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Abstrat

In a two-party RSA signature sheme, a lient and server, eah holding a share of an RSA

deryption exponent d, ollaborate to ompute an RSA signature under the orresponding publi

key N; e known to both. This primitive is of growing interest in the domain of server-aided

password-based seurity, where the lient's share of d is based on its password. To minimize

ost, designers are looking at very simple, pratial protools based on the early ideas of Boyd,

but their seurity is unlear. We analyze a lass of these protools. We suggest two notions of

seurity for two-party signature shemes and provide proofs of seurity for the shemes in our

lass based on assumptions about RSA and the hash funtion underlying the sheme.
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1 Introdution

We onsider a standard RSA-based signature sheme of the \hash-then-derypt" variety, meaning

the publi key is N; e, the seret key is d, and the signature of message M is H(M)

d

mod N , where

H is a publi hash funtion, N is an RSA modulus, e is an enryption exponent, and d is the

orresponding deryption exponent. However, instead of there being a single signer, the publi key

is assoiated to a pair of entities that we all the lient and the server. The deryption exponent

d is not held by any individual party, but rather is split into shares d



and d

s

, and these are held

by the lient and server, respetively. A ollaborative omputation, or signing protool, is used to

produe a signature for the lient.

Basi idea. RSA, due to its algebrai properties, lends itself naturally to ollaborative signature

omputation. The earliest suggestion of whih we are aware is due to Boyd [5℄. The deryption

exponent is split multipliatively, meaning

d



d

s

� d (mod '(N)) : (1)

Collaborative signature omputation is then based on the equation

H(M)

d

� H(M)

d



d

s

mod N : (2)

While this basi idea is old and well-known, it does not seem to have been appreiated that variations

in the way it is used give rise to di�erent protools that have perhaps unexpetedly di�erent seurity

properties.

The protools. This paper onsiders a family of natural and simple two-party signature shemes

based on diret exploitation of Equation (2). We divide them into two lasses. In the ommon-

message lass of shemes, the message M to be signed is a ommon input to lient and server.

Within this lass we onsider two protools, di�ering aording to who goes �rst:

MCS : Client sends x



= H(M)

d



mod N to the server; server omputes signature x =

x

d

s



mod N , veri�es it, and returns it to lient.

MSC : Server sends x

s

= H(M)

d

s

mod N to lient; lient omputes signature x = x

d



s

mod N .

In the lient-message lass of shemes, the message M to be signed is input to the lient but not

to the server. Within this lass we again onsider two protools, di�ering aording to who goes

�rst with regard to omputing a \partial" signature:

HCS : Client sends y; x



to the server where y = H(M) and x



= y

d



mod N ; server omputes

signature x = x

d

s



mod N , veri�es that x

e

� y (mod N), and returns x to lient.

HSC : Client sends y to the server where y = H(M); server sends x

s

= y

d

s

mod N to lient;

lient omputes signature x = x

d



s

mod N .

The leading \M" in the names of the ommon-message protools stands for the \Message" that

both parties know, while the leading \H" in the names of the lient-message protools stands for

the \Hash" that the lient ows to the server. The other letters reet the order in whih the Client

and Server use their shares of the deryption exponent in the protool.

In this paper we analyze the seurity of the above four protools with regard to meeting well-

de�ned modern ryptographi goals in provable ways. We �nd that the seurity goals, and the

assumptions on the underlying primitives required to prove seurity, vary from protool to protool

in a perhaps surprising way.

Motivation. This work is motivated by reent pratial interest in two-party RSA signature

shemes. Several ompanies are working on produts that enable server-aided password-based

ryptography. Ganesan [13℄ had suggested that d



be based on a lient password. The server ould
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be implemented via a smartard, or be a devie on the network as in [26℄. This is an attrative

model in the fae of the diÆulties of PKI, espeially beause of the so-alled \instant revoation"

apability it o�ers. Upon password ompromise, the lient an revoke the publi key by informing

the server that it is no longer valid. Sine every signature produed under the publi key involves

the server, revoation takes immediate e�et, unlike in PKI where there may be a time-lag between

atual revoation and a signature-veri�er's reeipt of the revoation list.

Why all these protools? In developing protools based on Equation (2), pratitioners are likely

to explore variations based on bene�ts they bring in terms of funtionality, performane, and ease

of implementation. The four protools above represent some lines along whih hoies an be made,

as we now disuss.

In providing the message M to be signed to both parties, the ommon-message protools repre-

sent the abstration, standard in seure two-party omputation (f. [27℄), that relevant inputs are

agreed upon in advane. These are the �rst protools to onsider, and they deserve analysis. In

pratie however, the message typially originates with the lient, who must ow it to the server if

the latter is to be made aware of it. Prationers may want to avoid owing the message, instead

owing the short message hash. (Motivations vary. If the server is a smartard, it will not have

storage for the long message. Even if the server is on the network, one prefers to redue bandwidth

by sending the short message-hash rather than the possibly long message. In either setting, a

lient may prefer to avoid the blatant violation of privay represented by sending the message to be

signed to the server.) This leads us to onsider the lient-message lass of protools in this paper.

The other dimension, namely whether the lient or the server is the �rst to ompute a partial

signature, is a natural one, and implementers may have a preferene based on some performane

or onveniene riterion. This leads us to onsider two protools in eah lass.

Implementers or would be implementers who are hoosing between these protools, based on

performane or funtionality, would bene�t from being aware of how they ompare with regard to

seurity. The analyses and results in this paper are direted at providing suh information.

Seurity goals. The �rst question to ask towards providing meaningful seurity analyses is: what

are the adversarial models and target seurity goals for these protools?

In line with the types of appliations being envisaged, we view the server as trusted. The �rst

seurity goal that omes to mind is to prevent forgery by a third party. We suggest however that

this goal is too weak, and instead ask that forgery be hard even for an adversarial lient who is in

possession of the orret share d



and is allowed to engage in interations with the d

s

-holding server.

(Seurity against third parties is implied by seurity against lient adversaries, so onsideration of

the latter only strengthens the seurity results.) This is appropriate beause we view the server is

a \o-signer" of the lient. A veri�er who aepts a lient signature does so under the belief that

the server \endorses" it, so a lient who sueeds in reating a signature that the server has not

endorsed should be viewed as having been suessful in forgery.

When we seek to formulate the goals more preisely, a dihotomy emerges depending on the

lass of protool. In the ase of ommon-message shemes, we formulate a notion of seurity

against forgery under hosen-message attak analogous to that for standard shemes [19℄. (It asks

that the lient-adversary should �nd it hard to output a valid signature of a message that it did not

previously provide as input to a session with the server.) Client-message shemes, however, are more

like blind signature shemes than standard ones, in that there need be no learly identi�able message

assoiated to an interation between a lient-adversary and the server. Aordingly we formulate a

notion of seurity against one-more-forgery, analogous to that for blind signature shemes [22℄. (It

asks that the lient-adversary should �nd it hard to output a number of valid message-signature

pairs that exeeds the number of sessions of interation in whih it engaged the server.) Ours is the
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�rst work to onsider lient-message shemes, and we onsider this, together with the introdution

of a notion of seurity for them, to be one of the ontributions of this paper.

Implementers should realize that two-party signature shemes from the two di�erent lasses are

inherently di�erent with regard to the type of seurity they an ahieve, so that they an think

about whih goal they want to target. However, one should not view the di�erene as a negative

onnotation with regard to lient-message shemes. The goal of seurity against one-more forgery

that they target is useful and in line with the idea that the role of the server is to \endorse" lient

messages: the veri�er's belief on aepting a signature is not that the server stands behind the

message, but that it authorized a signature, on a message of the lient's hoie, at this point in

time.

