
The Se
urity of Pra
ti
al

Two-Party RSA Signature S
hemes

Mihir Bellare

�

Ravi Sandhu

y

Abstra
t

In a two-party RSA signature s
heme, a
lient and server, ea
h holding a share of an RSA

de
ryption exponent d,
ollaborate to
ompute an RSA signature under the
orresponding publi

key N; e known to both. This primitive is of growing interest in the domain of server-aided

password-based se
urity, where the
lient's share of d is based on its password. To minimize

ost, designers are looking at very simple, pra
ti
al proto
ols based on the early ideas of Boyd,

but their se
urity is un
lear. We analyze a
lass of these proto
ols. We suggest two notions of

se
urity for two-party signature s
hemes and provide proofs of se
urity for the s
hemes in our

lass based on assumptions about RSA and the hash fun
tion underlying the s
heme.

Keywords: RSA, digital signatures, two-party proto
ols, proofs of se
urity.

�

Dept. of Computer S
ien
e & Engineering, University of California at San Diego, 9500 Gilman Drive, La Jolla,

California 92093, USA, and SingleSignOn.net. E-Mail: mihir�
s.u
sd.edu. URL: http://www-
se.u
sd.edu/

users/mihir.

y

ISE Department, Mail Stop 4A4, George Mason University, Fairfax, VA 22030-4444, USA, and SingleSignOn.net.

E-Mail: rsandhu�singlesignon.net. URL: http://www.list.gmu.edu/~sandhu/.

1

Contents

1 Introdu
tion 3

2 The setup and the s
hemes 7

3 Se
urity notions for two-party signature s
hemes 8

4 The RSA-related
omputational problems 11

5 Results, dis
ussion and proof ideas 12

5.1 Relations between two-party s
hemes . 13

5.2 Se
urity results for the two-party s
hemes . 13

6 Proofs of results in Se
tion 5 16

6.1 Proof of Lemma 5.1 . 16

6.2 Proof of Theorem 5.2 . 17

6.3 Proof of Theorem 5.3 . 18

6.4 Proof of Theorem 5.4 . 19

6.5 Proof of Theorem 5.5 . 20

6.6 Proof of Theorem 5.6 . 21

6.7 Proof of Theorem 5.7 . 23

Referen
es 24

A Relations between RSA related problems 25

2

1 Introdu
tion

We
onsider a standard RSA-based signature s
heme of the \hash-then-de
rypt" variety, meaning

the publi
 key is N; e, the se
ret key is d, and the signature of message M is H(M)

d

mod N , where

H is a publi
 hash fun
tion, N is an RSA modulus, e is an en
ryption exponent, and d is the

orresponding de
ryption exponent. However, instead of there being a single signer, the publi
 key

is asso
iated to a pair of entities that we
all the
lient and the server. The de
ryption exponent

d is not held by any individual party, but rather is split into shares d

and d

s

, and these are held

by the
lient and server, respe
tively. A
ollaborative
omputation, or signing proto
ol, is used to

produ
e a signature for the
lient.

Basi
 idea. RSA, due to its algebrai
 properties, lends itself naturally to
ollaborative signature

omputation. The earliest suggestion of whi
h we are aware is due to Boyd [5℄. The de
ryption

exponent is split multipli
atively, meaning

d

d

s

� d (mod '(N)) : (1)

Collaborative signature
omputation is then based on the equation

H(M)

d

� H(M)

d

d

s

mod N : (2)

While this basi
 idea is old and well-known, it does not seem to have been appre
iated that variations

in the way it is used give rise to di�erent proto
ols that have perhaps unexpe
tedly di�erent se
urity

properties.

The proto
ols. This paper
onsiders a family of natural and simple two-party signature s
hemes

based on dire
t exploitation of Equation (2). We divide them into two
lasses. In the
ommon-

message
lass of s
hemes, the message M to be signed is a
ommon input to
lient and server.

Within this
lass we
onsider two proto
ols, di�ering a

ording to who goes �rst:

MCS : Client sends x

= H(M)

d

mod N to the server; server
omputes signature x =

x

d

s

mod N , veri�es it, and returns it to
lient.

MSC : Server sends x

s

= H(M)

d

s

mod N to
lient;
lient
omputes signature x = x

d

s

mod N .

In the
lient-message
lass of s
hemes, the message M to be signed is input to the
lient but not

to the server. Within this
lass we again
onsider two proto
ols, di�ering a

ording to who goes

�rst with regard to
omputing a \partial" signature:

HCS : Client sends y; x

to the server where y = H(M) and x

= y

d

mod N ; server
omputes

signature x = x

d

s

mod N , veri�es that x

e

� y (mod N), and returns x to
lient.

HSC : Client sends y to the server where y = H(M); server sends x

s

= y

d

s

mod N to
lient;

lient
omputes signature x = x

d

s

mod N .

The leading \M" in the names of the
ommon-message proto
ols stands for the \Message" that

both parties know, while the leading \H" in the names of the
lient-message proto
ols stands for

the \Hash" that the
lient
ows to the server. The other letters re
e
t the order in whi
h the Client

and Server use their shares of the de
ryption exponent in the proto
ol.

In this paper we analyze the se
urity of the above four proto
ols with regard to meeting well-

de�ned modern
ryptographi
 goals in provable ways. We �nd that the se
urity goals, and the

assumptions on the underlying primitives required to prove se
urity, vary from proto
ol to proto
ol

in a perhaps surprising way.

Motivation. This work is motivated by re
ent pra
ti
al interest in two-party RSA signature

s
hemes. Several
ompanies are working on produ
ts that enable server-aided password-based

ryptography. Ganesan [13℄ had suggested that d

be based on a
lient password. The server
ould

3

be implemented via a smart
ard, or be a devi
e on the network as in [26℄. This is an attra
tive

model in the fa
e of the diÆ
ulties of PKI, espe
ially be
ause of the so-
alled \instant revo
ation"

apability it o�ers. Upon password
ompromise, the
lient
an revoke the publi
 key by informing

the server that it is no longer valid. Sin
e every signature produ
ed under the publi
 key involves

the server, revo
ation takes immediate e�e
t, unlike in PKI where there may be a time-lag between

a
tual revo
ation and a signature-veri�er's re
eipt of the revo
ation list.

Why all these proto
ols? In developing proto
ols based on Equation (2), pra
titioners are likely

to explore variations based on bene�ts they bring in terms of fun
tionality, performan
e, and ease

of implementation. The four proto
ols above represent some lines along whi
h
hoi
es
an be made,

as we now dis
uss.

In providing the message M to be signed to both parties, the
ommon-message proto
ols repre-

sent the abstra
tion, standard in se
ure two-party
omputation (
f. [27℄), that relevant inputs are

agreed upon in advan
e. These are the �rst proto
ols to
onsider, and they deserve analysis. In

pra
ti
e however, the message typi
ally originates with the
lient, who must
ow it to the server if

the latter is to be made aware of it. Pra
tioners may want to avoid
owing the message, instead

owing the short message hash. (Motivations vary. If the server is a smart
ard, it will not have

storage for the long message. Even if the server is on the network, one prefers to redu
e bandwidth

by sending the short message-hash rather than the possibly long message. In either setting, a

lient may prefer to avoid the blatant violation of priva
y represented by sending the message to be

signed to the server.) This leads us to
onsider the
lient-message
lass of proto
ols in this paper.

The other dimension, namely whether the
lient or the server is the �rst to
ompute a partial

signature, is a natural one, and implementers may have a preferen
e based on some performan
e

or
onvenien
e
riterion. This leads us to
onsider two proto
ols in ea
h
lass.

Implementers or would be implementers who are
hoosing between these proto
ols, based on

performan
e or fun
tionality, would bene�t from being aware of how they
ompare with regard to

se
urity. The analyses and results in this paper are dire
ted at providing su
h information.

Se
urity goals. The �rst question to ask towards providing meaningful se
urity analyses is: what

are the adversarial models and target se
urity goals for these proto
ols?

In line with the types of appli
ations being envisaged, we view the server as trusted. The �rst

se
urity goal that
omes to mind is to prevent forgery by a third party. We suggest however that

this goal is too weak, and instead ask that forgery be hard even for an adversarial
lient who is in

possession of the
orre
t share d

and is allowed to engage in intera
tions with the d

s

-holding server.

(Se
urity against third parties is implied by se
urity against
lient adversaries, so
onsideration of

the latter only strengthens the se
urity results.) This is appropriate be
ause we view the server is

a \
o-signer" of the
lient. A veri�er who a

epts a
lient signature does so under the belief that

the server \endorses" it, so a
lient who su

eeds in
reating a signature that the server has not

endorsed should be viewed as having been su

essful in forgery.

When we seek to formulate the goals more pre
isely, a di
hotomy emerges depending on the

lass of proto
ol. In the
ase of
ommon-message s
hemes, we formulate a notion of se
urity

against forgery under
hosen-message atta
k analogous to that for standard s
hemes [19℄. (It asks

that the
lient-adversary should �nd it hard to output a valid signature of a message that it did not

previously provide as input to a session with the server.) Client-message s
hemes, however, are more

like blind signature s
hemes than standard ones, in that there need be no
learly identi�able message

asso
iated to an intera
tion between a
lient-adversary and the server. A

ordingly we formulate a

notion of se
urity against one-more-forgery, analogous to that for blind signature s
hemes [22℄. (It

asks that the
lient-adversary should �nd it hard to output a number of valid message-signature

pairs that ex
eeds the number of sessions of intera
tion in whi
h it engaged the server.) Ours is the

4

�rst work to
onsider
lient-message s
hemes, and we
onsider this, together with the introdu
tion

of a notion of se
urity for them, to be one of the
ontributions of this paper.

