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Abstract. In the trivial n-recipient public-key encryption scheme, a cipher-
text is a concatenation of independently encrypted messages for n recipients.
In this paper, we say that an n-recipient scheme has a “shortened cipher-
text” property if the length of the ciphertext is almost a half (or less) of the
trivial scheme and the security is still almost the same as the underlying
single-recipient scheme. We first present (multi-plaintext, multi-recipient)
schemes with the “shortened ciphertext’ property for ElIGamal scheme and
Cramer-Shoup scheme. We next show (single-plaintext, multi-recipient) hy-
brid encryption schemes with the “shortened ciphertext’ property.

Keywords: public-key encryption, multi-recipient setting, E1Gamal, Cramer-
Shoup, hybrid encryption, concrete security.

1 Introduction

1.1 Background

Suppose that there are n recipients. Let pk; be the public key of recipient 4
for 1 < i < n. The security of a public-key encryption scheme in the multi-
recipient setting is different from the single-recipient setting. For example,
if e is the common public exponent in RSA, then e encryptions of the same
plaintext M under different moduli lead to an easy recovery of M. Further



results by Hastad [11] and Coppersmith [7, 8] proved that even the time-
stamp variants can be successfully attacked with e ciphertexts.

In the trivial n-recipient public-key encryption scheme, a ciphertext
is just a concatenation of independently encrypted messages for n recipi-
ents using a single-recipient public-key encryption algorithm £. That is,
Epley (M) -+ |Epk, (M), where || denotes concatenation. In general, this
trivial scheme is not secure in the sense of invertibility even if £ is secure in
the same sense, as shown in the above RSA example.

Recently, Bellare et al. [2] and Baudron et al. [1] independently proved
that the trivial n-recipient scheme is secure in the sense of indistinguisha-
bility [10] if £ is secure in the same sense, where indistinguishability is a
stronger security notion than invertibility.

However, their nice results [2, 1] still do not capture the essence of the
multi-recipient setting:

(1) The length of the ciphertext of the trivial n-recipient scheme is n times
larger than that of the underlying single-recipient scheme.

(2) Consider a single-recipient hybrid encryption scheme which encrypts a
long message M using a pseudorandom generator G and sends the seed r of
G using a public-encryption scheme. That is,

C=M®G[r)|Er(r), (1)

where || denotes concatenation. A natural extension of the hybrid scheme
to an n-recipient scheme will be that

M ® G(r)||Epky (M- - [|Epk,, (r)- (2)

Their results [2, 1] only imply that the latter part Epg, (r)|] - ||Epk,, (1) is
secure in the sense of indistinguishability if the single-recipient part Ep(r)
is secure in the same sense.

1.2 Our Contribution

In this paper, we consider n-recipient public-key encryption schemes such
that the length of the ciphertext is almost a half (or less) of the trivial
n-recipient scheme and the security is still almost the same as the under-
lying single-recipient scheme. We say that such a scheme has a “shortened
ciphertext” property.

1. We first give the definitions of our model and the security.



2. We next present (multi-plaintext, multi-recipient) schemes with the
“shortened ciphertext” property for ElGamal scheme and Cramer-Shoup
scheme and prove their security.

3. We also prove that the above mentioned (single-plaintext, multi-recipient)
scheme of eq.(2) is secure in the sense of indistinguishability against
chosen plaintext attack if the underlying single-recipient public-key
scheme is secure in the same sense.

4. We finally present how to construct a (single-plaintext, multi-recipient)
scheme secure against chosen ciphertext attack with the “shortened ci-
phertext” property. The underlying single-recipient public-key scheme
needs to be secure in the sense of indistinguishability against chosen
ciphertext attack. (For example, we can use Rabin-SAEP or RSA-
SAEP™ [4] as the underlying single-recipient scheme.)

Cramer-Shoup scheme is a practical public-key encryption scheme which
is secure in the sense of indistinguishability against chosen-ciphertext attack
under the decision Diffie-Hellman (DDH) assumption in the standard model
[9]. The basic Cramer-Shoup scheme uses universal one-way hash functions
(UOH) [9, Sec.3]. Bellare et al. derived the concrete security of the basic
Cramer-Shoup scheme by assuming the concrete security of UOH [2]. On
the other hand, Cramer and Shoup also presented a hash-free variant which
does not use UOH [9, Sec.5.3].

We derive the concrete security of the hash-free variant of Cramer-Shoup
scheme. It is of independent interest because it truly depends only on the
DDH assumption, but not UOH. We then present a (multi-plaintext, multi-
recipient) hash-free Cramer-Shoup scheme that has the “shortened cipher-
text” property.

One further advantage of our multi-recipient schemes (in the discrete log
setting) is that the encryption operation can be significantly faster than if
the encryption operations were performed separately for each recipient.

Finally, in all of our multi-recipient schemes, the decryption algorithm
is the same as the single-recipient one. Therefore, no extra cost is required
for each recipient.

1.3 Related Works

The "broadcast” problem has been addressed by other authors in the context
of traitor-tracing [6, 12, 5, 13]. The traitor-tracing schemes such that [12, 5,



13] can have even shorter ciphertexts than our schemes, but with the tradeoff
that a small coalition of recipients can break the traitor-tracing aspect of
the scheme, i.e., construct a new private key that does not identify anyone
in the coalition. In our schemes, no coalition can do this since each private
key uniquely identifies the recipient.

Bellare and Rogaway [3] proved that the single recipient hybrid encryp-
tion scheme shown in eq.(1) is secure in the sense of indistinguishability
against chosen plaintext attack under the random oracle moel if & is a
trapdoor oneway permutation. They also proved that the following scheme
secure in the sense of indistinguishability against chosen ciphertext attack
under the random oracle moel.

C = Eu(r)|IM © G(r)[|H (M]|r),

where H is a hash function. Before that, Zheng and Seberry [16] proposed
a scheme such that

C = & (n)|(G(r) © (M||H(M)).

2 Single-Recipient Encryption Scheme

A single-recipient public-key encryption scheme PE = (K, &, D) consists of
three algorithms. The key generation algorithm K outputs (pk, sk) on input
some global information I, where pk is a public key and sk is the secret key;

we write (pk, sk) Ex (I). The encryption algorithm & outputs a ciphertext

C on input the public key pk and a plaintext M; we write C £ Epie(M).
The decryption algorithm D outputs M or reject on input the secret key
sk and a ciphertext C; we write x < Dy (C'), where z = M or reject. We
require that Dy (Epr(M)) = M for each plaintext M.

