
An Integer Commitment Scheme based on

Groups with Hidden Order

(Preliminary Version)

Ivan Damg̊ard and Eiichiro Fujisaki

BRICS, Dept. of Computer Science, Aarhus University and NTT Labs

Abstract. We present a commitment scheme allowing commitment to
arbitrary size integers, based on any Abelian group with certain proper-
ties, most importantly that it is hard for the committer to compute its
order. Potential examples include RSA and class groups. We also give
efficient zero-knowledge protocols for proving knowledge of the contents
of a commitment and for verifying multiplicative relations over the in-
tegers on committed values. This means that our scheme can support,
for instance, the efficent interval proofs of Boudot[1]. The scheme can
be seen as a modification and a generalization of an earlier scheme of
Fujisaki and Okamoto [5], and in particular our results show that we
can use a much larger class of RSA moduli than the safe prime prod-
ucts proposed in [5]. Also, we correct some mistakes in the proofs of
[5] and give what appears to be the first multiplication protocol for a
Fujisaki/Okamoto-like scheme with a complete proof of soundness.

1 Introduction

The notion of commitment is at the heart of almost all non-trivial cryptographic
protocols. The basic functionality one wants from a commitment is that the
committer may choose in private a secret s from some set S and release some
information, the commitment to a verifier, such that: even though the scheme
is hiding, i.e., the verifier cannot compute s from the commitment, it is also
binding, i.e., the committer cannot change his mind after having committed, but
he can later open the commitment to reveal s, and convince the verifier that this
was indeed the original value committed to.

In many applications, one wants extra functionality from a commitment
scheme, for instance that the committer can prove in zero-knowledge that he
knows how to open a given commitment, in particular that he knows the value
committed to. Also, if S has an algebraic structure, say as a ring or a group, it
can be very useful to have a multiplication protocol, i.e., a zero-knowledge proto-
col in which the committer can prove that committed values a, b, c satisfy ab = c.
If S is a ring, one can often in addition achieve that that from commitments to
a, b ∈ S, the verifier can compute a commitment to a + b without interacting
with the committer.

One example of such a scheme where S = Zq, where q is a prime, is the
scheme of Pedersen [6], for the associated protocols and additional examples, see

[2]. In the wast majority of examples known, the set S is Zm for some m, where
m may or may not be a prime. A multiplication protocol for such a scheme can
show that for committed numbers a, b, c, it holds that ab = c mod m. However,
there are several important cases where what you need is to be able to prove
that ab = c holds over the integers. One example of this is if you want to show
that a committed number s is an RSA signature on a given message a w.r.t.
public key n, 3. What we want to know is that a = s3 + tn for some t, and
this of course must be true over the integers and not just modulo m. Of course,
one might be able to solve this by choosing the commitment scheme such that
m = n, but this requires at least that you know n at the time the commitment
scheme is set up, and also a new instance of commitment scheme for each n. This
is often unreasonable in practice. There are other ways around the problem,
see for instance [3], but the protocols are far from optimal, typically one has
to resort to ”binary cut-and-choose”, which means communication complexity
at least quadratic in the security parameter. Another example of the need for
relations over the integers is the efficient zero-knowledge proofs of Boudot[1] for
demonstrating that a committed number is in a given interval. Here, it is crucial
for efficiency that one can prove efficiently that committed numbers a, b satisfy
b = a2 over the integers.

It should be clear that what we really need here is an integer commitment
scheme, that is, a scheme where S = Z (or at least some large finite interval), and
where there is an efficient multiplication protocol that works over the integers.
Here, by efficient, we mean constant round protocols requiring only communica-
tion linear in the security parameter. One possible approach is to build on any
of the schemes we discussed earlier: any such scheme can be used to commit to a
bit, a 0/1 value. We can then commit to an integer a by committing to each bit
of a individually. But since each commitment is usually a large multiprecision
number, this approach is only efficient when the numbers committed to are very
small.

