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Abstra
t. We propose the �rst forward-se
ure signature s
heme for

whi
h both signing and verifying are as eÆ
ient as for one of the most

eÆ
ient ordinary signature s
hemes (Guillou-Quisquater [GQ88℄), ea
h

requiring just two modular exponentiations with a short exponent. All

previously proposed forward-se
ure signature s
hemes took signi�
antly

longer to sign and verify than ordinary signature s
hemes.

Our s
heme requires only fra
tional in
reases to the sizes of keys and

signatures, and no additional publi
 storage. Like the underlying [GQ88℄

s
heme, our s
heme is provably se
ure in the random ora
le model.

1 Introdu
tion

The Purpose of Forward Se
urity. Ordinary digital signatures have a

fundamental limitation: if the se
ret key of a signer is 
ompromised, all the

signatures (past and future) of that signer be
ome worthless. This limitation

undermines, in parti
ular, the non-repudiation property that digital signatures

are often intended to provide. Indeed, one of the easiest ways for Ali
e to re-

pudiate her signatures is to post her se
ret key anonymously somewhere on the

Internet and 
laim to be a vi
tim of a 
omputer break-in. In prin
iple, various

revo
ation te
hniques 
an be used to prevent users from a

epting signatures

with 
ompromised keys. However, even with these te
hniques in pla
e, the users

who had a

epted signatures before the keys were 
ompromised are now left at

the mer
y of the signer, who 
ould (and, if honest, would) re-issue the signatures

with new keys.

Forward-se
ure signature s
hemes, �rst proposed by Anderson in [And97℄

and formalized by Bellare and Miner in [BM99℄, are intended to address this

limitation. Namely, the goal of a forward-se
ure signature s
heme is to preserve

the validity of past signatures even if the 
urrent se
ret key has been 
ompro-

mised. This is a

omplished by dividing the total time that given publi
 key is
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valid into T time periods, and using a di�erent se
ret key in ea
h time period

(while the publi
 key remains �xed). Ea
h subsequent se
ret key is 
omputed

from the 
urrent se
ret key via a key update algorithm. The time period during

whi
h a message is signed be
omes part of the signature. Forward se
urity prop-

erty means that even if the 
urrent se
ret key is 
ompromised, a forger 
annot

forge signatures for past time periods.

Prior S
hemes. Prior forward-se
ure signature s
hemes 
an be divided into

two 
ategories: those that use arbitrary signature s
hemes in a bla
k-box manner,

and those that modify spe
i�
 signature s
heme.

In the �rst 
ategory, the s
hemes use some method in whi
h a master publi


key is used to 
ertify (perhaps via a 
hain of 
erti�
ates) the 
urrent publi
 key

for a parti
ular time period. Usually, these s
hemes require in
reases in storage

spa
e by noti
eable fa
tors in order to maintain the 
urrent (publi
) 
erti�
ates

and the (se
ret) keys for issuing future 
erti�
ates. They also require longer

veri�
ation times than ordinary signatures do, be
ause the veri�er needs to verify

the entire 
erti�
ate 
hain in addition to verifying the a
tual signature on the

message. There is, in fa
t, a trade-o� between storage spa
e and veri�
ation

time. The two best su
h s
hemes are the tree-based s
heme of Bellare and Miner

[BM99℄

1

(requiring storage of about log

2

T se
ret keys and non-se
ret 
erti�
ates,

and veri�
ation of about log

2

T ordinary signatures) and the s
heme of Kraw
zyk

[Kra00℄ (requiring storage of T non-se
ret 
erti�
ates, and veri�
ation of only 2

ordinary signatures).

In the se
ond 
ategory, there have been two s
hemes proposed so far (both

in the random ora
le model): the s
heme of Bellare and Miner [BM99℄ based on

the Fiat-Shamir s
heme [FS86℄, and the s
heme of Abdalla and Reyzin [AR00℄

based the 2

t

-th root s
heme [OO88,OS90,Mi
94℄. While needing less spa
e than

the s
hemes in the �rst 
ategory, both [BM99℄ and [AR00℄ require signing and

veri�
ation times that are linear in T .

Our Results. We propose a s
heme in the se
ond 
ategory, based on one of the

most eÆ
ient ordinary signature s
hemes, due to Guillou-Quisquater [GQ88℄. It

uses just two modular exponentiations with short exponents for both signing

and verifying.

Ours is the �rst forward-se
ure s
heme where both signing and verifying are

as eÆ
ient as the underlying ordinary signature s
heme. Moreover, in our s
heme

the spa
e requirements for keys and signatures are nearly the same as those in

the underlying signature s
heme (for realisti
 parameter values, less than 50%

more).

The pri
e of su
h eÆ
ient signing and verifying and storage is in the running

times of our key generation and update routines: both are linear in T (however,

so is the key generation and non-se
ret storage in the s
heme of [Kra00℄; as well

as the key generation, signing and verifying in the Fiat-Shamir-based s
heme

of [BM99℄ and the s
heme of [AR00℄). However, key generation and update are

1

Some improvements to tree-based s
heme of [BM99℄ (not a�e
ting this dis
ussion)

have been proposed in [AR00℄ and [MI℄.
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(presumably) performed mu
h less frequently than signing and verifying, and


an be performed o�-line as long in advan
e as ne
essary. Moreover, we show

that, if we are willing to tolerate se
ret storage of 1 + log

2

T values, we 
an

redu
e the running time of the key update algorithm to be logarithmi
 in T

without a�e
ting the other 
omponents (this, rather unexpe
tedly, involves an

interesting appli
ation of pebbling). For realisti
 parameter values, the total

storage requirements, even with these additional se
rets, are still less than in all

prior s
hemes; the only ex
eption is the [AR00℄ s
heme, whi
h has very ineÆ
ient

signing and verifying.

Our s
heme is provably se
ure in the random ora
le model based on a variant

of the strong RSA assumption (pre
isely de�ned in Se
tion 2.2).

2 Ba
kground

2.1 De�nitions

This se
tion 
losely follows the �rst formal de�nition of forward-se
ure signatures

proposed by Bellare and Miner [BM99℄. Their de�nition, in turn, is based on

the Goldwasser, Mi
ali and Rivest's [GMR88℄ de�nition of (ordinary) digital

signatures se
ure against adaptive 
hosen message atta
ks.

Key Evolution. The approa
h taken by forward-se
ure s
hemes is to 
hange

the se
ret key periodi
ally (and require the owner to properly destroy the old

se
ret key

2

). Thus we 
onsider time to be divided into time periods; at the end

of ea
h time period, a new se
ret key is produ
ed and the old one is destroyed.

The number of the time period when a signature was generated is part of the

signature and is input to the veri�
ation algorithm; signatures with in
orre
t

time periods should not verify.

Of 
ourse, while modifying the se
ret key, one would like to keep the publi


key �xed. This 
an, for example, be a
hieved by use of a \master" publi
 key,

whi
h is somehow used to 
ertify a temporary publi
 key for the 
urrent time

period (note however, than one needs to be 
areful not to keep around the


orresponding \master" se
ret key|its presen
e would defeat the purpose of

forward se
urity) . The �rst simple in
arnation of this approa
h was proposed

by [And97℄; a very elegant tree-based solution was proposed by [BM99℄; another

approa
h, based on generating all of the 
erti�
ates in advan
e, was put forward

by [Kra00℄. However, in general, one 
an 
on
eive of s
hemes where the publi


2

Obviously, if the key owner does not properly destroy her old keys, an atta
ker


an obtain them and thus forge the \old" signatures. Moreover, if the key owner

does not dete
t that the 
urrent key was leaked, the atta
ker may hold on to the


ompromised key for a few time periods, and forge \old" signatures then. Indeed,

proper deletion of the old keys and proper intrusion dete
tion are non-trivial tasks.

However, it is reasonable to insist that the key owner perform su
h deletion and

intrusion dete
tion|
ertainly more reasonable than insisting that she guarantee the

se
re
y of her a
tive keys through resistan
e to any intrusion atta
k.
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key stays �xed but no su
h 
erti�
ates of per-period publi
 keys are present (and,

indeed, su
h s
hemes are proposed in [BM99,AR00℄, as well as in this paper).

The notion of a key-evolving signature s
heme 
aptures, in full generality,

the idea of a s
heme with a �xed publi
 key and a varying se
ret key. It is, es-

sentially, a regular signature s
heme with the additions of time periods and the

key update algorithm. Note that this notion is purely fun
tional: se
urity is ad-

dressed separately, in the de�nition of forward se
urity (whi
h is the appropriate

se
urity notion for key-evolving signature s
hemes).

