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Abstra
t. In the trivial n-re
ipient publi
-key en
ryption s
heme, a 
ipher-

text is a 
on
atenation of independently en
rypted messages for n re
ipients.

In this paper, we say that an n-re
ipient s
heme has a \shortened 
ipher-

text" property if the length of the 
iphertext is almost a half (or less) of the

trivial s
heme and the se
urity is still almost the same as the underlying

single-re
ipient s
heme. We �rst present (multi-plaintext, multi-re
ipient)

s
hemes with the \shortened 
iphertext" property for ElGamal s
heme and

Cramer-Shoup s
heme. We next show (single-plaintext, multi-re
ipient) hy-

brid en
ryption s
hemes with the \shortened 
iphertext" property.

Keywords: publi
-key en
ryption, multi-re
ipient setting, ElGamal, Cramer-

Shoup, hybrid en
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on
rete se
urity.

1 Introdu
tion

1.1 Ba
kground

Suppose that there are n re
ipients. Let pk

i

be the publi
 key of re
ipient i

for 1 � i � n. The se
urity of a publi
-key en
ryption s
heme in the multi-

re
ipient setting is di�erent from the single-re
ipient setting. For example,

if e is the 
ommon publi
 exponent in RSA, then e en
ryptions of the same

plaintext M under di�erent moduli lead to an easy re
overy of M . Further
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results by Hastad [11℄ and Coppersmith [7, 8℄ proved that even the time-

stamp variants 
an be su

essfully atta
ked with e 
iphertexts.

In the trivial n-re
ipient publi
-key en
ryption s
heme, a 
iphertext

is just a 
on
atenation of independently en
rypted messages for n re
ipi-

ents using a single-re
ipient publi
-key en
ryption algorithm E . That is,

E

pk

1

(M

1

)jj � � � jjE

pk

n

(M

n

); where jj denotes 
on
atenation. In general, this

trivial s
heme is not se
ure in the sense of invertibility even if E is se
ure in

the same sense, as shown in the above RSA example.

Re
ently, Bellare et al. [2℄ and Baudron et al. [1℄ independently proved

that the trivial n-re
ipient s
heme is se
ure in the sense of indistinguisha-

bility [10℄ if E is se
ure in the same sense, where indistinguishability is a

stronger se
urity notion than invertibility.

However, their ni
e results [2, 1℄ still do not 
apture the essen
e of the

multi-re
ipient setting:

(1) The length of the 
iphertext of the trivial n-re
ipient s
heme is n times

larger than that of the underlying single-re
ipient s
heme.

(2) Consider a single-re
ipient hybrid en
ryption s
heme whi
h en
rypts a

long message M using a pseudorandom generator G and sends the seed r of

G using a publi
-en
ryption s
heme. That is,

C =M �G(r)jjE

pk

(r); (1)

where jj denotes 
on
atenation. A natural extension of the hybrid s
heme

to an n-re
ipient s
heme will be that

M �G(r)jjE

pk

1

(r)jj � � � jjE

pk

n

(r): (2)

Their results [2, 1℄ only imply that the latter part E

pk

1

(r)jj � � � jjE

pk

n

(r) is

se
ure in the sense of indistinguishability if the single-re
ipient part E

pk

(r)

is se
ure in the same sense.

1.2 Our Contribution

In this paper, we 
onsider n-re
ipient publi
-key en
ryption s
hemes su
h

that the length of the 
iphertext is almost a half (or less) of the trivial

n-re
ipient s
heme and the se
urity is still almost the same as the under-

lying single-re
ipient s
heme. We say that su
h a s
heme has a \shortened


iphertext" property.

1. We �rst give the de�nitions of our model and the se
urity.
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2. We next present (multi-plaintext, multi-re
ipient) s
hemes with the

\shortened 
iphertext" property for ElGamal s
heme and Cramer-Shoup

s
heme and prove their se
urity.

3. We also prove that the above mentioned (single-plaintext, multi-re
ipient)

s
heme of eq.(2) is se
ure in the sense of indistinguishability against


hosen plaintext atta
k if the underlying single-re
ipient publi
-key

s
heme is se
ure in the same sense.

4. We �nally present how to 
onstru
t a (single-plaintext, multi-re
ipient)

s
heme se
ure against 
hosen 
iphertext atta
k with the \shortened 
i-

phertext" property. The underlying single-re
ipient publi
-key s
heme

needs to be se
ure in the sense of indistinguishability against 
hosen


iphertext atta
k. (For example, we 
an use Rabin-SAEP or RSA-

SAEP

+

[4℄ as the underlying single-re
ipient s
heme.)

Cramer-Shoup s
heme is a pra
ti
al publi
-key en
ryption s
heme whi
h

is se
ure in the sense of indistinguishability against 
hosen-
iphertext atta
k

under the de
ision DiÆe-Hellman (DDH) assumption in the standard model

[9℄. The basi
 Cramer-Shoup s
heme uses universal one-way hash fun
tions

(UOH) [9, Se
.3℄. Bellare et al. derived the 
on
rete se
urity of the basi


Cramer-Shoup s
heme by assuming the 
on
rete se
urity of UOH [2℄. On

the other hand, Cramer and Shoup also presented a hash-free variant whi
h

does not use UOH [9, Se
.5.3℄.

We derive the 
on
rete se
urity of the hash-free variant of Cramer-Shoup

s
heme. It is of independent interest be
ause it truly depends only on the

DDH assumption, but not UOH. We then present a (multi-plaintext, multi-

re
ipient) hash-free Cramer-Shoup s
heme that has the \shortened 
ipher-

text" property.

One further advantage of our multi-re
ipient s
hemes (in the dis
rete log

setting) is that the en
ryption operation 
an be signi�
antly faster than if

the en
ryption operations were performed separately for ea
h re
ipient.

Finally, in all of our multi-re
ipient s
hemes, the de
ryption algorithm

is the same as the single-re
ipient one. Therefore, no extra 
ost is required

for ea
h re
ipient.

1.3 Related Works

The "broad
ast" problem has been addressed by other authors in the 
ontext

of traitor-tra
ing [6, 12, 5, 13℄. The traitor-tra
ing s
hemes su
h that [12, 5,
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13℄ 
an have even shorter 
iphertexts than our s
hemes, but with the tradeo�

that a small 
oalition of re
ipients 
an break the traitor-tra
ing aspe
t of

the s
heme, i.e., 
onstru
t a new private key that does not identify anyone

in the 
oalition. In our s
hemes, no 
oalition 
an do this sin
e ea
h private

key uniquely identi�es the re
ipient.

Bellare and Rogaway [3℄ proved that the single re
ipient hybrid en
ryp-

tion s
heme shown in eq.(1) is se
ure in the sense of indistinguishability

against 
hosen plaintext atta
k under the random ora
le moel if E

pk

is a

trapdoor oneway permutation. They also proved that the following s
heme

se
ure in the sense of indistinguishability against 
hosen 
iphertext atta
k

under the random ora
le moel.

C = E

pk

(r)jjM �G(r)jjH(M jjr);

where H is a hash fun
tion. Before that, Zheng and Seberry [16℄ proposed

a s
heme su
h that

C = E

pk

(r)jj(G(r) � (M jjH(M)):

2 Single-Re
ipient En
ryption S
heme

A single-re
ipient publi
-key en
ryption s
heme PE = (K; E ;D) 
onsists of

three algorithms. The key generation algorithm K outputs (pk; sk) on input

some global information I, where pk is a publi
 key and sk is the se
ret key;

we write (pk; sk)

R

 K(I). The en
ryption algorithm E outputs a 
iphertext

C on input the publi
 key pk and a plaintext M ; we write C

R

 E

pk

(M).

The de
ryption algorithm D outputs M or reje
t on input the se
ret key

sk and a 
iphertext C; we write x  D

sk

(C), where x = M or reje
t. We

require that D

sk

(E

pk

(M)) =M for ea
h plaintext M .

An adversary B runs in two stages. In \�nd" stage, it takes a publi


key pk and outputs two equal length messages M

0

and M

1

together with

some state information state. In \guess" stage, it gets a 
hallenge 
iphertext

C

b

R

 E

pk

(M

b

) from the en
ryption ora
le E

pk

, where b is a randomly 
hosen

bit. B �nally outputs a bit

~

b. The advantage of B is measured by the

probability Pr(

~

b = b).

