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Abstra
t

This paper addresses the se
urity of authenti
ated en
ryption s
hemes in the publi
 key setting.

We present two new notions of authenti
ity that are stronger than the integrity notions given in the

symmetri
 setting [5℄. We also show that 
hosen-
iphertext atta
k se
urity (IND-CCA) in the publi


key setting is not obtained in general from the 
ombination of 
hosen-plaintext se
urity (IND-CPA)

and integrity of 
iphertext (INT-CTXT), whi
h is in 
ontrast to the results shown in the symmetri


setting [13, 5℄. We provide se
urity analyses of authenti
ated en
ryption s
hemes 
onstru
ted by


ombining a given publi
 key en
ryption s
heme and a given digital signature s
heme in a \generi
"

manner |namely, En
rypt-and-Sign, Sign-then-En
rypt, and En
rypt-then-Sign| and show that

none of them, in general, provide se
urity under all notions de�ned in this paper. We then present a

s
heme 
alled ESSR that meets all se
urity notions de�ned here. We also give se
urity analyses on an

eÆ
ient DiÆe-Hellman based s
heme 
alled DHETM, whi
h 
an be thought of as a transform of the

en
ryption s
heme \DHIES" [1℄ into an authenti
ated en
ryption s
heme in the publi
 key setting.
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1 Introdu
tion

Ba
kground. Authenti
ity and Priva
y have been the main goals of data 
ommuni
ation in both

private and publi
 key settings. There are various s
hemes that are designed to meet these goals

separately. In the publi
 key setting, asymmetri
 en
ryption s
hemes are designed to provide priva
y,

while (digital) signature s
hemes are designed to provide authenti
ity. Well de�ned formal se
urity

notions for en
ryption s
hemes [9, 15, 7℄ and signature s
hemes [10℄ exist, and s
hemes have been

analyzed a

ording to those notions. Re
ently, there have been rising interests in 
ombining these

s
hemes in su
h a way that the goals of both priva
y and authenti
ity are met at the same time

[12, 17, 14, 11℄. However, s
hemes that are designed to meet both goals have not re
eived formal se
urity

treatments. No 
lear formal de�nitions of se
urity or 
omprehensive se
urity analyses on the s
hemes

have been provided in the publi
 key setting, although a re
ent work [5℄ gives these in the symmetri


setting. Here we provide formal se
urity de�nitions and se
urity analyses for s
hemes whose goal is to

provide both priva
y and authenti
ity in the publi
 key setting. Note that se
urity de�nitions from

the symmetri
 setting 
annot just be \lifted up" for the publi
 key setting be
ause of the asymmetri


nature of the latter. The asymmetry of keys makes a di�eren
e in the notions of both authenti
ity and

priva
y. In order to see this more 
learly, we begin by des
ribing the setting and se
urity notions in

more detail below.

The setting. We 
onsider a publi
 key setting where two parties (a sender and a re
eiver) want to


ommuni
ate se
urely over an inse
ure 
hannel. In order to provide both priva
y and authenti
ity at

the same time, both sender and re
eiver need to have their own publi
, se
ret key pairs. Note that this

does not mean that the keys are unique for the spe
i�
 pair of sender and re
eiver. Although we are


onsidering just the two party 
ase here, the setting 
an be extended to a multi-party 
ase by assuming

that ea
h user has its own publi
, se
ret key pair.

We use the term publi
 key based authenti
ated en
ryption (abbreviated to PKAE) s
hemes to refer to

s
hemes whose goal is to provide both priva
y and authenti
ity in the publi
 key setting. Authenti
ated

en
ryption s
hemes 
an also be viewed as en
ryption s
hemes with an added se
urity goal of authenti
ity.

1.1 Se
urity notions for publi
 key based authenti
ated en
ryption s
hemes

Priva
y. We 
onsider priva
y under both 
hosen-plaintext and 
hosen-
iphertext atta
ks. Noti
e that,

unlike the usual publi
 key en
ryption s
hemes, en
ryption in an authenti
ated en
ryption s
heme is

done based on a sender's se
ret key as well as a re
eiver's publi
 key, and hen
e an adversary that does

not have its own publi
, se
ret key pair 
annot en
rypt a message of its 
hoi
e using the publi
 key of

the re
eiver only. Therefore, in order to model a 
hosen-plaintext atta
k, it is not suÆ
ient to provide

a

ess to a re
eiver's publi
 key. Adopting the left-or-right indistinguishability notion (IND-CPA) of

the symmetri
 setting [3℄ to the publi
 key setting, we model the 
hosen-plaintext atta
k by allowing an

adversary a

ess to a left-or-right en
ryption ora
le. For the notion of priva
y under 
hosen-
iphertext

atta
k (i.e. IND-CCA), we allow a

ess to a de
ryption ora
le in addition to the left-or-right en
ryption

ora
le, following [3℄. Be
ause we allow a de
ryption ora
le a

ess to the adversary, we 
onsider an

adversary who has its own publi
, se
ret key pair. In this 
ase, even though the adversary might not

be able to generate a 
iphertext that is valid with respe
t to the publi
 key of a parti
ular sender, it

may be able to generate a 
iphertext that is 
onsidered valid with respe
t to its own publi
 key. This

might make a di�eren
e in the adversary's ability to atta
k the given s
heme in the IND-CCA sense.

Authenti
ity. Se
urity regarding authenti
ity in the symmetri
 setting is normally measured by

\unforgeability" by an adversarial third-person (meaning, ex
luding the sender and re
eiver) who is

allowed a 
hosen message atta
k. Sin
e the sender and re
eiver both share the same key, there is no

3



distin
tion between the sender and re
eiver in their ability to 
reate valid 
iphertexts. However, in the

publi
 key setting, there is a distin
tion |only a sender has all the information (i.e. the sender's se
ret

key and the re
eiver's publi
 key) to 
reate a valid (authenti
) 
iphertext. Hen
e, an adversary against

a sender's authenti
ity may be a re
eiver as well as a third-person. Note, however, that a re
eiver and

third-person may not have the same ability in forging a sender's 
iphertext. This is be
ause the re
eiver's

key is also involved in 
reating valid 
iphertexts and by 
reating and manipulating its own key pair,

the re
eiver may be able to 
ome up with a forgery whi
h a third-person adversary 
annot. Re
e
ting

this di�eren
e into the unforgeability notion, we divide the notion into two parts: re
eiver unforgeability

(RUF) and third-person unforgeability (TUF). In the third-person unforgeability notion, whi
h is the

usual notion for authenti
ity, the goal of an adversary is to make the intended re
eiver believe that

the forgery it re
eived has indeed 
ome from the original sender. In the re
eiver unforgeability notion,

however, the goal of an adversary (i.e. re
eiver) is to 
onvin
e a \third-party" (e.g. a judge) that a

forgery it 
reated has indeed 
ome from the original sender. We note that this notion 
an model what

is usually 
alled \non-repudiation" for authenti
ated en
ryption s
hemes in the publi
 key setting.

In the atta
k models for both notions, the adversary is allowed a 
hosen-message atta
k. Addition-

ally, in the re
eiver unforgeability atta
k model, the adversary (re
eiver) is allowed to 
reate its own key

pair initially, and 
hange its key pair later when it outputs a forgery so that its forgery is de
rypted and

veri�ed using the new key pair. This models the versatility of the publi
 key setting where it is possible

for a party to register its own publi
 key with a 
erti�
ation authority (CA) and later re-register a dif-

ferent publi
 key without being dete
ted by others. (Although asso
iating timestamps with 
iphertexts

may help avoid this type of atta
k, it may not always be possible. Hen
e, we allow this type of atta
k

for generality.) We remark that this kind of atta
k has appeared in the literature [2, 6℄. The third-

person unforgeability models unforgeability in the usual setting (similar to the symmetri
 setting). In

both models, su

ess of an adversary is measured by its ability to output a \new" and \valid" forgery.

Depending on the de�nition of \newness", the forgery is further divided into two 
ases: 
iphertext and

plaintext. A forgery of a \new" 
iphertext indi
ates that the forgery 
iphertext output by the adversary

is never output by the ora
le given to the adversary while a forgery of a \new" plaintext indi
ates that

the plaintext 
orresponding to the forgery 
iphertext was never queried by the adversary to the ora-


le. Combining the re
eiver and third-person unforgeability (RUF, TUF) with 
iphertext and plaintext

forgery (CTXT, PTXT), we get the following four notions: RUF-CTXT, RUF-PTXT, TUF-CTXT,

and TUF-PTXT. We note that the third-person unforgeability notions (TUF-CTXT and TUF-PTXT)

in the publi
 key setting are analogous to the integrity notions (INT-CTXT and INT-PTXT) in the

symmetri
 setting shown in [5℄, while re
eiver unforgeability notions (RUF-CTXT and RUF-PTXT)

are new and apply only to the publi
 key setting.

1.2 Relations among the se
urity notions

Figure 1 depi
ts the relations among the new notions (RUF-CTXT, RUF-PTXT, TUF-CTXT, TUF-

PTXT) and the existing notions (IND-CCA, IND-CPA) presented in the style of [4, 5℄. An impli
ation

A! B means that all s
hemes se
ure in the sense of A are also se
ure in the sense of B. A separation

A 6! B means that there exists a s
heme that is se
ure in the sense of A but not in the sense of B.

