Clock-Controlled Shift Registers for Key-Stream
Generation

Alexander Kholosha

Department of Mathematics and Computer Science
Technische Universiteit Eindhoven, P.O. Box 513,
5600 MB Eindhoven, The Netherlands
A.Kholosha@tue.nl

Abstract. In this paper we estimate the period of the sequence gener-
ated by a clock-controlled LFSR with an irreducible feedback polynomial
and an arbitrary structure of the control sequence, as well as some ran-
domness properties of this sequence including element distribution and
the autocorrelation function. Also we construct and analyze a specific
key-stream generator that applies clock-control. Finally, we present a
comprehensive survey of known correlation attacks on clock-controlled
registers and their memoryless combiners.

1 Introduction

Linear feedback shift registers (LFSR) are known to allow fast implementation
and produce sequences with large period and good statistical properties (if the
feedback polynomial is chosen appropriately). But inherent linearity of these
sequences results in susceptibility to algebraic attacks and that is the prime
reason why LFSR’s are not used directly for key-stream generation. A well-known
method for increasing the linear complexity preserving at the same time a large
period and good statistical properties, is a nonlinear transformation applied to
several phases of the same LFSR (filter generator) or to the outputs of several
LFSR’s (combination generator) [25,26]. An alternative way to achieve the same
goal is to control the LFSR clock. On the other hand, key-stream generators
based on regularly clocked LFSR’s are susceptible to basic and fast correlation
attacks. Using irregular clocking reduces the danger from correlation attacks and
provides practical immunity to fast correlation attacks.

The basic building block that we want to use for constructing a key-stream
generator, consists of a control register CR and a clock-controlled generating
register GR. A control register generates a sequence of nonnegative integers
a = {a;};>0 and cycles periodically with period 7. Hereafter in this paper by
period we mean least period of a sequence being opposite to multiple period.
A generating register is an LFSR over P = GF(q) with irreducible feedback
polynomial f(z) of degree m > 1 and order M. Let b = {b(¢)};,>0 denote the
output sequence from the GR when clocked regularly and a be a root of f(x)
in the splitting field of f(z). In some cases further in this paper primitiveness of



f(z) will be required. Then A = ¢ — 1 will denote the maximal possible order
of f(x). Let also S denote Y r_, ay.

In the clock-controlled mode, the output sequence u = {u(t) };>0 is generated
in the following way. The initial output is u(0) = b(ag). Further, after the output
u(t —1) has been generated, the CR specifies the nonnegative integer a;, the GR,
is shifted a; times and then produces the next output wu(t). After that, the CR
is shifted once to be ready for the next iteration. Thus, the general form of an
output sequence element is

u(t) =" (Zt: ai> for t>0. (1)
i=0

In the sequel, by irregular clocking will we mean the above type of clock control
applied to the GR. According to the classification in [26, p.101], the described
clock control technique is a forward clock control (as opposed to feedback clock
control). A comprehensive survey on clock-controlled shift registers can be found
in [17].

In order to ensure security of a key-stream generator against the Berlekamp-
Massey algorithm, its output sequence should have large period and high linear
complexity. On the other hand, good statistical properties of the output sequence
prevent the reconstruction of statistically redundant plaintext from the known
ciphertext. That is the reason why these characteristics are discussed in details
further in this paper.

Section 2 contains some results about uniform decimation of linear recur-
ring sequences in the field P = GF(q). These results are further used in Section
3. Theorem about certain properties of sequences, obtained by uniform deci-
mation, is formulated, and proof along novel lines is given. This theorem is a
slight generalization of known results. Here, we also derive some new conditions
for sequences, obtained by uniform decimation, to reach their maximum linear
complexity.

The period of the output sequence generated by an arbitrary clock-controlled
LFSR with an irreducible feedback polynomial and an arbitrary structure of the
control sequence is estimated in Section 3. A sufficient condition for this period to
reach its maximal value is formulated. Results from Section 2 are used to define
some specific configurations of clock-controlled arrangements with a maximal
period of the output sequence. The special case when the degree m of f(x) is a
prime number is studied in detail. Relevant recommendations for estimating the
linear complexity are also presented. Sections 2 and 3 extend the results earlier
published in [21].

In Section 4, we discuss randomness properties of clock-controlled LFSR
output sequences. The deviation of the number of occurrences of elements in a
full period of u from the ”ideal” value is estimated when ged(S, M) = 1. Also
we estimate the autocorrelation function of the output sequence for the special
case that the GR is an m-LFSR and gcd(S, A) = 1.

In Section 5 we construct a key-stream generator based on the one sug-
gested by Geffe in [5]. Unlike the Geffe generator that has three binary input



m-sequences, our generator runs over the field P = GF(g) and combines multiple
inputs having arbitrary periods. In particular, this implies that clock-controlled
shift registers can be used as inputs. The original Geffe generator can not be used
for key-stream generation since its combining function is zero-order correlation
immune and correlation attacks are applied easily. Using clock-controlled regis-
ters and multiple inputs makes this generator immune against fast correlation
attacks and less susceptible to basic attacks. We analyze some relevant algebraic
properties of the suggested generator.

Clock-controlled registers and their memoryless combiners are susceptible
to certain types of correlation attacks, of which the complexity depends on the
parameters chosen for the control register and the generating register, and on the
correlation characteristics of the combining function. Section 6 contains a survey
of correlation attacks published so far and provides relevant recommendations
for selecting secure parameters of clock-controlled arrangements. Still, one can
notice a general lack of empirical data on the practical efficiency of these attacks.
Furthermore, these attacks can be defeated by adding a uniform noise to the key-
stream.

2 Decimation of Linear Recurring Sequences

Following are some results about sequences obtained by uniform decimation
of linear recurring sequences with irreducible characteristic polynomial. These
results will be used further to estimate the period of a sequence generated by a
clock-controlled LFSR.

Definition 1. Let I and k be arbitrary nonnegative integers and k > 0. Then
sequence v = {v(i) }i>0 defined by v(i) = u(l+ ki) fori > 0 is called the uniform
(1, k)-decimation of sequence u = {u(i)}i>o0. Also we will say that v is obtained
by uniform (l, k)-decimation of u.

Let f(x) be an irreducible polynomial of degree m > 0 and order M over
P = GF(q). Further, taking into account the fact that @ = GF(¢™) is the
splitting field of f(x), let o be a root of f(x) in an extension field @ = GF(¢™)
of P. Let m(k) denote the degree of Ry = P(a*) over P. Let also fi(z) denote
the minimal polynomial of a* over P. Note that fi.(z) is irreducible in P[x]. Then
directly from the definition of extension degree it follows that deg fi(x) = m(k)
and evidently m(k) | m = m(1).

We denote the set of all homogeneous linear recurring sequences in P with
characteristic polynomial f(z) by Lp(f). If degree of f(z) is m then Lp(f) is
an m-dimensional vector space over P. Item (a) of the following theorem is a
particular case of [7, Proposition] and has also been partially proved in [25, pp.
144-147] and [23, pp. 285-287]. Item (b) generalizes [27, Lemma 17]. We shall
present a proof of the theorem along novel lines.