Formally, the se
urity of PE in the sense of indistinguishability against


hosen-plaintext atta
k is de�ned as follows.
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De�nition 2.1 For b = 0 and 1, de�ne the experiment as follows.

(pk

1

; sk

1

)

R

 K(I); (M

0

;M

1

; state)

R

 B(find; pk); C

b

R

 E

pk

(M

b

);

~

b

R

 B(guess; C

b

; state):

Let

Adv

s-
pa

PE ;I

(B)

def

= Pr(

~

b = 0 j b = 0)� Pr(

~

b = 0 j b = 1)

Adv

s-
pa

PE ;I

(t)

def

= max

B

Adv

s-
pa

PE ;I

(B);

where the maximum is over all B with time-
omplexity t.

(In the supers
ript, s- denotes "single re
ipient".)

De�nition 2.2 We say that PE is se
ure against 
hosen-plaintext atta
k if

Adv

s-
pa

PE ;I

(t) is negligible for polynomially bounded t, where the 
omplexity is

measured as a fun
tion of a se
urity parameter.

It is easy to see that

Pr(

~

b = b) =

1

2

+

1

2

Adv

s-
pa

PE;I

(B) (3)

The se
urity against 
hosen-
iphertext atta
k is de�ned similarly ex
ept

for that the adversary B gets the de
ryption ora
le D

sk

and is allowed to

query any 
iphertext C at most q

d

times, where it must be that C 6= C

b

in

the guess stage. We denote the advantages by Adv

s-

a

PE;I

(B) and Adv

s-

a

PE ;I

(t; q

d

),

respe
tively.

3 Multi-Re
ipient En
ryption S
heme

Suppose that there are n re
ipients. Let N

def

= f1; � � � ; ng. We de�ne

(single-plaintext, multi-re
ipient) publi
-key en
ryption s
hemes and (multi-

plaintext, multi-re
ipient) publi
-key en
ryption s
hemes as follows.

� In a (single-plaintext, multi-re
ipient) publi
-key en
ryption s
heme,

a sender sends the same plaintext M se
retly to a subset of re
ipients

S � N by broad
asting a 
iphertext C

S

.

� In a (multi-plaintext, multi-re
ipient) publi
-key en
ryption s
heme,

a sender sends an independent plaintext M

i

se
retly to ea
h re
ipient

i 2 S by broad
asting a 
iphertext C

S

.
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3.1 \Shortened Ciphertext" Property

Amulti-re
ipient publi
-key en
ryption s
heme is naturally 
onstru
ted from

a single-re
ipient publi
-key en
ryption s
heme PE = (K; E ;D) as follows.

The key generation algorithm runsK(I) n times independently. A 
iphertext

C

N

is

C

N

= E

pk

1

(M

1

)jj � � � jjE

pk

n

(M

n

);

where jj denotes 
on
atenation. We 
all this s
heme the trivial multi-

re
ipient s
heme.

Bellare et al. [2℄ proved that the trivial multi-re
ipient s
heme is se
ure

in the sense of indistinguishability if PE is se
ure in the same sense. Baudron

et al. [1℄ proved the same result independently. However, the length of the


iphertext of the trivial multi-re
ipient s
heme is n times larger than that

of the single-re
ipient s
heme.

In this paper, we 
onsider multi-re
ipient publi
-key en
ryption s
hemes

su
h that (1) the length of the 
iphertext is almost a half (or less) of the

trivial multi-re
ipient s
heme and (2) the se
urity is still almost the same

as the underlying single-re
ipient s
heme. We say that su
h a s
heme has a

\shortened 
iphertext" property.

3.2 Our Model

For a single-re
ipient publi
-key en
ryption s
heme PE = (K; E ;D), we de-

�ne a (multi-plaintext, multi-re
ipient) publi
-key en
ryption s
heme PE

n

=

(K

n

; E

n

; TAKE) as follows.

� The key generation algorithm K

n

outputs pk

def

= (pk

1

; � � � ; pk

n

) and

sk

def

= (sk

1

; � � � ; sk

n

) on input some global information I, where (pk

i

; sk

i

)

is a pair of en
ryption/de
ryption keys of re
ipient i.

� For S = f1

1

; � � � i

s

g, let M

i

j

be a plaintext for re
ipient i

j

2 S. Let

M

S

def

= (M

i

1

; � � � ;M

i

s

). Then the en
ryption algorithm E

n


omputes

a 
iphertext C

S

for M

S

on input pk, S and M

S

; we write C

S

R

 

E

n

pk

(S;M

S

).

� TAKE is a hash fun
tion that takes a part of a 
iphertext as follows.

For T � S � N , it outputs C

T

on input T; S and C

S

. We write

C

T

 TAKE

T

(C

S

).

Espe
ially, for i 2 S, we write C

i

 TAKE

i

(C

S

).
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We require that D

sk

i

(TAKE

i

(C

S

)) =M

i

for all i 2 S and any M

i

.

A (single-plaintext, multi-re
ipient) publi
-key en
ryption s
heme is de-

�ned similarly.

Remark 3.1 In our multi-re
ipient s
hemes, the de
ryption algorithm is

the same as the single-re
ipient s
heme. Therefore, no extra 
ost is required

for ea
h re
ipient.

3.3 Se
urity

We generalize the de�nition of se
urity for the multi-re
ipient setting given

by Bellare et al. [2℄ to (multi-plaintext,multi-re
ipient) s
hemes as follows.

We 
onsider an experiment as follows. At the beginning, a 
hallenge

bit b is randomly 
hosen and �xed. An adversary B is provided with the

en
ryption ora
le E

n

pk

and it is allowed to query (S;M

0

S

;M

1

S

) at most q

e

times. E

n

pk

returns a 
iphertext E

n

pk

(S;M

b

S

). (Sin
e b is �xed at the begin-

ning, the same b is used a
ross all the queries.) B �nally outputs a bit

~

b.

We require that jM

0

i

j

j = jM

1

i

j

j for all i

j

2 S, where M

0

S

= (M

0

i

1

; � � � ;M

0

i

s

)

and M

1

S

= (M

1

i

1

; � � � ;M

1

i

s

).

Ea
h time, B 
an 
hoose (S;M

0

S

;M

1

S

) arbitrarily, where S as well as

(M

0

S

;M

1

S

) may be related to his other queries to E

n

pk

. Then the se
urity of

PE

n

against 
hosen-plaintext atta
k is de�ned as follows.

De�nition 3.1 For b = 0 and 1, de�ne the experiment as follows.

(pk; sk)

R

 K

n

(I);

~

b B

E

n

pk

(I; pk):

Let

Adv

n-
pa

PE

n

;I

(B)

def

= Pr(

~

b = 0 j b = 0)� Pr(

~

b = 0 j b = 1)

Adv

n-
pa

PE

n

;I

(t; q

e

)

def

= max

B

Adv

n-
pa

PE

n

;I

(B);

where the maximum is over all B with time-
omplexity t.

In the supers
ript, n- denotes "n re
ipients".
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De�nition 3.2 We say that PE

n

is se
ure against 
hosen-plaintext atta
k

if Adv

n-
pa

PE

n

;I

(t) is negligible for polynomially bounded t, where the 
omplexity

is measured as a fun
tion of a se
urity parameter.

The se
urity against 
hosen-
iphertext atta
k is de�ned similarly ex
ept

for that the adversary B gets n de
ryption ora
les D

sk

1

; � � � ;D

sk

n

. It is

allowed to query any 
iphertext C to any de
ryption ora
le D

sk

i

at most q

d

times for ea
h i, where it must be that C 6= TAKE

i

(C

S

) for any output C

S

of the en
ryption ora
le E

xpk

. We denote the advantages by Adv

n-

a

PE

n

;I

(B)

and Adv

n-

a

PE

n

;I

(t; q

e

; q

d

), respe
tively.

The se
urity of (single-plaintext, multi-re
ipient) s
hemes is de�ned sim-

ilarly. For simpli
ity, the same notation as above will be used.

Remark 3.2 In the de�nition of Bellare et al. [2℄, (i) jSj = 1 and there

are n en
ryption ora
les E

pk

1

; � � � ; E

pk

n

. (ii) B is allowed to query at most

q

e

times to ea
h E

pk

i

. It is easy to see that our de�nition is more general if

we ignore (ii).

3.4 SuÆ
ient Condition

We say that an adversary is type 0 if q

e

= 1 and his query to E

n

pk

is

(N;M

0

N

;M

1

N

). That is, we 
onsider an adversary whi
h runs in two stages,

the �nd stage and the guess stage, as in the single-re
ipient 
ase.