Thus, a key-evolving digital signature s
heme is a quadruple of algorithms,

FSIG = (FSIG:key;FSIG:sign;FSIG:ver;FSIG:update), where:

{ FSIG:key, the key generation algorithm, is a probabilisti
 algorithm whi
h

takes as input a se
urity parameter k 2 N (given in unary as 1

k

) and the

total number of periods T and returns a pair (SK

1

;PK ), the initial se
ret

key and the publi
 key;

{ FSIG:sign, the (possibly probabilisti
) signing algorithm, takes as input the

se
ret key SK

j

= hS

j

; j; T i for the time period j � T and the message M to

be signed and returns the signature hj; signi of M for time period j;

{ FSIG:ver, the (deterministi
) veri�
ation algorithm, takes as input the publi


key PK , a message M , and a 
andidate signature hj; signi, and returns 1

if hj; signi is a valid signature of M or 0, otherwise. It is required that

FSIG:ver(PK ;M;FSIG:sign(SK

j

;M)) = 1 for every message M and time

period j.

{ FSIG:update, the (possibly probabilisti
) se
ret key update algorithm, takes

as input the se
ret key SK

j

for the 
urrent period j < T and returns the

new se
ret key SK

j+1

for the next period j + 1.

We adopt the 
onvention that SK

T+1

is the empty string and FSIG:update(SK

T

)

returns SK

T+1

.

When we work in the random ora
le model, all the above-mentioned algo-

rithms would have an additional se
urity parameter, 1

l

, and ora
le a

ess to a

publi
 hash fun
tion H : f0; 1g

�

! f0; 1g

l

, whi
h is assumed to be random in

the se
urity analysis.

Forward Se
urity. Forward se
urity 
aptures the notion that it should be


omputationally infeasible for any adversary to forge a signature for any past

time period even in the event of exposure of the 
urrent se
ret key. Of 
ourse,

sin
e the update algorithm is publi
, nothing 
an be done with respe
t to future

se
ret keys, ex
ept for revoking the publi
 key (thus invalidating all signatures

for the time period of the break-in and thereafter). To de�ne forward se
urity

formally, the notion of a se
ure digital signature of [GMR88℄ is extended in

[BM99℄ to take into a

ount the ability of the adversary to obtain a key by

means of a break-in.

Intuitively, in this new model, the forger �rst 
ondu
ts an adaptive 
hosen

message atta
k (
ma), requesting signatures on messages of its 
hoi
e for as

many time periods as he desires. Whenever he 
hooses, he \breaks in": requests

the se
ret key SK

b

for the 
urrent time period b and then outputs an (alleged)
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signature on a message M of his 
hoi
e for a time period j < b. The forger is


onsidered to be su

essful if the signature is valid and the pair (M; j) was not

queried during 
ma.

Formally, let the forger F = hF:
ma; F:forgei. For a key pair (PK ;SK

0

)

R

 

FSIG:key(k; : : : ; T ), F:
ma, given PK and T , outputs (CM; b), where b is the

break-in time period and CM is a set of adaptively 
hosen message-period

pairs (the set of signatures sign(CM) of the 
urrent set CM is available to

F at all times, in
luding during the 
onstru
tion of CM)

3

. Finally, F:forge out-

puts hM; j; sigi  F:forge(CM; sign(CM); SK

b

). We say that F is su

essful

if hM; ji 62 CM; j < b; and FSIG:ver

PK

(M; hj; sigi) = 1. (Note: formally, the


omponents of F 
an 
ommuni
ate all the ne
essary information, in
luding T

and b, via CM .)

De�ne Su



fwsig

(FSIG[k; T ℄; F ) to be the probability (over 
oin tosses of F

and FSIG) that F is su

essful. Let the fun
tion InSe


fwsig

(FSIG[k; T ℄; t; q

sig

) (the

inse
urity fun
tion) be the maximum, over all algorithms F that are restri
ted

to running time t and q

sig

signature queries, of Su



fwsig

(FSIG[k; T ℄; F ).

The inse
urity fun
tion above follows the \
on
rete se
urity" paradigm and

gives us a measure of how se
ure or inse
ure the s
heme really is. Therefore, we

want its value to be as small as possible. Our goal in a se
urity proof will be to

�nd an upper bound for it.

The above de�nition 
an be translated to the random ora
le model in a stan-

dard way [BR93℄: by introdu
ing an additional se
urity parameter 1

l

, allowing

all algorithms the a

ess to the random ora
le H : f0; 1g

�

! f0; 1g

l

, and 
onsid-

ering q

hash

, the number of queries to the random ora
le, as one more parameter

for the forger.

2.2 Assumption

We use a variant of the strong RSA assumption (to the best of our knowledge,

�rst introdu
ed independently in [BP97℄ and [FO97℄), whi
h postulates that it is

to 
ompute any root of a �xed value modulo a 
omposite integer. More pre
isely,

the strong RSA assumption states that it is intra
table, given n that is a produ
t

of two primes and a value � in Z

�

n

, to �nd � 2 Z

�

n

and r > 1 su
h that �

r

= �.

However, we modify the assumption in two ways. First, we restri
t ourselves

to the moduli that are produ
ts of so-
alled \safe" primes (a safe prime is one

of the form 2q + 1, where q itself is a prime). Note that, assuming safe primes

3

Note that the [BM99℄ de�nition, whi
h 
aptures what F 
an do in pra
ti
e, allows

the messages-period pairs to be added to CM only in the order of in
reasing time

periods and without knowledge of any se
ret keys. However, allowing the forger to


onstru
t CM in arbitrary order, and even to obtain SK

b

in the middle of the CM


onstru
tion (so that some messages be 
onstru
ted by the forger with the knowledge

of SK

b

) would not a�e
t our (and their) results. Similarly, the forger 
an be allowed

to obtain more than one se
ret key | we only 
are about the earliest period b for

whi
h the se
ret key is given to the forger. So, the forger may adaptively sele
t

some messages whi
h are signed for him, then request some period's se
ret key; then

adaptively sele
t more messages and again request a key, et
.
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are frequent, this restri
tion does not strengthen the assumption. Se
ond, we

upperbound the permissible values or r by 2

l+1

, where l is a se
urity parameter

for our s
heme (in an implementation, l will be signi�
antly shorter than the

length k of the modulus n).

More formally, let A be an algorithm. Consider the following experiment.

Experiment Break-Strong-RSA(k; l; A)

Randomly 
hoose two primes q

1

and q

2

of length dk=2e � 1 ea
h

su
h that 2q

1

+ 1 and 2q

2

+ 1 are both prime.

p

1

 2q

1

+ 1; p

2

 2q

2

+ 1; n p

1

p

2

Randomly 
hoose � 2 Z

�

n

.

(�; r) A(n; �)

If 1 < r � 2

l+1

and �

r

� � (mod n) then return 1 else return 0

Let Su

(A; k; l) = Pr[Break�Strong�RSA(k; l; A) = 1℄. Let InSe


SRSA

(k; l; t)

be the maximum of Su

(A; k; l) over all the adversaries A who run in time

at most t. Our assumption is that InSe


SRSA

(k; l; t), for t polynomial in k, is

negligible in k. The smaller the value of l, of 
ourse, the weaker the assumption.

In fa
t, for a suÆ
iently small l, our assumption follows from a variant of the

�xed-exponent RSA assumption. Namely, assume that there exists a 
onstant �

su
h that, for every r, the probability of 
omputing, in time t, an r-th root of

a random integer modulo a k-bit produ
t of two safe primes, is at most 2

�k

�

.

Then, InSe


SRSA

(k; l; t) < 2

l+1�k

�

, whi
h is negligible if l = o(k

�

).

2.3 Mathemati
al Tools

The following two simple statements will be helpful later. They were �rst pointed

out by Shamir [Sha83℄ in the 
ontext of generation of pseudorandom sequen
es

based on the RSA fun
tion.

Proposition 1. Let G be a group. Suppose e

1

; e

2

2 Z are su
h that g
d(e

1

; e

2

) =

1. Given a; b 2 G su
h that and a

e

1

= b

e

2

, one 
an 
ompute 
 su
h that 


e

2

= a

in O(log(e

1

+ e

2

)) group and arithmeti
 operations.

