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Abstra
t

We study the question of how to generi
ally 
ompose symmetri
 en
ryption and authen-

ti
ation when building \se
ure 
hannels" for the prote
tion of 
ommuni
ations over inse
ure

networks. We show that any se
ure 
hannels proto
ol designed to work with any 
ombination

of se
ure en
ryption (against 
hosen plaintext atta
ks) and se
ure MAC must use the en
rypt-

then-authenti
ate method. We demonstrate this by showing that the other 
ommon methods

of 
omposing en
ryption and authenti
ation, in
luding the authenti
ate-then-en
rypt method

used in SSL, are not generi
ally se
ure. We show an example of an en
ryption fun
tion that

provides (Shannon's) perfe
t se
re
y but when 
ombined with any MAC fun
tion under the

authenti
ate-then-en
rypt method yields a totally inse
ure proto
ol (for example, �nding pass-

words or 
redit 
ard numbers transmitted under the prote
tion of su
h proto
ol be
omes an

easy task for an a
tive atta
ker). The same applies to the en
rypt-and-authenti
ate method

used in SSH.

On the positive side we show that the authenti
ate-then-en
rypt method is se
ure if the

en
ryption method in use is either CBC mode (with an underlying se
ure blo
k 
ipher) or a

stream 
ipher (that xor the data with a random or pseudorandom pad). Thus, while we show

the generi
 se
urity of SSL to be broken, the 
urrent standard implementations of the proto
ol

that use the above modes of en
ryption are safe.
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1 Introdu
tion

The most widespread appli
ation of 
ryptography in the Internet these days is for implementing

a se
ure 
hannel between two end points and then ex
hanging information over that 
hannel.

Typi
al implementations �rst 
all a key-ex
hange proto
ol for establishing a shared key between

the parties, and then use this key to authenti
ate and en
rypt the transmitted information using

(eÆ
ient) symmetri
-key algorithms. The three most popular proto
ols that follow this approa
h

are SSL [11℄ (or TLS [9℄), IPSe
 [18, 19℄ and SSH [26℄. In parti
ular, SSL is used to prote
t a myriad

of passwords, 
redit 
ard numbers, and other sensitive data transmitted between Web 
lients and

servers, and is used to se
ure many other appli
ations. IPSe
 is the standard for establishing a

se
ure 
hannel between any two IP entities for prote
ting information at the network layer.

As said, all these proto
ols apply both symmetri
 authenti
ation (MAC) and en
ryption to the

transmitted data. Interestingly, ea
h of these three popular proto
ols have 
hosen a di�erent way

to 
ombine authenti
ation and en
ryption. We des
ribe these three methods (here x is a message;

En
(�) is a symmetri
 en
ryption fun
tion; Auth(�) is a message authenti
ation 
ode; and `,' denotes


on
atenation | in this notation the se
ret keys to the algorithms are impli
it):

SSL: a = Auth(x), C = En
(x; a), transmit C

IPSe
: C = En
(x), a = Auth(C), transmit (C; a)

SSH: C = En
(x), a = Auth(x), transmit (C; a).

We refer to these three methods as authenti
ate-then-en
rypt (abbreviated AtE), en
rypt-then-

authenti
ate (EtA), and en
rypt-and-authenti
ate (E&A), respe
tively.

This disparity of 
hoi
es re
e
ts la
k of 
onsensus in the 
ryptography and se
urity 
ommuni-

ties as for the right way to apply these fun
tions. But is there a \right way", or are all equally

se
ure? Clearly, the answer to this question depends on the assumptions one makes on the en
ryp-

tion and authenti
ation fun
tions. However, sin
e proto
ols like the above are usually built using


ryptographi
 fun
tions as repla
eable modules, the most useful form of this question is obtained

by 
onsidering both fun
tionalities, en
ryption and authenti
ation, as generi
 
ryptographi
 prim-

itives with well de�ned (and independent from ea
h other) properties. Moreover, we want these

properties to be 
ommonly a
hieved by the known eÆ
ient methods of symmetri
 en
ryption and

authenti
ation, and expe
ted to exist in future pra
ti
al realizations of these fun
tions as well.

Spe
i�
ally, we 
onsider generi
 MAC fun
tions se
ure against 
hosen-message atta
ks and

generi
 symmetri
 en
ryption fun
tions se
ure against 
hosen-plaintext atta
ks. These se
urity

properties are the most 
ommon notions used to model the se
urity of these 
ryptographi
 primi-

tives. In parti
ular, 
hosen-message se
urity of the authenti
ation fun
tion allows to use the MAC

in the above proto
ols independently of the en
ryption in 
ases where only integrity prote
tion is

required but not se
re
y. As for en
ryption, 
hosen-plaintext se
urity is the most 
ommon prop-

erty under whi
h en
ryption modes are designed and analyzed. We note that a stronger property

of en
ryption is resistan
e to 
hosen-
iphertext atta
ks; while this property is important against

a
tive atta
ks it is NOT present in the prevalent modes of symmetri
 en
ryption (su
h as in stream


iphers or CBC mode even when the underlying blo
k 
ipher is 
hosen-
iphertext se
ure) and

therefore assuming this strong property as the basi
 se
re
y requirement of the en
ryption fun
tion

would ex
lude the use of su
h standard eÆ
ient me
hanisms.

Rather than just studying the above ways of 
omposing en
ryption and authenti
ation as an

independent 
omposed primitive, our fo
us is on the more 
omprehensive question of whether these

methods provide for truly se
ure 
ommuni
ations (i.e., se
re
y and integrity) when embedded in a
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proto
ol that runs in a real adversarial network setting (where links are 
ontrolled by the atta
ker,

where some of the parties running the proto
ol may be 
orrupted, where multiple se
urity sessions

are run simultaneously and mali
iously interleaved, et
.).

Re
ent results. In a re
ent work, Canetti and Kraw
zyk [8℄ des
ribe a model of se
ure 
hannels

that en
ompasses both the initial ex
hange of a key between pairs of 
ommuni
ating parties and the

use of the resultant shared key for the appli
ation of symmetri
 en
ryption and authenti
ation on

the transmitted data. The requirements made from se
ure 
hannels in this model in
lude prote
ting

the data's integrity (in the sense of simulating ideally authenti
ated 
hannels) and se
re
y (in the

sense of plaintext indistinguishability) in the presen
e of a network atta
ker with powerful and

realisti
 abilities of the type mentioned above. A main result in [8℄ is that if the key is shared

se
urely then applying to the data the en
rypt-then-authenti
ate method a
hieves se
ure 
hannels

provided that the en
ryption fun
tion is semanti
ally se
ure (or plaintext-indistinguishable) under

a 
hosen-plaintext atta
k and the authenti
ation fun
tion is a MAC that resists 
hosen message

atta
ks. This provides one important answer to the questions raised above: it proves that en
rypt-

then-authenti
ate is a generi
ally se
ure method for implementing se
ure 
hannels.

Our results. In this paper we 
omplement the above result on the en
rypt-then-authenti
ate

method with 
ontrasting results on the other two methods.

The generi
 inse
urity of AtE. We show that the authenti
ate-then-en
rypt method (as in

SSL) is not generi
ally se
ure under the sole assumption that the en
ryption fun
tion is se
ure

against 
hosen plaintext atta
ks and the MAC se
ure against 
hosen message atta
ks. We show an

example of a simple en
ryption fun
tion that enjoys perfe
t (in the sense of Shannon) se
re
y against


hosen plaintext atta
ks and when 
ombined under the AtE method with any MAC (even a perfe
t

one) results in a totally breakable implementation of se
ure 
hannels. To illustrate the inse
urity

of the resultant s
heme we show how passwords (and 
redit 
ard numbers, et
) transmitted under

su
h a method 
an be easily dis
overed by an a
tive atta
ker that modi�es some of the information

on the links. A major issue to highlight here is that the atta
k is not against the authenti
ity of

information but against its se
re
y! This result is parti
ularly unfortunate in the 
ase of SSL where

prote
tion of this form of sensitive information is one of the most 
ommon uses of the proto
ol.

The generi
 inse
urity of E&A. The above example is used also to demonstrate the inse
urity

of the en
rypt-and-authenti
ate method (as in SSH) where the same atta
k (and 
onsequen
es) is

possible. It is worth noting that the E&A is obviously inse
ure if one uses a MAC fun
tion that leaks

information on the data. However, what our atta
k shows is that the method is not generi
ally

se
ure even if one assumes a stronger MAC fun
tion with se
re
y properties as 
ommonly used in

pra
ti
e (e.g. a MAC realized via a pseudorandom family or if the MAC's tag itself is en
rypted).

The se
urity of AtE with spe
ifi
 en
ryption modes. This paper does not bring just bad

news. We also show that the authenti
ate-then-en
rypt method is se
ure under two very 
ommon

forms of en
ryption: CBC mode (with an underlying se
ure blo
k 
ipher) and stream 
iphers (that

xor the data with a random or pseudorandom pad). We provide a (near optimal) quanti�ed se
urity

analysis of these methods. While these positive results do not resolve the \generi
 weakness" of the

authenti
ate-then-en
rypt method (and of SSL), they do show that the 
ommon implementations


urrently in use do result in a se
ure 
hannels proto
ol.

In 
onjun
tion, these results show a quite 
omplete pi
ture of the se
urity (and la
k of se
urity)

of these methods. They point to the important 
on
lusion that any se
ure 
hannels proto
ol de-

signed to work with any 
ombination of se
ure en
ryption (against 
hosen plaintext atta
ks) and se
ure

MAC must use the en
rypt-then-authenti
ate method. On the other hand, proto
ols that use the

authenti
ate-then-en
rypt method with en
ryption in either stream 
ipher or CBC modes are safe.
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However, we note the fragility of this last statement: very simple (seemingly inno
uous) 
hanges

to the en
ryption fun
tion, in
luding 
hanges that do not in
uen
e the se
re
y prote
tion provided

by the en
ryption when 
onsidered as a stand-alone primitive, 
an be fatal for the se
urity of the

implemented 
hannels. This is illustrated by our example of a perfe
t 
ipher where the sole use of

a simple en
oding before en
ryption 
ompromises the se
urity of the transmitted data, or by the


ase of CBC en
ryption where the join en
ryption of message and MAC results in a se
ure proto
ol

but separate en
ryption of these elements is inse
ure. Thus, when using a non-generi
ally se
ure

method one has to be very 
areful with any 
hanges to existing fun
tions or with the introdu
tion

of new en
ryption me
hanisms (even if these me
hanisms are se
ure as stand-alone fun
tions).

Related work. While the intera
tion between symmetri
 en
ryption and authenti
ation is a

fundamental issue in the design of 
ryptographi
 proto
ols, this question seems to have re
eived

surprisingly little expli
it attention in the 
ryptographi
 literature until very re
ently. In 
ontrast,

in the last year we have seen a signi�
ant amount of work dealing with this and related questions.

We already mentioned the work by Canetti and Kraw
zyk [8℄ that establishes the se
urity of

the en
rypt-then-authenti
ate method for building se
ure 
hannels. Here, we use this result (and

some extensions of it) as a basis to derive some of our positive results. In parti
ular, we borrow

from that paper the formalization of the notion of se
ure 
hannels; a short outline of this model is

presented in Se
tion 2.3 but the reader is referred dire
tly to [8℄ for the (many missing) details.

A re
ent, independent, work that deals dire
tly with the ordering of generi
 en
ryption and

authenti
ation is Bellare and Namprempre [5℄. They study the same three forms of 
omposition

as in this paper but fo
us on the properties of the 
omposed fun
tion as an independent primitive

rather than in the 
ontext of its appli
ation to se
ure 
hannels as we do. The main 
ontribution

of [5℄ is in providing 
areful quantitative relations and redu
tions between di�erent methods and

se
urity notions related to these forms of 
omposition. These results, however, are insuÆ
ient

in general for 
laiming the se
urity, or demonstrating the inse
urity, of 
hannels that use these

methods for prote
ting data. For example, while [5℄ show that authenti
ate-then-en
rypt is not

ne
essarily CCA-se
ure, it turns out (by results in [8℄ and here) that the la
k of this property is

no reason to 
onsider inse
ure the 
hannels that use su
h a method (even the spe
i�
 non-CCA

example in [5℄ does provide se
ure 
hannels!). This demonstrates that the 
onsideration of se
ure


hannels requires a �ner treatment of the question of en
ryption/authenti
ation 
omposition. In

parti
ular, none of our results is 
laimed or implied by [5℄. This 
omparison, however, is important

for pointing out to the fa
t that while CCA se
urity is a useful se
urity notion it is 
ertainly too

strong for some (fundamental) appli
ations su
h as se
ure 
hannels (see dis
ussion at the beginning

of Se
tion 4.2 and in Se
tion 6.2).

