
The order of enryption and authentiation for proteting

ommuniations (Or: how seure is SSL?)

�

Hugo Krawzyk

y

June 6, 2001

Abstrat

We study the question of how to generially ompose symmetri enryption and authen-

tiation when building \seure hannels" for the protetion of ommuniations over inseure

networks. We show that any seure hannels protool designed to work with any ombination

of seure enryption (against hosen plaintext attaks) and seure MAC must use the enrypt-

then-authentiate method. We demonstrate this by showing that the other ommon methods

of omposing enryption and authentiation, inluding the authentiate-then-enrypt method

used in SSL, are not generially seure. We show an example of an enryption funtion that

provides (Shannon's) perfet serey but when ombined with any MAC funtion under the

authentiate-then-enrypt method yields a totally inseure protool (for example, �nding pass-

words or redit ard numbers transmitted under the protetion of suh protool beomes an

easy task for an ative attaker). The same applies to the enrypt-and-authentiate method

used in SSH.

On the positive side we show that the authentiate-then-enrypt method is seure if the

enryption method in use is either CBC mode (with an underlying seure blok ipher) or a

stream ipher (that xor the data with a random or pseudorandom pad). Thus, while we show

the generi seurity of SSL to be broken, the urrent standard implementations of the protool

that use the above modes of enryption are safe.

�

An abridged version of this paper appears in the proeedings of CRYPTO'2001.

y

EE Department, Tehnion, Haifa, Israel. Email: hugo�ee.tehnion.a.il

1 Introdution

The most widespread appliation of ryptography in the Internet these days is for implementing

a seure hannel between two end points and then exhanging information over that hannel.

Typial implementations �rst all a key-exhange protool for establishing a shared key between

the parties, and then use this key to authentiate and enrypt the transmitted information using

(eÆient) symmetri-key algorithms. The three most popular protools that follow this approah

are SSL [11℄ (or TLS [9℄), IPSe [18, 19℄ and SSH [26℄. In partiular, SSL is used to protet a myriad

of passwords, redit ard numbers, and other sensitive data transmitted between Web lients and

servers, and is used to seure many other appliations. IPSe is the standard for establishing a

seure hannel between any two IP entities for proteting information at the network layer.

As said, all these protools apply both symmetri authentiation (MAC) and enryption to the

transmitted data. Interestingly, eah of these three popular protools have hosen a di�erent way

to ombine authentiation and enryption. We desribe these three methods (here x is a message;

En(�) is a symmetri enryption funtion; Auth(�) is a message authentiation ode; and `,' denotes

onatenation | in this notation the seret keys to the algorithms are impliit):

SSL: a = Auth(x), C = En(x; a), transmit C

IPSe: C = En(x), a = Auth(C), transmit (C; a)

SSH: C = En(x), a = Auth(x), transmit (C; a).

We refer to these three methods as authentiate-then-enrypt (abbreviated AtE), enrypt-then-

authentiate (EtA), and enrypt-and-authentiate (E&A), respetively.

This disparity of hoies reets lak of onsensus in the ryptography and seurity ommuni-

ties as for the right way to apply these funtions. But is there a \right way", or are all equally

seure? Clearly, the answer to this question depends on the assumptions one makes on the enryp-

tion and authentiation funtions. However, sine protools like the above are usually built using

ryptographi funtions as replaeable modules, the most useful form of this question is obtained

by onsidering both funtionalities, enryption and authentiation, as generi ryptographi prim-

itives with well de�ned (and independent from eah other) properties. Moreover, we want these

properties to be ommonly ahieved by the known eÆient methods of symmetri enryption and

authentiation, and expeted to exist in future pratial realizations of these funtions as well.

Spei�ally, we onsider generi MAC funtions seure against hosen-message attaks and

generi symmetri enryption funtions seure against hosen-plaintext attaks. These seurity

properties are the most ommon notions used to model the seurity of these ryptographi primi-

tives. In partiular, hosen-message seurity of the authentiation funtion allows to use the MAC

in the above protools independently of the enryption in ases where only integrity protetion is

required but not serey. As for enryption, hosen-plaintext seurity is the most ommon prop-

erty under whih enryption modes are designed and analyzed. We note that a stronger property

of enryption is resistane to hosen-iphertext attaks; while this property is important against

ative attaks it is NOT present in the prevalent modes of symmetri enryption (suh as in stream

iphers or CBC mode even when the underlying blok ipher is hosen-iphertext seure) and

therefore assuming this strong property as the basi serey requirement of the enryption funtion

would exlude the use of suh standard eÆient mehanisms.

Rather than just studying the above ways of omposing enryption and authentiation as an

independent omposed primitive, our fous is on the more omprehensive question of whether these

methods provide for truly seure ommuniations (i.e., serey and integrity) when embedded in a

1

protool that runs in a real adversarial network setting (where links are ontrolled by the attaker,

where some of the parties running the protool may be orrupted, where multiple seurity sessions

are run simultaneously and maliiously interleaved, et.).

Reent results. In a reent work, Canetti and Krawzyk [8℄ desribe a model of seure hannels

that enompasses both the initial exhange of a key between pairs of ommuniating parties and the

use of the resultant shared key for the appliation of symmetri enryption and authentiation on

the transmitted data. The requirements made from seure hannels in this model inlude proteting

the data's integrity (in the sense of simulating ideally authentiated hannels) and serey (in the

sense of plaintext indistinguishability) in the presene of a network attaker with powerful and

realisti abilities of the type mentioned above. A main result in [8℄ is that if the key is shared

seurely then applying to the data the enrypt-then-authentiate method ahieves seure hannels

provided that the enryption funtion is semantially seure (or plaintext-indistinguishable) under

a hosen-plaintext attak and the authentiation funtion is a MAC that resists hosen message

attaks. This provides one important answer to the questions raised above: it proves that enrypt-

then-authentiate is a generially seure method for implementing seure hannels.

Our results. In this paper we omplement the above result on the enrypt-then-authentiate

method with ontrasting results on the other two methods.

The generi inseurity of AtE. We show that the authentiate-then-enrypt method (as in

SSL) is not generially seure under the sole assumption that the enryption funtion is seure

against hosen plaintext attaks and the MAC seure against hosen message attaks. We show an

example of a simple enryption funtion that enjoys perfet (in the sense of Shannon) serey against

hosen plaintext attaks and when ombined under the AtE method with any MAC (even a perfet

one) results in a totally breakable implementation of seure hannels. To illustrate the inseurity

of the resultant sheme we show how passwords (and redit ard numbers, et) transmitted under

suh a method an be easily disovered by an ative attaker that modi�es some of the information

on the links. A major issue to highlight here is that the attak is not against the authentiity of

information but against its serey! This result is partiularly unfortunate in the ase of SSL where

protetion of this form of sensitive information is one of the most ommon uses of the protool.

The generi inseurity of E&A. The above example is used also to demonstrate the inseurity

of the enrypt-and-authentiate method (as in SSH) where the same attak (and onsequenes) is

possible. It is worth noting that the E&A is obviously inseure if one uses a MAC funtion that leaks

information on the data. However, what our attak shows is that the method is not generially

seure even if one assumes a stronger MAC funtion with serey properties as ommonly used in

pratie (e.g. a MAC realized via a pseudorandom family or if the MAC's tag itself is enrypted).

The seurity of AtE with speifi enryption modes. This paper does not bring just bad

news. We also show that the authentiate-then-enrypt method is seure under two very ommon

forms of enryption: CBC mode (with an underlying seure blok ipher) and stream iphers (that

xor the data with a random or pseudorandom pad). We provide a (near optimal) quanti�ed seurity

analysis of these methods. While these positive results do not resolve the \generi weakness" of the

authentiate-then-enrypt method (and of SSL), they do show that the ommon implementations

urrently in use do result in a seure hannels protool.

In onjuntion, these results show a quite omplete piture of the seurity (and lak of seurity)

of these methods. They point to the important onlusion that any seure hannels protool de-

signed to work with any ombination of seure enryption (against hosen plaintext attaks) and seure

MAC must use the enrypt-then-authentiate method. On the other hand, protools that use the

authentiate-then-enrypt method with enryption in either stream ipher or CBC modes are safe.

2

However, we note the fragility of this last statement: very simple (seemingly innouous) hanges

to the enryption funtion, inluding hanges that do not inuene the serey protetion provided

by the enryption when onsidered as a stand-alone primitive, an be fatal for the seurity of the

implemented hannels. This is illustrated by our example of a perfet ipher where the sole use of

a simple enoding before enryption ompromises the seurity of the transmitted data, or by the

ase of CBC enryption where the join enryption of message and MAC results in a seure protool

but separate enryption of these elements is inseure. Thus, when using a non-generially seure

method one has to be very areful with any hanges to existing funtions or with the introdution

of new enryption mehanisms (even if these mehanisms are seure as stand-alone funtions).

Related work. While the interation between symmetri enryption and authentiation is a

fundamental issue in the design of ryptographi protools, this question seems to have reeived

surprisingly little expliit attention in the ryptographi literature until very reently. In ontrast,

in the last year we have seen a signi�ant amount of work dealing with this and related questions.

We already mentioned the work by Canetti and Krawzyk [8℄ that establishes the seurity of

the enrypt-then-authentiate method for building seure hannels. Here, we use this result (and

some extensions of it) as a basis to derive some of our positive results. In partiular, we borrow

from that paper the formalization of the notion of seure hannels; a short outline of this model is

presented in Setion 2.3 but the reader is referred diretly to [8℄ for the (many missing) details.

A reent, independent, work that deals diretly with the ordering of generi enryption and

authentiation is Bellare and Namprempre [5℄. They study the same three forms of omposition

as in this paper but fous on the properties of the omposed funtion as an independent primitive

rather than in the ontext of its appliation to seure hannels as we do. The main ontribution

of [5℄ is in providing areful quantitative relations and redutions between di�erent methods and

seurity notions related to these forms of omposition. These results, however, are insuÆient

in general for laiming the seurity, or demonstrating the inseurity, of hannels that use these

methods for proteting data. For example, while [5℄ show that authentiate-then-enrypt is not

neessarily CCA-seure, it turns out (by results in [8℄ and here) that the lak of this property is

no reason to onsider inseure the hannels that use suh a method (even the spei� non-CCA

example in [5℄ does provide seure hannels!). This demonstrates that the onsideration of seure

hannels requires a �ner treatment of the question of enryption/authentiation omposition. In

partiular, none of our results is laimed or implied by [5℄. This omparison, however, is important

for pointing out to the fat that while CCA seurity is a useful seurity notion it is ertainly too

strong for some (fundamental) appliations suh as seure hannels (see disussion at the beginning

of Setion 4.2 and in Setion 6.2).

A related subjet that reeived muh attention reently is the onstrution of enryption modes

that provide integrity in addition to serey. Katz and Yung [16℄ suggest a mode of operation for

blok iphers that provides suh funtional ombination; for their analysis (and for its independent

interest) they introdue the notion of \unforgeable enryption". A very similar notion is also

introdued in [5℄ and alled there \integrity of iphertexts" (INT-CTXT). We use this notion in

our work too (see Setion 3) as a tool in some of our proofs. In another reent work, An and

Bellare [1℄ study the use of redundany funtions (with and without seret keys) as a method for

adding authentiation to enryption funtions. They show several positive and negative results

about the type of redundany funtions that are required in ombination with di�erent forms of

enryption and seurity notions. Our results onerning the authentiate-then-enrypt method

with stream iphers and CBC modes ontribute also to this researh diretion sine these results

provide suÆient and neessary onditions on the redundany funtions (viewed as MAC funtions)

3

required for providing integrity to these important modes of enryption. Of partiular interest is

our proof that a seure AtE omposition that uses CBC enryption requires a strong underlying

MAC; this ontradits a ommon intuition that (sine the message and MAC are enrypted) weaker

\redundany funtions" ould replae the full-edge MAC.