Implementers should realize that two-party signature s
hemes from the two di�erent
lasses are

inherently di�erent with regard to the type of se
urity they
an a
hieve, so that they
an think

about whi
h goal they want to target. However, one should not view the di�eren
e as a negative

onnotation with regard to
lient-message s
hemes. The goal of se
urity against one-more forgery

that they target is useful and in line with the idea that the role of the server is to \endorse"
lient

messages: the veri�er's belief on a

epting a signature is not that the server stands behind the

message, but that it authorized a signature, on a message of the
lient's
hoi
e, at this point in

time.

Results. Our results are represented in Figure 1. The middle
olumn of Figure 1 lists assumptions

about RSA and the hash fun
tion H, and the strength of the assumptions in this
olumn de
reases

as one moves down. (The RSA-related
omputational problems RSA-STI, RSA-CTI and Split-

Key-RSA-CTI are dis
ussed in Se
tion 4.) The se
urity statements regarding our four s
hemes are

in the four
orner boxes. The arrows show under what assumptions we
an establish the se
urity

laims in question. The results and their impli
ations are dis
ussed at length in Se
tion 5. Proofs

of the theorems stated there are in Se
tion 6.

Ba
kground and related work. Boyd's suggestion [5℄ was to split the de
ryption exponent

as per Equation (1) and then sign message m 2 Z

�

N

by exploiting the equation m

d

� m

d

d

s

mod N .

Se
urity analysis of the above was initiated in [5℄ and
ontinued in [14, 15℄, but pertains to relatively

weak se
urity goals su
h as se
ret-key-re
overy sin
e the \plain" RSA signatures that these s
hemes

reate are well-known to be subje
t to forgery atta
k. To obtain usable proto
ols and analyses

targetting strong notions of se
urity, we have expli
itly
onsidered and modeled the hash fun
tion.

One
an
onsider splitting the de
ryption exponent additively rather than multipli
atively,

namely the shares d

; d

s

satisfy d

+ d

s

� d (mod '(N)). Collaborative signature
omputation is

then based on the equation H(M)

d

� H(M)

d

�H(M)

d

s

(mod N). The issues and analyses for this

ase are similar to, and somewhat simpler than, those for the
ase of multipli
ative splitting that

we
onsider, and in order to avoid repetitiveness, we do not detail the results related to additive

splitting.

Ma
Kenzie and Reiter [20℄
onsider a setting where the
lient is implemented as a password-

ontrolled devi
e. The
ore of their S-RSA proto
ol is the additive-splitting version of MSC. This is

enhan
ed to a
hieve numerous se
urity properties that we do not
onsider here. (Their devi
e does

not hold d

but rather holds an en
ryption of it under the server publi
 key, so that
ompromise of

the devi
e does not provide d

to the adversary.) Their proof of se
urity for S-RSA in
ludes at its

ore a proof of se
urity against forgery under
hosen-message atta
k for the additive-splitting version

of MSC. Sin
e adapting this to the multipl
ative-splitting based MSC we
onsider here is entirely

dire
t, the result about the se
urity of MSC that we state as Theorem 5.5 should be
onsidered as

due to [20℄. (We provide a proof for
ompleteness and be
ause it is a useful introdu
tion to the

other proofs in this paper, but the ideas in the proof are entirely those of [20℄.) We remark that

our
onsideration of the HCS and HSC proto
ols re
e
ts some questions raised in [20℄ regarding

the loss in priva
y in
urred by MSC in providing the server with the message to be signed.

Two-party signature s
hemes are part of the general approa
h of se
ure two-party
omputation

[27℄ and threshold
ryptography [11℄. Threshold
ryptography has however
on
entrated more on

the
ase of n � 3 parties. Distribution of the RSA fun
tion (whi
h yields distributed signatures) is

onsidered in this setting in [11, 10, 17℄. Split-key s
hemes for DSA signatures are proposed in [21℄.

5

H

C

S

i

s

s

e

u

r

e

a

g

a

i

n

s

t

o

n

e

-

m

o

r

e

-

f

o

r

g

e

r

y

T

h

e

S

p

l

i

t

-

K

e

y

-

R

S

A

-

C

T

I

p

r

o

b

l

e

m

i

s

h

a

r

d

,

a

n

d

H

i

s

a

R

O

H

S

C

i

s

s

e

u

r

e

a

g

a

i

n

s

t

o

n

e

-

m

o

r

e

-

f

o

r

g

e

r

y

T

h

e

R

S

A

-

C

T

I

p

r

o

b

l

e

m

i

s

h

a

r

d

a

n

d

H

i

s

a

R

O

T

h

e

R

S

A

-

S

T

I

p

r

o

b

l

e

m

i

s

h

a

r

d

a

n

d

H

i

s

a

R

O

M

C

S

i

s

s

e

u

r

e

a

g

a

i

n

s

t

f

o

r

g

e

r

y

u

n

d

e

r

m

a

T

h

e

b

a

s

e

R

S

A

s

i

g

n

a

t

u

r

e

s

h

e

m

e

i

s

s

e

u

r

e

a

g

a

i

n

s

t

f

o

r

g

e

r

y

u

n

d

e

r

m

a

M

S

C

i

s

s

e

u

r

e

a

g

a

i

n

s

t

f

o

r

g

e

r

y

u

n

d

e

r

m

a

T

h

5

.

6

T

h

5

.

7

T

h

5

.

4

T

h

5

.

5

Th5.2

Th5.3

P

r

o

p

A

.

1

[

1

℄

[

3

℄

Figure 1: Results: Here A ! B means that if A is true then so is B. That is, if we assume A

then we
an prove B. The boxes in the middle
olumn represent assumptions about RSA and the

hash fun
tion H, and the strength of the assumptions de
reases as we move down. The four
orners

of the pi
ture indi
ate our four two-party signature s
hemes with their asso
iated se
urity goals.

Arrows are annotated with pointers to justi�
ations, in some
ases a Theorem or Proposition in

this paper, in other
ases a known result for whi
h a
itation is provided.

6

2 The setup and the s
hemes

RSA key generators. An RSA modulus is an integer whi
h is a produ
t of two distin
t,

odd primes. An RSA key generator is a (randomized) algorithm whi
h on input of a se
urity

parameter k returns N; e; d; p; q where p; q are primes, N = pq is an RSA modulus satisfying

2

k�1

� N < 2

k

, and e; d 2 Z

�

'(N)

are, respe
tively, en
ryption and de
ryption exponents, satisfying

ed � 1 (mod '(N)). (Here '(�) is the Euler totient fun
tion.)

There are many di�erent possible RSA key generators, varying for example in the
hoi
e of e or

the types of primes
hosen. In order to highlight the fa
t that the de�nitions and results here apply

to any RSA key generator, we do not pin down any parti
ular generator, but instead parameterize

de�nitions and results by a
hoi
e of generator.

Base signature s
heme. We asso
iate to any RSA key generator kg a base digital signature

s
heme ds = (kg;Sign;Verify) of the standard \hash-then-de
rypt" variety. The
lient has

publi
 key (N; e) and se
ret key (N; d), where N; e; d are obtained by running kg(k). The
lient's

signature of a message M is the value Sign

H

N;d

(M) = H(M)

d

mod N , where H: f0; 1g

�

! Z

�

N

is a publi
 hash fun
tion, and veri�
ation is de�ned via Verify

H

N;e

(M;x) = 1 i� x

e

� H(M)

(mod N). The bulk of standardized s
hemes have this form, although they might di�er in how

they implement the hash fun
tion H (
f. [24℄).

The two-party setting. In the stand-alone
lient setting whi
h one usually envisages, the
lient

is in possession of the de
ryption exponent d that enables signature
omputation. In the two-party

setting, the
lient does not hold d. Instead, d is \split" into two parts, d

and d

s

,
alled the shares

of d. The
lient holds d

while the server holds d

s

. (Additionally, both parties know N; e). When

the
lient wishes to obtain the signature x = H(M)

d

mod N of a message M , it intera
ts with the

server to this end, via a two-party signature proto
ol.

There are several ways in whi
h d might be split. In an additive split, d

+d

s

� d (mod '(N)),

while in a multipli
ative split, d

d

s

� d (mod '(N)). Either type of split lends itself equally well

to two-party based signing (
f. [5℄). In this paper we will fo
us on the multipli
ative split.

We require
ompatibility with the underlying base signature s
heme, in the sense that the

signature
omputed as a result of the signature proto
ol is required to be the same as would

have been
omputed in the stand-alone setting. In other words, although the signature generation

pro
ess has
hanged, the signature veri�
ation algorithm has not.

Two-party signature s
hemes. Let kg be an RSA key generation algorithm and let ds be

an asso
iated base signature s
heme. The spe
i�
ation of a parti
ular ds-
ompatible two-party

signature s
heme takes the form sds = (kg;Client;Server;Verify), where the last
omponent

Verify is the veri�
ation algorithm of the base signature s
heme, and the other
omponents are

as follows.

The split-key generation algorithm kg, on input k, �rst runs kg to obtain N; e; d; p; q, and then

splits d into the shares d

; d

s

, returning an output N; e; d

for the
lient, and N; e; d

s

for the server.

In this paper, the splitting pro
ess is �xed to the following: the algorithm
hooses d

at random

from Z

�

'(N)

and then sets d

s

= d � d

�1

mod '(N). (Noti
e that in order to do this, the algorithm

must know '(N), whi
h it does sin
e the latter equals (p� 1)(q� 1), and it has p; q via the output

of kg.) Thus kg is fully spe
i�ed on
e kg is spe
i�ed.

We imagine that the split-key generation algorithm is run by a trusted dealer who se
urely

delivers ea
h party its share, and then dies. (In pra
ti
e, there are many ways that one might
hose

to perform the splitting of d and distribution of shares. One possibility is a key generation proto
ol,

either between the two parties [23, 18℄ or involving another party [4, 12℄. Another possibility is that

7

it is done by a trusted party who in some
ases might be the server itself. We are not
on
erned

here with this issue, but rather with the se
urity of the signature proto
ols, and a

ordingly assume

a magi
ally and
orre
tly performed distribution of the shares.)