A related subje
t that re
eived mu
h attention re
ently is the 
onstru
tion of en
ryption modes

that provide integrity in addition to se
re
y. Katz and Yung [16℄ suggest a mode of operation for

blo
k 
iphers that provides su
h fun
tional 
ombination; for their analysis (and for its independent

interest) they introdu
e the notion of \unforgeable en
ryption". A very similar notion is also

introdu
ed in [5℄ and 
alled there \integrity of 
iphertexts" (INT-CTXT). We use this notion in

our work too (see Se
tion 3) as a tool in some of our proofs. In another re
ent work, An and

Bellare [1℄ study the use of redundan
y fun
tions (with and without se
ret keys) as a method for

adding authenti
ation to en
ryption fun
tions. They show several positive and negative results

about the type of redundan
y fun
tions that are required in 
ombination with di�erent forms of

en
ryption and se
urity notions. Our results 
on
erning the authenti
ate-then-en
rypt method

with stream 
iphers and CBC modes 
ontribute also to this resear
h dire
tion sin
e these results

provide suÆ
ient and ne
essary 
onditions on the redundan
y fun
tions (viewed as MAC fun
tions)
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required for providing integrity to these important modes of en
ryption. Of parti
ular interest is

our proof that a se
ure AtE 
omposition that uses CBC en
ryption requires a strong underlying

MAC; this 
ontradi
ts a 
ommon intuition that (sin
e the message and MAC are en
rypted) weaker

\redundan
y fun
tions" 
ould repla
e the full-
edge MAC.

Re
ently, Jutla [15℄ devised an elegant CBC-like s
heme that provides integrity at little 
ost

beyond the traditional CBC method, as well as a parallel mode of en
ryption with integrity guar-

antee (a related s
heme is presented in [25℄). We note that while s
hemes su
h as [15℄ 
an be used

to eÆ
iently implement se
ure 
hannels that provide se
re
y and authenti
ity, generi
 s
hemes like

en
rypt-then-authenti
ate have several design and analysis advantages due to their modularity and

the fa
t that the en
ryption and authenti
ation 
omponents 
an be designed, analyzed and repla
ed

independently of ea
h other. In parti
ular, generi
 s
hemes 
an allow for faster implementations

than the spe
i�
 ones; even today the 
ombination of fast stream 
iphers with a fast MAC fun
tion

su
h as UMAC [6℄ under the en
rypt-then-authenti
ate method results in a faster me
hanism than

the one proposed in [15℄ whi
h requires the use of blo
k 
iphers. Also, having a separate MAC

from en
ryption allows for mu
h more eÆ
ient authenti
ation in the 
ases where se
re
y is not

required. Last, but not least, we note that the s
hemes in [15℄ apply en
ryption and authenti
ation

to the exa
t same data. Most 
hannel proto
ols, however, in
lude under the authenti
ation also

unen
rypted data (e.g., headers, payload des
riptors, et
.) or even non-transmitted data (e.g., a

message sequen
e number, state information, et
.). Su
h authenti
ation is often instrumental for

the se
urity of the resultant proto
ol.

Organization In the next se
tion we outline de�nitions, and set some notation and terminology,

for the basi
 underlying 
ryptographi
 notions in this paper. In Se
tion 3 we de�ne \
iphertext

unforgeability" a notion that we use in proving our positive results of Se
tion 5. Se
tion 4 presents

the generi
 se
urity (and inse
urity) of the three authenti
ation/en
ryption 
omposition methods

studied here. Se
tion 5 presents our positive results 
on
erning the authenti
ate-then-en
rypt

method when used with CBC mode and stream 
iphers. Finally, Se
tion 6 presents some further

remarks and dis
ussion on the results of the paper.

2 Preliminaries

We informally outline some well-known notions of se
urity for MAC and en
ryption fun
tions as

used throughout the paper, and introdu
e some notation. Referen
es are given below for formal

treatment of these notions. We also sket
h the model of \se
ure 
hannels" from [8℄.

2.1 Se
ure message authenti
ation

Fun
tions that provide a way to verify the integrity of information (for example, against unautho-

rized 
hanges over a 
ommuni
ations network) and whi
h use a shared se
ret key are 
alled MAC

(message authenti
ation 
odes). The notion of a MAC and its se
urity de�nition is well understood

[4℄. Here we outline the main ingredients of this de�nition as used later in the paper.

A MAC s
heme is des
ribed as a family of (deterministi
) fun
tions over a given domain and

range. (We will usually assume the domain to be f0; 1g

�

and the range f0; 1g

n

for �xed size n.). The

key shared by the parties that use the MAC s
heme determines a spe
i�
 fun
tion from this family.

This spe
i�
 fun
tion is used to 
ompute an authenti
ation tag on ea
h transmitted message and

the tag is appended to the message. A re
ipient of the information that knows the MAC key 
an

re-
ompute the tag on the re
eived message and 
ompare to the re
eived tag. Se
urity of a MAC
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s
heme is de�ned through the inability of an atta
ker to produ
e a forgery, namely, to generate

a message, not transmitted between the legitimate parties, with its valid authenti
ation tag. The

formal de�nition of se
urity provides the atta
ker with a

ess to a MAC ora
le O

MAC

that on input

a message x outputs the authenti
ation tag 
orresponding to that message. The ora
le uses for its

responses a key that is generated a

ording to the probability distribution of keys de�ned by the

MAC s
heme. The atta
ker su

eeds if after this intera
tion with the ora
le it is able to �nd a

forgery (for a message not previously queried). To quantify se
urity we say that a MAC s
heme

has se
urity E

M

(q;Q; T ) if any atta
ker that works time T and asks q queries from O

MAC

involving

a total of Q bits has probability at most E

M

(q;Q; T ) to produ
e a forgery.

Remark 2.1 In the 
ase of MAC fun
tions (e.g., randomized ones) where there may be multi-

valued valid tags for the same message, we extend the de�nition of se
urity as follows. If the

messages queried to O

MAC

are x

1

; x

2

; : : : ; x

q

and the responses from O

MAC

are t

1

; t

2

; : : : ; t

q

then

a forgery (x; t) output by the atta
ker is 
onsidered valid if (x; t) 6= (x

i

; t

i

) for all i = 1; : : : ; q.

(Namely, we 
onsider the atta
ker su

essful even in 
ase its forgery in
ludes a queried message as

long as the tag t was not generated by the ora
le for that message.) This te
hni
al strengthening

of the de�nition is used in some of our results. This notion appears (due to similar reasons) also

in [5℄.

2.2 Se
ure symmetri
 en
ryption

We do not develop a formal de�nition of en
ryption se
urity here as the subje
t is well established

and treated extensively in the literature. Yet, we summarize informally the main aspe
ts of the

se
urity notions of symmetri
 en
ryption that are relevant to our work and establish some notation.

For formal and pre
ise de�nitions see the referen
es mentioned below.

An en
ryption s
heme is a triple of (probabilisti
) algorithms (KEYGEN;ENC;DEC) where KEYGEN

de�nes the pro
ess (and resultant probability distribution) by whi
h keys are generated, while ENC

and DEC are the en
ryption and de
ryption operations with the usual inverse properties. To sim-

plify notation we use ENC to denote the en
ryption operation itself but also as representing the

whole s
heme (i.e., a triple as above). The main notion behind the 
ommon de�nitions of se
urity

of en
ryption is semanti
 se
urity [13℄, or its (usually) equivalent formulation via plaintext indis-

tinguishability. In this formulation an atta
ker against a s
heme ENC is given a target 
iphertext y

and two 
andidate plaintexts x

1

; x

2

su
h that y = ENC(x

i

), i2

R

f0; 1g.

1

The en
ryption s
heme has

the indistinguishability property if the atta
ker 
annot guess the right value of i with probability

signi�
antly better than 1=2. The se
urity of the s
heme is quanti�ed via the time invested by the

atta
ker and the probability beyond 1/2 to guess 
orre
tly.

The above des
ribes the goal of the atta
ker but not the ways of atta
k it is allowed to use. Two


ommon models of atta
k are CPA (
hosen plaintext atta
k) and CCA (
hosen 
iphertext atta
k).

In the �rst the atta
ker has a

ess to an en
ryption ora
le O

ENC

to whi
h it 
an present plaintexts

and re
eive the 
iphertexts resulting from the en
ryption of these plaintexts. In the se
ond model

the atta
ker 
an, in addition to the above queries to the en
ryption ora
le, also ask for de
ryptions

of arbitrary 
iphertexts (ex
ept for the target 
iphertext y) from a de
ryption ora
le O

DEC

. We

note that both O

ENC

and O

DEC

use the same key for their responses whi
h is also the key under

whi
h the target 
iphertext y, as des
ribed above, is produ
ed. In both 
ases the queries to the

ora
les 
an be generated adaptively by the atta
ker

2

, i.e. as a fun
tion of previous responses from

1

We use the notation a2

R

A to denote that the element a is 
hosen with uniform probability from the set A.

2

Thus, our notion of CCA 
orresponds to CCA2 in the terminology of [3℄.
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the ora
les and of the target 
iphertext y (a
tually, also the 
andidate plaintexts x

1

; x

2

on whi
h

the target 
iphertext y is 
omputed 
an be 
hosen by the atta
ker). Under these formulations two

new parameters enter the quanti�
ation of se
urity: the number of queries to O

ENC

and the number

of queries to O

DEC

(the latter is 0 in the 
ase of CPA). A �ner quanti�
ation would also 
onsider

the total number of bits in these queries.

As it is 
ustomary we denote the above two notions of en
ryption se
urity as IND-CPA and

IND-CCA. Extensive treatment of these notions 
an be found among other works in [13, 12, 2℄ and

[22, 23, 3, 17℄, respe
tively. A notion strongly related to IND-CCA is non-malleability of 
iphertexts

[10℄ whi
h we do not use dire
tly here. We also note that we are only 
on
erned with symmetri


en
ryption; asymmetri
 en
ryption shares many of the same aspe
ts but there are some important

di�eren
es as well (in parti
ular, in the asymmetri
 
ase en
ryption ora
les are meaningless sin
e

everyone 
an en
rypt at will any plaintext).

2.3 Se
ure Channels

In order to 
laim our positive results, i.e. that a 
ertain 
ombination of en
ryption and authenti-


ation provides se
ure 
ommuni
ations, we need to de�ne what is meant by su
h \se
ure 
ommu-

ni
ations". For this we use the model of se
ure 
hannels introdu
ed by Canetti and Kraw
zyk [8℄

and whi
h is intended to 
apture the standard network-se
urity pra
ti
e in whi
h 
ommuni
ations

over publi
 networks are prote
ted through \sessions" between pairs of 
ommuni
ating parties, and

where ea
h session 
onsists of two stages. First, the two parties run a key-ex
hange proto
ol that

establishes an authenti
ated and se
ret session key shared between the parties. Then, in the se
ond

stage, this session key is used, together with symmetri
-key 
ryptographi
 fun
tions, to prote
t the

integrity and/or se
re
y of the transmitted data. The formalism of [8℄ involves the de�nition of a

key-ex
hange proto
ol for implementation of the session and key establishment stage, as well as of

two fun
tions, snd and r
v, that de�ne the a
tions applied to transmitted data for prote
tion over

otherwise inse
ure links. A proto
ol that follows this formalism is 
alled in [8℄ a \network 
hannels

proto
ol", and its se
urity is de�ned in terms of authenti
ation and se
re
y.

These notions are de�ned in [8℄ in the 
ontext of 
ommuni
ations 
ontrolled by an atta
ker with

full 
ontrol of the information sent over the links and with the 
apability of 
orrupting sessions and

parties. We refer to the full version of [8℄ for a 
omplete des
ription of the adversarial model and

se
urity de�nitions. Here we only mention brie
y the main elements in this de�nition 
on
erning

the fun
tions snd and r
v. The fun
tion snd represents the operations and transformations applied

to a message by its sender in order to prote
t it from adversarial a
tion over the 
ommuni
ation

links. Namely, when a message m is to be transmitted from party P to party Q under a session

s established between these parties, the fun
tion snd is applied to m and, possibly, to additional

information su
h as a message identi�er. The de�nition of snd typi
ally 
onsists of the appli
ation

of some 
ombination of a MAC and symmetri
 en
ryption keyed via the session key. The fun
tion

r
v des
ribes the a
tion at the re
eiving end for \de
oding" and verifying in
oming messages, and

it typi
ally involves the veri�
ation of a MAC and/or the de
ryption of an in
oming 
iphertext.