Reently, Jutla [15℄ devised an elegant CBC-like sheme that provides integrity at little ost

beyond the traditional CBC method, as well as a parallel mode of enryption with integrity guar-

antee (a related sheme is presented in [25℄). We note that while shemes suh as [15℄ an be used

to eÆiently implement seure hannels that provide serey and authentiity, generi shemes like

enrypt-then-authentiate have several design and analysis advantages due to their modularity and

the fat that the enryption and authentiation omponents an be designed, analyzed and replaed

independently of eah other. In partiular, generi shemes an allow for faster implementations

than the spei� ones; even today the ombination of fast stream iphers with a fast MAC funtion

suh as UMAC [6℄ under the enrypt-then-authentiate method results in a faster mehanism than

the one proposed in [15℄ whih requires the use of blok iphers. Also, having a separate MAC

from enryption allows for muh more eÆient authentiation in the ases where serey is not

required. Last, but not least, we note that the shemes in [15℄ apply enryption and authentiation

to the exat same data. Most hannel protools, however, inlude under the authentiation also

unenrypted data (e.g., headers, payload desriptors, et.) or even non-transmitted data (e.g., a

message sequene number, state information, et.). Suh authentiation is often instrumental for

the seurity of the resultant protool.

Organization In the next setion we outline de�nitions, and set some notation and terminology,

for the basi underlying ryptographi notions in this paper. In Setion 3 we de�ne \iphertext

unforgeability" a notion that we use in proving our positive results of Setion 5. Setion 4 presents

the generi seurity (and inseurity) of the three authentiation/enryption omposition methods

studied here. Setion 5 presents our positive results onerning the authentiate-then-enrypt

method when used with CBC mode and stream iphers. Finally, Setion 6 presents some further

remarks and disussion on the results of the paper.

2 Preliminaries

We informally outline some well-known notions of seurity for MAC and enryption funtions as

used throughout the paper, and introdue some notation. Referenes are given below for formal

treatment of these notions. We also sketh the model of \seure hannels" from [8℄.

2.1 Seure message authentiation

Funtions that provide a way to verify the integrity of information (for example, against unautho-

rized hanges over a ommuniations network) and whih use a shared seret key are alled MAC

(message authentiation odes). The notion of a MAC and its seurity de�nition is well understood

[4℄. Here we outline the main ingredients of this de�nition as used later in the paper.

A MAC sheme is desribed as a family of (deterministi) funtions over a given domain and

range. (We will usually assume the domain to be f0; 1g

�

and the range f0; 1g

n

for �xed size n.). The

key shared by the parties that use the MAC sheme determines a spei� funtion from this family.

This spei� funtion is used to ompute an authentiation tag on eah transmitted message and

the tag is appended to the message. A reipient of the information that knows the MAC key an

re-ompute the tag on the reeived message and ompare to the reeived tag. Seurity of a MAC

4

sheme is de�ned through the inability of an attaker to produe a forgery, namely, to generate

a message, not transmitted between the legitimate parties, with its valid authentiation tag. The

formal de�nition of seurity provides the attaker with aess to a MAC orale O

MAC

that on input

a message x outputs the authentiation tag orresponding to that message. The orale uses for its

responses a key that is generated aording to the probability distribution of keys de�ned by the

MAC sheme. The attaker sueeds if after this interation with the orale it is able to �nd a

forgery (for a message not previously queried). To quantify seurity we say that a MAC sheme

has seurity E

M

(q;Q; T) if any attaker that works time T and asks q queries from O

MAC

involving

a total of Q bits has probability at most E

M

(q;Q; T) to produe a forgery.

Remark 2.1 In the ase of MAC funtions (e.g., randomized ones) where there may be multi-

valued valid tags for the same message, we extend the de�nition of seurity as follows. If the

messages queried to O

MAC

are x

1

; x

2

; : : : ; x

q

and the responses from O

MAC

are t

1

; t

2

; : : : ; t

q

then

a forgery (x; t) output by the attaker is onsidered valid if (x; t) 6= (x

i

; t

i

) for all i = 1; : : : ; q.

(Namely, we onsider the attaker suessful even in ase its forgery inludes a queried message as

long as the tag t was not generated by the orale for that message.) This tehnial strengthening

of the de�nition is used in some of our results. This notion appears (due to similar reasons) also

in [5℄.

2.2 Seure symmetri enryption

We do not develop a formal de�nition of enryption seurity here as the subjet is well established

and treated extensively in the literature. Yet, we summarize informally the main aspets of the

seurity notions of symmetri enryption that are relevant to our work and establish some notation.

For formal and preise de�nitions see the referenes mentioned below.

An enryption sheme is a triple of (probabilisti) algorithms (KEYGEN;ENC;DEC) where KEYGEN

de�nes the proess (and resultant probability distribution) by whih keys are generated, while ENC

and DEC are the enryption and deryption operations with the usual inverse properties. To sim-

plify notation we use ENC to denote the enryption operation itself but also as representing the

whole sheme (i.e., a triple as above). The main notion behind the ommon de�nitions of seurity

of enryption is semanti seurity [13℄, or its (usually) equivalent formulation via plaintext indis-

tinguishability. In this formulation an attaker against a sheme ENC is given a target iphertext y

and two andidate plaintexts x

1

; x

2

suh that y = ENC(x

i

), i2

R

f0; 1g.

1

The enryption sheme has

the indistinguishability property if the attaker annot guess the right value of i with probability

signi�antly better than 1=2. The seurity of the sheme is quanti�ed via the time invested by the

attaker and the probability beyond 1/2 to guess orretly.

The above desribes the goal of the attaker but not the ways of attak it is allowed to use. Two

ommon models of attak are CPA (hosen plaintext attak) and CCA (hosen iphertext attak).

In the �rst the attaker has aess to an enryption orale O

ENC

to whih it an present plaintexts

and reeive the iphertexts resulting from the enryption of these plaintexts. In the seond model

the attaker an, in addition to the above queries to the enryption orale, also ask for deryptions

of arbitrary iphertexts (exept for the target iphertext y) from a deryption orale O

DEC

. We

note that both O

ENC

and O

DEC

use the same key for their responses whih is also the key under

whih the target iphertext y, as desribed above, is produed. In both ases the queries to the

orales an be generated adaptively by the attaker

2

, i.e. as a funtion of previous responses from

1

We use the notation a2

R

A to denote that the element a is hosen with uniform probability from the set A.

2

Thus, our notion of CCA orresponds to CCA2 in the terminology of [3℄.

5

the orales and of the target iphertext y (atually, also the andidate plaintexts x

1

; x

2

on whih

the target iphertext y is omputed an be hosen by the attaker). Under these formulations two

new parameters enter the quanti�ation of seurity: the number of queries to O

ENC

and the number

of queries to O

DEC

(the latter is 0 in the ase of CPA). A �ner quanti�ation would also onsider

the total number of bits in these queries.

As it is ustomary we denote the above two notions of enryption seurity as IND-CPA and

IND-CCA. Extensive treatment of these notions an be found among other works in [13, 12, 2℄ and

[22, 23, 3, 17℄, respetively. A notion strongly related to IND-CCA is non-malleability of iphertexts

[10℄ whih we do not use diretly here. We also note that we are only onerned with symmetri

enryption; asymmetri enryption shares many of the same aspets but there are some important

di�erenes as well (in partiular, in the asymmetri ase enryption orales are meaningless sine

everyone an enrypt at will any plaintext).

2.3 Seure Channels

In order to laim our positive results, i.e. that a ertain ombination of enryption and authenti-

ation provides seure ommuniations, we need to de�ne what is meant by suh \seure ommu-

niations". For this we use the model of seure hannels introdued by Canetti and Krawzyk [8℄

and whih is intended to apture the standard network-seurity pratie in whih ommuniations

over publi networks are proteted through \sessions" between pairs of ommuniating parties, and

where eah session onsists of two stages. First, the two parties run a key-exhange protool that

establishes an authentiated and seret session key shared between the parties. Then, in the seond

stage, this session key is used, together with symmetri-key ryptographi funtions, to protet the

integrity and/or serey of the transmitted data. The formalism of [8℄ involves the de�nition of a

key-exhange protool for implementation of the session and key establishment stage, as well as of

two funtions, snd and rv, that de�ne the ations applied to transmitted data for protetion over

otherwise inseure links. A protool that follows this formalism is alled in [8℄ a \network hannels

protool", and its seurity is de�ned in terms of authentiation and serey.

These notions are de�ned in [8℄ in the ontext of ommuniations ontrolled by an attaker with

full ontrol of the information sent over the links and with the apability of orrupting sessions and

parties. We refer to the full version of [8℄ for a omplete desription of the adversarial model and

seurity de�nitions. Here we only mention briey the main elements in this de�nition onerning

the funtions snd and rv. The funtion snd represents the operations and transformations applied

to a message by its sender in order to protet it from adversarial ation over the ommuniation

links. Namely, when a message m is to be transmitted from party P to party Q under a session

s established between these parties, the funtion snd is applied to m and, possibly, to additional

information suh as a message identi�er. The de�nition of snd typially onsists of the appliation

of some ombination of a MAC and symmetri enryption keyed via the session key. The funtion

rv desribes the ation at the reeiving end for \deoding" and verifying inoming messages, and

it typially involves the veri�ation of a MAC and/or the deryption of an inoming iphertext.

Roughly speaking, [8℄ de�ne that authentiation is ahieved by the protool if any message

deoded and aepted as valid by the reeiving party to a session was indeed sent by the partner

to that session. (That is, any modi�ation of messages produed by the attaker over the om-

muniations links, inluding the injetion or replay of messages, should be deteted and rejeted

by the reipient; in [8℄ this is formalized as the \emulation" of an ideally-authentiated hannel.)

Serey is formalized in the tradition of semanti seurity: among the many messages exhanged

in a session the attaker hooses a pair of \test messages" of whih only one is sent; the attaker's

6

goal is to guess whih one was sent. Seurity is obtained if the attaker annot guess orretly with

probability signi�antly greater than 1/2. A network hannels protool is alled a seure hannels

protool if it ahieves both authentiation and serey in the sense outlined above.

In this paper we fous on the way the funtions snd and rv are to be de�ned to ahieve seure

hannels, i.e. to provide both authentiation and serey in the presene of an attaker as above.

We say that any of the ombinations EtA;AtE;E&A implements seure hannels if when used as the

spei�ation of the snd and rv funtions the resultant protool is a \seure hannels protool".

Note that we are not onerned here with a spei� key-exhange mehanism, but rather assume a

seure key-exhange protool [8℄, and may even assume an \ideally shared" session key.

3 CUF-CPA: Ciphertext Unforgeability

In addition to the traditional notions of seurity for an enryption sheme outlined in Setion 2.2

we use the following notion of seurity that we all iphertext unforgeability. A similar notion has

been reently (and independently) used in [16, 5℄ where it is alled \existential unforgeability of

enryption" and \integrity of iphertexts (INT-CTXT)", respetively.

Let ENC be a symmetri enryption sheme, and k be a key for ENC. Let P (k) be the set of

plaintexts on whih ENC

k

is de�ned, and C(k) be the set of iphertexts fy : 9x 2 P (k) s.t. y =

ENC

k

(x)g (note that if ENC is not deterministi then by y = ENC

k

(x) we mean that there is a run

of ENC on x that outputs y). We all C(k) the set of valid iphertexts under key k. For example,

under a blok ipher only strings of the blok length are valid iphertexts while in the basi CBC

mode only strings that are multiples of the blok length an be valid iphertexts. We assume that

the deryption orale O

DEC

outputs a speial \invalidity symbol" ? when queried with an invalid

iphertext (and otherwise outputs the unique derypted plaintext x).

