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Abstra
t

In Crypto'99, Bellare and Miner introdu
ed forward-se
ure signatures as digital sig-

nature s
hemes with the attra
tive property that exposure of the signing key at 
ertain

time period does not allow for the forgery of signatures from previous time periods. That

paper presented the �rst full design of an eÆ
ient forward-se
ure signatures s
heme, but

left open the question of building eÆ
ient and pra
ti
al s
hemes based on standard sig-

natures su
h as RSA or DSS. In parti
ular, they 
alled for the development of s
hemes

where the main size-parameters (namely, the size of the private key, publi
 key, and

signature) do not grow with the total number of periods for whi
h the publi
 key is to

be in use.

We present an eÆ
ient and extremely simple 
onstru
tion of forward-se
ure sig-

natures based on any regular signature s
heme (e.g., RSA and DSS); the resultant

signatures enjoy size-parameters that are independent of the number of periods (ex
ept

for the in
lusion of an index to the period in whi
h a signature is issued). The only

parameter that grows (linearly) with the number of periods is the total size of lo
al

non-se
ret memory of the signer. The forward-se
urity of our s
hemes is dire
tly im-

plied by the unforgeability property of the underlying signature s
heme and it requires

no extra assumptions.

Our approa
h 
an also be applied to some signature s
hemes with spe
ial properties,

su
h as undeniable signatures, to obtain forward-se
ure signatures that still enjoy the

added spe
ial property.

�
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1 Introdu
tion

A natural 
on
ern related to digital signatures is that the dis
overy of the signing key by

an atta
ker provides this atta
ker with the power to forge the signature on any message.

Not only this 
ompromises the se
urity and validity of any signature issued after the break

but it also 
ompromises all past signatures. Me
hanisms su
h as key revo
ation (e.g., via


erti�
ate revo
ation) provide some prote
tion against forgeries of signatures dated after the

key's exposure is dis
overed, but are of no help to maintain the se
urity of past signatures.

One solution to this problem is the use of a (trusted) timestamping servi
e applied to the

signature string to validate its date of 
reation (e.g., [14℄). Another solution is to 
hange the

pair of publi
-private keys related to the signature algorithm very often. A simpler approa
h

to solve this problem was suggested by Ross Anderson [1℄ who 
alled for �nding signature

s
hemes where signature keys expire periodi
ally yet the publi
 key does not 
hange.

In a re
ent paper, Bellare and Miner [3℄ address this problem by formalizing Anderson's

proposal through the notion of forward-se
ure signatures, and by providing the �rst eÆ
ient

implementation of this notion. In their model time is divided into dis
rete periods (say,

days, weeks, et
.). As in a regular digital signature s
heme there is a publi
 veri�
ation key

and a se
ret signature key. However, while the publi
 key does not 
hange over time the

se
ret key 
hanges at ea
h new period. The re
ipient of a signature 
an verify the signature

against two parameters: 
orre
t veri�
ation by the publi
 key and 
orresponden
e of the

signature to a parti
ular period of time. Su
h a signature s
heme is 
alled forward-se
ure if

the exposure of the se
ret key at time-period t does not allow for forgery of signatures that

belong to previous time-periods. Thus, in addition to the assuran
e given by regular digital

signatures that the message was signed by the owner of the signing key, forward-se
ure

signatures also provide a proof of when (i.e. in whi
h period) the signature was issued.

There are many 
onsiderations regarding the design of forward-se
ure signature s
hemes

in
luding their motivation, usage, eÆ
ien
y parameters, and the suitability of some simple

approa
hes to solve the problem. We omit a detailed dis
ussion of these issues here as they

are thoroughly presented in [3℄ (the interested reader is highly en
ouraged to 
onsult that

paper). We fo
us in presenting our simple basi
 solution, its se
urity, and variants.

As pointed out by [3℄ it is easy to build forward-se
ure s
hemes where one of the following

basi
 parameters of the s
heme grows linearly with the total number of periods T : the size

of the se
ret key, the size of the publi
 key and/or the size of the signature. They also

point out to a \tree s
heme" that requires O(k log T ) size, where k is a se
urity parameter

(e.g., the size of the signature keys). However, it is argued in [3℄ that for a forward-se
ure

signature s
heme to be truly pra
ti
al the size of these parameters should be independent

of the number T of periods. (It seems that a minimal dependen
y with T is required if

one wants to in
lude an index to the time period in whi
h a signature is generated { su
h

information is essential to allow a se
ure binding between a signature and the period in

whi
h it was 
reated.) Then [3℄ present the �rst solution to satisfy this size requirement.

Their solution is based on a Fiat-Shamir-like signature s
heme derived from identi�
ation
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s
hemes. Se
urity is 
arefully formalized and proven based on the idealized random-ora
le

assumption.