Sin
e TUF-CTXT and TUF-PTXT are analogous to INT-CTXT and INT-PTXT in the symmetri


setting, the relations among them are not expli
itly proved in this paper; instead we 
ite the papers

that establish the relations. We 
ombine IND-CPA with the unforgeability notions in Figure 1 in order

to relate the 
ombined se
urity with priva
y notions (i.e. IND-CPA, IND-CCA).

Note the horizontal relations that indi
ate that the re
eiver unforgeability properties are in general

stronger than the third-person unforgeability |this is expe
ted from the de�nitions of their atta
k

models, where an adversarial re
eiver is given more \power" than an adversarial third-person. More

4



IND-CCA TUF-CTXT ^ IND-CPA RUF-CTXT ^ IND-CPA

IND-CPA TUF-PTXT ^ IND-CPA RUF-PTXT ^ IND-CPA

3.5

3.5

[5℄

[4℄

3.2

3.1

3.2

3.1

[5℄ 3.33.4

Figure 1: Relations among se
urity notions for publi
 key based authenti
ated en
ryption

s
hemes. An arrow denotes an impli
ation while a hat
hed arrow denotes a separation. The solid arrows

indi
ate relations proved in this paper with the annotations 
orresponding to the propositions, and dotted arrows

indi
ate existing relations (adapted to the publi
 key setting des
ribed in this paper) annotated with 
itations.

interesting relations are shown between RUF-CTXT and RUF-PTXT notions |unlike the third-person


ase (where TUF-CTXT is a stronger notion than TUF-PTXT), the two notions RUF-CTXT and

RUF-PTXT are not 
omparable, meaning the relative strengths between the two notions 
annot be

determined be
ause a separation exists in both dire
tions. (Note that, although not expli
itly shown in

Figure 1, RUF-PTXT does not imply RUF-CTXT be
ause otherwise, by following arrows, we would get

RUF-PTXT ! TUF-CTXT, 
ontradi
ting the stated separation.) This means that both RUF-CTXT

and RUF-PTXT se
urity (along with the IND-CCA se
urity) need to be shown in order to prove that

a s
heme is se
ure for all notions.

In the symmetri
 setting, IND-CCA is implied by the 
ombined notions of IND-CPA and INT-CTXT

[13, 5℄. However, in the publi
 key setting, IND-CCA is not implied by IND-CPA and RUF-CTXT

(whi
h is a stronger notion than TUF-CTXT, the asymmetri
 
ounterpart of INT-CTXT). This is an

important distin
tion that exists between the symmetri
 setting and the publi
 key setting.

1.3 Generi
 
omposition of en
ryption and signature s
hemes

One of the most straightforward methods to design an authenti
ated en
ryption s
heme in the publi
 key

setting is perhaps to \
ombine" the en
ryption and signature s
hemes in some \generi
" way (whi
h is


alled \generi
 
omposition", following [5℄). We examine the se
urity of three possible ways to 
ombine

the en
ryption and signature s
hemes: En
rypt-and-Sign plaintext, Sign-then-En
rypt, and En
rypt-

then-Sign. The three methods are 
onstru
ted based on a publi
 key based en
ryption s
heme and a

signature s
heme. The En
rypt-and-Sign method en
rypts the plaintext and appends the signature of

the plaintext. The Sign-then-En
rypt method appends a signature to the plaintext and then en
rypts

the plaintext and the signature together. The En
rypt-then-Sign method en
rypts the plaintext to get

a 
iphertext C and then appends the signature of C to the 
iphertext.

The summary of the results obtained from se
urity analyses of the 
onstru
tions is displayed in

Figure 2 and Figure 3. The results shown in Figure 2 are obtained by assuming that the base signature

s
heme is \weakly unforgeable" (WUF-CMA), while those shown in Figure 3 are obtained by assum-

ing that the base signature s
heme is \strongly unforgeable" (SUF-CMA). The notions for signature

s
hemes are adopted from the MAC se
urity in [5℄. In both �gures, the se
urity assumption on the base

en
ryption s
heme is 
hosen-plaintext se
urity (IND-CPA). Strong unforgeability requires that it be


omputationally infeasible for an adversary to forge a \new" message, tag pair under a 
hosen message

atta
k. What is di�erent from the standard notion, weak unforgeability under 
hosen-message atta
k,

is that the message does not need to be \new" as long as the tag is \new", meaning either the message

or the tag needs to be new. In both �gures, \se
ure" means that the s
heme is shown to meet the

se
urity notion in question under the above-mentioned assumptions, while \inse
ure" means that there

exist some IND-CPA se
ure en
ryption s
heme and some signature s
heme unforgeable under 
hosen-

message atta
k su
h that the PKAE s
heme that is 
onstru
ted from them does not meet the se
urity

5



Composition Priva
y Authenti
ity

Method IND-CPA IND-CCA TUF-PTXT TUF-CTXT RUF-PTXT RUF-CTXT

En
rypt-and-Sign inse
ure inse
ure se
ure inse
ure se
ure inse
ure

Sign-then-En
rypt se
ure inse
ure se
ure inse
ure se
ure inse
ure

En
rypt-then-Sign se
ure inse
ure se
ure inse
ure inse
ure inse
ure

Figure 2: Summary of se
urity results for the 
omposed PKAE s
hemes under the assumptions that the base

signature s
heme is weakly unforgeable (WUF-CMA) and the base en
ryption s
heme is IND-CPA se
ure. The

shaded regions indi
ate the new or di�erent results 
ompared to those shown for the symmetri
 setting [5℄.

Composition Priva
y Authenti
ity

Method IND-CPA IND-CCA TUF-PTXT TUF-CTXT RUF-PTXT RUF-CTXT

En
rypt-and-Sign inse
ure inse
ure se
ure inse
ure se
ure inse
ure

Sign-then-En
rypt se
ure inse
ure se
ure inse
ure se
ure inse
ure

En
rypt-then-Sign se
ure inse
ure se
ure se
ure inse
ure se
ure

Figure 3: Summary of se
urity results for the 
omposed PKAE s
hemes under the assumptions that the base

signature s
heme is strongly unforgeable (SUF-CMA) and the base en
ryption s
heme is IND-CPA se
ure. The

shaded regions indi
ate the new or di�erent results 
ompared to those shown for the symmetri
 setting [5℄.

notion in question.

Atta
ks on the proto
ols that en
rypt before signing are presented in [2, 6℄, whi
h in
ludes an

atta
k against RUF-PTXT of the s
hemes 
onstru
ted via the En
rypt-then-Sign method, and hen
e,

the Sign-then-En
rypt method has been 
onsidered to be a better method for 
onstru
ting PKAE

s
hemes. However, a drawba
k in the Sign-then-En
rypt method is that the 
iphertext is not publi
ly

veri�able. A 
iphertext is publi
ly veri�able if the validity of the 
iphertext 
an be veri�ed using the

publi
 information only. Publi
 veri�ability of 
iphertexts may be useful when a third-party needs to

distinguish invalid 
iphertexts from valid ones, and network �ltering by �rewalls shown in [8℄ is one

su
h example. Hen
e, for some appli
ations like �rewall �lters, the Sign-then-En
rypt method may not

be appropriate. Also, the Sign-then-En
rypt method provides neither TUF-CTXT nor RUF-CTXT.

Regarding priva
y, a stronger property su
h as IND-CCA is not obtained in general from a weaker

property like IND-CPA using either method. Furthermore, it turns out that the En
rypt-then-Sign

method does not provide IND-CCA se
urity even when the base en
ryption s
heme has a stronger

se
urity property like IND-CCA. The result signi�
antly di�ers from the symmetri
 key 
ase where

the En
rypt-then-MAC method provides IND-CCA se
urity based only on the IND-CPA and SUF-

CMA assumptions on the base primitives [5℄. This implies that none of the three 
omposition methods

provides a PKAE s
heme that is se
ure under all notions de�ned in this paper even when we make

stronger assumptions on the base primitives. However, this does not mean that we 
annot 
onstru
t

any s
heme that is se
ure under all notions. In fa
t, we show below that the En
rypt-then-Sign method


an be modi�ed so as to provide se
urity in all notions given in this paper under appropriate assumptions.

We also show that an eÆ
ient s
heme with \reasonable" se
urity gurantees 
an be 
onstru
ted when

we 
onsider a spe
i�
 setting like a DiÆe-Hellman (dis
rete-log) based key setting.

1.4 Generi
 and spe
i�
 
onstru
tions a
hieving se
urity and eÆ
ien
y

The En
rypt-then-Sign method 
an be modi�ed so as to give a generi
 
onstru
tion that is se
ure for

all notions in
luding IND-CCA and RUF-PTXT, for whi
h the original method is not se
ure. The

modi�
ation is simple: for IND-CCA se
urity, en
rypt the sender's publi
 key together with the plain-

text, and for RUF-PTXT se
urity, sign the re
eiver's publi
 key together with the 
iphertext. These

6



Constru
tion Priva
y Authenti
ity

Method IND-CPA IND-CCA TUF-PTXT TUF-CTXT RUF-PTXT RUF-CTXT

ESSR se
ure se
ure se
ure se
ure se
ure se
ure

DHETM se
ure se
ure se
ure se
ure inse
ure inse
ure

Figure 4: Summary of se
urity results for the two example PKAE s
hemes. The assumptions for ESSR is that

the base publi
 key en
ryption s
heme is IND-CCA se
ure, and the base signature s
heme is strongly unforgeable.