De�nition 3.3 Let AdvT0

n-
pa

PE

n

;I

(t) be the max

B

Adv

n-
pa

PE

n

;I

(B), where the max-

imum is over all type 0 adversaries B with time-
omplexity t. De�ne AdvT0

n-

a

PE

n

;I

(t; q

d

)

similarly.

The next lemma shows that PE

n

is se
ure if AdvT0

n-x

PE

n

;I

(t) is negligible,

where x = 
pa or 

a. Therefore, we do not have to evaluate Adv

n-x

PE

n

;I

(t; q

e

)

dire
tly.

Let T

n

denote the time to 
ompute a 
iphertext C

N

= E

n

pk

(N;M

N

).

Lemma 3.1 In an n-re
ipient broad
ast/multi
ast publi
-key en
ryption s
heme

PE

n

,

Adv

n-
pa

PE

n

;I

(t; q

e

) � q

e

� AdvT0

n-
pa

PE

n

;I

(t

0

);

Adv

n-

a

PE

n

;I

(t; q

e

; q

d

) � q

e

� AdvT0

n-

a

PE

n

;I

(t

0

; q

d

);

where t

0

= t+O(q

e

T

n

).

A proof is given in Appendix.
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4 Multi-Re
ipient "ElGamal" En
ryption S
heme

In this se
tion, we show a (multi-plaintext, multi-re
ipient) ElGamal s
heme

whi
h has the \shortened 
iphertext" property. Let G be a group with a

prime order p and let g be a generator of G. Let I = (p; g) be the global

information.

Let T

exp

denote the time needed to perform an exponentiation in G.

4.1 ElGamal s
heme and DDH problem

Informally, the de
ision DiÆe-Hellman (DDH) problem is stated as follows.

Given g

x

; g

y

; g

z

, de
ide if z = xy mod p with nonnegligible probability. For-

mally, let

DH

def

= f(g

x

; g

y

; g

xy

) j x 2 Z

p

; y 2 Z

p

g

RA

def

= f(g

x

; g

y

; g

z

) j x 2 Z

p

; y 2 Z

p

; z 2 Z

p

g:

Let D be a distinguisher whi
h outputs 0 or 1. De�ne

Adv

ddh

p;g

(D)

def

= Pr[D(X) = 0jX 2 DH℄� Pr[D(X) = 0jX 2 RA℄;

Adv

ddh

p;g

(t)

def

= max

D

Adv

p;g

(D);

where the maximum is over all D with \time-
omplexity" t. The DDH

assumption is that Adv

ddh

p;g

(t) is negligible.

ElGamal en
ryption s
heme EG = (K; E ;D) is as follows.

K(I) : sk = x; pk = X( g

x

); where x

R

 Z

p

:

E

I;X

(M) : (Y;W ) = (g

r

;M �X

r

); where r

R

 Z

p

:

D

I;x

(Y;W ) : M  W � Y

�x

:

It is well known that ElGamal s
heme is se
ure in the sense of indistin-

guishability against 
hosen plaintext atta
k under the DDH assumption.

4.2 Proposed S
heme

Now we present the proposed (multi-plaintext,multi-re
ipient) ElGamal s
heme

EG

n

= (K

n

; E

n

; TAKE). The key generation algorithm K

n

(I) runs K(I) n

times independently. Let x

i

be the se
ret key and X

i

(= g

x

i

) be the publi
-

key of re
ipient i.
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For S = f1

1

; � � � i

s

g, let M

i

j

be a plaintext for re
ipient i

j

2 S. Then a


iphertext for S is

C

S

= (g

r

;M

i

1

X

r

i

1

; : : : ;M

i

s

X

r

i

s

);

where r

R

 Z

p

. TAKE

i

is de�ned as (g

r

;M

i

X

r

i

)  TAKE

i

(C

S

). For

T � S � N , C

T

 TAKE

T

(C

S

) is de�ned naturally.

We will show that our s
heme has the \shortened 
iphertext" property.

First, in the trivial multi-re
ipient s
heme, a 
iphertext is

C

trivial

S

= (g

r

i

1

;M

i

1

X

r

i

1

i

1

)jj � � � jj(g

r

i

s

;M

i

s

X

r

i

s

i

s

):

Therefore, in our s
heme, the size of the 
iphertext is almost a half of that

of the trivial multi-re
ipient s
heme. We next prove that our s
heme is still

se
ure. More pre
isely, we prove that our s
heme is se
ure in the sense of

indistinguishability against 
hosen plaintext atta
k under the DDH assump-

tion.

Lemma 4.1 In the proposed (multi-plaintext,multi-re
ipient) ElGamal en-


ryption s
heme,

AdvT0

n-
pa

EG

n

(p;g)

(t) � 2 � Adv

ddh

p;g

(t

0

) +

1

p

; (4)

where t

0

= t+O(n � T

exp

).

A proof is given in Appendix. From lemma 4.1 and lemma 3.1, we obtain

the following theorem.

Theorem 4.1 In the proposed (multi-plaintext,multi-re
ipient) ElGamal en-


ryption s
heme,

Adv

n-
pa

EG

n

(p;g)

(t; q

e

) � q

e

(2 � Adv

ddh

p;g

(t

0

) +

1

p

); (5)

where t

0

= t+O(q

e

n � T

exp

).

The 
on
rete se
urity of the trivial multi-re
ipient ElGamal en
ryption

s
heme derived by Bellare et al. [2℄ satis�es the same equation as eq.(4).

Hen
e, the 
oeÆ
ient q

e

in eq.(5) 
an be 
onsidered as the 
ost for the

\shortened 
iphertext" property.
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4.3 S/MIME CMS

S/MIME CMS (IETF RFC 2630) is a (single-plainext, multi-re
ipient) s
heme

su
h that

C

S

= (g

r

;Wrap(X

r

i

1

;K); :::;Wrap(X

r

i

s

;K));

whereK is a 
ontent-en
ryption key to be transported,Wrap is a symmetri


key-wrapping operation.

The Wrap operation takes the role of the multipli
ation in the basi


ElGamal s
heme. Therefore, Theorem 4.1 shows that this s
heme is se
ure

if Wrap is se
ure enough.

5 Multi-Re
ipient "Cramer-Shoup" En
ryption S
heme

In this se
tion, we �rst show the 
on
rete se
urity of the hash-free variant of

Cramer-Shoup s
heme. We next present a (multi-plaintext,multi-re
ipient)

hash-free Cramer-Shoup s
heme whi
h has the \shortened 
iphertext" prop-

erty.

Let G be a group with a prime order p and let g

1

be a generator of G.

Let I = (p; g

1

) be the global information.

5.1 Con
rete se
urity of the hash-free Cramer-Shoup S
heme

Bellare et al. derived the 
on
rete se
urity of the basi
 Cramer-Shoup

s
heme [9, Se
.3℄ by assuming the se
urity of universal one-way hash fun
-

tions (UOH) [2℄. In this subse
tion, we derive the 
on
rete se
urity of the

hash-free variant of Cramer-Shoup s
heme, whi
h does not need to assume

UOH.

The hash-free variant of Cramer-Shoup s
heme CS = (K; E ;D) is as

follows [9, Se
.5.3℄. Let F be a polynomial time 
omputable inje
tion from

G

3

to (Z

�

p

)

k

for some k. Let (pk; sk) be

sk : z; x

1

; x

2

; (y

11

; y

12

); � � � ; (y

k1

; y

k2

);

where ea
h element is randomly taken from Z

p

:

pk : g

2

; h(= g

z

1

); 
(= g

x

1

1

g

x

2

2

); d

1

(= g

y

11

1

g

y

12

2

); � � � ; d

k

(= g

y

k1

1

g

y

k2

2

);

where g

2

is randomly 
hosen from G:

For a plaintext M , let a 
iphertext (u

1

; u

2

; e; v) be

u

1

= g

r

1

; u

2

= g

r

2

; e = h

r

M;v = (
d

�

1

1

� � � d

�

k

k

)

r

;

11



where r

R

 Z

p

and (�

1

; � � � ; �

k

) = F (u

1

; u

2

; e).