Among the simple s
hemes pointed out by [3℄ there is one suggested by Ross Anderson

[1℄ whi
h 
an be applied to any signature s
heme but whi
h requires a se
ret key whi
h is T

times longer than the se
ret key of the underlying s
heme. Here we show how to implement

su
h a s
heme with a �xed-size se
ret key while preserving the simpli
ity and generality of

Anderson's solution. We use for that a pseudorandom generation pro
edure whi
h by itself

satis�es forward-se
urity [4℄. As a result our s
heme enjoys some very desirable properties

and some signi�
ant advantages over the solution of [3℄:

Simpli
ity: our s
heme is very simple and intuitive, and te
hni
ally straightforward. This


onstitutes a 
on
eptual and pra
ti
al advantage as re
e
ted in the following bene�ts.

Generality: any se
ure signature s
heme 
an be made forward-se
ure using our approa
h.

This means that we do not require the design and analysis of new digital signature s
hemes

spe
ially tailored to enjoy the forward-se
urity property. Instead we 
an use any existing

believed-to-be-se
ure signature s
heme. In parti
ular, we provide forward-se
ure RSA and

DSS signatures (
oming up with su
h s
hemes was left as an open problem in [3℄).

Analysis: our 
onstru
tion does not ne
essitate of ideal assumptions su
h as random ora
les.

Se
urity is proven, in a straightforward manner, on the sole basis of a se
ure regular digital

signature s
heme and the existen
e of pseudorandom fun
tions (the existen
e of the latter

is implied by the signature s
heme).

EÆ
ien
y: the 
ost of signing in our solution is identi
al to the 
ost of signing under the

underlying signature s
heme. Veri�
ation requires two regular veri�
ations (for veri�
ation

of the message signature and a 
erti�
ate).

Size of main parameters: Our s
heme satis�es the requirement, postulated in [3℄, that the

size of the main parameters (se
ret key, publi
 key, signature) be independent of the total

number of periods T for whi
h the s
heme is implemented. Both the se
ret and publi
 key

in our s
heme are of size identi
al to the size of the 
orresponding keys in the underlying

signature s
heme; the signature's size is twi
e the size of a regular signature. In parti
ular,

using suitable signature s
hemes (e.g. DSS) the se
ret key in our s
heme will be 
onsiderably

shorter than the key in the s
heme of [3℄. The only dependen
y on T of the above parameters

is the in
lusion in ea
h signature of an index to the period in whi
h the signature was issued.

The one aspe
t in whi
h our s
hemes are less eÆ
ient than the parti
ular solution of [3℄ is

the size of the memory maintained by the signer: in our 
ase the signer keeps in memory

T \
erti�
ates" one for ea
h time period. This is usually not a real problem given that

this information has no se
re
y requirement neither there is a need to publish it or share

it with others. Moreover, these 
erti�
ates 
an be freely ba
ked up by the signer to ensure

availability (upon retrieval from the ba
kup the signer 
an easily 
he
k the integrity of the


erti�
ates using its own publi
 key); even if a parti
ular 
erti�
ate is eventually lost it will

only prevent the signer from generating signatures for that period but will otherwise have

no se
urity e�e
t (in parti
ular, no 
ompromise of any signature). If in some parti
ular
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setting one wants to save in this memory requirement we show how to a
hieve that (see

Se
tion 3) at the expense of in
reased 
omputation time and larger (by a log T fa
tor)

signature size.

Appli
ability to ri
h signature s
hemes: in addition to providing forward-se
urity to regular

digital signature s
hemes, our s
heme 
an provide this feature to signature s
hemes with

added 
apabilities su
h as undeniable signatures. We also dis
uss the design of forward-

se
ure threshold and proa
tive signature s
hemes.

2 Forward-se
ure signatures from any signature s
heme

2.1 The 
omponents of forward-se
ure signature s
hemes

We start with a regular digital signature s
heme denoted SIG (e.g., RSA or DSS) 
omposed

of three algorithms: kg (the key generation algorithm), sign (the signature algorithm),

and ver (the veri�
ation algorithm). Algorithm kg on input a se
urity parameter and a

random string outputs a pair of publi
 and private keys denoted PK

0

and SK

0

, respe
tively.

Algorithm sign generates a signature on input a message M using the private key SK

0

.

Algorithm ver uses the publi
 key PK

0

and is applied to pairs M;�, its output is one of

the values valid or fail. It is required that ver returns valid if and only if � is a possible

signature of M under SK

0

.

Our goal is to design a forward-se
ure signature s
heme based on SIG where the se
ret

keys evolve over T periods of time, for some pre-spe
i�ed number T and with ea
h period

being of some spe
i�ed duration (a day, a week, et
.). We assume that the publi
 key of

the forward-se
ure s
heme is to be used for a total time that does not ex
eed T periods

(namely, after su
h T periods the publi
 key is expired). On the other hand, the se
ret

signing key 
hanges at the beginning of ea
h new period. A 
ore se
urity requirement is

that exposure of the 
urrent se
ret key does not help the atta
ker in forging signatures from

previous periods. We denote the resultant forward-se
ure signature s
heme by FWSIG.

Following the formalization of [3℄ we identify four 
omponents of FWSIG: fwkg, fwupd,

fwsign, fwver, whose fun
tionality we des
ribe next.