Theorem 1. Under the conditions imposed above, let | and k be arbitrary non-
negative integers and k > 0, then:



(a) The uniform (1, k)-decimation defines a homomorphism of the vector space
Lp(f) onto Lp(fx). This homomorphism is an isomorphism if and only if
m(k) = m.

(b) If f(x) is a primitive polynomial and if u is a nonzero sequence belonging
to Lp(f), then every nonzero sequence w € Lp(fy) can be obtained as a
uniform (1, k)-decimation of u using exactly g™ ™% different values of | €
{0,..., A =1}, and the zero sequence can be obtained similarly using exactly
g R — 1 different values of 1 € {0,..., A\ —1}.

Proof.

(a) Let us use the representation of linear recurring sequences in finite fields in
terms of trace function. By [22, p. 406, Theorem 8.24] if f(z) is irreducible
then for any u € Lp(f) there is a unique § € Q = GF(¢™) such that
u(i) = Trg/p(fat) (i = 0,1,2,...). Since a* € Ry, applying uniform (I, k)-
decimation to u we get

v(i) = u(l + ki) = TrQ/p(Gal(ak)i) = Trg,/p (TrQ/Rk (9al(ak)i)) =
== TI.R;,;/P ((’I‘I‘Q/Rk (00/)) (Oék)z) == ’I‘I'Rk/p(bl(ak)i> (Z == O7 1, 2, .. ) 5

where by = Trg /g, (6a') € Ry,. Thus, v € Lp(fi).

It is obvious that uniform (I, k)-decimation of a sum of sequences from Lp(f)
is a sum of corresponding uniform (I, k)-decimation sequences in Lp(f).
Thus, uniform decimation defines a homomorphism of Lp(f) in Lp(f).
Now we have to prove that this homomorphism is a surjective map. For any
w € Lp(fy) there exists a uniquely determined n € Ry such that w(i) =
Trg,,p(n(a®)?) (i =0,1,2,...). Thus, w can be obtained by uniform (I, k)-
decimation of a sequence from Lp(f) if and only if n = Trg,p, (0!) for
some 0 € . The number of such 6 is equal to the number of solutions
of the equation Trg/g,(x) = 7 in the field Q. This number is equal to
| ker(Trq/r, )| = ¢ > 1 since Trg g, function is a nonzero linear
mapping of the field @ to the field Rg.

The final statement of Item (a) follows from the fact that homomorphism of a
finite-dimensional vector space onto another vector space is an isomorphism
if and only if their dimensions are equal.

(b) Let us fix an arbitrary positive integer k. For any w € Lp(f;) there ex-
ists a uniquely determined n € Ry such that w(i) = Trg, ,p(n(a®)?) (i =
0,1,2,...). From the the proof of Item (a) is follows that w = v if and only
if n = b = Trg,p, (6a'). Sequence u is nonzero thus 6 # 0.

Since f(z) is a primitive polynomial, @ has order A = ¢™ — 1. It follows
that the set of elements {#a! | I € 0,...,\ — 1} is equal to Q* that is a
multiplicative group of the field Q. Trg,g, function is a linear map of the
field @ to the field Rj. The number of [ € 0, ..., A—1 such that n = b; is equal

to the number of nonzero solutions of the equation Trg,g, () = 7 in the
k)

m—m(k)

field Q. The total number of solutions is equal to |ker(Trqr, )| = g
If n # 0, all solutions of the equation Trq /g, (z) = 7 are nonzero and the



number we are looking for is equal to ¢™ ") If n = 0 then z = 0 is also a
solution and the number we are looking for is equal to g™~ "(*) — 1. a

Polynomial f(x) is the minimal polynomial of a*, so it is irreducible. Since

the order of o (that is equal to the order of fi(x)) is given by Wdo?da) =

W%,M)? we conclude that fi(x) has order M if and only if k is relatively prime
to M. Further, if ged(k, M) = 1 then fi(z) has degree m. Indeed, the degree of
fr(2) is equal to the least value of ¢, ¢ > 0, for which (ak)qt = o or equivalently
ak@' =1 = 1. But orda = M and ged(k, M) = 1. It follows that M | ¢* — 1 and
thus that t = m.

Corollary 1. Let ged(k,M) = 1. Then every uniform (l,k)-decimation se-
quence of any nonzero sequence u € Lp(f) is equal to a nonzero sequence be-
longing to Lp(fx) and none nonzero sequence w € Lp(fi) can be obtained as a
uniform (I, k)-decimation of u using more then one value of l € {0,..., M —1}.

Proof. When applying the uniform decimation with parameters { > 0 and k& > 0
to sequences in Lp(f) we can assume that I < M since all these sequences have
the multiple period M. Moreover, if we fix some arbitrary value of 0 <1 < M,
then for any [ > 0, the uniform (I, k)-decimation of any nonzero sequence from
Lp(f) is equal to the uniform (I, k)-decimation of some other nonzero sequence
from Lp(f). Thus, for any fixed value of I, 0 <1 < M, the set containing
uniform (I, k)-decimation sequences of any nonzero sequence v € Lp(f), when
k > 0 is fixed and [ takes all possible nonnegative values, is equal to the set
containing uniform (l~, k)-decimation sequences of some M-cardinal subset of
nonzero sequences in Lp(f). Now since m = m(k), the statement easily follows
from Item (a) of Theorem 1. O

Corollary 2. If the degree m of polynomial f(x) is a prime number then m(k) =
m if and only if k is not a multiple of m. Moreover, if W 1k, then
every uniform (I, k)-decimation sequence of any nonzero sequence u € Lp(f) is
equal to a nonzero sequence belonging to Lp(fr) and none nonzero sequence

w € Lp(fi) can be obtained as a uniform (1, k)-decimation of u using more then
one value of 1 € {0,..., M — 1}.

Proof. Since m(k) | m and m is prime, only two alternatives are possible: either
m(k) = m or m(k) = 1, in which case (a*)? = o*. So, m(k) = 1 if and only if
M divides k(g — 1), i.e.

M
ged(M, g —1)
The rest of the proof goes the same way as in Corollary 1. a

Corollary 3. If f(x) is a primitive polynomial and k < ¢™/? then deg fr(z) =
m. Moreover, under these conditions, every uniform (I, k)-decimation sequence
of any nonzero sequence u € Lp(f) is equal to a nonzero sequence belonging to
Lp(fr) and every nonzero sequence w € Lp(fi) can be obtained as a uniform
(1, k)-decimation of u using a unique value of I € {0,..., A —1}.



Proof. By virtue of Theorem 1, Item (a), all uniform (I, k)-decimation sequences
of u belong to Lp(fi) and we have to prove that m(k) = m.
By definition, ord a® = m | (¢ — 1) and m(k) | m, as was noted

before. Hence, if m(k) < m then m(k) < % and therefore m < qm? -1,

i.e. ged(k, \) > ¢™/241. In particular, k > ¢™/2+41 that contradicts the condition
imposed.

