Authenticated Encryption in the Public-Key Setting:

Security Notions and Analyses

JEE HEA AN*

Abstract

This paper addresses the security of authenticated encryption schemes in the public key setting.
We present two new notions of authenticity that are stronger than the integrity notions given in the
symmetric setting [5]. We also show that chosen-ciphertext attack security (IND-CCA) in the public
key setting is not obtained in general from the combination of chosen-plaintext security (IND-CPA)
and integrity of ciphertext (INT-CTXT), which is in contrast to the results shown in the symmetric
setting [13, 5]. We provide security analyses of authenticated encryption schemes constructed by
combining a given public key encryption scheme and a given digital signature scheme in a “generic”
manner —namely, Encrypt-and-Sign, Sign-then-Encrypt, and Encrypt-then-Sign— and show that
none of them, in general, provide security under all notions defined in this paper. We then present a
scheme called ESSR that meets all security notions defined here. We also give security analyses on an
efficient Diffie-Hellman based scheme called DHETM, which can be thought of as a transform of the
encryption scheme “DHIES” [1] into an authenticated encryption scheme in the public key setting.
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1 Introduction

BACKGROUND. Authenticity and Privacy have been the main goals of data communication in both
private and public key settings. There are various schemes that are designed to meet these goals
separately. In the public key setting, asymmetric encryption schemes are designed to provide privacy,
while (digital) signature schemes are designed to provide authenticity. Well defined formal security
notions for encryption schemes [9, 15, 7] and signature schemes [10] exist, and schemes have been
analyzed according to those notions. Recently, there have been rising interests in combining these
schemes in such a way that the goals of both privacy and authenticity are met at the same time
[12, 17, 14, 11]. However, schemes that are designed to meet both goals have not received formal security
treatments. No clear formal definitions of security or comprehensive security analyses on the schemes
have been provided in the public key setting, although a recent work [5] gives these in the symmetric
setting. Here we provide formal security definitions and security analyses for schemes whose goal is to
provide both privacy and authenticity in the public key setting. Note that security definitions from
the symmetric setting cannot just be “lifted up” for the public key setting because of the asymmetric
nature of the latter. The asymmetry of keys makes a difference in the notions of both authenticity and
privacy. In order to see this more clearly, we begin by describing the setting and security notions in
more detail below.

THE SETTING. We consider a public key setting where two parties (a sender and a receiver) want to
communicate securely over an insecure channel. In order to provide both privacy and authenticity at
the same time, both sender and receiver need to have their own public, secret key pairs. Note that this
does not mean that the keys are unique for the specific pair of sender and receiver. Although we are
considering just the two party case here, the setting can be extended to a multi-party case by assuming
that each user has its own public, secret key pair.

We use the term public key based authenticated encryption (abbreviated to PKAE) schemes to refer to
schemes whose goal is to provide both privacy and authenticity in the public key setting. Authenticated
encryption schemes can also be viewed as encryption schemes with an added security goal of authenticity.

1.1 Security notions for public key based authenticated encryption schemes

Privacy. We consider privacy under both chosen-plaintext and chosen-ciphertext attacks. Notice that,
unlike the usual public key encryption schemes, encryption in an authenticated encryption scheme is
done based on a sender’s secret key as well as a receiver’s public key, and hence an adversary that does
not have its own public, secret key pair cannot encrypt a message of its choice using the public key of
the receiver only. Therefore, in order to model a chosen-plaintext attack, it is not sufficient to provide
access to a receiver’s public key. Adopting the left-or-right indistinguishability notion (IND-CPA) of
the symmetric setting [3] to the public key setting, we model the chosen-plaintext attack by allowing an
adversary access to a left-or-right encryption oracle. For the notion of privacy under chosen-ciphertext
attack (i.e. IND-CCA), we allow access to a decryption oracle in addition to the left-or-right encryption
oracle, following [3]. Because we allow a decryption oracle access to the adversary, we consider an
adversary who has its own public, secret key pair. In this case, even though the adversary might not
be able to generate a ciphertext that is valid with respect to the public key of a particular sender, it
may be able to generate a ciphertext that is considered valid with respect to its own public key. This
might make a difference in the adversary’s ability to attack the given scheme in the IND-CCA sense.

AUTHENTICITY. Security regarding authenticity in the symmetric setting is normally measured by
“unforgeability” by an adversarial third-person (meaning, excluding the sender and receiver) who is
allowed a chosen message attack. Since the sender and receiver both share the same key, there is no



distinction between the sender and receiver in their ability to create valid ciphertexts. However, in the
public key setting, there is a distinction —only a sender has all the information (i.e. the sender’s secret
key and the receiver’s public key) to create a valid (authentic) ciphertext. Hence, an adversary against
a sender’s authenticity may be a receiver as well as a third-person. Note, however, that a receiver and
third-person may not have the same ability in forging a sender’s ciphertext. This is because the receiver’s
key is also involved in creating valid ciphertexts and by creating and manipulating its own key pair,
the receiver may be able to come up with a forgery which a third-person adversary cannot. Reflecting
this difference into the unforgeability notion, we divide the notion into two parts: receiver unforgeability
(RUF) and third-person unforgeability (TUF). In the third-person unforgeability notion, which is the
usual notion for authenticity, the goal of an adversary is to make the intended receiver believe that
the forgery it received has indeed come from the original sender. In the receiver unforgeability notion,
however, the goal of an adversary (i.e. receiver) is to convince a “third-party” (e.g. a judge) that a
forgery it created has indeed come from the original sender. We note that this notion can model what
is usually called “non-repudiation” for authenticated encryption schemes in the public key setting.

In the attack models for both notions, the adversary is allowed a chosen-message attack. Addition-
ally, in the receiver unforgeability attack model, the adversary (receiver) is allowed to create its own key
pair initially, and change its key pair later when it outputs a forgery so that its forgery is decrypted and
verified using the new key pair. This models the versatility of the public key setting where it is possible
for a party to register its own public key with a certification authority (CA) and later re-register a dif-
ferent public key without being detected by others. (Although associating timestamps with ciphertexts
may help avoid this type of attack, it may not always be possible. Hence, we allow this type of attack
for generality.) We remark that this kind of attack has appeared in the literature [2, 6]. The third-
person unforgeability models unforgeability in the usual setting (similar to the symmetric setting). In
both models, success of an adversary is measured by its ability to output a “new” and “valid” forgery.
Depending on the definition of “newness”, the forgery is further divided into two cases: ciphertezt and
plaintext. A forgery of a “new” ciphertext indicates that the forgery ciphertext output by the adversary
is never output by the oracle given to the adversary while a forgery of a “new” plaintext indicates that
the plaintext corresponding to the forgery ciphertext was never queried by the adversary to the ora-
cle. Combining the receiver and third-person unforgeability (RUF, TUF) with ciphertext and plaintext
forgery (CTXT, PTXT), we get the following four notions: RUF-CTXT, RUF-PTXT, TUF-CTXT,
and TUF-PTXT. We note that the third-person unforgeability notions (TUF-CTXT and TUF-PTXT)
in the public key setting are analogous to the integrity notions (INT-CTXT and INT-PTXT) in the
symmetric setting shown in [5], while receiver unforgeability notions (RUF-CTXT and RUF-PTXT)
are new and apply only to the public key setting.

1.2 Relations among the security notions

Figure 1 depicts the relations among the new notions (RUF-CTXT, RUF-PTXT, TUF-CTXT, TUF-
PTXT) and the existing notions (IND-CCA, IND-CPA) presented in the style of [4, 5]. An implication
A — B means that all schemes secure in the sense of A are also secure in the sense of B. A separation
A 4 B means that there exists a scheme that is secure in the sense of A but not in the sense of B.
Since TUF-CTXT and TUF-PTXT are analogous to INT-CTXT and INT-PTXT in the symmetric
setting, the relations among them are not explicitly proved in this paper; instead we cite the papers
that establish the relations. We combine IND-CPA with the unforgeability notions in Figure 1 in order
to relate the combined security with privacy notions (i.e. IND-CPA, IND-CCA).

Note the horizontal relations that indicate that the receiver unforgeability properties are in general
stronger than the third-person unforgeability —this is expected from the definitions of their attack
models, where an adversarial receiver is given more “power” than an adversarial third-person. More
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Figure 1: Relations among security notions for public key based authenticated encryption
schemes. An arrow denotes an implication while a hatched arrow denotes a separation. The solid arrows
indicate relations proved in this paper with the annotations corresponding to the propositions, and dotted arrows
indicate existing relations (adapted to the public key setting described in this paper) annotated with citations.

interesting relations are shown between RUF-CTXT and RUF-PTXT notions —unlike the third-person
case (where TUF-CTXT is a stronger notion than TUF-PTXT), the two notions RUF-CTXT and
RUF-PTXT are not comparable, meaning the relative strengths between the two notions cannot be
determined because a separation exists in both directions. (Note that, although not explicitly shown in
Figure 1, RUF-PTXT does not imply RUF-CTXT because otherwise, by following arrows, we would get
RUF-PTXT — TUF-CTXT, contradicting the stated separation.) This means that both RUF-CTXT
and RUF-PTXT security (along with the IND-CCA security) need to be shown in order to prove that
a scheme is secure for all notions.

In the symmetric setting, IND-CCA is implied by the combined notions of IND-CPA and INT-CTXT
[13, 5]. However, in the public key setting, IND-CCA is not implied by IND-CPA and RUF-CTXT
(which is a stronger notion than TUF-CTXT, the asymmetric counterpart of INT-CTXT). This is an
important distinction that exists between the symmetric setting and the public key setting.

1.3 Generic composition of encryption and signature schemes

One of the most straightforward methods to design an authenticated encryption scheme in the public key
setting is perhaps to “combine” the encryption and signature schemes in some “generic” way (which is
called “generic composition”, following [5]). We examine the security of three possible ways to combine
the encryption and signature schemes: Encrypt-and-Sign plaintext, Sign-then-Encrypt, and Encrypt-
then-Sign. The three methods are constructed based on a public key based encryption scheme and a
signature scheme. The Encrypt-and-Sign method encrypts the plaintext and appends the signature of
the plaintext. The Sign-then-Encrypt method appends a signature to the plaintext and then encrypts
the plaintext and the signature together. The Encrypt-then-Sign method encrypts the plaintext to get
a ciphertext C' and then appends the signature of C' to the ciphertext.

The summary of the results obtained from security analyses of the constructions is displayed in
Figure 2 and Figure 3. The results shown in Figure 2 are obtained by assuming that the base signature
scheme is “weakly unforgeable” (WUF-CMA), while those shown in Figure 3 are obtained by assum-
ing that the base signature scheme is “strongly unforgeable” (SUF-CMA). The notions for signature
schemes are adopted from the MAC security in [5]. In both figures, the security assumption on the base
encryption scheme is chosen-plaintext security (IND-CPA). Strong unforgeability requires that it be
computationally infeasible for an adversary to forge a “new” message, tag pair under a chosen message
attack. What is different from the standard notion, weak unforgeability under chosen-message attack,
is that the message does not need to be “new” as long as the tag is “new”, meaning either the message
or the tag needs to be new. In both figures, “secure” means that the scheme is shown to meet the
security notion in question under the above-mentioned assumptions, while “insecure” means that there
exist some IND-CPA secure encryption scheme and some signature scheme unforgeable under chosen-
message attack such that the PKAE scheme that is constructed from them does not meet the security



Composition Privacy Authenticity

Method IND-CPA | IND-CCA || TUF-PTXT | TUF-CTXT | RUF-PTXT | RUF-CTXT
Encrypt-and-Sign insecure insecure secure insecure secure insecure
Sign-then-Encrypt secure insecure secure insecure secure insecure
Encrypt-then-Sign secure insecure secure insecure insecure insecure

Figure 2: Summary of security results for the composed PKAE schemes under the assumptions that the base
signature scheme is weakly unforgeable (WUF-CMA) and the base encryption scheme is IND-CPA secure. The
shaded regions indicate the new or different results compared to those shown for the symmetric setting [5].

Composition Privacy Authenticity

Method IND-CPA | IND-CCA || TUF-PTXT | TUF-CTXT | RUF-PTXT | RUF-CTXT
Encrypt-and-Sign insecure insecure secure insecure secure insecure
Sign-then-Encrypt secure insecure secure insecure secure insecure
Encrypt-then-Sign secure insecure secure secure insecure secure

Figure 3: Summary of security results for the composed PKAE schemes under the assumptions that the base
signature scheme is strongly unforgeable (SUF-CMA) and the base encryption scheme is IND-CPA secure. The
shaded regions indicate the new or different results compared to those shown for the symmetric setting [5].

notion in question.

Attacks on the protocols that encrypt before signing are presented in [2, 6], which includes an
attack against RUF-PTXT of the schemes constructed via the Encrypt-then-Sign method, and hence,
the Sign-then-Encrypt method has been considered to be a better method for constructing PKAE
schemes. However, a drawback in the Sign-then-Encrypt method is that the ciphertext is not publicly
verifiable. A ciphertext is publicly verifiable if the validity of the ciphertext can be verified using the
public information only. Public verifiability of ciphertexts may be useful when a third-party needs to
distinguish invalid ciphertexts from valid ones, and network filtering by firewalls shown in [8] is one
such example. Hence, for some applications like firewall filters, the Sign-then-Encrypt method may not
be appropriate. Also, the Sign-then-Encrypt method provides neither TUF-CTXT nor RUF-CTXT.
Regarding privacy, a stronger property such as IND-CCA is not obtained in general from a weaker
property like IND-CPA using either method. Furthermore, it turns out that the Encrypt-then-Sign
method does not provide IND-CCA security even when the base encryption scheme has a stronger
security property like IND-CCA. The result significantly differs from the symmetric key case where
the Encrypt-then-MAC method provides IND-CCA security based only on the IND-CPA and SUF-
CMA assumptions on the base primitives [5]. This implies that none of the three composition methods
provides a PKAE scheme that is secure under all notions defined in this paper even when we make
stronger assumptions on the base primitives. However, this does not mean that we cannot construct
any scheme that is secure under all notions. In fact, we show below that the Encrypt-then-Sign method
can be modified so as to provide security in all notions given in this paper under appropriate assumptions.
We also show that an efficient scheme with “reasonable” security gurantees can be constructed when
we consider a specific setting like a Diffie-Hellman (discrete-log) based key setting.

1.4 Generic and specific constructions achieving security and efficiency

The Encrypt-then-Sign method can be modified so as to give a generic construction that is secure for
all notions including IND-CCA and RUF-PTXT, for which the original method is not secure. The
modification is simple: for IND-CCA security, encrypt the sender’s public key together with the plain-
text, and for RUF-PTXT security, sign the receiver’s public key together with the ciphertext. These



Construction Privacy Authenticity

Method IND-CPA | IND-CCA || TUF-PTXT | TUF-CTXT | RUF-PTXT | RUF-CTXT
ESSR secure secure secure secure secure secure
DHETM secure secure secure secure insecure insecure

Figure 4: Summary of security results for the two example PKAE schemes. The assumptions for ESSR is that
the base public key encryption scheme is IND-CCA secure, and the base signature scheme is strongly unforgeable.
The assumptions for DHETM is that the base symmetric encryption scheme is IND-CPA secure, and the base
MAC is strongly unforgeable, and a hash of a Diffie-Hellman based key looks random.

modifications are made from observing that changing the sender or receiver keys associated with the
ciphertext is the main type of attacks against IND-CTXT and RUF-PTXT security. The reason that
these modifications in the Encrypt-then-Sign method result in IND-CCA and RUF-PTXT security is
that they effectively “bind” the public keys of the sender and receiver to the ciphertext so that the
mentioned type of attacks does not work any more. We call the scheme constructed based on this
modified generic method ESSR (Encrypt Sender-key then Sign Receiver-key), and its security results
are shown in Figure 4. Note that the security assumption on the base encryption scheme for ESSR is
IND-CCA, which is stronger than that for the generic composition method. This might be considered
as a weakness in the scheme. Recall, however, that the Encrypt-then-Sign method does not provide
IND-CCA security even under the IND-CCA assumption on the base encryption scheme. Also, the
other methods do not provide TUF-CTXT security regardless of the assumption on the base signature
scheme. Hence, ESSR provides better security guarantees than the schemes constructed via the generic
composition methods even if it comes at a cost of a strong assumption on the base encryption scheme.