The system (or user) initially generates se
ret and publi
 parameters a

ording to a

key generation pro
edure fwkg (using a spe
i�ed se
urity parameter); this in
ludes the

generation of the publi
 veri�
ation key PK

0

(
alled the base publi
 key) that will remain

�xed for the lifetime of the system (i.e., for T periods). The signing algorithm fwsign will

depend on a se
ret key that will 
hange with ea
h time period. The signing key for period t

is denoted by SK

t

and will be generated at the beginning of ea
h period out of information

existent in the previous period via an update pro
edure denoted fwupd. Given a message

M to be signed, algorithm fwsign 
reates a signature on M , using key SK

t

(and possibly

other publi
 information). Finally, algorithm fwver is used to validate signatures. Its

inputs 
onsist of the base publi
 key PK

0

, a message M , a period number t, and a signature
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string s. It outputs valid if and only if the signature s is a legal output during period t

of algorithm fwsign applied to the message M (i.e., i� the signature was generated under

SK

t

).

We note that the veri�
ation algorithm in the forward-se
ure setting is verifying not only

that the messageM was signed by the \owner" of publi
 key PK

0

but that it was spe
i�
ally

signed during time period t. It is the 
apability of verifying this fa
t that provides the added

strength of forward-se
ure signature s
hemes relative to regular digital signature s
hemes.

We will denote a forward-se
ure signature s
heme by the quadruple FWSIG = (fwkg,

fwupd, fwsign, fwver) with the values T , the period duration, and se
urity parameter

being impli
it parameters. Before moving to des
ribe our implementation of these 
ompo-

nents (based on any regular signature s
heme SIG) we introdu
e the following te
hni
al

tool.

2.2 A te
hni
al tool: forward-se
ure prg's

The key-refreshment (or key-evolving) paradigm of forward-se
ure signatures is useful for

many other 
ryptographi
 primitives with di�erent se
urity impli
ations depending on the

appli
ation. Examples in
lude proa
tive systems (e.g., [16, 6, 15℄) and key ex
hange pro-

to
ols with key expiration and the related notion of \perfe
t forward-se
re
y" [9℄. In our


onstru
tion of forward-se
ure signatures we use forward-se
ure pseudorandom generators.

Su
h generators have been used in di�erent 
ontexts, e.g. [2, 6℄, and have simple realizations

based on regular pseudorandom generators or pseudorandom fun
tions. A formalization of

this notion 
an be found in [4℄. Here we des
ribe them informally and point to one simple

(generi
) 
onstru
tion (other implementations are possible).

A forward-se
ure pseudorandom generator is one where seeds (or keys) are refreshed

periodi
ally and where exposure of the generator's se
ret state at a given time period reveals

no (eÆ
iently 
omputable) information about the pseudorandom sequen
es generated in

previous periods. Namely, the generator uses at ea
h time period t a seed (or key) k

t

to

generate a sequen
e r

t

whi
h is indistinguishable from a truly random sequen
e as long as

the keys k

t

0

for t

0

� t are not input to the distinguisher. In addition, the sequen
es r

t

remain pseudorandom even if the distinguisher is given any key k

t

0

for t

0

> t.

We present a simple 
onstru
tion of forward-se
ure pseudorandom generators based on

any family F = ff

k

g of pseudorandom fun
tions. For simpli
ity we assume that the output

of the fun
tions f

k

is of the same length as the length of the index k; if a given pseu-

dorandom family does not have this property then it 
an be a
hieved by simple output

trun
ation (if the output is longer than the key) or by applying the fun
tion on di�er-

ent inputs (if the key is longer than a single output of the pseudorandom fun
tion). In

ea
h time period t we generate a pseudorandom sequen
e r

t

, of a spe
i�ed length, as fol-

lows. Let k

1

be a random index to a fun
tion in F . In period 1 we generate a pseudo-

random sequen
e r

1

as f

k

1

(1); f

k

1

(2); f

k

1

(3); : : : (the fun
tion is applied as many times as

needed to rea
h the required length of r

1

). At the beginning of ea
h period t 2 f2; : : : ; Tg
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we 
ompute k

t

= f

k

t�1

(0), and erase k

t�1

. The sequen
e generated at this period is

r

t

= f

k

t

(1); f

k

t

(2); f

k

t

(3); : : :. It is easy to show that the exposure of k

t

is of no help

for distinguishing the sequen
es r

t

0

, t

0

< t, from randomness.

2.3 The general transformation

We now present our simple transformation of a regular signature s
heme SIG into a forward-

se
ure s
heme FWSIG. We �rst outline the method and then provide a more detailed

des
ription. We start with a pair of se
ret-publi
 keys for s
heme SIG whi
h we denote

by SK

0

and PK

0

, respe
tively. We then 
reate T di�erent se
ret keys, one for ea
h time

period, using a forward-se
ure pseudorandom generator out of an initial random seed k

0

and the key generation algorithm kg. These se
ret keys are generated as signature keys

for the s
heme SIG. The publi
 veri�
ation keys 
orresponding to these signature keys

are also generated and a \
erti�
ate" is 
reated for ea
h of them; that is, for ea
h period

t = 1; : : : ; T we have a signature key SK

t

, a 
orresponding publi
 key PK

t

, and a 
erti�
ate


ert

t

. Ea
h 
erti�
ate 
ert

t

in
ludes the value PK

t

, the period number t, and the value

of the base publi
 key PK

0

(it may also in
lude additional information related to user U as

well as other system parameters). Also in
luded in the 
erti�
ate is a signature under key

SK

0


omputed on the other information in
luded in the 
erti�
ate.