TheClient and Server
omponents of the s
heme represent the
ode that the
lient and server,

respe
tively, are supposed to exe
ute in the proto
ol to obtain a joint signature of a message. The

lient
ode is initialized with N; e; d

, while the server
ode is initialized with N; e; d

s

. The
lient

ode additionally takes input a messageM , and then initiates an intera
tion with the server. At the

end of the intera
tion the
lient outputs a value x 2 Z

�

N

. It is required that an intera
tion between

properly initialized Client and Server on server input M result in output of the signature of M ,

meaning Verify

H

N;e

(M;x) = 1.

Types of two-party s
hemes. We distinguish two types of two-party signature s
hemes. In a

ommon-message s
heme, the message M to be signed is input not only to the
lient but also to

the server. (There are various ways in whi
h this might happen in pra
ti
e, the most
ommon of

whi
h is that the
lient
ows M to the server. However, as our goal again is to be general, we do

not wish to make an assumption regarding how the server knows the message, and in the model

simply provide it as an input to the server. We stress that it is a model assumption that the two

parties have the same message as input, and also that the Server
ode expe
ts M as input and

will not fun
tion if this is not provided.) In a
lient-message s
heme, the message M to be signed is

provided as input to the
lient but not to the server. (This does not mean that the server does not

know M , sin
e it might as a result of the proto
ol
ows. But we do not assume the server knows

M .) This type of s
heme re
e
ts the possibility that the
lient will prefer not to
ow the message,

either be
ause it wants to keep the message private, or be
ause it wants to save on bandwidth on

server-storage by transmitting the short message-hash instead of the (possibly long) message.

As we will see later, the motivation for separating these two types of s
hemes is that se
urity-

wise, they
annot be treated equally: the notions of se
urity they
an target are ne
essarily di�erent.

Four two-party signature s
hemes. In this paper we
onsider the four spe
i�
 two-party

signature s
hemes whose signing proto
ols are illustrated in Figure 2. (The s
hemes all have the

same split-key generation algorithm kg and veri�
ation algorithm Verify, as di
tated by the

underlying base signature s
heme with whi
h they are
ompatible, so we tend to identify ea
h

s
heme with the des
ription of its Client and Server
omponents as given in the �gures). The

s
hemes in the �rst row of Figure 2 are of the
ommon-message type, while those in the se
ond

row are of the
lient-message type. In this paper we are interested in the se
urity of these four

two-party signature s
hemes, with parti
ular regard to answering the following question about ea
h

s
heme: What
an be proven about the se
urity of the s
heme, and under what assumptions on

the underlying primitives?

3 Se
urity notions for two-party signature s
hemes

Se
urity of the base signature s
heme. The se
urity requirement of a standard signature

s
heme (in our
ase, the base signature s
heme ds) is that it be se
ure against forgery under

hosen-message atta
k [19℄. This is formalized by asso
iating to any Fg algorithm and value k of

the se
urity parameter an experiment, as follows. The forger is given input the publi
 key N; e and

has ora
le a

ess to Sign

H

N;d

(�), the keys being sele
ted via kg(k). (If we are in a random ora
le

model, it also has ora
le a

ess to H, the latter
hosen at random [2℄.) The forger is said to be

su

essful if it outputs a pair M;x su
h that Verify

H

N;e

(M;x) = 1 but M was not \legitimately

signed," meaning a query to the sign ora
le. The advantage of Fg, denoted Adv

uf-
ma

ds;Fg

(k), is its

8

MCS MSC

Client Server Client Server

Input: N; e; d

;M Input: N; e; d

s

;M Input: N; e; d

;M Input: N; e; d

s

;M

x

 H(M)

d

mod N x

s

 H(M)

d

s

mod N

x

-

x

s

�

x x

d

s

mod N x x

d

s

mod N

If x

e

6� H(M) (mod N) Output: x

then x ?

x

�

Output: x

HCS HSC

Client Server Client Server

Input: N; e; d

;M Input: N; e; d

s

Input: N; e; d

;M Input: N; e; d

s

y H(M) y H(M)

x

 y

d

mod N

y

-

y; x

- x

s

 y

d

s

mod N

x x

d

s

mod N

x

s

�

If x

e

6� y (mod N) x x

d

s

mod N

then x ? Output: x

x

�

Output: x

F
i
g
u
r
e
2
:
T
w
o
-
p
a
r
t
y
R
S
A

s
i
g
n
i
n
g
p
r
o
t
o

o
l
s
.

9

probability of su

ess, taken over the
oins of kg(k), the
oins of Fg if any, and the random
hoi
e

of H if we are in a random ora
le model. The s
heme ds is said to be se
ure against forgery under

ma if the fun
tion Adv

uf-
ma

ds;Fg

(�) is negligible for every poly(k)-time algorithm Fg.

Issues in se
urity of two-party signature s
hemes. The se
urity model we adopt is that

the server is trusted, but the
lient is not. We imagine that the
orre
t
lient
ode Client is

repla
ed by an adversary B
. The latter is initialized with N; e and the
lient's share d

of the

de
ryption exponent, and will engage the (trusted) server Server

H

N;e;d

s

(the subs
ripts denoting

the keys with whi
h the server is initialized) in a sequen
e of intera
tions, with the purpose of

eventually produ
ing a forgery. (Note that this adversarial model is stronger than one in whi
h we

onsider a \mere" forger who has N; e and ora
le a

ess to Client

H

N;e;d

and Server

H

N;e;d

s

. We are

allowing the forger to additionally \
orrupt" the
lient and obtain d

, so that our B

an
ertainly

do anything that a \mere" forger
an do, but possibly
an do more.)

With this setup, we would like to mimi
 the notion of se
urity for the base s
heme. We would say

that the adversary is su

essful if it outputs a pairM;x su
h that Verify

H

N;e

(M;x) = 1 butM was

\not legitimately signed." The diÆ
ulty is in how to interpret the phrase in quotes, and it here that

we see the motivation for having made a distin
tion between
ommon-message and
lient-message

s
hemes. In a
ommon-message s
heme, ea
h intera
tion with the server has a
learly identi�ed

message input for the server, to whi
h the adversary must
ommit to start the intera
tion. In this

ase, \not legitimately signed"
an be interpreted just as in the
ase of the base s
heme, meaning

Server

H

N;e;d

s

has not engaged in an intera
tion with the message in question as input. In a
lient-

message s
heme, however, intera
tions between an adversary
lient and Server

H

N;e;d

s

may not have

any identi�able underlying message, so the phrase \not legitimately signed" has no reasonable

interpretation. This situation is analogous to that in a blind signature s
heme, and a

ordingly we

will turn to the de�nitional approa
h of \one-more-forgery" used in that
ontext [22℄: su

ess for

the adversary means that it outputs a number of valid message-signature pairs that ex
eeds the

number of intera
tions in whi
h it engaged with the server. Let us now detail the two de�nitions.

Se
urity of
ommon-message s
hemes. Let sds = (kg;Client;Server;Verify) be a two-

party,
ommon-message signature s
heme. We asso
iate to any adversary
lient B
 and value k of

the se
urity parameter an experiment, as follows. Run kg(k) to get (N; e; d

) and (N; e; d

s

). (If we

are in a random ora
le model, also pi
k H at random.) Provide B
 with input N; e; d

and allow it

to engage in intera
tions with Server

H

N;e;d

s

. (If we are in a random ora
le model, also give it ora
le

a

ess to H.) Sin
e the s
heme is a
ommon-message one, B
 must begin ea
h intera
tion with

Server

H

N;e;d

s

by spe
ifying a message to server as input to the server. However B

an
hoose
lient

messages as it pleases in these intera
tions, and in parti
ular di�erently from what Client

N;e;d

.

The adversary B
 is said to be su

essful if it outputs a pair M;x su
h that Verify

H

N;e

(M;x) = 1

butM was never provided by B
 as message-input to Server

N;e;d

s

. The advantage of B
, denoted

Adv

uf-
ma

sds;B

(k), is its probability of su

ess, taken over the
oins of kg(k), the
oins Server

N;e;d

s

,

the
oins of B
 if any, and the random
hoi
e of H if we are in a random ora
le model. The s
heme

sds is said to be se
ure against forgery under
ma if the fun
tion Adv

uf-
ma

sds;B

(�) is negligible for

every poly(k)-time
lient adversary B
.

Se
urity of
lient-message s
hemes. Let sds = (kg;Client;Server;Verify) be a two-

party,
lient-message signature s
heme. We asso
iate to any adversary
lient B
 and value k of

the se
urity parameter an experiment, as follows. Run kg(k) to get (N; e; d

) and (N; e; d

s

). (If

we are in a random ora
le model, also pi
k H at random.) Provide B
 with input N; e; d

and

allow it to engage in intera
tions with Server

H

N;e;d

s

. (If we are in a random ora
le model, also

give it ora
le a

ess to H.) In these intera
tions, B

an
hoose
lient messages as it pleases, and

10

in parti
ular make
hoi
es di�erent from those of Client

N;e;d

. The adversary B
 is said to be

su

essful if it outputs a sequen
e of pairs (M

1

; x

1

); : : : ; (M

m+1

; x

m+1

) su
h that the following are

true: (1) Verify

H

N;e

(M

i

; x

i

) = 1 for all i = 1; : : : ;m + 1, and (2) the number of intera
tions that

B
 initiated with Server

N;e;d

s

is at most m. The advantage of B
, denoted Adv

omf

sds;Fg

(k), is its

probability of su

ess, taken over the
oins of kg(k), the
oins Server

N;e;d

s

, the
oins of B
 if

any, and the random
hoi
e of H if we are in a random ora
le model. The s
heme sds is said to

be se
ure against one-more-forgery if the fun
tion Adv

omf

sds;B

(�) is negligible for every poly(k)-time

lient adversary B
.

