
Forward-Se
ure Signatures

with Optimal Signing and Verifying

Gene Itkis

1

and Leonid Reyzin

2

1

Boston University Computer S
ien
e Dept.

111 Cummington St.

Boston, MA 02215, USA

itkis�bu.edu

2

Laboratory for Computer S
ien
e

Massa
husetts Institute of Te
hnology

Cambridge, MA 02139 USA

reyzin�theory.l
s.mit.edu

http://theory.l
s.mit.edu/~reyzin

Abstra
t. We propose the �rst forward-se
ure signature s
heme for

whi
h both signing and verifying are as eÆ
ient as for one of the most

eÆ
ient ordinary signature s
hemes (Guillou-Quisquater [GQ88℄), ea
h

requiring just two modular exponentiations with a short exponent. All

previously proposed forward-se
ure signature s
hemes took signi�
antly

longer to sign and verify than ordinary signature s
hemes.

Our s
heme requires only fra
tional in
reases to the sizes of keys and

signatures, and no additional publi
 storage. Like the underlying [GQ88℄

s
heme, our s
heme is provably se
ure in the random ora
le model.

1 Introdu
tion

The Purpose of Forward Se
urity. Ordinary digital signatures have a

fundamental limitation: if the se
ret key of a signer is
ompromised, all the

signatures (past and future) of that signer be
ome worthless. This limitation

undermines, in parti
ular, the non-repudiation property that digital signatures

are often intended to provide. Indeed, one of the easiest ways for Ali
e to re-

pudiate her signatures is to post her se
ret key anonymously somewhere on the

Internet and
laim to be a vi
tim of a
omputer break-in. In prin
iple, various

revo
ation te
hniques
an be used to prevent users from a

epting signatures

with
ompromised keys. However, even with these te
hniques in pla
e, the users

who had a

epted signatures before the keys were
ompromised are now left at

the mer
y of the signer, who
ould (and, if honest, would) re-issue the signatures

with new keys.

Forward-se
ure signature s
hemes, �rst proposed by Anderson in [And97℄

and formalized by Bellare and Miner in [BM99℄, are intended to address this

limitation. Namely, the goal of a forward-se
ure signature s
heme is to preserve

the validity of past signatures even if the
urrent se
ret key has been
ompro-

mised. This is a

omplished by dividing the total time that given publi
 key is

2 Gene Itkis and Leonid Reyzin

valid into T time periods, and using a di�erent se
ret key in ea
h time period

(while the publi
 key remains �xed). Ea
h subsequent se
ret key is
omputed

from the
urrent se
ret key via a key update algorithm. The time period during

whi
h a message is signed be
omes part of the signature. Forward se
urity prop-

erty means that even if the
urrent se
ret key is
ompromised, a forger
annot

forge signatures for past time periods.

Prior S
hemes. Prior forward-se
ure signature s
hemes
an be divided into

two
ategories: those that use arbitrary signature s
hemes in a bla
k-box manner,

and those that modify spe
i�
 signature s
heme.

In the �rst
ategory, the s
hemes use some method in whi
h a master publi

key is used to
ertify (perhaps via a
hain of
erti�
ates) the
urrent publi
 key

for a parti
ular time period. Usually, these s
hemes require in
reases in storage

spa
e by noti
eable fa
tors in order to maintain the
urrent (publi
)
erti�
ates

and the (se
ret) keys for issuing future
erti�
ates. They also require longer

veri�
ation times than ordinary signatures do, be
ause the veri�er needs to verify

the entire
erti�
ate
hain in addition to verifying the a
tual signature on the

message. There is, in fa
t, a trade-o� between storage spa
e and veri�
ation

time. The two best su
h s
hemes are the tree-based s
heme of Bellare and Miner

[BM99℄

1

(requiring storage of about log

2

T se
ret keys and non-se
ret
erti�
ates,

and veri�
ation of about log

2

T ordinary signatures) and the s
heme of Kraw
zyk

[Kra00℄ (requiring storage of T non-se
ret
erti�
ates, and veri�
ation of only 2

ordinary signatures).

In the se
ond
ategory, there have been two s
hemes proposed so far (both

in the random ora
le model): the s
heme of Bellare and Miner [BM99℄ based on

the Fiat-Shamir s
heme [FS86℄, and the s
heme of Abdalla and Reyzin [AR00℄

based the 2

t

-th root s
heme [OO88,OS90,Mi
94℄. While needing less spa
e than

the s
hemes in the �rst
ategory, both [BM99℄ and [AR00℄ require signing and

veri�
ation times that are linear in T .

Our Results. We propose a s
heme in the se
ond
ategory, based on one of the

most eÆ
ient ordinary signature s
hemes, due to Guillou-Quisquater [GQ88℄. It

uses just two modular exponentiations with short exponents for both signing

and verifying.

Ours is the �rst forward-se
ure s
heme where both signing and verifying are

as eÆ
ient as the underlying ordinary signature s
heme. Moreover, in our s
heme

the spa
e requirements for keys and signatures are nearly the same as those in

the underlying signature s
heme (for realisti
 parameter values, less than 50%

more).

The pri
e of su
h eÆ
ient signing and verifying and storage is in the running

times of our key generation and update routines: both are linear in T (however,

so is the key generation and non-se
ret storage in the s
heme of [Kra00℄; as well

as the key generation, signing and verifying in the Fiat-Shamir-based s
heme

of [BM99℄ and the s
heme of [AR00℄). However, key generation and update are

1

Some improvements to tree-based s
heme of [BM99℄ (not a�e
ting this dis
ussion)

have been proposed in [AR00℄ and [MI℄.

Forward-Se
ure Signatures with Optimal Signing and Verifying 3

(presumably) performed mu
h less frequently than signing and verifying, and

an be performed o�-line as long in advan
e as ne
essary. Moreover, we show

that, if we are willing to tolerate se
ret storage of 1 + log

2

T values, we
an

redu
e the running time of the key update algorithm to be logarithmi
 in T

without a�e
ting the other
omponents (this, rather unexpe
tedly, involves an

interesting appli
ation of pebbling). For realisti
 parameter values, the total

storage requirements, even with these additional se
rets, are still less than in all

prior s
hemes; the only ex
eption is the [AR00℄ s
heme, whi
h has very ineÆ
ient

signing and verifying.

Our s
heme is provably se
ure in the random ora
le model based on a variant

of the strong RSA assumption (pre
isely de�ned in Se
tion 2.2).

2 Ba
kground

2.1 De�nitions

This se
tion
losely follows the �rst formal de�nition of forward-se
ure signatures

proposed by Bellare and Miner [BM99℄. Their de�nition, in turn, is based on

the Goldwasser, Mi
ali and Rivest's [GMR88℄ de�nition of (ordinary) digital

signatures se
ure against adaptive
hosen message atta
ks.

Key Evolution. The approa
h taken by forward-se
ure s
hemes is to
hange

the se
ret key periodi
ally (and require the owner to properly destroy the old

se
ret key

2

). Thus we
onsider time to be divided into time periods; at the end

of ea
h time period, a new se
ret key is produ
ed and the old one is destroyed.

The number of the time period when a signature was generated is part of the

signature and is input to the veri�
ation algorithm; signatures with in
orre
t

time periods should not verify.

Of
ourse, while modifying the se
ret key, one would like to keep the publi

key �xed. This
an, for example, be a
hieved by use of a \master" publi
 key,

whi
h is somehow used to
ertify a temporary publi
 key for the
urrent time

period (note however, than one needs to be
areful not to keep around the

orresponding \master" se
ret key|its presen
e would defeat the purpose of

forward se
urity) . The �rst simple in
arnation of this approa
h was proposed

by [And97℄; a very elegant tree-based solution was proposed by [BM99℄; another

approa
h, based on generating all of the
erti�
ates in advan
e, was put forward

by [Kra00℄. However, in general, one
an
on
eive of s
hemes where the publi

2

Obviously, if the key owner does not properly destroy her old keys, an atta
ker

an obtain them and thus forge the \old" signatures. Moreover, if the key owner

does not dete
t that the
urrent key was leaked, the atta
ker may hold on to the

ompromised key for a few time periods, and forge \old" signatures then. Indeed,

proper deletion of the old keys and proper intrusion dete
tion are non-trivial tasks.

However, it is reasonable to insist that the key owner perform su
h deletion and

intrusion dete
tion|
ertainly more reasonable than insisting that she guarantee the

se
re
y of her a
tive keys through resistan
e to any intrusion atta
k.

4 Gene Itkis and Leonid Reyzin

key stays �xed but no su
h
erti�
ates of per-period publi
 keys are present (and,

indeed, su
h s
hemes are proposed in [BM99,AR00℄, as well as in this paper).

The notion of a key-evolving signature s
heme
aptures, in full generality,

the idea of a s
heme with a �xed publi
 key and a varying se
ret key. It is, es-

sentially, a regular signature s
heme with the additions of time periods and the

key update algorithm. Note that this notion is purely fun
tional: se
urity is ad-

dressed separately, in the de�nition of forward se
urity (whi
h is the appropriate

se
urity notion for key-evolving signature s
hemes).