Therefore, m(k) = m and by Theorem 1, Item (b), the zero sequence can
be obtained as a uniform (I, k)-decimation of u using exactly g k) 1 =0
different values of I € {0,...,A —1}. So, all uniform (I, k)-decimation sequences
of u are nonzero. Every nonzero linear recurring sequence w € Lp(f;) can be
obtained as a uniform (I, k)-decimation of u using exactly ¢~ %) =1 value of
le{0,....,.\—1}. O

3 Period and Linear Complexity of Clock-Controlled
LFSR

In this section, we continue to use the terminology and notations introduced in
Section 1. As a generalization of Definition 1 of a uniform decimation, we can
consider the output sequence u, obtained from (1) as a nonuniform decimation
of b according to the control sequence a as follows:

u(i 4+ jm) =b(o(i) +jS) for 0<i<m, j>0, (2)

where S = 37" ay, and o(i) = Y;_, ax. Hence, any uniform (4, 7)-decimation
of u is a uniform (o (%), S)-decimation of b. By Theorem 1, Item (a), the latter
decimation belongs to Lp(fs(x)). The output sequence u consists of 7 such
sequences interleaved and belongs to Lp(fs(z™)).

Since the period of the sequence b divides the order M of f(x), we conclude
that all elements of a can be reduced modulo M without any effect on the
output sequence u. So, from now on we assume without loss of generality that
all elements of a being nonnegative integers less than M.

It is obvious that the minimum of the degrees of irreducible factors of fs(z™)
provides a lower bound for the linear complexity of the output sequence u and
the lowest possible order of any irreducible factor of fg(x™) gives a lower bound
for the period of u.

In [16] for P = GF(2) and primitive GR feedback it was shown that maximum
linear complexity 7mm of the output sequence u can be obtained only if the
multiplicative order of 2 modulo m is equal to m. Furthermore, when the
control sequence a and initial state vector of the GR are chosen at random
and uniformly, a lower bound on the probability that the output sequence has
maximum linear complexity is established. By appropriate choice of 7 and m
this bound can be made arbitrary close to 1 with mm arbitrarily large, provided
that = < 2™,

From equation (2) it easily follows that the period of w divides ng,

since ord fs(z) = orda® = % and u consists of 7 interleaved sequences



belonging to Lp(fs(z)). From [10, Lemma 1] it follows that if u is nonzero then
its period is a multiple of % where 7/ is the product of all prime factors of

7, not necessarily distinct, which are also factors of This provides the

S, M
lower bound for the period. In particular, if every prlmé fac%or of m also divides
m, then the period of u reaches the maximal value W We also note
that zero output sequences can be generated even if the initial state of the GR
is nonzero and f(x) is primitive. This will be illustrated in Example 2.

By Corollary 1, if S is relatively prime to M then fg(x) is irreducible of
degree m and order M. For P = GF(2) and such an fg(z), Theorem 2 in [2]
provides an exact lower bound for the degree of any irreducible factor of fg(z™).
From this theorem it easily follows that if f(x) is primitive, if ged(S, ) = 1, and
if every prime factor of 7 also divides A, then fg(x™) is irreducible. In this case
the linear complexity of u reaches its maximal possible value: 7m (this is equal
to the degree of fs(z™)).

In many cases the period of sequence u can be determined more precisely.
The following theorem, that was earlier published in [21], extends [17, Theorem
4]. Recently, in [10, Theorem 2] Goli¢ generalized this result for an arbitrary
GR having an LFSR structure. We provide the proof here for its simplicity and
universality of some tricks used.

Theorem 2. The output sequence u is periodic. If for 1 € {0,..., M — 1} the
uniform (1, S)-decimation sequences of b are all distinct, then the period of u is
equal to

TM

T(m, M, S) = gcd(S, ) °

Proof. Put 7 = m We shall first prove that 7 is a multiple period of u.
As was noted before, the output sequence u is a homogeneous linear recurring
sequence with characteristic polynomial fg(z™) and consists of 7 interleaved
sequences belonging to Lp(fs(z)), where fg(z) is the minimal polynomial of
element o over P. Thus, the period of any such nonzero uniform S-decimation

is equal to ng that is the multiplicative order of element o in P*. Hence,
the sequence u is periodic and 7(mw, M, S) | 7Tgcd sy =T

Let us consider two uniform m-decimation sequences of the output u, the first
one starting from u(0) and the second from u(7(w, M,S)). These decimation
sequences are equal since 7(w, M, S) is the period of u. On the other hand,
according to (2) the same sequences are uniform (kg, S) and (g, S)-decimation
sequences of b for some ky = ag > 0 and ty > kg. Then, according to the
hypothesis of the theorem, ko =ty (mod M).

Let us also consider two uniform 7-decimation sequences of u where the first
one starts from u(1) and the second from u(7(m, M, S)+1). These decimation se-
quences are equal and they are uniform (k1,.5) and (¢1, S)-decimation sequences
of b for some k1 > kg and t1 > to. Thus, k1 = ¢; (modM).

Finally, consider pairs of uniform 7-decimation sequences that start from u(2)
and u(7(m, M, S)+2), from u(3) and u(r (7w, M, S)+3) and so on. Corresponding



values of k; and ¢; satisfy the equivalence
ki Eti (HlOdM) (220,1,27) , (3)

where ki+1 Z k‘i and ti+1 Z ti.

From (1), we have k; 11 — ki = a;41 and ti41 — t; = Gr(x,01,9)+i41- 1t follows
from the the congruence relations in (3) and from the assumption that 0 < a; <
M, that ki+l — kl = ti+1 7757; and thus that A1 = aT(ﬂ.,M7s)+i+1 (’L = 0, ]., 2, AN )
This shows that

| (7, M,S) . (4)

It is clear that ¢; — k; (i = 0,1,2,...) is equal to the number of regular steps
(with no clock control) the GR is making each time when the whole automaton
generates 7(m, M, S) output elements. By virtue of (4), t; — k; = MS’ since
if the CR makes a full period then the GR makes S steps. Thus, according to
(3), M | MS’ , from which it directly follows that

M T(m, M, S)
ged(S, M) v

and 7 |7(m,M,S) .

This proves the theorem. a

Let assume that b is a nonzero sequence. Then, according to Theorem 1, Item
(a), all the uniform (I, S)-decimation sequences of b for [ € {0,...,M — 1} are
distinct if m(k) = m (see [10, Proposition 2|, where a similar fact was proved
for an arbitrary GR having LFSR structure).

Proposition 1. Let f(z) be a primitive polynomial of degree m, so it has the
mazximal possible order A = ¢™ —1. Then all uniform (1, S)-decimation sequences
of b are distinct for 1 € {0,...,A — 1} if and only if for any 1l € {0,..., A — 1}
the uniform (1, ged(S, \))-decimation of b is nonzero.

Proof. Let us first consider the congruence xS = y ged(S, \) (mod A) where © >
0 and y > 0. It is evident that for any fixed value of x = 0,1, 2, . .. this congruence
is solvable with respect to y and for any fixed value of y = 0,1, 2, ... it is solvable
with respect to . Thus, for any [ > 0 a uniform (I, S)-decimation of b contains
exactly the same elements as a uniform (I, ged(S, A))-decimation.