The scheme DHETM (Diffie-Hellman based Encrypt-Then-MAC) uses symmetric encryption and
MAC schemes whose keys are obtained from the computed common key K by dividing it into two
parts. (The common key K = hash(g*+*) is computed from the Diffie-Hellman based keys (g%« z,)
and (g**,xp) of the sender and receiver, respectively.) After obtaining the keys for the symmetric
encryption and MAC schemes, authenticated encryption is done by encrypting the plaintext to get
a ciphertext C' and appending a MAC of C'. This construction can be viewed as an adaptation of
the asymmetric encryption scheme “DHIES” [1] to the setting mentioned above in order to achieve
an additional goal of authenticity, as well as privacy. The summary of its security results are shown
in Figure 4. Note that this scheme is more efficient than the generic schemes described earlier, and
with regard to privacy, it achieves IND-CCA security based on the weaker IND-CPA assumption (as
opposed to the IND-CCA assumption) on the base encryption scheme. With regard to authenticity,
it achieves TUF-CTXT security although it does not achieve the receiver unforgeability. In case the
stronger authenticity property (i.e. receiver unforgeability) is not needed, this scheme has pragmatic
value due to its efficiency and reasonable security guarantees.

1.5 Related work

A comprehensive treatment of authenticated encryption (the goal of joint privacy and authenticity) in
the symmetric setting is provided in [5]. However, the security notions cannot just be lifted up to the
public key setting due to asymmetry of this setting.

Counstructions of authenticated encryption schemes with low communication costs in the public key
setting based on a discrete logarithm based signature scheme are given in [12], however, without any
proofs of security.

In [17], a primitive called “signcryption” is introduced for the first time, and two clever and efficient
constructions based on (shortened) variants of the ElGamal signature scheme are given as proposed



signcryption schemes. Also, some security goals and security arguments are made for the proposed
constructions. Nevertheless, they are not backed up by formal security notions and proofs of security.
Subsequently, in [14], the mentioned signcryption schemes are cryptanalyzed and an improvement is
suggested, which in turn is cryptanalyzed in [11]. However, most of these cryptanalysis claims are made
without clear attack models or definitions of the properties that they are violating.

The security of a signed ElGamal encryption scheme is analyzed in the random-oracle and generic
model in [16]; however, the goal of the scheme is to provide privacy, but not authenticity, and the
signature scheme is used in order to provide privacy under chosen-ciphertext attack. Its setting assumes
only the key pair of the receiver; hence, the signature scheme in this case does not involve the sender’s
secret key.

2 Definitions

This section provides formal definitions for the notions of security of a public key based authenticated
encryption scheme discussed in Section 1, and also of digital signature schemes. Associated to each
scheme, each notion of security and each adversary is an ezperiment, and based on that, an advantage.
The latter is a function of the security parameter that measures the success probability of the adversary.
Asymptotic notions of security result by asking this function to be negligible for adversaries of time
complexity polynomial in the security parameter. Concrete security assessments are made by associating
to the scheme another advantage function that for each value of the security parameter and given
resources for an adversary returns the maximum, over all adversaries limited to the given resources, of
the advantage of the adversary.

We begin by describing the syntaz of a public key based authenticated encryption scheme, distin-
guishing syntax from the notions of security.

2.1 Syntax of public key based authenticated encryption schemes

The usual syntax of a public key (or asymmetric) encryption scheme is that the receiver has a public,
secret key pair and encryption depends on the public key while decryption depends on the secret key.
Here we wish to consider a setting where both sender and receiver have their own public and secret key
pairs. We consider this setting in order to examine schemes whose goal is to achieve both privacy and
authenticity in a public key setting. This requires a change in encryption scheme syntax. Accordingly,
we define a public key based authenticated encryption (PKAE) scheme which extends the usual public
key encryption scheme by addition of another key generation algorithm (i.e. a key generation algorithm
for the sender). Specifically, we define a public key based authenticated encryption scheme PKAE as
follows:

Definition 2.1 [Public key based authenticated encryption (PKAE)] A public key based au-
thenticated encryption scheme PKAE = (K¢, K, Ky, E, D) consists of five algorithms as follows:

e The common key generation algorithm IC. is randomized. It takes as input a security parameter k
and returns some global information I; we write I < K.(k).

e The sender key generation algorithm ICg is randomized. It takes as input some global information
I and returns a matching public and secret key pair (pks, sks) for the sender; we write (pks, sks) &
Ks(I).

e The receiver key generation algorithm I, is randomized. It takes as input some global information
I and returns a matching public and secret key pair (pk,, sk;) for the receiver; we write (pk;, sk,) &

K, ().



e The encryption algorithm &£ is randomized. It takes as input a sender’s secret key skg, a sender’s
public key pkg, a receiver’s public key pk; and a plaintext M € M, and it flips some coins internally,
and then it returns a ciphertest C € C; we write C & & (sks,pks,pke) (M)

e The decryption algorithm D is deterministic. It takes as input a receiver’s secret key sk,, and a
string C' to return either a pair (pk, M) or the distinguished symbol L, where pk is a sender’s public
key and M is the corresponding plaintext; we write z <— Dgy (C), where z is either (pk, M) or L.

Above, M and C denote the message space and the ciphertext space associated to the scheme,
respectively. We require that Dgk, (Esk,,pks,pke) (M) = (Pks, M) for all M € M. |

Di1scuUssiON OF SYNTAX. The common key generation algorithm produces the global information that
is shared by everyone in the system. The global information I includes a security parameter, and
possibly some other information. For instance, in a Diffie-Hellman based scheme, I might include a
global prime number and generator of a group which all parties use to create their keys. The presence
or absence of global information depends on each individual scheme. In case a scheme does not have any
global information, the common key generation algorithm can be just the identity function that outputs
the security parameter that is given as its input. Note that this algorithmm should also be included
in the usual public key based encryption scheme syntax when discussing its security in an asymptotic
setting. Hence, this is not an added algorithm with respect to the usual public key based encryption
scheme syntax. The sender key generation algorithm is what is added in order to consider the goal
of authenticity in a public key setting. To generate an “authentic” ciphertext, a sender performs the
encryption operation on a plaintext based on its own key pairs as well as the public key of the receiver.
Hence, the encryption algorithm takes as input the sender’s key pair as well as the receiver’s public key.
For the goal of authenticity, the receiver should be able to know if a ciphertext it received is “valid” (i.e.
authentic) or not. Since there may be more than one sender who can send a ciphertext to a receiver
using the receiver’s public key, the receiver needs to be able to know who the sender is in order to
check whether the ciphertext is authentic with respect to the purported sender. We let the decryption
algorithm perform this functionality by requiring it to output the sender’s public key (implicitly telling
who is the sender), as well as the plaintext. In case the ciphertext is not valid (i.e. unauthentic with
respect to the purported sender), the decryption algorithm outputs the distinguished symbol L. The
key explicitly used in the decryption algorithm as input is just the secret key of the receiver, indicating
that the decryption algorithm does not initially know which sender’s public key to use, but it somehow
extracts the needed information from the ciphertext and returns the sender’s public key as part of the
output.

VERIFIABLE PUBLIC KEY BASED AUTHENTICATED ENCRYPTION SCHEME. Similarly to digital signature
schemes, which allow public verifiability, a public key based authenticated encryption scheme may al-
low public verifiability by providing a verification algorithm that checks the validity of the ciphertext
depending only on the public information (such as the public key of a sender or receiver). This is an
optional algorithm because not all schemes may have public verifiability —whether or not a scheme is
publicly verifiable depends on how it is constructed— and we stress that public verifiability has to do
with functionality rather than security. We define the verifiable public key based authenticated encryp-
tion as follows: A werifiable public key based authenticated encryption scheme (VPKAE) is a 6-tuple
(Ke, Ks, Ky E,D, V), where (K¢, Ky, K, E,D) is a PKAE and V is a deterministic, public verification
algorithm. The latter takes a receiver’s public key pk;, and a string C' to return either pk or 1; we
write y <= Vpi, (C), where y is either pk or L. We require that Vp, (C) output pk if D (C) = (pk, M)
for some M € M and L otherwise.

PUBLIC KEY (ASYMMETRIC) ENCRYPTION SCHEME. A standard public key based (or asymmetric)
encryption scheme, namely one where there is no sender key, can be recovered as the special case



where the sender key generation algorithm /Cg returns the empty string. Formally, we say that P& =
(K¢, K, E,D) is a public key (or asymmetric) encryption scheme if PKAE = (K., Ks, K, E,D) is a
PKAE scheme where Iy is the algorithm which, on any input, returns the empty string. When the
sender key pair (pkg, skg) is the empty string, we may also omit it wherever applicable. For example,
the decryption algorithm Dgy () will return M instead of a pair (pks, M) in the standard asymmetric
encryption scheme.

2.2 Privacy of public key based authenticated encryption schemes

PKAE schemes are different from the usual public key encryption schemes in that the encryption
algorithm is computed based on a sender’s secret key as well as a receiver’s public key. This means
that in order to send a message using an authenticated encryption scheme, a party must have its own
public, secret key pair. It is not sufficient for it to have access to the receiver’s public key. Because of
this, we allow the adversary access to a left-or-right (LR) encryption oracle, modeling a chosen-plaintext
attack as in the symmetric setting [3], instead of as in the public key setting [9, 4]. Note that this is
quantitatively a stronger attack model than the usual one [4], where the adversary is given only the
public key for the encryption scheme and no access to the left-or-right encryption oracle. For IND-CPA,
a challenge bit b is chosen, the adversary is given public information (including public keys), and can
query, adaptively and as often as it likes, the left-or-right encryption oracle. The format of each query
to the left-or-right encryption oracle is mandated to be a pair (zg,z1) of equal length messages. The
adversary wins if it can guess b. For IND-CCA the adversary gets, in addition, a decryption oracle with
the restriction that it is not allowed to query it on a ciphertext previously returned by the left-or-right
encryption oracle.

Definition 2.2 [Privacy of public key based authenticated encryption schemes] Let PKXAE =
(Ke, Ks, Kr, €, D) be a PKAE scheme. Let b € {0,1} and let k& € N be a security parameter. Let A, and
A be adversaries that output a bit d. The left-or-right (LR) encryption oracle &g, pi, pk,) (LR(:; ", D)),
given to A, and A, takes as input a pair (g, 1) of equal-length messages, computes a ciphertext
Y < sk pks,pks) (To), and returns Y to the adversary. The decryption oracle Dy, (-), given to A,
takes as input a ciphertext C, computes (pk, M) < Dg (C), and returns (pk, M) to the adversary.
Now, we consider the following experiments:

Experiment Exppy ¢y (k) Experiment ExpSiset (k)
I& K.(k) I&Ke(k)
(pks, Sks) & ’Cs(I) (pks> Sks) & ’CS(I)
(pk, sk;) & K. (I) (pk, sk;) & K,.(I)
d — Afp()sérs,pks,pkr)(ﬁR('mb))(L pks, pky) d Aféﬁ‘”’"’k“"’k”(LR(""b))’DSk"(')(I,pks,pkr)
Return d Return d

Above it is mandated that A ., never queries the decryption oracle Dg (-) on a ciphertext previously
output by the LR-encryption oracle &y, pi, pk)(LR(:, b)), and that the queries made to the LR-
encryption oracle always consist of messages of equal length.

We define the advantages of the adversaries via

AdVEERY, (k) = Pr|Expil@l (k) =1] - PrExppin (k) =1]
Advipise, (k) = Pr[Exptied () =1]-Pr[Exppiied () =1].
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We define the advantage functions of the scheme as follows. For any integers ¢, ge, qq, fte, ftqg > 0,

ind- ind-
Advp 7 (Kt ges pre) = rgax{Adngig?Acpa (k)}
cpa
Adviﬁl%_;l%a(ka ta Ge,> 4dd, e, :U‘d) = rj{lla‘x{Adv%ll%fl%a,Acca (k)}

cca

where the maximum is over all adversaries with time complexity ¢, each making at most g, queries to
the &g, pky) (LR(+, -, b)) oracle, totaling at most p. bits, and, in the ind-cca case, also making at most gq
queries to the Dg (+) oracle, totaling at most pg bits. The scheme PIAE is said to be IND-CPA secure
(resp. IND-CCA secure) if the advantage function Advlﬁ,%:f&? 4 () (resp. Adv%‘,%j? 4(+)) is negligible for
any adversary A whose time complexity is polynomial in the security parameter k. 1

2.3 Authenticity of public key based authenticated encryption schemes

Usually, in the symmetric setting, the adversary is a third-person that is watching over the communica-
tion link between the sender and receiver, who share the same key. The security regarding authenticity
in this case is normally measured by “unforgeability” by an adversarial third-person (meaning, excluding
the sender and receiver). However, when we consider a public key setting where the sender and receiver
do not necessarily share the same key, the goal of authenticity can be divided further depending on the
adversarial power. For the schemes where only the sender’s secret key is involved in creating authentic
data, (e.g. signature schemes), the adversary can be anyone (including the intended receiver as well as
a third-person) who does not know the secret key of the sender. When a message is signed and sent to
an intended receiver, there is no difference between a third-person (who intercepts the signed data) and
the receiver (who actually receives the data) in their ability to forge a signature. This is because anyone
can verify the signature, and ounly the sender who owuns its secret key can sign the data. However, when
we consider a PKAE scheme, where the ciphertext is generated based not only on the sender’s key but
also on the receiver’s public key, there may be a distinction between a third-person and receiver in their
ability to forge a ciphertext. What distinguishes a receiver from a third-person is that the receiver’s
public key is involved in generating the ciphertext, and only the receiver knows its own secret key.
Furthermore, the receiver is the one who created its own public, secret key pair in the first place and
can change it later. Taking this distinction into account, we divide the goal of authenticity into two
parts: unforgeability by a third-person and unforgeability by a receiver. In a third-person attack model
against unforgeability, the goal of the adversary is to create a “new forgery” so that the receiver may
accept it as valid. This resembles the usual attack model for what is typically called “authenticity” or
“data integrity” in the symmetric setting. In a receiver attack model, the goal of the adversary may
be to create a forgery so that a third party, such as a judge, may accept it as valid. Proving to a third
party that a message has been originated from the purported sender can be considered as the goal of so
called “non-repudiation”, which is a term commonly used in the literature as an additional security goal
(other than “unforgeability”) for digital signature schemes. Although there exist formal security notions
for authenticity of digital signature schemes, no formal security notions for authenticated encryption
schemes exist, regarding the goal of authenticity.