Thus, a key-evolving digital signature s
heme is a quadruple of algorithms,

FSIG = (FSIG:key;FSIG:sign;FSIG:ver;FSIG:update), where:

{ FSIG:key, the key generation algorithm, is a probabilisti
 algorithm whi
h

takes as input a se
urity parameter k 2 N (given in unary as 1

k

) and the

total number of periods T and returns a pair (SK

1

;PK), the initial se
ret

key and the publi
 key;

{ FSIG:sign, the (possibly probabilisti
) signing algorithm, takes as input the

se
ret key SK

j

= hS

j

; j; T i for the time period j � T and the message M to

be signed and returns the signature hj; signi of M for time period j;

{ FSIG:ver, the (deterministi
) veri�
ation algorithm, takes as input the publi

key PK , a message M , and a
andidate signature hj; signi, and returns 1

if hj; signi is a valid signature of M or 0, otherwise. It is required that

FSIG:ver(PK ;M;FSIG:sign(SK

j

;M)) = 1 for every message M and time

period j.

{ FSIG:update, the (possibly probabilisti
) se
ret key update algorithm, takes

as input the se
ret key SK

j

for the
urrent period j < T and returns the

new se
ret key SK

j+1

for the next period j + 1.

We adopt the
onvention that SK

T+1

is the empty string and FSIG:update(SK

T

)

returns SK

T+1

.

When we work in the random ora
le model, all the above-mentioned algo-

rithms would have an additional se
urity parameter, 1

l

, and ora
le a

ess to a

publi
 hash fun
tion H : f0; 1g

�

! f0; 1g

l

, whi
h is assumed to be random in

the se
urity analysis.

Forward Se
urity. Forward se
urity
aptures the notion that it should be

omputationally infeasible for any adversary to forge a signature for any past

time period even in the event of exposure of the
urrent se
ret key. Of
ourse,

sin
e the update algorithm is publi
, nothing
an be done with respe
t to future

se
ret keys, ex
ept for revoking the publi
 key (thus invalidating all signatures

for the time period of the break-in and thereafter). To de�ne forward se
urity

formally, the notion of a se
ure digital signature of [GMR88℄ is extended in

[BM99℄ to take into a

ount the ability of the adversary to obtain a key by

means of a break-in.

Intuitively, in this new model, the forger �rst
ondu
ts an adaptive
hosen

message atta
k (
ma), requesting signatures on messages of its
hoi
e for as

many time periods as he desires. Whenever he
hooses, he \breaks in": requests

the se
ret key SK

b

for the
urrent time period b and then outputs an (alleged)

Forward-Se
ure Signatures with Optimal Signing and Verifying 5

signature on a message M of his
hoi
e for a time period j < b. The forger is

onsidered to be su

essful if the signature is valid and the pair (M; j) was not

queried during
ma.

Formally, let the forger F = hF:
ma; F:forgei. For a key pair (PK ;SK

0

)

R

FSIG:key(k; : : : ; T), F:
ma, given PK and T , outputs (CM; b), where b is the

break-in time period and CM is a set of adaptively
hosen message-period

pairs (the set of signatures sign(CM) of the
urrent set CM is available to

F at all times, in
luding during the
onstru
tion of CM)

3

. Finally, F:forge out-

puts hM; j; sigi F:forge(CM; sign(CM); SK

b

). We say that F is su

essful

if hM; ji 62 CM; j < b; and FSIG:ver

PK

(M; hj; sigi) = 1. (Note: formally, the

omponents of F
an
ommuni
ate all the ne
essary information, in
luding T

and b, via CM .)

De�ne Su

fwsig

(FSIG[k; T ℄; F) to be the probability (over
oin tosses of F

and FSIG) that F is su

essful. Let the fun
tion InSe

fwsig

(FSIG[k; T ℄; t; q

sig

) (the

inse
urity fun
tion) be the maximum, over all algorithms F that are restri
ted

to running time t and q

sig

signature queries, of Su

fwsig

(FSIG[k; T ℄; F).

The inse
urity fun
tion above follows the \
on
rete se
urity" paradigm and

gives us a measure of how se
ure or inse
ure the s
heme really is. Therefore, we

want its value to be as small as possible. Our goal in a se
urity proof will be to

�nd an upper bound for it.

The above de�nition
an be translated to the random ora
le model in a stan-

dard way [BR93℄: by introdu
ing an additional se
urity parameter 1

l

, allowing

all algorithms the a

ess to the random ora
le H : f0; 1g

�

! f0; 1g

l

, and
onsid-

ering q

hash

, the number of queries to the random ora
le, as one more parameter

for the forger.

2.2 Assumption

We use a variant of the strong RSA assumption (to the best of our knowledge,

�rst introdu
ed independently in [BP97℄ and [FO97℄), whi
h postulates that it is

to
ompute any root of a �xed value modulo a
omposite integer. More pre
isely,

the strong RSA assumption states that it is intra
table, given n that is a produ
t

of two primes and a value � in Z

�

n

, to �nd � 2 Z

�

n

and r > 1 su
h that �

r

= �.

However, we modify the assumption in two ways. First, we restri
t ourselves

to the moduli that are produ
ts of so-
alled \safe" primes (a safe prime is one

of the form 2q + 1, where q itself is a prime). Note that, assuming safe primes

3

Note that the [BM99℄ de�nition, whi
h
aptures what F
an do in pra
ti
e, allows

the messages-period pairs to be added to CM only in the order of in
reasing time

periods and without knowledge of any se
ret keys. However, allowing the forger to

onstru
t CM in arbitrary order, and even to obtain SK

b

in the middle of the CM

onstru
tion (so that some messages be
onstru
ted by the forger with the knowledge

of SK

b

) would not a�e
t our (and their) results. Similarly, the forger
an be allowed

to obtain more than one se
ret key | we only
are about the earliest period b for

whi
h the se
ret key is given to the forger. So, the forger may adaptively sele
t

some messages whi
h are signed for him, then request some period's se
ret key; then

adaptively sele
t more messages and again request a key, et
.

6 Gene Itkis and Leonid Reyzin

are frequent, this restri
tion does not strengthen the assumption. Se
ond, we

upperbound the permissible values or r by 2

l+1

, where l is a se
urity parameter

for our s
heme (in an implementation, l will be signi�
antly shorter than the

length k of the modulus n).

More formally, let A be an algorithm. Consider the following experiment.

Experiment Break-Strong-RSA(k; l; A)

Randomly
hoose two primes q

1

and q

2

of length dk=2e � 1 ea
h

su
h that 2q

1

+ 1 and 2q

2

+ 1 are both prime.

p

1

 2q

1

+ 1; p

2

 2q

2

+ 1; n p

1

p

2

Randomly
hoose � 2 Z

�

n

.

(�; r) A(n; �)

If 1 < r � 2

l+1

and �

r

� � (mod n) then return 1 else return 0

Let Su

(A; k; l) = Pr[Break�Strong�RSA(k; l; A) = 1℄. Let InSe

SRSA

(k; l; t)

be the maximum of Su

(A; k; l) over all the adversaries A who run in time

at most t. Our assumption is that InSe

SRSA

(k; l; t), for t polynomial in k, is

negligible in k. The smaller the value of l, of
ourse, the weaker the assumption.

In fa
t, for a suÆ
iently small l, our assumption follows from a variant of the

�xed-exponent RSA assumption. Namely, assume that there exists a
onstant �

su
h that, for every r, the probability of
omputing, in time t, an r-th root of

a random integer modulo a k-bit produ
t of two safe primes, is at most 2

�k

�

.

Then, InSe

SRSA

(k; l; t) < 2

l+1�k

�

, whi
h is negligible if l = o(k

�

).

2.3 Mathemati
al Tools

The following two simple statements will be helpful later. They were �rst pointed

out by Shamir [Sha83℄ in the
ontext of generation of pseudorandom sequen
es

based on the RSA fun
tion.

Proposition 1. Let G be a group. Suppose e

1

; e

2

2 Z are su
h that g
d(e

1

; e

2

) =

1. Given a; b 2 G su
h that and a

e

1

= b

e

2

, one
an
ompute
 su
h that

e

2

= a

in O(log(e

1

+ e

2

)) group and arithmeti
 operations.

Proof. Using Eu
lid's extended g
d algorithm, within O(log(e

1

+e

2

)) arithmeti

operations
ompute f

1

; f

2

, su
h that e

1

f

1

+ e

2

f

2

= 1. Compute
 = a

f

2

b

f

1

, with

O(log(f

1

+ f

2

)) = O(log(e

1

+ e

2

)) group operations. Then

e

2

= a

e

2

f

2

b

e

2

f

1

=

a

e

2

f

2

a

e

1

f

1

= a. ut

Lemma 1. Let G be a �nite group. Suppose e

1

2 Z and e

2

2 Z are su
h that

g
d(e

1

; e

2

) = g and g
d(g; jGj) = 1. Given a; b 2 G; su
h that a

e

1

= b

e

2

, one
an

ompute
 su
h that

e

2

=g

= a in O(log

e

1

+e

2

g

) group and arithmeti
 operations.

