cannot later ask for a signature corresponding to a previous period. Each time FW
requests a signature (on a message of its choice) corresponding to any period different than
to then F' provides the requested signature using its knowledge of the signature keys for
those periods (these keys were chosen by F!) When F'W asks to issue signatures for period
to, then F' goes to its oracle O, to get the corresponding signatures under (p, s). When F'W
decides to query the secret information for some t'-th period then F' does the following. If
t' < tp then it aborts its run (i.e., in this case F fails to forge). If ¢’ > ¢y then F provides
FW with the secret information for that period (F' knows it). F keeps running FW as
before and responds to signature requests as before. If at some point F'W outputs a forgery
against a period t” < t' then F acts as follows. If t" # ty, F' aborts its run failing to forge.
Otherwise if t” = tg, F outputs the same forgery as FW did and stops. (Note that in order
for FW’s output to be considered a forgery it must be that FW did not ask for the forged
message to be signed during period %, so in particular F' did not ask for that signature
from O, meaning that this is a valid forgery for F too.)

What is the probability of F' to succeed in forging? If F'W succeeds with probability
then F' succeeds at least with probability roughly e/7". This argument is outlined as follows.
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First, the view of (the modified) FWSIG that F produces for FW is computationally
indistinguishable from the view of FW under a real run of FWSIG (where all keys are
produced out of a single initial seed for FWPRG). Indeed, using standard techniques it is
straightforward to show that if a distinguisher exists for these two views of FW then we
can construct a distinguisher for FWPRG. Next, conditioned on F' choosing the value of tg
as the period for which FW will eventually output a forgery, we have that the probability
that F' outputs a forgery against (s,p) is the same probability that FIW succeeds in forging,
i.e., probability . Since choosing the “right” t; happens with probability 1/7" we get that
e/T is an approximate lower bound on the forging probability of F. (The “approximate”
comes from the negligible probability with which the above mentioned views of F'W can be
succesfully distinguished.)

B On forward-secure threshold and proactive schemes

It is easy to design forward-secure threshold signatures if one is willing to maintain, at
each participant, an amount of secret information that grows linearly with the number of
time periods 1. We start by sketching such a scheme and later show how to improve its
efficiency. For concretenes, we assume a threshold signature scheme with a distributed key
generation (DKG) protocol [17, 5, 11] (centralized key generation schemes can be used too
but are less attractive). We assume n parties running the threshold scheme: Pi,..., P,.

1. Using protocol DKG the parties jointly generate base private and public signature
keys SKy, PKy. The result of this computation is that each player P; holds a share z;
of the base signature key while the base public key is known to all players. The latter
is then published as the base public key of the forward-secure threshold signature
scheme.

2. The joint key generation procedure DKG is repeated T times among the n players
to produce secret shares (denoted z;(t),i = 1,...,n,t = 1,...,T) for T different
signature keys (these will act as the per-period signature keys) and the corresponding
public keys. Per-period certificates for these public keys are produced and signed,
jointly by the players (using shares z;), under the base signature key SKj. Each
player P; erases the share x; that corresponds to the base signature key SKj, and
stores the T secret shares x;(t),t =1,...,T.

3. During period ¢ signatures are jointly produced by the players using the corresponding
shares z;(t). These shares are erased at the end of the period.

It is easy to see that this process achieves both the threshold property and forward-security.

We show how to relax the requirement that each party stores 7' shares by using a
forward-secure pseudorandom generator FWPRG. However, this solution will only work
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against eavesdroppers® (i.e., the attacker is allowed to learn all information in the memory
of a corrupted party but is not allowed to change the behavior of that party). Step 1 above
is not changed. In Step 2, each player P; starts with a random seed s; for FWPRG. From
this seed, P; derives T forward-secure pseudorandom values s;(t),t =1,...,T, that he uses
as the random input required for each of the T runs of DKG. Per-period certificates are
produced as before. However, not only shares of the base signature key are erased as before
but also other secret information (including the pseudorandom values s;(t) and shares z;(t))
leaving only the seed s; to be held secretly by player P, i = 1,...,T. Then, at the beginning
of each period a player P; computes the new state s;(t) for FWPRG and erases the previous
state. The n players then run DKG to (re)produce the t-th period shares z;(¢).> These
shares are used during the period to jointly sign messages.

An advanced variant of threshold signatures is the so-called proactive signature schemes
[15]. In this context, time is partitioned into time periods (as with forward security) and a
mobile attacker is considered which may control a party during some time periods but leave
the party uncorrupted during other periods. In proactive threshold schemes, the sharing of
the secret signature key is refreshed periodically, in such a way that the attacker now needs
to break into a threshold of parties during a single time period (such as a day or week)
before it can forge signatures.

One can see that the first straightforward solution to forward-secure threshold signatures
presented above (where a party stores all shares for future periods) can be proactivized. This
requires that at the beginning of each time period, when we perform the update operations
required for forward-security, we also perform share refreshment operations for all the shares
stored in a player’s memory (i.e., the shares for all pending periods are refreshed). While
the efficiency of this approach can be questioned, it does satisfy the properties of proactive
forward-secure signature schemes.

Finally, we consider the proactivization of our second solution to forward-secure thresh-
old schemes (the one involving a forward-secure pseudorandom generator). In this case,
refreshing future shares as before seems hard, if at all possible. Indeed, when the attacker
corrupts a party, it learns the current state of FWPRG as held by that party and then it
learns all future shares; also those to be used after the attacker leaves the party. Yet,
there is a possible direction to provide proactiveness in this setting. The idea is that the
pseudorandom states s;(t) as used in the above second solution will not be generated using
a forward-secure pseudorandom generator (as discussed in this paper) but rather using a
proactive pseudorandom protocol as described in [6]. Assuming an eavesdropper-only at-
tacker, this protocol constitutes a distributed pseudorandom generation procedure that is
immune to mobile break-ins, and which provides each player with a pseudorandom value
which is unpredictable for the adversary (except, of course, for values provided to players

2This severe restriction on the actions of the attacker is required during initialization and update phases;
at other times both crash and malicious faults are also allowed.

3Note that if we had let corrupted players to deviate from their normal behavior during runs of DKG we
could have ended with shares that are different than those created during Step 2.
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currently controlled by the attacker). It is easy to see that replacing FWPRG in the above
forward-secure threshold solution with such a proactive pseudorandom protocol results in
a forward-secure proactive signature scheme.
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