On input (u

1

; u

2

; 
; v), the de
ryption algorithmD

sk

�rst 
omputes F (u

1

; u

2

; e) =

(�

1

; � � � ; �

k

). Next if

v = u

x

1

+�

1

y

11

+���+�

k

y

k1

1

u

x

2

+�

1

y

12

+���+�

k

y

k2

2

; (6)

Then D

sk

outputs

M  e=u

z

1

: (7)

Otherwise, D

sk

outputs reje
t. Let

�

def

=

�

1�

1

p

�

q

d

p

+

1

p

:

Theorem 5.1 In the hash-free Cramer-Shoup s
heme,

Adv

s-

a

CS;(p;g

1

)

(t; q

d

) � 2 � Adv

ddh

p;g

1

(t

0

) + 3�; (8)

where t

0

= t+O(q

d

� T

exp

).

A proof will be given in the �nal paper.

5.2 Proposed S
heme

Now the proposed (multi-plaintext,multi-re
ipient) hash-free Cramer-Shoup

s
heme CS

n

= (K

n

; E

n

; TAKE) is des
ribed as follows. The key generation

algorithm K

n

(I) runs K(I) n times independently with a restri
tion su
h

that g

2

is 
ommon for all pk

i

, where pk

i

= (g

2

; h

i

; 


i

; d

1i

; � � � ; d

ki

). That is,

the en
ryption keys pk

i

are not independent of ea
h other while the se
ret

keys sk

i

are independently 
hosen. This is possible be
ause w is not a part

of sk

i

, where g

2

= g

w

1

.

For S = f1

1

; � � � i

s

g, let M

i

be a plaintext for re
ipient i 2 S. Then a


iphertext for S is

C

S

= (u

1

; u

2

; e

i

1

; v

i

1

; � � � ; e

i

n

; v

i

n

)

su
h that u

1

= g

r

1

; u

2

= g

r

2

and e

i

= h

r

i

M

i

; v

i

= (


i

d

�

1i

1i

� � � d

�

ki

ki

)

r

; where r

R

 

Z

p

and (�

1i

; � � � ; �

ki

) = F (u

1

; u

2

; e

i

). TAKE

i

is de�ned as (u

1

; u

2

; e

i

; v

i

) 

TAKE

i

(C

S

). C

S

 TAKE

S

(C

N

) is de�ned naturally.

Note that the size of the 
iphertext of our s
heme is almost a half of the

trivial multi-re
ipient s
heme. We next prove that our s
heme is still se
ure.

More pre
isely, we prove that our s
heme is se
ure in the sense of indistin-

guishability against 
hosen 
iphertext atta
k under the DDH assumption.

12



Lemma 5.1 In the proposed (multi-plaintext,multi-re
ipient) Cramer-Shoup

s
heme,

AdvT0

n-

a

CS

n

;(p;g

1

)

(t; q

d

) � 2 � Adv

ddh

p;g

1

(t

0

) + 3n�; (9)

where t

0

= t+O(n � q

d

� T

exp

).

The proof is similar to that of Theorem 5.1. From lemma 5.1 and lemma

3.1, we obtain the following theorem.

Theorem 5.2 In the proposed (multi-plaintext,multi-re
ipient) Cramer-Shoup

s
heme,

Adv

n-

a

CS

n

;(p;g

1

)

(t; q

d

) � q

e

(2 � Adv

ddh

p;g

1

(t

0

) + 3n�); (10)

where t

0

= t+O(n � q

d

� T

exp

) +O(q

e

nT

exp

).

Comparing with the 
on
rte se
urity of the trivial multi-re
ipient (basi
)

Cramer-Shoup s
heme given by Bellare et al. [2℄, we 
an see that our s
heme

takes no extra 
ost fot the \shortened 
iphertext" property ex
ept negligible

fa
tors.

6 Multi-Re
ipient Hybrid En
ryption S
heme

6.1 Overview

Bellare and Rogaway showed that eq.(1) is se
ure in the sense of indis-

tinguishability against 
hosen plaintext atta
k if E

pk

is a trapdoor oneway

permutation. However, this does not imply that eq.(2) is se
ure. Indeed, it

is not se
ure if E

pk

is RSA as mentioned in Se
.1.1. On the other hand, the

results of [2, 1℄ imply only that the latter part E

pk

1

(r)jj � � � jjE

pk

n

(r) of eq.(2)

is se
ure in the sense of indistinguishability if E

pk

(r) is se
ure in the same

sense.

In this se
tion, we formally prove that eq.(2) is se
ure in the sense of

indistinguishability against 
hosen plaintext atta
k if E

pk

is se
ure in the

same sense.

More generally, we prove that there exists a (single-plaintext,multi-re
ipient)

hybrid en
ryption s
heme H

n

= (K

n

H

; E

n

H

; TAKEH) whi
h is se
ure in the

sense of indistinguishability against 
hosen plaintext (
iphertext, respe
-

tively) atta
k if there exists a (multi-plaintext,multi-re
ipient) publi
-key

en
ryption s
heme PE

n

= (K

n

; E

n

; TAKE) whi
h is se
ure in the same

sense against type 0 adversaries.

13



For example, we 
an use Rabin-SAEP, RSA-SAEP

+

[4℄ or Cramer-Shoup

s
heme [9℄ as the underlying single-re
ipient s
heme se
ure against 
hosen


iphertext atta
k.

In what follows, let PE = (K; E ;D) be the underlying single re
ipient

publi
-key s
heme. That is,

PE ! PE

n

!H

n

:

Remember that E

n

pk

(S; r) denotes a 
iphertext of r = (r; � � � ; r) for a subset

of re
ipients S = fi

1

; � � � i

s

g in PE

n

.

6.2 IND-CPA Hybrid S
heme

De�ne a (single-plaintext,multi-re
ipient) hybrid en
ryption s
heme H

n

=

(K

n

H

; E

n

H

; TAKEH) from PE

n

= (K

n

; E

n

; TAKE) as follows.

Let a 
iphertext of M for a subset of re
ipients S = fi

1

; � � � i

s

g be

C

S

= E

n

pk

(S; r)jjM �G(r); (11)

where r is a random element and G is a pseudorandom generator. For

T � S � N , let

TAKEH

T

(C

S

) = TAKE

T

(E

n

pk

(S; r))jjM �G(r):

Now we prove that H

n

is se
ure in the sense of indistinguishability

against 
hosen plaintex tatta
k if PE

n

is se
ure in the same sense only

against type 0 adversaries under the random ora
le model, where G is mod-

eled as a random ora
le.

Suppose that an adversary makes at most q

G

queries to the random

ora
le G. Let r be l-bits long. We �rst show that H

n

is se
ure against type

0 adversaries if PE

n

is so.

Lemma 6.1

AdvT0

n-
pa

H

n

;I

(t

0

) � AdvT0

n-
pa

PE

n

;I

(t

00

) +

q

G

2

l�3

; (12)

where t

00

= t

0

+O(q

G

) +O(n).

A proof is given in Appendix. From lemma 3.1, we have

Adv

n-
pa

H

n

;I

(t; q

e

) � q

e

AdvT0

n-
pa

H

n

;I

(t

0

)

where t

0

= t+O(q

e

T

n

). Therefore, we obtain the following Theorem.
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Theorem 6.1

Adv

n-
pa

H

n

;I

(t; q

e

) � q

e

�

AdvT0

n-
pa

PE

n

;I

(t

00

) +

q

G

2

l�3

�

;

where t

00

= t+O(q

e

T

n

) +O(q

G

) +O(n).

(Proof)

T

00

= t

0

+O(q

G

) +O(n) = t+O(q

e

T

n

) +O(q

G

) +O(n):

Q.E.D.

Suppose that PE

n

used in eq.(11) is the trivial multi-re
ipient s
heme.

For the trivial s
heme, the result of Bellare et al. implies that [2℄

AdvT0

n-
pa

PE

n

;I

(t

00

) � n � Adv


pa

PE ;I

(t

000

)

where t

000

= t

00

+ O(nT

s

) and T

s

denotes the time to 
ompte a 
iphertext of

PE . Sin
e T

n

= nT

s

, we obtain the following 
orollary.

Corollary 6.1 In the above (single-plaintext,multi-re
ipient) s
heme H

n

,

Adv

n-
pa

H

n

;I

(t; q

e

) � q

e

(n � Adv


pa

PE ;I

(t

0

) +

q

G

2

l�3

); (13)

where t

0

= t + O(q

G

) + O(q

e

nT

s

) and T

s

denotes the time to 
ompte a


iphertext of PE .