Proof. Using Eu
lid's extended g
d algorithm, within O(log(e

1

+e

2

)) arithmeti


operations 
ompute f

1

; f

2

, su
h that e

1

f

1

+ e

2

f

2

= 1. Compute 
 = a

f

2

b

f

1

, with

O(log(f

1

+ f

2

)) = O(log(e

1

+ e

2

)) group operations. Then 


e

2

= a

e

2

f

2

b

e

2

f

1

=

a

e

2

f

2

a

e

1

f

1

= a. ut

Lemma 1. Let G be a �nite group. Suppose e

1

2 Z and e

2

2 Z are su
h that

g
d(e

1

; e

2

) = g and g
d(g; jGj) = 1. Given a; b 2 G; su
h that a

e

1

= b

e

2

, one 
an


ompute 
 su
h that 


e

2

=g

= a in O(log

e

1

+e

2

g

) group and arithmeti
 operations.

Proof. Sin
e g
d(g; jGj) = 1, (z

g

= 1) ) (z = 1) for any z 2 G. Let e

0

1

=

e

1

=g; e

0

2

= e

2

=g. Then (a

e

0

1

=b

e

0

2

)

g

= 1, so a

e

0

1

= b

e

0

2

, so we 
an apply and

Proposition 1 to get 
 su
h that 


e

0

2

= a. ut
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2.4 The Guillou-Quisquater Signature S
heme

In [GQ88℄, Guillou and Quisquater propose the following three-round identi�-


ation s
heme, summarized in Figure 1. Let k and l be two se
urity parame-

ters. The prover's se
ret key 
onsists of a k-bit modulus n (a produ
t of two

random primes p

1

; p

2

), an (l + 1)-bit exponent e that is relatively prime to

�(n) = (p

1

� 1)(p

2

� 1), and a random s 2 Z

�

n

. The publi
 key 
onsists of n; e

and v where v � 1=s

e

(mod n).

In the �rst round, the prover generates a random r 2 Z

�

n

, 
omputes the


ommitment y = r

e

(mod n) and sends y to the the veri�er. In the se
ond

round, the veri�er sends a random l-bit 
hallenge � to the prover. In the third

round, the prover 
omputes and sends to the veri�er z = rs

�

. To 
he
k, the

veri�er 
omputes y

0

= z

e

v

�

and 
he
ks if y = y

0

(and y 6� 0 (mod n)).

The s
heme's se
urity is based on the assumption that 
omputing roots mod-

ulo 
omposite n is infeasible without knowledge of its fa
tors (the pre
ise assump-

tion varies depending on how e is 
hosen), and 
an be proven using Lemma 1.

Informally, if the prover 
an answer two di�erent 
hallenges, � and � , for the same

y, then it 
an provide z

�

and z

�

su
h that z

e

�

v

�

= z

e

�

v

�

. Hen
e, v

���

= (z

�

=z

�

)

e

.

Note that e is l + 1-bits long, hen
e e > j� � � j, hen
e g = g
d(� � �; e) < e, so

r = e=g > 1. By Lemma 1, knowing v; �� �; z

�

=z

�

and e allows one to eÆ
iently


ompute the r-th root of v (to apply the lemma, we need to have g relatively

prime with the order �(n) of the multipli
ative group Z

�

n

, whi
h is the 
ase by


onstru
tion, be
ause e is pi
ked to be relatively prime with �(n)). Thus, the

prover must know at least some root of v (in fa
t, if e is pi
ked to be prime, then

the prover must know pre
isely the e-th root of v, be
ause g = 1 and r = e).

Note that it is 
ru
ial to the proof that e > 2

l

and e is relatively prime with

�(n).

The standard transformation of [FS86℄ 
an be applied to this identi�
ation

s
heme to 
ome up with the GQ signature s
heme, presented in Figure 1. Essen-

tially, the intera
tive veri�er's l-bit 
hallenge � is now 
omputed using a random

ora
le (hash fun
tion) H : f0; 1g

�

! f0; 1g

L

applied to the message M and the


ommitment y.

3 Our Forward-Se
ure S
heme

3.1 Main ideas for forward se
urity

The main idea for our forward-se
ure s
heme is to 
ombine the GQ s
heme with

Shamir's observation (Lemma 1). Namely, let e

1

; e

2

; : : : ; e

T

be distin
t integers,

all greater than 2

l

, all pairwise relatively prime and relatively prime with �(n).

Let s

1

; s

2

; : : : ; s

T

be su
h that s

e

i

i

� 1=v (mod n) for 1 � i � T . In time period

i, the signer will simply use the GQ s
heme with the se
ret key (n; s

i

; e

i

) and

the veri�er will use the GQ s
heme with the publi
 key (n; v; e

i

). Intuitively, this

will be forward-se
ure be
ause of the relative primality of the e

i

's: if the forger

breaks-in during time period b and learns the e

b

-th, e

b+1

-th, : : : ; e

T

-th roots of
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algorithm GQ:key(k; l)

Generate random dk=2e-bit

primes p

1

; p

2

n p

1

p

2

s

R

 Z

�

n

e

R

 [2

l

; 2

l+1

)

s.t. g
d(e; �(n)) = 1

v  1=s

e

mod n

SK  (n; s; e)

PK  (n; v; e)

return (SK ;PK )

algorithm GQ:sign(M; (n; s; e))

r

R

 Z

�

n

y  r

e

mod n

�  H(y;M)

z  rs

�

mod n

return (z; �)

algorithm GQ:ver(M; (n; v; e); (z; �))

if z � 0 (mod n) then return 0

y

0

 z

e

v

�

mod n

if � = H(y

0

;M) then return 1

else return 0

Fig. 1. The GQ Signature S
heme

v, this will not help it 
ompute e

j

-th root of v for j < b (nor, more generally,

the r-th root of v, where rje

j

).

This idea is quite simple. However, we still need to address the following two

issues: (i) how the signer 
omputes the s

i

's, and (ii) how both the signer and the

veri�er obtain the e

i

's.

Computing s

i

's. Noti
e that if the signer were required to store all the s

i

's, this

s
heme would require se
ret storage that is linear in T . However, this problem


an be easily resolved. Let f

i

= e

i

� e

i+1

� : : : � e

T

. Let t

i

be su
h that t

f

i

i

� 1=v

(mod n). During the j-th time period, the signer stores s

j

and t

j+1

. At update

time, the signer 
omputes s

j+1

= t

f

j+2

j+1

mod n and t

j+2

= t

e

j+1

j+1

mod n. This

allows se
ret storage that is independent of T : only two values modulo n are

stored at any time (the f

i

and e

i

values are not stored|see below). It does,

however, require 
omputation linear in T at ea
h update, be
ause of the high


ost of 
omputing s

j+1

from t

j+1

.

We 
an redu
e the 
omputation at ea
h update to be only logarithmi
 in T

by properly utilizing pre
omputed powers of t

j+1

. This will require us, however,

to store 1 + log

2

T se
rets instead of just two. This optimization 
on
erns only

the eÆ
ien
y of the update algorithm and a�e
ts neither the other 
omponents

of the s
heme nor the proof of se
urity, and is therefore presented separately in

Se
tion 4.2.

Obtaining e

i

's. In order for the s
heme to be se
ure, the e

i

's need to be

relatively prime with ea
h other

4

and with �(n), and greater than 2

l

. The signer


an therefore generate the e

i

's simply as distin
t (l + 1)-bit primes. Of 
ourse,

4

In fa
t, this requirement 
an be relaxed. We 
an allow the e

i

's not to be pairwise

relatively prime, as long as we rede�ne f

i

as f

i

= l
m(e

i

; e

i+1

; : : : ; e

T

), and require

that e

i

be relatively prime with �(n) and e

i

= g
d(e

i

; f

i+1

) > 2

l

. However, we see no

advantages in allowing this more general 
ase; the disadvantage is that the e

i

's will
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to store all the e

i

's would require linear in T (albeit publi
) storage. However,

the signer need only store e

j

for the 
urrent time period j, and generate anew

the other e

i

's for i > j during key update. This works as long as the signer uses

a deterministi
 algorithm for generating primes: either pseudorandom sear
h or

sequential sear
h from �xed starting points. The fa
t that e

i

's are not stored but

rather re
omputed ea
h time slows down the update algorithm only (and, as we

show in Se
tion 3.3, not by mu
h). Note that the way we 
urrently des
ribed

the update algorithm, for the update at time period j the signer will need to


ompute e

j+1

; : : : ; e

T

. With the optimization of Se
tion 4.2, however, only at

most log

2

T of the e

i

's will need to be 
omputed at ea
h update.