The usual goal of integrity against a third-person adversary for authenticated encryption schemes in
the public key setting can be “lifted up” from that in the symmetric setting [5], due to their resemblance.
However, the goal of unforgeability against an adversarial receiver (i.e. non-repudiation) has not been
formally modeled before for authenticated encryption schemes and is an additional goal that is only
applicable in the asymmetric (public key) setting. We call this goal “receiver unforgeability” and
describe the attack model and the goal of an adversary in more detail below.
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RECEIVER UNFORGEABILITY. A receiver adversary publishes its public key by registering it with a CA
(certification authority), and a sender encrypts a message using a PKAE scheme based on its own keys
and the public key of the receiver. We allow a chosen message attack, modeling the case where the
receiver is able to get the sender to encrypt any message that the receiver asks to encrypt. At some
point, we allow the receiver to change its key pair, and publish a new public key by re-registering with
the CA. The goal of the receiver adversary is to come up with a ciphertext so that a third-party (e.g. a
judge) will accept it as “valid”, meaning it came from the real sender it claims to have come from. The
receiver may choose not to change its key pair, but we allow the change of keys for flexibility on the
receiver part. Having accurate timestamps on messages (ciphertexts) and keys can make it possible to
determine if a key was registered before or after the given ciphertext was generated, but it may impose
additional burdens of clock synchronization and authentication, and it may not always be possible.
Hence, we allow this type of key change attacks in order to achieve a stronger security guarantee in
that aspect. Also, we note that this type of attacks has appeared in the literature [2, 6], which partially
motivated our formalization. For an adversary to be counsidered successful in forging a ciphertext, in
addition to the “validity” requirement, the ciphertext itself needs to be “fresh” —meaning, it was not
legitimately generated (i.e. encrypted) by the sender. This is considered one type of successful forgery,
and we call the security against this type of forgery “unforgeability of ciphertext”. However, there
is another type of forgery, which may deem to be more useful and meaningful in practice. That is a
forgery of the plaintext corresponding to the ciphertext. The adversary is considered successful in this
case if it can come up with a “valid” ciphertext whose corresponding plaintext has not been asked to
be encrypted by the sender. We call security against this type of forgery “unforgeability of plaintext”.
There remains an important issue of how the adversary will be able to convince a third-party (called
“judge” hereafter) to accept the forgery as valid. One of the simplest methods for the adversary may
be to give the judge its decryption key, so that it may freely decrypt and check the validity just like the
adversary can. All the adversary needs to do is convince the judge that its secret key really matches its
public key (i.e. their mathematical relationship holds), which must be verified in some way. Of course,
if the secret key is given to the judge, the adversary would not be able to reuse it again (assuming
the judge cannot be trusted not to reveal or use the secret key). This may be considered to be too
much to ask from an adversary, but this is generally applicable to most PKAE schemes and facilitates
security analysis in a uniform and simple way. We are aware that this makes the security notion
weaker, but it enables us to provide a framework with which we can analyze security with regard to
receiver unforgeability under one simple and uniform definition for all PKAE schemes, regardless of their
construction methods. Other more robust and stronger definitions may be built upon this framework.
There may be a number of other ways to convince a judge about the validity of the ciphertext. For
example, if the PKAE scheme in question is publicly verifiable, validity of the ciphertext can be proven
without revealing the secret key of the receiver adversary. It may also be possible for an adversary to
convince a judge that the plaintext corresponding to the forgery ciphertext is valid without revealing any
information about its secret key —for example, performing a zero-knowledge protocol with the judge if
it’s applicable for the scheme. Note however that these methods may not be universally applicable to all
PKAE schemes. Applicability of these methods are dependent on how each scheme is constructed. All
these methods may be captured as “forgery verification procedures” and having a “forgery verification
procedure” for each PKAE scheme may be one solution to this problem. However, it is not clear how
this can be systematically analyzed and having a different verification method for each PKAE scheme
may make it impossible to compare security accross the schemes. Note that having different methods
for convincing a judge can make a difference in the security results for the same scheme. Since one of our
goals is to provide comparative security analyses on different methods of constructing PKAE schemes,
having a unified measure of security is important. Although there may be better uniform methods for
convincing a judge about the validity of the ciphertext than simply giving him the secret decryption
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Experiment EXP%I;fC_ﬁtgftpp (k)

I+ K.(k)

(pks, sks) <= Ks(I) 5 (pke, ske) €= Ky (D)
C B, =2 O, pk, ph)

% < D (C); If x = L then return 0
Parse = as (pk, M)

If pk = pky, and M was never

a query to sk pk.,pk,) (*)
then return 1 else return 0

Experiment Exp%‘,fc_jtgxfﬂ (k)

I+ K.(k)
(Pks, sks) & Ks(I); (pkr, skr) & K (I)
C — ch(SkSkaSkar)(') (Ia ka;pkr)
% < Dy, (C); If x = L then return 0
Parse z as (pk, M)
If pk = pk, and C was never
a response of i pic pie) (*)
then return 1 else return 0

Experiment Exp;ﬁfc—zg%p (k)

I+ K.(k)

(Pks, sks) & Ks(I)

(st,pk,) < By, (I)

(C, pk,', sk,") « BgZ(‘“'k“'”’k“’k")(') (st, pks, pk;)
x < Dy (C); If & = L then return 0
Parse = as (pk, M)

If pk = pks and M was never

a query to E(sks,pks,pk,»> ()
then return 1 else return 0

Experiment Exp%,fc'ﬁtngc (k)
I+ K.(k)
(Pks, sks) & Ks(I)
(st, pk;) < B, (I)
(C,pk,', sk,") « BCSZ(SI“"”’I‘S”’I‘")(') (st, pks, pk;)
@ < Dy (C); If & = L then return 0
Parse = as (pk, M)
If pk = pks; and C' was never
a response of Esr pic pic) (*)
then return 1 else return 0

Figure 5: The experiments for Definition 2.3 that defines notions of authenticity of a PKAE scheme
PKAE = (K., Ks,K;, E, D). The variable st denotes internal state information.

key, it is not clear at this point, and pursuing this issue is left for future research.

SUMMARY. The difference between a third-person and a receiver is in its ability to create and change its
own key pair. The receiver (to whom a sender sends a ciphertext) can create its own public, secret key
pair and later change it. The third-person cannot do so. In both cases, the adversary is allowed a chosen
message attack modeled by giving it access to an encryption oracle. Success is measured by its ability
to output a “new” forgery that makes the decryption algorithm output a plaintext rather than reject by
outputting L. Depending on the definition of “newness” of the forgery, we divide the forgery into two
types: ciphertexst forgery (CTXT) and plaintext forgery (PTXT). A “ciphertext forgery” means that
the ciphertext output by the adversary is different from the ciphertexts obtained from the encryption
oracle, and a “plaintext forgery” means that the plaintext corresponding to the ciphertext output by
the adversary is different from the plaintext queries made by the adversary to the encryption oracle.
Combining the receiver and third-person unforgeability (abbreviated to RUF, TUF) with ciphertext and
plaintext forgery (abbreviated to CTXT, PTXT), we get the following four notions: RUF-CTXT, RUF-
PTXT, TUF-CTXT, and TUF-PTXT. Note that the symmetric setting counterparts of TUF-CTXT
and TUF-PTXT are INT-CTXT and INT-PTXT, defined in [5]. The formal definitions of authenticity
(i.e. the four unforgeability notions) are given below.

Definition 2.3 [Authenticity of a PKAE scheme] Let PKAE = (K., Ks, K, E,D) be a PKAE
scheme, and let £ € N be a security parameter. Let F), F¢., By, B. be adversaries. Consider the experi-
ments shown in Figure 5.

The experiments Exp;;l,fc_ﬁtgf%p(k) and Exp%,fc'fjféth(k) model the forgery attacks by a third-person
who is given the public information only, and a valid forgery is measured by the “newness” of either
the plaintext or the ciphertext, respectively. The experiments Exp;;l,fc_ﬁ?f%p(k) and Exp%‘,fc'fjfch(k)

model the forgery attacks (of plaintext and ciphertext, respectively) by a receiver, where the adversary
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creates its own key pair in the first stage and is allowed to change its key pair in the second stage. It
is mandated that a “valid” public, secret key pair relationship hold for every key pair created by an
adversary if such a relationship should exist for a given scheme.

We define the advantages of the adversaries via,

AQVEIEY (k) = Pr [ Exppi iy (k) = 1]
where xxx € {tuf,ruf} and yyyy € {ptxt, ctxt}.
We define the advantage functions of the scheme for third-person/receiver unforgeability of plain-

text/ciphertest (TUF-PTXT, TUF-CTXT, RUF-PTXT, RUF-CTXT resp.) as follows. For ¢,q,u > 0,
and xxx € {tuf,ruf} and yyyy € {ptxt,ctxt} let

AdVEEY (k g, p) = max{Advp 2 (k)}

where the maximum is taken over all /' with time complexity ¢, making at most ¢ queries to the oracle
& (siks,pks,pks) (+), such that the sum of the lengths of all oracle queries is at most p bits. The scheme PKAE
is said to be XXX-YYYY secure, where XXX € {TUF,RUF} and YYYY € {PTXT,CTXTY}, if the
function Advp 42 (+), where xxx € {tuf,ruf} and yyyy € {ptxt,ctxt}, is negligible for any adversary

F whose time complexity is polynomial in the security parameter k. |

2.4 Signature schemes

SYNTAX OF SIGNATURE SCHEMES. A digital signature scheme DS = (K., KS,S,VS) consists of four
algorithms. The randomized common key generation algorithm IC. takes as input the security parameter
k and returns some global information I; we write I & Kc(k). The randomized signature key generation
algorithm KCS takes as input some global information I and returns a public and secret key pair (pk, sk);
we write (pk,sk) & KS(I). The randomized or deterministic signing algorithm S takes as input sk
and a message M to be signed and returns a signature o ; we write o & Ssk(M). The deterministic
signature verification algorithm VS takes as input pk, a message M and a candidate signature o for
M and returns a bit b € {0,1}; we write b <= VS (M,0). We require that for all (pk,sk) and M,
VSpk(Ma Ssk(M)) =L

SECURITY NOTIONS OF SIGNATURE SCHEMES. We recall the standard definition of security (“unforge-
ability”) of a signature scheme under chosen-message attack (cf. [10]), and adapt a stronger notion of
security (“strong unforgeability”) defined for message authentication schemes [5] to signature schemes.
Security for signature schemes counsiders an adversary F' who is allowed a chosen-message attack, mod-
eled by allowing it access to an oracle for Sg(+). F is “successful” if it can make the verifying algorithm
VSpk(-,-) accept a pair (M, o) that was not “legitimately produced.” There are two possible conven-
tions depending on the meaning of “legitimately produced”, leading to two measures of advantage. The
“standard” measure is that the message M is “new,” meaning F' never made query M to its signing
oracle. We call this security measure weak unforgeability under chosen-message attack (WUF-CMA). A
more stringent measure, called strong unforgeability under chosen-message attack (SUF-CMA), consid-
ers the adversary successful even if the message is not new, as long as the signature is new. This means
that the adversary wins as long as o was never returned by the signing oracle in response to query M
(i.e. (M,0) as a pair is new). The formal definitions of these notions are given below.

Definition 2.4 [Signature Scheme Security] Let DS = (K, KS,S,VS) be a digital signature
scheme, and let £ € N be a security parameter. Let F' be an adversary (forger) that has access to
a signing oracle Sg(+). Consider the following experiments:
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wuf—cma(k)

Experiment Exppgs i

IEK(k)

(pk, sk) & KS(I)

(M,0) + FS+0)(I, pk)

If VSpk(M,0) =1 and M was never
a query to the oracle Sg(-)

then return 1 else return 0

Experiment Expjys 3 (k)

IEK(k)

(pk, sk) & KS(I)

(M,0) + FS+0)(I, pk)

If VS,k(M,0) =1 and Sg(+) never
returned o on input M

then return 1 else return 0

We define the advantages of adversaries via,

AdvEYE™ (k) = Pr|Bxppim(k) = 1]

AdvESE (k) = Pr|ExpBiin(k) = 1|

We define the advantage functions of the scheme DS as follows. For any ¢, ¢, > 0,

AdvES (kb g, ) = max{AdvEE ™ (k)}

AdvEs ™ (kg p) = max{AdvpgF*(k)}

where the maximum is over all ' with time complexity ¢, making at most g oracle queries to Sg(-),
such that the sum of the lengths of all queries is at most p bits. The scheme DS is said to be WUF-
CMA secure (resp. SUF-CMA secure) if the advantage function Adv%“‘gf’}?ma(-) (resp. Adv%‘g',%ma(-)) is
negligible for any adversary F whose time complexity is polynomial in the security parameter £. |

3 Relations among notions of unforgeability

In this section, we provide formal statements of the results summarized in Figure 1. We start with
implications first and then present separations.

The third-person unforgeability notions (TUF-CTXT and TUF-PTXT) in the public key setting
are analogous to the integrity notions (INT-CTXT and INT-PTXT) in the symmetric setting shown in
[5]. Since the proofs for the separation and implication relations between INT-CTXT and INT-PTXT
for the symmetric setting can be easily “lifted up” to the public key setting, we omit the proofs for the
relations between TUF-PTXT and TUF-CTXT here, and move onto the other relations.

The implication relations between RUF-CTXT and TUF-CTXT, and between RUF-PTXT and
TUF-PTXT shown in Proposition 3.1 can be directly obtained from their definitions. We prove the
implication relations using the standard reduction arguments. A separation relation is shown by pre-
senting a scheme that is secure under the assumed security notion, and yet not secure under the other
security notion.

There is an important distinction between the symmetric setting and the public key setting regarding
the relationship between unforgeability of ciphertext and chosen-ciphertext attack security. Recall that,
in the symmetric setting, the chosen-ciphertext attack security (IND-CCA) is implied by the combined
security of IND-CPA and INT-CTXT [13, 5]. Note, however, that in the public key setting, IND-CCA is
not implied by the combination of IND-CPA and even a stronger notion of unforgeability, RUF-CTXT.
This is mainly because there is a distinction between the notions of IND-CCA and RUF-CTXT with
regard to the definitions of “valid ciphertexts”, which, in turn, is caused by the orthogonality of the
goals of privacy and authenticity and the asymmetry of the key structure in the public key setting. In
the chosen-ciphertext attack model, a ciphertext queried to a decryption oracle is considered “valid” if it
is valid with respect to the public key of any sender, allowing the adversary to use its own public, secret
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key pair to generate a “valid” ciphertext query with respect to its own key. This is because the goal of
the adversary is not to “forge” a ciphertext, but to obtain information about the challenge ciphertexts
output by its left-or-right encryption oracle. However, to be considered successful in an attack against
“authenticity” of a particular sender, the adversary must generate a ciphertext that is considered valid
with respect to the public key of the particular sender, but not its own.

In the following propositions, we omit the concrete statements for simplicity; but, they can be easily
derived from the asymptotic ones. The proofs of the following propositions are given in Section A.

Proposition 3.1 [RUF-CTXT — TUF-CTXT (resp. RUF-PTXT — TUF-PTXT)] Let PKAE be a
PKAE scheme. If PKLAE is RUF-CTXT secure (resp. RUF-PTXT secure), then it is TUF-CTXT
secure (resp. TUF-PTXT secure). |

Proposition 3.2 [TUF-CTXT 4 RUF-CTXT (resp. TUF-PTXT 4 RUF-PTXT)] Given a group
generator algorithm GG and a hash function H, where H is hardcore on group GG (the HDH assumption)
as per Definition 5.5, and a SUF-CMA secure MAC scheme MA, we can construct a PKAE scheme that
is TUF-CTXT secure (resp. TUF-PTXT secure) but is not RUF-CTXT secure (resp. RUF-PTXT
secure). |

Proposition 3.3 [RUF-CTXT 4 RUF-PTXT] Given an IND-CPA secure public key encryption scheme
PE and a SUF-CMA secure signature scheme DS, we can construct a PKAE scheme PKAE that is
RUF-CTXT secure, but is not RUF-PTXT secure. |

Proposition 3.4 [RUF-PTXT A TUF-CTXT] Given a PKAE scheme PKAE that is RUF-PTXT
secure, we can construct another PKAE scheme PKAE" that is also RUF-PTXT secure but is not
TUF-CTXT secure. 1

Proposition 3.5 [IND-CPA A RUF-CTXT 4 IND-CCA (resp. IND-CPA A TUF-CTXT - IND-
CCA)] Given an IND-CPA secure public key based encryption scheme PE and a SUF-CMA secure
signature scheme DS, we can construct a PKAE scheme PKAE that is IND-CPA secure and RUF-
CTXT secure (resp. IND-CPA secure and TUF-CTXT secure), but is not IND-CCA secure. |

4 Generic compositions of signature and encryption

We now present PKAE schemes constructed based on generic compositions of a signature and an
encryption scheme, and their formal security results.

