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Abstrat. In the trivial n-reipient publi-key enryption sheme, a ipher-

text is a onatenation of independently enrypted messages for n reipients.

In this paper, we say that an n-reipient sheme has a \shortened ipher-

text" property if the length of the iphertext is almost a half (or less) of the

trivial sheme and the seurity is still almost the same as the underlying

single-reipient sheme. We �rst present (multi-plaintext, multi-reipient)

shemes with the \shortened iphertext" property for ElGamal sheme and

Cramer-Shoup sheme. We next show (single-plaintext, multi-reipient) hy-

brid enryption shemes with the \shortened iphertext" property.

Keywords: publi-key enryption, multi-reipient setting, ElGamal, Cramer-

Shoup, hybrid enryption, onrete seurity.

1 Introdution

1.1 Bakground

Suppose that there are n reipients. Let pk

i

be the publi key of reipient i

for 1 � i � n. The seurity of a publi-key enryption sheme in the multi-

reipient setting is di�erent from the single-reipient setting. For example,

if e is the ommon publi exponent in RSA, then e enryptions of the same

plaintext M under di�erent moduli lead to an easy reovery of M . Further
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results by Hastad [11℄ and Coppersmith [7, 8℄ proved that even the time-

stamp variants an be suessfully attaked with e iphertexts.

In the trivial n-reipient publi-key enryption sheme, a iphertext

is just a onatenation of independently enrypted messages for n reipi-

ents using a single-reipient publi-key enryption algorithm E . That is,

E

pk

1

(M

1

)jj � � � jjE

pk

n

(M

n

); where jj denotes onatenation. In general, this

trivial sheme is not seure in the sense of invertibility even if E is seure in

the same sense, as shown in the above RSA example.

Reently, Bellare et al. [2℄ and Baudron et al. [1℄ independently proved

that the trivial n-reipient sheme is seure in the sense of indistinguisha-

bility [10℄ if E is seure in the same sense, where indistinguishability is a

stronger seurity notion than invertibility.

However, their nie results [2, 1℄ still do not apture the essene of the

multi-reipient setting:

(1) The length of the iphertext of the trivial n-reipient sheme is n times

larger than that of the underlying single-reipient sheme.

(2) Consider a single-reipient hybrid enryption sheme whih enrypts a

long message M using a pseudorandom generator G and sends the seed r of

G using a publi-enryption sheme. That is,

C =M �G(r)jjE

pk

(r); (1)

where jj denotes onatenation. A natural extension of the hybrid sheme

to an n-reipient sheme will be that

M �G(r)jjE

pk

1

(r)jj � � � jjE

pk

n

(r): (2)

Their results [2, 1℄ only imply that the latter part E

pk

1

(r)jj � � � jjE

pk

n

(r) is

seure in the sense of indistinguishability if the single-reipient part E

pk

(r)

is seure in the same sense.

1.2 Our Contribution

In this paper, we onsider n-reipient publi-key enryption shemes suh

that the length of the iphertext is almost a half (or less) of the trivial

n-reipient sheme and the seurity is still almost the same as the under-

lying single-reipient sheme. We say that suh a sheme has a \shortened

iphertext" property.

1. We �rst give the de�nitions of our model and the seurity.
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2. We next present (multi-plaintext, multi-reipient) shemes with the

\shortened iphertext" property for ElGamal sheme and Cramer-Shoup

sheme and prove their seurity.

3. We also prove that the above mentioned (single-plaintext, multi-reipient)

sheme of eq.(2) is seure in the sense of indistinguishability against

hosen plaintext attak if the underlying single-reipient publi-key

sheme is seure in the same sense.

4. We �nally present how to onstrut a (single-plaintext, multi-reipient)

sheme seure against hosen iphertext attak with the \shortened i-

phertext" property. The underlying single-reipient publi-key sheme

needs to be seure in the sense of indistinguishability against hosen

iphertext attak. (For example, we an use Rabin-SAEP or RSA-

SAEP

+

[4℄ as the underlying single-reipient sheme.)

Cramer-Shoup sheme is a pratial publi-key enryption sheme whih

is seure in the sense of indistinguishability against hosen-iphertext attak

under the deision DiÆe-Hellman (DDH) assumption in the standard model

[9℄. The basi Cramer-Shoup sheme uses universal one-way hash funtions

(UOH) [9, Se.3℄. Bellare et al. derived the onrete seurity of the basi

Cramer-Shoup sheme by assuming the onrete seurity of UOH [2℄. On

the other hand, Cramer and Shoup also presented a hash-free variant whih

does not use UOH [9, Se.5.3℄.

We derive the onrete seurity of the hash-free variant of Cramer-Shoup

sheme. It is of independent interest beause it truly depends only on the

DDH assumption, but not UOH. We then present a (multi-plaintext, multi-

reipient) hash-free Cramer-Shoup sheme that has the \shortened ipher-

text" property.

One further advantage of our multi-reipient shemes (in the disrete log

setting) is that the enryption operation an be signi�antly faster than if

the enryption operations were performed separately for eah reipient.

Finally, in all of our multi-reipient shemes, the deryption algorithm

is the same as the single-reipient one. Therefore, no extra ost is required

for eah reipient.

1.3 Related Works

The "broadast" problem has been addressed by other authors in the ontext

of traitor-traing [6, 12, 5, 13℄. The traitor-traing shemes suh that [12, 5,
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13℄ an have even shorter iphertexts than our shemes, but with the tradeo�

that a small oalition of reipients an break the traitor-traing aspet of

the sheme, i.e., onstrut a new private key that does not identify anyone

in the oalition. In our shemes, no oalition an do this sine eah private

key uniquely identi�es the reipient.

Bellare and Rogaway [3℄ proved that the single reipient hybrid enryp-

tion sheme shown in eq.(1) is seure in the sense of indistinguishability

against hosen plaintext attak under the random orale moel if E

pk

is a

trapdoor oneway permutation. They also proved that the following sheme

seure in the sense of indistinguishability against hosen iphertext attak

under the random orale moel.

C = E

pk

(r)jjM �G(r)jjH(M jjr);

where H is a hash funtion. Before that, Zheng and Seberry [16℄ proposed

a sheme suh that

C = E

pk

(r)jj(G(r) � (M jjH(M)):

2 Single-Reipient Enryption Sheme

A single-reipient publi-key enryption sheme PE = (K; E ;D) onsists of

three algorithms. The key generation algorithm K outputs (pk; sk) on input

some global information I, where pk is a publi key and sk is the seret key;

we write (pk; sk)

R

 K(I). The enryption algorithm E outputs a iphertext

C on input the publi key pk and a plaintext M ; we write C

R

 E

pk

(M).

The deryption algorithm D outputs M or rejet on input the seret key

sk and a iphertext C; we write x  D

sk

(C), where x = M or rejet. We

require that D

sk

(E

pk

(M)) =M for eah plaintext M .

An adversary B runs in two stages. In \�nd" stage, it takes a publi

key pk and outputs two equal length messages M

0

and M

1

together with

some state information state. In \guess" stage, it gets a hallenge iphertext

C

b

R

 E

pk

(M

b

) from the enryption orale E

pk

, where b is a randomly hosen

bit. B �nally outputs a bit

~

b. The advantage of B is measured by the

probability Pr(

~

b = b).

Formally, the seurity of PE in the sense of indistinguishability against

hosen-plaintext attak is de�ned as follows.
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De�nition 2.1 For b = 0 and 1, de�ne the experiment as follows.

(pk

1

; sk

1

)

R

 K(I); (M

0

;M

1

; state)

R

 B(find; pk); C

b

R

 E

pk

(M

b

);

~

b

R

 B(guess; C

b

; state):

Let

Adv

s-pa

PE ;I

(B)

def

= Pr(

~

b = 0 j b = 0)� Pr(

~

b = 0 j b = 1)

Adv

s-pa

PE ;I

(t)

def

= max

B

Adv

s-pa

PE ;I

(B);

where the maximum is over all B with time-omplexity t.