In [5], Fujisaki and Okamoto present the first efficient integer commitment
scheme, and also suggested an efficient multiplication protocol. The scheme is
based on the strong RSA assumption and is still the most efficient example
known. Unfortunately, as pointed out by Markus Michels in private communi-
cation to Fujisaki, the proof of soundness of the associated protocols was not
complete. Thus, until recently, it has been open whether efficient and secure
multiplication protocols exist for commitment schemes of the type given in [5].
Later in the paper we give a short explanantion of the problem in the proof from
[5].

In this paper, we present a commitment scheme that may be seen as a gen-
eralization of the Fujisaki-Okamoto scheme. We start from an arbitrary Abelian
group G, with some basic properties. We assume that the verifier can choose the
group and publish a description of it that allows anyone to compute the group
and inversion operations in G. For the RSA case, this amounts to publishing the
modulus n. The most important extra property we need is that it it hard, given
the description, to extract roots of a given random element in G. This is just

the natural generalization of the strong RSA assumption. Some extra technical
conditions are needed as well, we detail those later. We then build from this
an integer commitment scheme, as well as a zero-knowledge protocol for prov-
ing knowledge of how to open a commitment, and an efficient zero-knowledge
multiplication protocol.

If we specialize to the case where G = Z∗

n for an RSA modulus n, we ob-
tain - modulo some technical changes - the commitment scheme of Fujisaki and
Okamoto, in particular we get what appears to be the first secure multiplication
protocol for this type of scheme. In addition, the conditions we need on G turn
out to translate into conditions on n that are much milder than those needed
originally by Fujisaki and Okamoto, namely that n = pq is a safe prime product.
We only need that p = q = 3 mod 4, that gcd(p−1, q−1) = 2 and that p−1, q−1
do not have too many small prime factors (a precise description follows below).
Finally, our construction is applicable to other groups than RSA, for instance
class groups. Here, it should be noted that finding roots in a class group seems
to require finding the order of the group, and this problem is known to be at
least as hard as factoring, and may in fact be harder.

We do not know if one can give correct proof for exactly the commitment
scheme and protocols suggested in [5] - as mentioned our commitment scheme
and protocols are not exactly the same as those of [5], even when specialized to
G = Z∗

n. However, since our protocols are as efficient as those of [5], this question
seems to be of minor importance.

2 Model

Suppose we are given a way to construct a group G of unknown order, such as an
RSA group or a class group. More precisely, we have an probabilistic polynomial
time algorithm G which on input 1k outputs a description descr(G) of a group
G. The algorithm may also output some side information, such as the order of
G, or the prime factorization of the order; it may even be possible to ensure
that the order of the group satisfies certain conditions. This can be the case
with RSA, but not with class groups, given our current knowledge. We assume
that the description includes also a positive integer C. The role of C is that
the protocols to follow will be designed to have error probability 1/C. This will
follow because C is assumed to satisfy certain conditions w.r.t. G, as detailed
below. In the examples we know of, C is typically superpolynomially large as a
function of the security parameter, but much smaller than the group order.

Given descr(G), we assume that one can compute efficiently some estimates
on the order, 2A ≤ ord(G) ≤ 2B, where A and B are polynomial in k. We
also assume that elements can be sampled randomly from the group and that
inversion and group operation can be computed efficently. As usual, a probability
ǫ(k) will be called negligible if for all polynomials f(), we have ǫ(k) ≤ 1/f(k)
for all large enough k.

We make the following assumptions about groups output by G:

Strong root assumption Let A be any probabilistic polynomial time algo-
rithm. We run (G) on input 1k to get descr(G). We give descr(G) and a
random h ∈ G as input to A. Suppose A outputs y ∈ G and a number t. We
require that the probablity that t > 1 such that yt = h is negligible.

Small order assumption Let A be any probabilistic polynomial time algo-
rithm. We run (G) on input 1k to get descr(G). We give descr(G) as input
to A. Suppose A outputs b ∈ G and a number σ. We require that the prob-
ablity that b 6= 1, 0 < σ < C, bσ = 1 and b2 6= 1 is negligible.