The assumptions for DHETM is that the base symmetri
 en
ryption s
heme is IND-CPA se
ure, and the base

MAC is strongly unforgeable, and a hash of a DiÆe-Hellman based key looks random.

modi�
ations are made from observing that 
hanging the sender or re
eiver keys asso
iated with the


iphertext is the main type of atta
ks against IND-CTXT and RUF-PTXT se
urity. The reason that

these modi�
ations in the En
rypt-then-Sign method result in IND-CCA and RUF-PTXT se
urity is

that they e�e
tively \bind" the publi
 keys of the sender and re
eiver to the 
iphertext so that the

mentioned type of atta
ks does not work any more. We 
all the s
heme 
onstru
ted based on this

modi�ed generi
 method ESSR (En
rypt Sender-key then Sign Re
eiver-key), and its se
urity results

are shown in Figure 4. Note that the se
urity assumption on the base en
ryption s
heme for ESSR is

IND-CCA, whi
h is stronger than that for the generi
 
omposition method. This might be 
onsidered

as a weakness in the s
heme. Re
all, however, that the En
rypt-then-Sign method does not provide

IND-CCA se
urity even under the IND-CCA assumption on the base en
ryption s
heme. Also, the

other methods do not provide TUF-CTXT se
urity regardless of the assumption on the base signature

s
heme. Hen
e, ESSR provides better se
urity guarantees than the s
hemes 
onstru
ted via the generi



omposition methods even if it 
omes at a 
ost of a strong assumption on the base en
ryption s
heme.

The s
heme DHETM (DiÆe-Hellman based En
rypt-Then-MAC) uses symmetri
 en
ryption and

MAC s
hemes whose keys are obtained from the 
omputed 
ommon key K by dividing it into two

parts. (The 
ommon key K = hash(g

x

a

x

b

) is 
omputed from the DiÆe-Hellman based keys (g

x

a

; x

a

)

and (g

x

b

; x

b

) of the sender and re
eiver, respe
tively.) After obtaining the keys for the symmetri


en
ryption and MAC s
hemes, authenti
ated en
ryption is done by en
rypting the plaintext to get

a 
iphertext C and appending a MAC of C. This 
onstru
tion 
an be viewed as an adaptation of

the asymmetri
 en
ryption s
heme \DHIES" [1℄ to the setting mentioned above in order to a
hieve

an additional goal of authenti
ity, as well as priva
y. The summary of its se
urity results are shown

in Figure 4. Note that this s
heme is more eÆ
ient than the generi
 s
hemes des
ribed earlier, and

with regard to priva
y, it a
hieves IND-CCA se
urity based on the weaker IND-CPA assumption (as

opposed to the IND-CCA assumption) on the base en
ryption s
heme. With regard to authenti
ity,

it a
hieves TUF-CTXT se
urity although it does not a
hieve the re
eiver unforgeability. In 
ase the

stronger authenti
ity property (i.e. re
eiver unforgeability) is not needed, this s
heme has pragmati


value due to its eÆ
ien
y and reasonable se
urity guarantees.

1.5 Related work

A 
omprehensive treatment of authenti
ated en
ryption (the goal of joint priva
y and authenti
ity) in

the symmetri
 setting is provided in [5℄. However, the se
urity notions 
annot just be lifted up to the

publi
 key setting due to asymmetry of this setting.

Constru
tions of authenti
ated en
ryption s
hemes with low 
ommuni
ation 
osts in the publi
 key

setting based on a dis
rete logarithm based signature s
heme are given in [12℄, however, without any

proofs of se
urity.

In [17℄, a primitive 
alled \sign
ryption" is introdu
ed for the �rst time, and two 
lever and eÆ
ient


onstru
tions based on (shortened) variants of the ElGamal signature s
heme are given as proposed

7



sign
ryption s
hemes. Also, some se
urity goals and se
urity arguments are made for the proposed


onstru
tions. Nevertheless, they are not ba
ked up by formal se
urity notions and proofs of se
urity.

Subsequently, in [14℄, the mentioned sign
ryption s
hemes are 
ryptanalyzed and an improvement is

suggested, whi
h in turn is 
ryptanalyzed in [11℄. However, most of these 
ryptanalysis 
laims are made

without 
lear atta
k models or de�nitions of the properties that they are violating.

The se
urity of a signed ElGamal en
ryption s
heme is analyzed in the random-ora
le and generi


model in [16℄; however, the goal of the s
heme is to provide priva
y, but not authenti
ity, and the

signature s
heme is used in order to provide priva
y under 
hosen-
iphertext atta
k. Its setting assumes

only the key pair of the re
eiver; hen
e, the signature s
heme in this 
ase does not involve the sender's

se
ret key.

2 De�nitions

This se
tion provides formal de�nitions for the notions of se
urity of a publi
 key based authenti
ated

en
ryption s
heme dis
ussed in Se
tion 1, and also of digital signature s
hemes. Asso
iated to ea
h

s
heme, ea
h notion of se
urity and ea
h adversary is an experiment, and based on that, an advantage.

The latter is a fun
tion of the se
urity parameter that measures the su

ess probability of the adversary.

Asymptoti
 notions of se
urity result by asking this fun
tion to be negligible for adversaries of time


omplexity polynomial in the se
urity parameter. Con
rete se
urity assessments are made by asso
iating

to the s
heme another advantage fun
tion that for ea
h value of the se
urity parameter and given

resour
es for an adversary returns the maximum, over all adversaries limited to the given resour
es, of

the advantage of the adversary.

We begin by des
ribing the syntax of a publi
 key based authenti
ated en
ryption s
heme, distin-

guishing syntax from the notions of se
urity.

2.1 Syntax of publi
 key based authenti
ated en
ryption s
hemes

The usual syntax of a publi
 key (or asymmetri
) en
ryption s
heme is that the re
eiver has a publi
,

se
ret key pair and en
ryption depends on the publi
 key while de
ryption depends on the se
ret key.

Here we wish to 
onsider a setting where both sender and re
eiver have their own publi
 and se
ret key

pairs. We 
onsider this setting in order to examine s
hemes whose goal is to a
hieve both priva
y and

authenti
ity in a publi
 key setting. This requires a 
hange in en
ryption s
heme syntax. A

ordingly,

we de�ne a publi
 key based authenti
ated en
ryption (PKAE) s
heme whi
h extends the usual publi


key en
ryption s
heme by addition of another key generation algorithm (i.e. a key generation algorithm

for the sender). Spe
i�
ally, we de�ne a publi
 key based authenti
ated en
ryption s
heme PKAE as

follows:

De�nition 2.1 [Publi
 key based authenti
ated en
ryption (PKAE)℄ A publi
 key based au-

thenti
ated en
ryption s
heme PKAE = (K




;K

s

;K

r

; E ;D) 
onsists of �ve algorithms as follows:

� The 
ommon key generation algorithm K




is randomized. It takes as input a se
urity parameter k

and returns some global information I ; we write I

R

 K




(k).

� The sender key generation algorithm K

s

is randomized. It takes as input some global information

I and returns a mat
hing publi
 and se
ret key pair (pk

s

; sk

s

) for the sender; we write (pk

s

; sk

s

)

R

 

K

s

(I).

� The re
eiver key generation algorithm K

r

is randomized. It takes as input some global information

I and returns a mat
hing publi
 and se
ret key pair (pk

r

; sk

r

) for the re
eiver; we write (pk

r

; sk

r

)

R

 

K

r

(I).
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� The en
ryption algorithm E is randomized. It takes as input a sender's se
ret key sk

s

, a sender's

publi
 key pk

s

, a re
eiver's publi
 key pk

r

and a plaintext M 2M, and it 
ips some 
oins internally,

and then it returns a 
iphertext C 2 C; we write C

R

 E

hsk

s

;pk

s

;pk

r

i

(M)

� The de
ryption algorithm D is deterministi
. It takes as input a re
eiver's se
ret key sk

r

, and a

string C to return either a pair (pk;M) or the distinguished symbol ?, where pk is a sender's publi


key and M is the 
orresponding plaintext; we write x D

sk

r

(C), where x is either (pk;M) or ?.

Above, M and C denote the message spa
e and the 
iphertext spa
e asso
iated to the s
heme,

respe
tively. We require that D

sk

r

(E

hsk

s

;pk

s

;pk

r

i

(M)) = (pk

s

;M) for all M 2M.

Dis
ussion of Syntax. The 
ommon key generation algorithm produ
es the global information that

is shared by everyone in the system. The global information I in
ludes a se
urity parameter, and

possibly some other information. For instan
e, in a DiÆe-Hellman based s
heme, I might in
lude a

global prime number and generator of a group whi
h all parties use to 
reate their keys. The presen
e

or absen
e of global information depends on ea
h individual s
heme. In 
ase a s
heme does not have any

global information, the 
ommon key generation algorithm 
an be just the identity fun
tion that outputs

the se
urity parameter that is given as its input. Note that this algorithm should also be in
luded

in the usual publi
 key based en
ryption s
heme syntax when dis
ussing its se
urity in an asymptoti


setting. Hen
e, this is not an added algorithm with respe
t to the usual publi
 key based en
ryption

s
heme syntax. The sender key generation algorithm is what is added in order to 
onsider the goal

of authenti
ity in a publi
 key setting. To generate an \authenti
" 
iphertext, a sender performs the

en
ryption operation on a plaintext based on its own key pairs as well as the publi
 key of the re
eiver.