We say that an enryption sheme is iphertext unforgeable, and denote it CUF-CPA, if it is

infeasible for any attaker F (alled a \iphertext forger") that has aess to an enryption orale

O

ENC

with key k to produe a valid iphertext under k not generated by O

ENC

as response to one of

the queries by F . More preisely, we quantify iphertext unforgeability by the funtion E

U

(q;Q; T)

de�ned as the maximal probability of suess for any iphertext forger F that queries q plaintexts

totalling Q bits and spends time T in the attak. We stress that this de�nition does not involve

aess to a deryption orale and thus its name CUF-CPA (this is onsistent with other ommon

notations of the form X-Y where X represents the goal of the attaker and Y the assumed abilities

of the attaker).

Our main use of the CUF-CPA notion is for proving (see Setion 5) that under ertain onditions

the AtE omposition is seure, i.e., it implements seure hannels. However, the notion of CUF-

CPA while suÆient for our purposes is atually stronger than needed. For example, any sheme

ENC that allows for arbitrary padding of iphertexts to a length-boundary (e.g., to a multiple of

8-bits) will not be CUF-CPA (sine given a iphertext with padded bits any hange to these bits

will result in a di�erent yet valid iphertext). However, suh a sheme may be perfetly seure in

the ontext of implementing seure hannels (see [8℄); moreover, shemes of this type are ommon

in pratie. Thus, in order to avoid an arti�ial limitation of the shemes that we identify as seure

for implementing seure hannels we present next a relaxation of the CUF-CPA notion that is still

suÆient for our purposes (we stress that this is not neessarily the weakest relaxation for this

purpose and other weakenings of the CUF-CPA notion are possible).

Let � be any polynomial-time omputable relation on pairs of strings with the property that

if and

0

are two valid iphertexts omputed under enryption funtion ENC

k

, for some key k,

7

and �(;

0

) holds then and

0

derypt to the same plaintext under k. We say that the enryption

sheme ENC is CUF

�

-CPA if for any valid iphertext that a iphertext forger attaker F (as de�ned

above) an feasibly produe there exists a iphertext

0

output by the enryption orale under one of

F 's queries suh that �(;

0

). We will refer to this seurity notion as loose iphertext unforgeability.

(Note that valid iphertexts produed by a \loose CUF" attaker always derypt to plaintexts

already queried to the enryption orale; moreover, it is easy to determine to whih of the queried

plaintexts they derypt.)

For instane, in the above example of a sheme that allows for arbitrary padding of iphertexts,

if one de�nes �(;

0

) to hold if and

0

di�er only on the padding bits, then the sheme an

ahieve CUF

�

-CPA. We note that while CUF-CPA implies CCA-seurity, loose CUF-CPA does

not (as the above \padding example" shows). Indeed, as we pointed out in the introdution (see

also Setion 4.2) CCA-seurity is not a neessary ondition for a MAC/enryption ombination to

implement seure hannels.

4 Generi omposition of enryption and authentiation

In this setion we study the seurity of the three methods, EtA;AtE;E&A, under generi symmetri

enryption and MAC funtions where the only assumption is that the enryption is IND-CPA and

the MAC is seure against hosen message attaks. Our fous is on the appropriateness of these

methods to provide seurity to transmitted data in a realisti setting of adversarially-ontrolled

networks. In other words, we are interested in whether eah one of these methods when applied

to adversarially-ontrolled ommuniation hannels ahieve the goals of information serey and

integrity. As we will see only the enrypt-then-authentiate method is generially seure.

4.1 The known seurity of enrypt-then-authentiate

The results in this subsetion are from [8℄ and we present them briey for ompleteness. We refer

the reader to that paper for details. In partiular, in the statement of the next theorem we use the

notion of \seure hannels" as introdued in the above paper and skethed in Setion 2.3.

Theorem 1 [8℄ If ENC is a symmetri enryption sheme seure in the sense of IND-CPA and

MAC is a seure MAC family then method EtA(ENC;MAC) implements seure hannels.

Following our terminology from Setion 2.3, the meaning of the above theorem is that if in the

network hannels model of [8℄ one applies to eah transmitted message the omposed funtion

EtA(ENC;MAC) (as the snd funtion) then the serey and authentiity of the resultant network

hannels is guaranteed. More preisely, in proving the above theorem, [8℄ speify the snd funtion

as follows. First, a pair of (omputationally independent) keys, �

a

and �

e

, are derived from eah

session key. Then, for eah transmitted message, m, a unique message identi�er m-id is hosen

(e.g., a sequene number). Finally, the funtion snd produes a triple (x; y; z) where x = m-id,

y = ENC

�

e

(m), z = MAC

�

a

(m-id; y). On an inoming message (x

0

; y

0

; z

0

) the rv funtion veri�es

the uniqueness of message identi�er x

0

and the validity of the MAC tag z (omputed on (x

0

; y

0

));

if the heks sueed y

0

is derypted under key �

e

and the resultant plaintext aepted as a valid

message.

3

3

Protools that use a synhronized ounter as the message identi�er, e.g. SSL, do not need to transmit this value;

yet they must inlude it under the MAC omputation and veri�ation. If transmitted, identi�ers are not enrypted

under ENC

�

e

sine they are needed for verifying the MAC value before the deryption is applied.

8

A main ontribution of the present paper is in showing (see next subsetions) that a generi

result as in Theorem 1 annot hold for any of the other two methods, AtE and E&A (even if the used

keys are shared with perfet seurity). Therefore, any seure hannels protool designed to work

with any ombination of seure enryption (against hosen plaintext attaks) and seure MAC must

use the enrypt-then-authentiate method. However, we note in Setion 5 that the above theorem

an be extended in the setting of method AtE if one assumes a stronger property on the enryption

funtion; in partiular, we show two important ases that satisfy the added seurity requirement.

Remark 4.1 Note that the authentiation of the iphertext provides plaintext integrity as long

as the enryption and deryption keys used at the sender and reeiver, respetively, are the same.

While this key synhrony is impliit in our analytial models [8℄, a key mismath an happen in

pratie. A system onerned with deteting suh ases an hek the plaintext for redundany

information (suh redundany exists in most appliations: e.g., message formats, non-ryptographi

heksums, et.). If the redundany entropy is signi�ant then a key mismath will orrupt this

redundany with high probability.

4.2 Authentiate-then-enrypt is not generially seure

Here we show that the authentiate-then-enrypt method AtE(ENC;MAC) is not guaranteed to be

seure for implementing seure hannels even if the funtion ENC is IND-CPA and MAC provides

message unforgeability against hosen message attaks. First, however, we disuss shortly why

this result does not follow from [5℄ where it is shown that the AtE omposition (viewed as an

enryption sheme) does not neessarily provide IND-CCA. The reason is simple: as demonstrated

in [8℄ IND-CCA is not a neessary ondition for a ombination of enryption and MAC funtions

to implement seure hannels. An example is provided by the main onstrution of seure hannels

in [8℄ (see Theorem 1): if the MAC used in this sheme enjoys regular MAC seurity, rather than

the strengthened notion desribed in Remark 2.1, then this onstrution guarantees seure hannels

but not neessarily CCA seurity. (For example, if the MAC funtion has the property that ipping

the last bit of an authentiation tag does not hange the validity of the tag, then the sheme in [8℄

is not IND-CCA yet it suÆes for implementing seure hannels; see Remark 5.2 for an additional

example.) Moreover, the spei� example from [5℄ of a non-CCA AtE(ENC;MAC) sheme

4

an by

itself be used to show an example of a non-CCA sheme that provably provides seure hannels.

Therefore, the result in [5℄ does not say anything about the suitability of AtE(ENC;MAC) for

implementing seure hannels; it rather points out to the fat that while CCA seurity is a useful

seurity notion it is ertainly too strong for some (fundamental) appliations suh as seure hannels.

Thus if we want to establish the inseurity of authentiate-then-enrypt hannels under generi

omposition we need to show an expliit example and a suessful attak. We provide suh example

now. In this example the enryption sheme is IND-CPA (atually, it enjoys \perfet serey" in

the sense of Shannon) but when ombined with any MAC funtion under the AtE method the

serey of the omposed sheme breaks ompletely under an ative attak.

The enryption funtion ENC

�

. We start by de�ning an enryption sheme ENC

�

that an be

based on any stream ipher ENC (i.e. any enryption funtion that uses a random or pseudorandom

pad to xor with the data). The sheme ENC

�

preserves the IND-CPA seurity of the underlying

sheme ENC. In partiular, if ENC has perfet serey (i.e., uses a perfet one-time pad enryption)

so does ENC

�

. Next, we de�ne ENC

�

.

4

Just append an arbitrary one-bit pad to the iphertext and disard the bit before deryption.

9

Given an n-bit plaintext x (for any n), ENC

�

�rst applies an enoding of x into a 2n-bit string x

0

obtained by representing eah bit x

i

, i = 1; : : : ; n, in x with two bits in x

0

as follows:

1. if bit x

i

= 0 then the pair of bits (x

0

2i�1

; x

0

2i

) is set to (0; 0);

2. if bit x

i

= 1 then the pair of bits (x

0

2i�1

; x

0

2i

) is set to (0; 1) or to (1; 0) (by arbitrary hoie of

the enrypting party).

The enryption funtion ENC is then applied to x

0

. For derypting y = ENC

�

(x) one �rst applies

the deryption funtion of ENC to obtain x

0

whih is then deoded into x by mapping a pair (0; 0)

into 0 and either pair (0; 1) or (1; 0) into 1. If x

0

ontains a pair (x

0

2i�1

; x

0

2i

) that equals (1; 1) the

deoding outputs the invalidity sign ?.

The attak when only enryption is used. For the sake of presentation let's �rst assume

that only ENC

�

is applied to the transmitted data (we will then treat the AtE ase where a MAC

is applied to the data before enryption). In this ase when an attaker A sees a transmitted

iphertext y = ENC

�

(x) it an learn the �rst bit x

1

of x as follows. It interepts y, ips (from 0

to 1 and from 1 to 0) the �rst two bits (y

1

; y

2

) of y, and sends the modi�ed iphertext y

0

to its

destination. If A an obtain the information of whether the deryption output a valid or invalid

plaintext then A learns the �rst bit of x. This is so sine, as it an be easily seen, the modi�ed y

0

is

valid if and only if x

1

= 1. (Remember that we are using a stream ipher to enrypt x

0

.) Clearly,

this breaks the serey of the hannel (note that the desribed attak an be applied to any of

the bits of the plaintext). One question that arises is whether it is realisti to assume that the

attaker learns the validity or invalidity of the iphertext. The answer is that this is so for many

pratial appliations that will show an observable hange of behavior if the iphertext is invalid

(in partiular, many appliations will return an error message in this ase).

To make the point even learer onsider a protool that transmits passwords and uses ENC

�

to

protet passwords over the network (this is, for example, one of the very ommon uses of SSL).

The above attak if applied to one of the bits of the password (we assume that the attaker knows

the plaement of the password �eld in the transmitted data) will work as follows. If the attaked

bit is 1 then the password authentiation will sueed in spite of the hange in the iphertext. If

it is 0 the password authentiation will fail. In this ase suess or failure is reported bak to the

remote mahine and then learned by the attaker. In appliations where the same password is

used multiple times (again, as in many appliations proteted by SSL) the attaker an learn the

password bit-by-bit. The same an be applied to other sensitive information suh as to redit ard

numbers where a mistake in this number will be usually reported bak and the validity/invalidity

information will be learned by A.

The attak against the AtE(ENC

�

;MAC) sheme. Consider now the ase of interest for us in

whih the enryption is applied not just to the data but also to a MAC funtion omputed on this

data. Does the above attak applies? The answer is YES. The MAC is applied to the data before

enoding and enryption and therefore if the original bit is 1 the hange in iphertext will result in

the same derypted plaintext and then the MAC hek will sueed. Similarly, if the original bit is

0 the derypted plaintext will have a 1 instead and the MAC will fail. All the attaker needs now

is the information of whether the MAC sueeded or not. Note that in a sense the MAC just makes

things worse sine regardless of the semantis of the appliation a failure of authentiation is easier

to learn by the attaker: either via returned error messages, or by other e�ets on the appliation

that an be observed by the attaker.