On
e all this information is generated we erase all the se
ret keys (in
luding SK

0

), and

all the information produ
ed by the pseudorandom generator with the ex
eption of the

initial seed k

0

whi
h we store and keep se
ret. We also keep all 
erti�
ates and the publi


key PK

0

. The publi
 key PK

0

is treated as any other publi
 key in a signature s
heme, for

example, it may be 
erti�ed via a 
erti�
ation authority (in this 
ase the 
erti�
ate may

in
lude, in addition to standard 
erti�
ate information, some spe
i�
 information related

to the forward-se
ure s
heme su
h as the number of periods, their duration, et
.). The T


erti�
ates are also saved by U . There is no se
re
y requirement on them, nor the need

to make them publi
. They just need to be available to U during the 
orresponding time

period. Changes to these 
erti�
ates while stored 
an be dete
ted (via the veri�
ation key

PK

0

). If a 
erti�
ate is lost before the 
orresponding time period then U will not be able

to generate any signature during that period but this will have no e�e
t on the se
urity

of signatures generated in other periods. In any 
ase guaranteeing the availability of these


erti�
ates is simple; in parti
ular, be
ause of the la
k of se
re
y requirements they 
an be

freely ba
kup-ed for availability.

At the beginning of ea
h period t, the signature key SK

t

is 
omputed based on the key

of previous period and the latter is then erased. Signatures during period t are generated

using SK

t

as the signature key; the 
orresponding 
erti�
ate 
ert

t

is appended as part of

the signature. Signature veri�
ation is done using the publi
 key PK

t

that appears in the


erti�
ate, while the 
erti�
ate itself is validated using the base publi
 key PK

0

. The time

period in whi
h the signature was issued is veri�ed via the period number that appears in

the 
erti�
ate.
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A more 
areful and detailed des
ription of our s
heme follows.

Underlying fun
tions: We start with a regular digital signature s
heme SIG = (kg,

sign, ver), and a forward-se
ure pseudorandom generator fwprg whi
h on input k

t�1

produ
es a pair of pseudorandom values k

t

and r

t

. (It suÆ
es that ea
h of k

t

and r

t

are

individually pseudorandom; their joint distribution may not be pseudorandom, in parti
ular,

it 
an even be that k

t

= r

t

.)

Initialization (algorithm fwkg): Here we des
ribe the 
reation of parameters (se
ret

and publi
) for the use of the s
heme FWSIG by a user (we 
all it U), in
luding the gener-

ation of the pair of veri�
ation-signature keys and other values ne
essary for the operation

of the s
heme. We assume the publi
 veri�
ation key will be in use for T periods of time,

ea
h period being of some pre-spe
i�ed length (a week, month, et
.). The following steps

are performed by user U before the start of period 1.

1. Given a se
urity parameter � 
hoose a random value r and 
ompute (PK

0

; SK

0

) kg(�; r).

2. Choose a random seed k

0

for fwprg.

For t = 1 to T do

(k

t

; r

t

) fwprg(k

t�1

)

(SK

t

; PK

t

) kg(�; r

t

)


ert

t

 (PK

0

; t; PK

t

; sign

SK

0

(PK

0

; t; PK

t

))

3. Erase SK

0

and k

t

; r

t

; SK

t

, for t = 1; : : : ; T .

4. Store se
urely (i.e., in se
ret storage) the value k

0

5. Store 
ert

t

, t = 1; : : : ; T and publish the publi
 key PK

0

(e.g., via a 
erti�
ation

authority).

Update algorithm (fwupd): At the beginning of ea
h period t do the following:

1. (k

t

; r

t

) fwprg(k

t�1

)

2. (SK

t

; PK

t

) kg(�; r

t

)

3. retrieve 
ert

t

and verify that the values PK

0

and t in it are 
orre
t (i.e 
orrespond to

the base publi
 key and 
urrent time period t); also 
he
k that the publi
 key PK

t

in

it equals the publi
 key generated in previous step. If any of these 
he
ks fail, abort.

4. store se
retly k

t

and SK

t

and erase k

t�1

Signature algorithm (fwsign): On input message M to be signed do:
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1. Retrieve 
urrent values of 
ert

t

and SK

t

.

2. Output the signature pair (
ert

t

; �) where � = sign

SK

t

(M).

Signature verifi
ation algorithm (fwver): On inputs the publi
 key PK

0

, a message

M , a time period t, and a signature string s the veri�
ation algorithm fwver pro
eeds as

follows:

1. Parse s into the values 
ert and �.

2. Parse 
ert to get the values (PK

0

0

; t

0

; PK

0

t

; �

0

).

3. Che
k that PK

0

0

= PK

0

and t

0

= t.