4.1 Constructions

Here we show constructions of a PKAE scheme PKAE = (K., Ky, K, €, D) based on PE = (Kee, Ke, &,
D) and DS = (K5, KS,S,VS) using the following three composition methods: Encrypt-and-Sign, Sign-
then-Encrypt and Encrypt-then-Sign. The key generation algorithms IC., s and I, remain the same
across the three methods. Hence, we do not present the key generation algorithms for each method
separately, but present them below once for all three composition methods:

Algorithm /C.(k) | Algorithm KC4(I) Algorithm /C,.(I)
I & Keo(k) Parse I as (Lg, Is) Parse I as (g, Is)
I & Kos(k) (pks, sks) ¢ KS(Is) (pkr, sky) € Ke(Le)
I+ (L, 1) return (pkg, sks) return (pk;, sk;)
return I
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We now present the encryption and decryption algorithms for each composition method separately,
starting from the Encrypt-and-Sign method.

Construction 4.1 [Encrypt-and-Sign| The Encrypt-and-Sign method encrypts the plaintext using
the base public key encryption scheme and signs the plaintext using the signature scheme, and then
concatenates the encryption output and the signature. The details of the encryption and decryption
algorithms are shown below:

Algorithm & g i, pi,y (M) | Algorithm Dy (C)

C' ¢ Epi, (M) Parse C as pks||C'||o; M < Dg, (C')
UFSSkS(M) IfVSka(M,U):l
return pkg||C'||o then return (pks, M) else return L

Above, the encryption algorithm outputs the public key of the sender as part of the output ciphertext so
that the decryption algorithm can output the public key of the sender upon receiving the ciphertext. 1

Note that the encryption algorithms for the remaining two methods also output the public key of the
sender as part of the ciphertext. Intuitively, it is used for an identification purpose in the decryption
algorithm so as to tell who is the sender or which key to use to verify the ciphertext.

Construction 4.2 [Sign-then-Encrypt| The Sign-then-Encrypt method first signs the plaintext us-
ing the base signature scheme, and then encrypts the plaintext along with the signature (i.e. the
signature is appended to the plaintext and then the resulting string is encrypted). The details of the
algorithms are shown below:

Algorithm & g i, pi,y (M) | Algorithm D (C)

0 Ssk, (M) Parse C as pks||C"; M|jo < Dy, (C')
C,<_gpkr(M||U) IfVSka(M,U):l
return pkg||C’ then return (pks, M) else return L

Above, M||o < Dg, (C') denotes the combined opertations of decrypting and parsing (i.e. a string is
obtained from the decryption algorithm on input C' and then divided into two parts M and o). |

Construction 4.3 [Encrypt-then-Sign] The Encrypt-then-Sign method first encrypts the plaintext
using the base public key encryption scheme to obtain a ciphertext, and then signs the obtained ci-
phertext. A scheme constructed based on the Encrypt-then-Sign method is not only a PKAE scheme,
but also a verifiable PKAE (VPKAE) scheme since the ciphertext is publicly verifiable. Hence, for
the Encrypt-then-Sign method, we present the verification algorithim as well as the encryption and
decryption algorithms. The details of the algorithms are shown below:

Algorithm & (g, pk. pk,y (M) | Algorithm Dy, (C) Algorithm Vi (C)
C" + Epi, (M) Parse C as pkg||C'||o Parse C as pkg||C'||o
o+ Su. (C") M < Dy, (C") If VSp (C' o) =1
return pky||C’'||o If VSp (C' o) =1 then return pk;
then return (pks, M) else return L else return L

Above, the verification algorithm can be thought of as a decryption algorithm that does not perform
decryption but just checks the validity of the ciphertext using the public information (i.e. public keys)
only. 1
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4.2 Security Analyses

We now show the formal security results for the above schemes as summerized in Figure 3. Security
of schemes based on generic compositions of symmetric encryption and MAC has been shown in the
symmetric setting (with respect to symmetric encryption and MAC security) in [5]. With regard to the
privacy properties, their analyses on the IND-CPA and IND-CCA security can be easily carried over to
the public key setting for the Encrypt-and-Sign and Sign-then-Encrypt methods because the signature
is computed based on the plaintext in both methods. However, for the Encrypt-then-Sign method,
there is a distinction, especially with regard to the IND-CCA security. Hence, regarding the privacy
properties, we will give explicit analysis only on the IND-CCA security of the Encrypt-then-Sign method
here, and omit the analyses for other methods. With regard to the authenticity properties, recall that
the integrity notions (INT-CTXT, INT-PTXT) in [5] are analogous to the third-person unforgeability
notions (TUF-CTXT, TUF-PTXT) defined in this paper. However, the notions related to the receiver
unforgeability (RUF-PTXT and RUF-CTXT) are new and specific to the public key setting. Here we
focus on security analyses with respect to these new notions of unforgeability and refer to the analyses
of [5] for the rest of security results.

For security analyses, we assume that the base encryption scheme is IND-CPA secure and the
base digital signature scheme is either WUF-CMA or SUF-CMA secure, whose notions are defined
in Section 2. We note that SUF-CMA security implies WUF-CMA security, which is shown in [5].
For the Encrypt-and-Sign and Sign-then-Encrypt methods, both WUF-CMA and SUF-CMA security
assumptions on the base signature scheme give rise to the same results for all security notions. For the
Encrypt-then-Sign method, however, the SUF-CMA assumption on the base signature scheme makes
a difference in the TUF-CTXT and RUF-CTXT security results; that is, the WUF-CMA assumption
is not strong enough to make the PKAE scheme secure even in the TUF-CTXT sense (which in turn
makes it not strong enough for the RUF-CTXT security), while the SUF-CMA assumption on the base
signature scheme suffices to make the associated PKAE scheme secure in the RUF-CTXT sense. Note
that regardless of the assumptions on the base encryption or signature scheme, any scheme constructed
via the Encrypt-then-Sign method is neither RUF-PTXT secure nor IND-CCA secure. These negative
results are quite strong since they mean that the method is inherently insecure in these senses. The
fact that the Encrypt-then-Sign method does not provide IND-CCA security regardless of the security
assumption on the base primitives is one of the main differences between the results in the public key
setting and those in the symmetric setting. This means that the PKAE scheme constructed via the
Encrypt-then-Sign method cannot be IND-CCA secure even when the base encryption scheme is IND-
CCA secure. The main reason for this is that the ciphertext part and the signature part in the output
of the encryption algorithm are generated independently. Since the keys for the base encryption scheme
and the signature scheme are independent of each other, anyone who can sign with its own secret key can
just take the ciphertext part of encrypted output and replace the signature part with its own signature
on the ciphertext.

The Encrypt-and-Sign and Sign-then-Encrypt methods are not TUF-CTXT secure and since RUF-
CTXT security implies TUF-CTXT security (cf. Proposition 3.1), by the contrapositive argument, they
are not RUF-CTXT secure. The proofs of the following propositions and theorems are presented in
Section A.

Proposition 4.4 [Encrypt-and-Sign and Sign-then-Encrypt methods are RUF-PTXT se-
cure] Let PE be a public key encryption scheme, and let DS be a digital signature scheme. Then, the
PKAE scheme constructed from PE and DS via the Encrypt-and-Sign method or Sign-then-Encrypt
method is RUF-PTXT secure if DS is WUF-CMA or SUF-CMA secure. |
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Proposition 4.5 [Encrypt-and-Sign and Sign-then-Encrypt methods are not TUF-CTXT
secure] Given an IND-CPA secure public key encryption scheme PE, and a WUF-CMA or SUF-CMA
secure digital signature scheme DS, we can construct a public key encryption scheme PE’ such that
PE" is IND-CPA secure, but the PKAE scheme constructed from PE’" and DS via the Encrypt-and-Sign
method or Sign-then-Encrypt method is not TUF-CTXT secure. |

Theorem 4.6 [Encrypt-then-Sign method is not RUF-PTXT secure for any encryption
and signature scheme] Let PE be a public key encryption scheme, and let DS be a digital signature
scheme. Then, the PKAE scheme constructed from PE and DS via the Encrypt-then-Sign method is
not RUF-PTXT secure. |

Theorem 4.7 [Encrypt-then-Sign method with WUF-CMA signature scheme is not TUF-
CTXT secure| Given an IND-CPA secure public key encryption scheme P&, and a WUF-CMA secure
digital signature scheme DS, we can construct a digital signature scheme DS’ such that DS’ is WUF-
CMA secure, but the PKAE scheme PKXAE constructed from PE and DS’ via the Encrypt-then-Sign
method is not TUF-CTXT secure. |

Theorem 4.8 [Encrypt-then-Sign method with SUF-CMA secure signature scheme is RUF-
CTXT secure] Let PE be a public key encryption scheme, and let DS be a digital signature scheme.
Then, the PKAE scheme constructed from P& and DS via the Encrypt-then-Sign method is RUF-CTXT
secure if DS is SUF-CMA secure. |

Theorem 4.9 [Encrypt-then-Sign method is not IND-CCA secure for any encryption and
signature scheme] Let PE be a public key encryption scheme, and let DS be a signature scheme. Then,
the PKAE scheme constructed from PE and DS via the Encrypt-then-Sign method is not IND-CCA
secure. |

5 Example constructions for achieving security and efficiency

In this section, we give analyses of two example constructions, called ESSR and DHETM, where the
former achieves security under all notions and the latter achieves efficiency with “reasonable” security
guarantees.

5.1 A modified generic composition method that meets all security notions

Here we give a generic construction of a public key based authenticated encryption scheme that is secure
under all notions of privacy and authenticity defined in this paper. The scheme is constructed based on
the Encrypt-then-Sign method with slight modifications in order to provide security in the RUF-PTXT
and IND-CCA sense, for which the (unmodified) Encrypt-then-Sign method is not secure. Basically,
the modifications come in two places: in the content that is being encrypted, and in the content that is
being signed. In the modified Encrypt-then-Sign method, the sender’s public key is encrypted together
with the plaintext, and also the receiver’s public key is signed together with the ciphertext.

We now present the construction of ESSR = (K., Ks, K., €, D). The key generation algorithms (K.,
Ks, K,) are the same as those for the generic composition methods shown in Section 4.1; hence, we
omit their descriptions here. The construction is shown in more detail below:

Construction 5.1 [ESSR] Let PE = (Kee, Ke,E,D) be a symmetric encryption scheme. Let DS =
(Kes, £S,S,VS) be a signature scheme. From these primitives, we define the public key based authen-
ticated encryption scheme ESSR = (K., Ky, K,,E, D) as follows (where the key generation algorithms
Ke, Ks, K, are the same as the ones shown in Section 4.1):
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Algorithm & (g pk, pi,y (M) | Algorithm Dy (C)
C" « Epk, (M ||pks) Parse C as pkg||C'||o
o Ssk. (C'||pk:) Obtain pk, from sk,
C + pki|C'||o If VSpi (C'||pky, o) = 0 then return L
return C M||pk < Dg, (C")
If pk = pks then return M else return L

Above, the statement “Obtain pk, from sk,;” in the decryption algorithm is based on the assumption
that the public key is included in the secret key. Note that the assumption does not necessarily impose
a restriction in real implemtations of the scheme, because the receiver’s public key is usually included
as part of the secret key anyway. |

Note that ESSR is not a VPKAE scheme, unlike the original Encrypt-then-Sign method. This is because
the verification requires decryption (for the comparison of the decrypted sender key against the sender
key used in the signature verification), hence not allowing ciphertext verification based only on public
keys.

SECURITY ANALYSIS. In order to show that the scheme is secure under all notions, we just need
to show it is secure under IND-CCA, RUF-PTXT, and RUF-CTXT since the rest follows from the
implications of notions summarized in Figure 1. Since the counstruction is based on the Encrypt-then-
Sign method, its security is preserved and with the modifications, additional security properties (i.e.
IND-CCA and RUF-PTXT) that are missing in the original Encrypt-then-Sign method are obtained.
Intuitively, encrypting the sender’s public key together with the plaintext and signing the receiver’s
public key together with the ciphertext help provide security in the IND-CCA and RUF-PTXT sense,
since the former binds the plaintext with the sender’s public key (for the IND-CCA security), while the
latter binds the ciphertext with the receiver’s public key (for the RUF-PTXT security). Note that in
order to obtain the IND-CCA security for ESSR, we assume that the underlying public key encryption
scheme is IND-CCA secure, which is different from the assumption we make for security of the generic
composition methods in Section 4. The proofs of the following theorems are given in Section A.

Theorem 5.2 [ESSR is IND-CCA secure] Let PE be a public key encryption scheme, and let DS
be a digital signature scheme. Then, if PE is IND-CCA secure, and DS is SUF-CMA secure then ESSR
constructed based on PE and DS as per Construction 5.1 is IND-CCA secure. |

Theorem 5.3 [ESSR is both RUF-PTXT and RUF-CTXT secure] Let PE be a public key
encryption scheme and let DS be a digital signature scheme. Then, if DS is WUF-CMA secure (resp.
SUF-CMA secure), then ESSR constructed based on PE and DS as per Construction 5.1 is RUF-PTXT
secure (resp. RUF-CTXT secure). |

5.2 An Efficient scheme based on Diffie-Hellman keys

Here we give security analyses of an efficient public key based authenticated encryption scheme called
DHETM, which can be viewed as an adaptation of the DHIES (encryption) scheme [1] to the public key
setting where a sender as well as a receiver has its public, secret key pair for enabling constructions of
authenticated encryption schemes. Note that the difference between the two is in their security goals:
the security goal of the DHIES encryption scheme is to provide privacy only and that of DHETM is to
provide the joint goals of privacy and authenticity. The PKAE scheme DHETM is constructed based
on the following four primitives: a group of a prime order which is generated by a group generator
algorithm, a hash function, a symmetric encryption scheme, and a MAC scheme. We describe below
the syntactic definitions of the primitives and then move onto the actual construction of DHETM.
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GROUP GENERATOR ALGORITHM. A group gemerator algorithm GG is a randomized algorithm. It takes
as input a security parameter k and returns a pair (g, g), where ¢ is a prime number indicating the
order of a group G, and g is a generator of the group. We write (¢,9) & GG (k).

HASH FUNCTION. A hash function H: {0,1}* — {0, 1}%* is a function that takes a string of an arbitray
length and returns a string of a certain fixed length L; € N.

SYMMETRIC ENCRYPTION SCHEME. A symmetric encryption scheme S€ = (K, £, D) consists of three
algorithms. The randomized key generation algorithm JC takes as input a security parameter k£ and
returns a string called key K; we let Keys(SE) denote the set of all strings that have non-zero probability
of being output by K(k); we write K & K(k). The randomized or stateful encryption algorithm € takes
as input the key K € Keys(S€) and a plaintext M € {0,1}* and returns a ciphertezt C € {0,1}*; we
write C & Ex(M). The deterministic decryption algorithm D takes as input a key K € Keys(SE) and
a ciphertext C' € {0,1}* and returns a plaintext M € {0,1}*; we write M <+ Dg(C). We require that
for any key K € Keys(S€) and any message M € {0,1}*, D (Ex(M)) = M.