Disussion: what have we learned? The example using ENC

�

is ertainly suÆient to show

that the method AtE an be inseure even if the enryption funtion is IND-CPA seure and the

10

MAC unforgeable (note that this onlusion does not depend on any spei� formalization of seure

ommuniations; any reasonable de�nition of seurity must label the above protool as inseure).

Therefore, if one wants to laim the seurity of AtE(ENC;MAC) for partiular funtions ENC and

MAC one needs to analyze the ombination as a whole or use stronger or spei� properties of the

enryption funtion (see Setion 5). An interesting issue here is how plausible it is that people will

ever use an enryption sheme suh as ENC

�

. We note that although this sheme does not appear

to be the most natural enryption mehanism some (equally inseure) variants of it may arise in

pratie. First the appliation of an enoding to a plaintext before enryption is used many times

for padding and other purposes and is a partiularly ommon pratie in publi key enryption

algorithms. Seond, enodings of this type an be motivated by stronger seurity requirements:

e.g. to prevent an attaker from learning the exat length of transmitted messages or other traÆ

analysis information. In this ase one ould use an enoding similar to ENC

�

but with variable

size odes. (Just to make the point: note that a good example of traÆ analysis arises in the

above examples where the attaker has a lot to learn from error-reporting messages; even in ases

where this information is enrypted it an usually be learned through the analysis of paket lengths,

et.) Another setting where plaintext enoding is introdued in order to improve seurity is for

ombating timing and power analysis attaks.

The bottom line is that it is highly desirable to have shemes that are robust to generi om-

position and are not vulnerable when seemingly innouous hanges are made to an algorithm (or

when a new, more seure or more eÆient, algorithm or mode is adopted)

5

.

4.3 Enrypt-and-authentiate is not generially seure

The �rst observation to make regarding the enrypt-and-authentiate method is that under the

ommon requirements from a MAC funtion this method annot guarantee the protetion of serey

(even against a passive eavesdropper). This is so sine a MAC an be seure against forgeries but

still leak information on the plaintext. Thus, the really interesting question is whether the method

beomes seure if we avoid this obvious weakness via the use of a \serey proteting" MAC suh as

one implemented via a pseudorandom funtion or when the MAC tag is enrypted (we observe that

most, if not all, MAC funtions used in pratie are believed to protet serey). Unfortunately,

however, the attak from the previous setion applies here too, thus showing the (generi) inseurity

of the E&A method even under the above stronger forms of MAC. See also Remark 5.4.

5 Authentiate-then-enrypt with CBC and OTP modes

In Setion 4.2 we saw that authentiate-then-enrypt annot guarantee seure hannels under the

sole assumption that the enryption funtion is IND-CPA, even if the MAC funtion is perfetly

seure. In this setion we prove that for two ommon modes of enryption, CBC (with a seure

underlying blok ipher) and OTP (stream iphers that xor data with a (pseudo) random pad),

the AtE mode does work for implementing seure hannels.

5.1 A suÆient ondition for the seurity of AtE

We start by pointing out to the following Theorem that an be proven in the seurity model of [8℄

(see Setion 2.3).

5

See Remark 5.4 for another example where seemingly harmless hanges transform a seure protool into an

inseure one.

11

Theorem 2 (derived from [8℄) Let ENC be an IND-CPA enryption funtion and MAC a MAC

funtion. If the omposed funtion AtE(ENC;MAC), onsidered as an enryption sheme, is (loose)

CUF-CPA, then AtE(ENC;MAC) implements seure hannels.

That is, under the assumptions on the ENC and MAC funtions as stated in the Theorem, applying

the funtion AtE(ENC;MAC) to information transmitted over adversarially-ontrolled links protets

the serey and integrity of this information. More spei�ally, the Theorem implies the following

de�nition of the funtion snd in the network hannels model of [8℄ (see Setion 2.3). For eah

transmitted message m with unique message identi�er m-id the funtion snd produes a pair (x; y)

where x = m-id and y = ENC

�

e

(m;MAC

�

a

(m-id;m)), where the keys �

e

and �

a

are omputationally

independent keys derived from the session key. On an inoming message (x

0

; y

0

) the rv funtion

veri�es the uniqueness of message identi�er x

0

, derypts y

0

under key �

e

, veri�es the validity of the

derypted MAC tag, and if all tests sueed the reipient aepts the derypted message as valid.

We note that if the message identi�er is maintained in synhrony by sender and reeiver (as in SSL)

then there is no need to send its value over the network. On the other hand, if sent, the message

identi�er an be enrypted too. The above Theorem holds in either ase.

We stress that Theorem 2 holds for strit CUF-CPA as well as for the relaxed \loose" version

(see Setion 3). Its proof is similar to the proof of seurity for the EtA omposition as presented

in [8℄ (i.e., their \seure hannels" theorem), and is omitted here.

Based on this Theorem, and on the fat that OTP and CBC are IND-CPA [2℄, we an prove

the seurity of AtE under OTP and CBC by showing that under these forms of enryption the

resultant AtE sheme is CUF-CPA. The rest of this setion is devoted to prove these fats.

5.2 AtE with OTP

The OTP sheme. Let F be a family of funtions with domain f0; 1g

`

and range f0; 1g

`

0

. We

de�ne the enryption sheme OTP (F) to work on messages of length at most `

0

as follows. A key

in the enryption sheme is a desription of a member f of the family F . The OTP enryption

under f of plaintext x is performed by hoosing r 2

R

f0; 1g

`

and omputing = f(r) � x where

f(r) is trunated to the length of x. The iphertext is the pair (r;). Deryption works in the

obvious way. If F is the set of all funtions with the above domain and range and f is hosen at

random from this family we get perfet serey against hosen-plaintext attaks as long as there

are no repetitions in the values r hosen by the enryptor (after enrypting q di�erent messages

a repetition happens with probability q

2

=2

`

); we denote this sheme by OTP

$

. If F is a family of

pseudorandom funtions then the same seurity is ahieved but in a omputational sense, i.e., up to

the \indistinguishability distane" between the pseudorandom family and a truly random funtion.

A formal and exat-seurity treatment of this mode of enryption an be found in [2℄.

We note that while our main formalization of the OTP sheme uses pads produed by a (pseudo)

random funtion applied to a random IV our results hold for other forms of stream iphers; for

example, those that produe the enrypting pad via a pseudorandom funtion applied to a (non-

repeating) ounter, or those using a pseudorandom generator for whih sender and reeiver maintain

a synhronized state.

The AtE(OTP

$

;MAC) omposition. Let MAC be a MAC family with n-bit outputs, and k a key

to a member of that family. Let f be a random funtion with domain and range as de�ned above.

The AtE(OTP

$

;MAC) funtion with f and k ats as follows: (i) it reeives as input a message x

of length at most `

0

� n, (ii) omputes t = MAC

k

(x), (iii) appends t to x, (iv) outputs the OTP

enryption under f of the onatenated message (x; t).

12

The following theorem establishes the CUF-CPA seurity of AtE(OTP

$

;MAC) as a funtion of

the seurity E

M

(�; �; �) of MAC.

Theorem 3 If MAC is a MAC family that resists one-query attaks then AtE(OTP

$

;MAC) is CUF-

CPA (and then by Theorem 2 it implements seure hannels).

More preisely, any iphertext forger F against AtE(OTP

$

;MAC) that runs time T has suess

probability E

U

of at most q

2

=2

`

+ E

M

(1; p; T

0

), where ` is a parameter of OTP

$

, q is the number of

queries F makes during the attak, p is an upper bound on the length of eah suh query and on

the length of the output forgery, and T

0

= T + qp for some onstant .

The proof of Theorem 3 is presented in Appendix A.

Using standard tehniques one an show that the theorem holds also for a OTP sheme realized

via a family of pseudorandom funtions if we add to the above probability bound the distinguisha-

bility distane between the pseudorandom family and a truly random funtion. Also, the term

q

2

=2

`

an be eliminated if one uses non-repeating nones instead of random r's (suh as in ounter

mode or via a stateful pseudorandom generator used to generate a pseudorandom pad).

Remark 5.1 (Tightness: one-query resistane is neessary) Here is an example of a MAC that

does not resist one-queries and with whih valid iphertext an be forged against AtE(OTP

$

;MAC).

Assume MAC allows for �nding two same-length messages with the same MAC tag. (For example,

MAC �rst zeros the last bit of the message and then applies a seure MAC funtion on the resultant

message. Thus, MAC resists zero-queries but fails to one-queries: ask for a MAC on a message,

then forge for the message with last bit ipped.) The strategy of the iphertext forger against

AtE(OTP

$

;MAC) is to �nd suh pair of messages x

1

; x

2

. Then, it queries the �rst one and gets the

iphertext (r;). Finally, it outputs the forgery (r;

0

) where

0

is obtained from by xor-ing x

2

to

the �rst jx

2

j bits of . It is easy to see that (r;

0

) derypts to (x

2

;MAC(x

2

)).

Remark 5.2 (Multi-valued MAC) In Remark 2.1 we strengthened the regular seurity de�nition

of a MAC funtion in the ase that the funtion allows for di�erent valid authentiation tags for

the same message. This extended de�niton is used (expliitly) in the proof of Theorem 3 and is

essential for ensuring the CUF-CPA property of AtE(OTP

$

;MAC). To see this, let MAC be a seure

single-valued MAC funtion and de�ne MAC

0

to be the same as MAC exept that an additional

arbitrary bit is appended to eah authentiation tag; the veri�ation proedure will just ignore this

bit. It is easy to see that in this ase AtE(OTP

$

;MAC

0

) will not be CUF-CPA. However, if one

examines the proof of Theorem 3 it an be seen that AtE(OTP

$

;MAC

0

) ahieves loose CUF-CPA

(see Setion 3) and then it is suÆient for implementing seure hannels (whih is what we are

about). So an we dispense of the strengthened notion of MAC when multi-valued MACs are

used? The answer is no. It is possible to build a multi-valued funtion MAC

0

that satis�es the

regular MAC de�nition, but not the strengthened version, for whih AtE(OTP

$

;MAC

0

) is inseure

for building seure hannels

6

.

Here is an example: let MAC be a seure single-valued MAC, and de�ne MAC

0

to be idential to

MAC exept that on the all-zeros string it allows the last bit of the tag to be set arbitrarily (i.e.,

for this string the veri�ation funtion will aept as valid two di�erent tags). An attaker against

a hannels protool that implements AtE(OTP

$

;MAC

0

) an distinguish between a iphertext that

enrypts the all-zeros message and the iphertext of any other message as follows. It just ips

6

In ontrast, in the ase of using EtA omposition for implementing seure hannels the regular seurity notion

of MAC suÆes for any IND-CPA enryption sheme [8℄

13

the last bit of the iphertext and wathes for aeptane or rejetion of the message; learly, the

message is aepted if and only if it was the all-zeros message.

Remark 5.3 (SuÆieny of redundany funtions) In [1℄ An and Bellare investigate the ques-

tion of whether simple redundany funtions (suh as ombinatorial hash funtions) applied to a

plaintext before enryption suÆe for providing iphertext unforgeability. In the ase of AtE with

OTP it seems natural to assume that a simple ombinatorial property of the redundany funtion

suh as AXU [20, 24℄ should suÆe. (In partiular, this seems so sine suh a property is suÆient

[20℄ if one only onsiders plaintext integrity where only the output of the redundany funtion is

enrypted under an OTP sheme.) However, this turns out not to be true in the ase of iphertext

unforgeability. We an show an example of an E-AXU (and also E-balaned [20℄) MAC family for

whih AtE(OTP

$

;MAC) is not CUF-CPA. It seems plausible, however, that a more involved ombi-

natorial property (involving the length of messages) of the MAC funtion ould suÆe to guarantee

iphertext unforgeability in the ase of AtE with OTP. Atually, it is interesting to note that if the

authentiation tag is positioned before the message, instead of at the end as de�ned above, the AXU

property is indeed suÆient (assuming �xed-length and single-valued valid authentiation tags).