4. Verify that ver

PK

0

((PK

0

; t; PK

0

t

); �

0

) = valid.

5. Verify that ver

PK

0

t

(�) = valid.

6. If all 
he
ks su

eed output valid, otherwise output fail.

2.4 Main Theorem

The following theorem summarizes our result and is straightforward to prove. The notion

of unforgeability that we use for the regular underlying s
heme is the strong notion of

se
urity for digital signature as formalized in [13℄ (se
urity against existential forgery under

adaptive 
hosen message atta
k). This notion 
an be extended in a natural way to 
apture

also forward-se
urity of signatures; this extension 
an be found in [3℄. We omit the te
hni
al

formalization details here.

Theorem 1 Let SIG = (kg; sign;ver) be an unforgeable signature s
heme and fwprg

be a forward-se
ure pseudorandom generator, then the s
heme FWSIG = (fwkg, fwupd,

fwsign, fwver) 
onstru
ted above is an unforgeable forward-se
ure signature s
heme.

To prove the theorem one assumes the se
urity of the forward-se
ure pseudorandom

generator fwprg and the unforgeability of the underlying signature s
heme SIG. Then

one shows that if a forger for the s
heme FWSIG exist then one 
an 
onstru
t out of it a

forger for the s
heme SIG, thus rea
hing a 
ontradi
tion. We note that a basi
 di�eren
e

between a forger against SIG and the one against FWSIG is that the former is never given

the signature key, while the latter is provided with the signature key for a period t and it

is 
onsidered su

essful if it �nds a forgery for a signature 
orresponding to a period t

0

< t.

See Appendix A for a proof of Theorem 1.

We end the se
tion with a short analysis of the s
heme's main parameters size.
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Size of main parameters. The publi
 key of our forward-se
ure s
heme is a single

regular publi
 key (PK

0

) for the underlying signature s
heme SIG. The se
ret information

maintained by the system, at any given period, are the period's signing key (
orresponding

to the underlying s
heme SIG) and the 
urrent seed for fwprg. (For appli
ations where

savings in se
ret storage is of prime importan
e, one 
an slightly modify the update s
heme

des
ribed above so that only the seed needs to be stored se
retly while the signature key is

re-
omputed upon need. Moreover, in some 
ases these two values may even be the same.)

A signature string under our s
heme in
ludes a regular signature string under SIG and the

period's 
erti�
ate whi
h in
ludes the period number. (Note that for parties that verify

multiple signatures for the same period, a single 
opy of the period's 
erti�
ate suÆ
es.)

3 Examples and Variants

DSS and RSA. Building a forward-se
ure signature s
heme based on DSS is very simple.

The signature key in DSS is a random 160-bit quantity (taken modulo q). If one uses a

forward-se
ure pseudorandom generator with seed of the same size (e.g., based on SHA-1)

then the signature key and seed for a given period 
an be the same.

1

In the 
ase of RSA, the key generation pro
edure will use the value r

t

produ
ed in

period t as input to a probabilisti
 algorithm that �nds prime numbers. When the key is

re-
omputed at the beginning of period t we will eventually �nd the same primes. We stress

that one 
an use some simple optimizations that will save prime re-
omputation time during

the update phase of period t. (For example, if one uses r

t

as the key to a pseudorandom

fun
tion and the tested primes are f

r

t

(1); f

r

t

(2); : : : then one 
an store the value of the

inputs to the fun
tion where the 
hosen primes were found.) An RSA-based s
heme where

the periodi
 se
ret key is a uniformly 
hosen number (rather than a pair of prime numbers)

is proposed next.

An RSA-based variant. As a 
uriosity, and maybe as a basis for future forward-se
ure

s
hemes we outline the following s
heme whi
h is based on RSA-se
urity. Its advantage

over regular RSA is that the per-period keys are just random numbers (exponents) rather

than (harder to generate) prime numbers. However, beyond being non-standard, it requires

the use of a random-ora
le (for non-intera
tive veri�
ation).

The key generation algorithm fwkg pro
eeds as follows. The base keys PK

0

; SK

0

are

regular RSA keys. That is, a pair of primes p; q is generated and the publi
 key PK

0

is

set to be n = pq together with a publi
 exponent e. (There are no more prime numbers

generated in this s
heme.) In addition, a �xed value w 2 Z

�

n

is in
luded as part of the

1

Note, however, that there is an advantage to the 
ase where a seed 
annot be derived from a signature

key: if some period's signature key gets exposed { e.g., via a physi
al atta
k { we would still like to keep

the period's seed se
ret, or otherwise all subsequent periods are 
ompromised. Note that the signature key

may be more vulnerable than the seed given that it needs to be a

essible during the whole period while the

seed is used only during the update phase.

9



s
heme's publi
 key. Per-period keys are produ
ed as follows. The se
ret key for period t

is a random number d

t

< n; these numbers are produ
ed for all periods out of an initial

seed using a forward-se
ure pseudorandom generator fwprg (as des
ribed in our general

s
heme; in the present 
ase, a period's seed and signature key 
an be the same). The publi


key for period t is the value w

d

t

mod n. On
e these publi
 keys are generated, they are


erti�ed using RSA signatures with keys PK

0

; SK

0

; the key SK

0

is then erased (in
luding

the primes p; q and the signature exponent d).