No high 2-powers in orders Any element of form a2t has odd order.

Many elements with only large prime factors in orders If h is chosen ran-
domly in G, then there is a significant probability that the order of h has
no prime factors less than C. We say that ord(h) is C-rough (as opposed to
being C-smooth, which means the order has only prime factors less than C).

Some comments on the assumptions: The first assumption is a direct general-
ization of the strong RSA assumption. The second one says that elements of
relatively small known order should hard to find, except possibly for order 2.
This is to take account of the fact that in the RSA case, −1 always has order
2. The third assumption is always true if ord(G) is odd, and otherwise we need
that elements of order 2 are the only elements of order a 2-power. Finally, the
fourth assumption basically is a condition on the prime factorization of ord(G):
if we write ord(G) = FD, where F has only prime factors less than C and D
has only prime factors greater than C, then the assumption is satisfied iff F is
at most polynomial in the security parameter.

To justify the assumptions, we show that RSA moduli can be constructed
such that the assumptions are satisfied, based only on the strong RSA assump-
tion. Suppose we make a k-bit modulus n = pq such that p = q = 3 mod 4,
and that gcd(p − 1, q − 1) = 2. We choose C as a function of k in such a way
that numbers less than C are feasible to factor. With the subexponential fac-
toring algorithms currently known, one may choose C to be superpolynomial
in k, C = O(klog k) is one possibility. We construct p, q such that the parts of
p − 1, q − 1 with prime factors less than C are O(k). We then set G = Z∗

n. and
descr(G) = n, C. Now, the strong root assumption is simply the strong RSA
assumption. Finding a non-trivial pair b, σ with bσ = 1, b2 6= 1 is as hard as
factoring n: given such a pair, we can factor σ and so we can find an element b̃ of
known prime order s 6= 2. Now, s cannot divide both p−1 and q−1 and therefore
b̃ must be congruent to 1 modulo one of p, q and different from 1 modulo the
other. It follows that gcd(b − 1, n) is a non-trivial factor of n. The assumption
on no large 2-powers in orders follows directly from p = q = 3 mod 4, since then
2 divides p− 1 and q − 1 only once. Finally the construction of p, q implies that
a random element in Z∗

n has a C-rough order with probability that is Ω(1/k).
We may even choose a larger C (and hence get smaller error probability for the
protocols), but then the small order assumption must be made as a separate
intractability assumption.

Note that a special case of this construction of n is when n = pq is a safe
prime product, i.e., (p−1)/2, (q−1)/2 are primes, but evidently the construction
covers a much larger class of moduli.

3 The Commitment Scheme

Based on the above model, the goal is to make a commitment scheme with
protocols to verify various claims on committed values. The basic scheme is that
the verifier V (the receiver of commitments) will run G and send dscr(G) (and
more information to be described later) to the prover P (the committer). We
assume that P can verify easily that dscr(G) actually describes a group.

For the following version of our commitment scheme, we need that it is pos-
sible for the party who chooses G to efficiently select an element h such that
it is guaranteed to have C-rough order. This is possible if the G outputs the
factorization of the order of G. This can be assumed without loss of generality
in the RSA case. We later look at ways to do without this condition.

Set-up V runs G and chooses a random element h ∈ G, such that ord(h) is
C-rough. Now V sets g = hα, where α is randomly chosen in [0..2B+k]. V
sends descr(G), g, h to P and proves that g ∈< h >, by the standard zero-
knowledge discrete log protocol with binary challenges: in one iteration of
this, V sends a = hR for a random R ∈ [0..2B+2k]. P selects a random bit
b, and V replies with z = R + bα. P checks that hz = agb. Repeating this
k times results in a soundness error of 2−k, and the protocol is easily seen
to be statistical zero-knowledge. This is not a very efficient solution, but it
only needs to be done once and for all in the set-up phase.

Commit To commit to an integer x, P chooses r at random in [0..2B+k], and
sends c = gxhr to V .