An adversary B runs in two stages. In “find” stage, it takes a public
key pk and outputs two equal length messages My and M; together with
some state information state. In “guess” stage, it gets a challenge ciphertext
Cp ¥id Epi(My) from the encryption oracle £,;, where b is a randomly chosen
bit. B finally outputs a bit b. The advantage of B is measured by the
probability Pr(b = b).

Formally, the security of PE in the sense of indistinguishability against
chosen-plaintext attack is defined as follows.



Definition 2.1 For b =0 and 1, define the experiment as follows.
(pk1, sky) pia K(I),(My, My, state) £ B(find, pk),C} pia Epk(Mb),g pia B(guess, Cy, state).
Let

AdvidT(B) = Pr(b=0|b=0)—Pr(b=0|b=1)
Adv;;?:z;(t) lof mBaxAdvi;(g:?(B),

where the mazimum is over all B with time-complexity t.

(In the superscript, s- denotes ”single recipient”.)

Definition 2.2 We say that PE is secure against chosen-plaintext attack if
s-cpa

Advpg T (t) is negligible for polynomially bounded t, where the complexity is
measured as a function of a security parameter.

It is easy to see that

~ 1 1 :
Pr(b=0b) = 3 + §Adv§,?:?(B) (3)
The security against chosen-ciphertext attack is defined similarly except
for that the adversary B gets the decryption oracle Dy and is allowed to
query any ciphertext C' at most gg times, where it must be that C # C}j in
S-Cca

the guess stage. We denote the advantages by Advg'7(B) and AdvpEs (¢, qa),
respectively.

3 Multi-Recipient Encryption Scheme

Suppose that there are n recipients. Let N def {1,---,n}. We define
single-plaintext, multi-recipient) public-key encryption schemes and (multi-
(single-p , p P y encryp

plaintext, multi-recipient) public-key encryption schemes as follows.

e In a (single-plaintext, multi-recipient) public-key encryption scheme,
a sender sends the same plaintext M secretly to a subset of recipients
S C N by broadcasting a ciphertext Cg.

e In a (multi-plaintext, multi-recipient) public-key encryption scheme,
a sender sends an independent plaintext M; secretly to each recipient
1 € S by broadcasting a ciphertext Cyg.



3.1 “Shortened Ciphertext” Property

A multi-recipient public-key encryption scheme is naturally constructed from
a single-recipient public-key encryption scheme PE = (K, &, D) as follows.
The key generation algorithm runs (1) n times independently. A ciphertext
Cy is

Cn = Epky (M) -+ - [|Epk,, (M),
where || denotes concatenation. We call this scheme the trivial multi-
recipient scheme.

Bellare et al. [2] proved that the trivial multi-recipient scheme is secure
in the sense of indistinguishability if PE is secure in the same sense. Baudron
et al. [1] proved the same result independently. However, the length of the
ciphertext of the trivial multi-recipient scheme is n times larger than that
of the single-recipient scheme.

In this paper, we consider multi-recipient public-key encryption schemes
such that (1) the length of the ciphertext is almost a half (or less) of the
trivial multi-recipient scheme and (2) the security is still almost the same
as the underlying single-recipient scheme. We say that such a scheme has a
“shortened ciphertext’ property.

3.2 Our Model
For a single-recipient public-key encryption scheme PE = (K, &, D), we de-

fine a (multi-plaintext, multi-recipient) public-key encryption scheme PE" =
(K", ", TAKE) as follows.

e The key generation algorithm K" outputs pk def (

sk def (sk1,---,sky) oninput some global information I, where (pk;, sk;)

is a pair of encryption/decryption keys of recipient i.

pkla e 7pkn) and

e For S = {11,---is}, let M;, be a plaintext for recipient i; € S. Let

Mg def (M;,,---,M;,). Then the encryption algorithm £" computes

a ciphertext Cs for Mg on input pk, S and Mg; we write Cs &
Ene(S, M g).

e TAKFE is a hash function that takes a part of a ciphertext as follows.
For T ¢ § C N, it outputs Cr on input 7,5 and Cg. We write
CT — TAKET(Cs).

Especially, for i € S, we write C; < TAKE;(Cys).



We require that Dy, (TAKE;(Cs)) = M; for all i € S and any M,;.

A (single-plaintext, multi-recipient) public-key encryption scheme is de-
fined similarly.

Remark 3.1 In our multi-recipient schemes, the decryption algorithm is
the same as the single-recipient scheme. Therefore, no extra cost is required
for each recipient.

3.3 Security

We generalize the definition of security for the multi-recipient setting given
by Bellare et al. [2] to (multi-plaintext,multi-recipient) schemes as follows.

We consider an experiment as follows. At the beginning, a challenge
bit b is randomly chosen and fixed. An adversary B is provided with the
encryption oracle £ and it is allowed to query (S, M %, ML) at most g

times. 5& returns a ciphertext E;)’_k(S, MY%). (Since b is fixed at the begin-

ning, the same b is used across all the queries.) B finally outputs a bit b.
We require that |M£| = |M21]| for all i; € S, where M% = (M2 ,---, M)
and Mg = (M}, ,M}).

11
Each time, B can choose (S, M%, MY) arbitrarily, where S as well as

(MY%, ML) may be related to his other queries to Ep- Then the security of
PE" against chosen-plaintext attack is defined as follows.

Definition 3.1 For b =0 and 1, define the experiment as follows.

(pk, sk) & K™(I), b« B (1, pk).
Let
Advp R (B) S Pr(b=0[b=0)-Pr(b=0]b=1)
Advp et (t gc) dof max Advy, 0 (B),

where the mazimum is over all B with time-complexity t.

In the superscript, n- denotes ”n recipients”.



Definition 3.2 We say that PE™ is secure against chosen-plaintext attack
if Advggg?l(t) is negligible for polynomially bounded t, where the complezity
is measured as a function of a security parameter.

The security against chosen-ciphertext attack is defined similarly except
for that the adversary B gets n decryption oracles Dgy,,- -, Dgg,. It is
allowed to query any ciphertext C' to any decryption oracle Dy, at most g4
times for each 4, where it must be that C' # TAK E;(Cs) for any output Cg
of the encryption oracle &;pr. We denote the advantages by Advipgst;(B)
and Adv%‘é’%%j(t, Ge, qq), Tespectively.