Remark 5.4 (Beware of \slight hanges": separate enryption) To highlight the \fragility" of the

result in Theorem 3 we note that the proof of this theorem uses in an essential way the fat that

the enryption is applied as a whole on the onatenated message and MAC tag. If we were to

enrypt these two values separately (i.e., using separate IVs for the enryption of the message and

of the MAC) even under a truly random funtion we would not get CUF or CCA seurity. More

signi�antly, suh separate enryption results in inseure hannels. Indeed, under this method an

ative attaker an get to learn whether two transmitted messages, possibly with di�erent message

identi�ers, are the same, something learly unwanted in a seure protool (the attak is desribed

in Appendix C). We stress that this weakness allows for atual attaks on pratial appliations,

in partiular several forms of \ditionary attaks"

7

In addition, this observation shows another weakness of the enrypt-and-authentiate method

(Setion 4.3) sine it exhibits the inseurity of this method even under the use of a standard stream

ipher for enryption and even when the MAC tag is enrypted.

5.3 AtE with CBC

The CBC sheme. Let ` be a positive integer and F be a family of permutations over f0; 1g

`

.

We de�ne the enryption sheme CBC(F) to work on messages of length a multiple of `. A key

in the enryption sheme is a desription of a member f of the family F . The CBC enryption

under f of plaintext x is performed by partitioning x into bloks x[1℄; : : : ; x[p℄ of length ` eah,

then hoosing r 2

R

f0; 1g

`

(alled the IV) and omputing the iphertext = [0℄; [1℄; : : : ; [p℄ as

[0℄ = r; [i℄ = f([i � 1℄ � x[i℄); i = 1; : : : ; p. Deryption works in the obvious inverse way. If F

is the set of all permutations over f0; 1g

`

and f is hosen at random from F then we denote the

sheme by CBC

$

. A formal and exat-seurity treatment of this mode of enryption an be found

in [2℄ who in partiular prove it to be IND-CPA also in the ase where F is a pseudorandom family

(in this ase the seurity depends on the \indistinguishability distane" between the pseudorandom

7

One suh example would be �nding passwords sent in the telnet protool even if the protool is run over a seure

hannel proteted as above; this is partiularly failitated by the fat that in this ase individual password haraters

are transmitted separately, and thus a ditionary attak an be mounted on individual haraters.

14

family and a truly random funtion).

The AtE(CBC

$

;MAC) omposition. Let MAC be a MAC family with `-bit outputs, and k a key

to a member of that family. Let f be a random permutation over f0; 1g

`

. The AtE(CBC

$

;MAC)

funtion with f and k ats as follows: (i) it reeives as input a message x of length multiple of `,

(ii) omputes t = MAC

k

(x), (iii) appends t to x, (iv) outputs the CBC enryption under f of the

onatenated message (x; t) (note that the resultant output is two bloks longer than x due to the

added blok t and the prepended IV r).

The following theorem establishes the CUF-CPA seurity of AtE(CBC

$

;MAC) as a funtion of

the seurity E

M

(�; �; �) of MAC.

Theorem 4 If MAC is a seure MAC family then AtE(CBC

$

;MAC) is CUF-CPA (and then by Theo-

rem 2 it implements seure hannels). More preisely, any iphertext forger F against

AtE(CBC

$

;MAC) that runs time T has suess probability E

U

of at most

Q

2

=2

`

+ 2qE

M

(0; 0; T

0

) + E

M

(1; p`; T

0

) + 2E

M

(q

�

; q

�

p`; T

0

)

where q is the number of plaintexts queried by F , p is an upper bound on the number of bloks in

eah of these queries, p

�

is the length in bloks of the forgery y

�

output by F , q

�

= minfq; p

�

g, Q is

the total number of bloks in the responses to F 's queries plus p

�

, and T

0

= T + Q for onstant .

The proof of Theorem 4 is presented in Appendix B.

Using standard tehniques one an show that the theorem holds also for a CBC sheme realized

via a family of pseudorandom permutations if we add to the above probability bound the distin-

guishability distane between the pseudorandom family and a truly random funtion. However, we

note, that in this ase the distinguisher not only gets aess to an orale that omputes the funtion

but also to an orale that omputes the inverse funtion (that is, we need to assume the family of

permutations to be \super pseudorandom" [21℄).

Remark 5.5 (Tightness: the neessity of strong MAC) The most \expensive" term in MAC seu-

rity in the expression of the theorem is the value E

M

(q

�

) sine other terms only require protetion

against one-query or zero-query. Sine an attaker F does not get to see any of the MAC values

one ould wonder why suh a strong seurity from the MAC is required. We show here that, in

ontrast to the AtE(OTP

$

;MAC) ase, this requirement is unavoidable. Spei�ally, we present for

any i = 0; 1; 2; : : :, an example of a MAC funtion MAC that is seure against i queries but yields

an inseure AtE(CBC

$

;MAC) sheme with q = i+1 (and p

�

= 2i+4). We desribe the example for

i = 1, the extension to other values is straightforward.

Let fg

k

g

k

be a family of pseudorandom funtions from (f0; 1g

`

)

�

to f0; 1g

`=2

. De�ne a MAC

family MAC

0

on the same domain as fg

k

g

k

, and with `-bit outputs as follows: MAC

0

(k

1

;k

2

)

(x) =

(g

k

1

(x); g

k

2

(g

k

1

(x))). De�ne a seond MAC family MAC that uses the same set of keys as MAC

0

and

suh that on key (k

1

; k

2

):

1. if the input x ontains two `-bit bloks b

i

and b

j

, i < j, suh that b

i

6= b

j

and both have the

property that applying g

k

2

to the �rst half of the blok yields the seond half of the blok

then output b

i

as the MAC value for x.

2. otherwise, output MAC

0

(k

1

;k

2

)

(x)

It is easy to see that the so de�ned MAC has seurity of roughly 2

`=2

against single queries (but is

totally inseure after two queries sine the output of MAC provides the blok format that makes

15

the authentiation tag \trivial"). We show that it yields a AtE(CBC

$

;MAC) sheme whose ipher-

texts are forgeable after two queries even if the enryption permutation f is purely random. The

iphertext forger F against AtE(CBC

$

;MAC) proeeds as follows:

1. Choose two arbitrary one-blok long plaintexts x

1

; x

2

as the two queries.

2. Let the responses y

1

; y

2

be the triples: (r

1

;

1

= f(r

1

� x

1

);m

1

= f(

1

� MAC(x

1

))) and

(r

2

;

2

= f(r

2

� x

2

);m

2

= f(

2

�MAC(x

2

))).

3. Output forgery y

�

= (

1

;m

1

;

2

;m

2

;

1

;m

1

).

A simple examination shows that y

�

is a valid iphertext.

One onsequene of the above lower bound on the required seurity of MAC is that, somewhat

surprisingly, the MAC funtion annot be replaed by a simple ombinatorial hash funtion, suh

as one enjoying AXU (see Remark 5.3). Indeed, had AXU been suÆient then one-query resistant

MACs would suÆe too (sine one-query resistane implies AXU). We note that a modi�ed CBC-

like mode for whih AXU is suÆient is presented in [1℄.

In ontrast to the above lower bound, we do not know if the term qE

M

(0) in the bound of

the theorem is neessary or not; we do not have so far an example that shows this term to be

unavoidable. Thus, it may well be the ase that a more areful analysis ould lower the fator q

(atually, even with the urrent analysis it is possible to replae the fator q with q

�

by a slightly

more involved argument).

Remark 5.6 (Non-adaptive seurity of MAC suÆes) It is interesting to note that the requirement

from the seurity of the MAC in Theorem 4 is for non-adaptive queries only. This an be seen by

inspeting the proof of the theorem, where the MAC forger G that we build makes non-adaptive

queries only.

Remark 5.7 (Beware of \slight hanges") Similarly to the ase of AtE(OTP

$

;MAC) the proof

of Theorem 4 uses in an essential way the fat that the enryption is done as a whole on the

onatenated message and MAC. It is easy to build a iphertext forgery attak in ase the enryption

of the plaintext and of the MAC tag are done separately (i.e. with independently hosen IVs).

More signi�antly, suh separate enryption usually results in inseure hannels as demonstrated

in Appendix C.

6 Conluding remarks

This paper answers some basi questions in ryptography but also raises many other questions and

issues. Some refer to the well-known (yet easy to forget) misleading e�et of intuition in the design

of ryptographi protools, others have to do with the e�et of seemingly-tehnial subtleties in

the atual seurity of protools, and others relate to the formalization of some basi ryptographi

notions. In this setion we ompile and highlight some of these issues.

6.1 The subtleties of ryptographi design

A few observations on the relation between our results and some ommonly aepted intuitions.

1. Why isn't the AtE method seure? Beyond the tehnial demonstration of this fat here,

the more fundamental reason is that the MAC is not needed just to authentiate the data

16

but also to protet the iphertext itself from hanges by an ative attaker. The intuition

that hanges to the iphertext will be neessarily disovered by the underlying MAC is just

not true (as our ounter-example from Setion 4.2 and the separate-enryption ase from

Setion 5.2 demonstrate).

2. When �rst seeing the ounter-example to the seurity of the AtE method from Setion 4.2

one ould be tempted to onlude that the weakness in this example omes from the trivial

\malleability" of one-time-pad enryption (i.e., the easiness to hange the plaintext via the

ipping of iphertext bits). However, this is ertainly not the ase: as we show (Setion 5.2)

a diret one-time-pad enryption of the (unenoded data) makes the AtE method seure.

3. After showing that the AtE method is seure when one-time-pad enryption is applied to

the onatenated pair (message,ma), one ould reasonably expet that enrypting eah of

the message and ma omponents with independent one-time pads should still be seure.

However, we show in Setion 5.2 that suh a onlusion is false and that separate enryption

an ompletely break seurity.

4. One \intuitive advantage" of AtE is that the enrypted MAC is hard to attak sine in

this ase the attaker does not get to see the authentiation tags or even the plaintexts.

Therefore, it seems, muh less than a full-edge MAC should suÆe in this ase. It turns out

that this intuition is justi�ed when using one-time pad enryption in whih ase we show that

MAC funtions resistant to a single-query are suÆient. In ontrast, however, this intuition is

strongly misleading in the ase of CBC enryption for whih we prove that a fully-seure MAC

is required in order to ahieve seurity of AtE under CBC. This is partiularly interesting (and

ounter-intuitive) sine CBC is usually regarded as providing far better \integrity guarantee"

than stream iphers.

5. Yet another subtlety regarding the requirements from a MAC funtion in the ase of AtE

with OTP is that the (non-standard) strengthened seurity notion for multi-valued MACs

as desribed in Setion 2.1 is neessary here (see Setion 5.2). This is in strong ontrast

to the EtA ase where the (weaker) standard MAC seurity notion suÆes also in ase of

multi-valued MACs.

The moral is simple: do not (over) trust intuition, do not take seurity as an obvious property of

anything, and mind every little hange to a seure method.

6.2 Seure hannels and the role of CCA seurity

One interesting issue that arises in omparing our work to [5℄ is the importane of onsidering the

problem of enryption/authentiation omposition in the spei� ontext of implementing seure

hannels, rather than as the design of an independent (omposed) primitive. In partiular, this

omparison highlights the question of the suitability of CCA seurity as the notion that aptures

the seurity requirements from suh omposition. Certainly, from the results in [8℄ and here it

follows that CCA is not a neessary requirement to ahieve seure hannels. On the other hand,

when proving (as we do in Setion 5) that spei� shemes implement seure hannels, it is very

onvenient to have a simple seurity notion appliable to the omposed funtion (as a stand-alone

primitive) and whih frees our analysis from the more omplex details of the \seure hannels"

model of [8℄.