Open To open a commitment, P must send x, r, b such that c = gxhrb, b2 = 1.
An honest prover can always use b = 1. The reason for giving a dishonest
prover this extra freedom will become clear later.

As for hiding, note that P verifies initially that g ∈< h >. Hence, since r is
chosen with bit length at least twice that of the order of h, c is statistically close
to uniform in < h >, for any value of x.

As for binding, suppose some prover P ∗ could create c, and (x, r, b), (x′, r′, b′),
valid openings with x 6= x′. Then we get gxhrb = c = gx′

hr′

b′. Recall that V
creates g as g = hα. Plugging this in and squaring both sides of the equation, we
get that h2(α(x−x′)+r−r′) = 1. Since α is chosen to be much larger than the order
of h, P ∗ does not have full information on α: if we write α = q · ord(h) + res
for integers q, res with 0 ≤ res < ord(h), then from P ∗’s point of view, res is
uniquely determined from g, whereas there is almost no information on q (the
only source of information is the proof that g ∈< h > which is statistical zero-
knowledge). This and x− x′ 6= 0 means that, except with negligible probability,
we have M := (α(x − x′) + r − r′) 6= 0. This follows because if we fix res (and
hence g), the resulting distribution of x, x′, r, r′ is (almost) independent of q, and

every fixed choice of res, x, x′, r, r′, there is a at most 1 value of q that will imply
M = 0. However, there are exponentially many possibilities for q. If indeed M
is non-zero, it is a multiple of the order of h.

It follows that if P ∗ could break the binding property with non-negligible
probability, V and P ∗ together could solve the strong root problem on input h:
V will use the given h in the set-up phase instead of choosing one itself. With
non-negligible probability, h will have C-rough order. Given that this happens,
there is a non-negligible probability that P ∗ will break the binding as described
above, and this allows us to compute M , a multiple of the order of h. Now choose
any t that is relatively prime to M and output ht−1 mod M , t.

4 Auxiliary Protocols

4.1 Proving you know how to open

The following protocol can be used by P to show that he can open a given
commitment c = gxhr.

We will be assuming that the numeric value of x is at most T , where T is a
public constant. T can be chosen arbitrarily large, and is only used to control
the size of the prover’s random choices, to ensure that the protocol hides the
value of x, whenever −T ≤ x ≤ T . In any application of the scheme, one simply
chooses T large enough to acomodate any choice of x the prover could possibly
make in the given scenario. Note that the protocol is not designed to guarantee
the verifier that −T ≤ x ≤ T . To prove x is in some interval, other techniques
exist, see e.g. [1].

1. P chooses y ∈ [0..TC2k[, s ∈ [0..C2B+2k[at random and sends d = gyhs to
V .

2. V chooses at random e ∈ [0..C[and sends to P .
3. P sends u = y + ex, v = s + er. V checks that guhv = dce

Completeness of this protocol is clear. It is honest verifier statistical zero-
knowledge, to simulate we can choose at random u ∈ [0..TC2k[, v ∈ [0..C2B+2k[,
e ∈ [0..C[and set d = guhv. There are then a number of known techniques by
which a zero-knowledge protocol can be constructed from it. We sketch one way
to do this below.

To show soundness, we assume that some prover P ∗ can execute the protocol
with a non-negligible success probability. We then exhibit an algorithm that uses
P ∗ as a subrutine and computes a way to open the commitment, except with
negligible probability.

By assumption on P ∗, using standard rewinding techniques, we can ob-
tain a situation where, for a given d, P ∗ could answer two different values
e and e′ with numbers u, v and u′, v′, so we get gu−u′

hv−v′

= ce−e′

. Now,
suppose that (e − e′) divides both (u − u′) and (v − v′). Then the element
b = g(u−u′)/(e−e′)h(v−v′)/(e−e′)c−1 satisfies that be−e′

= 1. It follows by the
small order assumption on G that except with negligible probability b2 = 1,

and so c can be correctly opened by sending (u−u′)/(e− e′), (v− v′)/(e− e′), b.
Therefore, we are done, if we can prove that the case where e−e′ does not divide
both of u − u′, v − v′ happens with negligible probability.