6.3 IND-CCA Hybrid S
heme

First, de�ne a single-re
ipient hybrid en
ryption s
hemeHY = (K

Y

; E

Y

;D

Y

)

from PE as follows. Let a 
iphertext of M be C = 


1

jj


2

jj


3

with




1

=M �G(r); 


2

= H(rjjM); 


3

= E

pk

(r);

where r is a random element, H is a hash fun
tion and G is a pseudorandom

generator. The de
ryption algorithm D

Y

is de�ned as

D

Y

sk

(


1

jj


2

jj


3

) =

(

reje
t if D

sk

(


3

) = reje
t or 


2

6= H(r̂jj


1

�G(r̂))




1

�G(r̂) otherwise;

where r̂ = D

sk

(


3

).

Next de�ne a (single-plaintext,multi-re
ipient) hybrid en
ryption s
heme

HY

n

= (K

n

H

; E

n

H

; TAKEH) from PE

n

= (K

n

; E

n

; TAKE) as follows. Let a
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iphertext of M for a subset of re
ipients S = fi

1

; � � � i

s

g be C

S

= 


1

jj


2

jj


3

,

where




1

=M �G(r); 


2

= H(rjjM); 


3

= E

n

pk

(S; r): (14)

For T � S � N , let

TAKEH

T

(C

S

) = 


1

jj


2

jjTAKE

T

(E

n

pk

(S; r)):

Now we prove that HY

n

is se
ure in the sense of indistinguishability

against 
hosen 
iphertext atta
k if PE

n

is se
ure in the same sense only

against type 0 adversaries under the random ora
le model, where G and H

are modeled as random ora
les.

Suppose that an adversary makes at most q

G

queries to the G-ora
le, at

most q

H

queries to the H-ora
le and at most q

d

queries to ea
h de
ryption

ora
le D

sk

i

. Let r be l-bits long, M be k-bits long, rjjM be m-bits long and

H(rjjM) be h bits long. De�ne

�

def

=

q

G

+ q

H

2

l�2

+

nq

d

2

h

:

We �rst show that HY

n

is se
ure against type 0 adversaries if PE

n

is so.

Lemma 6.2

AdvT0

n-

a

HY

n

;I

(t

0

; q

d

) � AdvT0

n-

a

PE

n

;I

(t

00

; q

d

) + �;

where t

00

= t

0

+O(q

G

) +O(q

H

) +O(q

d

) +O(n).

A proof is given in Appendix. From lemma 3.1, we have

Adv

n-
pa

HY

n

;I

(t; q

e

; q

d

) � q

e

AdvT0

n-
pa

HY

n

;I

(t

0

; q

d

)

where t

0

= t+O(q

e

T

n

). Therefore, we obtain the following Theorem.

Theorem 6.2

Adv

n-

a

HY

n

;I

(t; q

e

; q

d

) � q

e

�

AdvT0

n-

a

PE

n

;I

(t

00

; q

d

) + �

�

;

where t

00

= t+O(q

e

T

n

) +O(q

G

) +O(q

H

) +O(q

d

) +O(n).

Suppose that PE

n

used in eq.(14) is the trivial multi-re
ipient s
heme.

For the trivial s
heme, the result of Bellare et al. implies that [2℄

AdvT0

n-

a

PE

n

;I

(t

00

; q

d

) � n � Adv



a

PE ;I

(t

000

; q

d

);

where t

000

= t

00

+ O(nT

s

) and T

s

denotes the time to 
ompte a 
iphertext of

PE . Sin
e T

n

= nT

s

, we obtain the following 
orollary.
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Corollary 6.2 In the above (single-plaintext,multi-re
ipient) s
heme HY

n

,

Adv

n-

a

H

n

;I

(t; q

e

; q

d

) � q

e

(n � Adv



a

PE ;I

(t

0

; q

d

) + �); (15)

where t

0

= t+O(q

e

nT

s

) + (q

G

) +O(q

H

) +O(q

d

) and T

s

denotes the time to


ompte a 
iphertext of PE .

6.4 Improvement on Multi-Re
ipient ElGamal and Cramer-

Shoup

In our (multi-plaintext,multi-re
ipient) ElGamal en
ryption s
heme, sup-

pose that M =M

i

1

= � � � =M

i

s

. In this 
ase, let a 
iphertext be

�

C = (Mg

r

;X

r

i

1

; � � � ;X

r

i

s

):

This s
heme is better than our s
heme of Se
.4.2 be
ause M is multiplied

on
e. The se
urity is proved similarly. Further, we 
an 
onsider a hybrid

s
heme su
h that

�

C

0

= (Kg

r

;X

r

i

1

; � � � ;X

r

i

s

)jjG(K) �M:

We 
an improve our multi-re
ipient Cramer-Shoup s
heme similarly.
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A Proof of Lemma 3.1

We show a proof for (multi-plaintext, multi-re
ipient) s
hemes against 
hosen-

plaintext atta
k. The proofs for the other 
ases are similar. Let B be an

adversary whi
h has time-
omplexity t and makes at most q

e

queries. We

will design an type 0 adversary D

B

with time-
omplexity at most t

0

.

Similar to [2℄, we 
onsider a hybrid experiment with a parameter l su
h

that 0 � l � q

e

as follows.

Experiment-l: Let the i-th query of B be (S;M

0

S

;M

1

S

). If i � l, then E

pk

returns E

pk

(S;M

1

S

). Otherwise, it returns E

pk

(S;M

0

S

).

Let

p

l

def

= Pr[

~

b = 0 in Experiment-l℄:

Then it is easy to see that

Adv

n-
pa

PE

n

;I

(B) = p

0

� p

q

e

:

Next our D

B

works as follows. On input (I; pk), D

B


hooses l randomly

su
h that 1 � l � q

e

. It runs B by giving (I; pk) to B. Let the i-th query of

B be (S;M

0

S

;M

1

S

).

1. If i < l, then D

B

returns C

1

S

R

 E

pk

(S;M

1

S

).

2. If i > l, then D

B

returns C

0

S

R

 E

pk

(S;M

0

S

).

3. If i = l, then D

B

queries (N;M

0

N

;M

1

N

) to his en
ryption ora
les,

where M

0

S

and M

1

S

are naturally embedded in M

0

N

and M

1

N

, respe
-

tively. The ora
le returns C

b

N

R

 E

pk

(N;M

b

N

) to D

B

. D

B

�nally gives

C

b

S

= TAKE

S

(C

b

N

) to B.
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Suppose that B outputs

~

b �nally. Then D

B

outputs

~

b.

Now we 
an see that

Pr(

~

b = 0 j b = 0) = (p

0

+ � � � p

q

e

�1

)=q

e

Pr(

~

b = 0 j b = 1) = (p

1

+ � � � p

q

e

)=q

e

be
ause l is randomly 
hosen. Therefore,

Adv

n-
pa

PE

n

;I

(D

B

) = (p

0

� p

q

e

)=q

e

= Adv

n-
pa

PE

n

;I

(B)=q

e

:

Hen
e

Adv

n-
pa

PE

n

;I

(B) = q

e

� Adv

n-
pa

PE

n

;I

(D

B

):

By taking the maximum, we obtain that

Adv

n-
pa

PE

n

;I

(t; q

e

) � q

e

� AdvT0

n-
pa

PE

n

;I

(t

0

):

Finally, the overhead of D

B

is to pi
k the random number l and exe
ute

some 
onditional statements. It is O(q

e

� T

n

).

B Proof of Lemma 4.1

By extending the result of Stadler [15, in the proof of Proposition 1℄ and

Naor and Reingold [14, lemma 3.2℄, Bellare et al. proved the following

proposition [2℄.

Proposition B.1 [2℄ There is a probabilisti
 algorithm R su
h that on input

g

a

; g

b

; g




, R outputs g

b

0

; g




0

, where b

0

is random and




0

=

(

ab

0

mod p if 
 = ab mod p

random if 
 6= ab mod p

R runs in O(T

exp

) time.

Now we show a proof of lemma 4.1. Let B be a type 0 adversary atta
king

the proposed s
heme with time-
omplexity at most t. We will design an

adversary D

B

for the DDH problem, where D

B

has time 
omplexity at

most t

0

.