Roughly speaking, [8℄ de�ne that authenti
ation is a
hieved by the proto
ol if any message

de
oded and a

epted as valid by the re
eiving party to a session was indeed sent by the partner

to that session. (That is, any modi�
ation of messages produ
ed by the atta
ker over the 
om-

muni
ations links, in
luding the inje
tion or replay of messages, should be dete
ted and reje
ted

by the re
ipient; in [8℄ this is formalized as the \emulation" of an ideally-authenti
ated 
hannel.)

Se
re
y is formalized in the tradition of semanti
 se
urity: among the many messages ex
hanged

in a session the atta
ker 
hooses a pair of \test messages" of whi
h only one is sent; the atta
ker's

6



goal is to guess whi
h one was sent. Se
urity is obtained if the atta
ker 
annot guess 
orre
tly with

probability signi�
antly greater than 1/2. A network 
hannels proto
ol is 
alled a se
ure 
hannels

proto
ol if it a
hieves both authenti
ation and se
re
y in the sense outlined above.

In this paper we fo
us on the way the fun
tions snd and r
v are to be de�ned to a
hieve se
ure


hannels, i.e. to provide both authenti
ation and se
re
y in the presen
e of an atta
ker as above.

We say that any of the 
ombinations EtA;AtE;E&A implements se
ure 
hannels if when used as the

spe
i�
ation of the snd and r
v fun
tions the resultant proto
ol is a \se
ure 
hannels proto
ol".

Note that we are not 
on
erned here with a spe
i�
 key-ex
hange me
hanism, but rather assume a

se
ure key-ex
hange proto
ol [8℄, and may even assume an \ideally shared" session key.

3 CUF-CPA: Ciphertext Unforgeability

In addition to the traditional notions of se
urity for an en
ryption s
heme outlined in Se
tion 2.2

we use the following notion of se
urity that we 
all 
iphertext unforgeability. A similar notion has

been re
ently (and independently) used in [16, 5℄ where it is 
alled \existential unforgeability of

en
ryption" and \integrity of 
iphertexts (INT-CTXT)", respe
tively.

Let ENC be a symmetri
 en
ryption s
heme, and k be a key for ENC. Let P (k) be the set of

plaintexts on whi
h ENC

k

is de�ned, and C(k) be the set of 
iphertexts fy : 9x 2 P (k) s.t. y =

ENC

k

(x)g (note that if ENC is not deterministi
 then by y = ENC

k

(x) we mean that there is a run

of ENC on x that outputs y). We 
all C(k) the set of valid 
iphertexts under key k. For example,

under a blo
k 
ipher only strings of the blo
k length are valid 
iphertexts while in the basi
 CBC

mode only strings that are multiples of the blo
k length 
an be valid 
iphertexts. We assume that

the de
ryption ora
le O

DEC

outputs a spe
ial \invalidity symbol" ? when queried with an invalid


iphertext (and otherwise outputs the unique de
rypted plaintext x).

We say that an en
ryption s
heme is 
iphertext unforgeable, and denote it CUF-CPA, if it is

infeasible for any atta
ker F (
alled a \
iphertext forger") that has a

ess to an en
ryption ora
le

O

ENC

with key k to produ
e a valid 
iphertext under k not generated by O

ENC

as response to one of

the queries by F . More pre
isely, we quantify 
iphertext unforgeability by the fun
tion E

U

(q;Q; T )

de�ned as the maximal probability of su

ess for any 
iphertext forger F that queries q plaintexts

totalling Q bits and spends time T in the atta
k. We stress that this de�nition does not involve

a

ess to a de
ryption ora
le and thus its name CUF-CPA (this is 
onsistent with other 
ommon

notations of the form X-Y where X represents the goal of the atta
ker and Y the assumed abilities

of the atta
ker).

Our main use of the CUF-CPA notion is for proving (see Se
tion 5) that under 
ertain 
onditions

the AtE 
omposition is se
ure, i.e., it implements se
ure 
hannels. However, the notion of CUF-

CPA while suÆ
ient for our purposes is a
tually stronger than needed. For example, any s
heme

ENC that allows for arbitrary padding of 
iphertexts to a length-boundary (e.g., to a multiple of

8-bits) will not be CUF-CPA (sin
e given a 
iphertext with padded bits any 
hange to these bits

will result in a di�erent yet valid 
iphertext). However, su
h a s
heme may be perfe
tly se
ure in

the 
ontext of implementing se
ure 
hannels (see [8℄); moreover, s
hemes of this type are 
ommon

in pra
ti
e. Thus, in order to avoid an arti�
ial limitation of the s
hemes that we identify as se
ure

for implementing se
ure 
hannels we present next a relaxation of the CUF-CPA notion that is still

suÆ
ient for our purposes (we stress that this is not ne
essarily the weakest relaxation for this

purpose and other weakenings of the CUF-CPA notion are possible).

Let � be any polynomial-time 
omputable relation on pairs of strings with the property that

if 
 and 


0

are two valid 
iphertexts 
omputed under en
ryption fun
tion ENC

k

, for some key k,

7



and �(
; 


0

) holds then 
 and 


0

de
rypt to the same plaintext under k. We say that the en
ryption

s
heme ENC is CUF

�

-CPA if for any valid 
iphertext 
 that a 
iphertext forger atta
ker F (as de�ned

above) 
an feasibly produ
e there exists a 
iphertext 


0

output by the en
ryption ora
le under one of

F 's queries su
h that �(
; 


0

). We will refer to this se
urity notion as loose 
iphertext unforgeability.

(Note that valid 
iphertexts produ
ed by a \loose CUF" atta
ker always de
rypt to plaintexts

already queried to the en
ryption ora
le; moreover, it is easy to determine to whi
h of the queried

plaintexts they de
rypt.)

For instan
e, in the above example of a s
heme that allows for arbitrary padding of 
iphertexts,

if one de�nes �(
; 


0

) to hold if 
 and 


0

di�er only on the padding bits, then the s
heme 
an

a
hieve CUF

�

-CPA. We note that while CUF-CPA implies CCA-se
urity, loose CUF-CPA does

not (as the above \padding example" shows). Indeed, as we pointed out in the introdu
tion (see

also Se
tion 4.2) CCA-se
urity is not a ne
essary 
ondition for a MAC/en
ryption 
ombination to

implement se
ure 
hannels.

4 Generi
 
omposition of en
ryption and authenti
ation

In this se
tion we study the se
urity of the three methods, EtA;AtE;E&A, under generi
 symmetri


en
ryption and MAC fun
tions where the only assumption is that the en
ryption is IND-CPA and

the MAC is se
ure against 
hosen message atta
ks. Our fo
us is on the appropriateness of these

methods to provide se
urity to transmitted data in a realisti
 setting of adversarially-
ontrolled

networks. In other words, we are interested in whether ea
h one of these methods when applied

to adversarially-
ontrolled 
ommuni
ation 
hannels a
hieve the goals of information se
re
y and

integrity. As we will see only the en
rypt-then-authenti
ate method is generi
ally se
ure.

4.1 The known se
urity of en
rypt-then-authenti
ate

The results in this subse
tion are from [8℄ and we present them brie
y for 
ompleteness. We refer

the reader to that paper for details. In parti
ular, in the statement of the next theorem we use the

notion of \se
ure 
hannels" as introdu
ed in the above paper and sket
hed in Se
tion 2.3.

Theorem 1 [8℄ If ENC is a symmetri
 en
ryption s
heme se
ure in the sense of IND-CPA and

MAC is a se
ure MAC family then method EtA(ENC;MAC) implements se
ure 
hannels.

Following our terminology from Se
tion 2.3, the meaning of the above theorem is that if in the

network 
hannels model of [8℄ one applies to ea
h transmitted message the 
omposed fun
tion

EtA(ENC;MAC) (as the snd fun
tion) then the se
re
y and authenti
ity of the resultant network


hannels is guaranteed. More pre
isely, in proving the above theorem, [8℄ spe
ify the snd fun
tion

as follows. First, a pair of (
omputationally independent) keys, �

a

and �

e

, are derived from ea
h

session key. Then, for ea
h transmitted message, m, a unique message identi�er m-id is 
hosen

(e.g., a sequen
e number). Finally, the fun
tion snd produ
es a triple (x; y; z) where x = m-id,

y = ENC

�

e

(m), z = MAC

�

a

(m-id; y). On an in
oming message (x

0

; y

0

; z

0

) the r
v fun
tion veri�es

the uniqueness of message identi�er x

0

and the validity of the MAC tag z (
omputed on (x

0

; y

0

));

if the 
he
ks su

eed y

0

is de
rypted under key �

e

and the resultant plaintext a

epted as a valid

message.

3

3

Proto
ols that use a syn
hronized 
ounter as the message identi�er, e.g. SSL, do not need to transmit this value;

yet they must in
lude it under the MAC 
omputation and veri�
ation. If transmitted, identi�ers are not en
rypted

under ENC

�

e

sin
e they are needed for verifying the MAC value before the de
ryption is applied.
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A main 
ontribution of the present paper is in showing (see next subse
tions) that a generi


result as in Theorem 1 
annot hold for any of the other two methods, AtE and E&A (even if the used

keys are shared with perfe
t se
urity). Therefore, any se
ure 
hannels proto
ol designed to work

with any 
ombination of se
ure en
ryption (against 
hosen plaintext atta
ks) and se
ure MAC must

use the en
rypt-then-authenti
ate method. However, we note in Se
tion 5 that the above theorem


an be extended in the setting of method AtE if one assumes a stronger property on the en
ryption

fun
tion; in parti
ular, we show two important 
ases that satisfy the added se
urity requirement.

Remark 4.1 Note that the authenti
ation of the 
iphertext provides plaintext integrity as long

as the en
ryption and de
ryption keys used at the sender and re
eiver, respe
tively, are the same.

While this key syn
hrony is impli
it in our analyti
al models [8℄, a key mismat
h 
an happen in

pra
ti
e. A system 
on
erned with dete
ting su
h 
ases 
an 
he
k the plaintext for redundan
y

information (su
h redundan
y exists in most appli
ations: e.g., message formats, non-
ryptographi



he
ksums, et
.). If the redundan
y entropy is signi�
ant then a key mismat
h will 
orrupt this

redundan
y with high probability.

4.2 Authenti
ate-then-en
rypt is not generi
ally se
ure

Here we show that the authenti
ate-then-en
rypt method AtE(ENC;MAC) is not guaranteed to be

se
ure for implementing se
ure 
hannels even if the fun
tion ENC is IND-CPA and MAC provides

message unforgeability against 
hosen message atta
ks. First, however, we dis
uss shortly why

this result does not follow from [5℄ where it is shown that the AtE 
omposition (viewed as an

en
ryption s
heme) does not ne
essarily provide IND-CCA. The reason is simple: as demonstrated

in [8℄ IND-CCA is not a ne
essary 
ondition for a 
ombination of en
ryption and MAC fun
tions

to implement se
ure 
hannels. An example is provided by the main 
onstru
tion of se
ure 
hannels

in [8℄ (see Theorem 1): if the MAC used in this s
heme enjoys regular MAC se
urity, rather than

the strengthened notion des
ribed in Remark 2.1, then this 
onstru
tion guarantees se
ure 
hannels

but not ne
essarily CCA se
urity. (For example, if the MAC fun
tion has the property that 
ipping

the last bit of an authenti
ation tag does not 
hange the validity of the tag, then the s
heme in [8℄

is not IND-CCA yet it suÆ
es for implementing se
ure 
hannels; see Remark 5.2 for an additional

example.) Moreover, the spe
i�
 example from [5℄ of a non-CCA AtE(ENC;MAC) s
heme

4


an by

itself be used to show an example of a non-CCA s
heme that provably provides se
ure 
hannels.

Therefore, the result in [5℄ does not say anything about the suitability of AtE(ENC;MAC) for

implementing se
ure 
hannels; it rather points out to the fa
t that while CCA se
urity is a useful

se
urity notion it is 
ertainly too strong for some (fundamental) appli
ations su
h as se
ure 
hannels.

Thus if we want to establish the inse
urity of authenti
ate-then-en
rypt 
hannels under generi



omposition we need to show an expli
it example and a su

essful atta
k. We provide su
h example

now. In this example the en
ryption s
heme is IND-CPA (a
tually, it enjoys \perfe
t se
re
y" in

the sense of Shannon) but when 
ombined with any MAC fun
tion under the AtE method the

se
re
y of the 
omposed s
heme breaks 
ompletely under an a
tive atta
k.