Hen
e, the en
ryption algorithm takes as input the sender's key pair as well as the re
eiver's publi
 key.

For the goal of authenti
ity, the re
eiver should be able to know if a 
iphertext it re
eived is \valid" (i.e.

authenti
) or not. Sin
e there may be more than one sender who 
an send a 
iphertext to a re
eiver

using the re
eiver's publi
 key, the re
eiver needs to be able to know who the sender is in order to


he
k whether the 
iphertext is authenti
 with respe
t to the purported sender. We let the de
ryption

algorithm perform this fun
tionality by requiring it to output the sender's publi
 key (impli
itly telling

who is the sender), as well as the plaintext. In 
ase the 
iphertext is not valid (i.e. unauthenti
 with

respe
t to the purported sender), the de
ryption algorithm outputs the distinguished symbol ?. The

key expli
itly used in the de
ryption algorithm as input is just the se
ret key of the re
eiver, indi
ating

that the de
ryption algorithm does not initially know whi
h sender's publi
 key to use, but it somehow

extra
ts the needed information from the 
iphertext and returns the sender's publi
 key as part of the

output.

Verifiable publi
 key based authenti
ated en
ryption s
heme. Similarly to digital signature

s
hemes, whi
h allow publi
 veri�ability, a publi
 key based authenti
ated en
ryption s
heme may al-

low publi
 veri�ability by providing a veri�
ation algorithm that 
he
ks the validity of the 
iphertext

depending only on the publi
 information (su
h as the publi
 key of a sender or re
eiver). This is an

optional algorithm be
ause not all s
hemes may have publi
 veri�ability |whether or not a s
heme is

publi
ly veri�able depends on how it is 
onstru
ted| and we stress that publi
 veri�ability has to do

with fun
tionality rather than se
urity. We de�ne the veri�able publi
 key based authenti
ated en
ryp-

tion as follows: A veri�able publi
 key based authenti
ated en
ryption s
heme (VPKAE) is a 6-tuple

(K




;K

s

;K

r

; E ;D;V), where (K




;K

s

;K

r

; E ;D) is a PKAE and V is a deterministi
, publi
 veri�
ation

algorithm. The latter takes a re
eiver's publi
 key pk

r

, and a string C to return either pk or ?; we

write y  V

pk

r

(C), where y is either pk or ?. We require that V

pk

r

(C) output pk if D

sk

r

(C) = (pk;M)

for some M 2M and ? otherwise.

Publi
 key (asymmetri
) en
ryption s
heme. A standard publi
 key based (or asymmetri
)

en
ryption s
heme, namely one where there is no sender key, 
an be re
overed as the spe
ial 
ase

9



where the sender key generation algorithm K

s

returns the empty string. Formally, we say that PE =

(K




;K

r

; E ;D) is a publi
 key (or asymmetri
) en
ryption s
heme if PKAE = (K




;K

s

;K

r

; E ;D) is a

PKAE s
heme where K

s

is the algorithm whi
h, on any input, returns the empty string. When the

sender key pair (pk

s

; sk

s

) is the empty string, we may also omit it wherever appli
able. For example,

the de
ryption algorithm D

sk

r

(�) will return M instead of a pair (pk

s

;M) in the standard asymmetri


en
ryption s
heme.

2.2 Priva
y of publi
 key based authenti
ated en
ryption s
hemes

PKAE s
hemes are di�erent from the usual publi
 key en
ryption s
hemes in that the en
ryption

algorithm is 
omputed based on a sender's se
ret key as well as a re
eiver's publi
 key. This means

that in order to send a message using an authenti
ated en
ryption s
heme, a party must have its own

publi
, se
ret key pair. It is not suÆ
ient for it to have a

ess to the re
eiver's publi
 key. Be
ause of

this, we allow the adversary a

ess to a left-or-right (LR) en
ryption ora
le, modeling a 
hosen-plaintext

atta
k as in the symmetri
 setting [3℄, instead of as in the publi
 key setting [9, 4℄. Note that this is

quantitatively a stronger atta
k model than the usual one [4℄, where the adversary is given only the

publi
 key for the en
ryption s
heme and no a

ess to the left-or-right en
ryption ora
le. For IND-CPA,

a 
hallenge bit b is 
hosen, the adversary is given publi
 information (in
luding publi
 keys), and 
an

query, adaptively and as often as it likes, the left-or-right en
ryption ora
le. The format of ea
h query

to the left-or-right en
ryption ora
le is mandated to be a pair (x

0

; x

1

) of equal length messages. The

adversary wins if it 
an guess b. For IND-CCA the adversary gets, in addition, a de
ryption ora
le with

the restri
tion that it is not allowed to query it on a 
iphertext previously returned by the left-or-right

en
ryption ora
le.

De�nition 2.2 [Priva
y of publi
 key based authenti
ated en
ryption s
hemes℄ Let PKAE =

(K




;K

s

;K

r

; E ;D) be a PKAE s
heme. Let b 2 f0; 1g and let k 2 N be a se
urity parameter. Let A


pa

and

A



a

be adversaries that output a bit d. The left-or-right (LR) en
ryption ora
le E

hsk

s

;pk

s

;pk

r

i

(LR(�; �; b)),

given to A


pa

and A



a

, takes as input a pair (x

0

; x

1

) of equal-length messages, 
omputes a 
iphertext

Y  E

hsk

s

;pk

s

;pk

r

i

(x

b

), and returns Y to the adversary. The de
ryption ora
le D

sk

r

(�), given to A



a

,

takes as input a 
iphertext C, 
omputes (pk;M)  D

sk

r

(C), and returns (pk;M) to the adversary.

Now, we 
onsider the following experiments:

Experiment Exp

ind-
pa-b

PKAE;A


pa

(k)

I

R

 K




(k)

(pk

s

; sk

s

)

R

 K

s

(I)

(pk

r

; sk

r

)

R

 K

r

(I)

d A

E

hsk

s

;pk

s

;pk

r

i

(LR(�;�;b))


pa

(I ; pk

s

; pk

r

)

Return d

Experiment Exp

ind-

a-b

PKAE;A



a

(k)

I

R

 K




(k)

(pk

s

; sk

s

)

R

 K

s

(I)

(pk

r

; sk

r

)

R

 K

r

(I)

d A

E

hsk

s

;pk

s

;pk

r

i

(LR(�;�;b));D

sk

r

(�)



a

(I ; pk

s

; pk

r

)

Return d

Above it is mandated that A



a

never queries the de
ryption ora
le D

sk

r

(�) on a 
iphertext previously

output by the LR-en
ryption ora
le E

hsk

s

;pk

s

;pk

r

i

(LR(�; �; b)), and that the queries made to the LR-

en
ryption ora
le always 
onsist of messages of equal length.

We de�ne the advantages of the adversaries via

Adv

ind-
pa

PKAE ;A


pa

(k) = Pr

h

Exp

ind-
pa-1

PKAE ;A


pa

(k) = 1

i

� Pr

h

Exp

ind-
pa-0

PKAE ;A


pa

(k) = 1

i

Adv

ind-

a

PKAE ;A



a

(k) = Pr

h

Exp

ind-

a-1

PKAE ;A



a

(k) = 1

i

� Pr

h

Exp

ind-

a-0

PKAE ;A



a

(k) = 1

i

:
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We de�ne the advantage fun
tions of the s
heme as follows. For any integers t; q

e

; q

d

; �

e

; �

d

� 0,

Adv

ind-
pa

PKAE

(k ; t; q

e

; �

e

) = max

A


pa

fAdv

ind-
pa

PKAE ;A


pa

(k)g

Adv

ind-

a

PKAE

(k ; t; q

e

; q

d

; �

e

; �

d

) = max

A



a

fAdv

ind-

a

PKAE ;A



a

(k)g

where the maximum is over all adversaries with time 
omplexity t, ea
h making at most q

e

queries to

the E

hsk

s

;pk

r

i

(LR(�; �; b)) ora
le, totaling at most �

e

bits, and, in the ind-

a 
ase, also making at most q

d

queries to the D

sk

r

(�) ora
le, totaling at most �

d

bits. The s
heme PKAE is said to be IND-CPA se
ure

(resp. IND-CCA se
ure) if the advantage fun
tion Adv

ind-
pa

PKAE ;A

(�) (resp. Adv

ind-

a

PKAE ;A

(�)) is negligible for

any adversary A whose time 
omplexity is polynomial in the se
urity parameter k.

2.3 Authenti
ity of publi
 key based authenti
ated en
ryption s
hemes

Usually, in the symmetri
 setting, the adversary is a third-person that is wat
hing over the 
ommuni
a-

tion link between the sender and re
eiver, who share the same key. The se
urity regarding authenti
ity

in this 
ase is normally measured by \unforgeability" by an adversarial third-person (meaning, ex
luding

the sender and re
eiver). However, when we 
onsider a publi
 key setting where the sender and re
eiver

do not ne
essarily share the same key, the goal of authenti
ity 
an be divided further depending on the

adversarial power. For the s
hemes where only the sender's se
ret key is involved in 
reating authenti


data, (e.g. signature s
hemes), the adversary 
an be anyone (in
luding the intended re
eiver as well as

a third-person) who does not know the se
ret key of the sender. When a message is signed and sent to

an intended re
eiver, there is no di�eren
e between a third-person (who inter
epts the signed data) and

the re
eiver (who a
tually re
eives the data) in their ability to forge a signature. This is be
ause anyone


an verify the signature, and only the sender who owns its se
ret key 
an sign the data. However, when

we 
onsider a PKAE s
heme, where the 
iphertext is generated based not only on the sender's key but

also on the re
eiver's publi
 key, there may be a distin
tion between a third-person and re
eiver in their

ability to forge a 
iphertext. What distinguishes a re
eiver from a third-person is that the re
eiver's

publi
 key is involved in generating the 
iphertext, and only the re
eiver knows its own se
ret key.