Proof. Sin
e g
d(g; jGj) = 1, (z

g

= 1)) (z = 1) for any z 2 G. Let e

0

1

=

e

1

=g; e

0

2

= e

2

=g. Then (a

e

0

1

=b

e

0

2

)

g

= 1, so a

e

0

1

= b

e

0

2

, so we
an apply and

Proposition 1 to get
 su
h that

e

0

2

= a. ut

Forward-Se
ure Signatures with Optimal Signing and Verifying 7

2.4 The Guillou-Quisquater Signature S
heme

In [GQ88℄, Guillou and Quisquater propose the following three-round identi�-

ation s
heme, summarized in Figure 1. Let k and l be two se
urity parame-

ters. The prover's se
ret key
onsists of a k-bit modulus n (a produ
t of two

random primes p

1

; p

2

), an (l + 1)-bit exponent e that is relatively prime to

�(n) = (p

1

� 1)(p

2

� 1), and a random s 2 Z

�

n

. The publi
 key
onsists of n; e

and v where v � 1=s

e

(mod n).

In the �rst round, the prover generates a random r 2 Z

�

n

,
omputes the

ommitment y = r

e

(mod n) and sends y to the the veri�er. In the se
ond

round, the veri�er sends a random l-bit
hallenge � to the prover. In the third

round, the prover
omputes and sends to the veri�er z = rs

�

. To
he
k, the

veri�er
omputes y

0

= z

e

v

�

and
he
ks if y = y

0

(and y 6� 0 (mod n)).

The s
heme's se
urity is based on the assumption that
omputing roots mod-

ulo
omposite n is infeasible without knowledge of its fa
tors (the pre
ise assump-

tion varies depending on how e is
hosen), and
an be proven using Lemma 1.

Informally, if the prover
an answer two di�erent
hallenges, � and � , for the same

y, then it
an provide z

�

and z

�

su
h that z

e

�

v

�

= z

e

�

v

�

. Hen
e, v

���

= (z

�

=z

�

)

e

.

Note that e is l + 1-bits long, hen
e e > j� � � j, hen
e g = g
d(� � �; e) < e, so

r = e=g > 1. By Lemma 1, knowing v; �� �; z

�

=z

�

and e allows one to eÆ
iently

ompute the r-th root of v (to apply the lemma, we need to have g relatively

prime with the order �(n) of the multipli
ative group Z

�

n

, whi
h is the
ase by

onstru
tion, be
ause e is pi
ked to be relatively prime with �(n)). Thus, the

prover must know at least some root of v (in fa
t, if e is pi
ked to be prime, then

the prover must know pre
isely the e-th root of v, be
ause g = 1 and r = e).

Note that it is
ru
ial to the proof that e > 2

l

and e is relatively prime with

�(n).

The standard transformation of [FS86℄
an be applied to this identi�
ation

s
heme to
ome up with the GQ signature s
heme, presented in Figure 1. Essen-

tially, the intera
tive veri�er's l-bit
hallenge � is now
omputed using a random

ora
le (hash fun
tion) H : f0; 1g

�

! f0; 1g

L

applied to the message M and the

ommitment y.

3 Our Forward-Se
ure S
heme

3.1 Main ideas for forward se
urity

The main idea for our forward-se
ure s
heme is to
ombine the GQ s
heme with

Shamir's observation (Lemma 1). Namely, let e

1

; e

2

; : : : ; e

T

be distin
t integers,

all greater than 2

l

, all pairwise relatively prime and relatively prime with �(n).

Let s

1

; s

2

; : : : ; s

T

be su
h that s

e

i

i

� 1=v (mod n) for 1 � i � T . In time period

i, the signer will simply use the GQ s
heme with the se
ret key (n; s

i

; e

i

) and

the veri�er will use the GQ s
heme with the publi
 key (n; v; e

i

). Intuitively, this

will be forward-se
ure be
ause of the relative primality of the e

i

's: if the forger

breaks-in during time period b and learns the e

b

-th, e

b+1

-th, : : : ; e

T

-th roots of

8 Gene Itkis and Leonid Reyzin

algorithm GQ:key(k; l)

Generate random dk=2e-bit

primes p

1

; p

2

n p

1

p

2

s

R

 Z

�

n

e

R

 [2

l

; 2

l+1

)

s.t. g
d(e; �(n)) = 1

v 1=s

e

mod n

SK (n; s; e)

PK (n; v; e)

return (SK ;PK)

algorithm GQ:sign(M; (n; s; e))

r

R

 Z

�

n

y r

e

mod n

� H(y;M)

z rs

�

mod n

return (z; �)

algorithm GQ:ver(M; (n; v; e); (z; �))

if z � 0 (mod n) then return 0

y

0

 z

e

v

�

mod n

if � = H(y

0

;M) then return 1

else return 0

Fig. 1. The GQ Signature S
heme

v, this will not help it
ompute e

j

-th root of v for j < b (nor, more generally,

the r-th root of v, where rje

j

).

This idea is quite simple. However, we still need to address the following two

issues: (i) how the signer
omputes the s

i

's, and (ii) how both the signer and the

veri�er obtain the e

i

's.

Computing s

i

's. Noti
e that if the signer were required to store all the s

i

's, this

s
heme would require se
ret storage that is linear in T . However, this problem

an be easily resolved. Let f

i

= e

i

� e

i+1

� : : : � e

T

. Let t

i

be su
h that t

f

i

i

� 1=v

(mod n). During the j-th time period, the signer stores s

j

and t

j+1

. At update

time, the signer
omputes s

j+1

= t

f

j+2

j+1

mod n and t

j+2

= t

e

j+1

j+1

mod n. This

allows se
ret storage that is independent of T : only two values modulo n are

stored at any time (the f

i

and e

i

values are not stored|see below). It does,

however, require
omputation linear in T at ea
h update, be
ause of the high

ost of
omputing s

j+1

from t

j+1

.

We
an redu
e the
omputation at ea
h update to be only logarithmi
 in T

by properly utilizing pre
omputed powers of t

j+1

. This will require us, however,

to store 1 + log

2

T se
rets instead of just two. This optimization
on
erns only

the eÆ
ien
y of the update algorithm and a�e
ts neither the other
omponents

of the s
heme nor the proof of se
urity, and is therefore presented separately in

Se
tion 4.2.

Obtaining e

i

's. In order for the s
heme to be se
ure, the e

i

's need to be

relatively prime with ea
h other

4

and with �(n), and greater than 2

l

. The signer

an therefore generate the e

i

's simply as distin
t (l + 1)-bit primes. Of
ourse,

4

In fa
t, this requirement
an be relaxed. We
an allow the e

i

's not to be pairwise

relatively prime, as long as we rede�ne f

i

as f

i

= l
m(e

i

; e

i+1

; : : : ; e

T

), and require

that e

i

be relatively prime with �(n) and e

i

= g
d(e

i

; f

i+1

) > 2

l

. However, we see no

advantages in allowing this more general
ase; the disadvantage is that the e

i

's will

Forward-Se
ure Signatures with Optimal Signing and Verifying 9

to store all the e

i

's would require linear in T (albeit publi
) storage. However,

the signer need only store e

j

for the
urrent time period j, and generate anew

the other e

i

's for i > j during key update. This works as long as the signer uses

a deterministi
 algorithm for generating primes: either pseudorandom sear
h or

sequential sear
h from �xed starting points. The fa
t that e

i

's are not stored but

rather re
omputed ea
h time slows down the update algorithm only (and, as we

show in Se
tion 3.3, not by mu
h). Note that the way we
urrently des
ribed

the update algorithm, for the update at time period j the signer will need to

ompute e

j+1

; : : : ; e

T

. With the optimization of Se
tion 4.2, however, only at

most log

2

T of the e

i

's will need to be
omputed at ea
h update.

We have not yet addressed the issue of how the veri�er gets the e

i

's. Of

ourse, it
ould simply generate them the same way that the signer does during

ea
h key update. However, this will slow down veri�
ation, whi
h is undesirable.

The solution is perhaps surprising: the veri�er need not know the \true" e

i

's

at all! The value of e

j

an be simply in
luded by the signer in every signature

for time period j. Of
ourse, a forger is under no obligation to in
lude the true

e

j

. Therefore, to avoid ambiguity, we will denote by e the value in
luded in a

signature. It may or may not a
tually equal e

j

.

For the se
urity of the s
heme, we require that e satisfy the following require-

ments:

1. e should be in
luded as an argument to the hash fun
tion H , so that the

forger
annot de
ide on e after seeing the
hallenge �;

2. e should be greater than 2

l

, for the same reasons as in the GQ s
heme;

3. e should be relatively prime with �(n), for the same reasons as in the GQ

s
heme; and

4. e should be relatively prime with the e

b

; : : : ; e

T

(where b is the break-in time

period), so that the knowledge of the root of v of degree e

b

� e

b+1

� : : : � e

T

does not help the forger
ompute any root of v of degree rje.

The �rst two
onditions
an be easily enfor
ed by the veri�er. The third
ondition

an be enfor
ed by having n be a produ
t of two \safe" primes (primes p

1

; p

2

that

are of the form p

i

= 2q

i

+ 1, where q is prime). Then the veri�er simply needs

to
he
k that e is odd (then it must be relatively prime with �(n)|otherwise,

it would be divisible by q

1

, q

2

or q

1

q

2

, whi
h would imply that the forger
ould

fa
tor n).