Results. Our results are represented in Figure 1. The middle olumn of Figure 1 lists assumptions

about RSA and the hash funtion H, and the strength of the assumptions in this olumn dereases

as one moves down. (The RSA-related omputational problems RSA-STI, RSA-CTI and Split-

Key-RSA-CTI are disussed in Setion 4.) The seurity statements regarding our four shemes are

in the four orner boxes. The arrows show under what assumptions we an establish the seurity

laims in question. The results and their impliations are disussed at length in Setion 5. Proofs

of the theorems stated there are in Setion 6.

Bakground and related work. Boyd's suggestion [5℄ was to split the deryption exponent

as per Equation (1) and then sign message m 2 Z

�

N

by exploiting the equation m

d

� m

d



d

s

mod N .

Seurity analysis of the above was initiated in [5℄ and ontinued in [14, 15℄, but pertains to relatively

weak seurity goals suh as seret-key-reovery sine the \plain" RSA signatures that these shemes

reate are well-known to be subjet to forgery attak. To obtain usable protools and analyses

targetting strong notions of seurity, we have expliitly onsidered and modeled the hash funtion.

One an onsider splitting the deryption exponent additively rather than multipliatively,

namely the shares d



; d

s

satisfy d



+ d

s

� d (mod '(N)). Collaborative signature omputation is

then based on the equation H(M)

d

� H(M)

d



�H(M)

d

s

(mod N). The issues and analyses for this

ase are similar to, and somewhat simpler than, those for the ase of multipliative splitting that

we onsider, and in order to avoid repetitiveness, we do not detail the results related to additive

splitting.

MaKenzie and Reiter [20℄ onsider a setting where the lient is implemented as a password-

ontrolled devie. The ore of their S-RSA protool is the additive-splitting version of MSC. This is

enhaned to ahieve numerous seurity properties that we do not onsider here. (Their devie does

not hold d



but rather holds an enryption of it under the server publi key, so that ompromise of

the devie does not provide d



to the adversary.) Their proof of seurity for S-RSA inludes at its

ore a proof of seurity against forgery under hosen-message attak for the additive-splitting version

of MSC. Sine adapting this to the multiplative-splitting based MSC we onsider here is entirely

diret, the result about the seurity of MSC that we state as Theorem 5.5 should be onsidered as

due to [20℄. (We provide a proof for ompleteness and beause it is a useful introdution to the

other proofs in this paper, but the ideas in the proof are entirely those of [20℄.) We remark that

our onsideration of the HCS and HSC protools reets some questions raised in [20℄ regarding

the loss in privay inurred by MSC in providing the server with the message to be signed.

Two-party signature shemes are part of the general approah of seure two-party omputation

[27℄ and threshold ryptography [11℄. Threshold ryptography has however onentrated more on

the ase of n � 3 parties. Distribution of the RSA funtion (whih yields distributed signatures) is

onsidered in this setting in [11, 10, 17℄. Split-key shemes for DSA signatures are proposed in [21℄.
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Figure 1: Results: Here A ! B means that if A is true then so is B. That is, if we assume A

then we an prove B. The boxes in the middle olumn represent assumptions about RSA and the

hash funtion H, and the strength of the assumptions dereases as we move down. The four orners

of the piture indiate our four two-party signature shemes with their assoiated seurity goals.

Arrows are annotated with pointers to justi�ations, in some ases a Theorem or Proposition in

this paper, in other ases a known result for whih a itation is provided.
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2 The setup and the shemes

RSA key generators. An RSA modulus is an integer whih is a produt of two distint,

odd primes. An RSA key generator is a (randomized) algorithm whih on input of a seurity

parameter k returns N; e; d; p; q where p; q are primes, N = pq is an RSA modulus satisfying

2

k�1

� N < 2

k

, and e; d 2 Z

�

'(N)

are, respetively, enryption and deryption exponents, satisfying

ed � 1 (mod '(N)). (Here '(�) is the Euler totient funtion.)

There are many di�erent possible RSA key generators, varying for example in the hoie of e or

the types of primes hosen. In order to highlight the fat that the de�nitions and results here apply

to any RSA key generator, we do not pin down any partiular generator, but instead parameterize

de�nitions and results by a hoie of generator.

Base signature sheme. We assoiate to any RSA key generator kg a base digital signature

sheme ds = (kg;Sign;Verify) of the standard \hash-then-derypt" variety. The lient has

publi key (N; e) and seret key (N; d), where N; e; d are obtained by running kg(k). The lient's

signature of a message M is the value Sign

H

N;d

(M) = H(M)

d

mod N , where H: f0; 1g

�

! Z

�

N

is a publi hash funtion, and veri�ation is de�ned via Verify

H

N;e

(M;x) = 1 i� x

e

� H(M)

(mod N). The bulk of standardized shemes have this form, although they might di�er in how

they implement the hash funtion H (f. [24℄).

The two-party setting. In the stand-alone lient setting whih one usually envisages, the lient

is in possession of the deryption exponent d that enables signature omputation. In the two-party

setting, the lient does not hold d. Instead, d is \split" into two parts, d



and d

s

, alled the shares

of d. The lient holds d



while the server holds d

s

. (Additionally, both parties know N; e). When

the lient wishes to obtain the signature x = H(M)

d

mod N of a message M , it interats with the

server to this end, via a two-party signature protool.

There are several ways in whih d might be split. In an additive split, d



+d

s

� d (mod '(N)),

while in a multipliative split, d



d

s

� d (mod '(N)). Either type of split lends itself equally well

to two-party based signing (f. [5℄). In this paper we will fous on the multipliative split.

We require ompatibility with the underlying base signature sheme, in the sense that the

signature omputed as a result of the signature protool is required to be the same as would

have been omputed in the stand-alone setting. In other words, although the signature generation

proess has hanged, the signature veri�ation algorithm has not.

Two-party signature shemes. Let kg be an RSA key generation algorithm and let ds be

an assoiated base signature sheme. The spei�ation of a partiular ds-ompatible two-party

signature sheme takes the form sds = (kg;Client;Server;Verify), where the last omponent

Verify is the veri�ation algorithm of the base signature sheme, and the other omponents are

as follows.

The split-key generation algorithm kg, on input k, �rst runs kg to obtain N; e; d; p; q, and then

splits d into the shares d



; d

s

, returning an output N; e; d



for the lient, and N; e; d

s

for the server.

In this paper, the splitting proess is �xed to the following: the algorithm hooses d



at random

from Z

�

'(N)

and then sets d

s

= d � d

�1



mod '(N). (Notie that in order to do this, the algorithm

must know '(N), whih it does sine the latter equals (p� 1)(q� 1), and it has p; q via the output

of kg.) Thus kg is fully spei�ed one kg is spei�ed.

We imagine that the split-key generation algorithm is run by a trusted dealer who seurely

delivers eah party its share, and then dies. (In pratie, there are many ways that one might hose

to perform the splitting of d and distribution of shares. One possibility is a key generation protool,

either between the two parties [23, 18℄ or involving another party [4, 12℄. Another possibility is that
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it is done by a trusted party who in some ases might be the server itself. We are not onerned

here with this issue, but rather with the seurity of the signature protools, and aordingly assume

a magially and orretly performed distribution of the shares.)

TheClient and Server omponents of the sheme represent the ode that the lient and server,

respetively, are supposed to exeute in the protool to obtain a joint signature of a message. The

lient ode is initialized with N; e; d



, while the server ode is initialized with N; e; d

s

. The lient

ode additionally takes input a messageM , and then initiates an interation with the server. At the

end of the interation the lient outputs a value x 2 Z

�

N

. It is required that an interation between

properly initialized Client and Server on server input M result in output of the signature of M ,

meaning Verify

H

N;e

(M;x) = 1.