The en
ryption fun
tion ENC

�

. We start by de�ning an en
ryption s
heme ENC

�

that 
an be

based on any stream 
ipher ENC (i.e. any en
ryption fun
tion that uses a random or pseudorandom

pad to xor with the data). The s
heme ENC

�

preserves the IND-CPA se
urity of the underlying

s
heme ENC. In parti
ular, if ENC has perfe
t se
re
y (i.e., uses a perfe
t one-time pad en
ryption)

so does ENC

�

. Next, we de�ne ENC

�

.

4

Just append an arbitrary one-bit pad to the 
iphertext and dis
ard the bit before de
ryption.
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Given an n-bit plaintext x (for any n), ENC

�

�rst applies an en
oding of x into a 2n-bit string x

0

obtained by representing ea
h bit x

i

, i = 1; : : : ; n, in x with two bits in x

0

as follows:

1. if bit x

i

= 0 then the pair of bits (x

0

2i�1

; x

0

2i

) is set to (0; 0);

2. if bit x

i

= 1 then the pair of bits (x

0

2i�1

; x

0

2i

) is set to (0; 1) or to (1; 0) (by arbitrary 
hoi
e of

the en
rypting party).

The en
ryption fun
tion ENC is then applied to x

0

. For de
rypting y = ENC

�

(x) one �rst applies

the de
ryption fun
tion of ENC to obtain x

0

whi
h is then de
oded into x by mapping a pair (0; 0)

into 0 and either pair (0; 1) or (1; 0) into 1. If x

0


ontains a pair (x

0

2i�1

; x

0

2i

) that equals (1; 1) the

de
oding outputs the invalidity sign ?.

The atta
k when only en
ryption is used. For the sake of presentation let's �rst assume

that only ENC

�

is applied to the transmitted data (we will then treat the AtE 
ase where a MAC

is applied to the data before en
ryption). In this 
ase when an atta
ker A sees a transmitted


iphertext y = ENC

�

(x) it 
an learn the �rst bit x

1

of x as follows. It inter
epts y, 
ips (from 0

to 1 and from 1 to 0) the �rst two bits (y

1

; y

2

) of y, and sends the modi�ed 
iphertext y

0

to its

destination. If A 
an obtain the information of whether the de
ryption output a valid or invalid

plaintext then A learns the �rst bit of x. This is so sin
e, as it 
an be easily seen, the modi�ed y

0

is

valid if and only if x

1

= 1. (Remember that we are using a stream 
ipher to en
rypt x

0

.) Clearly,

this breaks the se
re
y of the 
hannel (note that the des
ribed atta
k 
an be applied to any of

the bits of the plaintext). One question that arises is whether it is realisti
 to assume that the

atta
ker learns the validity or invalidity of the 
iphertext. The answer is that this is so for many

pra
ti
al appli
ations that will show an observable 
hange of behavior if the 
iphertext is invalid

(in parti
ular, many appli
ations will return an error message in this 
ase).

To make the point even 
learer 
onsider a proto
ol that transmits passwords and uses ENC

�

to

prote
t passwords over the network (this is, for example, one of the very 
ommon uses of SSL).

The above atta
k if applied to one of the bits of the password (we assume that the atta
ker knows

the pla
ement of the password �eld in the transmitted data) will work as follows. If the atta
ked

bit is 1 then the password authenti
ation will su

eed in spite of the 
hange in the 
iphertext. If

it is 0 the password authenti
ation will fail. In this 
ase su

ess or failure is reported ba
k to the

remote ma
hine and then learned by the atta
ker. In appli
ations where the same password is

used multiple times (again, as in many appli
ations prote
ted by SSL) the atta
ker 
an learn the

password bit-by-bit. The same 
an be applied to other sensitive information su
h as to 
redit 
ard

numbers where a mistake in this number will be usually reported ba
k and the validity/invalidity

information will be learned by A.

The atta
k against the AtE(ENC

�

;MAC) s
heme. Consider now the 
ase of interest for us in

whi
h the en
ryption is applied not just to the data but also to a MAC fun
tion 
omputed on this

data. Does the above atta
k applies? The answer is YES. The MAC is applied to the data before

en
oding and en
ryption and therefore if the original bit is 1 the 
hange in 
iphertext will result in

the same de
rypted plaintext and then the MAC 
he
k will su

eed. Similarly, if the original bit is

0 the de
rypted plaintext will have a 1 instead and the MAC will fail. All the atta
ker needs now

is the information of whether the MAC su

eeded or not. Note that in a sense the MAC just makes

things worse sin
e regardless of the semanti
s of the appli
ation a failure of authenti
ation is easier

to learn by the atta
ker: either via returned error messages, or by other e�e
ts on the appli
ation

that 
an be observed by the atta
ker.

Dis
ussion: what have we learned? The example using ENC

�

is 
ertainly suÆ
ient to show

that the method AtE 
an be inse
ure even if the en
ryption fun
tion is IND-CPA se
ure and the

10



MAC unforgeable (note that this 
on
lusion does not depend on any spe
i�
 formalization of se
ure


ommuni
ations; any reasonable de�nition of se
urity must label the above proto
ol as inse
ure).

Therefore, if one wants to 
laim the se
urity of AtE(ENC;MAC) for parti
ular fun
tions ENC and

MAC one needs to analyze the 
ombination as a whole or use stronger or spe
i�
 properties of the

en
ryption fun
tion (see Se
tion 5). An interesting issue here is how plausible it is that people will

ever use an en
ryption s
heme su
h as ENC

�

. We note that although this s
heme does not appear

to be the most natural en
ryption me
hanism some (equally inse
ure) variants of it may arise in

pra
ti
e. First the appli
ation of an en
oding to a plaintext before en
ryption is used many times

for padding and other purposes and is a parti
ularly 
ommon pra
ti
e in publi
 key en
ryption

algorithms. Se
ond, en
odings of this type 
an be motivated by stronger se
urity requirements:

e.g. to prevent an atta
ker from learning the exa
t length of transmitted messages or other traÆ


analysis information. In this 
ase one 
ould use an en
oding similar to ENC

�

but with variable

size 
odes. (Just to make the point: note that a good example of traÆ
 analysis arises in the

above examples where the atta
ker has a lot to learn from error-reporting messages; even in 
ases

where this information is en
rypted it 
an usually be learned through the analysis of pa
ket lengths,

et
.) Another setting where plaintext en
oding is introdu
ed in order to improve se
urity is for


ombating timing and power analysis atta
ks.

The bottom line is that it is highly desirable to have s
hemes that are robust to generi
 
om-

position and are not vulnerable when seemingly inno
uous 
hanges are made to an algorithm (or

when a new, more se
ure or more eÆ
ient, algorithm or mode is adopted)

5

.

4.3 En
rypt-and-authenti
ate is not generi
ally se
ure

The �rst observation to make regarding the en
rypt-and-authenti
ate method is that under the


ommon requirements from a MAC fun
tion this method 
annot guarantee the prote
tion of se
re
y

(even against a passive eavesdropper). This is so sin
e a MAC 
an be se
ure against forgeries but

still leak information on the plaintext. Thus, the really interesting question is whether the method

be
omes se
ure if we avoid this obvious weakness via the use of a \se
re
y prote
ting" MAC su
h as

one implemented via a pseudorandom fun
tion or when the MAC tag is en
rypted (we observe that

most, if not all, MAC fun
tions used in pra
ti
e are believed to prote
t se
re
y). Unfortunately,

however, the atta
k from the previous se
tion applies here too, thus showing the (generi
) inse
urity

of the E&A method even under the above stronger forms of MAC. See also Remark 5.4.

5 Authenti
ate-then-en
rypt with CBC and OTP modes

In Se
tion 4.2 we saw that authenti
ate-then-en
rypt 
annot guarantee se
ure 
hannels under the

sole assumption that the en
ryption fun
tion is IND-CPA, even if the MAC fun
tion is perfe
tly

se
ure. In this se
tion we prove that for two 
ommon modes of en
ryption, CBC (with a se
ure

underlying blo
k 
ipher) and OTP (stream 
iphers that xor data with a (pseudo) random pad),

the AtE mode does work for implementing se
ure 
hannels.

5.1 A suÆ
ient 
ondition for the se
urity of AtE

We start by pointing out to the following Theorem that 
an be proven in the se
urity model of [8℄

(see Se
tion 2.3).

5

See Remark 5.4 for another example where seemingly harmless 
hanges transform a se
ure proto
ol into an

inse
ure one.
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Theorem 2 (derived from [8℄) Let ENC be an IND-CPA en
ryption fun
tion and MAC a MAC

fun
tion. If the 
omposed fun
tion AtE(ENC;MAC), 
onsidered as an en
ryption s
heme, is (loose)

CUF-CPA, then AtE(ENC;MAC) implements se
ure 
hannels.

That is, under the assumptions on the ENC and MAC fun
tions as stated in the Theorem, applying

the fun
tion AtE(ENC;MAC) to information transmitted over adversarially-
ontrolled links prote
ts

the se
re
y and integrity of this information. More spe
i�
ally, the Theorem implies the following

de�nition of the fun
tion snd in the network 
hannels model of [8℄ (see Se
tion 2.3). For ea
h

transmitted message m with unique message identi�er m-id the fun
tion snd produ
es a pair (x; y)

where x = m-id and y = ENC

�

e

(m;MAC

�

a

(m-id;m)), where the keys �

e

and �

a

are 
omputationally

independent keys derived from the session key. On an in
oming message (x

0

; y

0

) the r
v fun
tion

veri�es the uniqueness of message identi�er x

0

, de
rypts y

0

under key �

e

, veri�es the validity of the

de
rypted MAC tag, and if all tests su

eed the re
ipient a

epts the de
rypted message as valid.

We note that if the message identi�er is maintained in syn
hrony by sender and re
eiver (as in SSL)

then there is no need to send its value over the network. On the other hand, if sent, the message

identi�er 
an be en
rypted too. The above Theorem holds in either 
ase.

We stress that Theorem 2 holds for stri
t CUF-CPA as well as for the relaxed \loose" version

(see Se
tion 3). Its proof is similar to the proof of se
urity for the EtA 
omposition as presented

in [8℄ (i.e., their \se
ure 
hannels" theorem), and is omitted here.

Based on this Theorem, and on the fa
t that OTP and CBC are IND-CPA [2℄, we 
an prove

the se
urity of AtE under OTP and CBC by showing that under these forms of en
ryption the

resultant AtE s
heme is CUF-CPA. The rest of this se
tion is devoted to prove these fa
ts.

5.2 AtE with OTP

The OTP s
heme. Let F be a family of fun
tions with domain f0; 1g

`

and range f0; 1g

`

0

. We

de�ne the en
ryption s
heme OTP (F ) to work on messages of length at most `

0

as follows. A key

in the en
ryption s
heme is a des
ription of a member f of the family F . The OTP en
ryption

under f of plaintext x is performed by 
hoosing r 2

R

f0; 1g

`

and 
omputing 
 = f(r) � x where

f(r) is trun
ated to the length of x. The 
iphertext is the pair (r; 
). De
ryption works in the

obvious way. If F is the set of all fun
tions with the above domain and range and f is 
hosen at

random from this family we get perfe
t se
re
y against 
hosen-plaintext atta
ks as long as there

are no repetitions in the values r 
hosen by the en
ryptor (after en
rypting q di�erent messages

a repetition happens with probability q

2

=2

`

); we denote this s
heme by OTP

$

. If F is a family of

pseudorandom fun
tions then the same se
urity is a
hieved but in a 
omputational sense, i.e., up to

the \indistinguishability distan
e" between the pseudorandom family and a truly random fun
tion.

A formal and exa
t-se
urity treatment of this mode of en
ryption 
an be found in [2℄.

We note that while our main formalization of the OTP s
heme uses pads produ
ed by a (pseudo)

random fun
tion applied to a random IV our results hold for other forms of stream 
iphers; for

example, those that produ
e the en
rypting pad via a pseudorandom fun
tion applied to a (non-

repeating) 
ounter, or those using a pseudorandom generator for whi
h sender and re
eiver maintain

a syn
hronized state.

The AtE(OTP

$

;MAC) 
omposition. Let MAC be a MAC family with n-bit outputs, and k a key

to a member of that family. Let f be a random fun
tion with domain and range as de�ned above.

The AtE(OTP

$

;MAC) fun
tion with f and k a
ts as follows: (i) it re
eives as input a message x

of length at most `

0

� n, (ii) 
omputes t = MAC

k

(x), (iii) appends t to x, (iv) outputs the OTP

en
ryption under f of the 
on
atenated message (x; t).
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The following theorem establishes the CUF-CPA se
urity of AtE(OTP

$

;MAC) as a fun
tion of

the se
urity E

M

(�; �; �) of MAC.