(In the supersript, s- denotes "single reipient".)

De�nition 2.2 We say that PE is seure against hosen-plaintext attak if

Adv

s-pa

PE ;I

(t) is negligible for polynomially bounded t, where the omplexity is

measured as a funtion of a seurity parameter.

It is easy to see that

Pr(

~

b = b) =

1

2

+

1

2

Adv

s-pa

PE;I

(B) (3)

The seurity against hosen-iphertext attak is de�ned similarly exept

for that the adversary B gets the deryption orale D

sk

and is allowed to

query any iphertext C at most q

d

times, where it must be that C 6= C

b

in

the guess stage. We denote the advantages by Adv

s-a

PE;I

(B) and Adv

s-a

PE ;I

(t; q

d

),

respetively.

3 Multi-Reipient Enryption Sheme

Suppose that there are n reipients. Let N

def

= f1; � � � ; ng. We de�ne

(single-plaintext, multi-reipient) publi-key enryption shemes and (multi-

plaintext, multi-reipient) publi-key enryption shemes as follows.

� In a (single-plaintext, multi-reipient) publi-key enryption sheme,

a sender sends the same plaintext M seretly to a subset of reipients

S � N by broadasting a iphertext C

S

.

� In a (multi-plaintext, multi-reipient) publi-key enryption sheme,

a sender sends an independent plaintext M

i

seretly to eah reipient

i 2 S by broadasting a iphertext C

S

.
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3.1 \Shortened Ciphertext" Property

Amulti-reipient publi-key enryption sheme is naturally onstruted from

a single-reipient publi-key enryption sheme PE = (K; E ;D) as follows.

The key generation algorithm runsK(I) n times independently. A iphertext

C

N

is

C

N

= E

pk

1

(M

1

)jj � � � jjE

pk

n

(M

n

);

where jj denotes onatenation. We all this sheme the trivial multi-

reipient sheme.

Bellare et al. [2℄ proved that the trivial multi-reipient sheme is seure

in the sense of indistinguishability if PE is seure in the same sense. Baudron

et al. [1℄ proved the same result independently. However, the length of the

iphertext of the trivial multi-reipient sheme is n times larger than that

of the single-reipient sheme.

In this paper, we onsider multi-reipient publi-key enryption shemes

suh that (1) the length of the iphertext is almost a half (or less) of the

trivial multi-reipient sheme and (2) the seurity is still almost the same

as the underlying single-reipient sheme. We say that suh a sheme has a

\shortened iphertext" property.

3.2 Our Model

For a single-reipient publi-key enryption sheme PE = (K; E ;D), we de-

�ne a (multi-plaintext, multi-reipient) publi-key enryption sheme PE

n

=

(K

n

; E

n

; TAKE) as follows.

� The key generation algorithm K

n

outputs pk

def

= (pk

1

; � � � ; pk

n

) and

sk

def

= (sk

1

; � � � ; sk

n

) on input some global information I, where (pk

i

; sk

i

)

is a pair of enryption/deryption keys of reipient i.

� For S = f1

1

; � � � i

s

g, let M

i

j

be a plaintext for reipient i

j

2 S. Let

M

S

def

= (M

i

1

; � � � ;M

i

s

). Then the enryption algorithm E

n

omputes

a iphertext C

S

for M

S

on input pk, S and M

S

; we write C

S

R

 

E

n

pk

(S;M

S

).

� TAKE is a hash funtion that takes a part of a iphertext as follows.

For T � S � N , it outputs C

T

on input T; S and C

S

. We write

C

T

 TAKE

T

(C

S

).

Espeially, for i 2 S, we write C

i

 TAKE

i

(C

S

).
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We require that D

sk

i

(TAKE

i

(C

S

)) =M

i

for all i 2 S and any M

i

.

A (single-plaintext, multi-reipient) publi-key enryption sheme is de-

�ned similarly.

Remark 3.1 In our multi-reipient shemes, the deryption algorithm is

the same as the single-reipient sheme. Therefore, no extra ost is required

for eah reipient.

3.3 Seurity

We generalize the de�nition of seurity for the multi-reipient setting given

by Bellare et al. [2℄ to (multi-plaintext,multi-reipient) shemes as follows.

We onsider an experiment as follows. At the beginning, a hallenge

bit b is randomly hosen and �xed. An adversary B is provided with the

enryption orale E

n

pk

and it is allowed to query (S;M

0

S

;M

1

S

) at most q

e

times. E

n

pk

returns a iphertext E

n

pk

(S;M

b

S

). (Sine b is �xed at the begin-

ning, the same b is used aross all the queries.) B �nally outputs a bit

~

b.

We require that jM

0

i

j

j = jM

1

i

j

j for all i

j

2 S, where M

0

S

= (M

0

i

1

; � � � ;M

0

i

s

)

and M

1

S

= (M

1

i

1

; � � � ;M

1

i

s

).

Eah time, B an hoose (S;M

0

S

;M

1

S

) arbitrarily, where S as well as

(M

0

S

;M

1

S

) may be related to his other queries to E

n

pk

. Then the seurity of

PE

n

against hosen-plaintext attak is de�ned as follows.

De�nition 3.1 For b = 0 and 1, de�ne the experiment as follows.

(pk; sk)

R

 K

n

(I);

~

b B

E

n

pk

(I; pk):

Let

Adv

n-pa

PE

n

;I

(B)

def

= Pr(

~

b = 0 j b = 0)� Pr(

~

b = 0 j b = 1)

Adv

n-pa

PE

n

;I

(t; q

e

)

def

= max

B

Adv

n-pa

PE

n

;I

(B);

where the maximum is over all B with time-omplexity t.

In the supersript, n- denotes "n reipients".
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De�nition 3.2 We say that PE

n

is seure against hosen-plaintext attak

if Adv

n-pa

PE

n

;I

(t) is negligible for polynomially bounded t, where the omplexity

is measured as a funtion of a seurity parameter.

The seurity against hosen-iphertext attak is de�ned similarly exept

for that the adversary B gets n deryption orales D

sk

1

; � � � ;D

sk

n

. It is

allowed to query any iphertext C to any deryption orale D

sk

i

at most q

d

times for eah i, where it must be that C 6= TAKE

i

(C

S

) for any output C

S

of the enryption orale E

xpk

. We denote the advantages by Adv

n-a

PE

n

;I

(B)

and Adv

n-a

PE

n

;I

(t; q

e

; q

d

), respetively.

The seurity of (single-plaintext, multi-reipient) shemes is de�ned sim-

ilarly. For simpliity, the same notation as above will be used.

Remark 3.2 In the de�nition of Bellare et al. [2℄, (i) jSj = 1 and there

are n enryption orales E

pk

1

; � � � ; E

pk

n

. (ii) B is allowed to query at most

q

e

times to eah E

pk

i

. It is easy to see that our de�nition is more general if

we ignore (ii).

3.4 SuÆient Condition

We say that an adversary is type 0 if q

e

= 1 and his query to E

n

pk

is

(N;M

0

N

;M

1

N

). That is, we onsider an adversary whih runs in two stages,

the �nd stage and the guess stage, as in the single-reipient ase.

De�nition 3.3 Let AdvT0

n-pa

PE

n

;I

(t) be the max

B

Adv

n-pa

PE

n

;I

(B), where the max-

imum is over all type 0 adversaries B with time-omplexity t. De�ne AdvT0

n-a

PE

n

;I

(t; q

d

)

similarly.

The next lemma shows that PE

n

is seure if AdvT0

n-x

PE

n

;I

(t) is negligible,

where x = pa or a. Therefore, we do not have to evaluate Adv

n-x

PE

n

;I

(t; q

e

)

diretly.

Let T

n

denote the time to ompute a iphertext C

N

= E

n

pk

(N;M

N

).