Let the input to D

B

be g

r

; g

x

; g

z

. D

B

runs R of Proposition B.1 n times

independently on input (g

r

; g

x

; g

z

). ThenR outputsX

1

= g

x

1

; � � � ;X

n

= g

x

n

and Z

1

= g

z

1

; � � � ; Z

n

= g

z

n

, where x

1

; � � � ; x

n

are random and

z

i

=

(

rx

i

mod p if z = rx mod p

random if z 6= rx mod p
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D

B

gives X

1

; � � � ;X

n

to B as n publi
 keys and runs B. Suppose that B

queries (M

0;1

; : : : ;M

0;n

) and (M

1;1

; : : : ;M

1;n

) in the �nd stage. Then D

B


hooses a random bit b and gives

~

C = (g

r

;M

b;1

�Z

1

; � � � ;M

b;n

�Z

n

) to B as a


hallenge 
iphertext. Suppose that B outputs

~

b in the guess stage. Finally,

D

B

outputs b�

~

b.

First suppose that (g

r

; g

x

; g

z

) 2 DH. Then

~

C is a legal 
iphertext.

Therefore, as shown in eq.(3), we have

Pr(D

B

outputs 0) = Pr(

~

b = b) =

1

2

+

1

2

Adv

n-
pa

EG

n

;(p;g)

(B): (16)

Next suppose that (g

r

; g

x

; g

z

) 2 RA. If z 6= rx, then Z

1

; � � � ; Z

n

are random

and Pr(

~

b = b) = 1=2. Hen
e, we have

Pr(D

B

outputs 0) = Pr(

~

b = b)

�

1

2

(1�

1

p

) +

1

p

=

1

2

+

1

2p

(17)

From eq.(16) and eq.(17), we have

Adv

ddh

p;g

(D

B

) �

1

2

Adv

n-
pa

EG

n

;(p;g)

(B)�

1

2p

Adv

n-
pa

EG

n

;(p;g)

(B) � 2Adv

ddh

p;g

(D

B

) +

1

p

By taking the maximum, we have

AdvT0

n-
pa

EG

n

;(p;g)

(t) � 2 � Adv

ddh

p;g

(t

0

) +

1

p

:

It is easy to see that t

0

= t+O(n � T

exp

).

C Proof of Theorem 5.1

(u

0

1

; u

0

2

; e

0

; v

0

) is 
alled valid if u

0

1

= g

r

0

1

and u

0

2

= g

r

0

2

for some r

0

. Otherwise,

it is 
alled invalid.

We �rst 
onsider a slightly modi�ed version of CS su
h that h = g

z

1

1

g

z

2

2

,

where z

1

R

 Z

p

and z

2

R

 Z

p

, and eq.(7) is repla
ed by

M  e=u

z

1

1

u

z

2

2

: (18)

We denote this modi�ed version by mCS.
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Lemma C.1 In the modi�ed version,

Adv

s-

a

mCS;(p;g

1

)

(t; q

d

) � 2 � Adv

ddh

p;g

1

(t

0

) + �;

where t

0

= t+O(q

d

� T

exp

).

Proof . Let B be an adversary atta
king the modi�ed s
heme with time-


omplexity at most t. We will design an adversaryD

B

for the DDH problem,

where D

B

has time 
omplexity at most t

0

.

Let the input to D

B

be g

2

; g

r

1

1

; g

r

2

2

. D

B

runs K(I) and obtains (pk; sk).

D

B

gives pk to B and runs B. D

B


an simulate the de
ryption ora
le D

sk

be
ause he knows sk.

Suppose that B queries M

0

and M

1

in the �nd stage. Then D

B


hooses

a random bit b and 
omputes a 
hallenge 
iphertext C = (u

1

; u

2

; e; v) su
h

that u

1

= g

r

1

1

; u

2

= g

r

2

2

and

e = u

z

1

1

u

z

2

2

M

b

v = u

x

1

+�

1

y

11

+���+�

k

y

k1

1

u

x

2

+�

1

y

12

+���+�

k

y

k2

2

(19)

where (�

1

; � � � ; �

k

) = F (u

1

; u

2

; e). D

B

then gives C to B. Suppose that B

outputs

~

b in the guess stage. Finally, D

B

outputs b�

~

b.

First suppose that (g

2

; g

r

1

1

; g

r

2

2

) 2 DH, whi
h means that r

1

= r

2

. In this


ase, it is easy to see that C is a legal 
iphertext. Therefore, from eq.(3),

we have

Pr(D

B

outputs 0) = Pr(

~

b = b) =

1

2

+

1

2

Adv

s-

a

mCS;(p;g

1

)

(B) (20)

Next suppose that (g

2

; g

r

1

1

; g

r

2

2

) 2 RA. As shown in [9℄, it holds that

Pr(

~

b = b j the de
ryption ora
le reje
ts all invalid 
iphertexts) = 1=2 (21)

Let

p

0

def

= Pr(at least one invalid 
iphertext is a

epted):

Claim C.1 p

0

� �.

Proof . Suppose that B queries an invalid 
iphertext C

0

= (u

0

1

; u

0

2

; e

0

; v

0

) to

the de
ryption ora
le, where

u

0

1

= g

r

0

1

1

; u

0

1

= g

r

0

2

2
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with r

0

1

6= r

0

2

. Let F (u

0

1

; u

0

2

; e

0

) = (�

0

1

; � � � ; �

0

k

). Let g

2

= g

w

1

. First assume

that w 6= 0.

(Find stage) For �xed 
; d

1

; � � � ; d

k

, letA

1

be the set ofX = (x

1

; y

11

; � � � ; y

k1

; x

2

; y

12

; � � � ; y

k2

)

whi
h 
an form 
; d

1

; � � � ; d

k

. For a �xed v

0

, let A

2

be the set of se
ret keys

whi
h 
an form v

0

. Ea
h X of A

1

\A

2

must satisfy the set of linear equations

whose 
oeÆ
ients matrix is

0

B

B

B

B

B

B

�

1 w

1 w

.

.

.

.

.

.

1 w

r

0

1

r

0

1

�

0

1

� � � r

0

1

�

0

k

r

0

2

w r

0

2

�

0

1

w � � � r

0

2

�

0

k

w

1

C

C

C

C

C

C

A

:

where the last row 
orresponds to the equation about v

0

. By the Gauss

elimination, we have

0

B

B

B

B

B

B

�

1 w

1 w

.

.

.

.

.

.

1 w

0 0 � � � 0 (r

0

2

� r

0

1

)w (r

0

2

� r

0

1

)�

0

1

w � � � (r

0

2

� r

0

1

)�

0

k

w

1

C

C

C

C

C

C

A

:

The last row is linearly independent of the previous rows be
ause (r

0

2

�

r

0

1

)w 6= 0 from our assumption. Hen
e,

Pr(C

0

is a

epted j w 6= 0) � jA

1

\A

2

j=jA

1

j = 1=p:

(Guess stage) First suppose that (u

0

1

; u

0

2

; e

0

) = (u

1

; u

2

; e). In this 
ase, v

0

6= v

be
ause (u

0

1

; u

0

2

; e

0

; v

0

) 6= (u

1

; u

2

; e; v). On the other hand, v satis�es eq.(6)

be
ause it is 
omputed by eq.(19). Therefore, v

0

does not satisfy eq.(6).

Hen
e, (u

0

1

; u

0

2

; e

0

; v

0

) is reje
ted.

Next suppose that (u

0

1

; u

0

2

; e

0

) 6= (u

1

; u

2

; e). For �xed 
; d

1

; � � � ; d

k

and v,

let A

0

1

be the set of X = (x

1

; y

11

; � � � ; y

k1

; x

2

; y

12

; � � � ; y

k2

) whi
h 
an form


; d

1

; � � � ; d

k

; v. For a �xed v

0

, let A

0

2

be the set of se
ret keys whi
h 
an

form v

0

. Ea
h X of A

0

1

\ A

0

2

must satisfy the set of linear equations whose
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oeÆ
ients matrix is

0

B

B

B

B

B

B

B

B

�

1 w

1 w

.

.

.

.

.

.

1 w

r

1

r

1

�

1

� � � r

1

�

k

r

2

w r

2

�

1

w � � � r

2

�

k

w

r

0

1

r

0

1

�

0

1

� � � r

0

1

�

0

k

r

0

2

w r

0

2

�

0

1

w � � � r

0

2

�

0

k

w

1

C

C

C

C

C

C

C

C

A

:

where the last row 
orresponds to the equation about v

0

. By the Gauss

elimination, we have

0

B

B

B

B

B

B

B

B

�

1 w

1 w

.

.

.

.

.

.