Theorem 3 If MAC is a MAC family that resists one-query atta
ks then AtE(OTP

$

;MAC) is CUF-

CPA (and then by Theorem 2 it implements se
ure 
hannels).

More pre
isely, any 
iphertext forger F against AtE(OTP

$

;MAC) that runs time T has su

ess

probability E

U

of at most q

2

=2

`

+ E

M

(1; p; T

0

), where ` is a parameter of OTP

$

, q is the number of

queries F makes during the atta
k, p is an upper bound on the length of ea
h su
h query and on

the length of the output forgery, and T

0

= T + 
qp for some 
onstant 
.

The proof of Theorem 3 is presented in Appendix A.

Using standard te
hniques one 
an show that the theorem holds also for a OTP s
heme realized

via a family of pseudorandom fun
tions if we add to the above probability bound the distinguisha-

bility distan
e between the pseudorandom family and a truly random fun
tion. Also, the term

q

2

=2

`


an be eliminated if one uses non-repeating non
es instead of random r's (su
h as in 
ounter

mode or via a stateful pseudorandom generator used to generate a pseudorandom pad).

Remark 5.1 (Tightness: one-query resistan
e is ne
essary) Here is an example of a MAC that

does not resist one-queries and with whi
h valid 
iphertext 
an be forged against AtE(OTP

$

;MAC).

Assume MAC allows for �nding two same-length messages with the same MAC tag. (For example,

MAC �rst zeros the last bit of the message and then applies a se
ure MAC fun
tion on the resultant

message. Thus, MAC resists zero-queries but fails to one-queries: ask for a MAC on a message,

then forge for the message with last bit 
ipped.) The strategy of the 
iphertext forger against

AtE(OTP

$

;MAC) is to �nd su
h pair of messages x

1

; x

2

. Then, it queries the �rst one and gets the


iphertext (r; 
). Finally, it outputs the forgery (r; 


0

) where 


0

is obtained from 
 by xor-ing x

2

to

the �rst jx

2

j bits of 
. It is easy to see that (r; 


0

) de
rypts to (x

2

;MAC(x

2

)).

Remark 5.2 (Multi-valued MAC) In Remark 2.1 we strengthened the regular se
urity de�nition

of a MAC fun
tion in the 
ase that the fun
tion allows for di�erent valid authenti
ation tags for

the same message. This extended de�niton is used (expli
itly) in the proof of Theorem 3 and is

essential for ensuring the CUF-CPA property of AtE(OTP

$

;MAC). To see this, let MAC be a se
ure

single-valued MAC fun
tion and de�ne MAC

0

to be the same as MAC ex
ept that an additional

arbitrary bit is appended to ea
h authenti
ation tag; the veri�
ation pro
edure will just ignore this

bit. It is easy to see that in this 
ase AtE(OTP

$

;MAC

0

) will not be CUF-CPA. However, if one

examines the proof of Theorem 3 it 
an be seen that AtE(OTP

$

;MAC

0

) a
hieves loose CUF-CPA

(see Se
tion 3) and then it is suÆ
ient for implementing se
ure 
hannels (whi
h is what we 
are

about). So 
an we dispense of the strengthened notion of MAC when multi-valued MACs are

used? The answer is no. It is possible to build a multi-valued fun
tion MAC

0

that satis�es the

regular MAC de�nition, but not the strengthened version, for whi
h AtE(OTP

$

;MAC

0

) is inse
ure

for building se
ure 
hannels

6

.

Here is an example: let MAC be a se
ure single-valued MAC, and de�ne MAC

0

to be identi
al to

MAC ex
ept that on the all-zeros string it allows the last bit of the tag to be set arbitrarily (i.e.,

for this string the veri�
ation fun
tion will a

ept as valid two di�erent tags). An atta
ker against

a 
hannels proto
ol that implements AtE(OTP

$

;MAC

0

) 
an distinguish between a 
iphertext that

en
rypts the all-zeros message and the 
iphertext of any other message as follows. It just 
ips

6

In 
ontrast, in the 
ase of using EtA 
omposition for implementing se
ure 
hannels the regular se
urity notion

of MAC suÆ
es for any IND-CPA en
ryption s
heme [8℄
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the last bit of the 
iphertext and wat
hes for a

eptan
e or reje
tion of the message; 
learly, the

message is a

epted if and only if it was the all-zeros message.

Remark 5.3 (SuÆ
ien
y of redundan
y fun
tions) In [1℄ An and Bellare investigate the ques-

tion of whether simple redundan
y fun
tions (su
h as 
ombinatorial hash fun
tions) applied to a

plaintext before en
ryption suÆ
e for providing 
iphertext unforgeability. In the 
ase of AtE with

OTP it seems natural to assume that a simple 
ombinatorial property of the redundan
y fun
tion

su
h as AXU [20, 24℄ should suÆ
e. (In parti
ular, this seems so sin
e su
h a property is suÆ
ient

[20℄ if one only 
onsiders plaintext integrity where only the output of the redundan
y fun
tion is

en
rypted under an OTP s
heme.) However, this turns out not to be true in the 
ase of 
iphertext

unforgeability. We 
an show an example of an E-AXU (and also E-balan
ed [20℄) MAC family for

whi
h AtE(OTP

$

;MAC) is not CUF-CPA. It seems plausible, however, that a more involved 
ombi-

natorial property (involving the length of messages) of the MAC fun
tion 
ould suÆ
e to guarantee


iphertext unforgeability in the 
ase of AtE with OTP. A
tually, it is interesting to note that if the

authenti
ation tag is positioned before the message, instead of at the end as de�ned above, the AXU

property is indeed suÆ
ient (assuming �xed-length and single-valued valid authenti
ation tags).

Remark 5.4 (Beware of \slight 
hanges": separate en
ryption) To highlight the \fragility" of the

result in Theorem 3 we note that the proof of this theorem uses in an essential way the fa
t that

the en
ryption is applied as a whole on the 
on
atenated message and MAC tag. If we were to

en
rypt these two values separately (i.e., using separate IVs for the en
ryption of the message and

of the MAC) even under a truly random fun
tion we would not get CUF or CCA se
urity. More

signi�
antly, su
h separate en
ryption results in inse
ure 
hannels. Indeed, under this method an

a
tive atta
ker 
an get to learn whether two transmitted messages, possibly with di�erent message

identi�ers, are the same, something 
learly unwanted in a se
ure proto
ol (the atta
k is des
ribed

in Appendix C). We stress that this weakness allows for a
tual atta
ks on pra
ti
al appli
ations,

in parti
ular several forms of \di
tionary atta
ks"

7

In addition, this observation shows another weakness of the en
rypt-and-authenti
ate method

(Se
tion 4.3) sin
e it exhibits the inse
urity of this method even under the use of a standard stream


ipher for en
ryption and even when the MAC tag is en
rypted.

5.3 AtE with CBC

The CBC s
heme. Let ` be a positive integer and F be a family of permutations over f0; 1g

`

.

We de�ne the en
ryption s
heme CBC(F ) to work on messages of length a multiple of `. A key

in the en
ryption s
heme is a des
ription of a member f of the family F . The CBC en
ryption

under f of plaintext x is performed by partitioning x into blo
ks x[1℄; : : : ; x[p℄ of length ` ea
h,

then 
hoosing r 2

R

f0; 1g

`

(
alled the IV) and 
omputing the 
iphertext 
 = 
[0℄; 
[1℄; : : : ; 
[p℄ as


[0℄ = r; 
[i℄ = f(
[i � 1℄ � x[i℄); i = 1; : : : ; p. De
ryption works in the obvious inverse way. If F

is the set of all permutations over f0; 1g

`

and f is 
hosen at random from F then we denote the

s
heme by CBC

$

. A formal and exa
t-se
urity treatment of this mode of en
ryption 
an be found

in [2℄ who in parti
ular prove it to be IND-CPA also in the 
ase where F is a pseudorandom family

(in this 
ase the se
urity depends on the \indistinguishability distan
e" between the pseudorandom

7

One su
h example would be �nding passwords sent in the telnet proto
ol even if the proto
ol is run over a se
ure


hannel prote
ted as above; this is parti
ularly fa
ilitated by the fa
t that in this 
ase individual password 
hara
ters

are transmitted separately, and thus a di
tionary atta
k 
an be mounted on individual 
hara
ters.
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family and a truly random fun
tion).

The AtE(CBC

$

;MAC) 
omposition. Let MAC be a MAC family with `-bit outputs, and k a key

to a member of that family. Let f be a random permutation over f0; 1g

`

. The AtE(CBC

$

;MAC)

fun
tion with f and k a
ts as follows: (i) it re
eives as input a message x of length multiple of `,

(ii) 
omputes t = MAC

k

(x), (iii) appends t to x, (iv) outputs the CBC en
ryption under f of the


on
atenated message (x; t) (note that the resultant output is two blo
ks longer than x due to the

added blo
k t and the prepended IV r).

The following theorem establishes the CUF-CPA se
urity of AtE(CBC

$

;MAC) as a fun
tion of

the se
urity E

M

(�; �; �) of MAC.

Theorem 4 If MAC is a se
ure MAC family then AtE(CBC

$

;MAC) is CUF-CPA (and then by Theo-

rem 2 it implements se
ure 
hannels). More pre
isely, any 
iphertext forger F against

AtE(CBC

$

;MAC) that runs time T has su

ess probability E

U

of at most

Q

2

=2

`

+ 2qE

M

(0; 0; T

0

) + E

M

(1; p`; T

0

) + 2E

M

(q

�

; q

�

p`; T

0

)

where q is the number of plaintexts queried by F , p is an upper bound on the number of blo
ks in

ea
h of these queries, p

�

is the length in blo
ks of the forgery y

�

output by F , q

�

= minfq; p

�

g, Q is

the total number of blo
ks in the responses to F 's queries plus p

�

, and T

0

= T + 
Q for 
onstant 
.

The proof of Theorem 4 is presented in Appendix B.

Using standard te
hniques one 
an show that the theorem holds also for a CBC s
heme realized

via a family of pseudorandom permutations if we add to the above probability bound the distin-

guishability distan
e between the pseudorandom family and a truly random fun
tion. However, we

note, that in this 
ase the distinguisher not only gets a

ess to an ora
le that 
omputes the fun
tion

but also to an ora
le that 
omputes the inverse fun
tion (that is, we need to assume the family of

permutations to be \super pseudorandom" [21℄).

Remark 5.5 (Tightness: the ne
essity of strong MAC) The most \expensive" term in MAC se
u-

rity in the expression of the theorem is the value E

M

(q

�

) sin
e other terms only require prote
tion

against one-query or zero-query. Sin
e an atta
ker F does not get to see any of the MAC values

one 
ould wonder why su
h a strong se
urity from the MAC is required. We show here that, in


ontrast to the AtE(OTP

$

;MAC) 
ase, this requirement is unavoidable. Spe
i�
ally, we present for

any i = 0; 1; 2; : : :, an example of a MAC fun
tion MAC that is se
ure against i queries but yields

an inse
ure AtE(CBC

$

;MAC) s
heme with q = i+1 (and p

�

= 2i+4). We des
ribe the example for

i = 1, the extension to other values is straightforward.

Let fg

k

g

k

be a family of pseudorandom fun
tions from (f0; 1g

`

)

�

to f0; 1g

`=2

. De�ne a MAC

family MAC

0

on the same domain as fg

k

g

k

, and with `-bit outputs as follows: MAC

0

(k

1

;k

2

)

(x) =

(g

k

1

(x); g

k

2

(g

k

1

(x))). De�ne a se
ond MAC family MAC that uses the same set of keys as MAC

0

and

su
h that on key (k

1

; k

2

):

1. if the input x 
ontains two `-bit blo
ks b

i

and b

j

, i < j, su
h that b

i

6= b

j

and both have the

property that applying g

k

2

to the �rst half of the blo
k yields the se
ond half of the blo
k

then output b

i

as the MAC value for x.

2. otherwise, output MAC

0

(k

1

;k

2

)

(x)

It is easy to see that the so de�ned MAC has se
urity of roughly 2

`=2

against single queries (but is

totally inse
ure after two queries sin
e the output of MAC provides the blo
k format that makes
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the authenti
ation tag \trivial"). We show that it yields a AtE(CBC

$

;MAC) s
heme whose 
ipher-

texts are forgeable after two queries even if the en
ryption permutation f is purely random. The


iphertext forger F against AtE(CBC

$

;MAC) pro
eeds as follows:

1. Choose two arbitrary one-blo
k long plaintexts x

1

; x

2

as the two queries.

2. Let the responses y

1

; y

2

be the triples: (r

1

; 


1

= f(r

1

� x

1

);m

1

= f(


1

� MAC(x

1

))) and

(r

2

; 


2

= f(r

2

� x

2

);m

2

= f(


2

�MAC(x

2

))).