Types of two-party shemes. We distinguish two types of two-party signature shemes. In a

ommon-message sheme, the message M to be signed is input not only to the lient but also to

the server. (There are various ways in whih this might happen in pratie, the most ommon of

whih is that the lient ows M to the server. However, as our goal again is to be general, we do

not wish to make an assumption regarding how the server knows the message, and in the model

simply provide it as an input to the server. We stress that it is a model assumption that the two

parties have the same message as input, and also that the Server ode expets M as input and

will not funtion if this is not provided.) In a lient-message sheme, the message M to be signed is

provided as input to the lient but not to the server. (This does not mean that the server does not

know M , sine it might as a result of the protool ows. But we do not assume the server knows

M .) This type of sheme reets the possibility that the lient will prefer not to ow the message,

either beause it wants to keep the message private, or beause it wants to save on bandwidth on

server-storage by transmitting the short message-hash instead of the (possibly long) message.

As we will see later, the motivation for separating these two types of shemes is that seurity-

wise, they annot be treated equally: the notions of seurity they an target are neessarily di�erent.

Four two-party signature shemes. In this paper we onsider the four spei� two-party

signature shemes whose signing protools are illustrated in Figure 2. (The shemes all have the

same split-key generation algorithm kg and veri�ation algorithm Verify, as ditated by the

underlying base signature sheme with whih they are ompatible, so we tend to identify eah

sheme with the desription of its Client and Server omponents as given in the �gures). The

shemes in the �rst row of Figure 2 are of the ommon-message type, while those in the seond

row are of the lient-message type. In this paper we are interested in the seurity of these four

two-party signature shemes, with partiular regard to answering the following question about eah

sheme: What an be proven about the seurity of the sheme, and under what assumptions on

the underlying primitives?

3 Seurity notions for two-party signature shemes

Seurity of the base signature sheme. The seurity requirement of a standard signature

sheme (in our ase, the base signature sheme ds) is that it be seure against forgery under

hosen-message attak [19℄. This is formalized by assoiating to any Fg algorithm and value k of

the seurity parameter an experiment, as follows. The forger is given input the publi key N; e and

has orale aess to Sign

H

N;d

(�), the keys being seleted via kg(k). (If we are in a random orale

model, it also has orale aess to H, the latter hosen at random [2℄.) The forger is said to be

suessful if it outputs a pair M;x suh that Verify

H

N;e

(M;x) = 1 but M was not \legitimately

signed," meaning a query to the sign orale. The advantage of Fg, denoted Adv

uf-ma

ds;Fg

(k), is its

8
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-
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�
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probability of suess, taken over the oins of kg(k), the oins of Fg if any, and the random hoie

of H if we are in a random orale model. The sheme ds is said to be seure against forgery under

ma if the funtion Adv

uf-ma

ds;Fg

(�) is negligible for every poly(k)-time algorithm Fg.

Issues in seurity of two-party signature shemes. The seurity model we adopt is that

the server is trusted, but the lient is not. We imagine that the orret lient ode Client is

replaed by an adversary B. The latter is initialized with N; e and the lient's share d



of the

deryption exponent, and will engage the (trusted) server Server

H

N;e;d

s

(the subsripts denoting

the keys with whih the server is initialized) in a sequene of interations, with the purpose of

eventually produing a forgery. (Note that this adversarial model is stronger than one in whih we

onsider a \mere" forger who has N; e and orale aess to Client

H

N;e;d



and Server

H

N;e;d

s

. We are

allowing the forger to additionally \orrupt" the lient and obtain d



, so that our B an ertainly

do anything that a \mere" forger an do, but possibly an do more.)

With this setup, we would like to mimi the notion of seurity for the base sheme. We would say

that the adversary is suessful if it outputs a pairM;x suh that Verify

H

N;e

(M;x) = 1 butM was

\not legitimately signed." The diÆulty is in how to interpret the phrase in quotes, and it here that

we see the motivation for having made a distintion between ommon-message and lient-message

shemes. In a ommon-message sheme, eah interation with the server has a learly identi�ed

message input for the server, to whih the adversary must ommit to start the interation. In this

ase, \not legitimately signed" an be interpreted just as in the ase of the base sheme, meaning

Server

H

N;e;d

s

has not engaged in an interation with the message in question as input. In a lient-

message sheme, however, interations between an adversary lient and Server

H

N;e;d

s

may not have

any identi�able underlying message, so the phrase \not legitimately signed" has no reasonable

interpretation. This situation is analogous to that in a blind signature sheme, and aordingly we

will turn to the de�nitional approah of \one-more-forgery" used in that ontext [22℄: suess for

the adversary means that it outputs a number of valid message-signature pairs that exeeds the

number of interations in whih it engaged with the server. Let us now detail the two de�nitions.

Seurity of ommon-message shemes. Let sds = (kg;Client;Server;Verify) be a two-

party, ommon-message signature sheme. We assoiate to any adversary lient B and value k of

the seurity parameter an experiment, as follows. Run kg(k) to get (N; e; d



) and (N; e; d

s

). (If we

are in a random orale model, also pik H at random.) Provide B with input N; e; d



and allow it

to engage in interations with Server

H

N;e;d

s

. (If we are in a random orale model, also give it orale

aess to H.) Sine the sheme is a ommon-message one, B must begin eah interation with

Server

H

N;e;d

s

by speifying a message to server as input to the server. However B an hoose lient

messages as it pleases in these interations, and in partiular di�erently from what Client

N;e;d



.

The adversary B is said to be suessful if it outputs a pair M;x suh that Verify

H

N;e

(M;x) = 1

butM was never provided by B as message-input to Server

N;e;d

s

. The advantage of B, denoted

Adv

uf-ma

sds;B

(k), is its probability of suess, taken over the oins of kg(k), the oins Server

N;e;d

s

,

the oins of B if any, and the random hoie of H if we are in a random orale model. The sheme

sds is said to be seure against forgery under ma if the funtion Adv

uf-ma

sds;B

(�) is negligible for

every poly(k)-time lient adversary B.

Seurity of lient-message shemes. Let sds = (kg;Client;Server;Verify) be a two-

party, lient-message signature sheme. We assoiate to any adversary lient B and value k of

the seurity parameter an experiment, as follows. Run kg(k) to get (N; e; d



) and (N; e; d

s

). (If

we are in a random orale model, also pik H at random.) Provide B with input N; e; d



and

allow it to engage in interations with Server

H

N;e;d

s

. (If we are in a random orale model, also

give it orale aess to H.) In these interations, B an hoose lient messages as it pleases, and
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in partiular make hoies di�erent from those of Client

N;e;d



. The adversary B is said to be

suessful if it outputs a sequene of pairs (M

1

; x

1

); : : : ; (M

m+1

; x

m+1

) suh that the following are

true: (1) Verify

H

N;e

(M

i

; x

i

) = 1 for all i = 1; : : : ;m + 1, and (2) the number of interations that

B initiated with Server

N;e;d

s

is at most m. The advantage of B, denoted Adv

omf

sds;Fg

(k), is its

probability of suess, taken over the oins of kg(k), the oins Server

N;e;d

s

, the oins of B if

any, and the random hoie of H if we are in a random orale model. The sheme sds is said to

be seure against one-more-forgery if the funtion Adv

omf

sds;B

(�) is negligible for every poly(k)-time

lient adversary B.

4 The RSA-related omputational problems

In this setion, we provide de�nitions of the three RSA related omputational problems RSA-STI,

RSA-CTI, and Split-Key-RSA-CTI on whose assumed seurity are results are based. We present

and prove some relations between these problems in Appendix A. The de�nitions are parameterized

by an arbitrary RSA key generator kg.