Lemma 3.1 In an n-reipient broadast/multiast publi-key enryption sheme

PE

n

,

Adv

n-pa

PE

n

;I

(t; q

e

) � q

e

� AdvT0

n-pa

PE

n

;I

(t

0

);

Adv

n-a

PE

n

;I

(t; q

e

; q

d

) � q

e

� AdvT0

n-a

PE

n

;I

(t

0

; q

d

);

where t

0

= t+O(q

e

T

n

).

A proof is given in Appendix.
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4 Multi-Reipient "ElGamal" Enryption Sheme

In this setion, we show a (multi-plaintext, multi-reipient) ElGamal sheme

whih has the \shortened iphertext" property. Let G be a group with a

prime order p and let g be a generator of G. Let I = (p; g) be the global

information.

Let T

exp

denote the time needed to perform an exponentiation in G.

4.1 ElGamal sheme and DDH problem

Informally, the deision DiÆe-Hellman (DDH) problem is stated as follows.

Given g

x

; g

y

; g

z

, deide if z = xy mod p with nonnegligible probability. For-

mally, let

DH

def

= f(g

x

; g

y

; g

xy

) j x 2 Z

p

; y 2 Z

p

g

RA

def

= f(g

x

; g

y

; g

z

) j x 2 Z

p

; y 2 Z

p

; z 2 Z

p

g:

Let D be a distinguisher whih outputs 0 or 1. De�ne

Adv

ddh

p;g

(D)

def

= Pr[D(X) = 0jX 2 DH℄� Pr[D(X) = 0jX 2 RA℄;

Adv

ddh

p;g

(t)

def

= max

D

Adv

p;g

(D);

where the maximum is over all D with \time-omplexity" t. The DDH

assumption is that Adv

ddh

p;g

(t) is negligible.

ElGamal enryption sheme EG = (K; E ;D) is as follows.

K(I) : sk = x; pk = X( g

x

); where x

R

 Z

p

:

E

I;X

(M) : (Y;W ) = (g

r

;M �X

r

); where r

R

 Z

p

:

D

I;x

(Y;W ) : M  W � Y

�x

:

It is well known that ElGamal sheme is seure in the sense of indistin-

guishability against hosen plaintext attak under the DDH assumption.

4.2 Proposed Sheme

Now we present the proposed (multi-plaintext,multi-reipient) ElGamal sheme

EG

n

= (K

n

; E

n

; TAKE). The key generation algorithm K

n

(I) runs K(I) n

times independently. Let x

i

be the seret key and X

i

(= g

x

i

) be the publi-

key of reipient i.
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For S = f1

1

; � � � i

s

g, let M

i

j

be a plaintext for reipient i

j

2 S. Then a

iphertext for S is

C

S

= (g

r

;M

i

1

X

r

i

1

; : : : ;M

i

s

X

r

i

s

);

where r

R

 Z

p

. TAKE

i

is de�ned as (g

r

;M

i

X

r

i

)  TAKE

i

(C

S

). For

T � S � N , C

T

 TAKE

T

(C

S

) is de�ned naturally.

We will show that our sheme has the \shortened iphertext" property.

First, in the trivial multi-reipient sheme, a iphertext is

C

trivial

S

= (g

r

i

1

;M

i

1

X

r

i

1

i

1

)jj � � � jj(g

r

i

s

;M

i

s

X

r

i

s

i

s

):

Therefore, in our sheme, the size of the iphertext is almost a half of that

of the trivial multi-reipient sheme. We next prove that our sheme is still

seure. More preisely, we prove that our sheme is seure in the sense of

indistinguishability against hosen plaintext attak under the DDH assump-

tion.

Lemma 4.1 In the proposed (multi-plaintext,multi-reipient) ElGamal en-

ryption sheme,

AdvT0

n-pa

EG

n

(p;g)

(t) � 2 � Adv

ddh

p;g

(t

0

) +

1

p

; (4)

where t

0

= t+O(n � T

exp

).

A proof is given in Appendix. From lemma 4.1 and lemma 3.1, we obtain

the following theorem.

Theorem 4.1 In the proposed (multi-plaintext,multi-reipient) ElGamal en-

ryption sheme,

Adv

n-pa

EG

n

(p;g)

(t; q

e

) � q

e

(2 � Adv

ddh

p;g

(t

0

) +

1

p

); (5)

where t

0

= t+O(q

e

n � T

exp

).

The onrete seurity of the trivial multi-reipient ElGamal enryption

sheme derived by Bellare et al. [2℄ satis�es the same equation as eq.(4).

Hene, the oeÆient q

e

in eq.(5) an be onsidered as the ost for the

\shortened iphertext" property.
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4.3 S/MIME CMS

S/MIME CMS (IETF RFC 2630) is a (single-plainext, multi-reipient) sheme

suh that

C

S

= (g

r

;Wrap(X

r

i

1

;K); :::;Wrap(X

r

i

s

;K));

whereK is a ontent-enryption key to be transported,Wrap is a symmetri

key-wrapping operation.

The Wrap operation takes the role of the multipliation in the basi

ElGamal sheme. Therefore, Theorem 4.1 shows that this sheme is seure

if Wrap is seure enough.

5 Multi-Reipient "Cramer-Shoup" Enryption Sheme

In this setion, we �rst show the onrete seurity of the hash-free variant of

Cramer-Shoup sheme. We next present a (multi-plaintext,multi-reipient)

hash-free Cramer-Shoup sheme whih has the \shortened iphertext" prop-

erty.

Let G be a group with a prime order p and let g

1

be a generator of G.

Let I = (p; g

1

) be the global information.

5.1 Conrete seurity of the hash-free Cramer-Shoup Sheme

Bellare et al. derived the onrete seurity of the basi Cramer-Shoup

sheme [9, Se.3℄ by assuming the seurity of universal one-way hash fun-

tions (UOH) [2℄. In this subsetion, we derive the onrete seurity of the

hash-free variant of Cramer-Shoup sheme, whih does not need to assume

UOH.

The hash-free variant of Cramer-Shoup sheme CS = (K; E ;D) is as

follows [9, Se.5.3℄. Let F be a polynomial time omputable injetion from

G

3

to (Z

�

p

)

k

for some k. Let (pk; sk) be

sk : z; x

1

; x

2

; (y

11

; y

12

); � � � ; (y

k1

; y

k2

);

where eah element is randomly taken from Z

p

:

pk : g

2

; h(= g

z

1

); (= g

x

1

1

g

x

2

2

); d

1

(= g

y

11

1

g

y

12

2

); � � � ; d

k

(= g

y

k1

1

g

y

k2

2

);

where g

2

is randomly hosen from G:

For a plaintext M , let a iphertext (u

1

; u

2

; e; v) be

u

1

= g

r

1

; u

2

= g

r

2

; e = h

r

M;v = (d

�

1

1

� � � d

�

k

k

)

r

;

11



where r

R

 Z

p

and (�

1

; � � � ; �

k

) = F (u

1

; u

2

; e).

On input (u

1

; u

2

; ; v), the deryption algorithmD

sk

�rst omputes F (u

1

; u

2

; e) =

(�

1

; � � � ; �

k

). Next if

v = u

x

1

+�

1

y

11

+���+�

k

y

k1

1

u

x

2

+�

1

y

12

+���+�

k

y

k2

2

; (6)

Then D

sk

outputs

M  e=u

z

1

: (7)

Otherwise, D

sk

outputs rejet. Let

�

def

=

�

1�

1

p

�

q

d

p

+

1

p

:

Theorem 5.1 In the hash-free Cramer-Shoup sheme,

Adv

s-a

CS;(p;g

1

)

(t; q

d

) � 2 � Adv

ddh

p;g

1

(t

0

) + 3�; (8)

where t

0

= t+O(q

d

� T

exp

).

A proof will be given in the �nal paper.