We have not yet addressed the issue of how the veri�er gets the e

i

's. Of


ourse, it 
ould simply generate them the same way that the signer does during

ea
h key update. However, this will slow down veri�
ation, whi
h is undesirable.

The solution is perhaps surprising: the veri�er need not know the \true" e

i

's

at all! The value of e

j


an be simply in
luded by the signer in every signature

for time period j. Of 
ourse, a forger is under no obligation to in
lude the true

e

j

. Therefore, to avoid ambiguity, we will denote by e the value in
luded in a

signature. It may or may not a
tually equal e

j

.

For the se
urity of the s
heme, we require that e satisfy the following require-

ments:

1. e should be in
luded as an argument to the hash fun
tion H , so that the

forger 
annot de
ide on e after seeing the 
hallenge �;

2. e should be greater than 2

l

, for the same reasons as in the GQ s
heme;

3. e should be relatively prime with �(n), for the same reasons as in the GQ

s
heme; and

4. e should be relatively prime with the e

b

; : : : ; e

T

(where b is the break-in time

period), so that the knowledge of the root of v of degree e

b

� e

b+1

� : : : � e

T

does not help the forger 
ompute any root of v of degree rje.

The �rst two 
onditions 
an be easily enfor
ed by the veri�er. The third 
ondition


an be enfor
ed by having n be a produ
t of two \safe" primes (primes p

1

; p

2

that

are of the form p

i

= 2q

i

+ 1, where q is prime). Then the veri�er simply needs

to 
he
k that e is odd (then it must be relatively prime with �(n)|otherwise,

it would be divisible by q

1

, q

2

or q

1

q

2

, whi
h would imply that the forger 
ould

fa
tor n).

It is the fourth 
ondition that presents diÆ
ulties. How 
an the veri�er 
he
k

the that e is relatively prime with e

b

; : : : ; e

T

without knowing b and the a
tual

values of e

b

; : : : ; e

T

? We a

omplish this by splitting the entire interval between

2

l

and 2

l+1

into T 
onse
utive bu
kets of size 2

l

=T ea
h, and having ea
h e

i

be a prime from the i-th bu
ket. Then the veri�er knows that the a
tual values

e

j+1

; : : : ; e

T

are all at least 2

l

(1 + j=T ) and prime. Thus, as long as e in the

signature for time period j is less than 2

l

(1+j=T ), it is guaranteed to be relatively

prime with e

j+1

; : : : ; e

T

, and hen
e with e

b

; : : : ; e

T

(be
ause b > j).

have to be longer to satisfy the last requirement, and thus the s
heme will be less

eÆ
ient.
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Thus, to enfor
e the above four 
onditions, the veri�er needs to 
he
k is that

e is odd, is between 2

l

and 2

l

(1+ j=T ) and is in
luded in the hash 
omputation.

3.2 The s
heme

Our s
heme (denoted IR) based on the above ideas is presented in Figure 2. As

in the GQ s
heme, let H : f0; 1g

�

! f0; 1g

l

be a hash fun
tion.

3.3 EÆ
ien
y

Signing and Verifying. The distinghuishing feature of our s
heme is the

eÆ
ien
y of the signing and veri�
ation algorithms. Both are the same as the

already eÆ
ient ordinary GQ s
heme (verifying has the additional, negligible


omponent of testing whether e is in the right range and odd). Namely, they

ea
h take two modular exponentiations, one modular multipli
ation and an ap-

pli
ation of H , for a total time of O(k

2

l) plus the time required to evaluate H .

(Note that, just like the GQ s
heme, one of the two modular exponentiations for

signing 
an be done o�-line, before the message is known; also, one of the two

modular exponentiations for verifying is of a �xed base v, and 
an bene�t from

pre
omputation.)

Key Generation. We need to make strong assumptions on the distributions

of primes in order to estimate eÆ
ien
y of key generation. First, we assume that

at least one in O(k) dk=2e-bit numbers is a prime, and that at least one in O(k)

of those is of the form 2q+1, where q is prime. Then, generating n takes O(k

2

)

primality tests. Ea
h primality test 
an be done in O(k

3

) bit operations [BS96℄.

Thus, the modulus n is generated in O(k

5

) bit operations (a fa
tor k slower than

an RSA modulus, be
ause of the need for safe primes). Similarly, we will assume

that at least one in O(l) integers in ea
h bu
ket [2

l

(1 + (i� 1)=T ); 2

l

(1 + i=T ))

is a prime, so generating ea
h e

i

takes O(l

4

) bit operations.

In addition to generating n and the e

i

's, key generation needs to 
ompute

the produ
t of the e

i

's modulo �(n), whi
h takes O(Tkl) bit operations, and

three modular exponentiations, ea
h taking O(k

2

l) bit operations. Therefore,

key generation takes O(k

5

+ l

4

T + k

2

l + klT )) bit operations.

Note that, similarly to the GQ s
heme, n and e

i

's may be shared among

users if n is generated by a trusted party, be
ause ea
h user need not know the

fa
tors of n. Ea
h user 
an simply generate its own t

1

and v.

Key Update. Key update 
annot multiply all the relevant e

i

's modulo �(n), be-


ause �(n) is not available (otherwise, the s
heme would not be forward-se
ure).

Therefore, it has to perform O(T ) modular exponentiations separately, in addi-

tion to regenerating all the e

i

's. Thus, it takes O(k

2

lT + l

4

T ) bit operations.

Note that the l

4

T 
omponent is present in the running time for the update

algorithm be
ause of the need to regenerate the e

i

's ea
h time. However, for

pra
ti
al values of l (on the order of 100) and k (on the order of 1000), l

4

T is

roughly the same as k

2

lT , so this only slows down the key update algorithm by
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algorithm IR:key(k; l; T )

Generate random (dk=2e � 1)-bit primes q

1

; q

2

s.t. p

i

= 2q

i

+ 1 are both prime

n p

1

p

2

t

1

R

 Z

�

n

Generate primes e

i

s.t. 2

l

(1 + (i� 1)=T ) � e

i

< 2

l

(1 + i=T ) for i = 1; 2; : : : ; T .

(This generation is done either deterministi
ally or using a small seed seed

and H as a pseudorandom fun
tion.)

f

2

 e

2

� : : : � e

T

mod �(n), where �(n) = 4q

1

q

2

s

1

 t

f

2

1

mod n

v  1=s

e

1

1

mod n

t

2

 t

e

1

1

mod n

SK

1

 (1; T; n; s

1

; t

2

; e

1

; seed )

PK  (n; v; T )

return (SK

1

;PK )

algorithm IR:update(SK

j

)

Let SK

j

= (j; T; n; s

j

; t

j+1

; e

j

; seed )

if j = T then return �

Regenerate e

j+1

; : : : ; e

T

using seed

s

j+1

 t

e

j+2

�:::�e

T

j+1

mod n; t

j+2

 t

e

j+1

j+1

mod n

return SK

j+1

= (j + 1; T; n; s

j+1

; t

j+2

; e

j+1

; seed )

algorithm IR:sign(SK

j

;M)

Let SK

j

= (j; T; n; s

j

; t

j+1

; e

j

; seed )

r

R

 Z

�

n

y r

e

j

mod n

�  H(j; e

j

; y;M)

z  rs

�

mod n

return (z; �; j; e

j

)

algorithm IR:ver(PK ;M; (z; �; j; e))

Let PK = (n; v)

if e � 2

l

(1 + j=T ) or e < 2

l

or e is even then return 0

if z � 0 (mod n) then return 0

y

0

 z

e

v

�

mod n

if � = H(j; e; y

0

;M) then return 1 else return 0

Fig. 2. Our forward-se
ure signature s
heme (without eÆ
ien
y improvements)
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a small 
onstant fa
tor. Moreover, in Se
tion 4.1 we show how to redu
e the l

4

T


omponent in both key generation and update to (l

2

+log

4

T )T (at a very slight

expense to signing and verifying).

Finally, as shown in Se
tion 4.2, if we are willing to in
rease se
ret storage

from 2k bits (for s

j

and t

j+1

) to (1+log

2

T )k bits, then we 
an repla
e the fa
tor

of T in the 
ost of update by the fa
tor of log

2

T , to get update at the 
ost of

O((l

4

+ k

2

l) logT ) (or, if optimization of Se
tion 4.1 is additionally applied,

O((k

2

l + l

2

+ log

4

T ) logT )).

Sizes. All the key and signature sizes are 
omparable to those in the ordinary

GQ s
heme.