4 The RSA-related
omputational problems

In this se
tion, we provide de�nitions of the three RSA related
omputational problems RSA-STI,

RSA-CTI, and Split-Key-RSA-CTI on whose assumed se
urity are results are based. We present

and prove some relations between these problems in Appendix A. The de�nitions are parameterized

by an arbitrary RSA key generator kg.

RSA-STI. Let kg be an RSA key generator and let In be an algorithm, referred to in this
ontext

as an rsa-sti-adversary. Consider the following experiment:

Experiment Exp

rsa-sti

kg; In

(k)

(N; e; d; p; q)

R

 kg(k) ; y

R

 Z

�

N

; x In(N; e; k; y)

If x

e

� y (mod N) then return 1 else return 0

The rsa-sti-advantage of In, denoted Adv

rsa-sti

kg; In

(k), is the probability that experiment Exp

rsa-sti

kg; In

(k)

returns 1. The RSA-STI problem is said to be hard with respe
t to kg |in more standard

terminology, RSA is said to be one-way with respe
t to kg| if the fun
tionAdv

rsa-sti

kg; In

(�) is negligible

for any poly(k)-time In. The assumption that RSA-STI is hard is simply the assumption that RSA

is a one-way fun
tion, and is standard, but for
onsisten
y with problems
onsidered later in this

paper we use the phrase \RSA-STI is hard" in pla
e of \RSA is a one-way fun
tion."

RSA-CTI. The RSA-CTI problem is one of a
lass of problems de�ned, and related to ea
h other,

in [1℄. They showed that the assumption that the RSA-CTI problem is hard suÆ
es to prove the

se
urity against one-more-forgery of Chaum's RSA-based blind signature s
heme [7℄ in the random

ora
le model. The resemblan
e of the
lient-message two-party s
hemes to blind signature s
hemes

with regard to se
urity goals (one-more-forgery) makes it natural that the RSA-CTI problem is

relevant here too. The problem itself is extension of the RSA-STI problem in whi
h the adversary

gets an inversion ora
le, namely an ora
le for (�)

d

mod N , and must invert RSA at m + 1 target

points using at most m ora
le
alls. The adversary must
hoose the m + 1 target points from a

sequen
e of n(k) random input points. The fun
tion � re
e
ts the
hoi
e it makes. We
onsider n

as a parameter of the problem.

Let kg be an RSA key generator and let n : N ! N be a (polynomially bounded, polynomial

time
omputable) fun
tion of the se
urity parameter su
h that n(k) � 1 for all k 2 N. Let In be

an algorithm with a

ess to an ora
le, referred to in this
ontext as an rsa-
ti-adversary. Consider

the following experiment:

Experiment Exp

rsa-
ti

kg; In; n

(k)

(N; e; d; p; q)

R

 kg(k) ; For i = 1 to n(k) do y

i

R

 Z

�

N

(m;�; x

1

; : : : ; x

m+1

) In

(�)

d

mod N

(N; e; k; y

1

; : : : ; y

n(k)

)

If the following are all true then return 1 else return 0

11

| 0 � m < n(k)

| �: f1; : : : ;m+ 1g ! f1; : : : ; n(k)g is an inje
tive fun
tion

| 8i 2 f1; : : : ;m+ 1g : x

e

i

� y

�(i)

(mod N)

| In made at most m ora
le queries

The rsa-
ti-advantage of In, denotedAdv

rsa-
ti

kg; In; n

(k), is the probability that experimentExp

rsa-
ti

kg; In; n

(k)

returns 1. The RSA-CTI

n

problem is said to be hard with respe
t to kg if the fun
tionAdv

rsa-
ti

kg; In; n

(�)

is negligible for any poly(k)-time In. The RSA-CTI problem is said to be hard with respe
t to kg

if RSA-CTI

n

is hard for all polynomially-bounded, polynomial-time
omputable fun
tions n(�) � 1.

The RSA-CTI

1

problem (ie. the
ase n(�) = 1) is identi
al to the RSA-STI problem, and it

is in this sense that the hardness of the RSA-CTI problem
an be
onsidered an extension of the

standard one-wayness assumption about RSA.

Split-Key-RSA-CTI.We introdu
e in this paper a Split-Key extension of the RSA-CTI problem.

Let d

1

; d

2

be shares of d, meaning d

1

; d

2

2 Z

�

'(N)

and d

1

d

2

� d (mod '(N)). The adversary has

e; d

1

as input, and an ora
le for (�)

d

2

mod N . The rest is as in RSA-CTI. Namely let kg be an

RSA key generator and let n : N ! N be a (polynomially bounded, polynomial time
omputable)

fun
tion of the se
urity parameter su
h that n(k) � 1 for all k 2 N. Let In be an algorithm with

a

ess to an ora
le, referred to in this
ontext as an sk-rsa-
ti adversary. Consider the following

experiment:

Experiment Exp

sk-rsa-
ti

kg; In; n

(k)

(N; e; d; p; q)

R

 kg(k) ; M (p� 1)(q � 1) ; d

1

R

 Z

�

M

; d

2

 d � d

�1

1

modM

For i = 1 to n(k) do N y

i

R

 Z

�

N

EndFor

(m;�; x

1

; : : : ; x

m+1

) In

(�)

d

2

mod N

(N; e; d

1

; k; y

1

; : : : ; y

n(k)

)

If the following are all true then return 1 else return 0

| 0 � m < n(k) and �: f1; : : : ;m+ 1g ! f1; : : : ; n(k)g is inje
tive

| 8i 2 f1; : : : ;m+ 1g : x

e

i

� y

�(i)

(mod N)

| In made at most m ora
le queries

The sk-rsa-
ti-advantage of In, denoted Adv

sk-rsa-
ti

kg; In; n

(k), is the probability that Exp

sk-rsa-
ti

kg; In; n

(k)

returns 1. The Split-Key-RSA-CTI

n

problem is said to be hard with respe
t to kg if the fun
tion

Adv

sk-rsa-
ti

kg; In; n

(�) is negligible for any poly(k)-time In. The Split-Key-RSA-CTI problem is said to be

hard with respe
t to kg if Split-Key-RSA-CTI

n

is hard for all polynomially-bounded, polynomial-

time
omputable fun
tions n(�) � 1. We stress that the adversary gets d

1

as input, and also gets a

(�)

d

2

mod N ora
le.

5 Results, dis
ussion and proof ideas

As indi
ated above, the question we want to answer, for ea
h of our four two-party signature

s
heme, is: what assumptions on the underlying primitives suÆ
e to guarantee se
urity of the

s
heme? In this se
tion we provide the theorem statements, some intuition with regard to why the

four di�erent two-party signature s
hemes are relying for their se
urity on di�erent assumptions

about the underlying primitives, and also the main ideas behind our proofs of se
urity. The proofs

of the theorems are in Se
tion 6. De�nitions of the RSA related
omputational problems used as

assumptions are in Se
tion 4. The results are summarized in Figure 1.

Overview. The middle
olumn of Figure 1 lists assumptions about RSA and the hash fun
tion

H, and the strength of the assumptions in this
olumn de
reases as one moves down. The se
urity

12

statements regarding our four s
hemes are in the four
orner boxes. The six theorems indi
ated in

Figure 1
an be divided into two sets. Theorems labeling arrows originating in the middle
olumn

and ending in one of the four
orner boxes represent dire
t proofs of se
urity for the
orresponding

two-party signature s
heme, and are dis
ussed in Se
tion 5.2. The theorems labeling the leftmost

and rightmost arrows of the pi
ture are of a di�erent nature, relating di�erent kinds of two-party

s
hemes to ea
h other, and are dis
ussed in Se
tion 5.1. We begin however with a useful lemma.

Te
hni
al lemma. The following lemma implies that a randomly
hosen point has a non-

negligible probability of being a proper
lient-share of the de
ryption exponent, and will be used

to justify the
orre
tness of all our simulations. A proof
an be found in Se
tion 6.1.

Lemma 5.1 Suppose k � 1 is an integer, andN is an RSAmodulus satisfyingN < 2

k

. If an integer

w is drawn at random from f1; : : : ; Ng then Pr[w 2 Z

�

'(N)

℄ is stri
tly greater than 8=[435 ln(k)℄.

5.1 Relations between two-party s
hemes

As Figure 1 indi
ates, we show the following: If one of the two-party signature s
heme from the

lient-message family of Figure 2 is se
ure, then so is the
orresponding two-party signature s
heme

from the
ommon-message family of Figure 2. (That is, if HCS is se
ure so is MCS, and if HSC is

se
ure so is MSC.) The formal theorem statements are as follows, with proofs in Se
tion 6.2 and

Se
tion 6.3, respe
tively.

Theorem 5.2 Let ds be a base signature s
heme, let SKDS-H be the
orresponding HCS two-

party signature s
heme, and let SKDS-M be the
orresponding MCS two-party signature s
heme.

If SKDS-H is se
ure against one-more forgery, then SKDS-M is se
ure against forgery under

hosen-message atta
k.

Theorem 5.3 Let ds be a base signature s
heme, let SKDS-H be the
orresponding HSC two-

party signature s
heme, and let SKDS-M be the
orresponding MSC two-party signature s
heme.

If SKDS-H is se
ure against one-more forgery, then SKDS-M is se
ure against forgery under

hosen-message atta
k.

We note that these results make no assumptions about the underlying s
hemes other than that the

meet the stated se
urity notions. In parti
ular the results are true both in a random ora
le model

and in a standard model. The feature of these results that we feel is interesting is that they relate

s
hemes of di�erent types (
ommon-message versus
lient-message) and satisfying di�erent types

of se
urity notions (se
urity against forgery under
ma versus se
urity against one-more forgery).