Suppose now that for some k,t € {0,...,A — 1} with k # ¢, the uniform
(k,S) and (t,S)-decimation sequences of b are equal. By Theorem 1, Item (b),
they can be equal if and only if ¢™~™(5) > 2 and this is so if and only if for
some [ € {0,...,A — 1} the uniform (I, 5)-decimation of b is zero. But then the
uniform (7, ged(S, A\))-decimation is zero too. O

Corollary 4. Let b be a nonzero sequence and suppose that one of the following
two conditions holds

(a) degree m of f(x) is prime and S is not a multiple of WM,q—l)’
(b) f(x) is a primitive polynomial (so, of order A = ¢™ — 1) and ged(S,\) <

m/2

q



Then the period of u is equal to T(w, M, S) = #ﬁ%.

Proof. If condition (a) holds, we can apply Corollary 2 and if condition (b)
holds, we can apply Corollary 3. In both cases, Proposition 1 shows that for
1e€{0,...,M — 1} all uniform (I, S)-decimation sequences of b are distinct. The
proof is finished by applying Theorem 2. a

Note that if f(x) is primitive one has M = A\ = ¢"™ — 1. Some other sufficient
conditions to apply Theorem 2 can be found in [10, Proposition 4].

Note 1. Let us consider the case when m, the degree of f(x), is a prime number
and m | S. Then % | ¢ — 1 and hence, (7, M,S) | 7(q — 1) since
M

T(']T,M, S) | ﬂ'm

By Corollary 2, m(ged(S, M)) = m(S) = 1 (since ord a8°d(5M) = ord o)
and fs(z) = z—a®. Let p denote the element o® in P. Thus, the output sequence
u is a homogeneous linear recurring sequence with characteristic polynomial
fs(z™) = ™ — p and consists of 7 interleaved sequences having the form of
a geometric progression with ratio p and initial element u(i) = b(o(i)) (i =
0,...,m —1). We can get the ﬁ%s)—long period of u by taking the elements
of the following array in a row-by-row order.

U(O) ...... ’u,(ﬂ' — 1)
U(O)p ...... U(7T — 1)p
u(0)p? ... u(m _ Dyl (5)
w(O)pEt L. u(m —.1)p571
where & = WAI{I;S)' If b(o(i)) = 0 for all i € {0,...,7 — 1}, then u is a zero

sequence. Further we assume that b(o(i)) # 0 for some 4.
If # | 7(w,M,S) then 7(m,M,S) = mwj where j is the smallest integer

in {1,...,%} with the property that b(c(i)) = a%7b(o(i)) for all i €
{0,...7 —1}. Since not all of b(c(i)) are zero, the smallest j with this property
is in fact equal to WAI/\IM' Thus, 7(m, M, S) = #ﬁs).

Suppose now that 7(m, M,.S) is not a multiple of 7. Since w is periodic and
its period has the pattern of (5), there exist some j € {0, ..., % —1} and
i€ {l,...,m — 1} such that

1 0 ... 0 —p/... 0 u(0) 0
0 0 —p!
O 0 -] ®
0o
: .. .. .. 0 . .
0 ... 0 —pitt 0 1 u(r —1) 0



where the ones are on the diagonal, the —p’ entry in the first row is in col-
umn i + 1 and the —p’*! entry in the first column is in row (7 — i) + 1. Let
D(n,—p?, —p’T1, m —1i) denote the determinant of this 7 x 7 matrix, which 7 —1
entries are equal to —p7. It is not difficult to see that

- D(i, —p* ™+, —pith w — i), it i>7/2,
D(ﬂ',—p],—p]+1,’ﬂ'—i): D(?T—i,—pj,—p2j+177r—2j)’ lf i<7T/2,
(1 _ p2j—i-1)7'r/27 if = 7_(_/2’

We can apply this rule repeatedly to prove that D(m, —p’, —p'*1 7w — i) = (1 &
pFIttG+) for some k,t,1 > 0 such that (k +t)l = «. Thus, if D(7, —p/, —p'+1,
7 —i) =0 then p*+*U+1) = +1 and so m | 2(kj +t(j+1)).

If integers j € {0,...,% — 1} and i € {1,...,m — 1} exist such that
D(m,—p’, —p?T1, m — i) = 0 then (6) has nonzero solutions. If, in this case, one
can find a control sequence with parameters = and S and an initial state vector
for the GR such that (b(c(0)),...,b(c(m —1))) is a nonzero solution of (6) then
the multiple period of u is equal to 75 + . This number is less than Wj\l\is).
Note 2. 1f S is relatively prime to M, it follows from Corollary 1 and Theorem 2
that the period of u reaches the maximal value M (this is Theorem 4 in [17]).

If conditions of Theorem 2, Proposition 1 and Corollary 4 do not hold then
the period of the decimated sequence may be equal to or smaller than
This can be seen in the following examples.

M
ged(S,M) "

Ezample 1. Let f(z) = 2* + = + 1 (a primitive polynomial over P = GF(2))
and a = (2,3)* = {2,3,2,3,...} be the control sequence with period = =
2. If we set the initial state vector of the GR equal to (1,1,1,1) then b =
(1,1,1,1,0,0,0,1,0,0,1,1,0,1,0)° which has period 15. The output sequence u
for this clock-controlled arrangement is equal to (1,0, 1) with period 3.

In our case S = 5 and ged(S, \) = ged(5,15) = 5 and this exceeds ¢™/? = 4.
Thus, the condition (b) of Corollary 4 does not hold. Otherwise, the period
would be equal to 6. Condition (a) of Corollary 4 is not applicable too, since
m = 4 is not prime (although S is not a multiple of q—il = 15). Proposition 1
can not be used either, since the uniform (4, 5)-decimation sequence of b is zero.
The uniform (0, 5)-decimation sequence and (1, 5)-decimation sequence of b are
equal, so Theorem 2 is not applicable too.

On the other hand if the control sequence is equal to (3,2)> with the same
value of S = 5 then w = (1,0,0,1,1,1)°. In this case the period is maximal
although conditions of Theorem 2, Proposition 1 and Corollary 4 do not hold.

Finally, if we take the control sequence equal to (1,2)* then ged(S,\) =
ged(3,15) = 3 and the condition (b) of Corollary 4 holds. In this case, the
output sequence is (1,1,0,0,1,0,1,0,1,1)*. So, the period of u is 10 and that
is equal to ﬁg,/\).

Ezample 2. Let P = GF(3) and f(z) = 2 + 2z + 1, so f(x) is a primi-
tive polynomial over P. Let a = (2,5,6)° with period # = 3 be the control



sequence. If we set the initial state vector of the GR equal to (2,0,1) then
b=(2,0,1,1,1,0,0,2,0,2,1,2,2,1,0,2,2,2,0,0,1,0,1,2,1,1)>. The output se-
quence u for this clock-controlled arrangement is equal to (1,2)°° with period
2. But if the initial state vector of the GR is equal to (0,1,1) and the control
sequence is equal to (4, 1,2,6)> then the output sequence is zero. In both cases
S =13 and S is equal to qi Thus, the condition (a) of Corollary 4 does not

hold. Indeed, if that conditioln would hold, the period would be equal to 6 for
the first case and 8 for the second.

On the other hand if the initial state vector of the GR is set to (2,0,1)
and the control sequence is equal to (7,6)>° with the same value of S = 13
then u = (2,1,1,2)°. In this case the period is maximal although condition of
Corollary 4, Item (a), does not hold.