So assume that this ”bad” case does indeed happen with non-negligible prob-
ability. We will show that this would mean that we could construct an algorithm
violating our asumptions on the group. Suppose we get as input h ∈ G chosen
at random. By the assumptions, there is significant probability that ord(h) is
C-rough, so we assume this in the rest of the analysis. We then set g = hα for
random α ∈ [0..22B]. Note that g, h have exactly the same distribution as in
”real life”. We send g, h to the adversary and do the proof that we know the
discrete log of g base h. We then do the above rewinding based approach and
hope that we get to a situation where we have gu−u′

hv−v′

= ce−e′

and e − e′

does not divide both of u− u′, v − v′. Let E be the event that this happens. We
have by assumption that E occurs with non-negligible probability.

If we plug in g = hα, we get

hα(u−u′)+(v−v′) = ce−e′

.

Suppose wlog that e > e′. Then the rest of the analysis splits in two cases:

e − e′ does not divide α(u − u′) + (v − v′) .
In this case, let d = gcd(e − e′, α(u − u′) + (v − v′)) (where by assumption
d < e − e′ ≤ C). Choose γ, δ such that

γ(e − e′) + δ(α(u − u′) + (v − v′)) = d

We then get that

hd = hγ(e−e′)+δ(α(u−u′)+(v−v′))

= (hγcδ)e−e′

If we set b̃ = (hγcδ)(e−e′)/dh−1, it is clear that b̃d = 1, and furthermore

hb̃ = (hγcδ)(e−e′)/d

If b̃ = 1, we have a solution to the strong root problem. Otherwise, we have
b̃ 6= 1, 0 < d ≤ C, so we can break the small order assumption unless b̃2 = 1.
In this case, if (e − e′)/d is odd, then b̃(e−e′)/d = b̃, inserting this in the
above yields again a solution to the strong root problem. But if (e− e′)/d is
even, then (by the group assumptions) (hγcδ)(e−e′)/d has odd order, which
contradicts the fact that ord(hb̃) = 2ord(h). In summary, if e − e′ does not
divide α(u − u′) + (v − v′), we can break the assumptions on the group.

e − e′ divides α(u − u′) + (v − v′) .
Note that even in this case, we still have that e − e′ does not divide both of
u−u′, v−v′. The goal will be to show that since the adversary does not know
full information about our choice of α, this case happens with probability at
most 1/2, given that E occurs. Hence the previous case where we could break

the assumptions happens with probability at least 1/2, given E. Let q be
some prime factor in e−e′ such that qj is the maximal q-power dividing e−e′,
and at least one of u−u′, v− v′ are non-zero modulo qj (such a q must exist
since e−e′ does not divide both of u−u′, v−v′). Note that if qj divides u−u′,
it would have to divide v − v′ as well, which is a contradiction. So u − u′ 6=
0 mod qj . We can then write α = y + z · ord(h), where y = α mod ord(h).
Note that g represents all information the adversary has about α (since
the interactive proof that g ∈< h > is statistical zero-knowlegde), and y
is uniquely determined from g, whereas z is completely unknown. Now, if
indeed qj divides α(u − u′) + (v − v′), we have

α(u − u′) + (v − v′) = z(u − u′)ord(h) + y(u − u′) + (v − v′) = 0 mod qj

Note that since q < C we have ord(h) 6= 0 mod q. Now, from the adversary’s
point of view, z is chosen uniformly among at least 2B values, and must
satisfy the above equation in order for the bad case to occur. The number
of solutions modulo qj of this equation is at most gcd((u − u′)ord(h), qj).
This number is a power of q, but is at most qj−1. Then, since 2B is much
larger than qj , it follows that the probability that z satisfies the equation is
statistically close to 1/q ≤ 1/2.