RSA-STI. Let kg be an RSA key generator and let In be an algorithm, referred to in this ontext

as an rsa-sti-adversary. Consider the following experiment:

Experiment Exp

rsa-sti

kg; In

(k)

(N; e; d; p; q)

R

 kg(k) ; y

R

 Z

�

N

; x In(N; e; k; y)

If x

e

� y (mod N) then return 1 else return 0

The rsa-sti-advantage of In, denoted Adv

rsa-sti

kg; In

(k), is the probability that experiment Exp

rsa-sti

kg; In

(k)

returns 1. The RSA-STI problem is said to be hard with respet to kg |in more standard

terminology, RSA is said to be one-way with respet to kg| if the funtionAdv

rsa-sti

kg; In

(�) is negligible

for any poly(k)-time In. The assumption that RSA-STI is hard is simply the assumption that RSA

is a one-way funtion, and is standard, but for onsisteny with problems onsidered later in this

paper we use the phrase \RSA-STI is hard" in plae of \RSA is a one-way funtion."

RSA-CTI. The RSA-CTI problem is one of a lass of problems de�ned, and related to eah other,

in [1℄. They showed that the assumption that the RSA-CTI problem is hard suÆes to prove the

seurity against one-more-forgery of Chaum's RSA-based blind signature sheme [7℄ in the random

orale model. The resemblane of the lient-message two-party shemes to blind signature shemes

with regard to seurity goals (one-more-forgery) makes it natural that the RSA-CTI problem is

relevant here too. The problem itself is extension of the RSA-STI problem in whih the adversary

gets an inversion orale, namely an orale for (�)

d

mod N , and must invert RSA at m + 1 target

points using at most m orale alls. The adversary must hoose the m + 1 target points from a

sequene of n(k) random input points. The funtion � reets the hoie it makes. We onsider n

as a parameter of the problem.

Let kg be an RSA key generator and let n : N ! N be a (polynomially bounded, polynomial

time omputable) funtion of the seurity parameter suh that n(k) � 1 for all k 2 N. Let In be

an algorithm with aess to an orale, referred to in this ontext as an rsa-ti-adversary. Consider

the following experiment:

Experiment Exp

rsa-ti

kg; In; n

(k)

(N; e; d; p; q)

R

 kg(k) ; For i = 1 to n(k) do y

i

R

 Z

�

N

(m;�; x

1

; : : : ; x

m+1

) In

(�)

d

mod N

(N; e; k; y

1

; : : : ; y

n(k)

)

If the following are all true then return 1 else return 0
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| 0 � m < n(k)

| �: f1; : : : ;m+ 1g ! f1; : : : ; n(k)g is an injetive funtion

| 8i 2 f1; : : : ;m+ 1g : x

e

i

� y

�(i)

(mod N)

| In made at most m orale queries

The rsa-ti-advantage of In, denotedAdv

rsa-ti

kg; In; n

(k), is the probability that experimentExp

rsa-ti

kg; In; n

(k)

returns 1. The RSA-CTI

n

problem is said to be hard with respet to kg if the funtionAdv

rsa-ti

kg; In; n

(�)

is negligible for any poly(k)-time In. The RSA-CTI problem is said to be hard with respet to kg

if RSA-CTI

n

is hard for all polynomially-bounded, polynomial-time omputable funtions n(�) � 1.

The RSA-CTI

1

problem (ie. the ase n(�) = 1) is idential to the RSA-STI problem, and it

is in this sense that the hardness of the RSA-CTI problem an be onsidered an extension of the

standard one-wayness assumption about RSA.

Split-Key-RSA-CTI.We introdue in this paper a Split-Key extension of the RSA-CTI problem.

Let d

1

; d

2

be shares of d, meaning d

1

; d

2

2 Z

�

'(N)

and d

1

d

2

� d (mod '(N)). The adversary has

e; d

1

as input, and an orale for (�)

d

2

mod N . The rest is as in RSA-CTI. Namely let kg be an

RSA key generator and let n : N ! N be a (polynomially bounded, polynomial time omputable)

funtion of the seurity parameter suh that n(k) � 1 for all k 2 N. Let In be an algorithm with

aess to an orale, referred to in this ontext as an sk-rsa-ti adversary. Consider the following

experiment:

Experiment Exp

sk-rsa-ti

kg; In; n

(k)

(N; e; d; p; q)

R

 kg(k) ; M  (p� 1)(q � 1) ; d

1

R

 Z

�

M

; d

2

 d � d

�1

1

modM

For i = 1 to n(k) do N y

i

R

 Z

�

N

EndFor

(m;�; x

1

; : : : ; x

m+1

) In

(�)

d

2

mod N

(N; e; d

1

; k; y

1

; : : : ; y

n(k)

)

If the following are all true then return 1 else return 0

| 0 � m < n(k) and �: f1; : : : ;m+ 1g ! f1; : : : ; n(k)g is injetive

| 8i 2 f1; : : : ;m+ 1g : x

e

i

� y

�(i)

(mod N)

| In made at most m orale queries

The sk-rsa-ti-advantage of In, denoted Adv

sk-rsa-ti

kg; In; n

(k), is the probability that Exp

sk-rsa-ti

kg; In; n

(k)

returns 1. The Split-Key-RSA-CTI

n

problem is said to be hard with respet to kg if the funtion

Adv

sk-rsa-ti

kg; In; n

(�) is negligible for any poly(k)-time In. The Split-Key-RSA-CTI problem is said to be

hard with respet to kg if Split-Key-RSA-CTI

n

is hard for all polynomially-bounded, polynomial-

time omputable funtions n(�) � 1. We stress that the adversary gets d

1

as input, and also gets a

(�)

d

2

mod N orale.

5 Results, disussion and proof ideas

As indiated above, the question we want to answer, for eah of our four two-party signature

sheme, is: what assumptions on the underlying primitives suÆe to guarantee seurity of the

sheme? In this setion we provide the theorem statements, some intuition with regard to why the

four di�erent two-party signature shemes are relying for their seurity on di�erent assumptions

about the underlying primitives, and also the main ideas behind our proofs of seurity. The proofs

of the theorems are in Setion 6. De�nitions of the RSA related omputational problems used as

assumptions are in Setion 4. The results are summarized in Figure 1.

Overview. The middle olumn of Figure 1 lists assumptions about RSA and the hash funtion

H, and the strength of the assumptions in this olumn dereases as one moves down. The seurity

12



statements regarding our four shemes are in the four orner boxes. The six theorems indiated in

Figure 1 an be divided into two sets. Theorems labeling arrows originating in the middle olumn

and ending in one of the four orner boxes represent diret proofs of seurity for the orresponding

two-party signature sheme, and are disussed in Setion 5.2. The theorems labeling the leftmost

and rightmost arrows of the piture are of a di�erent nature, relating di�erent kinds of two-party

shemes to eah other, and are disussed in Setion 5.1. We begin however with a useful lemma.

Tehnial lemma. The following lemma implies that a randomly hosen point has a non-

negligible probability of being a proper lient-share of the deryption exponent, and will be used

to justify the orretness of all our simulations. A proof an be found in Setion 6.1.

Lemma 5.1 Suppose k � 1 is an integer, andN is an RSAmodulus satisfyingN < 2

k

. If an integer

w is drawn at random from f1; : : : ; Ng then Pr[w 2 Z

�

'(N)

℄ is stritly greater than 8=[435 ln(k)℄.

5.1 Relations between two-party shemes

As Figure 1 indiates, we show the following: If one of the two-party signature sheme from the

lient-message family of Figure 2 is seure, then so is the orresponding two-party signature sheme

from the ommon-message family of Figure 2. (That is, if HCS is seure so is MCS, and if HSC is

seure so is MSC.) The formal theorem statements are as follows, with proofs in Setion 6.2 and

Setion 6.3, respetively.

Theorem 5.2 Let ds be a base signature sheme, let SKDS-H be the orresponding HCS two-

party signature sheme, and let SKDS-M be the orresponding MCS two-party signature sheme.

If SKDS-H is seure against one-more forgery, then SKDS-M is seure against forgery under

hosen-message attak.