3. Output forgery y

�

= (


1

;m

1

; 


2

;m

2

; 


1

;m

1

).

A simple examination shows that y

�

is a valid 
iphertext.

One 
onsequen
e of the above lower bound on the required se
urity of MAC is that, somewhat

surprisingly, the MAC fun
tion 
annot be repla
ed by a simple 
ombinatorial hash fun
tion, su
h

as one enjoying AXU (see Remark 5.3). Indeed, had AXU been suÆ
ient then one-query resistant

MACs would suÆ
e too (sin
e one-query resistan
e implies AXU). We note that a modi�ed CBC-

like mode for whi
h AXU is suÆ
ient is presented in [1℄.

In 
ontrast to the above lower bound, we do not know if the term qE

M

(0) in the bound of

the theorem is ne
essary or not; we do not have so far an example that shows this term to be

unavoidable. Thus, it may well be the 
ase that a more 
areful analysis 
ould lower the fa
tor q

(a
tually, even with the 
urrent analysis it is possible to repla
e the fa
tor q with q

�

by a slightly

more involved argument).

Remark 5.6 (Non-adaptive se
urity of MAC suÆ
es) It is interesting to note that the requirement

from the se
urity of the MAC in Theorem 4 is for non-adaptive queries only. This 
an be seen by

inspe
ting the proof of the theorem, where the MAC forger G that we build makes non-adaptive

queries only.

Remark 5.7 (Beware of \slight 
hanges") Similarly to the 
ase of AtE(OTP

$

;MAC) the proof

of Theorem 4 uses in an essential way the fa
t that the en
ryption is done as a whole on the


on
atenated message and MAC. It is easy to build a 
iphertext forgery atta
k in 
ase the en
ryption

of the plaintext and of the MAC tag are done separately (i.e. with independently 
hosen IVs).

More signi�
antly, su
h separate en
ryption usually results in inse
ure 
hannels as demonstrated

in Appendix C.

6 Con
luding remarks

This paper answers some basi
 questions in 
ryptography but also raises many other questions and

issues. Some refer to the well-known (yet easy to forget) misleading e�e
t of intuition in the design

of 
ryptographi
 proto
ols, others have to do with the e�e
t of seemingly-te
hni
al subtleties in

the a
tual se
urity of proto
ols, and others relate to the formalization of some basi
 
ryptographi


notions. In this se
tion we 
ompile and highlight some of these issues.

6.1 The subtleties of 
ryptographi
 design

A few observations on the relation between our results and some 
ommonly a

epted intuitions.

1. Why isn't the AtE method se
ure? Beyond the te
hni
al demonstration of this fa
t here,

the more fundamental reason is that the MAC is not needed just to authenti
ate the data
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but also to prote
t the 
iphertext itself from 
hanges by an a
tive atta
ker. The intuition

that 
hanges to the 
iphertext will be ne
essarily dis
overed by the underlying MAC is just

not true (as our 
ounter-example from Se
tion 4.2 and the separate-en
ryption 
ase from

Se
tion 5.2 demonstrate).

2. When �rst seeing the 
ounter-example to the se
urity of the AtE method from Se
tion 4.2

one 
ould be tempted to 
on
lude that the weakness in this example 
omes from the trivial

\malleability" of one-time-pad en
ryption (i.e., the easiness to 
hange the plaintext via the


ipping of 
iphertext bits). However, this is 
ertainly not the 
ase: as we show (Se
tion 5.2)

a dire
t one-time-pad en
ryption of the (unen
oded data) makes the AtE method se
ure.

3. After showing that the AtE method is se
ure when one-time-pad en
ryption is applied to

the 
on
atenated pair (message,ma
), one 
ould reasonably expe
t that en
rypting ea
h of

the message and ma
 
omponents with independent one-time pads should still be se
ure.

However, we show in Se
tion 5.2 that su
h a 
on
lusion is false and that separate en
ryption


an 
ompletely break se
urity.

4. One \intuitive advantage" of AtE is that the en
rypted MAC is hard to atta
k sin
e in

this 
ase the atta
ker does not get to see the authenti
ation tags or even the plaintexts.

Therefore, it seems, mu
h less than a full-
edge MAC should suÆ
e in this 
ase. It turns out

that this intuition is justi�ed when using one-time pad en
ryption in whi
h 
ase we show that

MAC fun
tions resistant to a single-query are suÆ
ient. In 
ontrast, however, this intuition is

strongly misleading in the 
ase of CBC en
ryption for whi
h we prove that a fully-se
ure MAC

is required in order to a
hieve se
urity of AtE under CBC. This is parti
ularly interesting (and


ounter-intuitive) sin
e CBC is usually regarded as providing far better \integrity guarantee"

than stream 
iphers.

5. Yet another subtlety regarding the requirements from a MAC fun
tion in the 
ase of AtE

with OTP is that the (non-standard) strengthened se
urity notion for multi-valued MACs

as des
ribed in Se
tion 2.1 is ne
essary here (see Se
tion 5.2). This is in strong 
ontrast

to the EtA 
ase where the (weaker) standard MAC se
urity notion suÆ
es also in 
ase of

multi-valued MACs.

The moral is simple: do not (over) trust intuition, do not take se
urity as an obvious property of

anything, and mind every little 
hange to a se
ure method.

6.2 Se
ure 
hannels and the role of CCA se
urity

One interesting issue that arises in 
omparing our work to [5℄ is the importan
e of 
onsidering the

problem of en
ryption/authenti
ation 
omposition in the spe
i�
 
ontext of implementing se
ure


hannels, rather than as the design of an independent (
omposed) primitive. In parti
ular, this


omparison highlights the question of the suitability of CCA se
urity as the notion that 
aptures

the se
urity requirements from su
h 
omposition. Certainly, from the results in [8℄ and here it

follows that CCA is not a ne
essary requirement to a
hieve se
ure 
hannels. On the other hand,

when proving (as we do in Se
tion 5) that spe
i�
 s
hemes implement se
ure 
hannels, it is very


onvenient to have a simple se
urity notion appli
able to the 
omposed fun
tion (as a stand-alone

primitive) and whi
h frees our analysis from the more 
omplex details of the \se
ure 
hannels"

model of [8℄.
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Here, we use the notion of 
iphertext unforgeability (or CUF-CPA), introdu
ed in Se
tion 3,

for this purpose. However, while relatively easy to work with, this notion does not resolve the

over-kill nature of CCA-se
urity (a
tually, CUF-CPA is even stronger than CCA [5℄). Indeed,

this notion ex
ludes as se
ure perfe
tly good s
hemes. It is the more relaxed notion of \loose


iphertext unforgeability" that lets us 
apture a suÆ
ient requirement for implementing se
ure


hannels and allows for the proof of some of the non-CCA implementations of se
ure 
hannels

mentioned here. However, there are s
hemes that implement se
ure 
hannels and are not loose


iphertext unforgeable. Therefore, �nding a full 
hara
terization of these s
hemes in the form of a

simple to state and use de�nition would be an important 
ontribution in this resear
h area.

In this regard, it is interesting to make the following observation. One aspe
t of loose CUF

is that it limits the 
iphertext forgeries allowed to the atta
ker to 
iphertexts that de
rypt to

previously queried plaintexts. A natural question is whether this property is already suÆ
ient

for guaranteeing se
ure 
hannels. The answer is not. Our atta
ker against the AtE(ENC

�

;MAC)

s
heme from Se
tion 4.2 is able to break the se
urity of the 
hannels without ever produ
ing a valid


iphertext that de
rypts to an unseen 
iphertext.

6.3 Open questions

As said, there are many issues and questions raised by our work. We mention here two questions

that seem espe
ially interesting. Their resolution may provide a better understanding of the formal

and pra
ti
al se
urity issues involved here.

One is the question raised before: �nd a simple 
hara
terization of 
omposed ma
/en
ryption

fun
tions that implement se
ure 
hannels. In parti
ular, we would like to have a property to repla
e

loose CUF in Theorem 2 su
h that an \if and only if" statement 
an be proven. (Related questions

in
lude �nding other uses to the notion of loose 
iphertext unforgeability, or is a notion of \loose

CCA" similar to the above useful in any way?)

The other question relates to the en
ryption s
hemes that make the AtE method se
ure. While

we proved the se
urity of this method for stream-
ipher and CBC modes the te
hni
alities involved

in these proofs (espe
ially in the 
ase of CBC) and the su
eptibility to small 
hanges show that

the approa
h of proving spe
i�
 
ases is not the most desirable one and far from straightforward.

Certainly, given our results the best way to avoid these problems is to only use the EtA approa
h.

Yet, 
onsidering the 
urrent use of AtE in pra
ti
e and some of its advantages (for example, its

dire
t authenti
ation of the plaintext) it would be interesting to �nd a property that is enjoyed

by 
ommon modes of en
ryption and is suÆ
ient to ensure the se
urity of the authenti
ate-then-

en
rypt method when 
ombined with a se
ure MAC. Note that we are looking for a property that

is stronger than IND-CPA but signi�
antly weaker than 
hosen-
iphertext se
urity sin
e the latter

is not a
hieved by most symmetri
 en
ryption modes, and also be
ause our results show that this


ondition is not really ne
essary.
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A Proof of Theorem 3

Theorem 3 If MAC is a MAC family that resists one-query atta
ks then AtE(OTP

$

;MAC) is CUF-

CPA (and then by Theorem 2 it implements se
ure 
hannels).

More pre
isely, any 
iphertext forger F against AtE(OTP

$

;MAC) that runs time T has su

ess

probability E

U

of at most q

2

=2

`

+ E

M

(1; p; T

0

), where ` is a parameter of OTP

$

, q is the number of

queries F makes during the atta
k, p is an upper bound on the length of ea
h su
h query and on

the length of the output forgery, and T

0

= T + 
qp for some 
onstant 
.

Proof: We show how to 
onvert a su

essful 
iphertext forger F against AtE(OTP

$

;MAC) into

a MAC forger G against MAC. From our de�nitions of AtE(OTP

$

;MAC) and CUF-CPA su
h a


iphertext forger F works by querying (possibly in an adaptive way) q di�erent plaintexts x

1

; : : : ; x

q

(ea
h of length `

0

� n at most | re
all that n is the length the MAC output) from an ora
le O

AtE

that responds with pairs (r

1

; R

1

); : : : ; (r

q

; R

q

) where r

i

2

R

f0; 1g

`

and R

i

= f(r

i

)� (x

i

;MAC

k

(x

i

)).

Here the fun
tion f and the MAC key k are �xed through all responses by O

AtE

and are determined

as follows: f is a random fun
tion with domain and range as spe
i�ed by the OTP

$

s
heme, and the

key k is distributed a

ording to the probability distribution of keys determined by the MAC s
heme.

After getting responses to its queries, F outputs a forgery (r;R) whi
h is 
onsidered su

essful if and

only if (i) r 2 f0; 1g

`

; jRj � `

0

; (ii) (r;R) 6= (r

i

; R

i

); i = 1; : : : ; q; and (iii) R = f(r)� (x;MAC

k

(x))

for some x of length `

0

� n at most.

Given F we 
onstru
t the MAC-forger G as shown in Figure 1.

Note that G's responses to F 's queries are purely random. This is the 
ase also in a real

intera
tion between F and the AtE(OTP

$

;MAC) ora
le as long as there are no repetitions in the

values of r

i

; i = 1; : : : ; q. Thus, the forgery output by F under G's run is distributed identi
ally to

the forgeries output under the intera
tion of F with the real ora
le if we 
ondition these probability

distributions on the event that no 
ollisions happen in the r

i

values. In addition note that when

the 
iphertext forgery (r;R) output by F is su

essful so is the MAC forgery output by G. This


an be seen by inspe
tion of the a
tions of G in step 2 whi
h result in a \de
ryption" of (r;R)

that is distributed identi
ally to a de
ryption under the random fun
tion f in a real intera
tion

between F and the AtE(OTP

$

;MAC) ora
le. Thus, if (r;R) was a su

essful 
iphertext forgery then

its de
ryption into values (x; t) as 
omputed by G is a 
orre
t MAC forgery. There is one point

that needs to be argued more 
arefully and it is that the output (x; t) by G in step 2(
) does not

equal to (x

j

; t

j

) as returned by the MAC ora
le in response to G's query (otherwise this is not a

su

essful MAC forgery). But this is also easy to see sin
e the en
ryption of (x

j

; t

j

) under OTP

$

,

i.e., (x

j

; t

j

) � f(r

j

), is (r

j

; R

j

) and we are assuming R 6= R

j

. (Note that if MAC is a multi-valued

fun
tion then it 
ould be that x = x

j

and t 6= t

j

so we are using the fa
t that su
h an output

is 
onsidered a su

essful MAC forgery { see Se
tion 2.1.) This reasoning implies the following
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From OTP 
iphertext forgeries to MAC forgeries

Let F be a 
iphertext forger against AtE(OTP

$

;MAC). We build a forger G againstMAC with a

ess

to a MAC ora
le O

MAC

.