The security of (single-plaintext, multi-recipient) schemes is defined sim-
ilarly. For simplicity, the same notation as above will be used.

Remark 3.2 In the definition of Bellare et al. [2], (i) |S| = 1 and there
are n encryption oracles Ep, -+, Epk, - (1) B is allowed to query at most
ge times to each Epy;. It is easy to see that our definition is more general if
we ignore (ii).

3.4 Sufficient Condition
We say that an adversary is type 0 if ¢¢ = 1 and his query to &) is

(N, M%;, ML). That is, we consider an adversary which runs in two stages,
the find stage and the guess stage, as in the single-recipient case.

Definition 3.3 Let AdvTOpszh"(t) be the maxp Advipch';(B), where the maz-
imum is over all type 0 adversaries B with time-complexity t. Define AdvTO%'g%?I(t, dd)
similarly.

The next lemma shows that PE™ is secure if AdvTOpn ;(t) is negligible,
where x = ¢pa or cca. Therefore, we do not have to evaluate Adv%'gn’ 7t qe)
directly.

Let T, denote the time to compute a ciphertext Cy = £ (N, M y).

Lemma 3.1 In an n-recipient broadcast/multicast public-key encryption scheme
PE™,
AdVEERY (tge) < e - AAVTORRY (1),
AdVEER (t Gey qa) < ge - AAVTORERY (T, qa),
where t' =t + O(¢.Ty).
A proof is given in Appendix.



4 Multi-Recipient ”ElGamal” Encryption Scheme

In this section, we show a (multi-plaintext, multi-recipient) ElGamal scheme
which has the “shortened ciphertext’ property. Let G be a group with a
prime order p and let g be a generator of G. Let I = (p,g) be the global
information.

Let TP denote the time needed to perform an exponentiation in G.

4.1 ElGamal scheme and DDH problem

Informally, the decision Diffie-Hellman (DDH) problem is stated as follows.
Given ¢, ¢¥, g%, decide if z = xy mod p with nonnegligible probability. For-
mally, let

DH ¥

RA

{(9%,9",9™) |z € Z),y € Zp}

def
= {(¢°,9",9°) |z € Zp,y € Zp,2 € Zp}.

Let D be a distinguisher which outputs 0 or 1. Define

Advi® (D) ¥ Pr[D(X) = 0|X € DH] - Pr[D(X) = 0|X € RA],
ddh def
Adv, ' (1) = max Adv, 4(D),

where the maximum is over all D with “time-complexity” ¢. The DDH

assumption is that Advgflgh(t) is negligible.

ElGamal encryption scheme £G = (K, &, D) is as follows.
K(I) : sk=ux,pk=X(+ g¢g%), where z £ Zy.
Erx(M) : (Y,W)=(¢",M X"), where r & Z,.
Dio(Y,W) : M« W .Y

It is well known that ElGamal scheme is secure in the sense of indistin-
guishability against chosen plaintext attack under the DDH assumption.

4.2 Proposed Scheme

Now we present the proposed (multi-plaintext,multi-recipient) ElGamal scheme
EG" = (K", EM",TAKE). The key generation algorithm K"(I) runs K(I) n
times independently. Let x; be the secret key and X;(= ¢g*) be the public-
key of recipient i.



For S = {11,---is}, let M;; be a plaintext for recipient i; € S. Then a
ciphertext for S is

CS = (graMhXiTla' . aMiinTS)a

where r & Z,. TAKE; is defined as (¢", M;XT) + TAKE;(Cs). For
TCSCN,Cp+ TAKEp(Cg) is defined naturally.

We will show that our scheme has the “shortened ciphertezt” property.
First, in the trivial multi-recipient scheme, a ciphertext is

et = (g, My X[+ 11 (g™ M, X77°).

Therefore, in our scheme, the size of the ciphertext is almost a half of that
of the trivial multi-recipient scheme. We next prove that our scheme is still
secure. More precisely, we prove that our scheme is secure in the sense of
indistinguishability against chosen plaintext attack under the DDH assump-
tion.

Lemma 4.1 In the proposed (multi-plaintext,multi-recipient) ElGamal en-
cryption scheme,

1
n-cpa ddh
AQvTOREe (1) < 2- AdvySl (¢) + = (4)

where t' =t + O(n - T*P).

A proof is given in Appendix. From lemma 4.1 and lemma 3.1, we obtain
the following theorem.

Theorem 4.1 In the proposed (multi-plaintext,multi-recipient) ElGamal en-
cryption scheme,

’ 1
N 00 < 02 A ), .

where t' =t + O(gen - T*P).

The concrete security of the trivial multi-recipient ElGamal encryption
scheme derived by Bellare et al. [2] satisfies the same equation as eq.(4).
Hence, the coefficient ¢, in eq.(5) can be considered as the cost for the
“shortened ciphertext’ property.

10



4.3 S/MIME CMS

S/MIME CMS (IETF RFC 2630) is a (single-plainext, multi-recipient) scheme
such that
Cs = (¢", Wrap(X,

Zl,K),...,Wrap(XfS,K)),
where K is a content-encryption key to be transported, Wrap is a symmetric
key-wrapping operation.

The Wrap operation takes the role of the multiplication in the basic
ElGamal scheme. Therefore, Theorem 4.1 shows that this scheme is secure

if Wrap is secure enough.

5 Multi-Recipient ” Cramer-Shoup” Encryption Scheme

In this section, we first show the concrete security of the hash-free variant of
Cramer-Shoup scheme. We next present a (multi-plaintext,multi-recipient)
hash-free Cramer-Shoup scheme which has the “shortened ciphertezt” prop-
erty.

Let G be a group with a prime order p and let g; be a generator of G.
Let I = (p,g1) be the global information.

5.1 Concrete security of the hash-free Cramer-Shoup Scheme

Bellare et al. derived the concrete security of the basic Cramer-Shoup
scheme [9, Sec.3] by assuming the security of universal one-way hash func-
tions (UOH) [2]. In this subsection, we derive the concrete security of the
hash-free variant of Cramer-Shoup scheme, which does not need to assume
UOH.