17

Here, we use the notion of iphertext unforgeability (or CUF-CPA), introdued in Setion 3,

for this purpose. However, while relatively easy to work with, this notion does not resolve the

over-kill nature of CCA-seurity (atually, CUF-CPA is even stronger than CCA [5℄). Indeed,

this notion exludes as seure perfetly good shemes. It is the more relaxed notion of \loose

iphertext unforgeability" that lets us apture a suÆient requirement for implementing seure

hannels and allows for the proof of some of the non-CCA implementations of seure hannels

mentioned here. However, there are shemes that implement seure hannels and are not loose

iphertext unforgeable. Therefore, �nding a full haraterization of these shemes in the form of a

simple to state and use de�nition would be an important ontribution in this researh area.

In this regard, it is interesting to make the following observation. One aspet of loose CUF

is that it limits the iphertext forgeries allowed to the attaker to iphertexts that derypt to

previously queried plaintexts. A natural question is whether this property is already suÆient

for guaranteeing seure hannels. The answer is not. Our attaker against the AtE(ENC

�

;MAC)

sheme from Setion 4.2 is able to break the seurity of the hannels without ever produing a valid

iphertext that derypts to an unseen iphertext.

6.3 Open questions

As said, there are many issues and questions raised by our work. We mention here two questions

that seem espeially interesting. Their resolution may provide a better understanding of the formal

and pratial seurity issues involved here.

One is the question raised before: �nd a simple haraterization of omposed ma/enryption

funtions that implement seure hannels. In partiular, we would like to have a property to replae

loose CUF in Theorem 2 suh that an \if and only if" statement an be proven. (Related questions

inlude �nding other uses to the notion of loose iphertext unforgeability, or is a notion of \loose

CCA" similar to the above useful in any way?)

The other question relates to the enryption shemes that make the AtE method seure. While

we proved the seurity of this method for stream-ipher and CBC modes the tehnialities involved

in these proofs (espeially in the ase of CBC) and the sueptibility to small hanges show that

the approah of proving spei� ases is not the most desirable one and far from straightforward.

Certainly, given our results the best way to avoid these problems is to only use the EtA approah.

Yet, onsidering the urrent use of AtE in pratie and some of its advantages (for example, its

diret authentiation of the plaintext) it would be interesting to �nd a property that is enjoyed

by ommon modes of enryption and is suÆient to ensure the seurity of the authentiate-then-

enrypt method when ombined with a seure MAC. Note that we are looking for a property that

is stronger than IND-CPA but signi�antly weaker than hosen-iphertext seurity sine the latter

is not ahieved by most symmetri enryption modes, and also beause our results show that this

ondition is not really neessary.

18

Aknowledgment

I would like to thank Yaron She�er for motivating onversations on this topi and for \foring" me

to �nd an expliit ounter-example for the AtE method; Yaron also helped in simplifying a previous

example. I also thank Mihir Bellare for interesting onversations and for highlighting some of the

subtleties related to the subjet of this paper, and to Ran Canetti and Jonathan Katz for valuable

omments on earlier drafts of the paper.

This researh is supported by an Irwin and Bethea Green & Detroit Chapter Career Development

Chair, and by the Fund for the Promotion of Researh at the Tehnion.

A Proof of Theorem 3

Theorem 3 If MAC is a MAC family that resists one-query attaks then AtE(OTP

$

;MAC) is CUF-

CPA (and then by Theorem 2 it implements seure hannels).

More preisely, any iphertext forger F against AtE(OTP

$

;MAC) that runs time T has suess

probability E

U

of at most q

2

=2

`

+ E

M

(1; p; T

0

), where ` is a parameter of OTP

$

, q is the number of

queries F makes during the attak, p is an upper bound on the length of eah suh query and on

the length of the output forgery, and T

0

= T + qp for some onstant .

Proof: We show how to onvert a suessful iphertext forger F against AtE(OTP

$

;MAC) into

a MAC forger G against MAC. From our de�nitions of AtE(OTP

$

;MAC) and CUF-CPA suh a

iphertext forger F works by querying (possibly in an adaptive way) q di�erent plaintexts x

1

; : : : ; x

q

(eah of length `

0

� n at most | reall that n is the length the MAC output) from an orale O

AtE

that responds with pairs (r

1

; R

1

); : : : ; (r

q

; R

q

) where r

i

2

R

f0; 1g

`

and R

i

= f(r

i

)� (x

i

;MAC

k

(x

i

)).

Here the funtion f and the MAC key k are �xed through all responses by O

AtE

and are determined

as follows: f is a random funtion with domain and range as spei�ed by the OTP

$

sheme, and the

key k is distributed aording to the probability distribution of keys determined by the MAC sheme.

After getting responses to its queries, F outputs a forgery (r;R) whih is onsidered suessful if and

only if (i) r 2 f0; 1g

`

; jRj � `

0

; (ii) (r;R) 6= (r

i

; R

i

); i = 1; : : : ; q; and (iii) R = f(r)� (x;MAC

k

(x))

for some x of length `

0

� n at most.

Given F we onstrut the MAC-forger G as shown in Figure 1.

Note that G's responses to F 's queries are purely random. This is the ase also in a real

interation between F and the AtE(OTP

$

;MAC) orale as long as there are no repetitions in the

values of r

i

; i = 1; : : : ; q. Thus, the forgery output by F under G's run is distributed identially to

the forgeries output under the interation of F with the real orale if we ondition these probability

distributions on the event that no ollisions happen in the r

i

values. In addition note that when

the iphertext forgery (r;R) output by F is suessful so is the MAC forgery output by G. This

an be seen by inspetion of the ations of G in step 2 whih result in a \deryption" of (r;R)

that is distributed identially to a deryption under the random funtion f in a real interation

between F and the AtE(OTP

$

;MAC) orale. Thus, if (r;R) was a suessful iphertext forgery then

its deryption into values (x; t) as omputed by G is a orret MAC forgery. There is one point

that needs to be argued more arefully and it is that the output (x; t) by G in step 2() does not

equal to (x

j

; t

j

) as returned by the MAC orale in response to G's query (otherwise this is not a

suessful MAC forgery). But this is also easy to see sine the enryption of (x

j

; t

j

) under OTP

$

,

i.e., (x

j

; t

j

) � f(r

j

), is (r

j

; R

j

) and we are assuming R 6= R

j

. (Note that if MAC is a multi-valued

funtion then it ould be that x = x

j

and t 6= t

j

so we are using the fat that suh an output

is onsidered a suessful MAC forgery { see Setion 2.1.) This reasoning implies the following

19

From OTP iphertext forgeries to MAC forgeries

Let F be a iphertext forger against AtE(OTP

$

;MAC). We build a forger G againstMAC with aess

to a MAC orale O

MAC

.

1. G runs F and answers its queries x

i

(in lieu of the AtE orale) with pairs (r

i

; R

i

) where

r

i

2

R

f0; 1g

`

, R

i

2

R

f0; 1g

jx

i

j+n

.

2. When, after some number q of queries, F outputs a forgery (r; R) then G proeeds as follows.

(a) If 8i 2 f1; : : : ; qg; r 6= r

i

: hoose x 2

R

f0; 1g

jRj�n

; t 2

R

f0; 1g

n

and output (x; t) as a

MAC forgery.

(b) If 9j 2 f1; : : : ; qg; r = r

j

and R = R

j

: output fail (* this is just a replay by F *)

() If 9j 2 f1; : : : ; qg; r = r

j

and R 6= R

j

: query t

j

def

= O

MAC

(x

j

) and output (x; t) as a

MAC forgery where x and t are omputed as

if jRj � jR

j

j set:

R

0

j

= pre�x of R

j

of length jRj; y = pre�x of (x

j

; t

j

) of length jRj;

y

0

= R�R

0

j

� y

x = pre�x of y

0

of length jRj � n; t = suÆx of y

0

of length n

if jRj > jR

j

j set:

R

0

= pre�x of R of length jR

j

j; y = (x

j

; t

j

)

y

0

= the onatenation of R

0

�R

j

� y and jRj � jR

j

j random bits

x = pre�x of y

0

of length jRj � n; t = suÆx of y

0

of length n

Figure 1: The seurity of AtE(OTP

$

;MAC)

equality:

Prob(F sueeds : no r

i

ollision) = Prob(G sueeds : no r

i

ollision)

From this we get:

Prob(F sueeds) = Prob(F sueeds ^ r

i

ollision) + Prob(F sueeds ^ no r

i

ollision)

� Prob(r

i

ollision) + Prob(F sueeds : no r

i

ollision)Prob(no r

i

ollision)

= Prob(r

i

ollision) + Prob(G sueeds : no r

i

ollision)Prob(no r

i

ollision)

= Prob(r

i

ollision) + Prob(G sueeds ^ no r

i

ollision)

� q

2

=2

`

+ E

M

(1; p; T

0

)

The last inequality is derived as follows. The �rst part is a simple birthday bound on the probability

that an r

i

ollision happens after q queries. The seond part is a bound on the probability of event

Prob(G sueeds^no r

i

ollision) sine under this event G is a suessful MAC-forger whih makes

at most one query of length at most p and works time T

0

. This probability is then at most

E

M

(1; p; T

0

). 2

20

B Proof of Theorem 4

Theorem 4 If MAC is a seure MAC family then AtE(CBC

$

;MAC) is CUF-CPA (and then

by Theorem 2 it implements seure hannels). More preisely, any iphertext forger F against

AtE(CBC

$

;MAC) that runs time T has suess probability E

U

of at most

Q

2

=2

`

+ 2qE

M

(0; 0; T

0

) + E

M

(1; p`; T

0

) + 2E

M

(q

�

; q

�

p`; T

0

)

where q is the number of plaintexts queried by F , p is an upper bound on the number of bloks in

eah of these queries, p

�

is the length in bloks of the forgery y

�

output by F , q

�

= minfq; p

�

g, Q is

the total number of bloks in the responses to F 's queries plus p

�

, and T

0

= T + Q for onstant .

Proof: Let F be a forger against AtE(CBC

$

;MAC); we show that its suess probability is bounded

as in the theorem's statement. For this we show how to onvert F into a forger G against MAC.

The upper bounds on the suess probability of G guaranteed by the seurity of MAC allow us to

establish the laimed bounds on the suess probability of F .

We start by introduing some notation for desribing the work of a iphertext forger F . We

denote by x

i

; i = 1; : : : ; q the plaintexts that F queries from its AtE(CBC

$

;MAC)-orale, and by

y

i

; i = 1; : : : ; q the responses given by this orale (i.e., the CBC enryption of (x

i

;MAC

k

(x

i

)) under

a random permutation f where k is a randomly hosen MAC key). We denote eah y

i

as a triple

(r

i

;

i

;m

i

) where r

i

is the random IV,

i

is of the length of x

i

, and m

i

is the iphertext blok orre-

sponding to MAC

k

(x

i

). The output of F , i.e. a andidate forgery, is denoted by y

�

= (r

�

;

�

;m

�

);

this forgery is suessful if the CBC deryption of y

�

under f results in a pair (x

�

; t

�

) suh that

t

�

= MAC

k

(x

�

). By

i

[u℄ we denote the u-th blok of

i

(and r

i

if u = 0) and by

i

[last℄ the last

blok of

i

; we use similar notation for for

�

.

The forger G is presented in Figure 2. We provide some explanations of the rationale behind

G under omments marked by (* � � � *). The idea of the forger is to simulate the responses given

to F by a real AtE(CBC

$

;MAC)-orale under a truly random permutation. Then, when F outputs

a forgery y

�

, to try and \derypt" it to obtain the MAC forgery (x

�

; t

�

). The deryption uses the

fat that CBC

$

uses a truly random permutation in its omputation, that G knows the inputs for

iphertext bloks that appear in previous responses it provided to F , and that missing information

for derypting m

i

bloks (i.e., the enryption of MAC values) an be obtained by querying O

MAC

.

Yet this has to be done arefully so that the number of queries to O

MAC

is kept to a minimum,

and to ensure that the plaintext output as a forgery was not input as a query to O

MAC

.

We de�ne three types of events related to the interation between F and an AtE(CBC

$

;MAC)-

orale.