The publi
 key has l+1 fewer bits than the GQ publi
 key, and the signatures

have l + 1 more bits, be
ause e is in
luded in the signature rather than in the

publi
 key. In addition, both the publi
 key and the signature have log

2

T more

bits in order to a

ommodate T in the publi
 key and the 
urrent time period in

the signature (this is ne
essary in any forward-se
ure s
heme). Thus, the total

publi
 key length is 2k + log

2

T bits, and signature length is k + 2l+ 1+ log

2

T

bits. Optimization of Se
tion 4.1 shortens the signatures slightly, repla
ing l+1

of the signature bits with about log

2

T bits.

The se
ret key is k + 2 log

2

T + jseed j bits longer than in the GQ s
heme in

order to a

ommodate the 
urrent time period j, the total time periods T , the

value t

j+1

ne
essary to 
ompute future keys and the seed ne
essary to regenerate

the e

i

's for i > j. Thus, the total se
ret key length is 3k+ l+1+ jseed j+2 log

2

T

bits (note that only 2k of these bits need to be kept se
ret). If the optimization

of Se
tion 4.2 is used, then the se
ret 
ontains an additional k(log

2

T � 1) bits,

all of whi
h need to be kept se
ret.

3.4 Se
urity

The exa
t se
urity of our s
heme (in the random ora
le model) is 
lose to the

exa
t se
urity of the s
hemes of [BM99,AR00℄. The proof is also similar: it 
losely

follows the one in [AR00℄, 
ombining ideas from [PS96,BM99,MR99℄.

First, we state the following theorem that will allow us to upper-bound the

inse
urity fun
tion. The full proof of the theorem is very similar to the one in

[AR00℄ and is 
ontained in Appendix A.

Theorem 1. Given a forger F for IR[k; l; T ℄ that runs in time at most t, asking

q

hash

hash queries and q

sig

signing queries, su
h that Su



fwsig

(IR[k; l; T ℄; F ) � ",

we 
an 
onstru
t an algorithm A that, on input n (a produ
t of two safe primes),

� 2 Z

�

n

and l, runs in time t

0

and outputs (�; r) su
h that 1 < r � 2

l+1

and

�

r

� � (mod n) with probability "

0

, where

t

0

= 2t+O(lT (l

2

T

2

+ k

2

))

"

0

=

�

"� 2

2�k

q

sig

(q

hash

+ 1)

�

2

T

2

(q

hash

+ 1)

�

"� 2

2�k

q

sig

(q

hash

+ 1)

2

l

T

:
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Proof Outline. A will use F as a subroutine. (Note that A gets to provide

the publi
 key for F and to answer its signing and hashing queries.) A bases the

publi
 key v on � as follows: it randomly guesses j between 1 and T , hoping that

F 's eventual forgery will be for the j-th time period. It then generates e

1

; : : : ; e

T

just like the real signer, sets t

j+1

= � and 
omputes v as v = 1=t

f

j+1

j+1

mod n,

where, as above, f

j+1

= e

j+1

� : : : � e

T

.

Then A runs F . Answering F 's hash and signature queries is easy, be
ause A

fully 
ontrols the random ora
le H . If A's guess for j was 
orre
t, and F indeed

will output a forgery for the j-th time period, then F 's break-in query will be

for the se
ret of a time period b > j. A 
an 
ompute the answer as follows:

t

b+1

= t

f

j+1

=f

b

j+1

= �

e

j

1

�:::�e

b

and s

b

= t

f

b+1

b

= �

e

j

1

�:::�e

b�1

�e

b+1

�:::�e

T

(the other


omponents of SK

b

are not se
ret, anyway). Suppose A's guess was 
orre
t, and

in the end F outputs a signature (z; �; j; e) on some messageM . We will assume

that F asked a hash query on (j; e; y;M) where y = z

e

v

�

mod n (F 
an always

be modi�ed to do so.)

Then, A runs F the se
ond time with the same random tape, giving the same

answers to all the ora
le queries before the query (j; e; y;M). For (j; e; y;M), A

gives a new answer � . If F again forges a signature (z

0

; �; j; e) using the same

hash query, we will have that y � z

e

v

�

� z

0

e

v

�

(mod n), so (z=z

0

)

e

� v

���

�

�

f

j+1

(���)

(mod n). Note that be
ause e is guaranteed to be relatively prime

with f

j+1

, and � � � has at least one fewer bit than e, g
d(f

j+1

(� � �); e) =

g
d(� � �; e) < e (as long as � 6= �). Thus, r = e= g
d(f

j+1

(� � �); e) > 1 and,

by Lemma 1, A will be able to eÆ
iently 
ompute the r-th root of �.

Please refer to Appendix A for further details. ut

This allows us to state the following theorem about the inse
urity fun
tion

of our s
heme.

Theorem 2. For any t, q

sig

, and q

hash

,

InSe


fwsig

(IR[k; l; T ℄; t; q

sig

; q

hash

) �

T

q

(q

hash

+ 1)InSe


SRSA

(k; l; t

0

) + 2

�l+1

T (q

hash

+ 1) + 2

2�k

q

sig

(q

hash

+ 1) ;

where t

0

= 2t+O(lT (l

2

T

2

+ k

2

)).

Proof. To 
ompute the inse
urity fun
tion, simply solve for ("�2

2�k

q

sig

(q

hash

+

1))=T the quadrati
 equation in Theorem 1 that expresses "

0

in terms of " to get

("� 2

2�k

q

sig

(q

hash

+ 1))=T

= 2

�l

(q

hash

+ 1) +

q

2

�2l

(q

hash

+ 1)

2

+ "

0

(q

hash

+ 1)

� 2

�l

(q

hash

+ 1) +

q

2

�2l

(q

hash

+ 1)

2

+

p

"

0

(q

hash

+ 1)

= 2

�l+1

(q

hash

+ 1) +

p

"

0

(q

hash

+ 1);

and then solve the resulting inequality for ". ut
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4 Further Improving EÆ
ien
y

4.1 Finding the e

i

's faster

Finding e

i

's takes time be
ause they need to be l+1-bit primes. If we were able

to use small primes instead, we 
ould sear
h signi�
antly faster, both be
ause

small primes are more frequent and be
ause primality tests are faster for shorter

lengths.

5

We 
annot use small primes dire
tly be
ause, as already pointed out, the e

i

's

must have at least l + 1 bits. However, we 
an use powers of small primes that

are at least l + 1 bits. That is, we let �

i

be a small prime, �(�

i

) be su
h that

�

�(�

i

)

i

> 2

l

and e

i

= �

�(�

i

)

i

. As long as � is a deterministi
 fun
tion of its input

� (for example, �(�) = l=blog

2

�
), we 
an repla
e e in the signature by �, and

have the veri�
ation algorithm 
ompute e = �

�(�)

.

Of 
ourse, the veri�
ation algorithm still needs to ensure that e is relatively

prime to �(n) and to e

b

; : : : ; e

T

. This is a

omplished essentially the same way

as before: we divide a spa
e of small integers into T 
onse
utive bu
kets of some

size S ea
h, and have ea
h �

i


ome from the i-th bu
ket: �

i

2 [(i � 1)S; iS).

Then, when verifying a signature for time period j, it will suÆ
e to 
he
k that �

is odd and 
omes from a bu
ket no greater than the j-th: � < jS. It will be then

relatively prime to �

b

; : : : ; �

T

, and therefore e = �

�(�)

will be relatively prime to

e

b

; : : : ; �

T

.

When we used large primes, we simply partitioned the spa
e of (l + 1)-bit

integers into large bu
kets, of size 2

l

=T ea
h. We 
ould have used smaller bu
kets,

but this o�ered no advantages. However, now that we are using small primes, it

is advantageous to make the bu
ket size S as small as possible, so that even the

largest prime (about TS) is still small.

Thus, to see how mu
h this optimization speeds up the sear
h for the e

i

's, we

need to upper-bound S. S needs to be pi
ked so that there is at least one prime

in ea
h interval [(i � 1)S; iS) for 1 � i � T . It is reasonable to 
onje
ture that

the distan
e between two 
onse
utive primes P

n

and P

n+1

is at most (ln

2

P

n

)

[BS96℄. Therefore, be
ause the largest prime we are looking for is smaller than

TS, S should be su
h that S > ln

2

TS. It is easy to see that S = 4 ln

2

T

will work for T � 75. (As a pra
ti
al matter, 
omputation shows that, for any

reasonable value of T , the value of S will be quite small: S = 34 will work for

T = 1000, be
ause the largest gap between the �rst 1000 primes is 34; by the

same reasoning, S = 72 will work for T = 10

4

, S = 114 will work for T = 10

5

,

and S = 154 will work for T = 10

6

.) Thus, the �

i

's are all less than 4T ln

2

T ,

and therefore the size of ea
h �

i

is O(log T ) bits. Thus, �nding and testing the

primality of the �

i

's and then 
omputing the e

i

's takes O(T (log

4

T + l

2

)) time,

as opposed to O(T l

4

) without this optimization.