These two general results help
larify the high-level pi
ture before we move to analyses of

individual s
hemes. One impli
ation, for example, is that the assumption under whi
h we might

hope to prove the se
urity of a
lient-message s
heme from Figure 2 will be at least as strong as

the assumptions used to prove the se
urity of the
orresponding
ommon-message s
heme from

Figure 2.

5.2 Se
urity results for the two-party s
hemes

The minimal assumption. Suppose that the base signature s
heme ds, with whi
h all our two-

party signature s
hemes are
ompatible, is inse
ure. We
laim this implies that all four two-party

signing s
hemes are inse
ure. (Given Fg who breaks ds, it is a simple exer
ise to design, for ea
h of

the four two-party signature s
hemes, a
lient adversary B
 that, using Fg as a subroutine, breaks

the two-party signature s
heme in question, with the de�nition of \breaking" being
onsistent with

13

the de�nitions of Se
tion 3 in either
ase. We omit the details.) The impli
ation is that the se
urity

of the base s
heme is the minimal assumption under whi
h we
an hope to prove se
urity of the

two-party signature s
hemes, and thus, the �rst question to ask is whether this assumption is also

suÆ
ient.

Se
urity of MCS. The minimal assumption that the base signature s
heme ds is se
ure (against

forgery under
ma) suÆ
es to prove that the
ommon-message two-party signature s
heme MCS is

also se
ure (against forgery under
ma). This is as good as it gets, and says that the MCS s
heme

has a strong se
urity guarantee. The formal theorem statement is the following.

Theorem 5.4 Let ds be a base signature s
heme, and sds the
orresponding MCS two-party

signature s
heme. If ds is se
ure against forgery under
hosen-message atta
k, then so is sds.

The proof is provided in Se
tion 6.4. To better understand what follows however, it is worth

explaining the main ideas of the proof here.

Given B
 who breaks the MCS s
heme, we want to
onstru
t Fg who breaks ds. The Fg, as

usual, runs B
 as a subroutine to obtain a forgery M;x that it
an output. The main issues are:

how
an it provide B
 with the
lient share d

of d, and how
an it \simulate" Server

N;e;d

s

?

Sin
e the forger knows neither d nor '(N), it is unlikely that it
an
ome up with d

always

distributed exa
tly as in the output of kg. The strategy it uses is to pi
k d

at random from

f1; : : : ; Ng, and pro
eed. Lemma 5.1 shows that d

is
orre
tly distributed with (low but) non-

negligible probability, whi
h turns out to be enough.

The forger
annot be expe
ted to
ome up with d

s

satisfying d

d

� d (mod '(N)), sin
e

otherwise it
ould fa
tor N , so it
annot simulate Server

N;e;d

s

dire
tly. Its strategy is to use

its a

ess to the sign-ora
le Sign

N;d

(�). When B
 initiates an intera
tion with Server

N;e;d

s

on

message M and �rst
ow x

, the forger responds with x = Sign

N;d

(M). (We are omitting some

details, like the fa
t that the forger needs to
he
k whether or not x

is
orre
t, sin
e if not it must

return ?. See Se
tion 6.4.)

Se
urity of MSC. The assumption that the base signature s
heme ds is se
ure does not seem

enough, however, to guarantee the se
urity of any of the other three s
hemes. In parti
ular, merely

having the server go �rst, as in MSC, is enough to provide B
 with information that might go

beyond that provided by the signature itself. Spe
i�
ally, in MSC, B
 as usual knows d

, but now

an also obtain H(M)

d

s

for a value M of its
hoi
e, and mere knowledge of the �nal signature

H(M)

d

d

s

mod N does not seem to provide knowledge of H(M)

d

s

mod N to a party knowing d

.

In the te
hni
alities of the proofs, this translates to saying that the simulation of Server

N;e;d

s

based on a

ess of Fg to the sign-ora
le, as above, no longer seems possible.

This does not mean that we know of a weakness in the MSC s
heme. It does mean, however,

that its se
urity relies on stronger assumptions about the underlying primitives than those that

suÆ
ed to prove se
urity of MCS. Our result is that the se
urity of MSC
an be proved assuming

that the RSA-STI is hard and H is a random ora
le. The formal statement is the following. The

proof is provided in Se
tion 6.5.

Theorem 5.5 Let kg be an RSA key generation algorithm, let ds be the
orresponding base

signature s
heme in the random ora
le model, and let sds be the
orresponding MSC two-party

signature s
heme in the random ora
le model. If the RSA family is one-way with respe
t to kg,

then sds is se
ure against forgery under
hosen-message atta
k.

The invo
ation of the random ora
le model of
ourse puts the assumptions here into a di�erent
lass

(
f. [6℄). However, one should note that all known proofs of se
urity for the \hash-then-de
rypt"

style base signature s
heme that we are
onsidering, under the assumption that RSA-STI is hard,

14

assume that H is a RO [3, 8℄. (There are alternative base s
hemes
lose in style [16, 9℄, but their

adaptation to a two-party setting has not been investigated.) Thus in terms of pragmati
 provable-

se
urity, the assumption that RSA-STI is hard and H is a RO may be
onsidered a relatively

natural strengthening of the assumption that the base signature s
heme is se
ure.

Why does this
hange in assumptions suÆ
e to guarantee se
urity? As we saw above, the

on
ern with MSC is that the value H(M)

d

s

mod N that B

an obtain from the server provides

information over and above H(M)

d

mod N . If H is a random ora
le, however, it
an be shown

that H(M)

d

s

mod N is not in fa
t extra information, by exploiting the idea of the proof of se
urity

of the FDH (Full Domain Hash) signature s
heme from [3℄, as follows.

Given B
 who breaks the MSC s
heme, we want to
onstru
t an inverter In who, given N; e; y,

outputs y

d

mod N . It will pi
k d

at random, in the same manner as the forger in the proof of

se
urity of MCS dis
ussed above, and run B
 on inputs N; e; d

, itself providing answers to the

hash ora
le queries, and simulating the responses of Server

N;e;d

s

. The inverter
an respond to

hash-ora
le query M with a point of the form r

ed

mod N , having itself pi
ked r at random. This

means that H(M)

d

s

� r (mod N), and so the inverter
an provide H(M)

d

s

to B
 if needed. The

inverter seeks to obtain y

d

mod N by ensuring that H(M) = y for the message M that B
 outputs

in the forgery. (The diÆ
ulty of this last goal not being
ompatible with the simulation strategy is

resolved via a guess as to the hash-ora
le
orresponding to the forgery [3℄. The strategy of [8℄
an

be used to improve the
on
rete se
urity of the redu
tion, but for simpli
ity in this paper we are

not dis
ussing
on
rete se
urity issues.) For details see Se
tion 6.5.

Se
urity of the
lient-message s
hemes. Denying the server knowledge of the message being

signed results in B
 being able to obtain y

d

s

for a value y whi
h it
an
hoose at will (in HSC) or

almost at will (in HCS), meaning it e�e
tively has (for HSC) or almost has (for HCS) an ora
le for

the fun
tion (�)

d

s

mod N . (In HCS, there is some restri
tion on the use of the ora
le, be
ause B

must be able to provide y

d

mod N when invoking the ora
le at y.) In
ontrast, in the
ommon-

message s
hemes, B

ould only obtain values of this ora
le on points y of the form H(M), having

�rst had to
ommit to M ; this tied the use of the ora
le more
losely to the signing fun
tion of the

base signature s
heme and lead to our being able to show (under somewhat di�erent
onditions for

MCS and MSC) that, e�e
tively, the ora
le did not add mu
h power over and above signing power.

We observe that the HCS and HSC s
hemes are analogous to Chaum's RSA-based blind-

signature s
heme [7℄, both with regard to the se
urity goal (se
urity against one-more-forgery)

and the proto
ol issues dis
ussed above. (In Chaum's s
heme the forger e�e
tively has a

ess to an

ora
le for the fun
tion (�)

d

mod N , and wins if it su

eeds in one-more forgery.) It is natural to look

in that dire
tion for analysis ideas. No proof of se
urity for Chaum's s
heme under the standard

assumption that RSA-STI is hard has appeared, even in a random ora
le model, and furthermore

there seems little reason to expe
t one, sin
e the se
urity relies on properties of RSA that seem to

go beyond those re
e
ted in the RSA-STI problem. The situation for HCS and HSC is unlikely

to be better. An analysis approa
h that seems produ
tive in su
h settings, and was pursued for

Chaum's s
heme in [1℄, is to formulate, or distill out, the RSA-related
omputational problems that

seem to underly the s
heme, and prove se
urity assuming these problems are hard. In this manner,

at least one better understands what one is assuming. We use the problems formulated in [1℄ in

our
urrent setting.

Se
urity of HCS.We prove the se
urity of HCS under the same assumption that was used in [1℄

to prove the se
urity of Chaum's blind signature s
heme, namely that the RSA-CTI (RSA Chosen

Target Inversion) problem is hard and H is a random ora
le. The formal theorem statement is the

following. The proof is provided in Se
tion 6.5.

15

Theorem 5.6 Let kg be an RSA key generation algorithm, let ds be the
orresponding base

signature s
heme in the random ora
le model, and let sds be the
orresponding HCS two-party

signature s
heme in the random ora
le model. If the RSA-CTI problem is hard with respe
t to kg,

then sds is se
ure against one-more-forgery.

Chaum's blind signature s
heme is not a two-party s
heme. By saying that the assumptions un-

derlying it suÆ
e also to prove se
urity of HCS, we are saying that the splitting of the key has

not
reated se
urity weaknesses beyond those already present in a s
heme in whi
h the adversary

e�e
tively gets an RSA-inversion ora
le. The proof of Theorem 5.6 indi
ates how this is possible,

and we now dis
uss some of its ideas.

Given B
 atta
king HCS, we are trying to build an adversary A for the RSA-CTI problem.

As in all our proofs, A pi
ks d

at random, and Lemma 5.1 is used to argue that this
hoi
e is a

properly distributed
lient-share with non-negligible probability. It then runs B
 on inputs N; e; d

.