It is the fourth
ondition that presents diÆ
ulties. How
an the veri�er
he
k

the that e is relatively prime with e

b

; : : : ; e

T

without knowing b and the a
tual

values of e

b

; : : : ; e

T

? We a

omplish this by splitting the entire interval between

2

l

and 2

l+1

into T
onse
utive bu
kets of size 2

l

=T ea
h, and having ea
h e

i

be a prime from the i-th bu
ket. Then the veri�er knows that the a
tual values

e

j+1

; : : : ; e

T

are all at least 2

l

(1 + j=T) and prime. Thus, as long as e in the

signature for time period j is less than 2

l

(1+j=T), it is guaranteed to be relatively

prime with e

j+1

; : : : ; e

T

, and hen
e with e

b

; : : : ; e

T

(be
ause b > j).

have to be longer to satisfy the last requirement, and thus the s
heme will be less

eÆ
ient.

10 Gene Itkis and Leonid Reyzin

Thus, to enfor
e the above four
onditions, the veri�er needs to
he
k is that

e is odd, is between 2

l

and 2

l

(1+ j=T) and is in
luded in the hash
omputation.

3.2 The s
heme

Our s
heme (denoted IR) based on the above ideas is presented in Figure 2. As

in the GQ s
heme, let H : f0; 1g

�

! f0; 1g

l

be a hash fun
tion.

3.3 EÆ
ien
y

Signing and Verifying. The distinghuishing feature of our s
heme is the

eÆ
ien
y of the signing and veri�
ation algorithms. Both are the same as the

already eÆ
ient ordinary GQ s
heme (verifying has the additional, negligible

omponent of testing whether e is in the right range and odd). Namely, they

ea
h take two modular exponentiations, one modular multipli
ation and an ap-

pli
ation of H , for a total time of O(k

2

l) plus the time required to evaluate H .

(Note that, just like the GQ s
heme, one of the two modular exponentiations for

signing
an be done o�-line, before the message is known; also, one of the two

modular exponentiations for verifying is of a �xed base v, and
an bene�t from

pre
omputation.)

Key Generation. We need to make strong assumptions on the distributions

of primes in order to estimate eÆ
ien
y of key generation. First, we assume that

at least one in O(k) dk=2e-bit numbers is a prime, and that at least one in O(k)

of those is of the form 2q+1, where q is prime. Then, generating n takes O(k

2

)

primality tests. Ea
h primality test
an be done in O(k

3

) bit operations [BS96℄.

Thus, the modulus n is generated in O(k

5

) bit operations (a fa
tor k slower than

an RSA modulus, be
ause of the need for safe primes). Similarly, we will assume

that at least one in O(l) integers in ea
h bu
ket [2

l

(1 + (i� 1)=T); 2

l

(1 + i=T))

is a prime, so generating ea
h e

i

takes O(l

4

) bit operations.

In addition to generating n and the e

i

's, key generation needs to
ompute

the produ
t of the e

i

's modulo �(n), whi
h takes O(Tkl) bit operations, and

three modular exponentiations, ea
h taking O(k

2

l) bit operations. Therefore,

key generation takes O(k

5

+ l

4

T + k

2

l + klT)) bit operations.

Note that, similarly to the GQ s
heme, n and e

i

's may be shared among

users if n is generated by a trusted party, be
ause ea
h user need not know the

fa
tors of n. Ea
h user
an simply generate its own t

1

and v.

Key Update. Key update
annot multiply all the relevant e

i

's modulo �(n), be-

ause �(n) is not available (otherwise, the s
heme would not be forward-se
ure).

Therefore, it has to perform O(T) modular exponentiations separately, in addi-

tion to regenerating all the e

i

's. Thus, it takes O(k

2

lT + l

4

T) bit operations.

Note that the l

4

T
omponent is present in the running time for the update

algorithm be
ause of the need to regenerate the e

i

's ea
h time. However, for

pra
ti
al values of l (on the order of 100) and k (on the order of 1000), l

4

T is

roughly the same as k

2

lT , so this only slows down the key update algorithm by

Forward-Se
ure Signatures with Optimal Signing and Verifying 11

algorithm IR:key(k; l; T)

Generate random (dk=2e � 1)-bit primes q

1

; q

2

s.t. p

i

= 2q

i

+ 1 are both prime

n p

1

p

2

t

1

R

 Z

�

n

Generate primes e

i

s.t. 2

l

(1 + (i� 1)=T) � e

i

< 2

l

(1 + i=T) for i = 1; 2; : : : ; T .

(This generation is done either deterministi
ally or using a small seed seed

and H as a pseudorandom fun
tion.)

f

2

 e

2

� : : : � e

T

mod �(n), where �(n) = 4q

1

q

2

s

1

 t

f

2

1

mod n

v 1=s

e

1

1

mod n

t

2

 t

e

1

1

mod n

SK

1

 (1; T; n; s

1

; t

2

; e

1

; seed)

PK (n; v; T)

return (SK

1

;PK)

algorithm IR:update(SK

j

)

Let SK

j

= (j; T; n; s

j

; t

j+1

; e

j

; seed)

if j = T then return �

Regenerate e

j+1

; : : : ; e

T

using seed

s

j+1

 t

e

j+2

�:::�e

T

j+1

mod n; t

j+2

 t

e

j+1

j+1

mod n

return SK

j+1

= (j + 1; T; n; s

j+1

; t

j+2

; e

j+1

; seed)

algorithm IR:sign(SK

j

;M)

Let SK

j

= (j; T; n; s

j

; t

j+1

; e

j

; seed)

r

R

 Z

�

n

y r

e

j

mod n

� H(j; e

j

; y;M)

z rs

�

mod n

return (z; �; j; e

j

)

algorithm IR:ver(PK ;M; (z; �; j; e))

Let PK = (n; v)

if e � 2

l

(1 + j=T) or e < 2

l

or e is even then return 0

if z � 0 (mod n) then return 0

y

0

 z

e

v

�

mod n

if � = H(j; e; y

0

;M) then return 1 else return 0

Fig. 2. Our forward-se
ure signature s
heme (without eÆ
ien
y improvements)

12 Gene Itkis and Leonid Reyzin

a small
onstant fa
tor. Moreover, in Se
tion 4.1 we show how to redu
e the l

4

T

omponent in both key generation and update to (l

2

+log

4

T)T (at a very slight

expense to signing and verifying).

Finally, as shown in Se
tion 4.2, if we are willing to in
rease se
ret storage

from 2k bits (for s

j

and t

j+1

) to (1+log

2

T)k bits, then we
an repla
e the fa
tor

of T in the
ost of update by the fa
tor of log

2

T , to get update at the
ost of

O((l

4

+ k

2

l) logT) (or, if optimization of Se
tion 4.1 is additionally applied,

O((k

2

l + l

2

+ log

4

T) logT)).

Sizes. All the key and signature sizes are
omparable to those in the ordinary

GQ s
heme.

The publi
 key has l+1 fewer bits than the GQ publi
 key, and the signatures

have l + 1 more bits, be
ause e is in
luded in the signature rather than in the

publi
 key. In addition, both the publi
 key and the signature have log

2

T more

bits in order to a

ommodate T in the publi
 key and the
urrent time period in

the signature (this is ne
essary in any forward-se
ure s
heme). Thus, the total

publi
 key length is 2k + log

2

T bits, and signature length is k + 2l+ 1+ log

2

T

bits. Optimization of Se
tion 4.1 shortens the signatures slightly, repla
ing l+1

of the signature bits with about log

2

T bits.

The se
ret key is k + 2 log

2

T + jseed j bits longer than in the GQ s
heme in

order to a

ommodate the
urrent time period j, the total time periods T , the

value t

j+1

ne
essary to
ompute future keys and the seed ne
essary to regenerate

the e

i

's for i > j. Thus, the total se
ret key length is 3k+ l+1+ jseed j+2 log

2

T

bits (note that only 2k of these bits need to be kept se
ret). If the optimization

of Se
tion 4.2 is used, then the se
ret
ontains an additional k(log

2

T � 1) bits,

all of whi
h need to be kept se
ret.

3.4 Se
urity

The exa
t se
urity of our s
heme (in the random ora
le model) is
lose to the

exa
t se
urity of the s
hemes of [BM99,AR00℄. The proof is also similar: it
losely

follows the one in [AR00℄,
ombining ideas from [PS96,BM99,MR99℄.

First, we state the following theorem that will allow us to upper-bound the

inse
urity fun
tion. The full proof of the theorem is very similar to the one in

[AR00℄ and is
ontained in Appendix A.

Theorem 1. Given a forger F for IR[k; l; T ℄ that runs in time at most t, asking

q

hash

hash queries and q

sig

signing queries, su
h that Su

fwsig

(IR[k; l; T ℄; F) � ",

we
an
onstru
t an algorithm A that, on input n (a produ
t of two safe primes),

� 2 Z

�

n

and l, runs in time t

0

and outputs (�; r) su
h that 1 < r � 2

l+1

and

�

r

� � (mod n) with probability "

0

, where

t

0

= 2t+O(lT (l

2

T

2

+ k

2

))

"

0

=

�

"� 2

2�k

q

sig

(q

hash

+ 1)

�

2

T

2

(q

hash

+ 1)

�

"� 2

2�k

q

sig

(q

hash

+ 1)

2

l

T

:

Forward-Se
ure Signatures with Optimal Signing and Verifying 13

Proof Outline. A will use F as a subroutine. (Note that A gets to provide

the publi
 key for F and to answer its signing and hashing queries.) A bases the

publi
 key v on � as follows: it randomly guesses j between 1 and T , hoping that

F 's eventual forgery will be for the j-th time period. It then generates e

1

; : : : ; e

T

just like the real signer, sets t

j+1

= � and
omputes v as v = 1=t

f

j+1

j+1

mod n,

where, as above, f

j+1

= e

j+1

� : : : � e

T

.