Theorem 5.3 Let ds be a base signature sheme, let SKDS-H be the orresponding HSC two-

party signature sheme, and let SKDS-M be the orresponding MSC two-party signature sheme.

If SKDS-H is seure against one-more forgery, then SKDS-M is seure against forgery under

hosen-message attak.

We note that these results make no assumptions about the underlying shemes other than that the

meet the stated seurity notions. In partiular the results are true both in a random orale model

and in a standard model. The feature of these results that we feel is interesting is that they relate

shemes of di�erent types (ommon-message versus lient-message) and satisfying di�erent types

of seurity notions (seurity against forgery under ma versus seurity against one-more forgery).

These two general results help larify the high-level piture before we move to analyses of

individual shemes. One impliation, for example, is that the assumption under whih we might

hope to prove the seurity of a lient-message sheme from Figure 2 will be at least as strong as

the assumptions used to prove the seurity of the orresponding ommon-message sheme from

Figure 2.

5.2 Seurity results for the two-party shemes

The minimal assumption. Suppose that the base signature sheme ds, with whih all our two-

party signature shemes are ompatible, is inseure. We laim this implies that all four two-party

signing shemes are inseure. (Given Fg who breaks ds, it is a simple exerise to design, for eah of

the four two-party signature shemes, a lient adversary B that, using Fg as a subroutine, breaks

the two-party signature sheme in question, with the de�nition of \breaking" being onsistent with
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the de�nitions of Setion 3 in either ase. We omit the details.) The impliation is that the seurity

of the base sheme is the minimal assumption under whih we an hope to prove seurity of the

two-party signature shemes, and thus, the �rst question to ask is whether this assumption is also

suÆient.

Seurity of MCS. The minimal assumption that the base signature sheme ds is seure (against

forgery under ma) suÆes to prove that the ommon-message two-party signature sheme MCS is

also seure (against forgery under ma). This is as good as it gets, and says that the MCS sheme

has a strong seurity guarantee. The formal theorem statement is the following.

Theorem 5.4 Let ds be a base signature sheme, and sds the orresponding MCS two-party

signature sheme. If ds is seure against forgery under hosen-message attak, then so is sds.

The proof is provided in Setion 6.4. To better understand what follows however, it is worth

explaining the main ideas of the proof here.

Given B who breaks the MCS sheme, we want to onstrut Fg who breaks ds. The Fg, as

usual, runs B as a subroutine to obtain a forgery M;x that it an output. The main issues are:

how an it provide B with the lient share d



of d, and how an it \simulate" Server

N;e;d

s

?

Sine the forger knows neither d nor '(N), it is unlikely that it an ome up with d



always

distributed exatly as in the output of kg. The strategy it uses is to pik d



at random from

f1; : : : ; Ng, and proeed. Lemma 5.1 shows that d



is orretly distributed with (low but) non-

negligible probability, whih turns out to be enough.

The forger annot be expeted to ome up with d

s

satisfying d



d



� d (mod '(N)), sine

otherwise it ould fator N , so it annot simulate Server

N;e;d

s

diretly. Its strategy is to use

its aess to the sign-orale Sign

N;d

(�). When B initiates an interation with Server

N;e;d

s

on

message M and �rst ow x



, the forger responds with x = Sign

N;d

(M). (We are omitting some

details, like the fat that the forger needs to hek whether or not x



is orret, sine if not it must

return ?. See Setion 6.4.)

Seurity of MSC. The assumption that the base signature sheme ds is seure does not seem

enough, however, to guarantee the seurity of any of the other three shemes. In partiular, merely

having the server go �rst, as in MSC, is enough to provide B with information that might go

beyond that provided by the signature itself. Spei�ally, in MSC, B as usual knows d



, but now

an also obtain H(M)

d

s

for a value M of its hoie, and mere knowledge of the �nal signature

H(M)

d



d

s

mod N does not seem to provide knowledge of H(M)

d

s

mod N to a party knowing d



.

In the tehnialities of the proofs, this translates to saying that the simulation of Server

N;e;d

s

based on aess of Fg to the sign-orale, as above, no longer seems possible.

This does not mean that we know of a weakness in the MSC sheme. It does mean, however,

that its seurity relies on stronger assumptions about the underlying primitives than those that

suÆed to prove seurity of MCS. Our result is that the seurity of MSC an be proved assuming

that the RSA-STI is hard and H is a random orale. The formal statement is the following. The

proof is provided in Setion 6.5.

Theorem 5.5 Let kg be an RSA key generation algorithm, let ds be the orresponding base

signature sheme in the random orale model, and let sds be the orresponding MSC two-party

signature sheme in the random orale model. If the RSA family is one-way with respet to kg,

then sds is seure against forgery under hosen-message attak.

The invoation of the random orale model of ourse puts the assumptions here into a di�erent lass

(f. [6℄). However, one should note that all known proofs of seurity for the \hash-then-derypt"

style base signature sheme that we are onsidering, under the assumption that RSA-STI is hard,
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assume that H is a RO [3, 8℄. (There are alternative base shemes lose in style [16, 9℄, but their

adaptation to a two-party setting has not been investigated.) Thus in terms of pragmati provable-

seurity, the assumption that RSA-STI is hard and H is a RO may be onsidered a relatively

natural strengthening of the assumption that the base signature sheme is seure.

Why does this hange in assumptions suÆe to guarantee seurity? As we saw above, the

onern with MSC is that the value H(M)

d

s

mod N that B an obtain from the server provides

information over and above H(M)

d

mod N . If H is a random orale, however, it an be shown

that H(M)

d

s

mod N is not in fat extra information, by exploiting the idea of the proof of seurity

of the FDH (Full Domain Hash) signature sheme from [3℄, as follows.

Given B who breaks the MSC sheme, we want to onstrut an inverter In who, given N; e; y,

outputs y

d

mod N . It will pik d



at random, in the same manner as the forger in the proof of

seurity of MCS disussed above, and run B on inputs N; e; d



, itself providing answers to the

hash orale queries, and simulating the responses of Server

N;e;d

s

. The inverter an respond to

hash-orale query M with a point of the form r

ed



mod N , having itself piked r at random. This

means that H(M)

d

s

� r (mod N), and so the inverter an provide H(M)

d

s

to B if needed. The

inverter seeks to obtain y

d

mod N by ensuring that H(M) = y for the message M that B outputs

in the forgery. (The diÆulty of this last goal not being ompatible with the simulation strategy is

resolved via a guess as to the hash-orale orresponding to the forgery [3℄. The strategy of [8℄ an

be used to improve the onrete seurity of the redution, but for simpliity in this paper we are

not disussing onrete seurity issues.) For details see Setion 6.5.

Seurity of the lient-message shemes. Denying the server knowledge of the message being

signed results in B being able to obtain y

d

s

for a value y whih it an hoose at will (in HSC) or

almost at will (in HCS), meaning it e�etively has (for HSC) or almost has (for HCS) an orale for

the funtion (�)

d

s

mod N . (In HCS, there is some restrition on the use of the orale, beause B

must be able to provide y

d



mod N when invoking the orale at y.) In ontrast, in the ommon-

message shemes, B ould only obtain values of this orale on points y of the form H(M), having

�rst had to ommit to M ; this tied the use of the orale more losely to the signing funtion of the

base signature sheme and lead to our being able to show (under somewhat di�erent onditions for

MCS and MSC) that, e�etively, the orale did not add muh power over and above signing power.