If CR~outputs a; take only bit values 0 and 1 then the arrangement is called
a stop-and-go generator and is described in [1]. In our notation, S for this type of
generator is equal to the number of ones in the full period of a. In particular, if
the CR is an m-LFSR over GF(2) with a primitive feedback polynomial of degree
n and order m = 2" — 1, then CR-outputs take the value one 2"~! times over
the period and S = 2"~L. Thus, if ¢ = 2 and f(x) is primitive then ged(S, \) =
ged(27~1,2™ — 1) = 1 and by Corollary 4 7(m, \,S) = w\. For the particular
case when n = m, we get that 7 = X and by [2, Theorem 2] the polynomial
fs(z™) is irreducible. In this case the linear complexity of the output sequence
has its greatest possible value n(2"™ — 1) equal to the degree of fs(z™). Due to
these features of the output sequence, it is reasonable to use it further for clock
controlling the third m-LFSR. It turns out to be possible to extend this system
further to an arbitrary number of LFSR’s. Such an arrangement is called an m-
sequence cascade and has been considered in [17]. Many other types of cascades
were suggested in the literature (see [17] for the review) but they are not the
subject of the present paper.

4 Randomness Properties of Clock-Controlled LFSR

The discussion presented in Section 3 leads to the conclusion that the control
sequence a plays only a secondary role when the period and linear complexity
of clock-controlled LFSR’s are concerned. By that we mean that using different
clock sequences one can generate different output sequences having the same
period and linear complexity. However, the clocking procedure has a major in-
fluence on randomness properties of the output sequence. It is obvious that if
the GR generates a nonzero sequence, then by selecting an appropriate control
sequence one can get any periodic sequence in GF(g) as output sequence. Thus,
when choosing a control sequence one should pay attention not only to the period
and linear complexity of output but also should take randomness properties into
account. Hereafter we continue to use the terminology and notations introduced
in Sections 1 and 3.

As was noted above, the output sequence u consists of 7 interleaved se-
quences, all members of Lp(fs(x)). If S is relatively prime to M then by virtue



of Corollary 1, fs(x) is also irreducible of degree m and order M. If h is the
least common multiple of M and ¢ — 1 then according to [22, p. 450],

(¢t —1)M 1\ (M M /2
Z00)— — | < (1= ) [ —— | ¢"
‘ ) qm =1 - g )\ 1)1
m—1
q M§<M M h—Mql/z
qm_l

‘Z(b) - ) g™ for b#£0,

nogr1 h
where Z(b) is the number of occurrences of element b € P in the M-long period
of a linear recurring sequence belonging to Lp(fs(z)). Now if we multiply the
right hand parts of both inequalities by m we can estimate the deviation between
the actual number of occurrences of elements b € P in the mM-long period of u
(see Note 2) and the ideal value. If h & M and M is sufficiently large then this
deviation is comparatively small.

In particular, if f(z) is primitive and ged(S, A\) = 1 then polynomial fg(z) is
also primitive. Thus, any sequence belonging to Lp(fs(z)) is an m-sequence. So,
any nonzero element of P appears ¢™ ! times in its A-long period and 0 appears
g™ 1 — 1 times. As a consequence, any nonzero element of P appears mg™ !
times in the w\-long period of the output sequence u and 0 appears 7(¢g™ * —1)
times (note that by Corollary 4 the period of u is equal to w\).

If CR-outputs a; take only the values 1 or 2 and P = GF(2), then all I-tuples
of length [ < (m + 1)/2 appear in the output sequence with the same frequency
as in the original m-sequence b (as pointed out in [26, p. 103]).

Let us further estimate the autocorrelation function of the output sequence of
the clock-controlled LFSR. The autocorrelation function provides an important
randomness test, since it measures the degree of dependence between a sequence
and its various phase shifts. A requirement concerning the autocorrelation is
included in Golomb’s randomness postulates for pseudo random sequences [18,
p. 25]. It thus can be adopted as a quality measure for pseudo random sequences.

According to [23, p. 463], if s = {s;}i>0 is a sequence in GF(q) of period
r and y is a nontrivial additive character of GF(g), then the corresponding
autocorrelation function of s is defined by

r—1

C(h) = ZX(Si)Y(SHh) for h=0,1,...,r—1,
i=0

where Y denotes the conjugate character. Golomb’s randomness postulate for
the autocorrelation function of s requires it to be two-valued:

r, for h=0,
O(h)_{fﬂ for O0<h<r ’ (7)

Let us assume that f(x) is primitive and ged(S, ) = 1. Then the autocorre-
lation function of u(t) (with period 7 = wA) can be expressed as follows.

T—1 T—1A—1
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where A(h) is the autocorrelation function of an m-sequence h in GF(q) of period
A = ¢™ — 1. The following proposition is due to Zierler [27, p. 45].

Proposition 2. If h is not a multiple of t = \/(q — 1) then
A(h)=q¢™2 > xla)x(b)—1.
a,be GF(q)
Further, there exists a primitive element & of GF(q) such that for j =0,1,2,...
Ay = ¢t Y x(a)x(Ea) -
a€GF(q)

Ezample 3. Let ¢ = p be a prime. The canonical additive character of GF(p) is
of the form x(a) = €2>™%/?_ q € GF(p). Now

p—1 p—1 p—1
Z X(Q)X@) — Z eZwij/pe—ZTrik/p — Ze2m'j/p Ze—Qm‘k/p =0.
a,be GF(p) 7,k=0 7=0 k=0

So that if h is not a multiple of ¢ then by Proposition 2 A(h) = —1. If h is a
multiple of ¢ and h = jt, let p = & then

p—1
Z X(Q)Y(NG) _ 26277219/17 —2mipk/p __ 26277219 (1—p)/p _ O
a€GF(q) k=0

providing p # 1 (i.e. h # 0 (modX)). Thus, A(0) = A while A(h) = —1if h is
not a multiple of .

We conclude from the above that if the generating register in a clock-cont-
rolled arrangement is an m-LFSR over GF(p) (where p is prime) and ged(S, \) =
1, then the autocorrelation function C(h) of u(t) is equal to —= for all the values
of h # 0 for which Z;;Z_H ay, is not a multiple of A for alli = 0,1,...,7—1. Thus,
for such h the autocorrelation satisfies Golomb’s postulate (7). The normalized
autocorrelation is in this case equal to —A~! and for large values of A that is
close to 0.

In particular, for the stop-and-go generator, when the control register is a
binary m-LFSR of period # = 2™ — 1 and if ¢ = 2 then

T—1

1) = Y~ Alain) = 2" A1) + (277 = DAQ) =

— (2n—1 _ 1)(2m _ 1) _ 2n—1 ~ 2n+m—1 .



This fact reveals strong intersymbol dependency between the output sequence
u and its 1-step phase shift. That is easily accounted for, since the previous key-
stream symbol is copied to the next position every time when the control register
generates 0. A dependency on the key-stream symbols of the preceding symbols
constitutes a considerable weakness of a key-stream generator.