The hash-free variant of Cramer-Shoup scheme CS = (K,&,D) is as
follows [9, Sec.5.3]. Let F' be a polynomial time computable injection from
G3 to (ZZ’;‘)”g for some k. Let (pk, sk) be

sk Za$17$27(911,912)7"'7(%1»%2)7
where each element is randomly taken from Z,.

Pkt ga,h(= i), (= 97 95%), da (= gi"" g5), - di(= g1 g5*),
where g5 is randomly chosen from G.

For a plaintext M, let a ciphertext (uy,us,e,v) be

up = gLUZ = ggae = hrM,U = (Cd?l '“dzk)ra

11



where r & Zyp and (aq,- -+, af) = F(uy,ug,e).
On input (uy,us, ¢, v), the decryption algorithm Dy, first computes F'(uq,u9,e) =
(o1, -+, ap). Next if

v = u9161+a1y11 +---+akyk1u§2+a1y12+-“+akyk2

; (6)

Then Dy, outputs
M + e/uj. (7)

Otherwise, Dy outputs reject. Let

1 1
e & (1__)@+_.
p)p p

Theorem 5.1 In the hash-free Cramer-Shoup scheme,

Adv?f_g,?p,gl)(tv qd) < 2. Advgi;; (tl) + 36, (8)

where t' =t + O(qq - T*P).

A proof will be given in the final paper.

5.2 Proposed Scheme

Now the proposed (multi-plaintext,multi-recipient) hash-free Cramer-Shoup
scheme CS" = (K", ™", TAKE) is described as follows. The key generation
algorithm K™(I) runs K(I) n times independently with a restriction such
that go is common for all pk;, where pk; = (g2, hi, ¢;,d14, -+ -, dg;). That is,
the encryption keys pk; are not independent of each other while the secret
keys sk; are independently chosen. This is possible because w is not a part
of sk;, where go = g{’.

For S = {14,---is}, let M; be a plaintext for recipient ¢ € S. Then a
ciphertext for S is

OS — (ulau276i17vila e aeinavin)

such that u; = g7, up = g and e; = b M;, v; = (¢;d7}" - - dF)", where r &
Zy and (o, -+, o) = F(ug,ug,e;). TAKE; is defined as (uq,usg, €;,v;)
TAKE;(Cg). Cg + TAKFEg(Cy) is defined naturally.

Note that the size of the ciphertext of our scheme is almost a half of the
trivial multi-recipient scheme. We next prove that our scheme is still secure.
More precisely, we prove that our scheme is secure in the sense of indistin-

guishability against chosen ciphertext attack under the DDH assumption.

12



Lemma 5.1 In the proposed (multi-plaintext, multi-recipient) Cramer-Shoup
scheme,

AdvTORSSY, o1y (t qa) < 2- Advp it () + 3ne, (9)

where t' =t 4+ O(n - qq - TP).

The proof is similar to that of Theorem 5.1. From lemma 5.1 and lemma,
3.1, we obtain the following theorem.

Theorem 5.2 In the proposed (multi-plaintext,multi-recipient) Cramer-Shoup
scheme,

VS, o (t aa) < (2 - Advp®: (') + 3ne), (10)

where ' =t + O(n - qq - T**P) + O(qenT"P).

Comparing with the concrte security of the trivial multi-recipient (basic)
Cramer-Shoup scheme given by Bellare et al. [2], we can see that our scheme
takes no extra cost fot the “shortened ciphertext” property except negligible
factors.

6 Multi-Recipient Hybrid Encryption Scheme

6.1 Overview

Bellare and Rogaway showed that eq.(1) is secure in the sense of indis-
tinguishability against chosen plaintext attack if £, is a trapdoor oneway
permutation. However, this does not imply that eq.(2) is secure. Indeed, it
is not secure if &, is RSA as mentioned in Sec.1.1. On the other hand, the
results of [2, 1] imply only that the latter part Epp, (7)]| - - - ||Epk, (1) of eq.(2)
is secure in the sense of indistinguishability if £y (r) is secure in the same
sense.

In this section, we formally prove that eq.(2) is secure in the sense of
indistinguishability against chosen plaintext attack if &, is secure in the
same sense.

More generally, we prove that there exists a (single-plaintext,multi-recipient)
hybrid encryption scheme H" = (K, f;, TAKEH) which is secure in the
sense of indistinguishability against chosen plaintext (ciphertext, respec-
tively) attack if there exists a (multi-plaintext,multi-recipient) public-key
encryption scheme PE" = (K", ", TAKE) which is secure in the same
sense against type 0 adversaries.

13



For example, we can use Rabin-SAEP, RSA-SAEP™ [4] or Cramer-Shoup
scheme [9] as the underlying single-recipient scheme secure against chosen
ciphertext attack.

In what follows, let PE = (K,&,D) be the underlying single recipient
public-key scheme. That is,

PE = PE" — H".

Remember that &7, (S,r) denotes a ciphertext of r = (r,---,r) for a subset

of recipients S = {i1,---is} in PE™.

6.2 IND-CPA Hybrid Scheme

Define a (single-plaintext,multi-recipient) hybrid encryption scheme H" =
(K%, €, TAKEH) from PE™ = (K", ", TAKE) as follows.
Let a ciphertext of M for a subset of recipients S = {iy,---is} be

Cs = Ep(S,n)[|]M & G(r), (11)

where 7 is a random element and G is a pseudorandom generator. For
TCSCN,let

TAKEH;(Cs) = TAKEp(E5,(S,7)||M & G(r).

Now we prove that H" is secure in the sense of indistinguishability
against chosen plaintex tattack if PE™ is secure in the same sense only
against type 0 adversaries under the random oracle model, where G is mod-
eled as a random oracle.

Suppose that an adversary makes at most g queries to the random
oracle G. Let r be [-bits long. We first show that H" is secure against type
0 adversaries if PE™ is so.

Lemma 6.1
AdvTOR P2 (1) < AdvTOReR™ (") + %, (12)
where t" =t 4+ O(qg) + O(n).
A proof is given in Appendix. From lemma 3.1, we have
Adv T (1 ge) < qeAdvTOR P (H)

where ¢ =t + O(q.T,). Therefore, we obtain the following Theorem.

14



Theorem 6.1

) - qa
AdVZSf}a(t, Qe) < ¢e <AdVTO%§B?I(t”) + 213) ’

where t" =t + O(qeT,) + O(qg) + O(n).
(Proof)
T" =t + O(qe) + O(n) =t + O(¢.Ty) + O(ga) + O(n).