4.2 A multiplication protocol

Using techniques similar to the above, we can also get a protocol for proving that
three given commitments c1, c2, c3 contain numbers x1, x2, x3 such that x3 =
x1x2. We assume that ci = gxihri , and as before that the xi’s are numerically
smaller than T . Note that then we have c3 = cx2

1 hr3−x2r1 . We exploit this in the
second step below.

1. P proves using the protocol from above that he can open c1.
2. (a) P chooses at random y ∈ [0..CT 2k[, s2 ∈ [0..C2B+2k[, s3 ∈ [0..CT 2B+2k[

and sends d2 = gyhs2 , d3 = cy
1h

s3 to V .
(b) V chooses at random e between 0 and C and sends to P .
(c) P sends u = y + ex2, v2 = s2 + er2 and v3 = s3 + e(r3 − x2r1). V checks

that guhv2 = d2c
e
2 and cu

1hv3 = d3c
e
3.

We prove security of this protocol. As before, completeness is trivial and
honest verifier statistical zero-knowledge follows by a similar argument as for
the proof of opening protocol.

For soundness, assume as before that some prover P ∗ can execute the proto-
col with non-neglgible success probability. We can first use the above result to
extract from the first step a way to open c1 correctly, i.e. we have x1, s1, b such
that c1 = gx1hs1b and b2 = 1. Using standard rewinding in the second step, we
can, for a given d2, d3, obtain correct answers u, v2, v3 and u′, v′2, v

′

3 to challenges
e, e′, in expected polynomial time. Observe that we can in fact ensure that e−e′

is always an even number: fix any state for P ∗ just before it receives the chal-
lenge, and let S be the subset of challenges that it answers correctly. Since the

number of challenges is superpolynomial, we may assume that the size of S is
superpolynomial too. Then since more than half the numbers in S is even or
more than half are odd, the probability that two random elements drawn from
S have the same parity is at least a constant (in fact at least about 1/4).

Now, since the verifier accepts, we have equations

guhv2 = d2c
e
2, cu

1hv3 = d3c
e
3

gu′

hv′

2 = d2c
e′

2 , cu′

1 hv′

3 = d3c
e′

3

dividing corresponding equations, we get

gu−u′

hv2−v′

2 = ce−e′

2 , cu−u′

1 hv3−v′

3 = ce−e′

3

Using the first equation in exactly the same argument as for the previous proto-
col, we can show that, unless the group assumptions are broken, it must be the
case that e − e′ divides u − u′ and v2 − v′2, and so we get a correct way to open
c2, where the value contained in c2 will be x2 := (u − u′)/(e − e′). If plug into
the second equation our expression for c1, we get

bu−u′

gx1(u−u′)hs1(u−u′)+v3−v′

3 = ce−e′

3

But since e − e′ is even and divides u − u′, we have bu−u′

= 1. Now we have
an equation of the same form as the one we used in the proof of the previous
protocol. Thus, if e−e′ divides both x1(u−u′) and s1(u−u′)+v3−v′3, we get a
correct way to open c3, and the value contained will be x1(u−u′)/(e−e′) = x1x2

and we are done. If there is a significant probability that this is not the case, we
can use the same argument as above: we play the rewinding game against P ∗ in
a situation where we know the discrete log of g base h, and show that we can
break the group assumptions. The only difference is that the game is played such
that we only continue to the end if e − e′ is even. But this makes no difference
as the argument above is independent of the particular value of e − e′.

4.3 What was wrong with the proofs in [5]?

For completeness, we briefly indicate here what the problem was with the proof
of soundness for the protocols suggested in [5]: those protocols are very similar
to the ones we suggest here, in particular they have the same 3-move form, with
a challenge e from the verifier as the second message. So [5] uses a rewinding
argument as we do here, to obtain correct answers from the prover to challenges
e, e′. However, a problem occurs in the last part of the proof, which roughly
speaking coresponds to the last case in our analysis ((e− e′) divides α(u− u′)+
(v − v′)). Translated to our notation, it is claimed that the adversary cannot
make this case occur with large probability unless e− e′ divides both u− u′ and
v − v′, because he does not have enough information about α. However, if e− e′

is a small number, the bad case may in fact happen with large probability, and
nothing in the proof can ensure that e − e′ is large. Moreover, even we know

that e − e′ is large, there are additional tricks the adversay can play if e − e′

has a small prime factor, so additional ideas such as what we provide here seem
necessary for this type of proof to go through.