MAC scHEME. A MAC scheme MA = (K, T,VT) consists of three algorithms. The randomized key
generation algorithm K takes as input a security parameter k and returns a key K; we let Keys(MA)
denote the set of all strings that have non-zero probability of being output by K(k); we write K & K(k).
The randomized or deterministic tagging algorithm T takes as input the key K € Keys(MA) and a
message M € {0,1}* and returns a tag 7 € {0,1}*, where L; € N is a certain fixed length called a
tag length; we write 7 & Tk (M). The deterministic verification algorithm VT takes as input the key
K € Keys(MA), a message M, and a candidate tag 7 € {0,1}*t for M and returns a bit b; we write
b« VTg(M,7). We require that VT g (M, T (M)) =1 for all M € {0,1}* and K € Keys(MA).

DHETM. The PKAE scheme DHETM is constructed based on the Encrypt-then-MAC method using the
computed Diffie-Hellman key as the common secret key. The details of the construction are described
below.

Construction 5.4 [DHETM] Let SE = (K, E,D) be a symmetric encryption scheme where the key
generation algorithm simply returns a random Le-bit string, so that the key space is Keys(SE) = {0, 1}«.
Let MA = (Ki, T,VT) be a MAC scheme where the key generation algorithm returns a random L,,-bit
string, so that the key space is Keys(MA) = {0,1}m. Let H: {0,1}* — {0,1}** be a hash function,
where Ly = L.+ L,,, and let GG be a group generator algorithm. Based on these primitives, the PKAE

scheme DHETM = (K., Ky, K-, €, D) is constructed as follows:
Algorithm K.(k) | Algorithm Ks(q,g) | Algorithm K, (q, g)

(¢,9) & GG (k) Tq ¢ Zq zp & Zy
return (g, g) Yo g Yy g™
return (yq, z4) return (y,, Tp)
Algorithm &g, . 0y (M) Algorithm Dy, (C)

K < H(y;*); Parse K as K.| K, Parse C as y,||C’||T
C'+— Ex,(M); 7+ Tk, (C) K « H(y); Parse K as K¢||Kp,
C + yo||C'||T If VTg,, (C',7) = 0 then return L
return C' else M <— Dk, (C'); return (yq, M)

Here the common key generation algorithm . is the same as the group generation algorithm GG,
effectively returning (g, g) as the global information I. The sender and receiver key generation algorithms
return the Diffie-Hellman based keys, which in turn are the basis for computing the common key K.
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Parsing K as K.||K,, means that it is divided into two strings of appropriate lengths (i.e. L, and L,,,
resp.) and assigned to K, and K,,, respectively. |

SECURITY ANALYSIS. We now show the formal security results for DHETM as summerized in Figure 3.
Security of DHETM depends on the security of base primitives, namely a hash function H operating
on a group G generated by a group generator algorithm GG, a symmetric encryption scheme SE and
a MAC scheme MA. We will first define the security notions of the base primitives starting from the
following security assumption on H operating on a group.

DiFFIE-HELLMAN ASSUMPTIONS. Since the computed common key K is generated from a hash of the
Diffie-Hellman based key (H (¢g****)) in the Diffie-Hellan based scheme DHETM), we make an assumption
called “Oracle Diffie-Hellman” (ODH) following [1] for their IND-CCA security analyses. For the TUF-
CTXT security of DHETM, a weaker assumption called “Hash Diffie-Hellman” (HDH) is needed. The
assumptions are composite ones in the sense that they are about the interaction between the hash
function and the Diffie-Hellman problem. We recall their formal definitions below.

Definition 5.5 [1|[ODH and HDH] Let GG be a group generator algorithm, and let £ € N be a
security parameter. Let H: {0,1}* — {0,1}** be a hash function, where L, € N. Let Ayq, and Apqy
be adversaries. Consider the following experiments.

Experiment Exp(}gg}}i Aoy, (F) Experiment EXP}}I({E_(}J,Ahdh (k)
(4,9) < GG (k) (4,9) < GG (k)
w0 & Z, U g*; Vo gY w0 & Zy 3 U =g Vo g?
If b=1then W < H(g") else W & {0,1}%» If b =1 then W « H(g") else W & {0,1}£»
d + Az)fi”(')((q,g),U, V,W); Return d d + Anan((g,9),U,V,W); Return d

Above, H,(X) L (X"), and Ayqy is not allowed to query its oracle on g*. We define the advantages

of the adversary via,
dh dh- dh-
Advilbg A, (k) = Pr|Bxpilida,, (b) =1] = Pr|BExpilfd (k) =1]
hdh hdh- hdh-
AdeaggaAhdh(k) = Pr {EXPH:gglehdh(k) =1 } —Pr {EXPH,QQO,Ahdh(k) = 1]

We define the advantage functions of (H,GG) as follows. For any integers t,q > 0,

Adv%(ri,lég(k,ta q) = gﬁf{AdV?ﬂ}ég,Aodh(k)}
Advifgg(kt) = max{Adviigg a,,, (k)}

where the maximum is over all adversaries Ayqn, Angn With time-complexity ¢, and in the case of Ayqn,
also making at most ¢ queries to H,(-). The hash function H is said to be hardcore on GG under adaptive
DH attack (resp. hardcore on GG) if the function Adv%‘ggg,A(-) (resp. Adv}}_g}glg,A(-)) is negligible for
any adversary A whose time-complexity is polynomial in the security parameter k. 1

SECURITY NOTION OF SYMMETRIC ENCRYPTION SCHEMES. The privacy of symmetric encryption
schemes is measured in a similar manner as per Definition 2.2 except for the following differences:
The main differences in the security measure between the public key and symmetric settings are first,
the key structures —in the symmetric setting, the sender and the receiver share the same (symmetric)
secret key (for both encryption and decryption algorithms), whereas in the public key setting, they
have their own public and secret key pair and the keys for the encryption and decryption algorithms
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are different (asymmetric)— and second, the information that is publicly available —in the symmetric
setting, no information about the key is given to the public (including the adversary) unlike the public
key setting. We will use essentially the same security notions for the privacy of symmetric encryp-
tion schemes with slight modifications reflecting the differences. In particular, we use the left-or-right
indistinguishability notions shown in [3] and omit the details of their descriptions here.

SECURITY NOTION OF MAC sCHEMES. Here we recall the notion of strong unforgeability under chosen-
message attack (SUF-CMA) for a MAC scheme following [5]. Note that the same security notion has
been defined for a digital signature scheme in Definition 2.4. We overload the experiment Exp%“fg:%ma(k)
used in Definition 2.4 for the definition for the security of a MAC scheme here. The definition is similar
to that of a digital signature scheme, but the difference is that the adversary is allowed access to a
verification oracle as well as a tag oracle in the attack model for a MAC scheme, whereas in the attack
model for a signature schem, the adversary is given access to a signing oracle only and instead of a
verification oracle, it is given a public key for the digital signature scheme. Note that by giving the
public key for the signature scheme, the adversary can perform verification by itself, hence there is
no need for allowing oracle access to the verification algorithm in the attack model for the signature
scheme. Similarly to the attack model for a digital signature scheme, the adversary against the security
of a MAC scheme is allowed access to a tagging oracle modeling a chosen message attack. Since the
adversary against the security of a MAC scheme is allowed access to a verification oracle, we let the
adversary win if it makes the verification oracle accept by querying it on a valid message and tag pair
(M, tag) that is “new” as a pair. What is meant by “new” here is that the forgery tag tag was never
output by the tagging oracle in response to query M.

Definition 5.6 [Strong unforgeability under chosen message attack (SUF-CMA) of a MAC]
Let MA = (I, T,VT) be a a MAC scheme. Let k& € N. Let F' be an adversary. Consider the following
experiment:

Experiment Exp?\hl&%ma(k)

K & K(k)
If FTx()VTe()(k) makes a query (M,7) to the oracle VT g (-, ) such that
— VTg(M, ) returns 1, and
— 7 was never returned by the oracle T(-) in response to query M
then return 1 else return 0

We define the advantage of the adversary via,
AR (k) = Pr | Expiia ™ (k) =1
We define the advantage function of the scheme as follows. For any integers £, s, gy, p > 0,
AN (b, gy qus ) = mgX{AdVRh‘K%ma(k)}
where the maximum is over all F' with time-complexity ¢, making at most ¢; oracle queries to Tx(+)
and at most ¢, oracle queries to VT g (-, -) such that the sum of the lengths of all oracle queries is at most

p bits. The MAC scheme MA is said to be SUF-CMA secure if the function Advf\},‘,ﬁ;‘ﬁma(-) is negligible
for any adversary F' whose time-complexity is polynomial in k. 1

SECURITY OF DHETM. As usual, the security of DHETM is based on its base primitives. In particular,
the IND-CCA security of DHETM is based on IND-CPA, SUF-CMA, ODH assumptions on SE, MA,
and (H,GG), respectively. Its TUF-CTXT security, however, is based only on SUF-CMA and HDH
assumptions on MA and (H, GG), respectively. As can be seen in Definition 5.5, the attack model against
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the HDH security is very similar to that against the ODH security except that the adversary does not
get access to the hash oracle #H,(-) in the HDH case; hence, HDH is a weaker assumption than the
ODH assumption. As with the analyses of ESSR, other security results (i.e. IND-CPA, TUF-PTXT) of
DHETM can be inferred from the relations among notions shown Figure 1, and their explicit statements
are omitted. Note, however, that DHETM is not secure under the receiver unforgeability notions (RUF-
PTXT, RUF-CTXT) because the key used for generating valid ciphertexts can be computed by the
receiver as well as the sender. The following theorems state the security results. Concrete security
assessments are made in the following theorems by taking the maximum advantage over all adversaries
limited to the given resources.

Theorem 5.7 [DHETM is IND-CCA secure] Let H be a hash function, and let GG be a group
generator algorithm. Let MA be a MAC scheme, and let SE be a symmetric encryption scheme. Let
DHETM be a PKAE scheme constructed based on SE, MA, H, and GG as per Construction 5.4. Then,
if H is hardcore on GG under adaptive DH attack (i.e. the ODH assumption), SE is IND-CPA secure,
and MA is SUF-CMA secure then DHETM is IND-CCA secure. Concretely,

Advgl}('il_E(ﬁgal\‘/l (k7 t? de; He, qd, Md)
< 20 Adv (Kt ga) + Adves Pk, t, ge, pe) + 2 - AdViaN 2 (E, t, e, 4, pte + p1a) |

Theorem 5.8 [DHETM is TUF-CTXT secure| Let H be a hash function, and let GG be a group
generator algorithm. Let MA be a MAC scheme, and let SE be a symmetric encryption scheme. Let
DHETM be a PKAE scheme constructed based on SE, MA, H, and GG as per Construction 5.4. Then,
if H is hardcore on GG (i.e. the HDH assumption) and MA is SUF-CMA secure, then DHETM is
TUF-CTXT secure. Councretely,

AdvpieErin (k. tq,p) < Adviigg(k,t) + Advigi ™ (k,t,q,1,1) 1

Theorem 5.9 [DHETM is neither RUF-PTXT secure nor RUF-CTXT secure| Let H be a
hash function, and let GG be a group generator algorithm. Let MA be a MAC scheme, and let SE be
a symmetric encryption scheme. Let DHETM be a PKAE scheme constructed based on SE, MA, H,
and GG as per Construction 5.4. Then, DHETM is neither RUF-PTXT secure nor RUF-CTXT secure.
Concretely, there is an adversary B making zero oracle queries, and achieving

AdVEER 5(F) = AdvBIER () =1 1

CoMPARISON TO DHIES. Since DHETM can also be thought of as an adaptation of the IND-CCA
secure asymmetric encryption scheme, DHIES of [1], into the PKAE scheme’s setting, the IND-CCA
security of DHETM can be shown in a similar manner as that of DHIES. However, it turns out that
there is no direct reduction from the IND-CCA security of DHETM to the IND-CCA security of DHIES,
because of the difference in the way encryption is done. In particular, in DHETM, the computed common
key remains the same throughout multiple invocations of the encryption algorithm (oracle) because the
key is computed based on the fixed keys of the sender and receiver, while in DHIES, the common key
may change each time the encryption algorithm is invoked because the key is computed depending not
only on the fixed public key of the receiver, but also on a “fresh”, random choice of an element (in Z,)
by the encryption algorithm. This is mainly because of the fact that DHIES is not an authenticated
encryption scheme and the encryption key does not depend on a fixed, secret key of a sender. (For
sending an encrypted message using DHIES, a sender’s key is not needed.) This is reflected in the
attack model of the adversaries against IND-CCA security: the inputs given to the adversaries are
different in the following sense: the adversary against the IND-CCA security of DHETM gets the public
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keys of both sender and receiver, while that of DHIES gets just the receiver’s public key because DHIES
is an encryption scheme, but not an authenticated encryption scheme.

ErriciENCcY OF DHETM. Compared to the schemes constructed from the generic composition method
based on public key encryption schemes and signature schemes, the main cost savings come from the fact
that the Diffie-Hellman based common secret (symmetric encryption and MAC keys) can be computed
off-line using the public key of the other party and can also be stored once computed, saving the cost of
computing the common secret each time. Also the use of symmetric key based schemes (i.e. a symmetric
encryption scheme and a MAC) as its base primitives is another contributing factor for efficiency.
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A Proofs

Proof of Proposition 3.1:

Intuitively, the horizontal implications among the unforgeability notions hold because the adversary gets
more power as it goes from the third-person unforgeability to the receiver unforgeability attack models.
We show the proof for the unforgeability of ciphertext case (RUF-CTXT — TUF-CTXT) only here.
The unforgeability of plaintext case (RUF-PTXT — TUF-PTXT) can be shown in a similar manner.

Let PKAE = (K¢, Ks, K, E,D) be a PKAE scheme. Let F' be any poly(k)-time adversary attacking
TUF-CTXT of PKAE. Using the adversary F', we can construct an adversary B = (By, Bs) attacking
RUF-CTXT of PKAE, having time-complexity also polynomial in the security parameter. Since B has
more flexibility in the attack model than F, B can run F' answering F’s queries using its own encryption
oracle and outputting the same ciphertext as F' without changing the key pair it originally chose in its
first stage. The algorithm for B is shown below.

Algorithm B (I) Algorithm Bg (s ol () (st, pks, pk;)
(pky, sk,) & K,.(I) Parse st as (I,sk;)
st « (I,sk;) Run F(I, pky, pk,) answering F’s queries as follows:
Return (st, pk;) When F makes a query « to its encryption oracle do

C 4 E(Sks,pks,pk,)(w) ; return ¢ to F'
Until F' outputs a ciphertext forgery C
Return (C, pk;, sk;)
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Since the encryption oracle B accesses is essentially the same as the oracle F' accesses in the definition
of the attack models, the adversary B uses its own encryption oracle to answer F’s queries. It is easy
to see that B succeeds as long as F' succeeds in forging the ciphertext because B did not change its
public, secret key pair, and hence the definitions of a successful forgery in both attack models become
effectively the same. Hence, the following equation holds:

AV (k) > AdvCE (k) -
The assumption that PXAE is RUF-CTXT secure implies that Adv%‘,%%é%(-) is negligible, and hence
it follows that Adv%‘,fc'jtg‘}(-) is also negligible, which results in the conclusion of Proposition 3.1. |

Proof of Proposition 3.2:

Instead of explicitly presenting the construction of the PKAE scheme here, we point to a construction
presented in another section (i.e. Section 5.2) which also provides the security results regarding the
constructed scheme that support the statements in Proposition 3.2. It turns out that the PKAE scheme
DHETM counstructed as per Construction 5.4 is such a scheme. Based on the HDH assumption on the
base hash function and group (H,GG) and SUF-CMA security assumption on the base MAC scheme,
the proof of Theorem 5.8 shows that DHETM is TUF-CTXT secure (which in turn implies TUF-PTXT
security [5]), and the proof of Theorem 5.9 shows that DHETM is neither RUF-CTXT secure nor RUF-
PTXT secure. Hence, from the two mentioned theorems, we obtain the conclusion of the Proposition 3.2.