A signature during period t on message m is produ
ed as the string S

m

= m

d

t

mod n

together with a non-intera
tive proof that the dis
rete-log of S

m

to the basis m equals the

dis
rete-log of w

d

t

mod n to the basis w. (Re
all that w

d

t

mod n is the 
erti�ed publi
 key

for period t.) There are known eÆ
ient zero-knowledge intera
tive proofs for 
laims of this

type whi
h 
an be transformed into non-intera
tive proofs via the use of a \random-ora
le"

(a la Fiat-Shamir).

The se
urity analysis of su
h a s
heme 
an be based on the results of [12℄ (where a related

s
heme is used for undeniable signatures). In parti
ular, that paper des
ribes the relevant

(intera
tive) zero-knowledge proofs as well as the way one has to 
hoose the s
heme's pa-

rameters (e.g., how to 
hoose the primes p; q, whi
h need be safe primes, or the value w).

Hybrid s
hemes. In the general des
ription of our s
hemes in Se
tion 2 we assumed

that the same signature s
heme is used in produ
ing per-period signatures as well as for


erti�
ation signatures. We remark that this must not be the 
ase and the two signatures


an use di�erent underlying s
hemes. Or they 
an use the same underlying s
heme (say

RSA) but with di�erent se
urity parameters. The previous RSA-based example is also an

example of su
h an hybrid s
heme.

Saving 
ertifi
ate spa
e. As pointed out before, the only parameter in our s
heme

that grows linearly with T is the amount of memory required by the signer for long-term

storage of per-period 
erti�
ates. As said, this need for (non-se
ret) storage will be seldom a

pra
ti
al problem. For 
ompleteness, however, we sket
h a method for saving in the amount

of required storage at the expense of in
reased signature 
omputation time and in
reased

(log T ) signature size. As before, the publi
 key and required se
ret storage are of size

independent from T . We keep most of our general s
heme un
hanged ex
ept that we 
hange

the way in whi
h we use the base signing key to sign the per-period 
erti�
ates. This 
hange

will dispense of the need for long-term storage for all the per-period 
erti�
ates.

The idea is to build a (binary) Merkle's 
erti�
ation tree where the leaves are the per-

period 
erti�
ate information (this in
ludes the period's publi
 key and period's number

but not a signature), while other nodes in the tree store a (
ollision-resistant) hash value


omputed on the 
on
atenation of the values stored in its 
hildren nodes. The only use of

the base signature key SK

0

is to sign the hash value in the tree's root. We 
all the resultant

signature S. The signature on a per-period 
erti�
ate will 
onsist of this signature S together

with a list of the (log T ) hash values 
orresponding to a path in the tree between the root

and the 
orresponding 
erti�
ate's leaf. However, instead of storing all this information

10



during the T periods we will re-
ompute parts of it at the beginning of ea
h period and

derive from it the signature on the 
urrent period's 
erti�
ate. Therefore, after produ
ing

the tree and signature S during the initialization phase we erase the tree and the signing

key SK

0

. We do keep the signature S.

Later, at ea
h period's update phase, the signer re-
omputes all 
erti�
ates for 
urrent

and future periods (all information is derived from the 
urrent period's seed) and builds a

partial hash tree (this partial tree only in
ludes present and future 
erti�
ate information).

From this tree the signer derives all the hash values needed to be in
luded (together with

S) in the signature of the 
urrent period's 
erti�
ate. On
e this list of hashes is generated

it is stored for the rest of the period (as part of the signature on the 
urrent 
erti�
ate) and

the rest of the tree is erased. (To be pre
ise, another set of log T hashes in the tree, that

are not re
onstru
tible in the next period, need to be stored too; we omit the details.)

Thus we have saved the need for (long-term) storage of size proportional to T , but now

the 
erti�
ate's signature is longer (it in
ludes log T hashes) and the update phase is more

time 
onsuming. Publi
 and se
ret keys remain short as before.

Undeniable signatures. The simpli
ity of our transformation of a digital signature

s
heme into a forward-se
ure one preserves many of the properties of the underlying signa-

ture s
heme. A simple example of su
h a property is undeniable signatures [7℄. It is easy

to verify that our transformation applied to any undeniable signature s
heme will result

in forward-se
ure undeniable signatures (where the signature and veri�
ation pro
edures


orrespond to those used by the undeniable signatures s
heme { some of whi
h are 
arried

as an intera
tive proto
ol). Similarly, there are other properties of signature s
hemes that

are preserved by our transformation, thus resulting in forward-se
ure signatures that enjoy

further qualities.