The main issue is how to handle the simulation of Server

N;e;d

s

, whi
h, as we observed before, is

e�e
tively providing a (�)

d

s

ora
le to B
. The important point is that the
ow from the
lient

in
ludes not just y but also x

, where x

should equal y

d

mod N . Assuming it does, the server's

response is x

s

� x

d

s

� y

d

(mod N), meaning that (�)

d

s

ora
le
an be simulated given a

ess to a

(�)

d

mod N ora
le, and thus
an be simulated by A sin
e it has a

ess to a (�)

d

mod N ora
le. The

orre
tness of this simulation relies on the fa
t that Server

N;e;d

s

he
ks that the
lient
omputes

x

orre
tly (by
he
king that x

e

s

� y (mod N)) and that A
an perform this
he
k too sin
e it

knows d

. The assumption that H is a random ora
le is used in transforming the outputs of B

into ones properly related to the inputs of A. See Theorem 5.6 and its proof for details.

Se
urity of HSC. Having the server go �rst introdu
es an extra se
urity risk by giving the

lient-adversary more power. In HCS there is some restri
tion on the use of the (�)

d

s

mod N ora
le

e�e
tively provided to the
lient via its a

ess to Server

N;e;d

s

, namely that when
alling this

ora
le on input y, the
lient must supply x

= y

d

mod N . As we saw above, this means that the

(�)

d

s

mod N ora
le
an be simulated via a (�)

d

mod N ora
le. In HSC, there is no su
h brake put

on the
lient's a

ess to the (�)

d

s

mod N ora
le, and it does not seem possible to simulate it given

a

ess to a (�)

d

mod N ora
le. Thus, it appears that the HSC s
heme relies for its se
urity on

assumptions even stronger than the hardness of the RSA-CTI problem. Indeed, this is the �rst of

the four s
hemes for whi
h we have not found a way to avoid expli
itly
onsidering the key-splitting

in the assumptions. (For all the other s
hemes, the assumptions related to the (�)

d

mod N fun
tion,

meaning to the original RSA problem.)

We prove the se
urity of HSC based on the assumption that the Split-Key-RSA-CTI problem

is hard and H is a random ora
le.

Theorem 5.7 Let kg be an RSA key generation algorithm, let ds be the
orresponding base

signature s
heme in the random ora
le model, and let sds be the
orresponding HSC two-party

signature s
heme in the random ora
le model. If the RSA-S-CTI problem is hard with respe
t to

kg, then sds is se
ure against one-more-forgery.

The proof, whi
h
an be found in Se
tion 6.7, is relatively straightforward.

6 Proofs of results in Se
tion 5

6.1 Proof of Lemma 5.1

We will make use of the following lower bound on '(m)=m, whi
h
an be derived from Rosser and

S
hoenfeld [25, Theorem 15℄:

16

Lemma 6.1 If M � 3 is an integer then

'(M)

M

�

1

29 ln ln(M)

:

Proof of Lemma 5.1: The probability in question is

Pr[w 2 Z

�

'(N)

℄ =

'('(N))

N

=

'('(N))

'(N)

�

'(N)

N

:

Sin
e N is an RSA modulus, it must be that N � 15, implying that '(N) � 3, and thus we
an

apply Lemma 6.1, with M = '(N), to lower bound the �rst term above. For the se
ond term, we

use the fa
t that '(N) = (p� 1)(q � 1) where p; q are the distin
t, odd primes su
h that N = pq.

From the above we get

Pr[w 2 Z

�

'(N)

℄ �

1

29 ln ln('(N))

�

�

1�

1

p

�

�

�

1�

1

q

�

�

1

29 ln ln('(N))

�

�

1�

1

3

�

�

�

1�

1

5

�

=

8

435 ln ln('(N))

�

8

435 ln ln(N)

>

8

435 ln(k)

:

In the last step we used the bound ln ln(N) � ln(k ln(2)) < ln(k), whi
h is true be
ause we have

assumed N < 2

k

.

6.2 Proof of Theorem 5.2

We asso
iate to any polynomial-time
lient-adversary B
M another polynomial-time
lient adver-

sary B
H su
h that for all k we have

Adv

uf-
ma

SKDS-M;B
M

(k) � Adv

omf

SKDS-H;B
H

(k) : (3)

The theorem follows.

Client-adversary B
H is initialized with N; e; d

and has a

ess to Server

N;e;d

s

. It begins with the

following initializations:

Set
ounter i 0

Initialize B
M with inputs N; e; d

It now runs B
M, who will initiate some number of intera
tions with its server. Sin
e MCS is a

ommon-message s
heme, B
M must begin an intera
tion with the server by spe
ifying a message

to serve as
ommon input. Client-adversary B
H will play the server role. It will get from B
M

a message M and �rst
ow x

, run the following
ode, and return to B
 the output:

If there is a j � i su
h that M

j

=M then return x

j

Else

y H(M)

If x

6� y

d

(mod N) then return ?

17

Else

i i+ 1 ; M

i

 M ; y

i

 y ; x

i;

 x

Send y

i

; x

i;

to Server

N;e;d

s

and get ba
k x

i

Return x

i

Above, B
H is
areful to not invoke Server

N;e;d

s

in
ases where the latter would return ?, be
ause

fruitless
alls to its server
ount against it in a one-more forgery atta
k. This is important to the

analysis that follows.

Finally,B
M will output a pair (M;x). B
H exe
utes the following:

m i

i i+ 1 ; M

i

 M ; x

i

 x.

It then outputs the list (M

1

; x

1

); : : : ; (M

m+1

; x

m+1

) and halts.

For the analysis, we observe that m is the number of sessions that B
H initiated with Server

N;e;d

s

,

be
ause ea
h initiation in
rements i by one above. Thus, B
H is su

essful as long as

Verify

H

N;e

(M

j

; x

j

) = 1 (4)

for all j = 1; : : : ;m + 1. Equation (4) is true for j = 1; : : : ;m by virtue of the invo
ation of

Server

N;e;d

s

, and is true for j = m + 1 if B
M is su

essful. This
ompletes the proof of

Equation (3).

6.3 Proof of Theorem 5.3

This proof is very similar to that of Theorem 5.2. (In fa
t it is simpler.) We asso
iate to any

polynomial-time
lient-adversary B
M another polynomial-time
lient adversary B
H su
h that

for all k we have

Adv

uf-
ma

SKDS-M;B
M

(k) � Adv

omf

SKDS-H;B
H

(k) : (5)

The theorem follows.

Client-adversary B
H is initialized with N; e; d

and has a

ess to Server

N;e;d

s

. It begins with the

following initializations:

Set
ounter i 0

Initialize B
M with inputs N; e; d

It now runs B
M, who will initiate some number of intera
tions with its server. Sin
e MSC is a

ommon-message s
heme, B
M must begin an intera
tion with the server by spe
ifying a message

to serve as
ommon input. Client-adversary B
H will play the server role. It will get from B
M

a message M , run the following
ode, and return to B
 the output:

If there is a j � i su
h that M

j

=M then return x

j

Else

i i+ 1 ; M

i

 M ; y

i

 H(M)

Send y

i

to Server

N;e;d

s

and get ba
k x

i;s

Return x

i;s

Finally,B
M will output a pair (M;x). B
H exe
utes the following:

18

m i

i i+ 1 ; M

i

 M ; x

i

 x.

It then outputs the list (M

1

; x

1

); : : : ; (M

m+1

; x

m+1

) and halts.

For the analysis, we observe that m is the number of sessions that B
H initiated with Server

N;e;d

s

,

be
ause ea
h initiation in
rements i by one above. Thus, B
H is su

essful as long as

Verify

H

N;e

(M

j

; x

j

) = 1 (6)

for all j = 1; : : : ;m + 1. Equation (6) is true for j = 1; : : : ;m by virtue of the invo
ation of

Server

N;e;d

s

, and is true for j = m + 1 if B
M is su

essful. This
ompletes the proof of

Equation (5).

6.4 Proof of Theorem 5.4

We asso
iate to any polynomial-time
lient-adversary B
 a polynomial-time forger Fg su
h that

for all k we have

Adv

uf-
ma

sds;B

(k) �

435 ln(k)

8

�Adv

uf-
ma

ds;F

(k) : (7)

The theorem follows.

Adversary Fg takes as input an RSA publi
 key N; e, and has a

ess to sign-ora
le Sign

H

N;d

(�). It

begins with the following initializations:

Set
ounter i 0

Pi
k d

at random from f1; : : : ; Ng

Initialize B
 with inputs N; e; d

Not knowing '(N) it
annot pi
k d

at random from Z

�

'(N)

, so instead it pi
ks d

at random from

f1; : : : ; Ng as above. It now runs B
, who will initiate some number of intera
tions with the

server. Sin
e MCS is a
ommon-message s
heme, B
 must begin an intera
tion with the server by

spe
ifying a message to serve as
ommon input. Adversary Fg will play the server role. It will get

from B
 a message M and a
ow x

for the server, un the following
ode, and return to B
 the

output:

i i+ 1

M

i

 M ; x

i;

 x

Let w

i;

 H(M

i

)

d

mod N

If x

i;

6= w

i;

then x

i

 ? else x

i

 Sign

H

N;d

(M

i

)

Return x

i

Finally, B
 will output a pair M;x, whi
h Fg also outputs and halts.

For the analysis, we
onsider the following events:

GS : d

2 Z

�

'(N)

Win : Verify

H

N;e

(M;x) = 1 and M was not a message with whi
h

B
 initialized the server.