We observe that the HCS and HSC shemes are analogous to Chaum's RSA-based blind-

signature sheme [7℄, both with regard to the seurity goal (seurity against one-more-forgery)

and the protool issues disussed above. (In Chaum's sheme the forger e�etively has aess to an

orale for the funtion (�)

d

mod N , and wins if it sueeds in one-more forgery.) It is natural to look

in that diretion for analysis ideas. No proof of seurity for Chaum's sheme under the standard

assumption that RSA-STI is hard has appeared, even in a random orale model, and furthermore

there seems little reason to expet one, sine the seurity relies on properties of RSA that seem to

go beyond those reeted in the RSA-STI problem. The situation for HCS and HSC is unlikely

to be better. An analysis approah that seems produtive in suh settings, and was pursued for

Chaum's sheme in [1℄, is to formulate, or distill out, the RSA-related omputational problems that

seem to underly the sheme, and prove seurity assuming these problems are hard. In this manner,

at least one better understands what one is assuming. We use the problems formulated in [1℄ in

our urrent setting.

Seurity of HCS.We prove the seurity of HCS under the same assumption that was used in [1℄

to prove the seurity of Chaum's blind signature sheme, namely that the RSA-CTI (RSA Chosen

Target Inversion) problem is hard and H is a random orale. The formal theorem statement is the

following. The proof is provided in Setion 6.5.

15



Theorem 5.6 Let kg be an RSA key generation algorithm, let ds be the orresponding base

signature sheme in the random orale model, and let sds be the orresponding HCS two-party

signature sheme in the random orale model. If the RSA-CTI problem is hard with respet to kg,

then sds is seure against one-more-forgery.

Chaum's blind signature sheme is not a two-party sheme. By saying that the assumptions un-

derlying it suÆe also to prove seurity of HCS, we are saying that the splitting of the key has

not reated seurity weaknesses beyond those already present in a sheme in whih the adversary

e�etively gets an RSA-inversion orale. The proof of Theorem 5.6 indiates how this is possible,

and we now disuss some of its ideas.

Given B attaking HCS, we are trying to build an adversary A for the RSA-CTI problem.

As in all our proofs, A piks d



at random, and Lemma 5.1 is used to argue that this hoie is a

properly distributed lient-share with non-negligible probability. It then runs B on inputs N; e; d



.

The main issue is how to handle the simulation of Server

N;e;d

s

, whih, as we observed before, is

e�etively providing a (�)

d

s

orale to B. The important point is that the ow from the lient

inludes not just y but also x



, where x



should equal y

d



mod N . Assuming it does, the server's

response is x

s

� x

d

s



� y

d

(mod N), meaning that (�)

d

s

orale an be simulated given aess to a

(�)

d

mod N orale, and thus an be simulated by A sine it has aess to a (�)

d

mod N orale. The

orretness of this simulation relies on the fat that Server

N;e;d

s

heks that the lient omputes

x



orretly (by heking that x

e

s

� y (mod N)) and that A an perform this hek too sine it

knows d



. The assumption that H is a random orale is used in transforming the outputs of B

into ones properly related to the inputs of A. See Theorem 5.6 and its proof for details.

Seurity of HSC. Having the server go �rst introdues an extra seurity risk by giving the

lient-adversary more power. In HCS there is some restrition on the use of the (�)

d

s

mod N orale

e�etively provided to the lient via its aess to Server

N;e;d

s

, namely that when alling this

orale on input y, the lient must supply x



= y

d



mod N . As we saw above, this means that the

(�)

d

s

mod N orale an be simulated via a (�)

d

mod N orale. In HSC, there is no suh brake put

on the lient's aess to the (�)

d

s

mod N orale, and it does not seem possible to simulate it given

aess to a (�)

d

mod N orale. Thus, it appears that the HSC sheme relies for its seurity on

assumptions even stronger than the hardness of the RSA-CTI problem. Indeed, this is the �rst of

the four shemes for whih we have not found a way to avoid expliitly onsidering the key-splitting

in the assumptions. (For all the other shemes, the assumptions related to the (�)

d

mod N funtion,

meaning to the original RSA problem.)

We prove the seurity of HSC based on the assumption that the Split-Key-RSA-CTI problem

is hard and H is a random orale.

Theorem 5.7 Let kg be an RSA key generation algorithm, let ds be the orresponding base

signature sheme in the random orale model, and let sds be the orresponding HSC two-party

signature sheme in the random orale model. If the RSA-S-CTI problem is hard with respet to

kg, then sds is seure against one-more-forgery.

The proof, whih an be found in Setion 6.7, is relatively straightforward.

6 Proofs of results in Setion 5

6.1 Proof of Lemma 5.1

We will make use of the following lower bound on '(m)=m, whih an be derived from Rosser and

Shoenfeld [25, Theorem 15℄:

16



Lemma 6.1 If M � 3 is an integer then

'(M)

M

�

1

29 ln ln(M)

:

Proof of Lemma 5.1: The probability in question is

Pr[w 2 Z

�

'(N)

℄ =

'('(N))

N

=

'('(N))

'(N)

�

'(N)

N

:

Sine N is an RSA modulus, it must be that N � 15, implying that '(N) � 3, and thus we an

apply Lemma 6.1, with M = '(N), to lower bound the �rst term above. For the seond term, we

use the fat that '(N) = (p� 1)(q � 1) where p; q are the distint, odd primes suh that N = pq.

From the above we get

Pr[w 2 Z

�

'(N)

℄ �

1

29 ln ln('(N))

�

�

1�

1

p

�

�

�

1�

1

q

�

�

1

29 ln ln('(N))

�

�

1�

1

3

�

�

�

1�

1

5

�

=

8

435 ln ln('(N))

�

8

435 ln ln(N)

>

8

435 ln(k)

:

In the last step we used the bound ln ln(N) � ln(k ln(2)) < ln(k), whih is true beause we have

assumed N < 2

k

.

6.2 Proof of Theorem 5.2

We assoiate to any polynomial-time lient-adversary BM another polynomial-time lient adver-

sary BH suh that for all k we have

Adv

uf-ma

SKDS-M;BM

(k) � Adv

omf

SKDS-H;BH

(k) : (3)

The theorem follows.

Client-adversary BH is initialized with N; e; d



and has aess to Server

N;e;d

s

. It begins with the

following initializations:

Set ounter i 0

Initialize BM with inputs N; e; d



It now runs BM, who will initiate some number of interations with its server. Sine MCS is a

ommon-message sheme, BM must begin an interation with the server by speifying a message

to serve as ommon input. Client-adversary BH will play the server role. It will get from BM

a message M and �rst ow x



, run the following ode, and return to B the output:

If there is a j � i suh that M

j

=M then return x

j

Else

y  H(M)

If x



6� y

d



(mod N) then return ?

17



Else

i i+ 1 ; M

i

 M ; y

i

 y ; x

i;

 x



Send y

i

; x

i;

to Server

N;e;d

s

and get bak x

i

Return x

i

Above, BH is areful to not invoke Server

N;e;d

s

in ases where the latter would return ?, beause

fruitless alls to its server ount against it in a one-more forgery attak. This is important to the

analysis that follows.

Finally,BM will output a pair (M;x). BH exeutes the following:

m i

i i+ 1 ; M

i

 M ; x

i

 x.

It then outputs the list (M

1

; x

1

); : : : ; (M

m+1

; x

m+1

) and halts.

For the analysis, we observe that m is the number of sessions that BH initiated with Server

N;e;d

s

,

beause eah initiation inrements i by one above. Thus, BH is suessful as long as

Verify

H

N;e

(M

j

; x

j

) = 1 (4)

for all j = 1; : : : ;m + 1. Equation (4) is true for j = 1; : : : ;m by virtue of the invoation of

Server

N;e;d

s

, and is true for j = m + 1 if BM is suessful. This ompletes the proof of

Equation (3).

6.3 Proof of Theorem 5.3

This proof is very similar to that of Theorem 5.2. (In fat it is simpler.) We assoiate to any

polynomial-time lient-adversary BM another polynomial-time lient adversary BH suh that

for all k we have

Adv

uf-ma

SKDS-M;BM

(k) � Adv

omf

SKDS-H;BH

(k) : (5)

The theorem follows.