Proof of Proposition 3.3:

For the proof of separation, we show a PKAE scheme that is RUF-CTXT secure, and yet not RUF-
PTXT secure. It turns out that one of the generic composition methods shown in Section 4 gives the
desired result in general. Given a public key encryption scheme and a digital signature scheme, generic
composition methods are methods that combine the encryption and signature schemes, treating the un-
derlying schemes as black-boxes, in order to obtain a PKAE scheme. Generic composition methods are
described in more detail in Section 4. Among the methods, the “Encrypt-then-Sign” method composed
as per Construction 4.3 gives a PKAE scheme that is RUF-CTXT secure, but not RUF-PTXT secure
under the assumptions that the underlying encryption scheme is IND-CPA secure and the signature
scheme is SUF-CMA secure. The proofs that the method is RUF-CTXT secure and not RUF-PTXT
secure under the assumptions that the underlying encryption scheme is IND-CPA secure and the sig-
nature is SUF-CMA secure are shown in the proofs of Theorem 4.8 and Theorem 4.6, respectively. 1

Proof of Proposition 3.4:

The idea is similar to that of the proof of the third-person unforgeability case (i.e. TUF-PTXT 4
TUF-CTXT). The ability of an adversary to create and manipulate the receiver’s key pair does not
affect the proof in this case. Given any RUF-PTXT secure scheme PKAE, we can transform it to a
scheme PIAE’ that is still RUF-PTXT secure, but not even TUF-CTXT secure. Basic modification is
in the encryption algorithm which adds a redundant bit to a ciphertext and the decryption algorithm
that ignores the redundant bit. Because the bit is ignored in the decryption algorithm, an adversary
against TUF-CTXT can flip the redundant bit in the ciphertext obtained from the encryption oracle
and output it as a “new” forgery ciphertext, which in turn would be considered successful with respect
to the TUF-CTXT sense. It is easy to see that PXAE’ is RUF-PTXT secure if PKAE is RUF-PTXT
secure, because the modification of adding a redundancy bit to the ciphertext, which in turn is ignored
by the decryption algorithm does not affect its RUF-PTXT security. Intuitively, it is RUF-PTXT secure
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but not RUF-CTXT secure because of the distinction in the definition of the “newness” of ciphertext
(i.e. for RUF-PTXT, the plaintext corresponding to the forgery ciphertext has to be “new” while for
RUF-CTXT, the forgery ciphertezt itself has to be “new”). The details are shown below.

Let PKAE = (K¢, K5, K, E,D) be the given PKAE scheme. We define a new scheme PKAE' =
(Ke, Ks, Ky E',D') based on the original scheme PKAE, where the key generation algorithms are the
same as the original ones and the encryption and decryption algorithms are modified as follows:

Algorithm 52 y (M) | Algorithm Dy (C)

sks,pks,pkr
C < E(sky pks,pks) (M) Parse C as b||C" where b is a bit
Return 0]|C X + Dg, (C'); Return X

The new encryption algorithm prepends a redundant bit ’0’ to the ciphertext output by the original
encryption algorithm and the new decryption algorithm ignores the first bit and outputs whatever the
original decryption algorithm outputs (i.e. X can be either L or (pks, M), where M € M) on the rest
of the ciphertext input C' (which excludes the first bit b).

We first show that PIAE" is not TUF-CTXT secure and then show that it is yet RUF-PTXT secure
as long as the original P AE scheme is RUF-PTXT secure. Both proofs are pretty straightforward.

In order to show that PXAE" is not TUF-CTXT secure, we show an attack against PXAE' in the
TUF-CTXT sense. The attack exploits the fact that the first ciphertext bit is ignored in the decryption
algorithm. The adversary queries the encryption oracle with a message (“0” in this case) and replaces
the first bit 0 by 1 in the ciphertext obtained as a response and outputs the new ciphertext. The
adversary F' against TUF-CTXT of PKAE’ is shown in more detail below.

Algorithm F“:Esks,pks,pm(')(I7 pks, pk;)
C + Eésks,pks,pkr)(o) ; Parse C as 0]|C’
Return (1||C")

Note that F’s output ciphertext 1||C’ is “new”, meaning that it was never output by the encryption
oracle, whose ciphertext output always begins with the bit 0. It is easy to see that the ciphertext 1||C’
is “valid” because the un-ignored part C’ is valid. Hence, F' succeeds in attacking TUF-CTXT security
of the scheme PIAE" with the probability 1.

We now move to the proof that PIAE" is RUF-PTXT secure if PXAE is RUF-PTXT secure. Using the
standard reduction argument, we show that if given any adversary A = (A;, Ay) attacking PXAE' in
the RUF-PTXT sense, we can construct an adversary B = (B, By) attacking PIAE in the RUF-PTXT
sense using the adversary A. The adversary B runs A in a straightforward manner answering A’s oracle
queries using its own oracle and uses A’s output forgery as part of its own output forgery. The details
of the algorithms are shown below.

Algorithm B (I) Algorithm Bg(SkS‘PkS'Pk”)(') (st, pks, pk;)
(st, pk,) <= Ay (I) Run As(st, pks, pk;) answering its oracle queries as follows:
Return (st, pky) When A, makes a query m to its encryption oracle do

¢ < 0[|€ sk, pk.,pi,) (M) 5 return ¢ to Ap
Until A5 outputs (C, pk,’, sk,")
Parse C as b||C' where b is a bit
Return (C', pk,’, sk;,")

It is easy to see that B succeeds in attacking RUF-PTXT security of PKAE if A succeeds in attacking
RUF-PTXT security of PIAE" since the definitions for a successful forgery are the same in both cases.
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Hence, this implies that PXAE’ is RUF-PTXT secure if PKAE is RUF-PTXT secure, which in turn is
implied by the assumption. |

Proof of Proposition 3.5:

The separation relation that the combined notions of IND-CPA and RUF-CTXT do not imply IND-CCA
also means that the combined notions of IND-CPA and TUF-CTXT do not imply IND-CCA either,
since TUF-CTXT is a weaker notion than RUF-CTXT, as shown in Proposition 3.1. Hence, here we
just prove the separation for the stronger notion, RUF-CTXT. For the proof of separation, we present a
PKAE scheme that is IND-CPA and RUF-CTXT secure, and yet not IND-CCA secure. Assuming that
the base encryption scheme is IND-CPA secure and the base signature scheme is SUF-CMA secure, a
PKAE scheme composed via the Encrypt-then-Sign method as per Construction 4.3 is IND-CPA and
RUF-CTXT secure, but is not IND-CCA secure. The proof that the composed PKAE scheme is IND-
CPA secure is straightforward and is omitted. The proof that the scheme is RUF-CTXT secure is given
in the proof of Theorem 4.8, and the proof that the scheme is not IND-CCA secure is given in the proof
of Theorem 4.9. This completes the proof. 1

Proof of Proposition 4.4:

The RUF-PTXT security of the PKAE scheme that is constructed via the Encrypt-and-Sign or Sign-
then-Encrypt method depends only on the security (WUF-CMA) of the underlying signature scheme. In
both cases, the security is shown by the standard reduction argument. Given an adversary B = (B, By)
attacking RUF-PTXT of the PKAE scheme, we can easily construct an adversary F' attacking WUF-
CMA of the underlying signature scheme. We first prove the security of the Encrypt-and-Sign method
by showing the reduction algorithmm below and then move on to the security of the Sign-then-Encrypt
method.

Let PE = (K¢e, Ke, £, D) be a public key encryption scheme and let DS = (K5, KS,S,VS) be a digital
signature scheme. Let PKXAE = (K., K4, K,,E,D) be a PKAE scheme constructed based on PE and
DS via the Encrypt-and-Sign method. We first show the adversary F' attacking WUF-CMA of the
base signature scheme DS using the adversary B attacking RUF-PTXT of the PKAE scheme PKXAE
as follows:

Algorithm FS+C)(I,, pk)
Io & Keo(k) 5 T+ (Ie, I)
(st, pky) < Bi(I)
Run By(st, pk, pk;) answering B’s oracle queries as follows:
When By makes a query x to its encryption oracle do
' Epi,(2); 0« Sek(x) 5 ¢ < pk||d||o; return ¢ to By
Until By outputs (C, pk,’, sk,)
Parse C' as pk||C'||o" ; M' + Dy (C")
Return (M',o")

As can be seen, F' simulates the encryption oracle for the PKAE scheme constructed via the Encrypt-
and-Sign method using its sign-oracle and the encryption key obtained from B; in the above algo-
rithm. Because the definitions of “newness” and “validity” of B’s forgery ciphertext match those
of F’s signature forgery output, £ succeeds if B succeeds. Hence, the following equation holes:
Adv%‘gf,}gma(k) > Adv%l,fc_itg}(k). The assumption that DS is secure in the WUF-CMA sense implies

that Adv}H¥ ™ (-) is negligible, and hence it follows that Advgllfc_ﬁtg%(-) is negligible, which results in
the conclusion of the proposition. Note that the forgery of the adversary F' shown above is not only an
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attack in the WUF-CMA sense but also in the SUF-CMA sense since by definition a successful forgery
in the WUF-CMA sense is also considered a successful forgery in the SUF-CMA sense.

The security of the Sign-then-Encrypt method can be proven in a similar manner. For the proof of
the Sign-then-Encrypt case, the difference in the reduction algorithm will be in the way F' generates
the encryption oracle for By (i.e. instead of using the Encrypt-and-Sign method, F' will generate the
ciphertext based on the Sign-then-Encrypt method) and how F' gets its forgery signature from B’s
forgery ciphertext. For completeness, we show the algorithm below:

Algorithm FS+()(I,, pk)
Io & Kee(k) 5 T (Ie, I)
(st, pky) < Bi(I)
Run By (st, pk, pk;) answering B’s oracle queries as follows:
When By makes a query x to its encryption oracle do
0 Sg(z) 5 ¢+ Epi, (z]|o) 5 ¢ < pkl|c’; return ¢ to By
Until By outputs (C, pk,’, sk,)
Parse C as pk||C"; X' <= Dy (C'); Parse X' as M'||o’
Return (M',o")

It is easy to see that by a similar reason as the proof for the Encrypt-and-Sign case, Adv%‘éf,'pcma(k) >
f-ptxt
Advipiiep(k). |

Proof of Proposition 4.5:

Let PE = (Kee, Ke, E,D) be the given IND-CPA secure public key based encryption scheme. Based on
PE, we define the scheme PE = (Kee, Ke, ', D') such that PE' is IND-CPA secure, but its associated
PKAE scheme PKAE = (K., Ks, K, E,D) constructed via the Encrypt-and-Sign or Sign-then-Encrypt
method is not TUF-CTXT secure. By showing it is not TUF-CTXT secure, we can infer also that it is
not RUF-CTXT secure because RUF-CTXT security implies TUF-CTXT security (which is shown in

Proposition 3.1).

Basically, the modification in PE comes in the encryption and decryption algorithms: the encryption
algorithm ‘%k(') adds a redundant bit to the ciphertext output by the original encryption algorithm
Epi(+) and the decryption algorithm DI, (-) ignores the redundant bit and decrypts the rest of the
ciphertext using the original decryption algorithm Dg(-). The new scheme PE' = (Kee, Ke, ', D’) has
the same key generation algorithms as the original scheme PE, and the encryption and decryption
algorithms are shown below:

Algorithm &, (M) | Algorithm D/, (C)
C — Ep(M) Parse C' as b||C" where b is a bit
Return 0||C M + Dy (C"); Return M

We show that the scheme PIAE constructed based on the above encryption scheme P&’ and a signa-
ture scheme DS via the Encrypt-and-Sign or Sign-then-Encrypt method is not TUF-CTXT secure by
presenting an adversary F' attacking PXAE in the TUF-CTXT sense.

Algorithm F& ks () (I, pk, pky)
€ E ot iy (03 Parse C as ph,[0][C"
Return (pkg||1/|C")
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In both Encrypt-and-Sign and Sign-then-Encrypt methods, the same adversary shown above will succeed
in attacking the TUF-CTXT security where the ciphertext 1||C’ in the above algorithm is interpreted
differently in each case. For the Encrypt-and-Sign method, 1||C’ will be further divided into two parts:
the encryption output part (1||C”), where C” is the output of the original encryption algorithm &£y, (-)
of PE and the signature part (o). For the Sign-then-Encrypt method, 1||C’ will be the encryption
output, where C’ is the output of the original encryption algorithm. In both cases, it is easy to see that
the ciphertext is “valid” because the first bit in 1[|C" is ignored by the decryption algorithm D, (-) and
hence is decrypted to be the same plaintext as F’s original encryption query, whose signature remains
the same in the forgery ciphertext. Because the bit 0 in front of C’ is flipped to 1, it is considered
“new”. Hence, F' succeeds in attacking TUF-CTXT of PKAE in both methods.

Intuitively, the reason why the Encrypt-and-Sign and Sign-then-Encrypt methods are vulnerable to this
kind of attack is that the signature is based on the plaintext, but not on the ciphertext. Hence, the
change in the ciphertext goes undetected if its corresponding plaintext remains the same as before.

There is a more direct attack when we consider the RUF-CTXT notion. Consider the following adversary
B = (By, By) attacking RUF-CTXT security of a PKAE scheme PKXAE = (K., Ks, K-, €, D) constructed
based on any public key encryption scheme PE = (K, K¢, E,D) and any signature scheme DS =
(Kes, £S,S,VS) via the Encrypt-and-Sign method:

Algorithm By (I) Algorithm Bzg(SkS'PkS'Pk”(')(st,pks,pkr)
(pky, sky) & K. (I) ; st < (I,sk,) C < & sk, pk.,pk,)(0) ; Parse C as pks||C'||o
Return (st, pk;) (pk,', sk,) & K,.(I); C" + Epi (0)

Return (pks||C"||o, pk,', sk;")

Since an adversary attacking against the RUF-CTXT security can create its own encryption key and
is allowed to change it later, with just one query to the (authenticated) encryption oracle, it can get
the signature corresponding the query message (plaintext) and then re-encrypt the same message with
a different key it generated, and then output the “new” ciphertext as a forgery ciphertext. (We are
assuming here that the probability that the ciphertext resulting from re-encrypting the same plaintext
under a new public key differs from the original ciphertext is non-negligible when its key is randomly
generated by the receiver key generation algorithm. If this is not the case, B2 can repeat the process
of choosing its key pair until this is true). Basically, in both Encrypt-and-Sign and Sign-then-Encrypt
methods, the ability to generate and change the encryption key will enable the adversary to be able
to change the ciphertext part by re-encrypting it with a defferent key. Since the signature is based
on the plaintext only in both methods, the signature obtained from the oracle (by the chosen message
attack) can be reused with the new ciphertext because the ciphertext is just an encryption of the same
plaintext (under a different key). Above, the adversary Bz does not need to decrypt the ciphertext
using its secret key because it already knows the plaintext and the signature part is not encrypted.
Note, however, that for the Sign-then-Encrypt method, the adversary needs to decrypt the ciphertext
in order to get the signature part because the signature part is encrypted. This is a stronger result than
the TUF-CTXT case, because the attack works on any public key encryption scheme PE, not just on a
particular scheme PE’, and this is where the ability to create and manipulate the receiver’s key makes
a difference.