5.2 Proposed Sheme

Now the proposed (multi-plaintext,multi-reipient) hash-free Cramer-Shoup

sheme CS

n

= (K

n

; E

n

; TAKE) is desribed as follows. The key generation

algorithm K

n

(I) runs K(I) n times independently with a restrition suh

that g

2

is ommon for all pk

i

, where pk

i

= (g

2

; h

i

; 

i

; d

1i

; � � � ; d

ki

). That is,

the enryption keys pk

i

are not independent of eah other while the seret

keys sk

i

are independently hosen. This is possible beause w is not a part

of sk

i

, where g

2

= g

w

1

.

For S = f1

1

; � � � i

s

g, let M

i

be a plaintext for reipient i 2 S. Then a

iphertext for S is

C

S

= (u

1

; u

2

; e

i

1

; v

i

1

; � � � ; e

i

n

; v

i

n

)

suh that u

1

= g

r

1

; u

2

= g

r

2

and e

i

= h

r

i

M

i

; v

i

= (

i

d

�

1i

1i

� � � d

�

ki

ki

)

r

; where r

R

 

Z

p

and (�

1i

; � � � ; �

ki

) = F (u

1

; u

2

; e

i

). TAKE

i

is de�ned as (u

1

; u

2

; e

i

; v

i

) 

TAKE

i

(C

S

). C

S

 TAKE

S

(C

N

) is de�ned naturally.

Note that the size of the iphertext of our sheme is almost a half of the

trivial multi-reipient sheme. We next prove that our sheme is still seure.

More preisely, we prove that our sheme is seure in the sense of indistin-

guishability against hosen iphertext attak under the DDH assumption.
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Lemma 5.1 In the proposed (multi-plaintext,multi-reipient) Cramer-Shoup

sheme,

AdvT0

n-a

CS

n

;(p;g

1

)

(t; q

d

) � 2 � Adv

ddh

p;g

1

(t

0

) + 3n�; (9)

where t

0

= t+O(n � q

d

� T

exp

).

The proof is similar to that of Theorem 5.1. From lemma 5.1 and lemma

3.1, we obtain the following theorem.

Theorem 5.2 In the proposed (multi-plaintext,multi-reipient) Cramer-Shoup

sheme,

Adv

n-a

CS

n

;(p;g

1

)

(t; q

d

) � q

e

(2 � Adv

ddh

p;g

1

(t

0

) + 3n�); (10)

where t

0

= t+O(n � q

d

� T

exp

) +O(q

e

nT

exp

).

Comparing with the onrte seurity of the trivial multi-reipient (basi)

Cramer-Shoup sheme given by Bellare et al. [2℄, we an see that our sheme

takes no extra ost fot the \shortened iphertext" property exept negligible

fators.

6 Multi-Reipient Hybrid Enryption Sheme

6.1 Overview

Bellare and Rogaway showed that eq.(1) is seure in the sense of indis-

tinguishability against hosen plaintext attak if E

pk

is a trapdoor oneway

permutation. However, this does not imply that eq.(2) is seure. Indeed, it

is not seure if E

pk

is RSA as mentioned in Se.1.1. On the other hand, the

results of [2, 1℄ imply only that the latter part E

pk

1

(r)jj � � � jjE

pk

n

(r) of eq.(2)

is seure in the sense of indistinguishability if E

pk

(r) is seure in the same

sense.

In this setion, we formally prove that eq.(2) is seure in the sense of

indistinguishability against hosen plaintext attak if E

pk

is seure in the

same sense.

More generally, we prove that there exists a (single-plaintext,multi-reipient)

hybrid enryption sheme H

n

= (K

n

H

; E

n

H

; TAKEH) whih is seure in the

sense of indistinguishability against hosen plaintext (iphertext, respe-

tively) attak if there exists a (multi-plaintext,multi-reipient) publi-key

enryption sheme PE

n

= (K

n

; E

n

; TAKE) whih is seure in the same

sense against type 0 adversaries.

13



For example, we an use Rabin-SAEP, RSA-SAEP

+

[4℄ or Cramer-Shoup

sheme [9℄ as the underlying single-reipient sheme seure against hosen

iphertext attak.

In what follows, let PE = (K; E ;D) be the underlying single reipient

publi-key sheme. That is,

PE ! PE

n

!H

n

:

Remember that E

n

pk

(S; r) denotes a iphertext of r = (r; � � � ; r) for a subset

of reipients S = fi

1

; � � � i

s

g in PE

n

.

6.2 IND-CPA Hybrid Sheme

De�ne a (single-plaintext,multi-reipient) hybrid enryption sheme H

n

=

(K

n

H

; E

n

H

; TAKEH) from PE

n

= (K

n

; E

n

; TAKE) as follows.

Let a iphertext of M for a subset of reipients S = fi

1

; � � � i

s

g be

C

S

= E

n

pk

(S; r)jjM �G(r); (11)

where r is a random element and G is a pseudorandom generator. For

T � S � N , let

TAKEH

T

(C

S

) = TAKE

T

(E

n

pk

(S; r))jjM �G(r):

Now we prove that H

n

is seure in the sense of indistinguishability

against hosen plaintex tattak if PE

n

is seure in the same sense only

against type 0 adversaries under the random orale model, where G is mod-

eled as a random orale.

Suppose that an adversary makes at most q

G

queries to the random

orale G. Let r be l-bits long. We �rst show that H

n

is seure against type

0 adversaries if PE

n

is so.

Lemma 6.1

AdvT0

n-pa

H

n

;I

(t

0

) � AdvT0

n-pa

PE

n

;I

(t

00

) +

q

G

2

l�3

; (12)

where t

00

= t

0

+O(q

G

) +O(n).

A proof is given in Appendix. From lemma 3.1, we have

Adv

n-pa

H

n

;I

(t; q

e

) � q

e

AdvT0

n-pa

H

n

;I

(t

0

)

where t

0

= t+O(q

e

T

n

). Therefore, we obtain the following Theorem.
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Theorem 6.1

Adv

n-pa

H

n

;I

(t; q

e

) � q

e

�

AdvT0

n-pa

PE

n

;I

(t

00

) +

q

G

2

l�3

�

;

where t

00

= t+O(q

e

T

n

) +O(q

G

) +O(n).

(Proof)

T

00

= t

0

+O(q

G

) +O(n) = t+O(q

e

T

n

) +O(q

G

) +O(n):

Q.E.D.

Suppose that PE

n

used in eq.(11) is the trivial multi-reipient sheme.

For the trivial sheme, the result of Bellare et al. implies that [2℄

AdvT0

n-pa

PE

n

;I

(t

00

) � n � Adv

pa

PE ;I

(t

000

)

where t

000

= t

00

+ O(nT

s

) and T

s

denotes the time to ompte a iphertext of

PE . Sine T

n

= nT

s

, we obtain the following orollary.

Corollary 6.1 In the above (single-plaintext,multi-reipient) sheme H

n

,

Adv

n-pa

H

n

;I

(t; q

e

) � q

e

(n � Adv

pa

PE ;I

(t

0

) +

q

G

2

l�3

); (13)

where t

0

= t + O(q

G

) + O(q

e

nT

s

) and T

s

denotes the time to ompte a

iphertext of PE .

6.3 IND-CCA Hybrid Sheme

First, de�ne a single-reipient hybrid enryption shemeHY = (K

Y

; E

Y

;D

Y

)

from PE as follows. Let a iphertext of M be C = 

1

jj

2

jj

3

with



1

=M �G(r); 

2

= H(rjjM); 

3

= E

pk

(r);

where r is a random element, H is a hash funtion and G is a pseudorandom

generator. The deryption algorithm D

Y

is de�ned as

D

Y

sk

(

1

jj

2

jj

3

) =

(

rejet if D

sk

(

3

) = rejet or 

2

6= H(r̂jj

1

�G(r̂))



1

�G(r̂) otherwise;

where r̂ = D

sk

(

3

).