Client-adversary BH is initialized with N; e; d



and has aess to Server

N;e;d

s

. It begins with the

following initializations:

Set ounter i 0

Initialize BM with inputs N; e; d



It now runs BM, who will initiate some number of interations with its server. Sine MSC is a

ommon-message sheme, BM must begin an interation with the server by speifying a message

to serve as ommon input. Client-adversary BH will play the server role. It will get from BM

a message M , run the following ode, and return to B the output:

If there is a j � i suh that M

j

=M then return x

j

Else

i i+ 1 ; M

i

 M ; y

i

 H(M)

Send y

i

to Server

N;e;d

s

and get bak x

i;s

Return x

i;s

Finally,BM will output a pair (M;x). BH exeutes the following:

18



m i

i i+ 1 ; M

i

 M ; x

i

 x.

It then outputs the list (M

1

; x

1

); : : : ; (M

m+1

; x

m+1

) and halts.

For the analysis, we observe that m is the number of sessions that BH initiated with Server

N;e;d

s

,

beause eah initiation inrements i by one above. Thus, BH is suessful as long as

Verify

H

N;e

(M

j

; x

j

) = 1 (6)

for all j = 1; : : : ;m + 1. Equation (6) is true for j = 1; : : : ;m by virtue of the invoation of

Server

N;e;d

s

, and is true for j = m + 1 if BM is suessful. This ompletes the proof of

Equation (5).

6.4 Proof of Theorem 5.4

We assoiate to any polynomial-time lient-adversary B a polynomial-time forger Fg suh that

for all k we have

Adv

uf-ma

sds;B

(k) �

435 ln(k)

8

�Adv

uf-ma

ds;F

(k) : (7)

The theorem follows.

Adversary Fg takes as input an RSA publi key N; e, and has aess to sign-orale Sign

H

N;d

(�). It

begins with the following initializations:

Set ounter i 0

Pik d



at random from f1; : : : ; Ng

Initialize B with inputs N; e; d



Not knowing '(N) it annot pik d



at random from Z

�

'(N)

, so instead it piks d



at random from

f1; : : : ; Ng as above. It now runs B, who will initiate some number of interations with the

server. Sine MCS is a ommon-message sheme, B must begin an interation with the server by

speifying a message to serve as ommon input. Adversary Fg will play the server role. It will get

from B a message M and a ow x



for the server, un the following ode, and return to B the

output:

i i+ 1

M

i

 M ; x

i;

 x



Let w

i;

 H(M

i

)

d



mod N

If x

i;

6= w

i;

then x

i

 ? else x

i

 Sign

H

N;d

(M

i

)

Return x

i

Finally, B will output a pair M;x, whih Fg also outputs and halts.

For the analysis, we onsider the following events:

GS : d



2 Z

�

'(N)

Win : Verify

H

N;e

(M;x) = 1 and M was not a message with whih

B initialized the server.

We laim that

Pr [Win j GS ℄ = Adv

uf-ma

sds;B

(k) : (8)
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The justi�ation for this is as follows. Suppose event GS is true. Then d



is uniformly distributed

in Z

�

'(N)

, and is thus distributed identially to the share of d that is issued to B by the split-key

generation algorithm kg, so the inputs to B are distributed as in the experiment measuring its

advantage. Furthermore, the response x

i

returned by the forger to ow x

i;

is distributed identially

to that whih would have been returned by the real server. Now we an lower bound the advantage

of Fg as follows:

Adv

uf-ma

ds;Fg

(k) � Pr[Win ℄

� Pr[Win ^ GS ℄

= Pr [Win j GS ℄ � Pr[GS ℄

= Adv

uf-ma

sds;B

(k) � Pr[GS ℄

� Adv

uf-ma

sds;B

(k) �

8

435 ln(k)

:

The �rst inequality is true beause if event Win happens, then Fg is ertainly suessful. The

seond inequality is obvious, and the following equality is by Equation (8). The last inequality

used Lemma 5.1. This ompletes the proof of Equation (7).

6.5 Proof of Theorem 5.5

We adapt the proof of seurity of the FDH signature sheme from [3℄, following the proof of

seurity of the S-RSA protool from [20℄. We assoiate to any polynomial-time lient-adversary B

a polynomial-time inverter In suh that for all k we have

Adv

uf-ma

sds;B

(k) �

435 ln(k)

8

� q(k) �Adv

rsa-sti

kg; In

(k) ; (9)

where q(�) denotes a polynomially-bounded funtion suh that the number of server-interations

initiated by B, plus the number of hash-orale queries it makes, is stritly upper bounded by q(k).

The theorem follows.

Adversary In takes as input an RSA publi key N; e, seurity parameter k, and a point y 2 Z

�

N

. It

is seeking to output y

d

mod N . It begins with the following initializations:

Set ounter i 0

Pik d



at random from f1; : : : ; Ng

Pik l at random from f1; : : : ; q(k)g

Initialize B with inputs N; e; d



It now runs B, who will initiate some number of interations with the server, and also make

queries to its hash-orale. A hash-orale query M is answered by running the following ode and

returning to B the output:

HSim(M)

If there is a j � i suh that M

j

=M then return H

j

Else

i i+ 1 ; M

i

 M

x

i;s

R

 Z

�

N

; r

i

 [x

e

i;s

℄

d



mod N

If i = l then H

i

 y else H

i

 r

i

Return H

i
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Sine MSC is a ommon-message sheme, Bmust begin an interation with the server by speifying

a message to serve as ommon input. Adversary In will play the server role. It will get from B a

message M , run the following ode, and return to B the output:

SSim(M)

H  HSim(M)

Let j be the index suh that M =M

j

If j = l then abort else return x

j;s

The \abort" instrution above means that In halts its entire omputation with no output. If this

does not happen then eventually B outputs a pair M;x. In returns x and halts.

For the analysis, we onsider the following events:

GS : d



2 Z

�

'(N)

Win : Verify

H

N;e

(M;x) = 1 and M was not a message with whih

B initialized the server

NA : The abort instrution was never exeuted by SSim

CG : M

l

=M

We laim that

Pr [Win j GS ^ NA ^ CG ℄ = Adv

uf-ma

sds;B

(k) : (10)

This and Lemma 5.1 are used in the following estimates:

Adv

rsa-sti

kg; In

(k) � Pr[Win ℄

� Pr[Win ^ GS ^NA ^ CG ℄

= Pr [Win j GS ^ NA ^ CG ℄ � Pr[GS ^NA ^ CG ℄

= Adv

uf-ma

sds;B

(k) � Pr[GS ℄ � Pr[NA ^ CG ℄

� Adv

uf-ma

sds;B

(k) �

8

435 ln(k)

�

1

q(k)

:

This ompletes the proof of Equation (9).

6.6 Proof of Theorem 5.6

We adapt the proof of seurity of Chaum's RSA-based blind signature sheme from [1℄. We assoiate

to any polynomial-time lient-adversary B a polynomial-time inverter In suh that for all k we

have

Adv

omf

sds;B

(k) �

435 ln(k)

8

�Adv

rsa-ti

kg; In; n

(k) ; (11)

where n(�) � 1 is a polynomially-bounded, polynomial time omputable funtion suh that the

number of server-interations initiated by B, plus the number of hash-orale queries it makes, is

stritly upper bounded by n(k). The theorem follows.

Adversary In takes as input an RSA publi key N; e, seurity parameter k, and a sequene

y

1

; : : : ; y

n(k)

of points in Z

�

N

. It has aess to a (�)

d

mod N orale. It begins with the following

initializations:
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Set ounter i 0

Pik d



at random from f1; : : : ; Ng

Initialize B with inputs N; e; d



It now runs B, who will initiate some number of interations with the server, and also make

queries to its hash-orale. A hash-orale query M is answered by running the following ode and

returning to B the output.