1 w

0 0 � � � 0 (r

2

� r

1

)w (r

2

� r

1

)�

1

w � � � (r

2

� r

1

)�

k

w

0 0 � � � 0 (r

0

2

� r

0

1

)w (r

0

2

� r

0

1

)�

0

1

w � � � (r

0

2

� r

0

1

)�

0

k

w

1

C

C

C

C

C

C

C

C

A

:

If r

2

� r

1

= 0, then the last row is linearly independent of the previous rows

be
ause (r

0

2

� r

0

1

)w 6= 0 from our assumption. Suppose that r

2

� r

1

6= 0. If

the last row depends on the previous rows, then we must have

1 =

�

1

�

0

1

= � � � ;

�

k

�

0

k

:

Hen
e (�

1

; � � � ; �

k

) = (�

0

1

; � � � ; �

0

k

). This means that (u

1

; u

2

; e) = (u

0

1

; u

0

2

; e

0

)

be
ause F is an inje
tion. However, this is a 
ontradi
tion. Therefore, the

last row is linearly independent of the previous rows. Hen
e,

Pr(C

0

is a

epted j w 6= 0) � jA

0

1

\A

0

2

j=jA

0

1

j = 1=p:

In ea
h stage, we see that

Pr(an invalid C

0

is a

epted j w 6= 0) � 1=p:

Now suppose that B makes at most q

d

queries to the de
ryption ora
le.

Then it holds that

Pr(at least one invalid 
iphertext is a

epted j w 6= 0) � q

d

=p:
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Therefore,

Pr(at least one invalid 
iphertext is a

epted) �

�

1�

1

p

�

q

d

p

+

1

p

= �:

2

Now from eq.(21), we have

Pr(D

B

outputs 0) = Pr(

~

b = b)

�

1

2

(1� p

0

) + p

0

=

1

2

+

1

2

p

0

(22)

From eq.(20) and eq.(22), we obtain that

Adv

ddh

p;g

(D

B

) �

1

2

Adv

s-

a

mCS;(p;g)

(B)�

1

2

p

0

Adv

s-

a

mCS;(p;g)

(B) � 2Adv

ddh

p;g

(D

B

) + p

0

By taking the maximum, we have

Adv

s-

a

mCS;(p;g

1

)

(t; q

d

) � 2 � Adv

ddh

p;g

(t

0

) + p

0

� 2 � Adv

ddh

p;g

(t

0

) + �:

It is easy to see that t

0

= t+O(q

d

� T

exp

).

2

Now we show a proof of Theorem 5.1. Let B

1

be an adversary whi
h

atta
ks CS. We will design an adversary B

2

whi
h atta
ks the modi�ed

version mCS by using B

1

as a subroutine. Let the input to B

2

be (I; pk).

Then B

2

gives (I; pk) to B

1

and runs B

1

.

Suppose that B

1

outputs (M

0

;M

1

; state) at the end of the �nd stage.

Then B

2

outputs (M

0

;M

1

; state) at the end of his �nd stage. In the guess

stage, B

2

gets a 
hallenge 
iphertext C

b

for M

b

, where b = 0 or 1. B

2

gives

(C

b

; state) to the guess stage of B

1

. B

1

�nally outputs

~

b. Then B

2

outputs

~

b.

Let D

1

be the de
ryption ora
le for B

1

and D

2

be the de
ryption ora
le

for B

2

. If B

1

queries a 
iphertext C to D

1

, then B

2

queries C to D

2

. If D

2

returns � to B

2

, then B

2

returns � to B

1

. We show that B

2

simulates D

1

with overwhelming probability.

Now it holds that D

1

reje
ts C if and only if D

2

reje
ts C be
ause eq.(6)

does not 
ontain z; z

1

; z

2

. Next suppose that C is a

epted by D

1

and D

2

.

Then there are two 
ases, C is valid or C is invalid. If C is valid, thenD

1

and
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D

2

return the same M . This is veri�ed as follows. Let C = (u

0

1

; u

0

2

; e

0

; v

0

),

where u

0

1

= g

r

0

1

and u

0

2

= g

r

0

2

for some r

0

. Then in CS,

h

r

0

= (g

z

1

)

r

0

= (g

r

0

1

)

z

= (u

0

1

)

z

:

Therefore, D

1

returns e

0

=h

r

0

from eq.(7). In mCS,

h

r

0

= (g

z

1

1

g

z

2

1

)

r

0

= (g

r

0

1

)

z

1

(g

r

0

2

)

z

2

= (u

0

1

)

z

1

(u

0

2

)

z

2

:

Therefore, D

2

returns e

0

=h

r

0

from eq.(18).

Now suppose that C is invalid, but it is a

epted by D

1

and D

2

. If this

happens, then B

2


annot simulate D

1

. Let p

no

denote the probability that

this o

urs. Then similarly to Claim C.1, it holds that

p

no

� �:

Hen
e,

Pr(

~

b = b in B

2

) � Pr(

~

b = b in B

1

)� p

no

:

From eq.(3),

Adv

s-

a

mCS;(p;g

1

)

(B

2

) � Adv

s-

a

CS;(p;g

1

)

(B

1

)� 2p

no

Adv

s-

a

CS;(p;g

1

)

(B

1

) � Adv

s-

a

mCS;(p;g

1

)

(B

2

) + 2p

no

� Adv

s-

a

mCS;(p;g

1

)

(B

2

) + 2�:

Finally, from lemma C.1, we have

Adv

s-

a

CS;(p;g

1

)

(t; q

d

) � 2 � Adv

ddh

p;g

1

(t

0

) + 3�;

where t

0

= t + O(q

d

� T

exp

) be
ause the time-
omplexity of B

1

is the same

as that of B

2

.

D Proof of Lemma 6.1

Lemma D.1 Let E and Y be two events. If

Pr(E j :Y ) = 1=2;

then

Pr(Y ) � 2Pr(E)� 1:
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(Proof)

Pr(E) = Pr(E j Y ) Pr(Y ) + Pr(E j :Y ) Pr(:Y )

� Pr(Y ) +

1

2

(1� Pr(Y ))

=

1

2

Pr(Y ) +

1

2

Q.E.D.

Lemma D.2 Let E

1

and E

2

be two events. Then

Pr(E

1

^ :E

2

) +

1

2

Pr(:E

1

^ :E

2

) �

1

2

+

1

2

Pr(E

1

)�

3

2

Pr(E

2

):

(Proof)

Pr(E

1

^ :E

2

) +

1

2

Pr(:E

1

^ :E

2

) � Pr(E

1

)� Pr(E

2

) +

1

2

(Pr(:E

1

)� Pr(E

2

))

= Pr(E

1

) +

1

2

(1� Pr(E

1

))�

3

2

Pr(E

2

))

=

1

2

+

1

2

Pr(E

1

)�

3

2

Pr(E

2

):

Q.E.D.

Let B be a type 0 adversary atta
king H

n

with time-
omplexity at most

t

0

. We will design a type 0 adversary D

B

for PE

n

, where D

B

has time


omplexity at most t

00

.

B behaves as follows. Remember that N = f1; � � � ; ng is the set of all

re
pients.

1. B sends N;M

0

and M

1

to the en
ryption ora
le of H

n

.

2. The en
ryption ora
le 
hooses a random bit 
 and gives a 
hallenge


iphertext E

n

pk

(N; r

�

)jjM




�G(r

�

) to B, where r

�

is a random element.

3. B �nally outputs ~
.

If B does not query r

�

to the random ora
le G, B has no advantage in

distinguishingM

0

and M

1

. Therefore,

Pr(
 = ~
 j r

�

is not queried) = 1=2:
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Then from lemma D.1 and eq.(3), we have that

Pr(r

�

is queried) � 2Pr(
 = ~
)� 1 = AdvT0

n-
pa

H

n

;I

(B): (23)

Now let the input to D

B

be pk. Then D

B

�rst gives pk to B. Next D

B

behaves as follows.

1. D

B


hooses r

0

and r

1

randomly. It sends N; (r

0

; � � � ; r

0

) and (r

1

; � � � ; r

1

)

to the en
ryption ora
le of PE

n

.

2. Then the en
ryption ora
le 
hooses a random bit b and gives a 
hallenge


iphertext Z = E

n

pk

(N; r

b

) to D

B

.

3. D

B


hooses a random element �. It will be used as G(r

b

) = G(r

1�b

) = �.

4. D

B

runs B as follows.