The resulting s
heme will slightly in
rease veri�
ation time: the veri�er needs

to 
ompute e from �. This takes time O(l

2

) (exponentiating any quantity to

5

In fa
t, when a table of small primes is readily available (as it often is for reasonably

small T ), no sear
hing or primality tests are required at all.
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obtain an (l+1)-bit quantity takes time O(l

2

)), whi
h is lower order than O(k

2

l)

veri�
ation time. Moreover, it will be impossible to get e

i

to be exa
tly l + 1

bits (it will be, on average, about l+ (log

2

T )=2 bits). This will slow down both

veri�
ation and signing, albeit by small amounts. Therefore, whether to use the

optimization in pra
ti
e depends on the relative importan
e of the speeds of

signing and verifying vs. the speeds of key generation and update.

4.2 Optimizing key update

The key update in our s
heme requires 
omputing s

i

su
h that s

e

i

i

� 1=v mod n.

Knowledge of s

i�1

, su
h that s

e

i�1

i�1

� 1=v mod n, does not help, be
ause e

i

and

e

i�1

are relatively prime. The easiest way to 
ompute s

i

requires knowledge

of �(n): s

i

 1=v

1=e

i

mod �(n)

mod n. However, the signer 
annot store �(n)|

otherwise the forger would obtain it during a break-in, and thus be able to fa
tor

n and produ
e the past periods' se
rets (and signatures). The value of �(n) 
an

be used only during the initial key generations stage, after whi
h it should be

se
urely deleted.

To enable generation of 
urrent and future s

i

's without 
ompromising the

past ones, we had de�ned (in Se
tion 3) a se
ret t

i

for time period i, from

whi
h it was possible to derive all future periods' se
rets s

j�i

. The update of

t

i

to t

i+1


an be implemented eÆ
iently (1 exponentiation). However, in this

approa
h the 
omputation of ea
h s

i

from t

i

requires �(T � i) exponentiations.

This 
omputation 
an be redu
ed dramati
ally if the storage is in
reased slightly.

Spe
i�
ally, in this se
tion we demonstrate how repla
ing the single se
ret t

i

with log

2

T se
rets 
an redu
e the 
omplexity of the update algorithm to only

log

2

T exponentiations.

Abstra
ting the Problem. Consider all subsets of Z

T

= f1; 2; : : : ; Tg. Let

ea
h su
h subset S 
orrespond to the se
ret value t

S

= t

Q

i=2S

e

i

1

. For example,

t

1


orresponds to Z

T

, t

i


orresponds to fi; i+1; : : : ; Tg, v

�1


orresponds to the

empty set, and ea
h s

i


orresponds to the singleton set fig. Raising some se
ret

value t

S

to power e

i


orresponds to dropping i from S.

Thus, instead of se
rets and the exponentiation operation, we 
an 
onsider

sets and the operation of removing an element. Our problem, then, 
an be re-

formulated as follows: design an algorithm that, given Z

T

, outputs (one-by-one,

in order) the singleton sets fig for 1 � i � T . The only way to 
reate new sets is

to remove elements from known sets. The algorithm should minimize the num-

ber of element-removal operations (be
ause they 
orrespond to the expensive

exponentiation operations).

Fairly elementary analysis qui
kly demonstrates that the most eÆ
ient so-

lution for this problem (at least for T that is a power of 2) is the following

divide-and-
onquer algorithm:

Input: An ordered non-empty set A.

Output: Singleton sets fxg, for x 2 A, in order.

Steps: If A has one element, output A and return.
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Remove the se
ond half of A's elements to get B.

Re
urse on B.

Remove the �rst half of A's elements to get C.

Re
urse on C.

This algorithm takes exa
tly T log

2

T element-removal operations to output

all the singletons. Moreover, the re
ursion depth is 1+ log

2

T , so only 1+ log

2

T

sets need to be stored at any time (ea
h set is just a 
onse
utive interval, so the

bookkeeping about what ea
h set a
tually 
ontains is simple).

This re
ursive algorithm 
an essentially be the update algorithm for our

s
heme: at every 
all to update, we run the re
ursive algorithm a little further,

until it produ
es the next output. We then stop the re
ursive algorithm, save

its sta
k (we need to save only log

2

T se
rets, be
ause the remaining one is the

output of the algorithm), and run it again at the next 
all to update. A little

more 
are needs to be taken to ensure forward se
urity: none of the sets stored

at time period i should 
ontain elements less than i. This 
an be done by simply

removing i from all sets that still 
ontain in (and that are still needed) during

the i-th update. The total amount of work still does not 
hange.

Be
ause there are T 
alls to update (if we in
lude the initial key generation),

the amortized amount of work per update is exa
tly log

2

T exponentiations.

However, some updates will be more expensive than others, and update will still


ost �(T ) exponentiations in the worst 
ase. We thus want to improve the worst-


ase running time of our solution without in
reasing the (already optimal) total

running time. This 
an be done through pebbling te
hniques, des
ribed below.

Pebbling. Let ea
h subset of Z

T


orrespond to a node in a graph. Conne
t

two sets by a dire
ted edge if the destination 
an be obtained from the sour
e by

dropping a single element. The resulting graph is the T -dimensional hyper
ube,

with dire
tions on the edges (going from higher-weight nodes to lower-weight

nodes). We 
an traverse the graph in the dire
tion given by the edges. We start

at the node 
orresponding to Z

T

, and need to get to all the nodes 
orresponding

to the singleton sets fig.

One way to a

omplish this task is given by the above re
ursive algorithm,

whi
h has the minimal total number of steps. However, we would like to minimize

not only the total number of steps, but also the number of steps taken between

any two \
onse
utive" nodes fig and fi+ 1g, while keeping the memory usage

low. We will do this by properly arranging di�erent bran
hes of the re
ursive

algorithm to run in parallel.

To help visualize the algorithm, we will represent ea
h set stored as a pebble

at the 
orresponding node in a graph. Then removing an element from a set 
or-

responds to moving the 
orresponding pebble down the 
orresponding dire
ted

edge. The original set may be preserved, in whi
h 
ase a \
lone" of a pebble is

left at the original node, or it may be dis
arded, in whi
h 
ase no su
h 
lone is

left. Our goal 
an be reformulated as follows in terms of pebbles: �nd a pebbling

strategy that, starting at the node Z

T

, rea
hes every node fig in order, while

minimizing the number of pebbles used at any given time (this 
orresponds to
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total se
ret storage needed), the total number of pebble moves (this 
orresponds

to total number of exponentiations needed), and the number of pebble moves be-

tween any two 
onse
utive hits of a singleton (this 
orresponds to the worst-
ase


ost of the update algorithm).

The Pebbling Algorithm. We shall assume that T > 1 is a power of 2. The

following strategy uses at most 1 + log

2

T pebbles, takes T log

2

T total moves

(whi
h is the minimum possible), and requires at most log

2

T moves per update.

Ea
h pebble has the following information asso
iated with it:

1. its 
urrent position, represented by a set P � Z

T

(P will always be a set of


onse
utive integers fP

min

; : : : ; P

max

g);

2. its \responsibility," represented by a set R � P (R will also always be a

set of 
onse
utive integers fR

min

; : : : ; R

max

g; moreover jRj will always be a

power of 2).

Ea
h pebble's goal is to ensure that it (together with its 
lones, their 
lones,

et
.) rea
hes every singleton in its set P . If R ( P , then the pebble 
an move

towards this goal by removing an element from P . If, however, R = P , then

the pebble has to 
lone (unless jP j = jRj = 1, in whi
h 
ase it has rea
hed

its singleton, and 
an be removed from the graph). Namely, it 
reates a new

pebble with the same P , and responsibility set R

0


ontaining only the se
ond

half of R. It then 
hanges its own R to R � R

0

(thus dividing its responsibility

evenly between itself and its 
lone). Now both the pebble and the 
lone 
an move

towards their disjoint sets of singletons.