Q.E.D.
Suppose that PE™ used in eq.(11) is the trivial multi-recipient scheme.
For the trivial scheme, the result of Bellare et al. implies that [2]

AQvTOL R (") < n - Advihg ((t")

where " = t" + O(nTs) and T, denotes the time to compte a ciphertext of
PE. Since T, = nTs, we obtain the following corollary.

Corollary 6.1 In the above (single-plaintext,multi-recipient) scheme H™,

- qG
AGVSETR (F 00) < ol - AQVRE (1) + 51%5), (13)

where t' = t + O(qg) + O(genTs) and Ts denotes the time to compte a
ciphertext of PE.

6.3 IND-CCA Hybrid Scheme

First, define a single-recipient hybrid encryption scheme HY = (Ky, £y, Dy)
from PE as follows. Let a ciphertext of M be C' = ¢1|ca]|cs with

et =M@ G(r), cg=H(r||M), ¢35 =Ep(r),

where r is a random element, H is a hash function and G is a pseudorandom
generator. The decryption algorithm Dy is defined as

reject if Dgi(c3) = reject or co # H(7||er @ G(7))
Dy silenllealles) = c1 ® G(7) otherwise

where 7 = Dgi(c3).

Next define a (single-plaintext,multi-recipient) hybrid encryption scheme
HY" = (K'Y, E, TAKEH) from PE" = (K", ", TAKE) as follows. Let a

15



ciphertext of M for a subset of recipients S = {i1,---is} be Cs = ¢1||cz||es,
where

c1=M®G(r), co=H(r||M), c3 = Ep(S,1). (14)
For T C SCN, let
TAKFEHT(Cs) = c1|eo||[TAK E7(E,1(S,1)).

Now we prove that H)Y™ is secure in the sense of indistinguishability
against chosen ciphertext attack if PE™ is secure in the same sense only
against type 0 adversaries under the random oracle model, where G and H
are modeled as random oracles.

Suppose that an adversary makes at most g queries to the G-oracle, at
most qg queries to the H-oracle and at most g4 queries to each decryption
oracle Dgy,. Let r be [-bits long, M be k-bits long, r||M be m-bits long and
H(r||M) be h bits long. Define

def 4G +qH | Nqd
= T2 T

We first show that H)™ is secure against type 0 adversaries if PE™ is so.

Lemma 6.2
AdvTO3; 5% 1 (', qq) < AdvTORER (", qq) + o,
where t" = '+ O(qa) + Olqn) + O(qa) + O(n).
A proof is given in Appendix. From lemma 3.1, we have
Advy B (F G, qa) < qeAdvTORSH (H, qa)
where t' =t + O(q.T},). Therefore, we obtain the following Theorem.
Theorem 6.2

AVESSE 1 (1 Ger4a) < e (AQVTORER (', q4) + )
where t" =t + O(q.T,) + O(qa) + O(qm) + O(qq) + O(n).

Suppose that PE™ used in eq.(14) is the trivial multi-recipient scheme.
For the trivial scheme, the result of Bellare et al. implies that [2]

AdvTORER (1", qq) < m - AdvEE (1", qq),
where t" =" + O(nT;) and Ty denotes the time to compte a ciphertext of

PE. Since T, = nTs, we obtain the following corollary.
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Corollary 6.2 In the above (single-plaintext,multi-recipient) scheme HY™,
Adv?-l_gf?(ta e, Qd) < Q(i(n ’ Adv%g,f(tla qd) + 0)7 (15)

where t' =t 4+ O(qenTs) + (qa) + O(gu) + O(qq) and Ty denotes the time to
compte a ciphertext of PE.

6.4 Improvement on Multi-Recipient ElGamal and Cramer-

Shoup
In our (multi-plaintext,multi-recipient) ElGamal encryption scheme, sup-
pose that M = M;, =--- = M;,. In this case, let a ciphertext be
C = (Mgranla"'aX;S)'

This scheme is better than our scheme of Sec.4.2 because M is multiplied
once. The security is proved similarly. Further, we can consider a hybrid
scheme such that

C'=(Kg", X]

Zl’--

L XD)|G(E) @ M.

We can improve our multi-recipient Cramer-Shoup scheme similarly.
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A Proof of Lemma 3.1

We show a proof for (multi-plaintext, multi-recipient) schemes against chosen-
plaintext attack. The proofs for the other cases are similar. Let B be an
adversary which has time-complexity ¢ and makes at most g. queries. We
will design an type 0 adversary Dp with time-complexity at most t'.

Similar to [2], we consider a hybrid experiment with a parameter [ such
that 0 <[ < ¢, as follows.

Experiment-/: Let the i-th query of B be (S, M%, ML). If i <1, then Epke
returns Epx (S, M§). Otherwise, it returns &, (S, MY).

Let

1 def Pr[b = 0 in Experiment-I].

Then it is easy to see that
Advggg?l(B) = po — Dy -

Next our Dp works as follows. On input (I, pk), Dp chooses [ randomly
such that 1 <1 < ¢.. It runs B by giving (I, pk) to B. Let the i-th query of

B be (S, Mg, My).
1. If i < I, then Dp returns C& & £,(S, MY).
2. If i > [, then Dp returns C% & &,1,(S, MY).

3. If i = I, then Dp queries (N, M%, M}/ to his encryption oracles,
where M OS and M 15 are naturally embedded in M 9\, and M }V, respec-

tively. The oracle returns C%; £ Epk(N, MY) to Dp. Dp finally gives
C% = TAKEs(CY%) to B.
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Suppose that B outputs b finally. Then Dp outputs b.
Now we can see that

P1f(§=0|b=0) = (po+- Pg-1)/e
Pr(b=0]b=1) = (p1+-pe)/e

because [ is randomly chosen. Therefore,

Advggg?I(DB) = (po — pqe)/Qe = Advggg?j(B)/Qe-
Hence
Advipen®; (B) = qe - Advipern 1 (Dp).
By taking the maximum, we obtain that
AQviseR® (F, ge) < ge - AAVTOR R (1).

Finally, the overhead of Dp is to pick the random number / and execute
some conditional statements. It is O(g. - Tp,).