5 Generalized Geffe Generator

Combining linear feedback shift registers with a memoryless nonlinear function F'
is a well-known way to increase the period and the linear complexity of the key-
stream, as well as to reduce the correlation between the key-stream sequence
and the LFSR sequences that are used as input of F, see [25,26]. The key-
stream generator discussed in this section is a memoryless combiner based on a
specific combining function that implements a nonuniform decimation of input
sequences. The key-stream sequence is obtained by irregularly interleaving the
decimated sequences. Both decimation and interleaving operations are controlled
by the same sequence being one of combining function inputs. This construction
can be seen as a generalization of the Geffe generator from [5].

First, we need to fix an arbitrary order for all the elements in the finite
field P = GF(q). Further in this section, the elements of P will be enumerated
as po,...,pq—1. Let the combining function F from P?™! to P be defined by
F(pj,zo,...,0q-1) = for j =0,...,¢g—1. Thus, the first argument of F defines
which of the remaining ¢ arguments is chosen as an output of the function. Let us
assume that a periodic sequence a = {a;};>0 in P (we will also call it the control
sequence of F') with the period 7 and linear complexity L is fed to the first
argument of ¥ and that ¢ periodic sequences v/ = {b};>0 (j =0,...,¢q—1) in P
with periods A; and linear complexity L; respectively are fed to the remaining
g arguments. Let u = {u;};,>0 denote the output sequence generated by the
function F.

It is clear that the output sequence u is an irregularly interleaved set of ¢
nonuniform decimation sequences of & (j = 0,...,q — 1), when both the deci-
mation and the interleaving operations are controlled by the sequence a. When
q = 2, the nonuniform decimation is equivalent to the shrinking operation [4]
controlled by {a; };>0 and {a;®1};>0, applied to sequences b' and b° respectively.
The period and linear complexity of u are estimated further in this section.

Before we can continue, we need some preliminary lemmas. The first one is
a special case of a fundamental result on the period of nonuniformly decimated
sequences, as established in [19, Theorem 3].

Lemma 1. Let ¢ = {¢;}i>0 be a periodic sequence with the period T and let
sequence ¢ = {c;}i>o0 be a uniform d-decimation of ¢ for some integer d > 0.
Then ¢ is periodic and if T denotes its period then

(a) T/ ’ gcd{T,d) ;
(b) If ged(T,d) =1 then T' =T.



Let K denote the least common multiple of the periods of the sequences
¥ (j =0,...,q—1), so K = lem()\g,...,\;—1) and let d denote ged(m, K).
It is obvious that K is equal to the period of the sequence of g-grams B =

{(b?’ R bg_l)}iZO-

Lemma 2. Suppose that sequence a contains all elements of P and that the q-
gram sequence B with the period K contains a q-tuple that is equal to P in the
sense of set equality. Suppose moreover that ged(m, K) =1. Then 7 =K.

Proof. Under the hypothesis of the lemma, we can list a set of integers t; >
0( =0,...,¢g — 1) such that a;; = p;. Let us consider ¢ uniform (t;,7)-
decimation sequences of the output u by taking j = 0,...,qg — 1. Since 7 is
the period of the control sequence a, the (t;, 7)-decimation of u is equal to the
(t;,m)-decimation of /. But hypothesis of the lemma claims that ged(m, K) =1
whence it follows that ged(m, A;) =1 for j =0,...,¢ — 1. Hence by Lemma 1,
Item (b), the period of the (¢;,)-decimation of ¥ is \; for j = 0,...,q — 1.
But since these decimation sequences are decimation sequences of u as well, by
Lemma 1, Item (a), A; | 7 for j =0,...,¢— 1 and thus K | 7.

Under the hypothesis of the lemma, there exists an integer ¢ > 0 such that
vector (b?,...,b77") can be obtained by permutating the elements in (po,...,
Pg—1). Let us now consider the uniform (¢, K)-decimation of the output sequence
u. Since K is the period of the ¢g-gram sequence B, this decimation is equal to the
(t, K)-decimation of a which elements are substituted afterwards according to the
rule defined by the permutation transforming (po, . ..,pg_1) into (b2,...,0¢7").
A one-to-one mapping applied to the elements of a sequence does not affect its
period. Since ged(w, K) = 1, by Lemma 1, Ttem (b), the period of the (¢, K)-
decimation of a is 7. But since this decimation is a decimation of u as well, by
Lemma 1, Item (a), 7 | 7.

Now since K | 7, w | 7 and ged(w, K) = 1 we can conclude that 7K | 7. On
the other hand, it is obvious that 7 | 7K and thus 7 = 7K. O

Theorem 3. The sequence u is periodic. Let T denote the period of u. Then T |
lem(7, K). Moreover, if sequence a is such that each of its uniform d-decimation
sequences contains all the elements of P and the q-gram sequence B is such that
all its uniform d-decimation sequences contain a q-tuple that is equal to P in the
sense of set equality, then

K
ged(m, K)2 T
Proof. Tt is obvious that in every lem(w, K) = lem(m, Ag,...,Aq—1) steps all

input sequences complete their full cycle. Since function F' is memoryless, the
output sequence u completes a full cycle as well in lem(rw, K) steps. Thus v is
periodic and 7 | lem(7, K).

Let us consider the g-gram sequence B. Since all sequences b’ (j = 0,...,q—1)
are periodic with the period equal to A; respectively, it is obvious that the g-gram
sequence B is periodic as well with the period equal to lem(Xg, ..., Ag—1) = K.



Now we fix an arbitrary ¢ € {0,...,d — 1} and consider uniform (¢,d)-
decimation sequences of a, u and B. Let 7, 74 and K; denote the respective
periods of these decimation sequences. Then, by Lemma 1, Item (a),

Tt

T s K K
"l (8)

ced(rd) a0 TlToad Kl =
Since ged(Z, £) = 1, it follows that ged(m, K;) = 1.

Let us now consider the memoryless combiner described above when uni-
form (t, d)-decimation sequences of the respective original sequences are fed into
the arguments of F. Thus, the control sequence of F' has period m; and the ¢-
gram sequence, feeding the rest of the arguments of F', has period K; satisfying
ged(my, K¢) = 1. We note that the output sequence of F' has period 7; since it
is a uniform (¢, d)-decimation of sequence u. So, the conditions of Lemma 2 are
met and thus it follows that
Tt = 7Tth 5 (9)

forallt € {0,...,d—1}.
By (8), m divides I for ¢t =0,...,d — 1 and therefore lem(mo, ..., m4—1) | 5.
Sequence a can be reconstructed by interleaving d sequences obtained by (¢, d)-

decimating of a for t = 0,...,d — 1 and thus d - lem(7,...,74—1) is a multiple
period of a, that is 7 | dlem(7o, ..., mq—1). Hence lem(mo, ..., mq—1) = 5. In the
same way it is easy to show that lem(Ky,..., Kq_ 1) = &.

d
From (8) it also follows that ged(m;, K;) =1 (4,5 =0,...,d —1). Thus

ICHI(To,...,Td_l) lcm(woKO,...,Trd_le_l) =
m(l (7T0,K0)7...71CH1(7Td,1,Kd,1)) =
ICIH(T((), ,7Td,1,K07...,Kd,1) =

= lem(lem(m, ..., m4—1),lem(Ky, ..., Kq_1)) =
T

= lem(mo, ..., m4—1) - lem (Ko, ..., Kq-1) = e
Also by (8), 7 divides 7 for t = 0,...,d — 1 and therefore lem(7g,...,74-1) =
a2 | T. O

The following lemma, that easily follows from [7, Proposition], will be needed
to estimate the linear complexity of w.