We start with a single pebble with P = R = Z

T

. The above rules for moving

and 
loning ensure that the 
ombined moves of all the pebbles will be the same as

in the re
ursive algorithm. Thus, the steps of the pebbles are already determined.

We now have to spe
ify the timing rules: namely, when the pebbles take their

steps. A 
areful spe
i�
ation is important: if a pebble moves too fast, then it


an produ
e more 
lones than ne
essary, thus in
reasing the total memory; if

a pebble moves too slowly, then it may take longer to rea
h its destination

singletons, thus in
reasing the worst-
ase 
ost of update.

In order to spe
ify the timing rules, we will imagine having a 
lo
k. The 
lo
k

\ti
ks" 
onse
utive integer values, starting with �T=2+1. After ea
h 
lo
k ti
k,

ea
h pebble will de
ide whether to move and, if so, for how many moves, as

follows:

1. The original pebble always makes two moves per 
lo
k ti
k, until it rea
hes

the singleton f1g. After rea
hing the singleton it stops, and then removes

itself from the graph on the next 
lo
k ti
k.

2. After a new pebble is 
loned with responsibility set R, it stays still for djRj=2e


lo
k ti
ks. After djRj=2e-th 
lo
k-ti
k following its birth, it starts moving

at one move per 
lo
k ti
k. After jRj su
h moves, it starts moving a two

moves per 
lo
k ti
k, until it rea
hes its leftmost singleton. After rea
hing

the singleton it stops, and then removes itself from the graph on the next


lo
k ti
k.
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We remark that the above rules may seem a bit 
omplex. Indeed, simpler

rules 
an be envisioned: for example, allowing ea
h pebble at most one move

per 
lo
k ti
k, and spe
ifying that ea
h pebbles moves following a given 
lo
k

ti
k only if it absolutely has to move in order to rea
h its leftmost singleton on

time. However, this set of rules will require (log

2

T ) � 2 pebbles (even though

at most log

2

T of them will be moving at any given time). Having pebbles move

at variable speeds allows us to delay their 
loning, and thus redu
es the total

number of pebbles, as shown by the following theorem.

Theorem 3. Suppose T > 1 is a power of two. If i is the value most re
ently

ti
ked by the 
lo
k, then the total number of pebbles under the above rules never

ex
eeds 1 + blog

2

(T � i)
 (if i � 0) or (log

2

T ) � blog

2

�i
 (if �T < i < 0).

The number of moves o

urring immediately following the 
lo
k ti
k i also never

ex
eeds this quantity. For ea
h i, 1 � i � T , a pebble rea
hes the singleton i+ 1

immediately before the 
lo
k ti
ks the value i+1, and is removed before the 
lo
k

ti
ks i+ 2.

Proof. The proof is by indu
tion on log

2

T .

For T = 2, we start with a single pebble with P = R = f1; 2g. After the 
lo
k

ti
ks 0, this pebble 
lones the pebble with R

0

= 2, and itself moves to P = f1g.

The 
lone waits for one 
lo
k ti
k and then, after the 
lo
k ti
ks 1, the 
lone

moves to P = f2g.

Suppose the statement is true for some T that is a power of two. We will

now prove it for T

0

= 2T . After 
lo
k ti
k �T + 1, we have two pebbles: one

responsible for f1; : : : ; Tg, and the other responsible for fT +1; : : : ; 2Tg. For the

next T=2�1 
lo
k ti
ks, the �rst pebble will move at two steps per ti
k, and the

se
ond one will stay put (thus, the number of moves does not ex
eed the number

of pebbles). After the 
lo
k ti
ks �T=2, the �rst pebble will arrive at position

P = f1; : : : ; Tg. Thus, starting at t = �T + 1, the indu
tive hypothesis applies

to the all the pebbles that will 
over the �rst half of the singletons: there is a

single pebble until t = �T=2+ 1 and it is in position P = f1; : : : ; Tg after 
lo
k

ti
k �T=2 + 1.

The se
ond pebble will rea
h the position P

0

= f2; : : : ; Tg after the 
lo
k

ti
ks T=2. Thus, again, after the 
lo
k ti
ks 1, the indu
tive hypothesis applies

to all the pebbles that will 
over the se
ond half of the singletons, ex
ept that

time is shifted forward by T . That is, if 1 � i < T , then the number of pebbles

in the se
ond half does not ex
eed (log

2

T ) � blog

2

(T � i)
, and if t � T , then

the number of pebbles in the se
ond half does not ex
eed 1 + blog

2

(2T � i)
.

The key to �nishing the proof is to realize that the �rst half will lose a pebble

just as the se
ond half gains one. To be pre
ise, we 
an 
onsider the following

four 
ases.

{ For �T < i < 0, we have (log

2

T ) � blog

2

�i
 pebbles in the �rst half (by

the indu
tive hypothesis), and one pebble in the se
ond half, so we have a

total of (log

2

2T )� blog

2

�i
 pebbles, as required.

{ For i = 0, we have 1 + log

2

T = log

2

2T pebbles in the �rst half (by the

indu
tive hypothesis), and one pebble in the se
ond half, for a total of 1 +

log

2

2T pebbles, as required.
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{ For 0 < i � T , we have 1 + blog

2

(T � i)
 pebbles in the �rst half and

(log

2

T ) � blog

2

(T � i)
 pebbles in the se
ond half (both by the indu
tive

hypothesis), for a total of 1+log

2

T = 1+blog

2

(2T � i)
 pebbles, as required.

{ For i > T , we have no pebbles in the �rst half and blog

2

(2T � i)
 pebbles in

the se
ond half (by the indu
tive hypothesis), as required.

It is easy to see that in ea
h of the above four 
ases, the number of moves

does not ex
eed the number of pebbles (be
ause for every pebble moving at two

steps per 
lo
k ti
k, there exists a pebble that is standing still|namely, its most

re
ent 
lone). ut

Se
urity. It is, of 
ourse, 
ru
ial to ensure that the above 
hanges to the update

algorithm do not 
ompromise the se
urity of our s
heme. It suÆ
es to prove that

every se
ret stored following the 
lo
k ti
k i 
an be derived in polynomial time

from t

i+1

. In other words, it suÆ
es to prove that, following the 
lo
k ti
k i, no

pebble's position P satis�es i 2 P . This 
an be easily done by indu
tion, as long

as ea
h pebble moves towards its goal by removing the smallest possible element

from its position P (the indu
tive step is proved as follows: if 2T is the total

number of time periods, then the single pebble responsible for the se
ond half

of the singletons will have removed f1; : : : ; T=2g from its position following the


lo
k ti
k 1, and will have removed f1; : : : ; Tg following the 
lo
k ti
k T=2+1).
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A Details of the Proof of Theorem 1

First, we assume that if F outputs (z; �; j; e) as a forgery, then the hashing ora
le

has been queried on (j; e; y;M), where y = z

e

v

�

mod n (any adversary 
an be

modi�ed to do that; this may raise the number of hash queries to q

hash

+ 1.)
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We will also assume that F performs the ne
essary bookkeeping and does not

ask the same hash query twi
e.

6

Note that F may ask the same signature query

twi
e, be
ause the answers will most likely be di�erent.

Re
all that A's job, given � and n, is to �nd (with F 's help) � and r > 1

su
h that �

r

� � (mod n). First, A has to guess the time period for whi
h F

will output the forgery: it randomly sele
ts j, 1 < j � T (sometimes A may also

su

eed if the forgery is for a time period i < j, but this not ne
essary for our

argument). A then generates e

1

; : : : ; e

T

just like the real signer, sets t

j+1

= �

and 
omputes v as v = 1=t

f

j+1

j+1

mod n, where, as above, f

j+1

= e

j+1

� : : : � e

T

.

A then 
omes up with a random tape for F , remembers it, and runs F on

that tape and the input publi
 key (n; v; T ). If F breaks in at time period b,

then A 
an provide F with the se
ret key as long as b > j: knowing t

j+1

will

allow A to 
ompute s

b

and t

b+1

. If b � j, then A aborts (be
ause, in parti
ular,

F 's forgery 
annot be for time period j in that 
ase).

To answer F 's signature and hash queries, Amaintains two tables: a signature

query table and a hash query table.

Signature queries 
an be answered almost at random, be
ause A 
ontrols the

hash ora
le. In order to answer a signature query number s on a message M

s

during time period j

s

, A sele
ts a random z

s

2 Z

�

n

and �

s

2 f0; 1g

l

, 
omputes

y

s

= z

s

e

j

s

v

�

s

, and 
he
ks its signature query table to see if a signature query on

M

s

during time period j

s

has already been asked and if y

s

used in answering it.