B Proof of Lemma 4.1

By extending the result of Stadler [15, in the proof of Proposition 1] and
Naor and Reingold [14, lemma 3.2], Bellare et al. proved the following
proposition [2].

Proposition B.1 [2] There is a probabilistic algorithm R such that on input
g%, g%, g%, R outputs ¢", ¢¢', where b is random and

J = ab' mod p if ¢ =abmod p
| random if ¢ # ab mod p

R runs in O(T*P) time.

Now we show a proof of lemma 4.1. Let B be a type 0 adversary attacking
the proposed scheme with time-complexity at most t. We will design an
adversary Dp for the DDH problem, where Dp has time complexity at
most #'.

Let the input to Dp be ¢", g%, g*°. Dp runs R of Proposition B.1 n times
independently on input (¢", ¢*, ¢*). Then R outputs X; = ¢g*,---, X,, = ¢*»
and Z, = g¢*,---,Z, = g°*, where 21, - -+, x, are random and

L) T modp if z=rxmodp
] random if z # rz mod p
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Dp gives X1,---,X,, to B as n public keys and runs B. Suppose that B
queries (Mo,,..., Myy) and (My1,...,M;,) in the find stage. Then Dp
chooses a random bit b and gives C' = (¢", My - Z1, -+, My - Zy) to B as a
challenge ciphertext. Suppose that B outputs b in the guess stage. Finally,
Dg outputs b ® b.

First suppose that (¢",¢% ¢°) € DH. Then C is a legal ciphertext.
Therefore, as shown in eq.(3), we have

~ 1 1
Pr(Dp outputs 0) = Pr(b=1b) = 5+ §Advg'gc,?azp o(B)- (16)

Next suppose that (¢9", 9%, 9%) € RA. If 2 # rx, then Zy,- -+, Z, are random
and Pr(b = b) = 1/2. Hence, we have

Pr(Dg outputs 0) = Pr(b="b)
1 1 1 1 1
< to-helofy L (17)
2 P p 2 2p

From eq.(16) and eq.(17), we have

1

1
Advid (D) > —advP? o
p

2 sg",(p,g)(B) B

n-cpa
Advegn () ) (B)

IA

1
ddh

2Advp’g (D) + ]—9
By taking the maximum, we have

1
n-cpa ddh /s
AdvTORgRY, (1) < 2- Advp ' () + -

It is easy to see that ¢’ = ¢+ O(n - T®P).

C Proof of Theorem 5.1

uh, ul, €, v') s called valid if u) = g7 and u) = ¢ for some 7. Otherwise,
1, U 1=0 2 =92
it is called invalid.

We first consider a slightly modified version of CS such that h = gi'¢5?,

where z; & Z, and 2o & Zp, and eq.(7) is replaced by
M + e/ui'u3’. (18)

We denote this modified version by mCS.
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Lemma C.1 In the modified version,

RTS8 (1) < 2 A1) -,

where t' =t + O(qq - T**P).

Proof. Let B be an adversary attacking the modified scheme with time-
complexity at most t. We will design an adversary Dp for the DDH problem,
where Dp has time complexity at most t'.

Let the input to Dp be ga,91", g5>. Dp runs K(I) and obtains (pk, sk).
Dp gives pk to B and runs B. Dp can simulate the decryption oracle Dy
because he knows sk.

Suppose that B queries My and M in the find stage. Then Dp chooses
a random bit b and computes a challenge ciphertext C' = (uq,us,e,v) such
that u1 = gi",us = g5> and

e = ui'ud*M,

v = uff1+041y11 +taRYr u§2+a1y12+“'+0¢kyk2 (19)

where (v, -, ) = F(uy,us,e). Dp then gives C' to B. Suppose that B
outputs b in the guess stage. Finally, Dp outputs b @ b.

First suppose that (g9, 91", ¢5>) € DH, which means that 7y = ro. In this
case, it is easy to see that C is a legal ciphertext. Therefore, from eq.(3),
we have

~ 1 1
Pr(Dp outputs 0) = Pr(b=10) = 3 + §Adv§7_1(g§,(p,gl)(B) (20)

Next suppose that (g2, 97", 95°) € RA. As shown in [9], it holds that
Pr(b = b | the decryption oracle rejects all invalid ciphertexts) = 1/2 (21)

Let
Do def Pr(at least one invalid ciphertext is accepted).

Claim C.1 py <e.

Proof . Suppose that B queries an invalid ciphertext C' = (u},u},€’,v') to
the decryption oracle, where
! 7"'2

P T _
Uy =91, U1 = go
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with 7} # r5. Let F(u},ub,e’) = (o, --,a}). Let go = g{. First assume

that w # 0.

(Find stage) For fixed ¢,dy,- - -, dg, let Ay be the set of X = (x1,y11, ", Yk1, T2, Y12, -

which can form ¢, dy,---,d;. For a fixed v', let Ay be the set of secret keys
which can form v’. Each X of A;N Ay must satisfy the set of linear equations
whose coefficients matrix is

1 w

1 w
!

riorie - ria) rhw rhalw - rhajw
where the last row corresponds to the equation about »’. By the Gauss
elimination, we have

1 w
00 -+ 0 (rp—rpw (ry—ry)ajw - (ry—ri)ajw

The last row is linearly independent of the previous rows because (rh —
r})w # 0 from our assumption. Hence,

Pr(C" is accepted | w # 0) < |Ay N Ag|/|A1| = 1/p.

(Guess stage) First suppose that (u),ub,e’) = (u1,us2,e). In this case, v’ # v
because (u},ub,e',v") # (u1,usz,e,v). On the other hand, v satisfies eq.(6)
because it is computed by eq.(19). Therefore, v’ does not satisfy eq.(6
Hence, (u},ul,e’,v") is rejected.