Next de�ne a (single-plaintext,multi-reipient) hybrid enryption sheme

HY

n

= (K

n

H

; E

n

H

; TAKEH) from PE

n

= (K

n

; E

n

; TAKE) as follows. Let a
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iphertext of M for a subset of reipients S = fi

1

; � � � i

s

g be C

S

= 

1

jj

2

jj

3

,

where



1

=M �G(r); 

2

= H(rjjM); 

3

= E

n

pk

(S; r): (14)

For T � S � N , let

TAKEH

T

(C

S

) = 

1

jj

2

jjTAKE

T

(E

n

pk

(S; r)):

Now we prove that HY

n

is seure in the sense of indistinguishability

against hosen iphertext attak if PE

n

is seure in the same sense only

against type 0 adversaries under the random orale model, where G and H

are modeled as random orales.

Suppose that an adversary makes at most q

G

queries to the G-orale, at

most q

H

queries to the H-orale and at most q

d

queries to eah deryption

orale D

sk

i

. Let r be l-bits long, M be k-bits long, rjjM be m-bits long and

H(rjjM) be h bits long. De�ne

�

def

=

q

G

+ q

H

2

l�2

+

nq

d

2

h

:

We �rst show that HY

n

is seure against type 0 adversaries if PE

n

is so.

Lemma 6.2

AdvT0

n-a

HY

n

;I

(t

0

; q

d

) � AdvT0

n-a

PE

n

;I

(t

00

; q

d

) + �;

where t

00

= t

0

+O(q

G

) +O(q

H

) +O(q

d

) +O(n).

A proof is given in Appendix. From lemma 3.1, we have

Adv

n-pa

HY

n

;I

(t; q

e

; q

d

) � q

e

AdvT0

n-pa

HY

n

;I

(t

0

; q

d

)

where t

0

= t+O(q

e

T

n

). Therefore, we obtain the following Theorem.

Theorem 6.2

Adv

n-a

HY

n

;I

(t; q

e

; q

d

) � q

e

�

AdvT0

n-a

PE

n

;I

(t

00

; q

d

) + �

�

;

where t

00

= t+O(q

e

T

n

) +O(q

G

) +O(q

H

) +O(q

d

) +O(n).

Suppose that PE

n

used in eq.(14) is the trivial multi-reipient sheme.

For the trivial sheme, the result of Bellare et al. implies that [2℄

AdvT0

n-a

PE

n

;I

(t

00

; q

d

) � n � Adv

a

PE ;I

(t

000

; q

d

);

where t

000

= t

00

+ O(nT

s

) and T

s

denotes the time to ompte a iphertext of

PE . Sine T

n

= nT

s

, we obtain the following orollary.
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Corollary 6.2 In the above (single-plaintext,multi-reipient) sheme HY

n

,

Adv

n-a

H

n

;I

(t; q

e

; q

d

) � q

e

(n � Adv

a

PE ;I

(t

0

; q

d

) + �); (15)

where t

0

= t+O(q

e

nT

s

) + (q

G

) +O(q

H

) +O(q

d

) and T

s

denotes the time to

ompte a iphertext of PE .

6.4 Improvement on Multi-Reipient ElGamal and Cramer-

Shoup

In our (multi-plaintext,multi-reipient) ElGamal enryption sheme, sup-

pose that M =M

i

1

= � � � =M

i

s

. In this ase, let a iphertext be

�

C = (Mg

r

;X

r

i

1

; � � � ;X

r

i

s

):

This sheme is better than our sheme of Se.4.2 beause M is multiplied

one. The seurity is proved similarly. Further, we an onsider a hybrid

sheme suh that

�

C

0

= (Kg

r

;X

r

i

1

; � � � ;X

r

i

s

)jjG(K) �M:

We an improve our multi-reipient Cramer-Shoup sheme similarly.
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A Proof of Lemma 3.1

We show a proof for (multi-plaintext, multi-reipient) shemes against hosen-

plaintext attak. The proofs for the other ases are similar. Let B be an

adversary whih has time-omplexity t and makes at most q

e

queries. We

will design an type 0 adversary D

B

with time-omplexity at most t

0

.

Similar to [2℄, we onsider a hybrid experiment with a parameter l suh

that 0 � l � q

e

as follows.

Experiment-l: Let the i-th query of B be (S;M

0

S

;M

1

S

). If i � l, then E

pk

returns E

pk

(S;M

1

S

). Otherwise, it returns E

pk

(S;M

0

S

).

Let

p

l

def

= Pr[

~

b = 0 in Experiment-l℄:

Then it is easy to see that

Adv

n-pa

PE

n

;I

(B) = p

0

� p

q

e

:

Next our D

B

works as follows. On input (I; pk), D

B

hooses l randomly

suh that 1 � l � q

e

. It runs B by giving (I; pk) to B. Let the i-th query of

B be (S;M

0

S

;M

1

S

).

1. If i < l, then D

B

returns C

1

S

R

 E

pk

(S;M

1

S

).

2. If i > l, then D

B

returns C

0

S

R

 E

pk

(S;M

0

S

).

3. If i = l, then D

B

queries (N;M

0

N

;M

1

N

) to his enryption orales,

where M

0

S

and M

1

S

are naturally embedded in M

0

N

and M

1

N

, respe-

tively. The orale returns C

b

N

R

 E

pk

(N;M

b

N

) to D

B

. D

B

�nally gives

C

b

S

= TAKE

S

(C

b

N

) to B.

19



Suppose that B outputs

~

b �nally. Then D

B

outputs

~

b.

Now we an see that

Pr(

~

b = 0 j b = 0) = (p

0

+ � � � p

q

e

�1

)=q

e

Pr(

~

b = 0 j b = 1) = (p

1

+ � � � p

q

e

)=q

e

beause l is randomly hosen. Therefore,

Adv

n-pa

PE

n

;I

(D

B

) = (p

0

� p

q

e

)=q

e

= Adv

n-pa

PE

n

;I

(B)=q

e

:

Hene

Adv

n-pa

PE

n

;I

(B) = q

e

� Adv

n-pa

PE

n

;I

(D

B

):

By taking the maximum, we obtain that

Adv

n-pa

PE

n

;I

(t; q

e

) � q

e

� AdvT0

n-pa

PE

n

;I

(t

0

):

Finally, the overhead of D

B

is to pik the random number l and exeute

some onditional statements. It is O(q

e

� T

n

).

B Proof of Lemma 4.1

By extending the result of Stadler [15, in the proof of Proposition 1℄ and

Naor and Reingold [14, lemma 3.2℄, Bellare et al. proved the following

proposition [2℄.

Proposition B.1 [2℄ There is a probabilisti algorithm R suh that on input

g

a

; g

b

; g



, R outputs g

b

0

; g



0

, where b

0

is random and



0

=

(

ab

0

mod p if  = ab mod p

random if  6= ab mod p

R runs in O(T

exp

) time.

Now we show a proof of lemma 4.1. Let B be a type 0 adversary attaking

the proposed sheme with time-omplexity at most t. We will design an

adversary D

B

for the DDH problem, where D

B

has time omplexity at

most t

0

.

Let the input to D

B

be g

r

; g

x

; g

z

. D

B

runs R of Proposition B.1 n times

independently on input (g

r

; g

x

; g

z

). ThenR outputsX

1

= g

x

1

; � � � ;X

n

= g

x

n

and Z

1

= g

z

1

; � � � ; Z

n

= g

z

n

, where x

1

; � � � ; x

n

are random and

z

i

=

(

rx

i

mod p if z = rx mod p

random if z 6= rx mod p
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D

B

gives X

1

; � � � ;X

n

to B as n publi keys and runs B. Suppose that B

queries (M

0;1

; : : : ;M

0;n

) and (M

1;1

; : : : ;M

1;n

) in the �nd stage. Then D

B

hooses a random bit b and gives

~

C = (g

r

;M

b;1

�Z

1

; � � � ;M

b;n

�Z

n

) to B as a

hallenge iphertext. Suppose that B outputs

~

b in the guess stage. Finally,

D

B

outputs b�

~

b.