Then A runs F . Answering F 's hash and signature queries is easy, be
ause A

fully
ontrols the random ora
le H . If A's guess for j was
orre
t, and F indeed

will output a forgery for the j-th time period, then F 's break-in query will be

for the se
ret of a time period b > j. A
an
ompute the answer as follows:

t

b+1

= t

f

j+1

=f

b

j+1

= �

e

j

1

�:::�e

b

and s

b

= t

f

b+1

b

= �

e

j

1

�:::�e

b�1

�e

b+1

�:::�e

T

(the other

omponents of SK

b

are not se
ret, anyway). Suppose A's guess was
orre
t, and

in the end F outputs a signature (z; �; j; e) on some messageM . We will assume

that F asked a hash query on (j; e; y;M) where y = z

e

v

�

mod n (F
an always

be modi�ed to do so.)

Then, A runs F the se
ond time with the same random tape, giving the same

answers to all the ora
le queries before the query (j; e; y;M). For (j; e; y;M), A

gives a new answer � . If F again forges a signature (z

0

; �; j; e) using the same

hash query, we will have that y � z

e

v

�

� z

0

e

v

�

(mod n), so (z=z

0

)

e

� v

���

�

�

f

j+1

(���)

(mod n). Note that be
ause e is guaranteed to be relatively prime

with f

j+1

, and � � � has at least one fewer bit than e, g
d(f

j+1

(� � �); e) =

g
d(� � �; e) < e (as long as � 6= �). Thus, r = e= g
d(f

j+1

(� � �); e) > 1 and,

by Lemma 1, A will be able to eÆ
iently
ompute the r-th root of �.

Please refer to Appendix A for further details. ut

This allows us to state the following theorem about the inse
urity fun
tion

of our s
heme.

Theorem 2. For any t, q

sig

, and q

hash

,

InSe

fwsig

(IR[k; l; T ℄; t; q

sig

; q

hash

) �

T

q

(q

hash

+ 1)InSe

SRSA

(k; l; t

0

) + 2

�l+1

T (q

hash

+ 1) + 2

2�k

q

sig

(q

hash

+ 1) ;

where t

0

= 2t+O(lT (l

2

T

2

+ k

2

)).

Proof. To
ompute the inse
urity fun
tion, simply solve for ("�2

2�k

q

sig

(q

hash

+

1))=T the quadrati
 equation in Theorem 1 that expresses "

0

in terms of " to get

("� 2

2�k

q

sig

(q

hash

+ 1))=T

= 2

�l

(q

hash

+ 1) +

q

2

�2l

(q

hash

+ 1)

2

+ "

0

(q

hash

+ 1)

� 2

�l

(q

hash

+ 1) +

q

2

�2l

(q

hash

+ 1)

2

+

p

"

0

(q

hash

+ 1)

= 2

�l+1

(q

hash

+ 1) +

p

"

0

(q

hash

+ 1);

and then solve the resulting inequality for ". ut

14 Gene Itkis and Leonid Reyzin

4 Further Improving EÆ
ien
y

4.1 Finding the e

i

's faster

Finding e

i

's takes time be
ause they need to be l+1-bit primes. If we were able

to use small primes instead, we
ould sear
h signi�
antly faster, both be
ause

small primes are more frequent and be
ause primality tests are faster for shorter

lengths.

5

We
annot use small primes dire
tly be
ause, as already pointed out, the e

i

's

must have at least l + 1 bits. However, we
an use powers of small primes that

are at least l + 1 bits. That is, we let �

i

be a small prime, �(�

i

) be su
h that

�

�(�

i

)

i

> 2

l

and e

i

= �

�(�

i

)

i

. As long as � is a deterministi
 fun
tion of its input

� (for example, �(�) = l=blog

2

�
), we
an repla
e e in the signature by �, and

have the veri�
ation algorithm
ompute e = �

�(�)

.

Of
ourse, the veri�
ation algorithm still needs to ensure that e is relatively

prime to �(n) and to e

b

; : : : ; e

T

. This is a

omplished essentially the same way

as before: we divide a spa
e of small integers into T
onse
utive bu
kets of some

size S ea
h, and have ea
h �

i

ome from the i-th bu
ket: �

i

2 [(i � 1)S; iS).

Then, when verifying a signature for time period j, it will suÆ
e to
he
k that �

is odd and
omes from a bu
ket no greater than the j-th: � < jS. It will be then

relatively prime to �

b

; : : : ; �

T

, and therefore e = �

�(�)

will be relatively prime to

e

b

; : : : ; �

T

.

When we used large primes, we simply partitioned the spa
e of (l + 1)-bit

integers into large bu
kets, of size 2

l

=T ea
h. We
ould have used smaller bu
kets,

but this o�ered no advantages. However, now that we are using small primes, it

is advantageous to make the bu
ket size S as small as possible, so that even the

largest prime (about TS) is still small.

Thus, to see how mu
h this optimization speeds up the sear
h for the e

i

's, we

need to upper-bound S. S needs to be pi
ked so that there is at least one prime

in ea
h interval [(i � 1)S; iS) for 1 � i � T . It is reasonable to
onje
ture that

the distan
e between two
onse
utive primes P

n

and P

n+1

is at most (ln

2

P

n

)

[BS96℄. Therefore, be
ause the largest prime we are looking for is smaller than

TS, S should be su
h that S > ln

2

TS. It is easy to see that S = 4 ln

2

T

will work for T � 75. (As a pra
ti
al matter,
omputation shows that, for any

reasonable value of T , the value of S will be quite small: S = 34 will work for

T = 1000, be
ause the largest gap between the �rst 1000 primes is 34; by the

same reasoning, S = 72 will work for T = 10

4

, S = 114 will work for T = 10

5

,

and S = 154 will work for T = 10

6

.) Thus, the �

i

's are all less than 4T ln

2

T ,

and therefore the size of ea
h �

i

is O(log T) bits. Thus, �nding and testing the

primality of the �

i

's and then
omputing the e

i

's takes O(T (log

4

T + l

2

)) time,

as opposed to O(T l

4

) without this optimization.

The resulting s
heme will slightly in
rease veri�
ation time: the veri�er needs

to
ompute e from �. This takes time O(l

2

) (exponentiating any quantity to

5

In fa
t, when a table of small primes is readily available (as it often is for reasonably

small T), no sear
hing or primality tests are required at all.

Forward-Se
ure Signatures with Optimal Signing and Verifying 15

obtain an (l+1)-bit quantity takes time O(l

2

)), whi
h is lower order than O(k

2

l)

veri�
ation time. Moreover, it will be impossible to get e

i

to be exa
tly l + 1

bits (it will be, on average, about l+ (log

2

T)=2 bits). This will slow down both

veri�
ation and signing, albeit by small amounts. Therefore, whether to use the

optimization in pra
ti
e depends on the relative importan
e of the speeds of

signing and verifying vs. the speeds of key generation and update.

4.2 Optimizing key update

The key update in our s
heme requires
omputing s

i

su
h that s

e

i

i

� 1=v mod n.

Knowledge of s

i�1

, su
h that s

e

i�1

i�1

� 1=v mod n, does not help, be
ause e

i

and

e

i�1

are relatively prime. The easiest way to
ompute s

i

requires knowledge

of �(n): s

i

 1=v

1=e

i

mod �(n)

mod n. However, the signer
annot store �(n)|

otherwise the forger would obtain it during a break-in, and thus be able to fa
tor

n and produ
e the past periods' se
rets (and signatures). The value of �(n)
an

be used only during the initial key generations stage, after whi
h it should be

se
urely deleted.

To enable generation of
urrent and future s

i

's without
ompromising the

past ones, we had de�ned (in Se
tion 3) a se
ret t

i

for time period i, from

whi
h it was possible to derive all future periods' se
rets s

j�i

. The update of

t

i

to t

i+1

an be implemented eÆ
iently (1 exponentiation). However, in this

approa
h the
omputation of ea
h s

i

from t

i

requires �(T � i) exponentiations.

This
omputation
an be redu
ed dramati
ally if the storage is in
reased slightly.

Spe
i�
ally, in this se
tion we demonstrate how repla
ing the single se
ret t

i

with log

2

T se
rets
an redu
e the
omplexity of the update algorithm to only

log

2

T exponentiations.

Abstra
ting the Problem. Consider all subsets of Z

T

= f1; 2; : : : ; Tg. Let

ea
h su
h subset S
orrespond to the se
ret value t

S

= t

Q

i=2S

e

i

1

. For example,

t

1

orresponds to Z

T

, t

i

orresponds to fi; i+1; : : : ; Tg, v

�1

orresponds to the

empty set, and ea
h s

i

orresponds to the singleton set fig. Raising some se
ret

value t

S

to power e

i

orresponds to dropping i from S.