Furthermore, the re
eiver is the one who 
reated its own publi
, se
ret key pair in the �rst pla
e and


an 
hange it later. Taking this distin
tion into a

ount, we divide the goal of authenti
ity into two

parts: unforgeability by a third-person and unforgeability by a re
eiver. In a third-person atta
k model

against unforgeability, the goal of the adversary is to 
reate a \new forgery" so that the re
eiver may

a

ept it as valid. This resembles the usual atta
k model for what is typi
ally 
alled \authenti
ity" or

\data integrity" in the symmetri
 setting. In a re
eiver atta
k model, the goal of the adversary may

be to 
reate a forgery so that a third party, su
h as a judge, may a

ept it as valid. Proving to a third

party that a message has been originated from the purported sender 
an be 
onsidered as the goal of so


alled \non-repudiation", whi
h is a term 
ommonly used in the literature as an additional se
urity goal

(other than \unforgeability") for digital signature s
hemes. Although there exist formal se
urity notions

for authenti
ity of digital signature s
hemes, no formal se
urity notions for authenti
ated en
ryption

s
hemes exist, regarding the goal of authenti
ity.

The usual goal of integrity against a third-person adversary for authenti
ated en
ryption s
hemes in

the publi
 key setting 
an be \lifted up" from that in the symmetri
 setting [5℄, due to their resemblan
e.

However, the goal of unforgeability against an adversarial re
eiver (i.e. non-repudiation) has not been

formally modeled before for authenti
ated en
ryption s
hemes and is an additional goal that is only

appli
able in the asymmetri
 (publi
 key) setting. We 
all this goal \re
eiver unforgeability" and

des
ribe the atta
k model and the goal of an adversary in more detail below.
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Re
eiver unforgeability. A re
eiver adversary publishes its publi
 key by registering it with a CA

(
erti�
ation authority), and a sender en
rypts a message using a PKAE s
heme based on its own keys

and the publi
 key of the re
eiver. We allow a 
hosen message atta
k, modeling the 
ase where the

re
eiver is able to get the sender to en
rypt any message that the re
eiver asks to en
rypt. At some

point, we allow the re
eiver to 
hange its key pair, and publish a new publi
 key by re-registering with

the CA. The goal of the re
eiver adversary is to 
ome up with a 
iphertext so that a third-party (e.g. a

judge) will a

ept it as \valid", meaning it 
ame from the real sender it 
laims to have 
ome from. The

re
eiver may 
hoose not to 
hange its key pair, but we allow the 
hange of keys for 
exibility on the

re
eiver part. Having a

urate timestamps on messages (
iphertexts) and keys 
an make it possible to

determine if a key was registered before or after the given 
iphertext was generated, but it may impose

additional burdens of 
lo
k syn
hronization and authenti
ation, and it may not always be possible.

Hen
e, we allow this type of key 
hange atta
ks in order to a
hieve a stronger se
urity guarantee in

that aspe
t. Also, we note that this type of atta
ks has appeared in the literature [2, 6℄, whi
h partially

motivated our formalization. For an adversary to be 
onsidered su

essful in forging a 
iphertext, in

addition to the \validity" requirement, the 
iphertext itself needs to be \fresh" |meaning, it was not

legitimately generated (i.e. en
rypted) by the sender. This is 
onsidered one type of su

essful forgery,

and we 
all the se
urity against this type of forgery \unforgeability of 
iphertext". However, there

is another type of forgery, whi
h may deem to be more useful and meaningful in pra
ti
e. That is a

forgery of the plaintext 
orresponding to the 
iphertext. The adversary is 
onsidered su

essful in this


ase if it 
an 
ome up with a \valid" 
iphertext whose 
orresponding plaintext has not been asked to

be en
rypted by the sender. We 
all se
urity against this type of forgery \unforgeability of plaintext".

There remains an important issue of how the adversary will be able to 
onvin
e a third-party (
alled

\judge" hereafter) to a

ept the forgery as valid. One of the simplest methods for the adversary may

be to give the judge its de
ryption key, so that it may freely de
rypt and 
he
k the validity just like the

adversary 
an. All the adversary needs to do is 
onvin
e the judge that its se
ret key really mat
hes its

publi
 key (i.e. their mathemati
al relationship holds), whi
h must be veri�ed in some way. Of 
ourse,

if the se
ret key is given to the judge, the adversary would not be able to reuse it again (assuming

the judge 
annot be trusted not to reveal or use the se
ret key). This may be 
onsidered to be too

mu
h to ask from an adversary, but this is generally appli
able to most PKAE s
hemes and fa
ilitates

se
urity analysis in a uniform and simple way. We are aware that this makes the se
urity notion

weaker, but it enables us to provide a framework with whi
h we 
an analyze se
urity with regard to

re
eiver unforgeability under one simple and uniform de�nition for all PKAE s
hemes, regardless of their


onstru
tion methods. Other more robust and stronger de�nitions may be built upon this framework.

There may be a number of other ways to 
onvin
e a judge about the validity of the 
iphertext. For

example, if the PKAE s
heme in question is publi
ly veri�able, validity of the 
iphertext 
an be proven

without revealing the se
ret key of the re
eiver adversary. It may also be possible for an adversary to


onvin
e a judge that the plaintext 
orresponding to the forgery 
iphertext is valid without revealing any

information about its se
ret key |for example, performing a zero-knowledge proto
ol with the judge if

it's appli
able for the s
heme. Note however that these methods may not be universally appli
able to all

PKAE s
hemes. Appli
ability of these methods are dependent on how ea
h s
heme is 
onstru
ted. All

these methods may be 
aptured as \forgery veri�
ation pro
edures" and having a \forgery veri�
ation

pro
edure" for ea
h PKAE s
heme may be one solution to this problem. However, it is not 
lear how

this 
an be systemati
ally analyzed and having a di�erent veri�
ation method for ea
h PKAE s
heme

may make it impossible to 
ompare se
urity a

ross the s
hemes. Note that having di�erent methods

for 
onvin
ing a judge 
an make a di�eren
e in the se
urity results for the same s
heme. Sin
e one of our

goals is to provide 
omparative se
urity analyses on di�erent methods of 
onstru
ting PKAE s
hemes,

having a uni�ed measure of se
urity is important. Although there may be better uniform methods for


onvin
ing a judge about the validity of the 
iphertext than simply giving him the se
ret de
ryption
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Experiment Exp

tuf-ptxt

PKAE;F

p

(k)

I  K




(k)

(pk

s

; sk

s

)

R

 K

s

(I) ; (pk

r

; sk

r

)

R

 K

r

(I)

C  F

E

hsk

s

;pk

s

;pk

r

i

(�)

p

(I ; pk

s

; pk

r

)

x D

sk

r

(C) ; If x = ? then return 0

Parse x as (pk;M)

If pk = pk

s

and M was never

a query to E

hsk

s

;pk

s

;pk

r

i

(�)

then return 1 else return 0

Experiment Exp

tuf-
txt

PKAE;F




(k)

I  K




(k)

(pk

s

; sk

s

)

R

 K

s

(I) ; (pk

r

; sk
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(C; pk

r

0

; sk

r

0

) B

E

hsk

s

;pk

s

;pk

r

i

(�)

p

2

(st ; pk
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and M was never

a query to E

hsk

s

;pk

s

;pk
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a response of E

hsk

s
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then return 1 else return 0

Figure 5: The experiments for De�nition 2.3 that de�nes notions of authenti
ity of a PKAE s
heme

PKAE = (K




;K

s

;K

r

; E ;D). The variable st denotes internal state information.

key, it is not 
lear at this point, and pursuing this issue is left for future resear
h.

Summary. The di�eren
e between a third-person and a re
eiver is in its ability to 
reate and 
hange its

own key pair. The re
eiver (to whom a sender sends a 
iphertext) 
an 
reate its own publi
, se
ret key

pair and later 
hange it. The third-person 
annot do so. In both 
ases, the adversary is allowed a 
hosen

message atta
k modeled by giving it a

ess to an en
ryption ora
le. Su

ess is measured by its ability

to output a \new" forgery that makes the de
ryption algorithm output a plaintext rather than reje
t by

outputting ?. Depending on the de�nition of \newness" of the forgery, we divide the forgery into two

types: 
iphertext forgery (CTXT) and plaintext forgery (PTXT). A \
iphertext forgery" means that

the 
iphertext output by the adversary is di�erent from the 
iphertexts obtained from the en
ryption

ora
le, and a \plaintext forgery" means that the plaintext 
orresponding to the 
iphertext output by

the adversary is di�erent from the plaintext queries made by the adversary to the en
ryption ora
le.