Threshold and proa
tive signatures. Here we dis
uss the 
ombination of \threshold

se
urity" and forward-se
urity for signature s
hemes. Threshold signatures [8, 10℄ are sig-

nature s
hemes in whi
h the power to sign is distributed among several parties su
h that

as long as less than a spe
i�ed number (or threshold) of parties is 
orrupted, the signature

s
heme remains se
ure. The advantage of these s
hemes is in making the life of an atta
ker

mu
h harder; this atta
ker 
annot �nd the key by just breaking into one lo
ation but has to

be su

essful in its attempt in several lo
ations. By adding the forward-se
urity property

to threshold signature one 
ould a
hieve an even stronger se
urity guarantee: even if at

some point the atta
ker is able to break into a threshold of parties, the damage of signa-

ture forgery is 
on�ned to the period of time between key exposure and key revo
ation.

That is, even su
h a su

essful atta
ker will not be able to endanger signatures 
orrespond-

ing to time-periods prior to the key exposure. A dis
ussion on the design of forward-se
ure

threshold s
hemes, in
luding forward-se
ure proa
tive s
hemes, is presented in Appendix B.
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A Se
urity of our forward-se
ure s
hemes

For 
ompleteness we outline here the proof of Theorem 1.

Let FW be a forger against s
heme FWSIG that su

eeds with probability ". We build a

forger F against the underlying s
heme SIG as follows. Let (p; s) be a pair of publi
/private

keys for SIG against whi
h we want to produ
e forgeries. Forger F is given an ora
le O

p

that given a message returns a signature on that message under the pair (p; s). Forger

F starts by generating information 
orresponding to T periods of a (modi�ed) FWSIG

s
heme. F �rst 
hooses a period number t

0

at random between 1 and T . Then it 
hooses

a random seed for fwprg and generates out of it T � t

0

pairs of publi
/private SIG keys

following the spe
i�
ation of the initialization algorithm fwkg. These pairs are set as the

FWSIG keys for periods t

0

+ 1; t

0

+ 2; : : : ; T . In addition, F generates t

0

� 1 random and

independent pairs of publi
/private keys that it sets as the FWSIG keys for periods 1 to

t

0

� 1. For period t

0

it sets the publi
 key to be p. Now F 
hooses a pair of publi
/private

SIG keys (p

0

; s

0

) and produ
e 
erti�
ates signed under s

0

for all the per-period publi
 keys

produ
ed above. The publi
 key p

0

be
omes the base publi
 key of s
heme FWSIG.

Algorithm F now runs the forger FW against the (modi�ed) FWSIG s
heme de�ned

above. We let FW query for signatures 
orresponding to any period of its 
hoi
e ex
ept

for the following restri
tion. Whenever FW asks for a signature 
orresponding to a period

i, it 
annot later ask for a signature 
orresponding to a previous period. Ea
h time FW

requests a signature (on a message of its 
hoi
e) 
orresponding to any period di�erent than

t

0

then F provides the requested signature using its knowledge of the signature keys for

those periods (these keys were 
hosen by F !) When FW asks to issue signatures for period

t

0

, then F goes to its ora
le O

p

to get the 
orresponding signatures under (p; s). When FW

de
ides to query the se
ret information for some t

0

-th period then F does the following. If

t

0

� t

0

then it aborts its run (i.e., in this 
ase F fails to forge). If t

0

> t

0

then F provides

FW with the se
ret information for that period (F knows it). F keeps running FW as

before and responds to signature requests as before. If at some point FW outputs a forgery

against a period t

00

< t

0

then F a
ts as follows. If t

00

6= t

0

, F aborts its run failing to forge.

Otherwise if t

00

= t

0

, F outputs the same forgery as FW did and stops. (Note that in order

for FW 's output to be 
onsidered a forgery it must be that FW did not ask for the forged

message to be signed during period t

0

, so in parti
ular F did not ask for that signature

from O

p

meaning that this is a valid forgery for F too.)

What is the probability of F to su

eed in forging? If FW su

eeds with probability "

then F su

eeds at least with probability roughly "=T . This argument is outlined as follows.
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First, the view of (the modi�ed) FWSIG that F produ
es for FW is 
omputationally

indistinguishable from the view of FW under a real run of FWSIG (where all keys are

produ
ed out of a single initial seed for fwprg). Indeed, using standard te
hniques it is

straightforward to show that if a distinguisher exists for these two views of FW then we


an 
onstru
t a distinguisher for fwprg. Next, 
onditioned on F 
hoosing the value of t

0

as the period for whi
h FW will eventually output a forgery, we have that the probability

that F outputs a forgery against (s; p) is the same probability that FW su

eeds in forging,

i.e., probability ". Sin
e 
hoosing the \right" t

0

happens with probability 1=T we get that

"=T is an approximate lower bound on the forging probability of F . (The \approximate"


omes from the negligible probability with whi
h the above mentioned views of FW 
an be

su

esfully distinguished.)

B On forward-se
ure threshold and proa
tive s
hemes

It is easy to design forward-se
ure threshold signatures if one is willing to maintain, at

ea
h parti
ipant, an amount of se
ret information that grows linearly with the number of

time periods T . We start by sket
hing su
h a s
heme and later show how to improve its

eÆ
ien
y. For 
on
retenes, we assume a threshold signature s
heme with a distributed key

generation (DKG) proto
ol [17, 5, 11℄ (
entralized key generation s
hemes 
an be used too

but are less attra
tive). We assume n parties running the threshold s
heme: P

1

; : : : ; P

n

.