Note also that we did not use the security of signature schemes explicitly in our attack (the attack does
not involve the security of signature schemes). This means that regardless of the security (strength) of
the given signature scheme is (whether it be SUF-CMA or WUF-CMA), the scheme PIAE composed
by the Encrypt-and-Sign method is not RUF-CTXT secure.
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It is easy to see that the new scheme P&’ is also IND-CPA secure if the original scheme PE is IND-CPA
secure. Intuitively, prepending a fixed bit to a ciphertext does not reveal any additional information
about its plaintext, hence does not help an adversary to distinguish a ciphertext output by the new left-
or-right encryption oracle any more than that output by the original left-or-right encryption oracle.
Hence, an adversary against IND-CPA of P& can do as well as that against IND-CPA of P& in
distinguishing the left-or-right oracle. 1

Proof of Theorem 4.6:

Let PKAE = (K., Ks, K, E,D,V) be a public key based authenticated encryption scheme constructed
via the Encrypt-then-Sign method from the encryption scheme PE = (K, K¢, €, D) and the signature
scheme DS = (K, LS, S,VS). We show that PLAE is RUF-PTXT insecure by presenting a poly(k)-
time adversary B = (B, Bs) attacking PKXAE in the RUF-PTXT sense with success probability of 1.
The algorithm B in the first stage chooses its key pair and outputs the pair. In its second stage Bs, it
makes one plaintext query m to the encryption oracle and obtains a ciphertext C' as a respounse. From
C, it then extracts the first part ¢’ that corresponds to the encryption of plaintext m (i.e. ¢ = Epk, (m))
and picks a public, secret key pair (pk;', sk;') such that Dy (c') # mn, and then it returns the ciphertext
C obtained from the oracle response and the newly picked public secret key pair (pk,’, sk,’) as its output
forgery and key pair, respectively. The algorithm is described in more detail below.

Algorithm B (I) Algorithm Bg(sks,pks,pm(') (st, pks, pky)
(pky, sk;) & K. (I) Parse st as (I,sk,); m < 0
st < (I, skr) C <+ & sk, phe,pk,y (m) 5 Parse C as pk||c[|o
Return (s, pk;) Pick a key pair (pk,’, sk,') from K, (I)
such that Dg /(') #m
Return (C, pk,', sk,")

Recall that C' is considered a successful forgery if ﬁskr' (C) # L and its corresponding plaintext M was
never a query to E<Sks;pks,pkr>(')' Since C' was originally output by the encryption oracle, the signature
verification algorithm VS (-) will return 1 on input (¢’,0), where C' is parsed as pkg||c’||lo. The
plaintext M corresponding to ¢’ obtained from applying the underlying decryption algorithm D ()
with a new secret key sk,” on input ¢ is different from m because in the algorithm Bs shown above,
the secret key is picked so that the decrypted message obtained from using the new key differ from
the original message. Hence, the plaintext M would be considered “new” (i.e. was never a query to
the encryption oracle), which makes the forgery valid in the RUF-PTXT sense. Note that since we
did not assume anything specific for the underlying primitives, the attack works for any scheme that is
constructed from an encryption and signature scheme via the Encrypt-then-Sign method. |

Proof of Theorem 4.7:

Let PE = (Kee, Ke,E,D) be a public key encryption scheme, and let DS = (K., KS,S,VS) be
the given WUF-CMA secure digital signature scheme. Based on DS, we define the scheme DS’ =
(Kes, £S,8',VS8") such that DS’ is WUF-CMA secure, but its associated PKAE scheme PKAE =
(K¢, Ks, Ky, €, D) constructed via the Encrypt-then-Sign method is not TUF-CTXT secure. By show-
ing it is not TUF-CTXT secure, we can infer also that it is not RUF-CTXT secure because RUF-CTXT
security implies TUF-CTXT security (which is shown in Proposition 3.1).

The key generation algorithms K.5(-), £S(-) in DS’ remain the same as DS and the signing and verifying
algorithm S; (), VS, (+) are modified as follows:
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Algorithm S}, (M) | Algorithm VS, (M,0)
o' < Ss(M) Parse o as o'||b where b is a bit
Return o’||0 If VS k(M,0") =1 then return 1 else return 0

As shown above in the modified signing algorithm, a redundant bit is appended to the output of the
original signing algorithm Sg(-) and is ignored in the modified verification algorithm. This makes the
PKAE scheme PKAE constructed based on PE and DS’ via the Encrypt-then-Sign method to be TUF-
CTXT insecure. We show this by presenting an adversary attacking against TUF-CTXT of PKAE as
follows:

Algorithm F ks vks.ok) () (I, pks, pky)
C « 5(sks,pks,pk,) (0)
Parse C as pkg||C']|0
C «+ pk||C'||11
Return C'

It is easy to see that the forgery output C' is a “new” ciphertext (i.e. it was never a response from the
encryption oracle) since the last bit of the ciphertext is changed with respect to the encryption oracle
output. The ciphertext part C’||1 can be further divided into C”||o’||1 where C” corresponds to the
base encryption output part and and ¢'||1 is the signature part. Since the last bit in the signature part
is ignored by the signature verification algorithm, the pair (C”,0'||1) will be considered valid by the
signature verification algorithm VS;kS(-, -). Hence, the adversary succeeds in attacking RUF-CTXT of
PIAE.

It remains to show that DS’ is WUF-CMA secure if DS is WUF-CMA secure. To do so, we can build
an adversary A against WUF-CMA of DS using an assumed adversary A’ against WUF-CMA of DS’
as follows:

Algorithm AS+()(I, pk)
Run A’(I, pk) answering its sign-oracle queries as follows:
When A’ makes a query z to the sign-oracle do
y < Ssk(2)]|0; return y to A’
Until A" outputs a forgery (M, o)
Parse o as o'||b where b is a bit
Return (M, o")

It is easy to see that if the forgery output (M, o) of A" is “valid” (i.e. VS, (M,0) = 1) and M is
“new” (i.e. A’ never made an oracle query M), then the forgery output (M, o') of A will be also “valid”
and M will be also considered “new” with respect to its sign-oracle. This implies AdeDV“‘Sf,';{ma(k) >

Adv%‘g"%‘a(lﬂ), as desired. |

Proof of Theorem 4.8:

Let PKAE = (K., Ks, K, E,D,V) be a public key based authenticated encryption scheme constructed
via the Encrypt-then-Sign method from the encryption scheme PE = (K, K¢, €, D) and the signature
scheme DS = (K5, LS, S,VS). We show that PKAE is RUF-CTXT secure if DS is SUF-CMA secure
using the standard reduction method. We construct an adversary F' attacking SUF-CMA of DS using
an adversary B = (B1, Bs) attacking RUF-CTXT of PKAE as follows:
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Algorithm FS+0)(I,, pk)
Io & Keo(k) 5 T (Ie, I)
(st, pky) < Bi(I)
Run By (st, pk, pk;) answering its encryption oracle queries as follows:
When By makes a query x to the encryption oracle do
' Epi,(2) ; 0 Sek() ; ¢ « pk||d||o; return ¢ to By
Until By outputs (C, pk,’, sk,)
Parse C as pk'||C'||o’
Return (C',0")

Using its signing oracle, £’ can easily simulate B’s encryption oracle and the adversary F' succeeds as
long as B succeeds because their definitions of valid forgery (signature and ciphertext) match. Hence,
Adv%“fg:%ma(k) > Adv%‘,fc'j%‘fB(k), which results in the conclusion of the theorem. |

Proof of Theorem 4.9:

In order to prove that the Encrypt-then-Sign method does not provide IND-CCA security in general, we
present an adversary A attacking the IND-CCA security of a PKAE scheme PKAE = (K., Ks, K., E, D),
constructed based on any public key encryption scheme PE = (K, K¢, E, D) and any digital signature
scheme DS = (K5, £S,S,VS) via the Encrypt-then-Sign method. The algorithm for the adversary A
is shown below:

Algorithm AE ks piie) (CRC0) P () (T pke pk,)
My <+ 0 ; M, + 1
C' = & sk, pics,phs) (LR(Mp, M1, b))
Parse C as pks||C'|lo
(pk',sk') & K,(I)
o Ssk:(C’)
M < Dy, (pk'||C"||0")
If M = M, then return 1 else return 0

Above, the decryption oracle query (pk’||C’'||o”) will be considered valid by the decryption oracle because
it was never output by the LR-encryption oracle (because pk'|C’||o’ # pksC'||o) and the signature o’
is valid with respect to the adversary’s own public key pk’ (meaning, VS,,/(C’,0') = 1). Because A
used C’ (which is the ciphertext part of the LR-encryption oracle corresponding to the encryption of
M) as the ciphertext part of its decryption oracle query, the plaintext M output by the decryption
oracle will the same as the original plaintext Mj, which was encrypted by the LR-encryption oracle. By
comparing M, with My and M;, the adversary can determine the bit b. Note that this attack works
regardless of the security properties of the base primitives of P AE (meaning, even if the base public
key encryption scheme is IND-CCA secure, the associated PKAE scheme is still INC-CCA insecure).
This implies that the Encrypt-then-Sign method is inherently insecure in the IND-CCA sense. |

Proof of Theorem 5.2:

Let ESSR = (K., K4, K,,E,D) be the PKAE scheme as per Construction 5.1, and let PE = (Kee, Ko, &,
D) and DS = (K5, KS,S,VS) be its base (asymmetric) encryption scheme and a digital signature
scheme, respectively.

Let B be an adversary attacking IND-CCA of ESSR. We will construct adversaries A and F' attacking
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IND-CCA of P&, and SUF-CMA of DS, respectively, running B as a subroutine, and show
AdviE, (k) < AdVREE (k) + AdviREE(k)

The adversary A is given as input the public information I, and the public key pk;, for the encryption
scheme P& and has access to a left-or-right encryption oracle Epi (LR(+,-,b)). It generates a signature
key, and runs B answering its encryption query using the generated signature key and its own encryption
oracle. When B outputs a bit d, A outputs the same bit. The adversary F' is given as input the public
informations (I, pks) for the signature scheme DS and has access to the sign-oracle Sy, (). It generates
an encryption key, and runs B answering its encryption oracle using the generated encryption key and
its own sign-oracle. The details of the algorithms A and F' are shown in Figure 6.

In Figure 6, the algorithm for A simulates the encryption oracle in the same way as the real experiment
for B. It also simulates the decryption oracle in the same way as the real experiment except when
B makes a query that causes A to query its decryption oracle on one of A’s LR-encryption oracle
outputs —i.e. when B’s decryption oracle query is of the form pks||E'||o’, where E’ was output by
A’s LR-encryption oracle — and when this happens, A just sets SBad to true and halts. Let AskedSig
denote this event. Note that concatenating the sender key pks to the plaintext and encrypting it as the
ciphertext part £ for the encryption algorithm and then checking whether the decrypted sender key
matches the purported sender key in the decryption algorithm prevent B from using the same encrypted
ciphertext part £ and replacing the signature part with its own signature under its own key. This is
why A can give | to B as a response without invoking its decryption oracle when B’s query is of the
form pk||E'||0" where pk # pks and E’ is one of the responses of A’s LR-encryption oracle. In other
cases, A can invoke the decryption oracle and responds to B’s decryption query in a straightforward
manner.

Hence, under the absence of the event AskedSig, A can use B to attack against IND-CCA of PE as
shown in the algorithm for A above. Since A outputs the same bit as what B outputs, we have

Pr | Expiisis! (k) = 1 A AskedSig | — Pr | Explfdsii s (k) = 1 A AskedSig |
= Pr|Explpd ! (k) = 1] — Pr | Explpg (k) = 1]

When the event AskedSig occurs, F' can use B to attack SUF-CMA of DS as shown in the algorithm
for F above. The reason is that when B’s query is of the form pkg||E’'||o’, and when it is “new” as
a ciphertext, it implies that (E',0’) as a pair is “new” as a pair, and if o’ is a valid signature of E’,
then it is exactly what is considered a successful forgery against SUF-CMA. Note that the algorithm
for the adversary F' does not complete the execution of B when the event AskedSig occurs, but it just
outputs (E', o) as the forgery. This means that regardless of which bit B outputs as its guess or what
the value of the bit b was chosen for the LR-encryption oracle, as long as the event AskedSig occurs,
F' can succeed in attacking SUF-CMA of DS, which means the advantage of B in this case is upper
bounded by the advantage of F'. Hence, the following equation holds:

Pr | Explidsis! (k) = 1 A AskedSig | —Pr [ Explidsics® (k) = 1 A AskedSig | < Pr|ExpB§im (k) =1]

Combining the above two equations, we have
Adv s (k)

= Pr|Expjdit! (k) = 1] — Pr | ExpidiiE (k) = 1]
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Algorithm A%k (ERC0). D () (T, pk,)
I & Kes(k) 5 (pks, sks) & KS(L); I+ (I, Is)
Run B(I, pks, pk,) answering B’s queries as follows:
When B makes a LR-encryption oracle query (mg,m;) do
E « Epi (LR(mo||pks, ma||pks, b)) ; o = Sk, (El|pk:)
C < pks||E||o; return C to B
When B makes a decryption oracle query C' do
Parse C' as pk||E'||o”
If VSpk(E'||pky,0') = 0 then return L to B
If pk = pks then
If E' was output by A’s LR-encryption oracle
then SBad ¢+ true; halt
else X « Dy, (E")
Parse X as M ||pk’
If pk' = pk then return (pk, M) to B else return L to B
If pk # pks then
If E' was output by A’s LR-encryption oracle
then return L to B
else X « Dy, (E")
Parse X as M'||pk’
If pk' = pk then return (pk, M) to B else return L to B
Until B outputs a bit d
Return d

Algorithm FS+ () (I, pk,)
I & Kee(k) 5 14 (I, I) 3 (P, ske) € Ke(Le) ; b4 {0,1}
Run B(I, pks, pk,) answering B’s queries as follows:
When B makes a LR-encryption oracle query (mg,m;) do
E + gpkr (mb) ;O Sskb. (EHpkr)
C < pks||E||o; return C to B
When B makes a decryption oracle query C' do
Parse C' as pk||E'||o”
If VSpk(E'||pky,0') = 0 then return L to B
If pk = pks then
Return (E',0') as the forgery output
If pk # pks then
X « Dy (E")
Parse X as M||pk’
If pk' = pk then return (pk, M) to B else return L to B
Until B outputs a bit d

IN

Figure 6: Algorithms for the proof of Theorem 5.2
Pr | Explidsis! (k) = 1 A AskedSig | + Pr | Explidsis®s! (k) = 1 A AskedSig |
— Pr | Expligsia’ (k) = 1 A AskedSig | — Pr [ ExplidsiO (k) = 1 A AskedSig|

Pr | Explpd ! (k) = 1] — Pr | ExpBg§™0(k) = 1] + Pr | ExppEima(k) = 1]
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< AdVBEEH(E) + Advipg it (k)

as desired.