Combining the re
eiver and third-person unforgeability (abbreviated to RUF, TUF) with 
iphertext and

plaintext forgery (abbreviated to CTXT, PTXT), we get the following four notions: RUF-CTXT, RUF-

PTXT, TUF-CTXT, and TUF-PTXT. Note that the symmetri
 setting 
ounterparts of TUF-CTXT

and TUF-PTXT are INT-CTXT and INT-PTXT, de�ned in [5℄. The formal de�nitions of authenti
ity

(i.e. the four unforgeability notions) are given below.

De�nition 2.3 [Authenti
ity of a PKAE s
heme℄ Let PKAE = (K




;K

s

;K

r

; E ;D) be a PKAE

s
heme, and let k 2 N be a se
urity parameter. Let F

p

; F




; B

p

; B




be adversaries. Consider the experi-

ments shown in Figure 5.

The experiments Exp

tuf-ptxt

PKAE ;F

p

(k) and Exp

tuf-
txt

PKAE ;F




(k) model the forgery atta
ks by a third-person

who is given the publi
 information only, and a valid forgery is measured by the \newness" of either

the plaintext or the 
iphertext, respe
tively. The experiments Exp

ruf-ptxt

PKAE ;B

p

(k) and Exp

ruf-
txt

PKAE ;B




(k)

model the forgery atta
ks (of plaintext and 
iphertext, respe
tively) by a re
eiver, where the adversary
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reates its own key pair in the �rst stage and is allowed to 
hange its key pair in the se
ond stage. It

is mandated that a \valid" publi
, se
ret key pair relationship hold for every key pair 
reated by an

adversary if su
h a relationship should exist for a given s
heme.

We de�ne the advantages of the adversaries via,

Adv

xxx-yyyy

PKAE ;F

(k) = Pr

h

Exp

xxx-yyyy

PKAE ;F

(k) = 1

i

where xxx 2 ftuf; rufg and yyyy 2 fptxt; 
txtg.

We de�ne the advantage fun
tions of the s
heme for third-person/re
eiver unforgeability of plain-

text/
iphertext (TUF-PTXT, TUF-CTXT, RUF-PTXT, RUF-CTXT resp.) as follows. For t; q; � � 0,

and xxx 2 ftuf; rufg and yyyy 2 fptxt; 
txtg let

Adv

xxx-yyyy

PKAE

(k ; t; q; �) = max

F

fAdv

xxx-yyyy

PKAE ;F

(k)g

where the maximum is taken over all F with time 
omplexity t, making at most q queries to the ora
le

E

hsk

s

;pk

s

;pk

r

i

(�), su
h that the sum of the lengths of all ora
le queries is at most � bits. The s
heme PKAE

is said to be XXX-YYYY se
ure, where XXX 2 fTUF;RUFg and Y Y Y Y 2 fPTXT;CTXTg, if the

fun
tion Adv

xxx-yyyy

PKAE ;F

(�), where xxx 2 ftuf; rufg and yyyy 2 fptxt; 
txtg, is negligible for any adversary

F whose time 
omplexity is polynomial in the se
urity parameter k.

2.4 Signature s
hemes

Syntax of Signature s
hemes. A digital signature s
heme DS = (K




;KS ;S;VS) 
onsists of four

algorithms. The randomized 
ommon key generation algorithm K




takes as input the se
urity parameter

k and returns some global information I ; we write I

R

 K




(k). The randomized signature key generation

algorithm KS takes as input some global information I and returns a publi
 and se
ret key pair (pk; sk);

we write (pk; sk)

R

 KS(I). The randomized or deterministi
 signing algorithm S takes as input sk

and a message M to be signed and returns a signature � ; we write �

R

 S

sk

(M). The deterministi


signature veri�
ation algorithm VS takes as input pk, a message M and a 
andidate signature � for

M and returns a bit b 2 f0; 1g; we write b  VS

pk

(M;�). We require that for all (pk; sk) and M ,

VS

pk

(M;S

sk

(M)) = 1.

Se
urity Notions of signature s
hemes. We re
all the standard de�nition of se
urity (\unforge-

ability") of a signature s
heme under 
hosen-message atta
k (
f. [10℄), and adapt a stronger notion of

se
urity (\strong unforgeability") de�ned for message authenti
ation s
hemes [5℄ to signature s
hemes.

Se
urity for signature s
hemes 
onsiders an adversary F who is allowed a 
hosen-message atta
k, mod-

eled by allowing it a

ess to an ora
le for S

sk

(�). F is \su

essful" if it 
an make the verifying algorithm

VS

pk

(�; �) a

ept a pair (M;�) that was not \legitimately produ
ed." There are two possible 
onven-

tions depending on the meaning of \legitimately produ
ed", leading to two measures of advantage. The

\standard" measure is that the message M is \new," meaning F never made query M to its signing

ora
le. We 
all this se
urity measure weak unforgeability under 
hosen-message atta
k (WUF-CMA). A

more stringent measure, 
alled strong unforgeability under 
hosen-message atta
k (SUF-CMA), 
onsid-

ers the adversary su

essful even if the message is not new, as long as the signature is new. This means

that the adversary wins as long as � was never returned by the signing ora
le in response to query M

(i.e. (M;�) as a pair is new). The formal de�nitions of these notions are given below.

De�nition 2.4 [Signature S
heme Se
urity℄ Let DS = (K




;KS;S;VS) be a digital signature

s
heme, and let k 2 N be a se
urity parameter. Let F be an adversary (forger) that has a

ess to

a signing ora
le S

sk

(�). Consider the following experiments:
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Experiment Exp

wuf-
ma

DS;F

(k)

I

R

 K




(k)

(pk; sk)

R

 KS(I)

(M;�) F

S

sk

(�)

(I ; pk)

If VS

pk

(M;�) = 1 and M was never

a query to the ora
le S

sk

(�)

then return 1 else return 0

Experiment Exp

suf-
ma

DS;F

(k)

I

R

 K




(k)

(pk; sk)

R

 KS(I)

(M;�) F

S

sk

(�)

(I ; pk)

If VS

pk

(M;�) = 1 and S

sk

(�) never

returned � on input M

then return 1 else return 0

We de�ne the advantages of adversaries via,

Adv

wuf-
ma

DS;F

(k) = Pr

h

Exp

wuf-
ma

DS;F

(k) = 1

i

Adv

suf-
ma

DS;F

(k) = Pr

h

Exp

suf-
ma

DS;F

(k) = 1

i

We de�ne the advantage fun
tions of the s
heme DS as follows. For any t; q; � � 0,

Adv

wuf-
ma

DS

(k ; t; q; �) = max

F

fAdv

wuf-
ma

DS;F

(k)g

Adv

suf-
ma

DS

(k ; t; q; �) = max

F

fAdv

suf-
ma

DS;F

(k)g

where the maximum is over all F with time 
omplexity t, making at most q ora
le queries to S

sk

(�),

su
h that the sum of the lengths of all queries is at most � bits. The s
heme DS is said to be WUF-

CMA se
ure (resp. SUF-CMA se
ure) if the advantage fun
tion Adv

wuf-
ma

DS;F

(�) (resp. Adv

suf-
ma

DS;F

(�)) is

negligible for any adversary F whose time 
omplexity is polynomial in the se
urity parameter k .

3 Relations among notions of unforgeability

In this se
tion, we provide formal statements of the results summarized in Figure 1. We start with

impli
ations �rst and then present separations.

The third-person unforgeability notions (TUF-CTXT and TUF-PTXT) in the publi
 key setting

are analogous to the integrity notions (INT-CTXT and INT-PTXT) in the symmetri
 setting shown in

[5℄. Sin
e the proofs for the separation and impli
ation relations between INT-CTXT and INT-PTXT

for the symmetri
 setting 
an be easily \lifted up" to the publi
 key setting, we omit the proofs for the

relations between TUF-PTXT and TUF-CTXT here, and move onto the other relations.

The impli
ation relations between RUF-CTXT and TUF-CTXT, and between RUF-PTXT and

TUF-PTXT shown in Proposition 3.1 
an be dire
tly obtained from their de�nitions. We prove the

impli
ation relations using the standard redu
tion arguments. A separation relation is shown by pre-

senting a s
heme that is se
ure under the assumed se
urity notion, and yet not se
ure under the other

se
urity notion.

There is an important distin
tion between the symmetri
 setting and the publi
 key setting regarding

the relationship between unforgeability of 
iphertext and 
hosen-
iphertext atta
k se
urity. Re
all that,

in the symmetri
 setting, the 
hosen-
iphertext atta
k se
urity (IND-CCA) is implied by the 
ombined

se
urity of IND-CPA and INT-CTXT [13, 5℄. Note, however, that in the publi
 key setting, IND-CCA is

not implied by the 
ombination of IND-CPA and even a stronger notion of unforgeability, RUF-CTXT.

This is mainly be
ause there is a distin
tion between the notions of IND-CCA and RUF-CTXT with

regard to the de�nitions of \valid 
iphertexts", whi
h, in turn, is 
aused by the orthogonality of the

goals of priva
y and authenti
ity and the asymmetry of the key stru
ture in the publi
 key setting. In

the 
hosen-
iphertext atta
k model, a 
iphertext queried to a de
ryption ora
le is 
onsidered \valid" if it

is valid with respe
t to the publi
 key of any sender, allowing the adversary to use its own publi
, se
ret
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key pair to generate a \valid" 
iphertext query with respe
t to its own key. This is be
ause the goal of

the adversary is not to \forge" a 
iphertext, but to obtain information about the 
hallenge 
iphertexts

output by its left-or-right en
ryption ora
le. However, to be 
onsidered su

essful in an atta
k against

\authenti
ity" of a parti
ular sender, the adversary must generate a 
iphertext that is 
onsidered valid

with respe
t to the publi
 key of the parti
ular sender, but not its own.