1. G runs F and answers its queries x

i

(in lieu of the AtE ora
le) with pairs (r

i

; R

i

) where

r

i

2

R

f0; 1g

`

, R

i

2

R

f0; 1g

jx

i

j+n

.

2. When, after some number q of queries, F outputs a forgery (r; R) then G pro
eeds as follows.

(a) If 8i 2 f1; : : : ; qg; r 6= r

i

: 
hoose x 2

R

f0; 1g

jRj�n

; t 2

R

f0; 1g

n

and output (x; t) as a

MAC forgery.

(b) If 9j 2 f1; : : : ; qg; r = r

j

and R = R

j

: output fail (* this is just a replay by F *)

(
) If 9j 2 f1; : : : ; qg; r = r

j

and R 6= R

j

: query t

j

def

= O

MAC

(x

j

) and output (x; t) as a

MAC forgery where x and t are 
omputed as

if jRj � jR

j

j set:

R

0

j

= pre�x of R

j

of length jRj; y = pre�x of (x

j

; t

j

) of length jRj;

y

0

= R�R

0

j

� y

x = pre�x of y

0

of length jRj � n; t = suÆx of y

0

of length n

if jRj > jR

j

j set:

R

0

= pre�x of R of length jR

j

j; y = (x

j

; t

j

)

y

0

= the 
on
atenation of R

0

�R

j

� y and jRj � jR

j

j random bits

x = pre�x of y

0

of length jRj � n; t = suÆx of y

0

of length n

Figure 1: The se
urity of AtE(OTP

$

;MAC)

equality:

Prob(F su

eeds : no r

i


ollision) = Prob(G su

eeds : no r

i


ollision)

From this we get:

Prob(F su

eeds) = Prob(F su

eeds ^ r

i


ollision) + Prob(F su

eeds ^ no r

i


ollision)

� Prob(r

i


ollision) + Prob(F su

eeds : no r

i


ollision)Prob(no r

i


ollision)

= Prob(r

i


ollision) + Prob(G su

eeds : no r

i


ollision)Prob(no r

i


ollision)

= Prob(r

i


ollision) + Prob(G su

eeds ^ no r

i


ollision)

� q

2

=2

`

+ E

M

(1; p; T

0

)

The last inequality is derived as follows. The �rst part is a simple birthday bound on the probability

that an r

i


ollision happens after q queries. The se
ond part is a bound on the probability of event

Prob(G su

eeds^no r

i


ollision) sin
e under this event G is a su

essful MAC-forger whi
h makes

at most one query of length at most p and works time T

0

. This probability is then at most

E

M

(1; p; T

0

). 2
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B Proof of Theorem 4

Theorem 4 If MAC is a se
ure MAC family then AtE(CBC

$

;MAC) is CUF-CPA (and then

by Theorem 2 it implements se
ure 
hannels). More pre
isely, any 
iphertext forger F against

AtE(CBC

$

;MAC) that runs time T has su

ess probability E

U

of at most

Q

2

=2

`

+ 2qE

M

(0; 0; T

0

) + E

M

(1; p`; T

0

) + 2E

M

(q

�

; q

�

p`; T

0

)

where q is the number of plaintexts queried by F , p is an upper bound on the number of blo
ks in

ea
h of these queries, p

�

is the length in blo
ks of the forgery y

�

output by F , q

�

= minfq; p

�

g, Q is

the total number of blo
ks in the responses to F 's queries plus p

�

, and T

0

= T + 
Q for 
onstant 
.

Proof: Let F be a forger against AtE(CBC

$

;MAC); we show that its su

ess probability is bounded

as in the theorem's statement. For this we show how to 
onvert F into a forger G against MAC.

The upper bounds on the su

ess probability of G guaranteed by the se
urity of MAC allow us to

establish the 
laimed bounds on the su

ess probability of F .

We start by introdu
ing some notation for des
ribing the work of a 
iphertext forger F . We

denote by x

i

; i = 1; : : : ; q the plaintexts that F queries from its AtE(CBC

$

;MAC)-ora
le, and by

y

i

; i = 1; : : : ; q the responses given by this ora
le (i.e., the CBC en
ryption of (x

i

;MAC

k

(x

i

)) under

a random permutation f where k is a randomly 
hosen MAC key). We denote ea
h y

i

as a triple

(r

i

; 


i

;m

i

) where r

i

is the random IV, 


i

is of the length of x

i

, and m

i

is the 
iphertext blo
k 
orre-

sponding to MAC

k

(x

i

). The output of F , i.e. a 
andidate forgery, is denoted by y

�

= (r

�

; 


�

;m

�

);

this forgery is su

essful if the CBC de
ryption of y

�

under f results in a pair (x

�

; t

�

) su
h that

t

�

= MAC

k

(x

�

). By 


i

[u℄ we denote the u-th blo
k of 


i

(and r

i

if u = 0) and by 


i

[last℄ the last

blo
k of 


i

; we use similar notation for for 


�

.

The forger G is presented in Figure 2. We provide some explanations of the rationale behind

G under 
omments marked by (* � � � *). The idea of the forger is to simulate the responses given

to F by a real AtE(CBC

$

;MAC)-ora
le under a truly random permutation. Then, when F outputs

a forgery y

�

, to try and \de
rypt" it to obtain the MAC forgery (x

�

; t

�

). The de
ryption uses the

fa
t that CBC

$

uses a truly random permutation in its 
omputation, that G knows the inputs for


iphertext blo
ks that appear in previous responses it provided to F , and that missing information

for de
rypting m

i

blo
ks (i.e., the en
ryption of MAC values) 
an be obtained by querying O

MAC

.

Yet this has to be done 
arefully so that the number of queries to O

MAC

is kept to a minimum,

and to ensure that the plaintext output as a forgery was not input as a query to O

MAC

.

We de�ne three types of events related to the intera
tion between F and an AtE(CBC

$

;MAC)-

ora
le.

Event CL (\
ollision"): We de�ne CL as the union of two events CL

0

and CL

1

de�ned as follows.

We say that event CL

0

happens if there is equality between any two blo
ks appearing in

the 
iphertexts y

i

; i = 1; : : : ; q. Event CL

1

relates to the following experiment: at the end of

F 's atta
k we 
hoose p

�

(the length of y

�

in blo
ks) random values in f0; 1g

`

. We say that

event CL

1

happens if any of these p

�

values 
oin
ides with any blo
k that appeared in the


iphertexts y

i

; i = 1; : : : ; q.

Event NM (\no m

i

"): We say that event NM happens if no blo
k in the 


�

part of y

�

equals to

one of the blo
ks m

i

in the responses y

i

provided to F .

Event KP (\known plaintext"): We say that event KP happens if the plaintext x

�

under F 's

forgery y

�

equals a previously queried plaintext by F .
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From CBC 
iphertext forgeries to MAC forgeries

Let F be a 
iphertext forger against AtE(CBC

$

;MAC). We build a forger G againstMAC with a

ess

to a MAC ora
le O

MAC

.

1. G runs F . On ea
h query x

i

by F , forger G returns a response (r

i

; 


i

;m

i

) where r

i

2

R

f0; 1g

`

; 


i

2

R

f0; 1g

jx

i

j

;m

i

2

R

f0; 1g

`

. If there is any repetition in the blo
ks 
hosen by G as

responses to F , then G aborts and fails to forge.

(* If no su
h repetitions happen then we think, for the sake of presentation, of a permutation

f that is partially de�ned by the responses of G to F 's inputs. *)

2. When F outputs 
iphertext y

�

= (r

�

; 


�

;m

�

), say after q queries x

1

; : : : ; x

q

, the forger G


omputes a forgery (x; t) against MAC in the following way:

(* The main idea is to try to set (x; t) = (x

�

; t

�

) by \de
rypting" y

�

using known input-

output's of f and using queries to O

MAC

; the rationale for spe
i�
 \de
ryptions" is explained

in the 
omments below *)

(a) If 


�


ontains no blo
k that equals one of the values m

i

from the previous step then:

i. For ea
h blo
k 


�

[u℄ in 


�

: (* set the 
orresponding blo
k x[u℄ of x *)

If the blo
k 


�

[u℄ equals a blo
k appearing in one of the 
iphertexts 


i

; i = 1; : : : ; q

produ
ed in step 1, say 


�

[u℄ = 


i

[v℄, then set x[u℄ = x

i

[v℄� 


i

[v � 1℄� 


�

[u� 1℄

(* x[u℄ = f

�1

(


�

[u℄)� 


�

[u� 1℄ = f

�1

(


i

[v℄)� 


�

[u� 1℄ = x

i

[v℄� 


i

[v � 1℄� 


�

[u� 1℄ *)

Else (* i.e., the blo
k 


�

[u℄ does not appear in any 


i

; i = 1; : : : ; q *)

set x[u℄ to a random value in f0; 1g

`

not used as an input to f so far.

ii. If the value m

�

did not appear as a blo
k in the responses y

i

provided by G then

set t to a random value in f0; 1g

`

not used as an input to f so far;

If for some i and u, m

�

= 


i

[u℄ then set t = x

i

[u℄� 


i

[u� 1℄� 


�

[last℄;

(* t = f

�1

(m

�

)� 


�

[last℄ = f

�1

(


i

[u℄)� 


�

[last℄ = x

i

[u℄� 


i

[u� 1℄� 


�

[last℄ *)

If for some i, m

�

= m

i

then query MAC(x

i

) and set t = MAC(x

i

)�


i

[last℄�


�

[last℄

(* t = f

�1

(m

�

)� 


�

[last℄ = f

�1

(m

i

)� 


�

[last℄ = MAC(x

i

)� 


i

[last℄� 


�

[last℄ *)

(b) If one of the blo
ks in 


�

equals a blo
k m

i

; 1 � i � q, then with probability 1/2 follow

Step (i) below and with probability 1/2 follow Step (ii) below:

(* (i) produ
es a forgery if x

�

= x

i

for some i, while (ii) forges if x

�

is new. *)

i. Say 


�

[u℄ = m

i

. Choose j2

R

f1; : : : ; qg; set x = x

i

and t = x

j

[u℄�


i

[last℄�


�

[u�1℄.

(* if x

�

= x

j

then f

�1

(m

i

) equals x

j

[u℄�


�

[u�1℄ and also equalsMAC(x

i

)�


i

[last℄;

thus as de�ned, t = MAC(x

i

) *)

ii. Compute (x; t) as in Step 2a ex
ept for blo
ks 


�

[u℄ that equal some blo
k m

i

. In

these 
ases, query MAC(x

i

), and set x[u℄ = MAC(x

i

)� 


i

[last℄� 


�

[u� 1℄.

(* x[u℄ = f

�1

(m

i

)� 


�

[u� 1℄ = MAC(x

i

)� 


i

[last℄� 


�

[u� 1℄ *)

Figure 2: The se
urity of AtE(CBC

$

;MAC)
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The probability that F outputs a su

essful forgery 
an be written as:

Prob(F su

eeds) = Prob(F su

eeds ^ CL) + Prob(F su

eeds ^ (:CL ^NM)) +

Prob(F su

eeds ^ (:CL ^ :NM ^KP )) +

Prob(F su

eeds ^ (:CL ^ :NM ^ :KP ))

From this expression and the proof of the next lemma, Theorem 4 follows. 2

Lemma 5 The following inequalities hold for the su

ess probability of forger F as des
ribed in

the proof of Theorem 4. (For 
larity of notation, we omit below the time parameter under the E

M

expression.)