We
laim that

Pr [Win j GS ℄ = Adv

uf-
ma

sds;B

(k) : (8)

19

The justi�
ation for this is as follows. Suppose event GS is true. Then d

is uniformly distributed

in Z

�

'(N)

, and is thus distributed identi
ally to the share of d that is issued to B
 by the split-key

generation algorithm kg, so the inputs to B
 are distributed as in the experiment measuring its

advantage. Furthermore, the response x

i

returned by the forger to
ow x

i;

is distributed identi
ally

to that whi
h would have been returned by the real server. Now we
an lower bound the advantage

of Fg as follows:

Adv

uf-
ma

ds;Fg

(k) � Pr[Win ℄

� Pr[Win ^ GS ℄

= Pr [Win j GS ℄ � Pr[GS ℄

= Adv

uf-
ma

sds;B

(k) � Pr[GS ℄

� Adv

uf-
ma

sds;B

(k) �

8

435 ln(k)

:

The �rst inequality is true be
ause if event Win happens, then Fg is
ertainly su

essful. The

se
ond inequality is obvious, and the following equality is by Equation (8). The last inequality

used Lemma 5.1. This
ompletes the proof of Equation (7).

6.5 Proof of Theorem 5.5

We adapt the proof of se
urity of the FDH signature s
heme from [3℄, following the proof of

se
urity of the S-RSA proto
ol from [20℄. We asso
iate to any polynomial-time
lient-adversary B

a polynomial-time inverter In su
h that for all k we have

Adv

uf-
ma

sds;B

(k) �

435 ln(k)

8

� q(k) �Adv

rsa-sti

kg; In

(k) ; (9)

where q(�) denotes a polynomially-bounded fun
tion su
h that the number of server-intera
tions

initiated by B
, plus the number of hash-ora
le queries it makes, is stri
tly upper bounded by q(k).

The theorem follows.

Adversary In takes as input an RSA publi
 key N; e, se
urity parameter k, and a point y 2 Z

�

N

. It

is seeking to output y

d

mod N . It begins with the following initializations:

Set
ounter i 0

Pi
k d

at random from f1; : : : ; Ng

Pi
k l at random from f1; : : : ; q(k)g

Initialize B
 with inputs N; e; d

It now runs B
, who will initiate some number of intera
tions with the server, and also make

queries to its hash-ora
le. A hash-ora
le query M is answered by running the following
ode and

returning to B
 the output:

HSim(M)

If there is a j � i su
h that M

j

=M then return H

j

Else

i i+ 1 ; M

i

 M

x

i;s

R

 Z

�

N

; r

i

 [x

e

i;s

℄

d

mod N

If i = l then H

i

 y else H

i

 r

i

Return H

i

20

Sin
e MSC is a
ommon-message s
heme, B
must begin an intera
tion with the server by spe
ifying

a message to serve as
ommon input. Adversary In will play the server role. It will get from B
 a

message M , run the following
ode, and return to B
 the output:

SSim(M)

H HSim(M)

Let j be the index su
h that M =M

j

If j = l then abort else return x

j;s

The \abort" instru
tion above means that In halts its entire
omputation with no output. If this

does not happen then eventually B
 outputs a pair M;x. In returns x and halts.

For the analysis, we
onsider the following events:

GS : d

2 Z

�

'(N)

Win : Verify

H

N;e

(M;x) = 1 and M was not a message with whi
h

B
 initialized the server

NA : The abort instru
tion was never exe
uted by SSim

CG : M

l

=M

We
laim that

Pr [Win j GS ^ NA ^ CG ℄ = Adv

uf-
ma

sds;B

(k) : (10)

This and Lemma 5.1 are used in the following estimates:

Adv

rsa-sti

kg; In

(k) � Pr[Win ℄

� Pr[Win ^ GS ^NA ^ CG ℄

= Pr [Win j GS ^ NA ^ CG ℄ � Pr[GS ^NA ^ CG ℄

= Adv

uf-
ma

sds;B

(k) � Pr[GS ℄ � Pr[NA ^ CG ℄

� Adv

uf-
ma

sds;B

(k) �

8

435 ln(k)

�

1

q(k)

:

This
ompletes the proof of Equation (9).

6.6 Proof of Theorem 5.6

We adapt the proof of se
urity of Chaum's RSA-based blind signature s
heme from [1℄. We asso
iate

to any polynomial-time
lient-adversary B
 a polynomial-time inverter In su
h that for all k we

have

Adv

omf

sds;B

(k) �

435 ln(k)

8

�Adv

rsa-
ti

kg; In; n

(k) ; (11)

where n(�) � 1 is a polynomially-bounded, polynomial time
omputable fun
tion su
h that the

number of server-intera
tions initiated by B
, plus the number of hash-ora
le queries it makes, is

stri
tly upper bounded by n(k). The theorem follows.

Adversary In takes as input an RSA publi
 key N; e, se
urity parameter k, and a sequen
e

y

1

; : : : ; y

n(k)

of points in Z

�

N

. It has a

ess to a (�)

d

mod N ora
le. It begins with the following

initializations:

21

Set
ounter i 0

Pi
k d

at random from f1; : : : ; Ng

Initialize B
 with inputs N; e; d

It now runs B
, who will initiate some number of intera
tions with the server, and also make

queries to its hash-ora
le. A hash-ora
le query M is answered by running the following
ode and

returning to B
 the output.

HSim(M)

If there is a j � i su
h that M

j

=M then return y

j

Else

i i+ 1 ; M

i

 M

Return y

i

B
 will begin ea
h intera
tion with the server by providing values to serve the role of the
lient's

�rst proto
ol
ow. (Sin
e this is a
lient-message s
heme, no message is provided by B
.) Adversary

In will play the server role. It will get from B
 the �rst
ow y; x

, run the following
ode, and

return to B
 the output:

SSim(y; x

)

If y

d

6� x

(mod N) then x ? else x y

d

mod N

Return x

Finally, B
 will output a sequen
e (M

1

; x

1

); : : : ; (M

m+1

; x

m+1

) of pairs. In now exe
utes the

following:

For j = 1; : : : ;m+ 1 do

Run HSim(M

j

)

Let i be su
h that M

j

=M

i

�(j) i

EndFor

It then outputs (m;�; x

1

; : : : ; x

m+1

) and halts.

For the analysis, we
onsider the following events:

GS : d

2 Z

�

'(N)

Win : Verify

H

N;e

(M

j

; x

j

) = 1 for all j = 1; : : : ;m, and

B
 initiated at most m server-intera
tions

We
laim that

Pr [Win j GS ℄ = Adv

omf

sds;B

(k) : (12)

This and Lemma 5.1 are used in the following estimates:

Adv

rsa-
ti

kg; In; n

(k) � Pr[Win ℄

� Pr[Win ^ GS ℄

= Pr [Win j GS ℄ � Pr[GS ℄

= Adv

omf

sds;B

(k) � Pr[GS ℄

� Adv

omf

sds;B

(k) �

8

435 ln(k)

:

This
ompletes the proof of Equation (11).

22

6.7 Proof of Theorem 5.7

This proof is very similar to that of Theorem 5.6. We asso
iate to any polynomial-time
lient-

adversary B
 a polynomial-time inverter In su
h that for all k we have

Adv

omf

sds;B

(k) � Adv

sk-rsa-
ti

kg; In; n

(k) ; (13)

where n(�) � 1 is a polynomially-bounded, polynomial time
omputable fun
tion su
h that the

number of server-intera
tions initiated by B
, plus the number of hash-ora
le queries it makes, is

stri
tly upper bounded by n(k). The theorem follows.

Adversary In takes as input an RSA publi
 key N; e, a value d

1

2 Z

�

'(N)

, se
urity parameter k, and

a sequen
e y

1

; : : : ; y

n(k)

of points in Z

�

N

. It has a

ess to a (�)

d

2

mod N ora
le. It begins with the

following initializations:

Set
ounter i 0

d

 d

1

Initialize B
 with inputs N; e; d

It now runs B
, who will initiate some number of intera
tions with the server, and also make

queries to its hash-ora
le. A hash-ora
le query M is answered by running the following
ode and

returning to B
 the output.

HSim(M)

If there is a j � i su
h that M

j

=M then return y

j

Else

i i+ 1 ; M

i

 M

Return y

i

B
 will begin ea
h intera
tion with the server by providing values to serve the role of the
lient's

�rst proto
ol
ow. (Sin
e this is a
lient-message s
heme, no message is provided by B
.) Adversary

In will play the server role. It will get from B
 the �rst
ow y, run the following
ode, and return

to B
 the output:

SSim(y)

x

s

 y

d

2

mod N

Return x

s

Finally, B
 will output a sequen
e (M

1

; x

1

); : : : ; (M

m+1

; x

m+1

) of pairs. In now exe
utes the

following:

For j = 1; : : : ;m+ 1 do

Run HSim(M

j

)

Let i be su
h that M

j

=M

i

�(j) i

EndFor

It then outputs (m;�; x

1

; : : : ; x

m+1

) and halts.

For the analysis, we
onsider the following event:

Win : Verify

H

N;e

(M

j

; x

j

) = 1 for all j = 1; : : : ;m, and

B
 initiated at most m server-intera
tions

23

It is easy to see that

Adv

rsa-
ti

kg; In; n

(k) � Pr[Win ℄ = Adv

omf

sds;B

(k) ;

and this
ompletes the proof of Equation (13).

Referen
es

[1℄ M. Bellare, C. Namprempre, D. Point
heval and M. Semanko. The one-more-RSA-inversion

problems and the se
urity of Chaum's blind signature s
heme. Re
ord 2001/002, IACR Cryptology

ePrint ar
hive, http://eprint.ia
r.org. Preliminary version, entitled The power of RSA inversion

ora
les and the se
urity of Chaum's RSA-based blind signature s
heme, in Finan
ial Cryptography

'01, Le
ture Notes in Computer S
ien
e Vol. 2339, P. Syverson ed., Springer-Verlag, 2001.

[2℄ M. Bellare and P. Rogaway. Random ora
les are pra
ti
al: A paradigm for designing eÆ
ient

proto
ols. Pro
eedings of the 1st Annual Conferen
e on Computer and Communi
ations Se
urity ,

ACM, 1993.