In the following propositions, we omit the 
on
rete statements for simpli
ity; but, they 
an be easily

derived from the asymptoti
 ones. The proofs of the following propositions are given in Se
tion A.

Proposition 3.1 [RUF-CTXT ! TUF-CTXT (resp. RUF-PTXT ! TUF-PTXT)℄ Let PKAE be a

PKAE s
heme. If PKAE is RUF-CTXT se
ure (resp. RUF-PTXT se
ure), then it is TUF-CTXT

se
ure (resp. TUF-PTXT se
ure).

Proposition 3.2 [TUF-CTXT 6! RUF-CTXT (resp. TUF-PTXT 6! RUF-PTXT)℄ Given a group

generator algorithm GG and a hash fun
tionH, whereH is hard
ore on group GG (the HDH assumption)

as per De�nition 5.5, and a SUF-CMA se
ure MAC s
heme MA, we 
an 
onstru
t a PKAE s
heme that

is TUF-CTXT se
ure (resp. TUF-PTXT se
ure) but is not RUF-CTXT se
ure (resp. RUF-PTXT

se
ure).

Proposition 3.3 [RUF-CTXT 6!RUF-PTXT℄ Given an IND-CPA se
ure publi
 key en
ryption s
heme

PE and a SUF-CMA se
ure signature s
heme DS, we 
an 
onstru
t a PKAE s
heme PKAE that is

RUF-CTXT se
ure, but is not RUF-PTXT se
ure.

Proposition 3.4 [RUF-PTXT 6! TUF-CTXT℄ Given a PKAE s
heme PKAE that is RUF-PTXT

se
ure, we 
an 
onstru
t another PKAE s
heme PKAE

0

that is also RUF-PTXT se
ure but is not

TUF-CTXT se
ure.

Proposition 3.5 [IND-CPA ^ RUF-CTXT 6! IND-CCA (resp. IND-CPA ^ TUF-CTXT 6! IND-

CCA)℄ Given an IND-CPA se
ure publi
 key based en
ryption s
heme PE and a SUF-CMA se
ure

signature s
heme DS, we 
an 
onstru
t a PKAE s
heme PKAE that is IND-CPA se
ure and RUF-

CTXT se
ure (resp. IND-CPA se
ure and TUF-CTXT se
ure), but is not IND-CCA se
ure.

4 Generi
 
ompositions of signature and en
ryption

We now present PKAE s
hemes 
onstru
ted based on generi
 
ompositions of a signature and an

en
ryption s
heme, and their formal se
urity results.

4.1 Constru
tions

Here we show 
onstru
tions of a PKAE s
heme PKAE = (K




;K

s

;K

r

; E ;D) based on PE = (K


e

;K

e

; E ;

D) and DS = (K


s

;KS ;S;VS) using the following three 
omposition methods: En
rypt-and-Sign, Sign-

then-En
rypt and En
rypt-then-Sign. The key generation algorithms K




, K

s

and K

r

remain the same

a
ross the three methods. Hen
e, we do not present the key generation algorithms for ea
h method

separately, but present them below on
e for all three 
omposition methods:

Algorithm K




(k)

I

e

R

 K


e

(k)

I

s

R

 K


s

(k)

I  (I

e

; I

s

)

return I

Algorithm K

s

(I)

Parse I as (I

e

; I

s

)

(pk

s

; sk

s

)

R

 KS(I

s

)

return (pk

s

; sk

s

)

Algorithm K

r

(I)

Parse I as (I

e

; I

s

)

(pk

r

; sk

r

)

R

 K

e

(I

e

)

return (pk

r

; sk

r

)
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We now present the en
ryption and de
ryption algorithms for ea
h 
omposition method separately,

starting from the En
rypt-and-Sign method.

Constru
tion 4.1 [En
rypt-and-Sign℄ The En
rypt-and-Sign method en
rypts the plaintext using

the base publi
 key en
ryption s
heme and signs the plaintext using the signature s
heme, and then


on
atenates the en
ryption output and the signature. The details of the en
ryption and de
ryption

algorithms are shown below:

Algorithm E

hsk

s

;pk

s

;pk

r

i

(M)

C

0

 E

pk

r

(M)

�  S

sk

s

(M)

return pk

s

kC

0

k�

Algorithm D

sk

r

(C)

Parse C as pk

s

kC

0

k� ; M  D

sk

r

(C

0

)

If VS

pk

s

(M;�) = 1

then return (pk

s

;M) else return ?

Above, the en
ryption algorithm outputs the publi
 key of the sender as part of the output 
iphertext so

that the de
ryption algorithm 
an output the publi
 key of the sender upon re
eiving the 
iphertext.

Note that the en
ryption algorithms for the remaining two methods also output the publi
 key of the

sender as part of the 
iphertext. Intuitively, it is used for an identi�
ation purpose in the de
ryption

algorithm so as to tell who is the sender or whi
h key to use to verify the 
iphertext.

Constru
tion 4.2 [Sign-then-En
rypt℄ The Sign-then-En
rypt method �rst signs the plaintext us-

ing the base signature s
heme, and then en
rypts the plaintext along with the signature (i.e. the

signature is appended to the plaintext and then the resulting string is en
rypted). The details of the

algorithms are shown below:

Algorithm E

hsk

s

;pk

s

;pk

r

i

(M)

�  S

sk

s

(M)

C

0

 E

pk

r

(Mk�)

return pk

s

kC

0

Algorithm D

sk

r

(C)

Parse C as pk

s

kC

0

; Mk�  D

sk

r

(C

0

)

If VS

pk

s

(M;�) = 1

then return (pk

s

;M) else return ?

Above, Mk�  D

sk

r

(C

0

) denotes the 
ombined opertations of de
rypting and parsing (i.e. a string is

obtained from the de
ryption algorithm on input C

0

and then divided into two parts M and �).

Constru
tion 4.3 [En
rypt-then-Sign℄ The En
rypt-then-Sign method �rst en
rypts the plaintext

using the base publi
 key en
ryption s
heme to obtain a 
iphertext, and then signs the obtained 
i-

phertext. A s
heme 
onstru
ted based on the En
rypt-then-Sign method is not only a PKAE s
heme,

but also a veri�able PKAE (VPKAE) s
heme sin
e the 
iphertext is publi
ly veri�able. Hen
e, for

the En
rypt-then-Sign method, we present the veri�
ation algorithm as well as the en
ryption and

de
ryption algorithms. The details of the algorithms are shown below:

Algorithm E

hsk

s

;pk

s

;pk

r

i

(M)

C

0

 E

pk

r

(M)

�  S

sk

s

(C

0

)

return pk

s

kC

0

k�

Algorithm D

sk

r

(C)

Parse C as pk

s

kC

0

k�

M  D

sk

r

(C

0

)

If VS

pk

s

(C

0

; �) = 1

then return (pk

s

;M) else return ?

Algorithm V

pk

r

(C)

Parse C as pk

s

kC

0

k�

If VS

pk

s

(C

0

; �) = 1

then return pk

s

else return ?

Above, the veri�
ation algorithm 
an be thought of as a de
ryption algorithm that does not perform

de
ryption but just 
he
ks the validity of the 
iphertext using the publi
 information (i.e. publi
 keys)

only.
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4.2 Se
urity Analyses

We now show the formal se
urity results for the above s
hemes as summerized in Figure 3. Se
urity

of s
hemes based on generi
 
ompositions of symmetri
 en
ryption and MAC has been shown in the

symmetri
 setting (with respe
t to symmetri
 en
ryption and MAC se
urity) in [5℄. With regard to the

priva
y properties, their analyses on the IND-CPA and IND-CCA se
urity 
an be easily 
arried over to

the publi
 key setting for the En
rypt-and-Sign and Sign-then-En
rypt methods be
ause the signature

is 
omputed based on the plaintext in both methods. However, for the En
rypt-then-Sign method,

there is a distin
tion, espe
ially with regard to the IND-CCA se
urity. Hen
e, regarding the priva
y

properties, we will give expli
it analysis only on the IND-CCA se
urity of the En
rypt-then-Sign method

here, and omit the analyses for other methods. With regard to the authenti
ity properties, re
all that

the integrity notions (INT-CTXT, INT-PTXT) in [5℄ are analogous to the third-person unforgeability

notions (TUF-CTXT, TUF-PTXT) de�ned in this paper. However, the notions related to the re
eiver

unforgeability (RUF-PTXT and RUF-CTXT) are new and spe
i�
 to the publi
 key setting. Here we

fo
us on se
urity analyses with respe
t to these new notions of unforgeability and refer to the analyses

of [5℄ for the rest of se
urity results.

For se
urity analyses, we assume that the base en
ryption s
heme is IND-CPA se
ure and the

base digital signature s
heme is either WUF-CMA or SUF-CMA se
ure, whose notions are de�ned

in Se
tion 2. We note that SUF-CMA se
urity implies WUF-CMA se
urity, whi
h is shown in [5℄.