1. Prob(F su

eeds ^ CL) � Q

2

=2

`

2. Prob(F su

eeds ^ (:CL ^NM)) � E

M

(1; p`)

3. Prob(F su

eeds ^ (:CL ^ :NM ^KP )) � 2qE

M

(0; 0)

4. Prob(F su

eeds ^ (:CL ^ :NM ^ :KP )) � 2E

M

(q

�

; q

�

p`)

Proof: Part 1: Clearly Prob(F su

eeds ^CL) � Prob(CL). Thus, it suÆ
es to bound Prob(CL),

i.e., the probability that either CL

0

or CL

1

happen. That is, either there exist two blo
ks among

the blo
ks in the 
iphertexts y

i

; i = 1; : : : ; q that are equal, or there is a 
ollision between one of

the p

�

blo
ks, denoted z

1

; : : : ; z

p

�

, 
hosen in the experiment de�ned under event CL

1

and one of

the blo
ks in y

i

; i = 1; : : : ; q. It is easy to see that as long as there are no 
ollisions, the blo
ks in

the 
iphertexts y

i

are all independent from the underlying plaintexts (this is due to the 
hoi
e of

a random independent IV in the generation of y

i

and the randomness of the permutation f) and

then the probability for a �rst 
ollision among these blo
ks is the same as in a standard birthday


al
ulation. Moreover, if we extend the 
ollision 
ondition to require that no 
ollision will happen

among the blo
ks in y

i

and among these blo
ks and the elements z

1

; : : : ; z

p

�


hosen in the setting

of event CL

1

, then we are guaranteed that neither CL

0

nor CL

1

o

ur. The total number of blo
ks

for whi
h we 
he
k for 
ollisions is then Q (whi
h we de�ned to in
lude the number of blo
ks in

the 
iphertexts y

i

as well as the number p

�

of blo
ks in p

�

). Thus, the probability that no 
ollision

o

urs among these Q blo
ks is as in a regular birthday problem in whi
h Q elements are randomly

drawn from a set of 2

`

elements, and this probability is at least 1�Q

2

=2

`

. Thus, the probability

that either CL

0

or CL

1

happen is less than Q

2

=2

`

, i.e. Prob(CL) < Q

2

=2

`

.

In all the following 
ases we assume that CL (and thus CL

0

) does not happen. Under this

assumption, the queries by F and the answers provided to F by G are distributed identi
ally as in

a real intera
tion between F and the AtE(CBC

$

;MAC)-ora
le. Therefore, under the :CL 
ondition

also the forgeries output by F in a run by G are identi
ally distributed as the forgeries of F in a

real intera
tion with the AtE(CBC

$

;MAC)-ora
le. We use this fa
t throughout the rest of the proof.

The ex
lusion of event CL

1

will also be used, but in a more te
hni
al way, in the proof of part 2.

Part 2: We start by showing that under the assumption that event CL does not happen and event

NM does happen then the probability that G outputs a valid forgery against MAC is identi
al to

the probability (under the same :CL ^ NM assumption) that F outputs a su

essful forgery y

�

.

Remember that sin
e CL does not happen (and thus CL

0

does not happen) then the 
iphertext

y

�

output by F in its a
tivation by G is distributed identi
ally as in an intera
tion with the

AtE(CBC

$

;MAC)-ora
le in whi
h event CL does not happen. Also by assuming event NM we know

that nom

i

blo
k appears in 


�

and in this 
ase G follows the a
tions des
ribed in step 2a of Figure 2.

In this 
ase, the blo
ks in 


�

are either blo
ks that appeared in G's responses to F 's queries, in
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whi
h 
ase the de
ryption is known to G, or previously unseen blo
ks in whi
h 
ase all unseen input

blo
ks have equal probability to serve as de
ryption. The only problem is that when G 
hooses a

random input for an unseen 
iphertext blo
k it 
annot ex
lude those input blo
ks en
rypted under

the m

i

blo
ks for whi
h the plaintext blo
k is unknown to G. That is, by 
hoosing a random unseen

input, G 
ould 
hoose an input of the form 


i

[last℄ � MAC(x

i

) for some i = 1; : : : ; q. However,

this event is ex
luded by our assumption that event CL

1

does not happen (to see the equivalen
e

between these events think of the preimages 
hosen by G for unseen blo
ks as preimages of the

values z

1

; : : : ; z

p

�

in the experiment de�ned under event CL

1

).

Thus we get that the probability distribution of the plaintext x as output by G in its forgery

(x; t) and the distribution of the plaintext x

�

de�ned by F 's forgery y

�

is the same. The same

holds for the forgery tag t output by G (but here G may need to query O

MAC

to de
rypt m

�

in


ase that m

�

= m

i

, for some i). In parti
ular, we get that the probability that (x; t) is a 
orre
t

forgery is the same as the probability that y

�

is a valid 
iphertext, i.e. the probability that F

su

eeds. However, in the 
ase that G queries O

MAC

on x

i

before produ
ing its output (x; t) we

need to argue that if y

�

is a su

essful 
iphertext forgery then x 6= x

i

(otherwise, this output would

not be 
onsidered a MAC forgery for G). Assume to the 
ontrary that G queried MAC(x

i

) and that

x = x

i

. In this 
ase, if (x; t) is indeed a su

essful forgery then t = MAC(x) = MAC(x

i

)

8

. But by


omputation t = MAC(x

i

) � 


i

[last℄ � 


�

[last℄, and thus 


i

[last℄ = 


�

[last℄. On the other hand we

have that f

�1

(


i

[last℄)� 


i

[last� 1℄ = f

�1

(


�

[last℄)� 


�

[last� 1℄ sin
e the �rst equals x

i

[last℄ and

the se
ond x[last℄ whi
h are the same as x = x

i

. Thus we get that 


i

[last� 1℄ = 


�

[last� 1℄. Using

the same indu
tive step we get to see that for all u = 0; 1; : : : ; last 


i

[u℄ = 


�

[u℄, and also m

i

=m

�

.

But then y

�

= y

i

in 
ontradi
tion to the assumption that y

�

was a su

essful forgery for F .

Thus, we have showed that under the assumptions (:CL^NM) the probability that G outputs

a su

essful forgery is the same as the probability (under the same assumptions) that F su

eeds.

In other words,

Prob(F su

eeds : :CL ^NM) = Prob(G su

eeds : :CL ^NM)

On the other hand, whenever 
onditions :CL^NM hold and G su

eeds in a MAC forgery we have

a break of the MAC fun
tion with a single query of length at most p` an event whose probability is

at most E

M

(1; p`). That is,

Prob(G su

eeds ^ (:CL ^NM)) � E

M

(1; p`)

We 
an put these two expressions together to �nish our proof.

E

M

(1; p`) � Prob(G su

eeds ^ (:CL ^NM))

= Prob(G su

eeds : (:CL ^NM)) Prob(:CL ^NM)

= Prob(F su

eeds : (:CL ^NM)) Prob(:CL ^NM)

= Prob(F su

eeds ^ (:CL ^NM))

whi
h proves item 2 of the lemma.

Part 3: In this analysis we assume the joint event (:CL ^ :NM ^ KP ). As already explained,

under the 
ondition :CL the forgery y

�

as output by F in the run by G is identi
ally distributed

as in the intera
tion with a real AtE(CBC

$

;MAC)-ora
le. Also, note that under the event :NM

8

If MAC is a multi-valued fun
tion then the last equality is not guaranteed. However, in this 
ase t 6= MAC(x

i

)

and then even if x = x

i

we have a forgery sin
e the pair (x; t) is not the result of a previous query (see Se
tion 2.1).
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the forger G exe
utes Step 2b in Figure 2. Thus, if F su

eeds under assumption KP (i.e., the

forgery y

�

de
rypts to a value x

�

and x

�

= x

j

, for some j 2 f1; : : : ; qg) when intera
ting with

the AtE(CBC

$

;MAC)-ora
le then it su

eeds under that assumption also in the run by G, and if G


hooses to play step (i) and it happens to 
hoose the 
orre
t value j then G is guaranteed to output

a good forgery against MAC sin
e the known de
ryption provides the value of MAC(x

i

) (without

having to query O

MAC

and, in parti
ular, we do not have to worry about \replays"). In other

words,

Prob(G su

eeds : (:CL ^ :NM ^KP ) ^D) � Prob(F su

eeds : (:CL ^ :NM ^KP ))

where D is the event that G 
hooses to play step (i) and it 
hooses the 
orre
t value j. Note that

Prob(D) � 1=2q.

On the other hand, we have that

Prob(G su

eeds ^ (:CL ^ :NM ^KP ) ^D) � E

M

(0; 0)

sin
e under all these events we get an atta
k against MAC that uses 0 queries.

We 
an use the above expressions to prove item 3 in the lemma, as follows.

E

M

(0; 0) � Prob(G su

eeds ^ (:CL ^ :NM ^KP ) ^D)

= Prob(G su

eeds ^ (:CL ^ :NM ^KP ) : D) Prob(D)

� Prob(G su

eeds ^ (:CL ^ :NM ^KP ) : D) 1=2q

= Prob(G su

eeds : (:CL ^ :NM ^KP ) ^D) Prob(:CL ^ :NM ^KP ) 1=2q

� Prob(F su

eeds : (:CL ^ :NM ^KP )) Prob(:CL ^ :NM ^KP ) 1=2q

= Prob(F su

eeds ^ (:CL ^ :NM ^KP )) 1=2q

Part 4: Here we assume the joint event (:CL ^ :NM ^ :KP ). As before this assumed joint event

guarantees that the su

ess probability of F in the run by G is the same as in an intera
tion with

the AtE(CBC

$

;MAC)-ora
le, and that under these 
onditions G exe
utes Step 2b in Figure 2. Also,

it is easy to inspe
t that in 
ase that :KP holds and that G 
hooses to run step (ii), then G 
an


orre
tly de
rypt y

�

into (x; t) with the same distribution as (x

�

; t

�

) (the missing information for

G to de
rypt is the value of de
ryptions of m

i

blo
ks whi
h it gets by querying the O

MAC

, or the

pre-images of unseen blo
ks whi
h G simulates perfe
tly assuming event :CL whi
h implies :CL

0

).

Thus, we have that under these events and the 
hoi
e by G to run step (ii) a su

essful forgery by

F implies a su

essful forgery by G. That is,

Prob(G su

eeds : (:CL ^ :NM ^ :KP ) ^E) � Prob(F su

eeds : (:CL ^ :NM ^ :KP ))

where E is the event that G 
hooses step (ii) when running step 2b. Note that Prob(E) = 1=2.

On the other hand, we have that

Prob(G su

eeds ^ (:CL ^ :NM ^ :KP ) ^E) � E

M

(q

�

; q

�

p`)

sin
e under all these events we get a su

essful atta
k against the fun
tion MAC that uses at most

q

�

= minfp

�

; qg queries (this is so sin
e the number of queries is as the number of di�erent m

i

blo
ks in y

�

and this number 
an be at most p

�

and at most q).

As in previous 
ases, we 
an use the above expressions to prove item 4 in the lemma. 2
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C Separate en
ryption of message and MAC is inse
ure

We show that, as 
laimed in Remarks 5.4 and 5.7, if the message and MAC's tag are en
rypted

separately (e.g., using random independent IV's) then the resultant proto
ol is not se
ure. Spe
if-

i
ally we show how an atta
ker 
an learn whether two transmitted messages are equal. Assume a

session between parties P and Q who share an en
ryption key �

e

and a MAC key �

a

. Consider �rst

the 
ase where message identi�ers are not transmitted (i.e., these unique identi�ers are maintained

in syn
hrony between sender and re
eiver as in SSL). When P wants to transmit to Q a message

m with message identi�er m-id, it sends a pair (


1

; 


2

) where 


1

is the en
ryption of m and 


2

is the

en
ryption of MAC

�

a

(m-id;m). Let m;m

0

be two su
h messages (with identi�ers m-id and m-id

0

,

respe
tively). If the atta
ker wants to learn whether m

0

is the same as m it does the following. It

does not interfere with the sending of m (i.e., it lets the un
hanged pair (


1

; 


2

) rea
h Q). However,

when the pair (


0

1

; 


0

2

) that 
orresponds to m

0

is sent, it repla
es 


0

1

with 


1

and waits to see if the

pair (


1

; 


0

2

) is a

epted as valid. If it is, then the atta
ker learns that m

0

= m (otherwise the MAC

veri�
ation would have failed!). Note that the above works for any en
ryption and MAC s
hemes.

In the 
ase that the message identi�er is transmitted in the 
lear then the atta
k works in the

same way. If the identi�er is sent en
rypted (but the atta
ker knows its value { or the di�eren
e

between values { as it is usually the 
ase of sequen
e numbers) then the atta
k still works in the

following 
ases.

1. If the en
ryption is OTP then the atta
ker does not dire
tly repla
e 


0

1

with 


1

but with a

modi�ed 


1

in whi
h the message identi�er m-id en
rypted under 


1

is 
hanged to m-id

0

(just

needs to 
ip the 
orresponding 
iphertext bits in 


1

with the di�eren
e m-id�m-id

0

).

2. If the en
ryption is CBC, then the feasibility of the atta
k may depend on more implemen-

tation details. In parti
ular, if the value of m-id is in
luded in the �rst plaintext blo
k then

the above 
hange to 


1


an be done via 
hanges to the en
ryption IV.
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