If so, A 
hanges z

s

and �

s

to the z and � that were used in answering that query.

Then A adds the entry (s; j

s

; e

j

s

; y

s

; �

s

; z

s

;M

s

) to its signature query table and

outputs (z

s

; �

s

; j

s

; e

j

s

).

Hash queries are also answered at random. To answer the t-th hash query

(j

0

t

; e

0

t

; y

0

t

;M

0

t

), A �rst 
he
ks its signature query table to see if there is an entry

(s; j

s

; e

j

s

; y

s

; �

s

; z

s

;M

s

) su
h that (j

s

; e

j

s

; y

s

;M

s

) = (j

0

t

; e

0

t

; y

0

t

;M

0

t

). If so, it just

outputs �

s

. Otherwise, it pi
ks a random �

0

t

2 f0; 1g

l

, re
ords in its hash query

table the tuple (t; y

0

t

;M

0

t

; j

0

t

; e

0

t

; �

0

t

) and outputs �

0

t

.

Assume now the break-in query o

urs during time period b > j, and the valid

forgery (z; �; i; e) is output for a time period i � j (if not, or if no valid forgery is

output, A fails). Let y = z

e

v

�

. Be
ause we modi�ed F to �rst ask a hash query

on (i; e; y;M), we have that, for some h, (h; y;M; i; e; �) = (h; y

0

h

;M

0

h

; j

0

h

; e

0

h

; �

0

h

)

in the hash query table (it 
an't 
ome from the signature query table, be
ause

F is not allowed to forge a signature on a message for whi
h it asked a signature

query). A �nds su
h an h in its table and remembers it.

A now resets F with the same random tape as the �rst time, and runs it

again, giving the exa
t same answers to all F 's queries before the h-th hash

query (it 
an do so be
ause it has all the answers re
orded in the tables). Note

that this means that F will be asking the same h-th hash query (i; e; y;M) as

the �rst time. As soon as F asks the h-th hash query, however, A stops giving

the answers from the tables and 
omes up with new answers at random, in the

6

This may slightly in
rease the running time of F , but we will ignore 
osts of simple

table look-up for the purposes of this analysis.
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same manner as the �rst time. Let � be the new answer given to the h-th hash

query, and assume � 6= �.

Assume again the break-in query o

urs during time period b > j, and the

valid forgery (z

0

; �

0

; i

0

; e

0

) is output for a time period i

0

� j. A again 
omputes

y

0

= z

0e

0

v

sigma

0

; by the same reasoning as before, F had to ask a hash query on

(i

0

; e

0

; y

0

;M

0

). Let h

0

be the number of that query. A �nds h

0

and fails if h

0

6= h.

If, however, h

0

= h, then (i; e; y;M) = (i

0

; e

0

; y

0

;M

0

), simply be
ause the h-th

hash query had to be the same in both runs of F . Also then �

0

= � . Therefore,

z

e

v

�

� z

0

e

v

�

, so (z=z

0

)

e

� v

���

� �

f

j+1

(���)

(mod N).

Note that be
ause e is guaranteed to be relatively prime with f

j+1

(as long

as i � j), and � � � has at least one fewer bit than e, g
d(f

j+1

(� � �); e) =

g
d(� � �; e) < e (as long as � 6= �). Thus, r = e= g
d(f

j+1

(� � �); e) > 1 and,

by Lemma 1, A will be able to eÆ
iently 
ompute the r-th root of �.

Running Time Analysis. A runs F twi
e. Preparing the publi
 key and

answering hashing and signing queries takes A no longer than it would take the

real ora
les. To �nd the hashing query 
orresponding to the forgery and to apply

Lemma 1 takes O(lT (l

2

T

2

+ k

2

)) bit operations.

Probability Analysis. We will need the following lemma in our analysis.

Lemma 2. Let a

1

; a

2

; : : : ; a

�

be real numbers. Let a =

P

�

�=1

a

�

, and let s =

P

�

�=1

a

2

�

. Then s �

a

2

�

.

Proof. Let b = a=� and b

�

= b� a

�

. Then

P

�

�=1

b

�

= �b�

P

�

�=1

a

�

= 0. Hen
e

P

�

�=1

a

�

2

=

P

�

�=1

(b� b

�

)

2

= �b

2

� 2b

P

�

�=1

b

�

+

P

�

�=1

b

2

�

� �b

2

=

a

2

�

: ut

First, 
onsider the probability that A's answers to F 's ora
le queries are

distributed as those of the true ora
les that F expe
ts. This is the 
ase unless,

for some signature query, the hash value that A needs to de�ne has already

been de�ned through a previous answer to a hash query (
all this \A's failure to

pretend"). Be
ause z is pi
ked at random from Z

n

�, z

e

v

�

is a random element

of Z

�

n

. The probability of its 
ollision with a value from a hash query in the same

exe
ution of F is at most (q

hash

+1)=jZ

�

n

j thus, the probability (taken over only

the random 
hoi
es of A) of A's failure to pretend is at most q

sig

(q

hash

+1)=jZ

�

n

j �

q

sig

(q

hash

+1)2

2�k

(be
ause jZ

�

n

j = 4q

1

q

2

> 2

k�2

). This is exa
tly the amount by

whi
h F 's probability of su

ess is redu
ed be
ause of intera
tion with A rather

than the real signer. Let Æ = "� q

sig

(q

hash

+ 1)2

2�k

.

Let "

b

be the probability that F produ
es a su

essful forgery and that its

break-in query o

urs in time period b. Clearly, Æ =

P

T+1

b=2

"

b

(if b = 1, then F


annot forge for any time period). Assume now that A pi
ked j = b�1 for some

�xed b. The probability of that is 1=T .

We will now 
al
ulate the probability of the event that F outputs a valid

forgery based on the same hash query both times and that the hash query was

answered di�erently the se
ond time and that the break-in query was b both

times. Let p

h;b

be the probability that, in one run, F produ
es a valid forgery
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based on hash query number h after break-in query in time period b. Clearly,

"

b

=

q

hash

+1

X

h=1

p

h;b

Let p

h;b;S

(for a suÆ
iently long binary string S of length m) be the probability

that, in one run, F produ
es a valid forgery based on hash query number h after

break-in query in time period b, given that the string S was used to determine

the random tape of F and the responses to all the ora
le queries of F until (and

not in
luding) the h-th hash query. We have that

2

m

p

h;b

=

X

S2f0;1g

m

p

h;b;S

:

Given su
h a �xed string S, the probability that F produ
es a valid forgery based

on the hash query number h after break-in query in time period b in both runs is

p

2

h;b;S

(be
ause the �rst forgery is now independent of the se
ond forgery). The

additional requirement that the answer to the hash query in the se
ond run be

di�erent redu
es this probability to p

h;b;S

(p

h;b;S

� 2

�l

). Thus, the probability

q

h;b

that F produ
es a valid forgery based on the hash query number h in both

runs and that the answer to the hash query is di�erent in the se
ond run and

that the break-in query was b in both runs is

q

h;b

=

X

S2f0;1g

m

2

�m

p

h;b;S

(p

h;b;S

� 2

�l

)

= 2

�m

0

�

X

S2f0;1g

m

p

2

h;b;S

� 2

�l

X

S2f0;1g

m

p

h;b;S

1

A

�

2

�m

(p

h;b

2

m

)

2

2

m

� 2

�l

p

h;b

= p

2

h;b

� 2

�l

p

h;b

(by Lemma 2).

The probability that F outputs a valid forgery based on the same hash query

both times and that the hash query was answered di�erently in the se
ond run

and that the break-in query o

urred in time period i is now

q

hash

+1

X

h=1

q

h;b

�

q

hash

+1

X

h=1

p

2

h;b

�

q

hash

+1

X

h=1

2

�l

p

h;b

�

"

2

b

q

hash

+ 1

� 2

�l

"

b

(by Lemma 2).

Note that if this happens, then the forgery o

urs in time period i < b = j+1

(be
ause the forgery has to o

ur before the break-in query), so A will be able

to take a root of �.

Finally, we again use Lemma 2 to remove the assumption that A pi
ked

j = b� 1 as the time period to get the probability of A's su

ess:

"

0

�

1

T

T+1

X

i=2

�

"

2

b

q

hash

+ 1

� 2

�l

"

b

�

�

Æ

2

T

2

(q

hash

+ 1)

�

Æ

2

l

T

: ut