Next suppose that (u},ub,e’) # (u1,uz,e). For fixed ¢,dy,---,dy and v,
let A} be the set of X = (z1,y11," "+, Yk1, T2, Y12, * *, Yk2) which can form
¢,dy, -+, dg,v. For a fixed o', let A be the set of secret keys which can
form o'. Each X of A} N A5 must satisfy the set of linear equations whose
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coefficients matrix is

1 w
1 w
1 w
rn o - O Tw roiw - raopw
rioriay - ria) rhw rhjw - rhajw

where the last row corresponds to the equation about v’. By the Gauss
elimination, we have

1 w
1 w
1 w
00 0 (ro—riw (ro—r)oqw -+ (ro—ri)agw
00 0 (rp—rw (ry—r)aqw - (ry—ri)ajw

If ro —ry = 0, then the last row is linearly independent of the previous rows
because (ry, — rj)w # 0 from our assumption. Suppose that ro —ry # 0. If
the last row depends on the previous rows, then we must have

aq (69
l=— =, —
« «
1 k
Hence (ay,---,a;) = (o, -+, ). This means that (uj,us,e) = (u},ub,€’)

because F' is an injection. However, this is a contradiction. Therefore, the
last row is linearly independent of the previous rows. Hence,

Pr(C' is accepted | w # 0) < |A} N AL)/|AL = 1/p.

In each stage, we see that
Pr(an invalid C' is accepted | w # 0) < 1/p.

Now suppose that B makes at most ¢4 queries to the decryption oracle.
Then it holds that

Pr(at least one invalid ciphertext is accepted | w # 0) < qq/p.

24



Therefore,

1 1
Pr(at least one invalid ciphertext is accepted) < <1 - —) 1d +-=e
b/ p P
O
Now from eq.(21), we have
Pr(Dg outputs 0) = Pr(b=0b)
< S(U-p)tpo=s e (22)
=5 Po Pbo = 9 2])0
From eq.(20) and eq.(22), we obtain that
ddh 1 s-cca 1
Aavy (D) 2 5AdvLEs p,g)(B) — 3P0
AdvEE o (B) < 2Advpi'(Dg) + po
By taking the maximum, we have
- ddh
Advy e (p,gn) (1 0a) < 2 Advy () + po
< 2-AdviP(H) + e
It is easy to see that t' = ¢ + O(qy - T*P).
O

Now we show a proof of Theorem 5.1. Let B; be an adversary which
attacks CS. We will design an adversary By which attacks the modified
version mCS by using Bj as a subroutine. Let the input to By be (I, pk).
Then Bs gives (I, pk) to By and runs Bj.

Suppose that By outputs (My, My, state) at the end of the find stage.
Then By outputs (Mg, My, state) at the end of his find stage. In the guess
stage, Bs gets a challenge ciphertext Cj for My, where b = 0 or 1. By gives
ng, state) to the guess stage of By. Bj finally outputs b. Then Bs outputs
b.

Let Dy be the decryption oracle for By and Ds be the decryption oracle
for Bsy. If By queries a ciphertext C' to D1, then By queries C to Dy. If Do
returns o to By, then By returns o to By. We show that By simulates Dy
with overwhelming probability.

Now it holds that D; rejects C'if and only if Dj rejects C' because eq.(6)
does not contain z, z1, zo. Next suppose that C' is accepted by D; and Ds.
Then there are two cases, C'is valid or C'is invalid. If C is valid, then D; and
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Dy return the same M. This is verified as follows. Let C' = (u},ub, €', v"),
where u} = ¢’ and u}, = g4 for some r'. Then in CS,

W= (g0 = (g)7 = (uh)".

Therefore, D; returns e’ /A" from eq.(7). In mCS,

W= (g7t g = (91)7 (g5 )7 = (u)™ (uh) ™.
Therefore, Dy returns ¢//h" from eq.(18).
Now suppose that C is invalid, but it is accepted by Dy and Ds. If this
happens, then By cannot simulate Dy. Let p,, denote the probability that
this occurs. Then similarly to Claim C.1, it holds that

Pno < €.
Hence, ~ .
Pr(b=bin Bs) > Pr(b=bin By) — pno-
From eq.(3),
Advyes (g (B2) 2 Adves ) (B1) = 2pno
Adves (g (B1) < AdVies ,00)(B2) + 2pno
S AdVi;lcézg’(p’gl)(BQ) + 26.

Finally, from lemma C.1, we have
- ddh
AdvEgT, o) (taa) < 2+ Advyg (') + 3e,

where ¢ =t + O(qq - T**P) because the time-complexity of By is the same
as that of Bs.

D Proof of Lemma 6.1
Lemma D.1 Let F and Y be two events. If
Pr(E | -Y) =1/2,

then
Pr(Y) > 2Pr(E) — 1.
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(Proof)

Pr(F) = Pr(E|Y)Pr(Y)+Pr(E|-Y)Pr(=Y)

1

< Pr(Y)+ 5(1 — Pr(Y))

1 1
= —Pr(Y)+ =

5 Pr(Y) + 3

Q.E.D.
Lemma D.2 Let Ey and Ey be two events. Then
1 1 1 3
PI“(El A —|E2) + 5 PI‘(—|E1 AN —|E2) > 5 + 5 PI‘(El) — 5 PI‘(EQ).

(Proof)

PI‘(E1 AN _|E2) + %PI‘(—!El A —|E2) Z PI‘(El) - PI‘(EQ) + %(Pr(—-El) - PI‘(EQ))

= Pr(B) +5(1 = Pr(BY) - 5 Pr(E)

— % + %PI‘(El) - ;PI‘(EQ)
Q.E.D.
Let B be a type 0 adversary attacking H" with time-complexity at most
t'. We will design a type 0 adversary Dp for PE", where Dp has time
complexity at most t”.
B behaves as follows. Remember that N = {1,---,n} is the set of all
recpients.

1. B sends N, My and M; to the encryption oracle of H™.

2. The encryption oracle chooses a random bit ¢ and gives a challenge
ciphertext &7 (N, r*)|| M. ® G(r*) to B, where r* is a random element.

3. B finally outputs ¢.

If B does not query r* to the random oracle GG, B has no advantage in
distinguishing My and M;. Therefore,

Pr(c = ¢ | r* is not queried) = 1/2.
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Then from lemma D.1 and eq.(3), we have that
Pr(r* is queried) > 2Pr(c=¢) — 1 = AdvTOZS?Ia(B). (23)

Now let the input to Dp be pk. Then Dp first gives pk to B. Next Dp
behaves as follows.

1. Dp chooses ry and r; randomly. It sends N, (rg,---,7r9) and (r1,---,71)
to the encryption oracle of PE™.

2. Then the encryption oracle chooses a random bit b and gives a challenge
ciphertext Z = &y (N, ) to Dp.

3. Dp chooses a random element a. It will be used as G(rp) = G(r1-p) = .

4. Dp runs B as follows.

4-1. If B queries r € {rg, 1} to G, then Dp returns « as the value of G(r).
Otherwise, Dp simulates the random oracle G in the natural way. (It
flips coins to answer queries and makes a set Q = {r, G(r)}, where r
is the query made by B and G(r) is the answer of Dp.)