Thus, instead of se
rets and the exponentiation operation, we
an
onsider

sets and the operation of removing an element. Our problem, then,
an be re-

formulated as follows: design an algorithm that, given Z

T

, outputs (one-by-one,

in order) the singleton sets fig for 1 � i � T . The only way to
reate new sets is

to remove elements from known sets. The algorithm should minimize the num-

ber of element-removal operations (be
ause they
orrespond to the expensive

exponentiation operations).

Fairly elementary analysis qui
kly demonstrates that the most eÆ
ient so-

lution for this problem (at least for T that is a power of 2) is the following

divide-and-
onquer algorithm:

Input: An ordered non-empty set A.

Output: Singleton sets fxg, for x 2 A, in order.

Steps: If A has one element, output A and return.

16 Gene Itkis and Leonid Reyzin

Remove the se
ond half of A's elements to get B.

Re
urse on B.

Remove the �rst half of A's elements to get C.

Re
urse on C.

This algorithm takes exa
tly T log

2

T element-removal operations to output

all the singletons. Moreover, the re
ursion depth is 1+ log

2

T , so only 1+ log

2

T

sets need to be stored at any time (ea
h set is just a
onse
utive interval, so the

bookkeeping about what ea
h set a
tually
ontains is simple).

This re
ursive algorithm
an essentially be the update algorithm for our

s
heme: at every
all to update, we run the re
ursive algorithm a little further,

until it produ
es the next output. We then stop the re
ursive algorithm, save

its sta
k (we need to save only log

2

T se
rets, be
ause the remaining one is the

output of the algorithm), and run it again at the next
all to update. A little

more
are needs to be taken to ensure forward se
urity: none of the sets stored

at time period i should
ontain elements less than i. This
an be done by simply

removing i from all sets that still
ontain in (and that are still needed) during

the i-th update. The total amount of work still does not
hange.

Be
ause there are T
alls to update (if we in
lude the initial key generation),

the amortized amount of work per update is exa
tly log

2

T exponentiations.

However, some updates will be more expensive than others, and update will still

ost �(T) exponentiations in the worst
ase. We thus want to improve the worst-

ase running time of our solution without in
reasing the (already optimal) total

running time. This
an be done through pebbling te
hniques, des
ribed below.

Pebbling. Let ea
h subset of Z

T

orrespond to a node in a graph. Conne
t

two sets by a dire
ted edge if the destination
an be obtained from the sour
e by

dropping a single element. The resulting graph is the T -dimensional hyper
ube,

with dire
tions on the edges (going from higher-weight nodes to lower-weight

nodes). We
an traverse the graph in the dire
tion given by the edges. We start

at the node
orresponding to Z

T

, and need to get to all the nodes
orresponding

to the singleton sets fig.

One way to a

omplish this task is given by the above re
ursive algorithm,

whi
h has the minimal total number of steps. However, we would like to minimize

not only the total number of steps, but also the number of steps taken between

any two \
onse
utive" nodes fig and fi+ 1g, while keeping the memory usage

low. We will do this by properly arranging di�erent bran
hes of the re
ursive

algorithm to run in parallel.

To help visualize the algorithm, we will represent ea
h set stored as a pebble

at the
orresponding node in a graph. Then removing an element from a set
or-

responds to moving the
orresponding pebble down the
orresponding dire
ted

edge. The original set may be preserved, in whi
h
ase a \
lone" of a pebble is

left at the original node, or it may be dis
arded, in whi
h
ase no su
h
lone is

left. Our goal
an be reformulated as follows in terms of pebbles: �nd a pebbling

strategy that, starting at the node Z

T

, rea
hes every node fig in order, while

minimizing the number of pebbles used at any given time (this
orresponds to

Forward-Se
ure Signatures with Optimal Signing and Verifying 17

total se
ret storage needed), the total number of pebble moves (this
orresponds

to total number of exponentiations needed), and the number of pebble moves be-

tween any two
onse
utive hits of a singleton (this
orresponds to the worst-
ase

ost of the update algorithm).

The Pebbling Algorithm. We shall assume that T > 1 is a power of 2. The

following strategy uses at most 1 + log

2

T pebbles, takes T log

2

T total moves

(whi
h is the minimum possible), and requires at most log

2

T moves per update.

Ea
h pebble has the following information asso
iated with it:

1. its
urrent position, represented by a set P � Z

T

(P will always be a set of

onse
utive integers fP

min

; : : : ; P

max

g);

2. its \responsibility," represented by a set R � P (R will also always be a

set of
onse
utive integers fR

min

; : : : ; R

max

g; moreover jRj will always be a

power of 2).

Ea
h pebble's goal is to ensure that it (together with its
lones, their
lones,

et
.) rea
hes every singleton in its set P . If R (P , then the pebble
an move

towards this goal by removing an element from P . If, however, R = P , then

the pebble has to
lone (unless jP j = jRj = 1, in whi
h
ase it has rea
hed

its singleton, and
an be removed from the graph). Namely, it
reates a new

pebble with the same P , and responsibility set R

0

ontaining only the se
ond

half of R. It then
hanges its own R to R � R

0

(thus dividing its responsibility

evenly between itself and its
lone). Now both the pebble and the
lone
an move

towards their disjoint sets of singletons.

We start with a single pebble with P = R = Z

T

. The above rules for moving

and
loning ensure that the
ombined moves of all the pebbles will be the same as

in the re
ursive algorithm. Thus, the steps of the pebbles are already determined.

We now have to spe
ify the timing rules: namely, when the pebbles take their

steps. A
areful spe
i�
ation is important: if a pebble moves too fast, then it

an produ
e more
lones than ne
essary, thus in
reasing the total memory; if

a pebble moves too slowly, then it may take longer to rea
h its destination

singletons, thus in
reasing the worst-
ase
ost of update.

In order to spe
ify the timing rules, we will imagine having a
lo
k. The
lo
k

\ti
ks"
onse
utive integer values, starting with �T=2+1. After ea
h
lo
k ti
k,

ea
h pebble will de
ide whether to move and, if so, for how many moves, as

follows:

1. The original pebble always makes two moves per
lo
k ti
k, until it rea
hes

the singleton f1g. After rea
hing the singleton it stops, and then removes

itself from the graph on the next
lo
k ti
k.

2. After a new pebble is
loned with responsibility set R, it stays still for djRj=2e

lo
k ti
ks. After djRj=2e-th
lo
k-ti
k following its birth, it starts moving

at one move per
lo
k ti
k. After jRj su
h moves, it starts moving a two

moves per
lo
k ti
k, until it rea
hes its leftmost singleton. After rea
hing

the singleton it stops, and then removes itself from the graph on the next

lo
k ti
k.

18 Gene Itkis and Leonid Reyzin

We remark that the above rules may seem a bit
omplex. Indeed, simpler

rules
an be envisioned: for example, allowing ea
h pebble at most one move

per
lo
k ti
k, and spe
ifying that ea
h pebbles moves following a given
lo
k

ti
k only if it absolutely has to move in order to rea
h its leftmost singleton on

time. However, this set of rules will require (log

2

T) � 2 pebbles (even though

at most log

2

T of them will be moving at any given time). Having pebbles move

at variable speeds allows us to delay their
loning, and thus redu
es the total

number of pebbles, as shown by the following theorem.

Theorem 3. Suppose T > 1 is a power of two. If i is the value most re
ently

ti
ked by the
lo
k, then the total number of pebbles under the above rules never

ex
eeds 1 + blog

2

(T � i)
 (if i � 0) or (log

2

T) � blog

2

�i
 (if �T < i < 0).

The number of moves o

urring immediately following the
lo
k ti
k i also never

ex
eeds this quantity. For ea
h i, 1 � i � T , a pebble rea
hes the singleton i+ 1

immediately before the
lo
k ti
ks the value i+1, and is removed before the
lo
k

ti
ks i+ 2.

Proof. The proof is by indu
tion on log

2

T .

For T = 2, we start with a single pebble with P = R = f1; 2g. After the
lo
k

ti
ks 0, this pebble
lones the pebble with R

0

= 2, and itself moves to P = f1g.

The
lone waits for one
lo
k ti
k and then, after the
lo
k ti
ks 1, the
lone

moves to P = f2g.

Suppose the statement is true for some T that is a power of two. We will

now prove it for T

0

= 2T . After
lo
k ti
k �T + 1, we have two pebbles: one

responsible for f1; : : : ; Tg, and the other responsible for fT +1; : : : ; 2Tg. For the

next T=2�1
lo
k ti
ks, the �rst pebble will move at two steps per ti
k, and the

se
ond one will stay put (thus, the number of moves does not ex
eed the number

of pebbles). After the
lo
k ti
ks �T=2, the �rst pebble will arrive at position

P = f1; : : : ; Tg. Thus, starting at t = �T + 1, the indu
tive hypothesis applies

to the all the pebbles that will
over the �rst half of the singletons: there is a

single pebble until t = �T=2+ 1 and it is in position P = f1; : : : ; Tg after
lo
k

ti
k �T=2 + 1.