4-1. If B queries r 2 fr

0

; r

1

g to G, then D

B

returns � as the value of G(r).

Otherwise, D

B

simulates the random ora
le G in the natural way. (It


ips 
oins to answer queries and makes a set Q = fr;G(r)g, where r

is the query made by B and G(r) is the answer of D

B

.)

4-2. Suppose that B sends N;M

0

and M

1

to the en
ryption ora
le of H

n

.

Then D

B


hooses a random bit 
 and returns a 
iphertext of M

u

su
h

that ZjjM

u

� � to B.

5. Suppose that B stops. Then D

B

outputs

~

b su
h that

~

b =

8

>

<

>

:

0 if r

0

2 Q and r

1

62 Q

1 if r

1

2 Q and r

0

62 Q

random otherwise

D

B

fails to simulate G if B queries r

1�b

. However, B has no information

on r

1�b

through the whole experiment. Therfore, this probability is bounded

by

Pr(D

B

fails to simulate) = Pr(r

1�b

2 Q) = q

G

=2

l

be
ause r

1�b

is randomly 
hosen by D

B

. Hen
e,

Pr(r

b

2 Q) � AdvT0

n-
pa

H

n

;I

(B)� q

G

=2

l�1
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from eq.(23). Now from lemma D.2, we have that

Pr(

~

b = b) = Pr(r

b

2 Q and r

1�b

62 Q) +

1

2

Pr(r

b

62 Q and r

1�b

62 Q)

=

1

2

+

1

2

Pr(r

b

2 Q)�

3

2

Pr(r

1�b

2 Q)

�

1

2

+

1

2

�

AdvT0

n-
pa

H

n

;I

(B)�

q

g

2

l

�

�

3

2

q

G

2

l

=

1

2

+

1

2

AdvT0

n-
pa

H

n

;I

(B)�

q

G

2

l�2

Finally, from eq.(3), we obtain that

AdvT0

n-
pa

PE

n

;I

(D

B

) � AdvT0

n-
pa

H

n

;I

(B)�

q

G

2

l�3

AdvT0

n-
pa

H

n

;I

(B) � AdvT0

n-
pa

PE

n

;I

(D

B

) +

q

G

2

l�3

AdvT0

n-
pa

H

n

;I

(t) � AdvT0

n-
pa

PE

n

;I

(t

0

) +

q

G

2

l�3

:

It is easy to see that t

00

= t

0

+O(q

G

) +O(n).

E Proof of Lemma 6.2

Let B be a type 0 adversary atta
king HY

n

with time-
omplexity at most

t

0

. We will design a type 0 adversary A

B

for PE

n

, where A

B

has time


omplexity at most t

00

.

B behaves as follows. Remember that N = f1; � � � ; ng is the set of all

re
pients.

1. B sends N;M

0

and M

1

to the en
ryption ora
le of HY

n

.

2. The en
ryption ora
le 
hooses a random bit u and gives a 
hallenge


iphertext C

N

= 


1

jj


2

jj


3

to B, where




1

=M

u

�G(r

�

); 


2

= H(r

�

jjM

u

); 


3

= E

n

pk

(N; r

�

)

and r

�

is a random element.

3. B �nally outputs ~u.
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Let Y be the event that B queries r

�

to the random ora
le G or r

�

jjM

to the random ora
le H for some M . Then it is easy to see that B has no

information on u if Y does not o

ur. Therefore,

Pr(~u = u j :Y ) = 1=2:

Hen
e from lemma D.1 and eq.(3), we have

Pr(Y ) � 2Pr(~u = u)� 1 = Adv

n-

a

HY

n

;I

(B): (24)

Now let the input to A

B

be pk. Then A

B

�rst gives pk to B. Next A

B

behaves as follows.

1. A

B


hooses r

0

and r

1

randomly. It sends N; (r

0

; � � � ; r

0

) and (r

1

; � � � ; r

1

)

to the en
ryption ora
le of PE

n

.

2. Then the en
ryption ora
le 
hooses a random bit b and gives a 
hallenge


iphertext Z = E

n

pk

(N; r

b

) to A

B

.

3. A

B


hooses two random elements � and �. They will be used as

G(r

b

) = G(r

1�b

) = �; H(r

b

jjM

u

) = H(r

1�b

jjM

u

) = �:

4. A

B

runs B as follows.

4-1. Suppose that B sends N;M

0

andM

1

to the en
ryption ora
le of HY

n

.

Then A

B


hooses a random bit u and returns a 
iphertext of M

u

su
h

that

C

N

=M

u

� �jj�jjZ

to B.

4-2. Supose that r 2 fr

0

; r

1

g. If B queries r to G, then A

B

returns � and

if B queries rjjM

u

to H, then A

B

returns �.

4-3. Otherwise, A

B

simulates G and H in the natural way. That is, it 
ips


oins to answer the queries and makes the sets Q

G

= fr;G(r)g and

Q

H

= frjjM;H(rjjM)g.

4-4. A

B

simulates the de
ryption ora
les of HY

n

as follows. Suppose that

B asks C

0

= 


0

1

jj


0

2

jj


0

3

to D

sk

i

. If 


0

3

6= TAKE

i

(Z), then A

B


an ask




0

3

to D

sk

i

. Hen
e, A

B


an de
rypt it properly.
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If 


0

3

= TAKE

i

(Z), then A

B


annot ask 


0

3

to D

sk

i

. However, we know

that 


0

3

is a 
iphertext of r

0

or r

1

in this 
ase. Therefore, if C

0

is a

legal 
iphertext, then the plaintext must be M

0

def

= 


0

1

� �. From this

observation, A

B

answers as follows.

(a) A

B

returns M

0

to B if r

0

jjM

0

2 Q

H

and 


0

2

= H(r

0

jjM

0

) or if

r

1

jjM

0

2 Q

H

and 


0

2

= H(r

1

jjM

0

).

(b) Otherwise, A

B

returns reje
t to B.

5. Suppose that B stops. Let Y

0

be the event that r

0

2 Q

G

or r

0

jjM 2 Q

H

for some M . Let Y

1

be the event that r

1

2 Q

G

or r

1

jjM 2 Q

H

for

some M . Then D

B

outputs

~

b su
h that

~

b =

8

>

<

>

:

0 if Y

0

o

urs and Y

1

does not o

ur

1 if Y

1

o

urs and Y

0

does not o

ur

random otherwise

A

B

fails to simulate the real world if

1. Y

1�b

o

urs.

2. At step 4-3 (b), A

B

returns reje
t for a legal 
iphertext queried by B.

Note that B as no information on r

1�b

sin
e r

1�b

is randomly 
hosen by

A

B

. Therefore, it holds that

Pr(Y

1�b

o

urs) = (q

G

+ q

H

)=2

l

:

Further, B makes at most nq

d

queries in total to the de
ryption ora
les.

Hen
e, we have that

p

f

def

= Pr(A

B

fails to simulate the real world) �

q

G

+ q

H

2

l

+

nq

d

2

h

:

Then form eq.(24), we obtain that

Pr(Y

b

o

urs) � Adv

n-

a

HY

n

;I

(B)� p

f

:

Now from lemma D.2, we have that

Pr(

~

b = b) � Pr(Y

b

and :Y

1�b

) +

1

2

Pr(:Y

b

and :Y

1�b

))
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=

1

2

+

1

2

Pr(Y

b

)�

3

2

Pr(Y

1�b

)

�

1

2

+

1

2

(Adv

n-

a

HY

n

;I

(B)� p

f

)�

3

2

q

G

+ q

H

2

l

=

1

2

+

1

2

(Adv

n-

a

HY

n

;I

(B)� �);

where

� = p

f

+ 3

q

G

+ q

H

2

l

=

q

G

+ q

H

2

l�2

+

nq

d

2

h

From eq.(3), we obtain that

Adv

n-

a

PE

n

;I

(A

B

) � (Adv

n-

a

HY

n

;I

(B)� �)

Adv

n-

a

HY

n

;I

(B) � Adv

n-

a

PE

n

;I

(A

B

) + �;

Therefore,

Adv

n-

a

HY

n

;I

(B) � Adv

n-

a

PE

n

;I

(A

B

) + �

AdvT0

n-

a

HY

n

;I

(t; q

d

) � AdvT0

n-

a

PE

n

;I

(t

0

; q

d

) + �;

It is easy to see that t

00

= t

0

+O(q

G

) +O(q

H

) +O(q

d

) +O(n).
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