The assumption that P& is IND-CCA secure and DS is SUF-CMA secure implies that Adviﬁg:ffa(-)
and Adv%‘g}ma(-) are negligible, and hence it follows that Adv%‘?@%ﬁg(-) is also negligible, which results
in the conclusion of the theorem. |

Proof of Theorem 5.3:

We will first show that ESSR is RUF-PTXT secure if DS is WUF-CMA secure. Let B = (By, Bz) be
any adversary attacking RUF-PTXT of ESSR. We construct an adversary F' attacking WUF-CMA of
DS running the adversary B and show that F' succeeds in attacking WUF-CMA of DS if B succeeds
in attacking RUF-PTXT of ESSR. The adversary F' has access to a sign oracle Sg (-) and is given
as input the public information including the public key (pks) of the signature scheme, and runs B as
follows:

Algorithm FSss() (I, pks)

Io & Keo(k) 5 T (Ie, I)

(st, pky) < Bi(I)

Run Bs(st, pks, pkr) answering its oracle queries as follows:

When By makes a query m to its encryption oracle do

E &y (mllpks) ; o S, (Ellpks)
return pkg||E||o to By

Until By outputs (C, pk,’, sk,)

Parse C as (pk||C'[|o")

Return (C'||pk,’, o)

Let 2 denote the output of the decryption algorithm computed on B’s ciphertext forgery C' = pk||C’||o’
(i.e. & < Dg.(C)). The success of B in attacking RUF-PTXT of ESSR requires that z # L, which
means = can be parsed as (pk,M). Furthermore, it requires that pk = pks and M be “new” (i.e.
was never queried to the encryption oracle E<Sks;pks,pkr>(‘))' Since pk has to equal pks, pks needs to
be used for verification throughtout the proof. For the decryption = to be “valid” with respect to pks,
VS k. (C')|pky’, o) needs to return 1. For M to be “new”, either C' or pk,’ has to be “new” because
otherwise Dy /(C') will not return a “new” message M. If either C' or pk,’ is “new”, the message
part C'||pk,’ of the adversary F’s forgery will be “new” with respect to previous sign-oracle queries.
Because their requirements for “validness” and “newness” match in both attack models, the success of
B attacking RUF-PTXT of ESSR implies the success of F' attacking WUF-CMA of DS in the above
algorithm, which results in the following equation:

AdVESE (k) > AdvERT (k)
From the above equation, the theorem statement regarding the RUF-PTXT security of ESSR is ob-

tained.

The RUF-CTXT security of ESSR can be shown using the same algorithm F' shown above. We show that
F succeeds in attacking SUF-CMA of DS if B succeeds in attacking RUF-CTXT of ESSR. From the def-
inition of SUF-CMA of DS, the adversary F' wins (i.e. Exp%‘g%ma(k) returns 1) if VS, (C'||pk,’,0) = 1
and (C'||pk,’, o) as a pair is “new”. For B’s forger ciphertext C' = pk||C'||o to be a successful forgery in
the RUF-CTXT sense, pk = pks and the ciphertext part C'||o needs to be “new” and 5(pks,skr>(0) does
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not return L (i.e. VSpk, (C'||pk,’, o) = 1). Since meeting these two conditions are sufficient for meeting
the two conditions for the success of F', F' will succeed in attacking SUF-CMA of DS if B succeeds in
attacking RUF-CTXT of ESSR. Hence, we have the following equation:

AdvEsEnt (k) > AdviSiih(k)

From the above equation, the theorem statement regarding the RUF-CTXT security of ESSR is ob-
tained. |1

Proof of Theorem 5.7:

Let H be a hash function, and let GG be a group generator algorithm. Let MA = (K., T,VT) and
SE = (Ke,E,D) be the given MAC and symmetric encryption scheme, respectively. Let DHETM =

(Ke, Ks, Ky, €, D) be the given PKAE scheme. We want to show IND-CCA of DHETM based on IND-
CPA of SE and SUF-CMA of MA under the ODH assumption on (H,GG).

The proof is based on the standard reduction argument. Given an adversary B attacking IND-CCA of
DHETM, we can construct an adversary A attacking the “hardcoreness” of H on GG under adaptive
DH attack (the ODH assumption), and an adversary D attacking IND-CPA of SE and an adversary F
attacking SUF-CMA of SDS. The success of each adversary A, D, and F' depends on the success of B
in different settings. Let (X,x), and (Y,y) be the public, secret key pairs of the sender and receiver,
respectively, where X = ¢g¥ and Y = ¢g¥. There are two cases for the output of H: it can look random or
not random (i.e. H(g®¥)). There are two types for B’s query to the decryption oracle Dy (), which is of
the form X'||C, where X' is a public key of a sender, C' is a ciphertext: critical query and non-critical
query. A critical query is a query X||C, such that X' = X (i.e. the public key X' is the same as the
real sender’s public key) and D, (X'||C) # L (the ciphertext is valid with respect to X'). A non-critical
query is the rest of the query type (e.g. X'||C where X' # X).

There are three cases to consider depending on the output of H and the types of B’s decryption oracle
query. First case is that the output of H does not look random, and in this case, we can construct A
that uses B to violate the ODH assumption. The second case is that the output of H looks random,
and B does not make a critical query to the decryption oracle. In this case, we can construct D that
violates IND-CPA of SE using B. The third case is that the output of H looks random, and B makes
a critical query, and in this case, we can construct F' that violates SUF-CMA of SDS using B. From
the three cases, we can conclude that if the base primitives are secure in their own senses, DHETM is
also secure in the IND-CCA sense.

The algorithms for the adversaries A, D, and F' are shown in Figure 7.

From Definition 5.5, we have
Adv‘}gggyA(k) =Pr [Exp‘}gg}},A(k) = 1] —Pr [Exp(}}{g'go,A(k) = 1}

Claim 1. When Z given as input to the adversary A shown in Figure 7 is of the form H(g*Y), the
following equation holds:

+ 5 - AdVEE s (k)

N —
N —

Pr [Exp%‘[{g'gl,A(k) = 1} >

Proof: When Z is of the form of H(¢g"Y) given X = ¢g* and Y = ¢g¥, where z,y & Z4, the encryption and
decryption oracles are simulated by A in the same way as the real encryption and decryption oracles
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Algorithm DFxe(ERE:0)) (F)
(4,9) & Ke(k) 5 (X, 2) ¢ Ks(g, 9)
(Y,y) & ’C_r(Q>g) s Ky & {0, I}Lm
Run B on input ((¢,9),X,Y)

For each LR-encryption query (mg,m;) do
E + Ek (LR(mo,m1,b)); 7+ Tk, (E)
return X||E||T to B

For each decryption query C do
Parse C as X'||C'||7'

If X" # X then K||K], + H((X")Y)
else K|, + K,,
If VTK;n (CI,TI) =1 then
If X' = X then Asked < true; halt
else M' < D (C'); return (X', M') to B
else return 1 to B
Until B outputs a bit d
return d

Algorithm A"+()((q,9),X,Y, Z)
Parse Z as K.||K,,; b & {0,1}
Run B on input ((g,9),X,Y)

For each LR-encryption query (mq,m1) do
E + EKe (mb) N TKm (E)
return X||E||T to B

For each decryption query C do
Parse C as X'||C"||T'

If X' # X then K'||K!, « H,(X")
else K! «+ K. ; K|, + K,
If VT (C',7') = 1 then
M' + Dg: (C")
return (X', M') to B
else return L to B
Until B outputs a bit d
If b = d then return 1 else return 0

Algorithm FTxm () VT () (k)
(¢,9) < Ke(k); (X, 2) < Kila,9); Voy) € Kila,9); Ke € {0,135 b {0,1}
Run B on input ((¢g,9),X,Y)
For each LR-encryption query (mg,m;) do
E «— Eg, (mp); 7+ Tk, (E); return X||E||T to B
For each decryption query C' do
Parse C' as X'||C"||7’
If X' # X then
KL,  H((X'))
If VTk: (C',7) =1 then M' < Dg:(C'); return (X', M') to B else return L to B
If X' =X then
If Vg, (C',7) =1
then Return // F succeeded in forging
else return L to B
Until B outputs a bit d

Figure 7: Algorithms for the proof of Theorem 5.7

given to B in the experiment Expglﬂ'EcTca,t,]}}g(k). Hence, we have

- 1 A eene 1 ind-cea-
PrBxpfigga(h) =1] = 5 Pr[BxpBigialu(k) = 1] + 5 Pr | ExpBiEtiids (k) = 0]
1 . 1 .
= 5 -Pr[Bxpdigfiis(k) = 1] + 5 - (1 - Pr[ExpBigiis (k) = 1])
_ 1 1 ind-cca
= 2+2'AdvDHETM,B(k)

as desired. [
When Z is a random string (i.e. Z & {0,1}L#), depending on whether a critical query is made by B
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or not, it can be further divided into two cases. Note that when a critical query is made by B, the
variable Asked set true in the algorithm D shown in Figure 7. Let AskedValid be the event where Asked
is set true (i.e. a critical query is made by B). In case the event AskedValid did not occur, we have the
following claim.

Claim 2. When Z is a random string (Z < {0,1}£%), and the event AskedValid occurs, the following
equation holds:

N e Tt 1 1 ind-
Pr [EXP%E_QO,A(k) =1A AskedVaIid} < 3 + 3 Advlsné,;pa(k)

Proof: If Z given to A as input is randomly chosen (i.e. Z & {0,1}£%), the simulation of the LR-
encryption oracle provided by the adversary A to the adversary B is essentially the same as that provided
by the adversary D to B because in both simulations, the keys for the base symmetric encryption scheme
and MAC are effectively chosen at random and independent of the values of X and Y. The simulation
of decryption oracle is also correct except when the variable Asked is set. Since A outputs 1 whenever
B guesses the bit b right, while D outputs whatever B outputs, the probability that A outputs 1 in this
case is at most the probability that D guesses the bit b right (b = d). Hence, we have

Pr | Expiiisd (F) = 1 A AskedValid |

< - Pr [Expisné_DCpa_l(k) = 1} +--Pr [Expisné_DCpa_O(k) = 0}

as desired. O

If the event AskedValid occurs when Z is a random string, the forger F' can break the SUF-CMA security
of the MAC scheme MA = (T,VT) running the adversary B.

Claim 3. When Z is a random string (Z & {0,1}*+), and the event AskedValid occurs, the following
equation holds:

Pr | Exp3ig 4(F) = 1 A AskedValid | < Adviih# (k)

Proof: If Z given to A as input is randomly chosen (i.e. Z & {0,1}%#), the simulation of the LR-
encryption oracle provided by the adversary A to the adversary B is essentially the same as that
provided by the forger F' to B because in both simulations, the keys for the base symmetric encryption
scheme and MAC are effectively chosen at random and independent of the values of X and Y. If
B makes a critical query X'||C'||7" to the decryption oracle (which defines the event AskedValid), it
implies, by definition, X’ = X and C'||7" is valid with respect to X, meaning VT, (C’,7') = 1. Since
the decryption oracle query X'||C'||7 needs to be “new” with respect the encryption oracle responses,
it implies that C'||7" is “new”, which means 7 was never output by VT, on input C’. These two
conditions implied by a critical query of B are the conditions required for a successful forgery against
SUF-CMA of MA. Hence, the forger F' running B succeeds in forging when B makes a critical query,
and this justifies the above claim. [J

Combining the results from the above three claims, we have

; 1 ind-
Advilt a(k) > 5 AdvEERR(K) — o - Advge 5P (k) — AdvRIEE™ ()

1
2
Transposing terms and taking the maximum of the advantages over all adversaries limited to the given
resources, we obtain the conclusion of Theorem 5.7. |
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Proof of Theorem 5.8:
Let H be a hash function, and let GG be a group generator algorithm. Let SE = (Ke, E, D) be a symmetric

encryption scheme, and let MA = (K, T, VT) be a MAC scheme. Let DHETM = (K., K, K, &, D) be
a PICAE scheme constructed based on H, SE and MA as per Construction 5.4. We prove the security
of DHETM using the standard reduction argument. Given an adversary F' attacking TUF-CTXT of
DHETM, we construct an adversary A attacking the “hardcoreness” of H on GG (the HDH assumption)

and an adversary B attacking SUF-CMA of MA.

The adversary A and B run F as a subroutine answering its oracle queries, and then using the output
forgery of F', A determines whether Z is random or not and B outputs a forgery in the SUF-CMA
sense. The details of the algorithms for A and B are shown below.

Algorithm A((q,9),X,Y, Z) Algorithm BT#m ():VTrm () (k)
Parse Z as K.||K,, (q,9) & Ke(k); (X,2) & Ki(g,9)
Run F on input ((g,9),X,Y) Y,y) £ K (q,9); Ko & {0,1}2<; b & {0,1}
When F' queries the & oracle on m do Run F on input ((¢,9), X,Y)
B« Ex.(m); 7+ Tk, (E) When F queries the € oracle on m do
return X||E||T to F’ E«+ Ex (m); 7« Tk, (E)
Until F' outputs a forgery ciphertext C return X ||E||7 to F
Parse C' as X'[|C"||7' Until F" outputs a forgery ciphertext C
If X' = X and C was never a response Parse C as X'||C'||7’
given to F and VTg, (C',7") =1 b« VTg, (C',7)
then return 1 else return 0

As can be seen from the above algorithms, the algorithms A and F' use B’s outputs to achieve their
own goals depending on whether Z looks random or not. If Z is of the form H(g™¥) (i.e. the case where
the hash output does not look random), the encryption oracle A simulates for B is the same as the real
encryption algorithm given to B in the experiment ExpB‘,ﬂE—f—’,‘\ﬂ, (k). Since A outputs 1 if B succeeds

in forging a ciphertext against TUF-CTXT of DHETM, the following equation holds:
Pr | Explfias.a(k) = 1] = Pr | ExpBiei (k) = 1]

If Z & {0,1}*+ (i.e. the case where the hash output does look random), the distribution of the
encryption oracle responses A simulates for B is essencially the same as what F' simulates for B, and F
can succeed in attacking SUF-CMA of MA using B’s successful forgery ciphertext in this case. Hence,
the following equation holds:

Pr [Expf\},lg"%ma(k) = 1} > Pr [Exp}ﬁ{g—é{A(k) = 1]

Combining the above results, we obtain
Advisg a(k) > Pr|ExpBiEil p(k) = 1] — Pr | Expjixg(k) = 1]
= AdvEHLE(R) — AdViEE ()

Transposing the terms, and taking into account the resources used by the adversaries, we get the
conclusion of the theorem. |

Proof of Theorem 5.9: Let DHETM = (K., K, K, €, D) be the PKAE scheme constructed as per
Construction 5.4. The adversary B = (B}, Bs) against RUF-CTXT of DHETM is given an oracle
g(xa,ya,xb)(') in its second stage and works as follows:
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Algorithm Bi(q,9) | Algorithm Bg(w“’y“’w (styYa,Yp)
zp & Zq Parse st as (24,9, 9)
Yp < g* K & H(y™); Parse K as K| K,,
st < (25,4, 9) d —Eg. (0); 7 Tk, ()
return (st, yp) C «— yo|ld||
return (C, yp, xp)

It is easy to see that the ciphertext C' output by B in the second stage is “valid”, meaning Dy, (C) # L.
Because the encryption is based on the common key computed from the keys of both sender and receiver,
B as an adversarial receiver who knows its own key can easily compute the common key as well as the
sender. The adversary B does not have to invoke the encryption oracle and it can encrypt any messages
of its choice. Since B did not query the encryption oracle, both the output forgery ciphertext C' and
its corresponding plaintext “0” will be considered “new”. Hence, the same adversary B can be used for
attacking both RUF-PTXT and RUF-CTXT security of DHETM. Combining these results, we obtain
the following equation

AdvlEr (k) = AdVBIER) 5 (k) = 1
as desired.

Note that although B did not change its own key pair in the second stage, it could have easily changed
its key and still succeed in generating a valid ciphertext forgery of its choice with respect to the changed
key. Here, B’s ability to change the key does not affect its success probability. 1
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