First suppose that (g

r

; g

x

; g

z

) 2 DH. Then

~

C is a legal iphertext.

Therefore, as shown in eq.(3), we have

Pr(D

B

outputs 0) = Pr(

~

b = b) =

1

2

+

1

2

Adv

n-pa

EG

n

;(p;g)

(B): (16)

Next suppose that (g

r

; g

x

; g

z

) 2 RA. If z 6= rx, then Z

1

; � � � ; Z

n

are random

and Pr(

~

b = b) = 1=2. Hene, we have

Pr(D

B

outputs 0) = Pr(

~

b = b)

�

1

2

(1�

1

p

) +

1

p

=

1

2

+

1

2p

(17)

From eq.(16) and eq.(17), we have

Adv

ddh

p;g

(D

B

) �

1

2

Adv

n-pa

EG

n

;(p;g)

(B)�

1

2p

Adv

n-pa

EG

n

;(p;g)

(B) � 2Adv

ddh

p;g

(D

B

) +

1

p

By taking the maximum, we have

AdvT0

n-pa

EG

n

;(p;g)

(t) � 2 � Adv

ddh

p;g

(t

0

) +

1

p

:

It is easy to see that t

0

= t+O(n � T

exp

).

C Proof of Theorem 5.1

(u

0

1

; u

0

2

; e

0

; v

0

) is alled valid if u

0

1

= g

r

0

1

and u

0

2

= g

r

0

2

for some r

0

. Otherwise,

it is alled invalid.

We �rst onsider a slightly modi�ed version of CS suh that h = g

z

1

1

g

z

2

2

,

where z

1

R

 Z

p

and z

2

R

 Z

p

, and eq.(7) is replaed by

M  e=u

z

1

1

u

z

2

2

: (18)

We denote this modi�ed version by mCS.
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Lemma C.1 In the modi�ed version,

Adv

s-a

mCS;(p;g

1

)

(t; q

d

) � 2 � Adv

ddh

p;g

1

(t

0

) + �;

where t

0

= t+O(q

d

� T

exp

).

Proof . Let B be an adversary attaking the modi�ed sheme with time-

omplexity at most t. We will design an adversaryD

B

for the DDH problem,

where D

B

has time omplexity at most t

0

.

Let the input to D

B

be g

2

; g

r

1

1

; g

r

2

2

. D

B

runs K(I) and obtains (pk; sk).

D

B

gives pk to B and runs B. D

B

an simulate the deryption orale D

sk

beause he knows sk.

Suppose that B queries M

0

and M

1

in the �nd stage. Then D

B

hooses

a random bit b and omputes a hallenge iphertext C = (u

1

; u

2

; e; v) suh

that u

1

= g

r

1

1

; u

2

= g

r

2

2

and

e = u

z

1

1

u

z

2

2

M

b

v = u

x

1

+�

1

y

11

+���+�

k

y

k1

1

u

x

2

+�

1

y

12

+���+�

k

y

k2

2

(19)

where (�

1

; � � � ; �

k

) = F (u

1

; u

2

; e). D

B

then gives C to B. Suppose that B

outputs

~

b in the guess stage. Finally, D

B

outputs b�

~

b.

First suppose that (g

2

; g

r

1

1

; g

r

2

2

) 2 DH, whih means that r

1

= r

2

. In this

ase, it is easy to see that C is a legal iphertext. Therefore, from eq.(3),

we have

Pr(D

B

outputs 0) = Pr(

~

b = b) =

1

2

+

1

2

Adv

s-a

mCS;(p;g

1

)

(B) (20)

Next suppose that (g

2

; g

r

1

1

; g

r

2

2

) 2 RA. As shown in [9℄, it holds that

Pr(

~

b = b j the deryption orale rejets all invalid iphertexts) = 1=2 (21)

Let

p

0

def

= Pr(at least one invalid iphertext is aepted):

Claim C.1 p

0

� �.

Proof . Suppose that B queries an invalid iphertext C

0

= (u

0

1

; u

0

2

; e

0

; v

0

) to

the deryption orale, where

u

0

1

= g

r

0

1

1

; u

0

1

= g

r

0

2

2
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with r

0

1

6= r

0

2

. Let F (u

0

1

; u

0

2

; e

0

) = (�

0

1

; � � � ; �

0

k

). Let g

2

= g

w

1

. First assume

that w 6= 0.

(Find stage) For �xed ; d

1

; � � � ; d

k

, letA

1

be the set ofX = (x

1

; y

11

; � � � ; y

k1

; x

2

; y

12

; � � � ; y

k2

)

whih an form ; d

1

; � � � ; d

k

. For a �xed v

0

, let A

2

be the set of seret keys

whih an form v

0

. Eah X of A

1

\A

2

must satisfy the set of linear equations

whose oeÆients matrix is

0

B

B

B

B

B

B

�

1 w

1 w

.

.

.

.

.

.

1 w

r

0

1

r

0

1

�

0

1

� � � r

0

1

�

0

k

r

0

2

w r

0

2

�

0

1

w � � � r

0

2

�

0

k

w

1

C

C

C

C

C

C

A

:

where the last row orresponds to the equation about v

0

. By the Gauss

elimination, we have

0

B

B

B

B

B

B

�

1 w

1 w

.

.

.

.

.

.

1 w

0 0 � � � 0 (r

0

2

� r

0

1

)w (r

0

2

� r

0

1

)�

0

1

w � � � (r

0

2

� r

0

1

)�

0

k

w

1

C

C

C

C

C

C

A

:

The last row is linearly independent of the previous rows beause (r

0

2

�

r

0

1

)w 6= 0 from our assumption. Hene,

Pr(C

0

is aepted j w 6= 0) � jA

1

\A

2

j=jA

1

j = 1=p:

(Guess stage) First suppose that (u

0

1

; u

0

2

; e

0

) = (u

1

; u

2

; e). In this ase, v

0

6= v

beause (u

0

1

; u

0

2

; e

0

; v

0

) 6= (u

1

; u

2

; e; v). On the other hand, v satis�es eq.(6)

beause it is omputed by eq.(19). Therefore, v

0

does not satisfy eq.(6).

Hene, (u

0

1

; u

0

2

; e

0

; v

0

) is rejeted.

Next suppose that (u

0

1

; u

0

2

; e

0

) 6= (u

1

; u

2

; e). For �xed ; d

1

; � � � ; d

k

and v,

let A

0

1

be the set of X = (x

1

; y

11

; � � � ; y

k1

; x

2

; y

12

; � � � ; y

k2

) whih an form

; d

1

; � � � ; d

k

; v. For a �xed v

0

, let A

0

2

be the set of seret keys whih an

form v

0

. Eah X of A

0

1

\ A

0

2

must satisfy the set of linear equations whose
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oeÆients matrix is

0

B

B

B

B

B

B

B

B

�

1 w

1 w

.

.

.

.

.

.

1 w

r

1

r

1

�

1

� � � r

1

�

k

r

2

w r

2

�

1

w � � � r

2

�

k

w

r

0

1

r

0

1

�

0

1

� � � r

0

1

�

0

k

r

0

2

w r

0

2

�

0

1

w � � � r

0

2

�

0

k

w

1

C

C

C

C

C

C

C

C

A

:

where the last row orresponds to the equation about v

0

. By the Gauss

elimination, we have

0

B

B

B

B

B

B

B

B

�

1 w

1 w

.

.

.

.

.

.