4-2. Suppose that B sends N, My and M; to the encryption oracle of H".
Then Dpg chooses a random bit ¢ and returns a ciphertext of M, such
that Z||M, @ a to B.

5. Suppose that B stops. Then Dy outputs b such that

0 ifroe@Qandry € Q
1 ifry e Qandryg € Q

random  otherwise

SH
Il

Dy fails to simulate G if B queries r1_;. However, B has no information
on r1_p through the whole experiment. Therfore, this probability is bounded
by

Pr(Djp fails to simulate) = Pr(ri_; € Q) = qq/2'

because r1_; is randomly chosen by Dpg. Hence,

Pr(ry € Q) > AdvT0,'(B) — qa /2"
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from eq.(23). Now from lemma D.2, we have that

Pr(b=b) = Pr(reQandri_y & Q)+ %Pr(rb ¢ZQand ri_, € Q)

11 3
1 1 n-cpa 4 3 4G
> 5+5 <AdVTOH”,I (B) - E) 29
1 1 , 4G
= 5 + §AdVTOZSI’)Ia(B) - 91—2

Finally, from eq.(3), we obtain that

i . ie]
AdvTOR (Dp) > AdvT0 T (B) — o=
i - le]
AdvTO"HE?f (B) < AdvTOZEQj“I(DB )+ 913
) , dc
AdvTO, () < AdvTORR"(t) + 53"

It is easy to see that t = + O(qg) + O(n).

E Proof of Lemma 6.2

Let B be a type 0 adversary attacking H)" with time-complexity at most
t'. We will design a type 0 adversary Ap for PE™, where Ap has time
complexity at most t”.

B behaves as follows. Remember that N = {1,---,n} is the set of all
recpients.

1. B sends N, My and M7 to the encryption oracle of H)".

2. The encryption oracle chooses a random bit v and gives a challenge
ciphertext C'y = ¢i1l|cz||cs to B, where

c1 = M, ®G(r"), co = H(r*||M,), c3 = Ep(N,r¥)
and r* is a random element.

3. B finally outputs .
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Let Y be the event that B queries 7* to the random oracle G or r*||M
to the random oracle H for some M. Then it is easy to see that B has no
information on u if Y does not occur. Therefore,

Pr(a =u|-Y)=1/2.
Hence from lemma D.1 and eq.(3), we have
Pr(Y) > 2Pr(a = u) — 1 = Advyy [(B). (24)

Now let the input to Ap be pk. Then Ap first gives pk to B. Next Ap
behaves as follows.

1. Ap chooses ¢ and ry randomly. It sends N, (rg,---,79) and (r1,---,71)
to the encryption oracle of PE™.

2. Then the encryption oracle chooses a random bit b and gives a challenge
ciphertext Z = £ (N, ) to Ap.

3. Ap chooses two random elements v and 3. They will be used as

G(ry) = G(rip) =, H(ry||My) = H(r1 || My) = 5.

4. Apg runs B as follows.

4-1. Suppose that B sends N, My and M; to the encryption oracle of HY"™.
Then Ap chooses a random bit v and returns a ciphertext of M, such
that

Cn =M, ®a|8]|Z

to B.

4-2. Supose that r € {rg,r1}. If B queries r to G, then Ap returns « and
if B queries r||M, to H, then Ap returns (3.

4-3. Otherwise, Ap simulates G and H in the natural way. That is, it flips
coins to answer the queries and makes the sets Q¢ = {r,G(r)} and
Qm = {r||M, H(r|[M)}.

4-4. Ap simulates the decryption oracles of H)" as follows. Suppose that
B asks C'" = d||ch||cy to Dgy,. If ¢ # TAKE;(Z), then Ap can ask
s to Dgy,. Hence, Ap can decrypt it properly.
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If s = TAKE;(Z), then Ap cannot ask ¢4 to Dg,. However, we know
that ¢4 is a ciphertext of rg or ry in this case. Therefore, if C' is a
legal ciphertext, then the plaintext must be M’ def ¢} @ . From this
observation, Ag answers as follows.

(a) Ap returns M’ to B if ro||M' € Qm and ¢, = H(ro||M') or if
r||M'" € Qm and ¢ = H(r||M').

(b) Otherwise, Ap returns reject to B.

5. Suppose that B stops. Let Yj be the event that ro € Q¢ or ro||M € Qg
for some M. Let Y7 be the event that r € Qg or ri||M € Qg for
some M. Then Dp outputs b such that

0 if Yj occurs and Y; does not occur
1 if Y7 occurs and Y, does not occur
random otherwise

SH
Il

Ap fails to simulate the real world if

1. Y;_p occurs.

2. At step 4-3 (b), Ap returns reject for a legal ciphertext queried by B.

Note that B as no information on r1_p since r1_; is randomly chosen by
Ap. Therefore, it holds that

Pr(Y]_p occurs) = (qg + QH)/zl-

Further, B makes at most ng; queries in total to the decryption oracles.
Hence, we have that

Pr def Pr(Ap fails to simulate the real world) < quﬂ %.
Then form eq.(24), we obtain that
Pr(Y} occurs) > Advyy ((B) — py-

Now from lemma D.2, we have that

~ 1
Pr(b=b) > Pr(Y, and -Y] )+ 2 Pr(=Y, and Y7 3))
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1 1 3
= —+-Pr(¥}) — 2 Pr(Yi_
5 T3 Pr(¥s) — 5 Pr(Yi)
1 1 ) 3qc +aqu
> o+ 5w (B) - py) - S IE
1 1
= <+ - (Advyye (B) — o),
2 2 ’
where
_ 3(1G+<IH_(1G+QH nqq
O=Pf 9T T Ty T oh

From eq.(3), we obtain that

Advggﬁij(AB) > (Adv%’;gﬁ?’l-(B) —0)
AdVESSE(B) < AdVEER(Ap) + o,
Therefore,
Advyye (B) < Advpgn'[(Ap) +o
AdvTO}; % 1 (t,qa) < AdvTogg,%?I(t’, qq) + o,

It is easy to see that ¢’ = + O(qq) + O(qm) + O(qq) + O(n).
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