HSim(M)

If there is a j � i suh that M

j

=M then return y

j

Else

i i+ 1 ; M

i

 M

Return y

i

B will begin eah interation with the server by providing values to serve the role of the lient's

�rst protool ow. (Sine this is a lient-message sheme, no message is provided by B.) Adversary

In will play the server role. It will get from B the �rst ow y; x



, run the following ode, and

return to B the output:

SSim(y; x



)

If y

d



6� x



(mod N) then x ? else x y

d

mod N

Return x

Finally, B will output a sequene (M

1

; x

1

); : : : ; (M

m+1

; x

m+1

) of pairs. In now exeutes the

following:

For j = 1; : : : ;m+ 1 do

Run HSim(M

j

)

Let i be suh that M

j

=M

i

�(j) i

EndFor

It then outputs (m;�; x

1

; : : : ; x

m+1

) and halts.

For the analysis, we onsider the following events:

GS : d



2 Z

�

'(N)

Win : Verify

H

N;e

(M

j

; x

j

) = 1 for all j = 1; : : : ;m, and

B initiated at most m server-interations

We laim that

Pr [Win j GS ℄ = Adv

omf

sds;B

(k) : (12)

This and Lemma 5.1 are used in the following estimates:

Adv

rsa-ti

kg; In; n

(k) � Pr[Win ℄

� Pr[Win ^ GS ℄

= Pr [Win j GS ℄ � Pr[GS ℄

= Adv

omf

sds;B

(k) � Pr[GS ℄

� Adv

omf

sds;B

(k) �

8

435 ln(k)

:

This ompletes the proof of Equation (11).
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6.7 Proof of Theorem 5.7

This proof is very similar to that of Theorem 5.6. We assoiate to any polynomial-time lient-

adversary B a polynomial-time inverter In suh that for all k we have

Adv

omf

sds;B

(k) � Adv

sk-rsa-ti

kg; In; n

(k) ; (13)

where n(�) � 1 is a polynomially-bounded, polynomial time omputable funtion suh that the

number of server-interations initiated by B, plus the number of hash-orale queries it makes, is

stritly upper bounded by n(k). The theorem follows.

Adversary In takes as input an RSA publi key N; e, a value d

1

2 Z

�

'(N)

, seurity parameter k, and

a sequene y

1

; : : : ; y

n(k)

of points in Z

�

N

. It has aess to a (�)

d

2

mod N orale. It begins with the

following initializations:

Set ounter i 0

d



 d

1

Initialize B with inputs N; e; d



It now runs B, who will initiate some number of interations with the server, and also make

queries to its hash-orale. A hash-orale query M is answered by running the following ode and

returning to B the output.

HSim(M)

If there is a j � i suh that M

j

=M then return y

j

Else

i i+ 1 ; M

i

 M

Return y

i

B will begin eah interation with the server by providing values to serve the role of the lient's

�rst protool ow. (Sine this is a lient-message sheme, no message is provided by B.) Adversary

In will play the server role. It will get from B the �rst ow y, run the following ode, and return

to B the output:

SSim(y)

x

s

 y

d

2

mod N

Return x

s

Finally, B will output a sequene (M

1

; x

1

); : : : ; (M

m+1

; x

m+1

) of pairs. In now exeutes the

following:

For j = 1; : : : ;m+ 1 do

Run HSim(M

j

)

Let i be suh that M

j

=M

i

�(j) i

EndFor

It then outputs (m;�; x

1

; : : : ; x

m+1

) and halts.

For the analysis, we onsider the following event:

Win : Verify

H

N;e

(M

j

; x

j

) = 1 for all j = 1; : : : ;m, and

B initiated at most m server-interations
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It is easy to see that

Adv

rsa-ti

kg; In; n

(k) � Pr[Win ℄ = Adv

omf

sds;B

(k) ;

and this ompletes the proof of Equation (13).
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A Relations between RSA related problems

Note that the RSA-STI and RSA-CTI

1

problems are idential, so that RSA-CTI an be onsidered

a natural extension of RSA-STI. For further information regarding the RSA-CTI problem and its

relation to other problems, refer to [1℄.

The natural question with regard to the new Split-Key-RSA-CTI problem we have introdued

is its relation to the RSA-CTI problem. A simple observation is that splitting the key annot make

the adversary's task harder, meaning that if the Split-Key-RSA-CTI problem is hard then so is the

RSA-CTI problem. The following Proposition provides the formal statement and is proved below.

Proposition A.1 Let kg be an RSA key generator and let n : N! N be a (polynomially bounded,

polynomial time omputable) funtion of the seurity parameter suh that n(k) � 1 for all k 2 N.

If the Split-Key-RSA-CTI

n

problem is hard with respet to kg then the RSA-CTI

n

problem is

hard with respet to kg.

The more interesting question is whether the hardness of the RSA-CTI problem implies the hardness

of the Split-Key-RSA-CTI problem. We do not see how to prove this in general. However, we note

that one an prove that the hardness of RSA-CTI

n

implies the hardness of Split-Key-RSA-CTI

n

in the speial ase that n(�) = 1. The reason this ase is di�erent is that the sk-rsa-ti adversary is

allowed no orale queries. The reason it is still somewhat non-trivial is that the sk-rsa-ti adversary

does, however, reeive d

1

as input. The result is summarized in the following Proposition and proved

below. Note that RSA-CTI

1

is the same as RSA-STI, so we are saying that the three problems

RSA-STI, RSA-CTI

1

and Split-Key-RSA-CTI

1

are all equivalent in hardness.
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Proposition A.2 Let kg be an RSA key generator. If the RSA-CTI

1

problem is hard with respet

to kg, then the Split-Key-RSA-CTI

1

problem is hard with respet to kg.

This tells us that the splitting of the key results in (possibly) more power to the adversary due to

a ombination of reasons: the fat that it has d

1

as input and the fat that it has a (�)

d

2

mod N

orale.

Proof of Proposition A.1: We assoiate to any polynomial-time rsa-ti adversary A a polynomial-

time sk-rsa-ti adversary B suh that for all k we have

Adv

rsa-ti

kg; A; n

(k) � Adv

sk-rsa-ti

kg; B; n

(k) : (14)

The Proposition follows. Adversary B has inputN; e; d

1

; k; y

1

; : : : ; y

n(k)

and aess to a (�)

d

2

mod N

orale. It runs A on inputs N; e; k; y

1

; : : : ; y

n(k)

. When A makes a query v to its (�)

d

mod N orale,

B queries v

d

1

mod N to its (�)

d

2

mod N orale to get a response w, and returns w to A as the

answer to A's orale query. B outputs whatever A outputs. It is easy to see that the simulation of

A's (�)

d

mod N orale that B provides is always orret, and hene that Equation (14) is true. We

omit the details.

Proof of Proposition A.2: We assoiate to any polynomial-time sk-rsa-ti adversary B a

polynomial-time rsa-ti adversary A suh that for all k we have

Adv

sk-rsa-ti

kg; B; 1

(k) �

435 ln(k)

8

�Adv

rsa-ti

kg; A; 1

(k) : (15)

The Proposition follows. Adversary A has input N; e; k; y

1

. (It also has aess to (�)

d

mod N orale

but is allowed zero queries to it, so we an imagine the orale is absent.) Not knowing '(N) it annot

pik d

1

at random from Z

�

'(N)

, so instead it piks d

1

at random from f1; : : : ; Ng, and runs B on

inputsN; e; d

1

; k; y

1

. It outputs whatever B outputs. (Sine B too is allowed zero orale queries, the

output is obtained diretly.) The simulation of B is orret as long as d

1

is uniformly distributed in

Z

�

'(N)

, and this is true with probability at least 8=[435 ln(k)℄ by Lemma 5.1. Equation (15) follows.

We omit the details.
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