1 w

0 0 � � � 0 (r

2

� r

1

)w (r

2

� r

1

)�

1

w � � � (r

2

� r

1

)�

k

w

0 0 � � � 0 (r

0

2

� r

0

1

)w (r

0

2

� r

0

1

)�

0

1

w � � � (r

0

2

� r

0

1

)�

0

k

w

1

C

C

C

C

C

C

C

C

A

:

If r

2

� r

1

= 0, then the last row is linearly independent of the previous rows

beause (r

0

2

� r

0

1

)w 6= 0 from our assumption. Suppose that r

2

� r

1

6= 0. If

the last row depends on the previous rows, then we must have

1 =

�

1

�

0

1

= � � � ;

�

k

�

0

k

:

Hene (�

1

; � � � ; �

k

) = (�

0

1

; � � � ; �

0

k

). This means that (u

1

; u

2

; e) = (u

0

1

; u

0

2

; e

0

)

beause F is an injetion. However, this is a ontradition. Therefore, the

last row is linearly independent of the previous rows. Hene,

Pr(C

0

is aepted j w 6= 0) � jA

0

1

\A

0

2

j=jA

0

1

j = 1=p:

In eah stage, we see that

Pr(an invalid C

0

is aepted j w 6= 0) � 1=p:

Now suppose that B makes at most q

d

queries to the deryption orale.

Then it holds that

Pr(at least one invalid iphertext is aepted j w 6= 0) � q

d

=p:
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Therefore,

Pr(at least one invalid iphertext is aepted) �

�

1�

1

p

�

q

d

p

+

1

p

= �:

2

Now from eq.(21), we have

Pr(D

B

outputs 0) = Pr(

~

b = b)

�

1

2

(1� p

0

) + p

0

=

1

2

+

1

2

p

0

(22)

From eq.(20) and eq.(22), we obtain that

Adv

ddh

p;g

(D

B

) �

1

2

Adv

s-a

mCS;(p;g)

(B)�

1

2

p

0

Adv

s-a

mCS;(p;g)

(B) � 2Adv

ddh

p;g

(D

B

) + p

0

By taking the maximum, we have

Adv

s-a

mCS;(p;g

1

)

(t; q

d

) � 2 � Adv

ddh

p;g

(t

0

) + p

0

� 2 � Adv

ddh

p;g

(t

0

) + �:

It is easy to see that t

0

= t+O(q

d

� T

exp

).

2

Now we show a proof of Theorem 5.1. Let B

1

be an adversary whih

attaks CS. We will design an adversary B

2

whih attaks the modi�ed

version mCS by using B

1

as a subroutine. Let the input to B

2

be (I; pk).

Then B

2

gives (I; pk) to B

1

and runs B

1

.

Suppose that B

1

outputs (M

0

;M

1

; state) at the end of the �nd stage.

Then B

2

outputs (M

0

;M

1

; state) at the end of his �nd stage. In the guess

stage, B

2

gets a hallenge iphertext C

b

for M

b

, where b = 0 or 1. B

2

gives

(C

b

; state) to the guess stage of B

1

. B

1

�nally outputs

~

b. Then B

2

outputs

~

b.

Let D

1

be the deryption orale for B

1

and D

2

be the deryption orale

for B

2

. If B

1

queries a iphertext C to D

1

, then B

2

queries C to D

2

. If D

2

returns � to B

2

, then B

2

returns � to B

1

. We show that B

2

simulates D

1

with overwhelming probability.

Now it holds that D

1

rejets C if and only if D

2

rejets C beause eq.(6)

does not ontain z; z

1

; z

2

. Next suppose that C is aepted by D

1

and D

2

.

Then there are two ases, C is valid or C is invalid. If C is valid, thenD

1

and
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D

2

return the same M . This is veri�ed as follows. Let C = (u

0

1

; u

0

2

; e

0

; v

0

),

where u

0

1

= g

r

0

1

and u

0

2

= g

r

0

2

for some r

0

. Then in CS,

h

r

0

= (g

z

1

)

r

0

= (g

r

0

1

)

z

= (u

0

1

)

z

:

Therefore, D

1

returns e

0

=h

r

0

from eq.(7). In mCS,

h

r

0

= (g

z

1

1

g

z

2

1

)

r

0

= (g

r

0

1

)

z

1

(g

r

0

2

)

z

2

= (u

0

1

)

z

1

(u

0

2

)

z

2

:

Therefore, D

2

returns e

0

=h

r

0

from eq.(18).

Now suppose that C is invalid, but it is aepted by D

1

and D

2

. If this

happens, then B

2

annot simulate D

1

. Let p

no

denote the probability that

this ours. Then similarly to Claim C.1, it holds that

p

no

� �:

Hene,

Pr(

~

b = b in B

2

) � Pr(

~

b = b in B

1

)� p

no

:

From eq.(3),

Adv

s-a

mCS;(p;g

1

)

(B

2

) � Adv

s-a

CS;(p;g

1

)

(B

1

)� 2p

no

Adv

s-a

CS;(p;g

1

)

(B

1

) � Adv

s-a

mCS;(p;g

1

)

(B

2

) + 2p

no

� Adv

s-a

mCS;(p;g

1

)

(B

2

) + 2�:

Finally, from lemma C.1, we have

Adv

s-a

CS;(p;g

1

)

(t; q

d

) � 2 � Adv

ddh

p;g

1

(t

0

) + 3�;

where t

0

= t + O(q

d

� T

exp

) beause the time-omplexity of B

1

is the same

as that of B

2

.

D Proof of Lemma 6.1

Lemma D.1 Let E and Y be two events. If

Pr(E j :Y ) = 1=2;

then

Pr(Y ) � 2Pr(E)� 1:
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(Proof)

Pr(E) = Pr(E j Y ) Pr(Y ) + Pr(E j :Y ) Pr(:Y )

� Pr(Y ) +

1

2

(1� Pr(Y ))

=

1

2

Pr(Y ) +

1

2

Q.E.D.

Lemma D.2 Let E

1

and E

2

be two events. Then

Pr(E

1

^ :E

2

) +

1

2

Pr(:E

1

^ :E

2

) �

1

2

+

1

2

Pr(E

1

)�

3

2

Pr(E

2

):

(Proof)

Pr(E

1

^ :E

2

) +

1

2

Pr(:E

1

^ :E

2

) � Pr(E

1

)� Pr(E

2

) +

1

2

(Pr(:E

1

)� Pr(E

2

))

= Pr(E

1

) +

1

2

(1� Pr(E

1

))�

3

2

Pr(E

2

))

=

1

2

+

1

2

Pr(E

1

)�

3

2

Pr(E

2

):

Q.E.D.

Let B be a type 0 adversary attaking H

n

with time-omplexity at most

t

0

. We will design a type 0 adversary D

B

for PE

n

, where D

B

has time

omplexity at most t

00

.

B behaves as follows. Remember that N = f1; � � � ; ng is the set of all

repients.

1. B sends N;M

0

and M

1

to the enryption orale of H

n

.

2. The enryption orale hooses a random bit  and gives a hallenge

iphertext E

n

pk

(N; r

�

)jjM



�G(r

�

) to B, where r

�

is a random element.

3. B �nally outputs ~.

If B does not query r

�

to the random orale G, B has no advantage in

distinguishingM

0

and M

1

. Therefore,

Pr( = ~ j r

�

is not queried) = 1=2:
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Then from lemma D.1 and eq.(3), we have that

Pr(r

�

is queried) � 2Pr( = ~)� 1 = AdvT0

n-pa

H

n

;I

(B): (23)

Now let the input to D

B

be pk. Then D

B

�rst gives pk to B. Next D

B

behaves as follows.

1. D

B

hooses r

0

and r

1

randomly. It sends N; (r

0

; � � � ; r

0

) and (r

1

; � � � ; r

1

)

to the enryption orale of PE

n

.

2. Then the enryption orale hooses a random bit b and gives a hallenge

iphertext Z = E

n

pk

(N; r

b

) to D

B

.

3. D

B

hooses a random element �. It will be used as G(r

b

) = G(r

1�b

) = �.

4. D

B

runs B as follows.

4-1. If B queries r 2 fr

0

; r

1

g to G, then D

B

returns � as the value of G(r).

Otherwise, D

B

simulates the random orale G in the natural way. (It

ips oins to answer queries and makes a set Q = fr;G(r)g, where r

is the query made by B and G(r) is the answer of D

B

.)