Event CL (\ollision"): We de�ne CL as the union of two events CL

0

and CL

1

de�ned as follows.

We say that event CL

0

happens if there is equality between any two bloks appearing in

the iphertexts y

i

; i = 1; : : : ; q. Event CL

1

relates to the following experiment: at the end of

F 's attak we hoose p

�

(the length of y

�

in bloks) random values in f0; 1g

`

. We say that

event CL

1

happens if any of these p

�

values oinides with any blok that appeared in the

iphertexts y

i

; i = 1; : : : ; q.

Event NM (\no m

i

"): We say that event NM happens if no blok in the

�

part of y

�

equals to

one of the bloks m

i

in the responses y

i

provided to F .

Event KP (\known plaintext"): We say that event KP happens if the plaintext x

�

under F 's

forgery y

�

equals a previously queried plaintext by F .

21

From CBC iphertext forgeries to MAC forgeries

Let F be a iphertext forger against AtE(CBC

$

;MAC). We build a forger G againstMAC with aess

to a MAC orale O

MAC

.

1. G runs F . On eah query x

i

by F , forger G returns a response (r

i

;

i

;m

i

) where r

i

2

R

f0; 1g

`

;

i

2

R

f0; 1g

jx

i

j

;m

i

2

R

f0; 1g

`

. If there is any repetition in the bloks hosen by G as

responses to F , then G aborts and fails to forge.

(* If no suh repetitions happen then we think, for the sake of presentation, of a permutation

f that is partially de�ned by the responses of G to F 's inputs. *)

2. When F outputs iphertext y

�

= (r

�

;

�

;m

�

), say after q queries x

1

; : : : ; x

q

, the forger G

omputes a forgery (x; t) against MAC in the following way:

(* The main idea is to try to set (x; t) = (x

�

; t

�

) by \derypting" y

�

using known input-

output's of f and using queries to O

MAC

; the rationale for spei� \deryptions" is explained

in the omments below *)

(a) If

�

ontains no blok that equals one of the values m

i

from the previous step then:

i. For eah blok

�

[u℄ in

�

: (* set the orresponding blok x[u℄ of x *)

If the blok

�

[u℄ equals a blok appearing in one of the iphertexts

i

; i = 1; : : : ; q

produed in step 1, say

�

[u℄ =

i

[v℄, then set x[u℄ = x

i

[v℄�

i

[v � 1℄�

�

[u� 1℄

(* x[u℄ = f

�1

(

�

[u℄)�

�

[u� 1℄ = f

�1

(

i

[v℄)�

�

[u� 1℄ = x

i

[v℄�

i

[v � 1℄�

�

[u� 1℄ *)

Else (* i.e., the blok

�

[u℄ does not appear in any

i

; i = 1; : : : ; q *)

set x[u℄ to a random value in f0; 1g

`

not used as an input to f so far.

ii. If the value m

�

did not appear as a blok in the responses y

i

provided by G then

set t to a random value in f0; 1g

`

not used as an input to f so far;

If for some i and u, m

�

=

i

[u℄ then set t = x

i

[u℄�

i

[u� 1℄�

�

[last℄;

(* t = f

�1

(m

�

)�

�

[last℄ = f

�1

(

i

[u℄)�

�

[last℄ = x

i

[u℄�

i

[u� 1℄�

�

[last℄ *)

If for some i, m

�

= m

i

then query MAC(x

i

) and set t = MAC(x

i

)�

i

[last℄�

�

[last℄

(* t = f

�1

(m

�

)�

�

[last℄ = f

�1

(m

i

)�

�

[last℄ = MAC(x

i

)�

i

[last℄�

�

[last℄ *)

(b) If one of the bloks in

�

equals a blok m

i

; 1 � i � q, then with probability 1/2 follow

Step (i) below and with probability 1/2 follow Step (ii) below:

(* (i) produes a forgery if x

�

= x

i

for some i, while (ii) forges if x

�

is new. *)

i. Say

�

[u℄ = m

i

. Choose j2

R

f1; : : : ; qg; set x = x

i

and t = x

j

[u℄�

i

[last℄�

�

[u�1℄.

(* if x

�

= x

j

then f

�1

(m

i

) equals x

j

[u℄�

�

[u�1℄ and also equalsMAC(x

i

)�

i

[last℄;

thus as de�ned, t = MAC(x

i

) *)

ii. Compute (x; t) as in Step 2a exept for bloks

�

[u℄ that equal some blok m

i

. In

these ases, query MAC(x

i

), and set x[u℄ = MAC(x

i

)�

i

[last℄�

�

[u� 1℄.

(* x[u℄ = f

�1

(m

i

)�

�

[u� 1℄ = MAC(x

i

)�

i

[last℄�

�

[u� 1℄ *)

Figure 2: The seurity of AtE(CBC

$

;MAC)

22

The probability that F outputs a suessful forgery an be written as:

Prob(F sueeds) = Prob(F sueeds ^ CL) + Prob(F sueeds ^ (:CL ^NM)) +

Prob(F sueeds ^ (:CL ^ :NM ^KP)) +

Prob(F sueeds ^ (:CL ^ :NM ^ :KP))

From this expression and the proof of the next lemma, Theorem 4 follows. 2

Lemma 5 The following inequalities hold for the suess probability of forger F as desribed in

the proof of Theorem 4. (For larity of notation, we omit below the time parameter under the E

M

expression.)

1. Prob(F sueeds ^ CL) � Q

2

=2

`

2. Prob(F sueeds ^ (:CL ^NM)) � E

M

(1; p`)

3. Prob(F sueeds ^ (:CL ^ :NM ^KP)) � 2qE

M

(0; 0)

4. Prob(F sueeds ^ (:CL ^ :NM ^ :KP)) � 2E

M

(q

�

; q

�

p`)

Proof: Part 1: Clearly Prob(F sueeds ^CL) � Prob(CL). Thus, it suÆes to bound Prob(CL),

i.e., the probability that either CL

0

or CL

1

happen. That is, either there exist two bloks among

the bloks in the iphertexts y

i

; i = 1; : : : ; q that are equal, or there is a ollision between one of

the p

�

bloks, denoted z

1

; : : : ; z

p

�

, hosen in the experiment de�ned under event CL

1

and one of

the bloks in y

i

; i = 1; : : : ; q. It is easy to see that as long as there are no ollisions, the bloks in

the iphertexts y

i

are all independent from the underlying plaintexts (this is due to the hoie of

a random independent IV in the generation of y

i

and the randomness of the permutation f) and

then the probability for a �rst ollision among these bloks is the same as in a standard birthday

alulation. Moreover, if we extend the ollision ondition to require that no ollision will happen

among the bloks in y

i

and among these bloks and the elements z

1

; : : : ; z

p

�

hosen in the setting

of event CL

1

, then we are guaranteed that neither CL

0

nor CL

1

our. The total number of bloks

for whih we hek for ollisions is then Q (whih we de�ned to inlude the number of bloks in

the iphertexts y

i

as well as the number p

�

of bloks in p

�

). Thus, the probability that no ollision

ours among these Q bloks is as in a regular birthday problem in whih Q elements are randomly

drawn from a set of 2

`

elements, and this probability is at least 1�Q

2

=2

`

. Thus, the probability

that either CL

0

or CL

1

happen is less than Q

2

=2

`

, i.e. Prob(CL) < Q

2

=2

`

.

In all the following ases we assume that CL (and thus CL

0

) does not happen. Under this

assumption, the queries by F and the answers provided to F by G are distributed identially as in

a real interation between F and the AtE(CBC

$

;MAC)-orale. Therefore, under the :CL ondition

also the forgeries output by F in a run by G are identially distributed as the forgeries of F in a

real interation with the AtE(CBC

$

;MAC)-orale. We use this fat throughout the rest of the proof.

The exlusion of event CL

1

will also be used, but in a more tehnial way, in the proof of part 2.

Part 2: We start by showing that under the assumption that event CL does not happen and event

NM does happen then the probability that G outputs a valid forgery against MAC is idential to

the probability (under the same :CL ^ NM assumption) that F outputs a suessful forgery y

�

.

Remember that sine CL does not happen (and thus CL

0

does not happen) then the iphertext

y

�

output by F in its ativation by G is distributed identially as in an interation with the

AtE(CBC

$

;MAC)-orale in whih event CL does not happen. Also by assuming event NM we know

that nom

i

blok appears in

�

and in this ase G follows the ations desribed in step 2a of Figure 2.

In this ase, the bloks in

�

are either bloks that appeared in G's responses to F 's queries, in

23

whih ase the deryption is known to G, or previously unseen bloks in whih ase all unseen input

bloks have equal probability to serve as deryption. The only problem is that when G hooses a

random input for an unseen iphertext blok it annot exlude those input bloks enrypted under

the m

i

bloks for whih the plaintext blok is unknown to G. That is, by hoosing a random unseen

input, G ould hoose an input of the form

i

[last℄ � MAC(x

i

) for some i = 1; : : : ; q. However,

this event is exluded by our assumption that event CL

1

does not happen (to see the equivalene

between these events think of the preimages hosen by G for unseen bloks as preimages of the

values z

1

; : : : ; z

p

�

in the experiment de�ned under event CL

1

).

Thus we get that the probability distribution of the plaintext x as output by G in its forgery

(x; t) and the distribution of the plaintext x

�

de�ned by F 's forgery y

�

is the same. The same

holds for the forgery tag t output by G (but here G may need to query O

MAC

to derypt m

�

in

ase that m

�

= m

i

, for some i). In partiular, we get that the probability that (x; t) is a orret

forgery is the same as the probability that y

�

is a valid iphertext, i.e. the probability that F

sueeds. However, in the ase that G queries O

MAC

on x

i

before produing its output (x; t) we

need to argue that if y

�

is a suessful iphertext forgery then x 6= x

i

(otherwise, this output would

not be onsidered a MAC forgery for G). Assume to the ontrary that G queried MAC(x

i

) and that

x = x

i

. In this ase, if (x; t) is indeed a suessful forgery then t = MAC(x) = MAC(x

i

)

8

. But by

omputation t = MAC(x

i

) �

i

[last℄ �

�

[last℄, and thus

i

[last℄ =

�

[last℄. On the other hand we

have that f

�1

(

i

[last℄)�

i

[last� 1℄ = f

�1

(

�

[last℄)�

�

[last� 1℄ sine the �rst equals x

i

[last℄ and

the seond x[last℄ whih are the same as x = x

i

. Thus we get that

i

[last� 1℄ =

�

[last� 1℄. Using

the same indutive step we get to see that for all u = 0; 1; : : : ; last

i

[u℄ =

�

[u℄, and also m

i

=m

�

.

But then y

�

= y

i

in ontradition to the assumption that y

�

was a suessful forgery for F .

Thus, we have showed that under the assumptions (:CL^NM) the probability that G outputs

a suessful forgery is the same as the probability (under the same assumptions) that F sueeds.

In other words,

Prob(F sueeds : :CL ^NM) = Prob(G sueeds : :CL ^NM)

On the other hand, whenever onditions :CL^NM hold and G sueeds in a MAC forgery we have

a break of the MAC funtion with a single query of length at most p` an event whose probability is

at most E

M

(1; p`). That is,

Prob(G sueeds ^ (:CL ^NM)) � E

M

(1; p`)

We an put these two expressions together to �nish our proof.

E

M

(1; p`) � Prob(G sueeds ^ (:CL ^NM))

= Prob(G sueeds : (:CL ^NM)) Prob(:CL ^NM)

= Prob(F sueeds : (:CL ^NM)) Prob(:CL ^NM)

= Prob(F sueeds ^ (:CL ^NM))

whih proves item 2 of the lemma.

Part 3: In this analysis we assume the joint event (:CL ^ :NM ^ KP). As already explained,

under the ondition :CL the forgery y

�

as output by F in the run by G is identially distributed

as in the interation with a real AtE(CBC

$

;MAC)-orale. Also, note that under the event :NM

8

If MAC is a multi-valued funtion then the last equality is not guaranteed. However, in this ase t 6= MAC(x

i

)

and then even if x = x

i

we have a forgery sine the pair (x; t) is not the result of a previous query (see Setion 2.1).