The se
ond pebble will rea
h the position P

0

= f2; : : : ; Tg after the
lo
k

ti
ks T=2. Thus, again, after the
lo
k ti
ks 1, the indu
tive hypothesis applies

to all the pebbles that will
over the se
ond half of the singletons, ex
ept that

time is shifted forward by T . That is, if 1 � i < T , then the number of pebbles

in the se
ond half does not ex
eed (log

2

T) � blog

2

(T � i)
, and if t � T , then

the number of pebbles in the se
ond half does not ex
eed 1 + blog

2

(2T � i)
.

The key to �nishing the proof is to realize that the �rst half will lose a pebble

just as the se
ond half gains one. To be pre
ise, we
an
onsider the following

four
ases.

{ For �T < i < 0, we have (log

2

T) � blog

2

�i
 pebbles in the �rst half (by

the indu
tive hypothesis), and one pebble in the se
ond half, so we have a

total of (log

2

2T)� blog

2

�i
 pebbles, as required.

{ For i = 0, we have 1 + log

2

T = log

2

2T pebbles in the �rst half (by the

indu
tive hypothesis), and one pebble in the se
ond half, for a total of 1 +

log

2

2T pebbles, as required.

Forward-Se
ure Signatures with Optimal Signing and Verifying 19

{ For 0 < i � T , we have 1 + blog

2

(T � i)
 pebbles in the �rst half and

(log

2

T) � blog

2

(T � i)
 pebbles in the se
ond half (both by the indu
tive

hypothesis), for a total of 1+log

2

T = 1+blog

2

(2T � i)
 pebbles, as required.

{ For i > T , we have no pebbles in the �rst half and blog

2

(2T � i)
 pebbles in

the se
ond half (by the indu
tive hypothesis), as required.

It is easy to see that in ea
h of the above four
ases, the number of moves

does not ex
eed the number of pebbles (be
ause for every pebble moving at two

steps per
lo
k ti
k, there exists a pebble that is standing still|namely, its most

re
ent
lone). ut

Se
urity. It is, of
ourse,
ru
ial to ensure that the above
hanges to the update

algorithm do not
ompromise the se
urity of our s
heme. It suÆ
es to prove that

every se
ret stored following the
lo
k ti
k i
an be derived in polynomial time

from t

i+1

. In other words, it suÆ
es to prove that, following the
lo
k ti
k i, no

pebble's position P satis�es i 2 P . This
an be easily done by indu
tion, as long

as ea
h pebble moves towards its goal by removing the smallest possible element

from its position P (the indu
tive step is proved as follows: if 2T is the total

number of time periods, then the single pebble responsible for the se
ond half

of the singletons will have removed f1; : : : ; T=2g from its position following the

lo
k ti
k 1, and will have removed f1; : : : ; Tg following the
lo
k ti
k T=2+1).

A
knowledgements

We thank Anna Lysyanskaya and Silvio Mi
ali for helpful dis
ussions about

our
omplexity assumptions; Ron Rivest for sharing his insights on pebbling

algorithms; and the anonymous referees for helpful
omments.

Referen
es

[And97℄ Ross Anderson. Invited le
ture. Fourth Annual Conferen
e on Computer and

Communi
ations Se
urity, ACM, 1997.

[AR00℄ Mi
hel Abdalla and Leonid Reyzin. A new forward-se
ure digital signature

s
heme. In Advan
es in Cryptology|ASIACRYPT 2000, Springer-Verlag

2000. Full version available from the Cryptology ePrint Ar
hive, re
ord

2000/002, http://eprint.ia
r.org/.

[BM99℄ Mihir Bellare and Sara Miner. A forward-se
ure digital signature s
heme.

In Advan
es in Cryptology|CRYPTO '99, Springer-Verlag, 1999. Revised

version is available from http://www.
s.u
sd.edu/ mihir/.

[BP97℄ Niko Bari�
 and Birgit P�tzmann. Collision-free a

umulators and fail-

stop signature s
hemes without trees. In Advan
es in Cryptology|

EUROCRYPT 97, Springer-Verlag, 1997.

[BR93℄ Mihir Bellare and Phillip Rogaway. Random ora
les are pra
ti-

al: A paradigm for designing eÆ
ient proto
ols. In Pro
eedings

of the 1st ACM Conferen
e on Computer and Communi
ation Se-

urity, pages 62{73, November 1993. Revised version appears in

http://www-
se.u
sd.edu/users/mihir/papers/
rypto-papers.html.

20 Gene Itkis and Leonid Reyzin

[BS96℄ Eri
 Ba
h and Je�rey Shallit. Algorithmi
 Number Theory. MIT Press,

Cambridge, MA, 1996.

[FO97℄ Eii
hiro Fujisaki and Tatsuaki Okamoto. Statisti
al zero knowledge proto
ols

to prove modular polynomial relations. In Burton S. Kaliski Jr., editor,

Advan
es in Cryptology|CRYPTO '97, volume 1294 of Le
ture Notes in

Computer S
ien
e, pages 16{30. Springer-Verlag, 17{21 August 1997.

[FS86℄ Amos Fiat and Adi Shamir. How to prove yourself: Pra
ti
al solutions to iden-

ti�
ation and signature problems. In Andrew M. Odlyzko, editor, Advan
es

in Cryptology|CRYPTO '86, volume 263 of Le
ture Notes in Computer S
i-

en
e, pages 186{194. Springer-Verlag, 1987, 11{15 August 1986.

[GMR88℄ Sha� Goldwasser, Silvio Mi
ali, and Ronald L. Rivest. A digital signature

s
heme se
ure against adaptive
hosen-message atta
ks. SIAM Journal on

Computing, 17(2):281{308, April 1988.

[Gol88℄ Sha� Goldwasser, editor. Advan
es in Cryptology|CRYPTO '88, volume 403

of Le
ture Notes in Computer S
ien
e. Springer-Verlag, 1990, 21{25 August

1988.

[GQ88℄ Louis Claude Guillou and Jean-Ja
ques Quisquater. A \paradoxi
al"

indentity-based signature s
heme resulting from zero-knowledge. In Gold-

wasser [Gol88℄, pages 216{231.

[Kra00℄ Hugo Kraw
zyk. Simple forward-se
ure signatures from any signature

s
heme. In Seventh ACM Conferen
e on Computer and Communi
ation Se-

urity. ACM, November 1{4 2000.

[MI℄ Silvio Mi
ali and Gene Itkis. Private Communi
ation.

[Mi
94℄ Silvio Mi
ali. A se
ure and eÆ
ient digital signature algorithm. Te
hni
al Re-

port MIT/LCS/TM-501, Massa
husetts Institute of Te
hnology, Cambridge,

MA, Mar
h 1994.

[MR99℄ Silvio Mi
ali and Leonid Reyzin. Improving the exa
t se
urity of Fiat-Shamir

signature s
hemes. In R. Baumgart, editor, Se
ure Networking | CQRE

[Se
ure℄ '99, volume 1740 of Le
ture Notes in Computer S
ien
e, pages 167{

182. Springer-Verlag, 1999.

[OO88℄ Kazuo Ohta and Tatsuaki Okamoto. A modi�
ation of the Fiat-Shamir

s
heme. In Goldwasser [Gol88℄, pages 232{243.

[OS90℄ H. Ong and Claus P. S
hnorr. Fast signature generation with a Fiat

Shamir-like s
heme. In I. B. Damg�ard, editor, Advan
es in Cryptology|

EUROCRYPT 90, volume 473 of Le
ture Notes in Computer S
ien
e, pages

432{440. Springer-Verlag, 1991, 21{24 May 1990.

[PS96℄ David Point
heval and Ja
ques Stern. Se
urity proofs for signature s
hemes.

In Ueli Maurer, editor, Advan
es in Cryptology|EUROCRYPT 96, volume

1070 of Le
ture Notes in Computer S
ien
e, pages 387{398. Springer-Verlag,

12{16 May 1996.

[Sha83℄ Adi Shamir. On the generation of
ryptographi
ally strong pseudorandom

sequen
es. ACM Transa
tions on Computer Systems, 1(1):38{44, February

1983.

A Details of the Proof of Theorem 1

First, we assume that if F outputs (z; �; j; e) as a forgery, then the hashing ora
le

has been queried on (j; e; y;M), where y = z

e

v

�

mod n (any adversary
an be

modi�ed to do that; this may raise the number of hash queries to q

hash

+ 1.)

Forward-Se
ure Signatures with Optimal Signing and Verifying 21

We will also assume that F performs the ne
essary bookkeeping and does not

ask the same hash query twi
e.

6

Note that F may ask the same signature query

twi
e, be
ause the answers will most likely be di�erent.

Re
all that A's job, given � and n, is to �nd (with F 's help) � and r > 1

su
h that �

r

� � (mod n). First, A has to guess the time period for whi
h F

will output the forgery: it randomly sele
ts j, 1 < j � T (sometimes A may also

su

eed if the forgery is for a time period i < j, but this not ne
essary for our

argument). A then generates e

1

; : : : ; e

T

just like the real signer, sets t

j+1

= �

and
omputes v as v = 1=t

f

j+1

j+1

mod n, where, as above, f

j+1

= e

j+1

� : : : � e

T

.