4-2. Suppose that B sends N;M

0

and M

1

to the enryption orale of H

n

.

Then D

B

hooses a random bit  and returns a iphertext of M

u

suh

that ZjjM

u

� � to B.

5. Suppose that B stops. Then D

B

outputs

~

b suh that

~

b =

8

>

<

>

:

0 if r

0

2 Q and r

1

62 Q

1 if r

1

2 Q and r

0

62 Q

random otherwise

D

B

fails to simulate G if B queries r

1�b

. However, B has no information

on r

1�b

through the whole experiment. Therfore, this probability is bounded

by

Pr(D

B

fails to simulate) = Pr(r

1�b

2 Q) = q

G

=2

l

beause r

1�b

is randomly hosen by D

B

. Hene,

Pr(r

b

2 Q) � AdvT0

n-pa

H

n

;I

(B)� q

G

=2

l�1
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from eq.(23). Now from lemma D.2, we have that

Pr(

~

b = b) = Pr(r

b

2 Q and r

1�b

62 Q) +

1

2

Pr(r

b

62 Q and r

1�b

62 Q)

=

1

2

+

1

2

Pr(r

b

2 Q)�

3

2

Pr(r

1�b

2 Q)

�

1

2

+

1

2

�

AdvT0

n-pa

H

n

;I

(B)�

q

g

2

l

�

�

3

2

q

G

2

l

=

1

2

+

1

2

AdvT0

n-pa

H

n

;I

(B)�

q

G

2

l�2

Finally, from eq.(3), we obtain that

AdvT0

n-pa

PE

n

;I

(D

B

) � AdvT0

n-pa

H

n

;I

(B)�

q

G

2

l�3

AdvT0

n-pa

H

n

;I

(B) � AdvT0

n-pa

PE

n

;I

(D

B

) +

q

G

2

l�3

AdvT0

n-pa

H

n

;I

(t) � AdvT0

n-pa

PE

n

;I

(t

0

) +

q

G

2

l�3

:

It is easy to see that t

00

= t

0

+O(q

G

) +O(n).

E Proof of Lemma 6.2

Let B be a type 0 adversary attaking HY

n

with time-omplexity at most

t

0

. We will design a type 0 adversary A

B

for PE

n

, where A

B

has time

omplexity at most t

00

.

B behaves as follows. Remember that N = f1; � � � ; ng is the set of all

repients.

1. B sends N;M

0

and M

1

to the enryption orale of HY

n

.

2. The enryption orale hooses a random bit u and gives a hallenge

iphertext C

N

= 

1

jj

2

jj

3

to B, where



1

=M

u

�G(r

�

); 

2

= H(r

�

jjM

u

); 

3

= E

n

pk

(N; r

�

)

and r

�

is a random element.

3. B �nally outputs ~u.
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Let Y be the event that B queries r

�

to the random orale G or r

�

jjM

to the random orale H for some M . Then it is easy to see that B has no

information on u if Y does not our. Therefore,

Pr(~u = u j :Y ) = 1=2:

Hene from lemma D.1 and eq.(3), we have

Pr(Y ) � 2Pr(~u = u)� 1 = Adv

n-a

HY

n

;I

(B): (24)

Now let the input to A

B

be pk. Then A

B

�rst gives pk to B. Next A

B

behaves as follows.

1. A

B

hooses r

0

and r

1

randomly. It sends N; (r

0

; � � � ; r

0

) and (r

1

; � � � ; r

1

)

to the enryption orale of PE

n

.

2. Then the enryption orale hooses a random bit b and gives a hallenge

iphertext Z = E

n

pk

(N; r

b

) to A

B

.

3. A

B

hooses two random elements � and �. They will be used as

G(r

b

) = G(r

1�b

) = �; H(r

b

jjM

u

) = H(r

1�b

jjM

u

) = �:

4. A

B

runs B as follows.

4-1. Suppose that B sends N;M

0

andM

1

to the enryption orale of HY

n

.

Then A

B

hooses a random bit u and returns a iphertext of M

u

suh

that

C

N

=M

u

� �jj�jjZ

to B.

4-2. Supose that r 2 fr

0

; r

1

g. If B queries r to G, then A

B

returns � and

if B queries rjjM

u

to H, then A

B

returns �.

4-3. Otherwise, A

B

simulates G and H in the natural way. That is, it ips

oins to answer the queries and makes the sets Q

G

= fr;G(r)g and

Q

H

= frjjM;H(rjjM)g.

4-4. A

B

simulates the deryption orales of HY

n

as follows. Suppose that

B asks C

0

= 

0

1

jj

0

2

jj

0

3

to D

sk

i

. If 

0

3

6= TAKE

i

(Z), then A

B

an ask



0

3

to D

sk

i

. Hene, A

B

an derypt it properly.
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If 

0

3

= TAKE

i

(Z), then A

B

annot ask 

0

3

to D

sk

i

. However, we know

that 

0

3

is a iphertext of r

0

or r

1

in this ase. Therefore, if C

0

is a

legal iphertext, then the plaintext must be M

0

def

= 

0

1

� �. From this

observation, A

B

answers as follows.

(a) A

B

returns M

0

to B if r

0

jjM

0

2 Q

H

and 

0

2

= H(r

0

jjM

0

) or if

r

1

jjM

0

2 Q

H

and 

0

2

= H(r

1

jjM

0

).

(b) Otherwise, A

B

returns rejet to B.

5. Suppose that B stops. Let Y

0

be the event that r

0

2 Q

G

or r

0

jjM 2 Q

H

for some M . Let Y

1

be the event that r

1

2 Q

G

or r

1

jjM 2 Q

H

for

some M . Then D

B

outputs

~

b suh that

~

b =

8

>

<

>

:

0 if Y

0

ours and Y

1

does not our

1 if Y

1

ours and Y

0

does not our

random otherwise

A

B

fails to simulate the real world if

1. Y

1�b

ours.

2. At step 4-3 (b), A

B

returns rejet for a legal iphertext queried by B.

Note that B as no information on r

1�b

sine r

1�b

is randomly hosen by

A

B

. Therefore, it holds that

Pr(Y

1�b

ours) = (q

G

+ q

H

)=2

l

:

Further, B makes at most nq

d

queries in total to the deryption orales.

Hene, we have that

p

f

def

= Pr(A

B

fails to simulate the real world) �

q

G

+ q

H

2

l

+

nq

d

2

h

:

Then form eq.(24), we obtain that

Pr(Y

b

ours) � Adv

n-a

HY

n

;I

(B)� p

f

:

Now from lemma D.2, we have that

Pr(

~

b = b) � Pr(Y

b

and :Y

1�b

) +

1

2

Pr(:Y

b

and :Y

1�b

))
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=

1

2

+

1

2

Pr(Y

b

)�

3

2

Pr(Y

1�b

)

�

1

2

+

1

2

(Adv

n-a

HY

n

;I

(B)� p

f

)�

3

2

q

G

+ q

H

2

l

=

1

2

+

1

2

(Adv

n-a

HY

n

;I

(B)� �);

where

� = p

f

+ 3

q

G

+ q

H

2

l

=

q

G

+ q

H

2

l�2

+

nq

d

2

h

From eq.(3), we obtain that

Adv

n-a

PE

n

;I

(A

B

) � (Adv

n-a

HY

n

;I

(B)� �)

Adv

n-a

HY

n

;I

(B) � Adv

n-a

PE

n

;I

(A

B

) + �;

Therefore,

Adv

n-a

HY

n

;I

(B) � Adv

n-a

PE

n

;I

(A

B

) + �

AdvT0

n-a

HY

n

;I

(t; q

d

) � AdvT0

n-a

PE

n

;I

(t

0

; q

d

) + �;

It is easy to see that t

00

= t

0

+O(q

G

) +O(q

H

) +O(q

d

) +O(n).
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