We do not know if one can give correct proof for exactly the commitment
scheme and protocols suggested in [5] - as mentioned our commitment scheme
and protocols are not exactly the same as those of [5], even when specialized to
G = Z∗

n. However, since our protocols are as efficient as those of [5], this question
seems to be of minor importance.

4.4 Making the auxiliary protocols be zero-knowledge

We sketch here one of several possible techniques for constructing zero-knowledge
protocols from the honest verifier zero-knowledge protocols we have shown above.
Of course, one can always use the Fiat-Shamir heuristic (where the challenge is
computed by applying a hash function to the first message) to make the protocols
be non-interactive. They can then be shown to be zero-knowledge if one is willing
to assume the random oracle model.

Here, we show another option that works without random oracles and uses no
additional computational assumptions. For this, we make the following addition
to the set-up phase of the commitment scheme: let Q be a prime chosen such
that Q > 2B and also log2Q is larger than the length of any message sent in
the above protocols. This implies that Q does not divide ord(G). It is simple
to specify a way to choose Q such that both prover and verifier can compute Q
efficiently. Now, the verifier chooses at random H ′ ∈ G, and sets H = H ′Q. He
sends H to the prover and proves in zero-knowledge knowledge of the Q’th root
H ′. This can be done using the well-known protocol of Guillou and Quisquater,
with challenges restricted to 1 bit to make the protocol be zero-knowledge (we
loose some efficiency this way, but we only need to do this once and for all in
the set-up phase).

Now, the prover can commit to a number m modulo Q by sending C =
HmRQ where R is chosen randomly in G. To open, one reveals m, R. Such a
commitment is uniformly random in G, independently of m,and so is perfectly
hiding. Also, if the prover could open a commitment in two different ways, it is
easy to see that he could then compute a Q’th root of h, and this contradicts the
strong root assumption. Finally, this is a trapdoor commitment scheme: given a
Q’th root H ′ of H , it is easy to make a commitment, and then open it in any
way desired - we simply set C = RQ for a random R. To ”open” this to reveal
m, send m, RH ′−m

.
Now, observe that the protocols we have suggested so far are built in the

standard 3-move form: the prover sends a message m, the verifier sends a chal-
lenge e, and the provers replies with some string z, and we have show these
building blocks to be honest verifier zero-knowledge. In fact, each of the honest
verifier simulations is of a form that allows to first decide on e and then compute
m, z with the correct distribution given e.

Each of these auxiliary protocols is now transformed as follows: we ask the
prover to send a commitment C = HmRQ in stead of m. The verifier sends

e as before, and the prover replies with R, m, z, where z is answer that would
normally be sent in reponse to e. The verifier checks that m, R opens C correctly
and that (m, e, z) is an acceptable conversation in the original protocol.

With this change, it is easy to show that the set-up protocol followed by
any number of commitments and executions of the auxiliary protocols is zero-
knowledge: the simulator extracts the Q’th root of H from the set-up phase using
rewinding of the verifier, and then uses this to simulate the rest. To simulate
the execution of one of the auxiliary protocols, first show a fake commitment
C = RQ to the verifier. When e is returned, compute m, z with the correct
distribution and an R′ such m, R′ is a valid opening of C.

Furthermore, soundness is also preserved: assuming that some prover P ∗

is succesful with non-negligible probability, standard rewinding allows to get
good ansers to two different values of e. These answers will either break the
commitment scheme based on H , or give correct answers to different challenges
in the original protocol. Since the first case occurs with negligible probability by
the strong root assumption, we can apply the soundness proof for the original
protocol.