A then
omes up with a random tape for F , remembers it, and runs F on

that tape and the input publi
 key (n; v; T). If F breaks in at time period b,

then A
an provide F with the se
ret key as long as b > j: knowing t

j+1

will

allow A to
ompute s

b

and t

b+1

. If b � j, then A aborts (be
ause, in parti
ular,

F 's forgery
annot be for time period j in that
ase).

To answer F 's signature and hash queries, Amaintains two tables: a signature

query table and a hash query table.

Signature queries
an be answered almost at random, be
ause A
ontrols the

hash ora
le. In order to answer a signature query number s on a message M

s

during time period j

s

, A sele
ts a random z

s

2 Z

�

n

and �

s

2 f0; 1g

l

,
omputes

y

s

= z

s

e

j

s

v

�

s

, and
he
ks its signature query table to see if a signature query on

M

s

during time period j

s

has already been asked and if y

s

used in answering it.

If so, A
hanges z

s

and �

s

to the z and � that were used in answering that query.

Then A adds the entry (s; j

s

; e

j

s

; y

s

; �

s

; z

s

;M

s

) to its signature query table and

outputs (z

s

; �

s

; j

s

; e

j

s

).

Hash queries are also answered at random. To answer the t-th hash query

(j

0

t

; e

0

t

; y

0

t

;M

0

t

), A �rst
he
ks its signature query table to see if there is an entry

(s; j

s

; e

j

s

; y

s

; �

s

; z

s

;M

s

) su
h that (j

s

; e

j

s

; y

s

;M

s

) = (j

0

t

; e

0

t

; y

0

t

;M

0

t

). If so, it just

outputs �

s

. Otherwise, it pi
ks a random �

0

t

2 f0; 1g

l

, re
ords in its hash query

table the tuple (t; y

0

t

;M

0

t

; j

0

t

; e

0

t

; �

0

t

) and outputs �

0

t

.

Assume now the break-in query o

urs during time period b > j, and the valid

forgery (z; �; i; e) is output for a time period i � j (if not, or if no valid forgery is

output, A fails). Let y = z

e

v

�

. Be
ause we modi�ed F to �rst ask a hash query

on (i; e; y;M), we have that, for some h, (h; y;M; i; e; �) = (h; y

0

h

;M

0

h

; j

0

h

; e

0

h

; �

0

h

)

in the hash query table (it
an't
ome from the signature query table, be
ause

F is not allowed to forge a signature on a message for whi
h it asked a signature

query). A �nds su
h an h in its table and remembers it.

A now resets F with the same random tape as the �rst time, and runs it

again, giving the exa
t same answers to all F 's queries before the h-th hash

query (it
an do so be
ause it has all the answers re
orded in the tables). Note

that this means that F will be asking the same h-th hash query (i; e; y;M) as

the �rst time. As soon as F asks the h-th hash query, however, A stops giving

the answers from the tables and
omes up with new answers at random, in the

6

This may slightly in
rease the running time of F , but we will ignore
osts of simple

table look-up for the purposes of this analysis.

22 Gene Itkis and Leonid Reyzin

same manner as the �rst time. Let � be the new answer given to the h-th hash

query, and assume � 6= �.

Assume again the break-in query o

urs during time period b > j, and the

valid forgery (z

0

; �

0

; i

0

; e

0

) is output for a time period i

0

� j. A again
omputes

y

0

= z

0e

0

v

sigma

0

; by the same reasoning as before, F had to ask a hash query on

(i

0

; e

0

; y

0

;M

0

). Let h

0

be the number of that query. A �nds h

0

and fails if h

0

6= h.

If, however, h

0

= h, then (i; e; y;M) = (i

0

; e

0

; y

0

;M

0

), simply be
ause the h-th

hash query had to be the same in both runs of F . Also then �

0

= � . Therefore,

z

e

v

�

� z

0

e

v

�

, so (z=z

0

)

e

� v

���

� �

f

j+1

(���)

(mod N).

Note that be
ause e is guaranteed to be relatively prime with f

j+1

(as long

as i � j), and � � � has at least one fewer bit than e, g
d(f

j+1

(� � �); e) =

g
d(� � �; e) < e (as long as � 6= �). Thus, r = e= g
d(f

j+1

(� � �); e) > 1 and,

by Lemma 1, A will be able to eÆ
iently
ompute the r-th root of �.

Running Time Analysis. A runs F twi
e. Preparing the publi
 key and

answering hashing and signing queries takes A no longer than it would take the

real ora
les. To �nd the hashing query
orresponding to the forgery and to apply

Lemma 1 takes O(lT (l

2

T

2

+ k

2

)) bit operations.

Probability Analysis. We will need the following lemma in our analysis.

Lemma 2. Let a

1

; a

2

; : : : ; a

�

be real numbers. Let a =

P

�

�=1

a

�

, and let s =

P

�

�=1

a

2

�

. Then s �

a

2

�

.

Proof. Let b = a=� and b

�

= b� a

�

. Then

P

�

�=1

b

�

= �b�

P

�

�=1

a

�

= 0. Hen
e

P

�

�=1

a

�

2

=

P

�

�=1

(b� b

�

)

2

= �b

2

� 2b

P

�

�=1

b

�

+

P

�

�=1

b

2

�

� �b

2

=

a

2

�

: ut

First,
onsider the probability that A's answers to F 's ora
le queries are

distributed as those of the true ora
les that F expe
ts. This is the
ase unless,

for some signature query, the hash value that A needs to de�ne has already

been de�ned through a previous answer to a hash query (
all this \A's failure to

pretend"). Be
ause z is pi
ked at random from Z

n

�, z

e

v

�

is a random element

of Z

�

n

. The probability of its
ollision with a value from a hash query in the same

exe
ution of F is at most (q

hash

+1)=jZ

�

n

j thus, the probability (taken over only

the random
hoi
es of A) of A's failure to pretend is at most q

sig

(q

hash

+1)=jZ

�

n

j �

q

sig

(q

hash

+1)2

2�k

(be
ause jZ

�

n

j = 4q

1

q

2

> 2

k�2

). This is exa
tly the amount by

whi
h F 's probability of su

ess is redu
ed be
ause of intera
tion with A rather

than the real signer. Let Æ = "� q

sig

(q

hash

+ 1)2

2�k

.

Let "

b

be the probability that F produ
es a su

essful forgery and that its

break-in query o

urs in time period b. Clearly, Æ =

P

T+1

b=2

"

b

(if b = 1, then F

annot forge for any time period). Assume now that A pi
ked j = b�1 for some

�xed b. The probability of that is 1=T .

We will now
al
ulate the probability of the event that F outputs a valid

forgery based on the same hash query both times and that the hash query was

answered di�erently the se
ond time and that the break-in query was b both

times. Let p

h;b

be the probability that, in one run, F produ
es a valid forgery

Forward-Se
ure Signatures with Optimal Signing and Verifying 23

based on hash query number h after break-in query in time period b. Clearly,

"

b

=

q

hash

+1

X

h=1

p

h;b

Let p

h;b;S

(for a suÆ
iently long binary string S of length m) be the probability

that, in one run, F produ
es a valid forgery based on hash query number h after

break-in query in time period b, given that the string S was used to determine

the random tape of F and the responses to all the ora
le queries of F until (and

not in
luding) the h-th hash query. We have that

2

m

p

h;b

=

X

S2f0;1g

m

p

h;b;S

:

Given su
h a �xed string S, the probability that F produ
es a valid forgery based

on the hash query number h after break-in query in time period b in both runs is

p

2

h;b;S

(be
ause the �rst forgery is now independent of the se
ond forgery). The

additional requirement that the answer to the hash query in the se
ond run be

di�erent redu
es this probability to p

h;b;S

(p

h;b;S

� 2

�l

). Thus, the probability

q

h;b

that F produ
es a valid forgery based on the hash query number h in both

runs and that the answer to the hash query is di�erent in the se
ond run and

that the break-in query was b in both runs is

q

h;b

=

X

S2f0;1g

m

2

�m

p

h;b;S

(p

h;b;S

� 2

�l

)

= 2

�m

0

�

X

S2f0;1g

m

p

2

h;b;S

� 2

�l

X

S2f0;1g

m

p

h;b;S

1

A

�

2

�m

(p

h;b

2

m

)

2

2

m

� 2

�l

p

h;b

= p

2

h;b

� 2

�l

p

h;b

(by Lemma 2).

The probability that F outputs a valid forgery based on the same hash query

both times and that the hash query was answered di�erently in the se
ond run

and that the break-in query o

urred in time period i is now

q

hash

+1

X

h=1

q

h;b

�

q

hash

+1

X

h=1

p

2

h;b

�

q

hash

+1

X

h=1

2

�l

p

h;b

�

"

2

b

q

hash

+ 1

� 2

�l

"

b

(by Lemma 2).

Note that if this happens, then the forgery o

urs in time period i < b = j+1

(be
ause the forgery has to o

ur before the break-in query), so A will be able

to take a root of �.

Finally, we again use Lemma 2 to remove the assumption that A pi
ked

j = b� 1 as the time period to get the probability of A's su

ess:

"

0

�

1

T

T+1

X

i=2

�

"

2

b

q

hash

+ 1

� 2

�l

"

b

�

�

Æ

2

T

2

(q

hash

+ 1)

�

Æ

2

l

T

: ut