24

the forger G exeutes Step 2b in Figure 2. Thus, if F sueeds under assumption KP (i.e., the

forgery y

�

derypts to a value x

�

and x

�

= x

j

, for some j 2 f1; : : : ; qg) when interating with

the AtE(CBC

$

;MAC)-orale then it sueeds under that assumption also in the run by G, and if G

hooses to play step (i) and it happens to hoose the orret value j then G is guaranteed to output

a good forgery against MAC sine the known deryption provides the value of MAC(x

i

) (without

having to query O

MAC

and, in partiular, we do not have to worry about \replays"). In other

words,

Prob(G sueeds : (:CL ^ :NM ^KP) ^D) � Prob(F sueeds : (:CL ^ :NM ^KP))

where D is the event that G hooses to play step (i) and it hooses the orret value j. Note that

Prob(D) � 1=2q.

On the other hand, we have that

Prob(G sueeds ^ (:CL ^ :NM ^KP) ^D) � E

M

(0; 0)

sine under all these events we get an attak against MAC that uses 0 queries.

We an use the above expressions to prove item 3 in the lemma, as follows.

E

M

(0; 0) � Prob(G sueeds ^ (:CL ^ :NM ^KP) ^D)

= Prob(G sueeds ^ (:CL ^ :NM ^KP) : D) Prob(D)

� Prob(G sueeds ^ (:CL ^ :NM ^KP) : D) 1=2q

= Prob(G sueeds : (:CL ^ :NM ^KP) ^D) Prob(:CL ^ :NM ^KP) 1=2q

� Prob(F sueeds : (:CL ^ :NM ^KP)) Prob(:CL ^ :NM ^KP) 1=2q

= Prob(F sueeds ^ (:CL ^ :NM ^KP)) 1=2q

Part 4: Here we assume the joint event (:CL ^ :NM ^ :KP). As before this assumed joint event

guarantees that the suess probability of F in the run by G is the same as in an interation with

the AtE(CBC

$

;MAC)-orale, and that under these onditions G exeutes Step 2b in Figure 2. Also,

it is easy to inspet that in ase that :KP holds and that G hooses to run step (ii), then G an

orretly derypt y

�

into (x; t) with the same distribution as (x

�

; t

�

) (the missing information for

G to derypt is the value of deryptions of m

i

bloks whih it gets by querying the O

MAC

, or the

pre-images of unseen bloks whih G simulates perfetly assuming event :CL whih implies :CL

0

).

Thus, we have that under these events and the hoie by G to run step (ii) a suessful forgery by

F implies a suessful forgery by G. That is,

Prob(G sueeds : (:CL ^ :NM ^ :KP) ^E) � Prob(F sueeds : (:CL ^ :NM ^ :KP))

where E is the event that G hooses step (ii) when running step 2b. Note that Prob(E) = 1=2.

On the other hand, we have that

Prob(G sueeds ^ (:CL ^ :NM ^ :KP) ^E) � E

M

(q

�

; q

�

p`)

sine under all these events we get a suessful attak against the funtion MAC that uses at most

q

�

= minfp

�

; qg queries (this is so sine the number of queries is as the number of di�erent m

i

bloks in y

�

and this number an be at most p

�

and at most q).

As in previous ases, we an use the above expressions to prove item 4 in the lemma. 2

25

C Separate enryption of message and MAC is inseure

We show that, as laimed in Remarks 5.4 and 5.7, if the message and MAC's tag are enrypted

separately (e.g., using random independent IV's) then the resultant protool is not seure. Speif-

ially we show how an attaker an learn whether two transmitted messages are equal. Assume a

session between parties P and Q who share an enryption key �

e

and a MAC key �

a

. Consider �rst

the ase where message identi�ers are not transmitted (i.e., these unique identi�ers are maintained

in synhrony between sender and reeiver as in SSL). When P wants to transmit to Q a message

m with message identi�er m-id, it sends a pair (

1

;

2

) where

1

is the enryption of m and

2

is the

enryption of MAC

�

a

(m-id;m). Let m;m

0

be two suh messages (with identi�ers m-id and m-id

0

,

respetively). If the attaker wants to learn whether m

0

is the same as m it does the following. It

does not interfere with the sending of m (i.e., it lets the unhanged pair (

1

;

2

) reah Q). However,

when the pair (

0

1

;

0

2

) that orresponds to m

0

is sent, it replaes

0

1

with

1

and waits to see if the

pair (

1

;

0

2

) is aepted as valid. If it is, then the attaker learns that m

0

= m (otherwise the MAC

veri�ation would have failed!). Note that the above works for any enryption and MAC shemes.

In the ase that the message identi�er is transmitted in the lear then the attak works in the

same way. If the identi�er is sent enrypted (but the attaker knows its value { or the di�erene

between values { as it is usually the ase of sequene numbers) then the attak still works in the

following ases.

1. If the enryption is OTP then the attaker does not diretly replae

0

1

with

1

but with a

modi�ed

1

in whih the message identi�er m-id enrypted under

1

is hanged to m-id

0

(just

needs to ip the orresponding iphertext bits in

1

with the di�erene m-id�m-id

0

).

2. If the enryption is CBC, then the feasibility of the attak may depend on more implemen-

tation details. In partiular, if the value of m-id is inluded in the �rst plaintext blok then

the above hange to

1

an be done via hanges to the enryption IV.

26

Referenes

[1℄ J. An, M. Bellare, \Does enryption with redundany provide authentiity?", Advanes in

Cryptology { EUROCRYPT 2001 Proeedings, Leture Notes in Computer Siene, Vol. 2045,

Springer-Verlag, B. P�tzmann, ed, 2001.

[2℄ M. Bellare, A. Desai, E. Jokipii, and P. Rogaway, \A onrete seurity treatment of symmetri

enryption: Analysis of the DES modes of operation", Proeedings of the 38th Symposium on

Foundations of Computer Siene, IEEE, 1997.

[3℄ M. Bellare, A. Desai, D. Pointheval, and P. Rogaway, \Relations Among Notions of Seurity

for Publi-Key Enryption Shemes", Advanes in Cryptology - CRYPTO'98 Proeedings,

Leture Notes in Computer Siene Vol. 1462, H. Krawzyk, ed., Springer-Verlag, 1998, pp.

26{45.

[4℄ M. Bellare, J. Kilian and P. Rogaway, \ The seurity of ipher blok haining", Advanes

in Cryptology { CRYPTO'94 Proeedings, Leture Notes in Computer Siene Vol. 839, Y.

Desmedt, ed., Springer-Verlag, 1994. pp. 341-358.

[5℄ M. Bellare and C. Namprempre, \Authentiated enryption: Relations among notions and

analysis of the generi omposition paradigm", Advanes in Cryptology - ASIACRYPT'00

Proeedings, Leture Notes in Computer Siene Vol. 1976, T. Okamoto, ed., Springer-Verlag,

2000.

[6℄ Blak, J., Halevi, S., Krawzyk, H., Krovetz, T., and Rogaway, P., \UMAC: Fast and Seure

Message Authentiation", Advanes in Cryptology { CRYPTO'99 Proeedings, Leture Notes

in Computer Siene, Vol. 1666, Springer-Verlag, M. Wiener, ed, 1999, pp. 216{233.

http://www.s.udavis.edu/~rogaway/uma/

[7℄ Bleihenbaher, D., \Chosen Ciphertext Attaks against Protools Based on RSA Enryption

Standard PKCS #1", Advanes in Cryptology - CRYPTO'98 Proeedings, Leture Notes in

Computer Siene Vol. 1462, H. Krawzyk, ed., Springer-Verlag, 1998, pp. 1{12.

[8℄ Canetti, R., and Krawzyk, H., \Analysis of Key-Exhange Protools and Their Use for Build-

ing Seure Channels", Advanes in Cryptology { EUROCRYPT 2001 Proeedings, Leture

Notes in Computer Siene, Vol. 2045, Springer-Verlag, B. P�tzmann, ed, 2001, pp. 453{474.

Full version in: Cryptology ePrint Arhive (http://eprint.iar.org/), Report 2001/040.

[9℄ T. Dierks and C. Allen, \The TLS Protool { Version 1", Request for Comments 2246, 1999.

[10℄ D. Dolev, C. Dwork, and M. Naor. \Non-malleable ryptography". Proeedings of the 23rd

Annual ACM Symposium on Theory of Computing, pages 542-552, 1991.

[11℄ A. Frier, P. Karlton, and P. Koher, \The SSL 3.0 Protool", Netsape Communiations Corp.,

Nov 18, 1996. http://home.netsape.om/eng/ssl3/ssl-to.html

[12℄ O. Goldreih, \Foundations of Cryptography (Fragments of a book)", Weizmann Inst. of Si-

ene, 1995. (Available at http://www.wisdom.weizmann.a.il/ oded/frag.html)

[13℄ S. Goldwasser, and S. Miali. \Probabilisti Enryption", Journal of Computer and System

Sienes, Vol. 28, 1984, pp. 270-299.

27

[14℄ Halevi, S., and Krawzyk H., \Publi-Key Cryptography and Password Protools", ACM

Transations on Information and System Seurity, Vol. 2, No. 3, August 1999, pp. 230{268.

[15℄ C. Jutla, \Enryption Modes with Almost Free Message Integrity", Advanes in Cryptology

{ EUROCRYPT 2001 Proeedings, Leture Notes in Computer Siene, Vol. 2045, Springer-

Verlag, B. P�tzmann, ed, 2001.

[16℄ J. Katz and M. Yung, \Unforgeable enryption and adaptively seure modes of operations",

Fast Software Enryption'00, 2000.

[17℄ J. Katz and M. Yung, \Complete haraterization of seurity notions for probabilisti private-

key enryption", Proeedings of the 32nd Annual ACM Symposium on Theory of Computing,

2000.

[18℄ S. Kent and R. Atkinson, \Seurity Arhiteture for the Internet Protool", Request for Com-

ments 2401, Nov. 1998.

[19℄ S. Kent and R. Atkinson, \IP Enapsulating Seurity Payload (ESP)", Request for Comments

2406, Nov. 1998.

[20℄ H. Krawzyk, \LFSR-based Hashing and Authentiation", Proeedings of CRYPTO '94, Le-

ture Notes in Computer Siene, vol. 839, Y. Desmedt, ed., Springer-Verlag, 1994, pp. 129-139.

[21℄ M. Luby and C. Rako�, \How to onstrut pseudorandom permutations from pseudorandom

funtions", SIAM J. on Computing, Vol 17, Number 2, April 1988, pp. 373{386.

[22℄ M. Naor and M. Yung, \Publi key ryptosystems provably seure against hosen iphertext

attaks". Proeedings of the 22nd Annual ACM Symposium on Theory of Computing, 1990.

[23℄ C. Rako� and D. Simon, \Non-interative zero-knowledge proof of knowledge and hosen

iphertext attak", Advanes in Cryptology - CRYPTO'91 Proeedings, Leture Notes in

Computer Siene Vol. 576, J. Feigenbaum ed, Springer-Verlag, 1991.

[24℄ P. Rogaway. \ Buket Hashing and its appliation to Fast Message Authentiation", Proeed-

ings of CRYPTO '95, Leture Notes in Computer Siene, vol. 963, D. Coppersmith, ed.,

Springer-Verlag, 1995, pp. 15-25.

[25℄ P. Rogaway, M. Bellare, J. Blak, and T. Krovetz, \OCB Mode", Cryptology ePrint Arhive,

Report 2001/026.

[26℄ T. Ylonen, T. Kivinen, M. Saarinen, T. Rinne, and S. Lehtinen, \SSH Transport Layer Pro-

tool", January 2001,

http://www.ietf.org/internet-drafts/draft-ietf-sesh-transport-09.txt

28