[3℄ M. Bellare and P. Rogaway. The exa
t se
urity of digital signatures|how to sign with RSA and

Rabin. Advan
es in Cryptology { EUROCRYPT '96, Le
ture Notes in Computer S
ien
e Vol. 1070,

U. Maurer ed., Springer-Verlag, 1996.

[4℄ D. Boneh and M. Franklin. EÆ
ient generation of shared RSA keys. Advan
es in Cryptology {

CRYPTO '97, Le
ture Notes in Computer S
ien
e Vol. 1294, B. Kaliski ed., Springer-Verlag, 1997.

[5℄ C. Boyd. Digital multisignatures. In Cryptography and Coding, H. Beker and F. Piper eds., Oxford

University Press, 1989, pp. 241{246.

[6℄ R. Canetti, O. Goldrei
h and S. Halevi. The random ora
le methodology, revisited. Pro
eed-

ings of the 30th Annual Symposium on the Theory of Computing, ACM, 1998. Available as Re
ord

1998/011, IACR Cryptology ePrint ar
hive, http://eprint.ia
r.org.

[7℄ D. Chaum. Blind signatures for untra
eable payments. In Advan
es in Cryptology { CRYPTO '82,

Le
ture Notes in Computer S
ien
e, D. Chaum, R. Rivest, and A. Sherman, editors, Plenum Press,

1983.

[8℄ J. Coron. On the exa
t se
urity of full domain hash. Advan
es in Cryptology { CRYPTO '00, Le
ture

Notes in Computer S
ien
e Vol. 1880, M. Bellare ed., Springer-Verlag, 2000.

[9℄ R. Cramer and V. Shoup. Signature s
hemes based on the strong RSA assumption. ACM Trans-

a
tions on Information and System Se
urity, 3(3):161{185, Aug. 2000.

[10℄ A. De Santis, Y. Desmedt, Y. Frankel and M. Yung. How to share a fun
tion se
urely. Pro-

eedings of the 26th Annual Symposium on the Theory of Computing, ACM, 1994.

[11℄ Y. Desmedt and Y. Frankel. Threshold
ryptosystems. Advan
es in Cryptology { CRYPTO '89,

Le
ture Notes in Computer S
ien
e Vol. 435, G. Brassard ed., Springer-Verlag, 1989.

[12℄ Y. Frankel, P. Ma
Kenzie and M. Yung. Robust eÆ
ient distributed RSA key generation.

Pro
eedings of the 30th Annual Symposium on the Theory of Computing, ACM, 1998.

[13℄ R. Ganesan. Yaksha: Augmenting Kerberos with publi
-key
ryptography. Pro
eedings of the ISOC

Network and Distributed Systems Se
urity Symposium, 1995.

[14℄ R. Ganesan. Yaksha: Towards reusable se
urity infrastru
tures. Ph.D thesis, Johns Hopkins Univer-

sity, 1996.

[15℄ R. Ganesan and Y. Ya
obi. A se
ure joint signature and key-ex
hange system. Bell
ore TM-24531,

O
tober 1994.

[16℄ R. Gennaro, S. Halevi, and T. Rabin. Se
ure hash-and-sign signatures without the random

ora
le. Advan
es in Cryptology { EUROCRYPT '99, Le
ture Notes in Computer S
ien
e Vol. 1592,

J. Stern ed., Springer-Verlag, 1999.

24

[17℄ R. Gennaro, S. Jare
ki, H. Kraw
zyk and T. Rabin. Robust and eÆ
ient sharing of RSA

fun
tions. Advan
es in Cryptology { CRYPTO '96, Le
ture Notes in Computer S
ien
e Vol. 1109,

N. Koblitz ed., Springer-Verlag, 1996.

[18℄ N. Gilboa. Two-party RSA key generation. Advan
es in Cryptology { CRYPTO '99, Le
ture Notes

in Computer S
ien
e Vol. 1666, M. Wiener ed., Springer-Verlag, 1999.

[19℄ S. Goldwasser, S. Mi
ali and R. Rivest. A digital signature s
heme se
ure against adaptive

hosen-message atta
ks. SIAM Journal of Computing, 17(2):281{308, April 1988.

[20℄ P. Ma
Kenzie and M. Reiter. Networked
ryptographi
 devi
es resilient to
apture. Pro
eedings

of the IEEE Symposium on Se
urity and Priva
y, IEEE, 2001.

[21℄ P. Ma
Kenzie and M. Reiter. Two-party generation of DSA signatures. Advan
es in Cryptology

{ CRYPTO '01, Le
ture Notes in Computer S
ien
e Vol. 2139, J. Kilian ed., Springer-Verlag, 2001.

[22℄ D. Point
heval and J. Stern. Se
urity arguments for digital signatures and blind signatures.

Journal of Cryptology, 13(3):361{396, 2000.

[23℄ G. Poupard and J. Stern. Generation of shared RSA keys by two parties. Advan
es in Cryptology

{ ASIACRYPT '98, Le
ture Notes in Computer S
ien
e Vol. 1514, D. Pei ed., Springer-Verlag, 1998.

[24℄ RSA Laboratories. PKCS#1: RSA Cryptography Standard. http://www.rsalabs.
om/pk
s/

pk
s-1/index.html.

[25℄ J. Rosser and L. S
hoenfeld. Approximate formulas for some fun
tions of prime numbers. Illinois

J. of Math, 6:64{94, 1962.

[26℄ SingleSignOn.Net. http://www.singlesignon.net.

[27℄ A. Yao. How to Generate and Ex
hange Se
rets. Pro
eedings of the 27th Symposium on Foundations

of Computer S
ien
e, IEEE, 1986.

A Relations between RSA related problems

Note that the RSA-STI and RSA-CTI

1

problems are identi
al, so that RSA-CTI
an be
onsidered

a natural extension of RSA-STI. For further information regarding the RSA-CTI problem and its

relation to other problems, refer to [1℄.

The natural question with regard to the new Split-Key-RSA-CTI problem we have introdu
ed

is its relation to the RSA-CTI problem. A simple observation is that splitting the key
annot make

the adversary's task harder, meaning that if the Split-Key-RSA-CTI problem is hard then so is the

RSA-CTI problem. The following Proposition provides the formal statement and is proved below.

Proposition A.1 Let kg be an RSA key generator and let n : N! N be a (polynomially bounded,

polynomial time
omputable) fun
tion of the se
urity parameter su
h that n(k) � 1 for all k 2 N.

If the Split-Key-RSA-CTI

n

problem is hard with respe
t to kg then the RSA-CTI

n

problem is

hard with respe
t to kg.

The more interesting question is whether the hardness of the RSA-CTI problem implies the hardness

of the Split-Key-RSA-CTI problem. We do not see how to prove this in general. However, we note

that one
an prove that the hardness of RSA-CTI

n

implies the hardness of Split-Key-RSA-CTI

n

in the spe
ial
ase that n(�) = 1. The reason this
ase is di�erent is that the sk-rsa-
ti adversary is

allowed no ora
le queries. The reason it is still somewhat non-trivial is that the sk-rsa-
ti adversary

does, however, re
eive d

1

as input. The result is summarized in the following Proposition and proved

below. Note that RSA-CTI

1

is the same as RSA-STI, so we are saying that the three problems

RSA-STI, RSA-CTI

1

and Split-Key-RSA-CTI

1

are all equivalent in hardness.

25

Proposition A.2 Let kg be an RSA key generator. If the RSA-CTI

1

problem is hard with respe
t

to kg, then the Split-Key-RSA-CTI

1

problem is hard with respe
t to kg.

This tells us that the splitting of the key results in (possibly) more power to the adversary due to

a
ombination of reasons: the fa
t that it has d

1

as input and the fa
t that it has a (�)

d

2

mod N

ora
le.

Proof of Proposition A.1: We asso
iate to any polynomial-time rsa-
ti adversary A a polynomial-

time sk-rsa-
ti adversary B su
h that for all k we have

Adv

rsa-
ti

kg; A; n

(k) � Adv

sk-rsa-
ti

kg; B; n

(k) : (14)

The Proposition follows. Adversary B has inputN; e; d

1

; k; y

1

; : : : ; y

n(k)

and a

ess to a (�)

d

2

mod N

ora
le. It runs A on inputs N; e; k; y

1

; : : : ; y

n(k)

. When A makes a query v to its (�)

d

mod N ora
le,

B queries v

d

1

mod N to its (�)

d

2

mod N ora
le to get a response w, and returns w to A as the

answer to A's ora
le query. B outputs whatever A outputs. It is easy to see that the simulation of

A's (�)

d

mod N ora
le that B provides is always
orre
t, and hen
e that Equation (14) is true. We

omit the details.

Proof of Proposition A.2: We asso
iate to any polynomial-time sk-rsa-
ti adversary B a

polynomial-time rsa-
ti adversary A su
h that for all k we have

Adv

sk-rsa-
ti

kg; B; 1

(k) �

435 ln(k)

8

�Adv

rsa-
ti

kg; A; 1

(k) : (15)

The Proposition follows. Adversary A has input N; e; k; y

1

. (It also has a

ess to (�)

d

mod N ora
le

but is allowed zero queries to it, so we
an imagine the ora
le is absent.) Not knowing '(N) it
annot

pi
k d

1

at random from Z

�

'(N)

, so instead it pi
ks d

1

at random from f1; : : : ; Ng, and runs B on

inputsN; e; d

1

; k; y

1

. It outputs whatever B outputs. (Sin
e B too is allowed zero ora
le queries, the

output is obtained dire
tly.) The simulation of B is
orre
t as long as d

1

is uniformly distributed in

Z

�

'(N)

, and this is true with probability at least 8=[435 ln(k)℄ by Lemma 5.1. Equation (15) follows.

We omit the details.

26