Lemma 3. Let ¢ = {c¢;}i>0 be a periodic sequence having linear complexity L
and let ¢ = {c}}i>o be a uniform d-decimation of ¢ for some integer d > 0.
Then there exists a polynomial fiq)(-) annihilating ¢’ as well as all d-decimation
sequences of ¢, where the degree of f(q)(-) is not greater then L.

Proposition 3. Let L denote the linear complexity of an output sequence u.
Then L < m(Lo+...+Lg—1). If ¢ = 2, the sequences b° and b' are nonzero, and
the respective periods 7, Ao, and Ay are pairwise coprime then L > (L —1)(Lo+
Ly —2).



Proof. To prove an upper bound on the linear complexity of the sequence u
it is sufficient to present a polynomial P(-) for which P(u) = 0 (i.e. P is an
annihilating polynomial of u). Let us consider an arbitrary uniform 7-decimation
of u. Since 7 is the period of the control sequence a, this decimation is equal to
the (t;, m)-decimation of ¥/ for some j € {0,...,¢g— 1} and ¢; € {0,...,\; — 1}.
Then, by Lemma 3, there exists a polynomial Q;(-) of degree not greater then
L; annihilating this decimation as well as all the other m-decimation sequences
of b7. The polynomial Q;(-) also annihilates the uniform 7-decimation of u that
we consider.

Now let Q(-) be the least common multiple of polynomials Qo(-), ..., Qq—1(-)
where Q;(-) is the polynomial annihilating any m-decimation of /. Then Q(-)
annihilates any 7-decimation of « and thus polynomial P(-) = Q(2™) of degree
not greater then w(Lg + ... L,—1) annihilates w. Thus the linear complexity of u
is at most (Lo + ...+ Lg—1).

The second part of the proposition follows from [6, Theorem 6] since the
algebraic normal form of the combining function for ¢ = 2 is F(a,xo,z1) =
a(xo®x1) @ xo. Condition g = 2 is required since only then the algebraic normal
form of F' is free from powers. a

It remains an open problem how estimate a lower bound for the linear com-
plexity of the output sequence u when ¢ > 2.

If we assume that input sequences of the combining function F are sequences
of uniform, independent and identically distributed random variables (i.e. purely
random sequences) then its output sequence is purely random as well since the
combining function of the generator is balanced. Thus the balance quality of the
combining function ensures good statistical properties of the key-stream.

Sequences produced by linear feedback shift registers (clocked regularly or
irregularly) could be used as inputs for function F' in practical implementations
of the key-stream generator described above. Let us note that the combining
function F' of the generator is memoryless, balanced and zero-order correlation
immune (its output is correlated to inputs xo, ..., z4—1 and this correlation de-
creases if ¢ is increased). Thus when all shift registers are clocked regularly, it
is possible to apply the basic or fast correlation attack in order to reconstruct
the initial state of shift registers that produce sequences ¥/ (j = 0,...,q — 1).
Therefore it is reasonable to use large ¢ and clock-controlled LFSR’s to generate
sequences b’ (7 =0,...,q—1). We note that knowing the periods of the control
and the generating registers, one can easily verify the condition of coprimality
in Proposition 3. Memoryless combiners of clock-controlled LFSR’s can also be
susceptible to certain types of correlation attacks. This will be discussed fur-
ther in Section 6. But the essential benefit of these combiners consists in their
immunity against fast correlation attacks.

For practical implementation of the suggested generator it may be reasonable
to select g as a power of 2, and to generate binary sequences a and ¥ (j =
0,...,4—1), to feed them as input to the ¢+ 1-input combining function F. The
control sequence is split into log, g-long tuples that are used to index sequences

v (j=0,...,q—1). Following the first half of the proof of Lemma 2, it can be



readily shown that if the control sequence splits into log, ¢-tuples consisting of
all ¢ possible values and if ged(m, K) = 1 then K | 7.

6 Correlation Attacks on Clock-Controlled Shift
Registers and their Memoryless Combiners

We start with defining a statistical model for a correlation attack. In this section,
we continue using notations introduced in Section 1. Assume that b is a purely
random sequence in P = GF(2), i.e. it is a sequence of uniform, independent
and identically distributed (i.i.d.) random variables, rather than the output of an
LFSR. Also assume that the control sequence a consists of i.i.d. positive, integer
valued, random variables that is independent of b. The random sequences a
and b are combined according to (1) to generate the output random sequence
u. Since the sequence a contains only positive elements, it is clear that u is a
purely random sequence in P itself (for instance, this is not true for the output
of stop-and-go generator).

Irregular clocking is called constrained if the range of elements in a is lim-
ited by some value and unconstrained otherwise. The secret key is assumed to
control the initial state of generating register. The objective of a correlation at-
tack is defined here as the reconstruction of the initial state of the GR from a
given segment of the output sequence u, thereby knowing the GR length and the
feedback polynomial (that can be arbitrary; so it is not necessarily linear and
irreducible). The control sequence is unknown except for the probability distri-
bution of the random variable a;, i« > 0. If @ is the expected value of a; then
pa = 1 —1/a is called the deletion rate. The model for unconstrained clocking
assumes independent deletions from b with probability pgy.

Let D be an arbitrary subset of the set of positive integers ZZ*. Then we say
that a given string Y™ = {y,}7;' of length n can be D-embedded into a given
string X™ = {x; ;7:01 of length m > n if there exists a string D™ = {d; ?:_01
of length n such that all d;’s lie in D and y; = = (Z;‘:o di), 0 < i < n. The

embedding is called constrained if D # ZZ" and unconstrained otherwise.

Let U™ = {u(t)}{=y be an observed segment of the output sequence (an
observed random value). We guess the initial state of the GR, and starting from
this state, under regular clocking, generate an m-long segment X™ where m > n.
The following hypothesis Hj has to be tested against alternative Hi:

Hp : X™ and U™ are independent (initial state of the GR is guessed incorrectly).
H; : X™ and U™ are correlated (initial state of the GR is guessed correctly and
U™ can be obtained from X™ by the described above statistical model).

It follows from our assumption of the statistical model that each initial state
of the GR gives rise to a conditional probability distribution on the set of all
output sequences. Thus, hypothesis Hy corresponds to a uniform distribution of
U™ and alternative H; to a conditional distribution. Given an observed segment
U™, the optimal decision strategy (minimizing the probability of decision error)



is to decide on the initial state that leads to the maximum posterior probability
of U™ or, equivalently, the initial state whose corresponding sequence X™ has
the maximum correlation with U™.

Thus, for a correlation attack on irregularly clocked shift register, a measure
for correlation between the output string produced by irregular clocking and
the output of the GR, when clocked regularly, is required. Some possibilities
have been suggested in the literature: the ’edit distance’ [12], the ’embedding
property’ [13,14,9, 3], and the ’joint probability’ [15, 13].