1. Using proto
ol DKG the parties jointly generate base private and publi
 signature

keys SK

0

; PK

0

. The result of this 
omputation is that ea
h player P

i

holds a share x

i

of the base signature key while the base publi
 key is known to all players. The latter

is then published as the base publi
 key of the forward-se
ure threshold signature

s
heme.

2. The joint key generation pro
edure DKG is repeated T times among the n players

to produ
e se
ret shares (denoted x

i

(t); i = 1; : : : ; n; t = 1; : : : ; T ) for T di�erent

signature keys (these will a
t as the per-period signature keys) and the 
orresponding

publi
 keys. Per-period 
erti�
ates for these publi
 keys are produ
ed and signed,

jointly by the players (using shares x

i

), under the base signature key SK

0

. Ea
h

player P

i

erases the share x

i

that 
orresponds to the base signature key SK

0

, and

stores the T se
ret shares x

i

(t); t = 1; : : : ; T .

3. During period t signatures are jointly produ
ed by the players using the 
orresponding

shares x

i

(t). These shares are erased at the end of the period.

It is easy to see that this pro
ess a
hieves both the threshold property and forward-se
urity.

We show how to relax the requirement that ea
h party stores T shares by using a

forward-se
ure pseudorandom generator fwprg. However, this solution will only work
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against eavesdroppers

2

(i.e., the atta
ker is allowed to learn all information in the memory

of a 
orrupted party but is not allowed to 
hange the behavior of that party). Step 1 above

is not 
hanged. In Step 2, ea
h player P

i

starts with a random seed s

i

for fwprg. From

this seed, P

i

derives T forward-se
ure pseudorandom values s

i

(t); t = 1; : : : ; T , that he uses

as the random input required for ea
h of the T runs of DKG. Per-period 
erti�
ates are

produ
ed as before. However, not only shares of the base signature key are erased as before

but also other se
ret information (in
luding the pseudorandom values s

i

(t) and shares x

i

(t))

leaving only the seed s

i

to be held se
retly by player P

i

, i = 1; : : : ; T . Then, at the beginning

of ea
h period a player P

i


omputes the new state s

i

(t) for fwprg and erases the previous

state. The n players then run DKG to (re)produ
e the t-th period shares x

i

(t).

3

These

shares are used during the period to jointly sign messages.

An advan
ed variant of threshold signatures is the so-
alled proa
tive signature s
hemes

[15℄. In this 
ontext, time is partitioned into time periods (as with forward se
urity) and a

mobile atta
ker is 
onsidered whi
h may 
ontrol a party during some time periods but leave

the party un
orrupted during other periods. In proa
tive threshold s
hemes, the sharing of

the se
ret signature key is refreshed periodi
ally, in su
h a way that the atta
ker now needs

to break into a threshold of parties during a single time period (su
h as a day or week)

before it 
an forge signatures.

One 
an see that the �rst straightforward solution to forward-se
ure threshold signatures

presented above (where a party stores all shares for future periods) 
an be proa
tivized. This

requires that at the beginning of ea
h time period, when we perform the update operations

required for forward-se
urity, we also perform share refreshment operations for all the shares

stored in a player's memory (i.e., the shares for all pending periods are refreshed). While

the eÆ
ien
y of this approa
h 
an be questioned, it does satisfy the properties of proa
tive

forward-se
ure signature s
hemes.

Finally, we 
onsider the proa
tivization of our se
ond solution to forward-se
ure thresh-

old s
hemes (the one involving a forward-se
ure pseudorandom generator). In this 
ase,

refreshing future shares as before seems hard, if at all possible. Indeed, when the atta
ker


orrupts a party, it learns the 
urrent state of fwprg as held by that party and then it

learns all future shares; also those to be used after the atta
ker leaves the party. Yet,

there is a possible dire
tion to provide proa
tiveness in this setting. The idea is that the

pseudorandom states s

i

(t) as used in the above se
ond solution will not be generated using

a forward-se
ure pseudorandom generator (as dis
ussed in this paper) but rather using a

proa
tive pseudorandom proto
ol as des
ribed in [6℄. Assuming an eavesdropper-only at-

ta
ker, this proto
ol 
onstitutes a distributed pseudorandom generation pro
edure that is

immune to mobile break-ins, and whi
h provides ea
h player with a pseudorandom value

whi
h is unpredi
table for the adversary (ex
ept, of 
ourse, for values provided to players

2

This severe restri
tion on the a
tions of the atta
ker is required during initialization and update phases;

at other times both 
rash and mali
ious faults are also allowed.

3

Note that if we had let 
orrupted players to deviate from their normal behavior during runs of DKG we


ould have ended with shares that are di�erent than those 
reated during Step 2.
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urrently 
ontrolled by the atta
ker). It is easy to see that repla
ing fwprg in the above

forward-se
ure threshold solution with su
h a proa
tive pseudorandom proto
ol results in

a forward-se
ure proa
tive signature s
heme.
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