5 Applying the Scheme in Class Groups and Beyond

We do not give any detailed introduction to class groups here, it is enough to
know, that each such group is defined by a single number, the discriminant ∆.
Given this number, one can choose elements in the group and compute the group
and inversion operations. Finding the order of the class group (the class number)
from ∆ appears to be a hard problem, and is at least as hard as factoring ∆ (if
∆ is composite). Therefore, root extraction also appears to be a hard problem,
and it seems reasonable to conjecture that if ∆ is chosen randomly from a large
set of values, then the class number will contain large and random prime factors,
and will not have a very large factor conisting of only small primes. Finally, it is
known that if ∆ is a prime, then the class number is odd. All this together makes
it a reasonable conjecture that class groups constructed from large, random and
prime discriminants would satisfy the assumptions we made in the beginning,
for some appropriate choice of C1.

The only difficulty is that we assumed in our description of the set-up pro-
cedure that V can choose the element h such that its order is guaranteed to be
C-rough. There is no known way to do this with a class group, because there is
no efficient algorithm known that allows to generate a class group with known
order. However, we can reasonably conjecture that it is hard for the prover to
distinguish a random h from an h with C-rough order. Assuming this, V can
choose h at random, and P will be not able to do significantly better in this case
than if h had C-rough order.

1 There are some heuristics known for how the factorization of a class number can be
expected to behave, C should be chosen with this in mind.

In general, if we add this indistinguishability condition on h to our basic
group assumptions, then our scheme will work in all cases, even for generators
G that output nothing but the public description of G.

6 Extentions

A first observation is that a group G may satisfy the requirements we make here,
even if some information about its order is publically available. For instance, this
is the case if it is a direct product G ≃ H × G′, where the order of H is public
with only large prime factors and G′ is a group that already has the properties
we require here. This observation is relevant when G = Z∗

n2 for an RSA modulus
n, since then G is the direct product of a cyclic group of order n and a group
isomorphic to Z∗

n.
Another observation is that our construction and protocols can also be ap-

plied to cases where we want a computationally hiding (but unconditionally
binding) commitment scheme: Consider the case where the parameters g, h are
chosen such that h = gα for some α, but commitments are still of the form
gxhr. In this case, the commitment does relase information about x if the group
generated by h is smaller than the group generated by g, but it may still be
computationally hiding, if elements from different cosets of < h > in < g >
are computationally indistinguishable. It is an unconditionally binding commit-
ment to a particular such coset. Along these lines, one can build a commitment
scheme with associated protocols, where a commitment is an Okamoto-Uchiyama
encryption [7].

References

1. Boudot: Efficient Proof that a Comitted Number Lies in an Interval, Proc. of Eu-
roCrypt 2000, Springer Verlag LNCS series 1807.

2. Cramer and Damg̊ard: Zero-Knowledge Proofs for Finite Field Arithmetic or: Can

Zero-Knowledge be for Free?, proc. of Crypto 98, Springer Verlag LNCS series
1462.

3. Dam̊ard: Practical and Provably Secure release of a Secret and Exchange of Signa-

tures, J.Cryptology, vol. 8 1995, pp. 201-222.
4. Fujisaki: A simple Apporach to Secretly Sharing a Factoring Witness in a

Publically-Verifiable Manner, Manuscript, 2000.
5. Fujisaki and Okamoto: Statistical Zero-Knowledg Protocols to prove Modular Poly-

nomial Relations, proc. of Crypto 97, Springer Verlag LNCS series 1294.
6. T. Pedersen: Non-Interactive and Information Theoretic Secure Verifiable Secret

Sharing, proc. of Crypto 91, Springer Verlag LNCS, vol. 576, pp. 129–140.
7. Tatsuaki Okamoto , Shigenori Uchiyama: A New Public-Key Cryptosystem as Se-

cure as Factoring Proceedings of EuroCrypt 98, Springer Verlag Lecture Notes in
Computer Science, 1403.