The basis for the edit distance correlation attack is a distance measure be-
tween two sequences of different length, suitably defined to reflect the transfor-
mation of the GR output sequence b to the output u according to the assumed
statistical model. Thus, such distance measure should allow statistical discrimi-
nation between hypothesis Hy and alternative H;. Hypothesis Hj is accepted if
the distance between X™ and U™ is greater than a threshold estimated basing
on the given probabilities of the decision errors. The ’constrained Levenshtein
distance’ (when the only edit operation is element deletion) was suggested in
[12] as a possible distance measure for constrained clocking, although no ana-
lytical estimation of relevant probability distributions was given. It is also not
clear how close the decision rule based on edit distance is to the one based on
the maximum posterior probability (which is optimal for the given statistical
model). The edit distance correlation attack does not seem to be very practical
since its basic tool, the edit distance, is too general.

In the embedding correlation attack the objective is to find all possible initial
states for the GR, such that for some m > n a given segment {u(t)}7=; can be
D-embedded into the m-long output sequence of the GR produced under regular
clocking, where D is the range of elements in a. The attack is successful if there
are only few of such initial states. To check whether embedding is possible, one
can use the direct matching algorithm for constrained embedding [3], which
has computational complexity O(nm), or one can use algorithms for calculating
the Levenshtein distance [12,24] for constrained and unconstrained clocking,
respectively, which have computational complexity O(n(m — n)). Embedding is
possible if and only if the distance is equal to m — n.

In [13] the unconstrained embedding attack is proved to be successful if and
only if the deletion rate is smaller than 1/2 and the length of the observed output
sequence is greater than a value that is linear in the length of the GR (where
m = m(n) is chosen in such a way that na < m(n) and lim,,_,. n/m(n) = 1/a).
According to [14], if d = max D and the length of X™ is chosen to be maximum
possible, so equal to dn (if ag = 0), then the constrained embedding attack is
successful if the length of the observed output sequence is greater than a value
linear in the GR length and superexponential in d, and is not successful if this
length is smaller than a value linear in the GR length and exponential in d. This
proves that, by making d sufficiently large, one can not achieve theoretical secu-
rity against the embedding attack but one can significantly improve the practical
security. To determine the constrained embedding probability analytically ap-



pears to be a very difficult combinatorial problem. This problem has only been
solved in [9] for the specific case when max D = 2.

It is obvious that embedding attacks are not optimal in general since they
make no use of the probability distribution of the control sequence. The sta-
tistically optimal decision rule for distinguishing Hy and H; has to be based
on the joint probability and that is used as a basis for a probabilistic correla-
tion attack. In this attack, one decides on the initial state with maximum joint
probability of X™ and U™. The problem of efficiently computing this proba-
bility for constrained clocking is solved in [15] with computational complexity
O(n(m —n)). The recursive algorithm, presented in [13], allows to estimate the
joint probability for unconstrained clocking if the distribution of the control
sequence is geometric with average 1/p. The computational complexity of this
algorithm is O(n(m —n)). The length m(n) should be chosen in such a way that
lim,,_, n/m(n) = p. Then it can be proved that the unconstrained probabilistic
attack is successful for any 0 < p < 1 provided that

1-p
C

The correlation attack on the Shrinking Generator [4], proposed by Johansson
n [20], is based on a MAP decoding algorithm for the deletion channel. This
approach can as well be readily applied to the general model of a shift register
under unconstrained clocking. A deletion rate pg is used to define the deletion
channel characteristics. If p; = 1/2 then the model for unconstrained clocking is
equivalent to the one of the Shrinking Generator. The suboptimal MAP decoding
algorithm proposed in [20] is likely also to work for deletion rate values different
from 1/2 but that should be further examined by simulating the attack (since
part of the suboptimal MAP decoding algorithm is based on simulation results).

All above mentioned correlation attacks on the initial state of the GR imply
an exhaustive search over all possible initial states. Thus, their computational
complexity remains exponential. A more efficient fast correlation attack having
polynomial complexity was suggested in [8]. The primary objective of this attack
is to reconstruct a segment of the control sequence a and then, when having ob-
tained enough (little more than the length of the GR) consecutive terms of a at
any point of time, it is possible to determine the initial state of the GR uniquely
or almost uniquely. The feedback polynomial of the GR is now assumed to be
linear. The algorithm devised in [8] consists in iterative recomputation of poste-
rior probabilities for unknown elements of the control sequence. The convergence
condition that has to hold for successful reconstruction is the following:

> New(1-p)*>1

L_P
2

n>r where C’%( )10g(27p)+§logp.

for all d € D whose probability is not very close to zero, where D is the range
of elements in a, p is the deletion rate and Ng,, denotes the number of the GR
feedback polynomial multiples of weight w + 1, such that the distance between
at least one pair of their adjacent feedback connections (taps) is equal to d + 1.
Unfortunately, no technical details are known yet to support the theory.



Combining clock-controlled shift registers with a memoryless combining func-
tion makes embedding correlation attacks infeasible but edit distance and joint
probability attacks are still applicable although less efficient. These attacks re-
quire the combining function to be known. If the combining function is zero-order
correlation immune then its output is correlated to at least one input. In this
case, one can apply the correlation attack based on edit distance or joint prob-
ability to reconstruct the initial state of the corresponding irregularly clocked
LFSR, assuming that the known segment of its output sequence is combined
with nonuniform additive noise. The idea of these attacks was described earlier
in Section 6. The edit distance attack for the constrained clocking case can be
based on the Levenshtein distance, as suggested in [12]. Except element deletion,
an extra edit operation, namely element substitution, should be considered due
to the additive noise. The attack based on the joint probability for constrained
clocking case was devised in [15]. There are no fast correlation attacks on noised
clock-controlled shift registers reported in the literature, thus these schemes seem
to be very secure.

If the combining function of the clock-controlled registers is correlation im-
mune or has memory, then correlation attacks based on many-to-one string edit
distance and joint probability are still feasible, see [11]. The efficiency of these
attacks depends on an available pair of mutually correlated feedforward linear
transforms of the output sequence and input sequences respectively, in the same
but now regularly clocked combiner. A large correlation coefficient, a small mem-
ory size and a small number of input sequences to the linear transform of the
input increase the efficiency of the attack. A theoretical estimation of the con-
ditions for these attacks to be successful seems to be a difficult, yet unsolved
problem.

7 Conclusion

The period of the output sequence generated by an arbitrary clock-controlled
LFSR with an irreducible feedback polynomial and an arbitrary structure of the
control sequence is estimated. A sufficient condition for this period to reach its
maximal value is formulated and some specific configurations of clock-controlled
arrangements with a maximal period of the output sequence are defined. Further,
we discuss randomness properties of clock-controlled LFSR output sequences.
The deviation of the number of occurrences of elements in a full period from the
”ideal” value and the autocorrelation function are estimated.

Finally, we generalize the Geffe generator for the case of multiple inputs
with arbitrary periodical input sequences in the field GF(q). In particular, this
implies that clock-controlled shift registers can be used as inputs. Using clock-
controlled registers and multiple inputs makes this generator immune against
fast correlation attacks and less susceptible to basic attacks. We analyze some
relevant algebraic properties of the suggested generator.
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