For the En
rypt-and-Sign and Sign-then-En
rypt methods, both WUF-CMA and SUF-CMA se
urity

assumptions on the base signature s
heme give rise to the same results for all se
urity notions. For the

En
rypt-then-Sign method, however, the SUF-CMA assumption on the base signature s
heme makes

a di�eren
e in the TUF-CTXT and RUF-CTXT se
urity results; that is, the WUF-CMA assumption

is not strong enough to make the PKAE s
heme se
ure even in the TUF-CTXT sense (whi
h in turn

makes it not strong enough for the RUF-CTXT se
urity), while the SUF-CMA assumption on the base

signature s
heme suÆ
es to make the asso
iated PKAE s
heme se
ure in the RUF-CTXT sense. Note

that regardless of the assumptions on the base en
ryption or signature s
heme, any s
heme 
onstru
ted

via the En
rypt-then-Sign method is neither RUF-PTXT se
ure nor IND-CCA se
ure. These negative

results are quite strong sin
e they mean that the method is inherently inse
ure in these senses. The

fa
t that the En
rypt-then-Sign method does not provide IND-CCA se
urity regardless of the se
urity

assumption on the base primitives is one of the main di�eren
es between the results in the publi
 key

setting and those in the symmetri
 setting. This means that the PKAE s
heme 
onstru
ted via the

En
rypt-then-Sign method 
annot be IND-CCA se
ure even when the base en
ryption s
heme is IND-

CCA se
ure. The main reason for this is that the 
iphertext part and the signature part in the output

of the en
ryption algorithm are generated independently. Sin
e the keys for the base en
ryption s
heme

and the signature s
heme are independent of ea
h other, anyone who 
an sign with its own se
ret key 
an

just take the 
iphertext part of en
rypted output and repla
e the signature part with its own signature

on the 
iphertext.

The En
rypt-and-Sign and Sign-then-En
rypt methods are not TUF-CTXT se
ure and sin
e RUF-

CTXT se
urity implies TUF-CTXT se
urity (
f. Proposition 3.1), by the 
ontrapositive argument, they

are not RUF-CTXT se
ure. The proofs of the following propositions and theorems are presented in

Se
tion A.

Proposition 4.4 [En
rypt-and-Sign and Sign-then-En
rypt methods are RUF-PTXT se-


ure℄ Let PE be a publi
 key en
ryption s
heme, and let DS be a digital signature s
heme. Then, the

PKAE s
heme 
onstru
ted from PE and DS via the En
rypt-and-Sign method or Sign-then-En
rypt

method is RUF-PTXT se
ure if DS is WUF-CMA or SUF-CMA se
ure.
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Proposition 4.5 [En
rypt-and-Sign and Sign-then-En
rypt methods are not TUF-CTXT

se
ure℄ Given an IND-CPA se
ure publi
 key en
ryption s
heme PE , and a WUF-CMA or SUF-CMA

se
ure digital signature s
heme DS, we 
an 
onstru
t a publi
 key en
ryption s
heme PE

0

su
h that

PE

0

is IND-CPA se
ure, but the PKAE s
heme 
onstru
ted from PE

0

and DS via the En
rypt-and-Sign

method or Sign-then-En
rypt method is not TUF-CTXT se
ure.

Theorem 4.6 [En
rypt-then-Sign method is not RUF-PTXT se
ure for any en
ryption

and signature s
heme℄ Let PE be a publi
 key en
ryption s
heme, and let DS be a digital signature

s
heme. Then, the PKAE s
heme 
onstru
ted from PE and DS via the En
rypt-then-Sign method is

not RUF-PTXT se
ure.

Theorem 4.7 [En
rypt-then-Sign method with WUF-CMA signature s
heme is not TUF-

CTXT se
ure℄ Given an IND-CPA se
ure publi
 key en
ryption s
heme PE , and a WUF-CMA se
ure

digital signature s
heme DS, we 
an 
onstru
t a digital signature s
heme DS

0

su
h that DS

0

is WUF-

CMA se
ure, but the PKAE s
heme PKAE 
onstru
ted from PE and DS

0

via the En
rypt-then-Sign

method is not TUF-CTXT se
ure.

Theorem 4.8 [En
rypt-then-Sign method with SUF-CMA se
ure signature s
heme is RUF-

CTXT se
ure℄ Let PE be a publi
 key en
ryption s
heme, and let DS be a digital signature s
heme.

Then, the PKAE s
heme 
onstru
ted from PE andDS via the En
rypt-then-Sign method is RUF-CTXT

se
ure if DS is SUF-CMA se
ure.

Theorem 4.9 [En
rypt-then-Sign method is not IND-CCA se
ure for any en
ryption and

signature s
heme℄ Let PE be a publi
 key en
ryption s
heme, and letDS be a signature s
heme. Then,

the PKAE s
heme 
onstru
ted from PE and DS via the En
rypt-then-Sign method is not IND-CCA

se
ure.

5 Example 
onstru
tions for a
hieving se
urity and eÆ
ien
y

In this se
tion, we give analyses of two example 
onstru
tions, 
alled ESSR and DHETM, where the

former a
hieves se
urity under all notions and the latter a
hieves eÆ
ien
y with \reasonable" se
urity

guarantees.

5.1 A modi�ed generi
 
omposition method that meets all se
urity notions

Here we give a generi
 
onstru
tion of a publi
 key based authenti
ated en
ryption s
heme that is se
ure

under all notions of priva
y and authenti
ity de�ned in this paper. The s
heme is 
onstru
ted based on

the En
rypt-then-Sign method with slight modi�
ations in order to provide se
urity in the RUF-PTXT

and IND-CCA sense, for whi
h the (unmodi�ed) En
rypt-then-Sign method is not se
ure. Basi
ally,

the modi�
ations 
ome in two pla
es: in the 
ontent that is being en
rypted, and in the 
ontent that is

being signed. In the modi�ed En
rypt-then-Sign method, the sender's publi
 key is en
rypted together

with the plaintext, and also the re
eiver's publi
 key is signed together with the 
iphertext.

We now present the 
onstru
tion of ESSR = (K




;K

s

;K

r

; E ;D). The key generation algorithms (K




,

K

s

, K

r

) are the same as those for the generi
 
omposition methods shown in Se
tion 4.1; hen
e, we

omit their des
riptions here. The 
onstru
tion is shown in more detail below:

Constru
tion 5.1 [ESSR℄ Let PE = (K


e

;K

e

; E ;D) be a symmetri
 en
ryption s
heme. Let DS =

(K


s

;KS ;S;VS) be a signature s
heme. From these primitives, we de�ne the publi
 key based authen-

ti
ated en
ryption s
heme ESSR = (K




;K

s

;K

r

; E ;D) as follows (where the key generation algorithms

K




, K

s

, K

r

are the same as the ones shown in Se
tion 4.1):
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Algorithm E

hsk

s

;pk

s

;pk

r

i

(M)

C

0

 E

pk

r

(Mkpk

s

)

�  S

sk

s

(C

0

kpk

r

)

C  pk

s

kC

0

k�

return C

Algorithm D

sk

r

(C)

Parse C as pk

s

kC

0

k�

Obtain pk

r

from sk

r

If VS

pk

s

(C

0

kpk

r

; �) = 0 then return ?

Mkpk  D

sk

r

(C

0

)

If pk = pk

s

then return M else return ?

Above, the statement \Obtain pk

r

from sk

r

" in the de
ryption algorithm is based on the assumption

that the publi
 key is in
luded in the se
ret key. Note that the assumption does not ne
essarily impose

a restri
tion in real implemtations of the s
heme, be
ause the re
eiver's publi
 key is usually in
luded

as part of the se
ret key anyway.

Note that ESSR is not a VPKAE s
heme, unlike the original En
rypt-then-Sign method. This is be
ause

the veri�
ation requires de
ryption (for the 
omparison of the de
rypted sender key against the sender

key used in the signature veri�
ation), hen
e not allowing 
iphertext veri�
ation based only on publi


keys.

Se
urity analysis. In order to show that the s
heme is se
ure under all notions, we just need

to show it is se
ure under IND-CCA, RUF-PTXT, and RUF-CTXT sin
e the rest follows from the

impli
ations of notions summarized in Figure 1. Sin
e the 
onstru
tion is based on the En
rypt-then-

Sign method, its se
urity is preserved and with the modi�
ations, additional se
urity properties (i.e.

IND-CCA and RUF-PTXT) that are missing in the original En
rypt-then-Sign method are obtained.

Intuitively, en
rypting the sender's publi
 key together with the plaintext and signing the re
eiver's

publi
 key together with the 
iphertext help provide se
urity in the IND-CCA and RUF-PTXT sense,

sin
e the former binds the plaintext with the sender's publi
 key (for the IND-CCA se
urity), while the

latter binds the 
iphertext with the re
eiver's publi
 key (for the RUF-PTXT se
urity). Note that in

order to obtain the IND-CCA se
urity for ESSR, we assume that the underlying publi
 key en
ryption

s
heme is IND-CCA se
ure, whi
h is di�erent from the assumption we make for se
urity of the generi



omposition methods in Se
tion 4. The proofs of the following theorems are given in Se
tion A.

Theorem 5.2 [ESSR is IND-CCA se
ure℄ Let PE be a publi
 key en
ryption s
heme, and let DS

be a digital signature s
heme. Then, if PE is IND-CCA se
ure, and DS is SUF-CMA se
ure then ESSR


onstru
ted based on PE and DS as per Constru
tion 5.1 is IND-CCA se
ure.

Theorem 5.3 [ESSR is both RUF-PTXT and RUF-CTXT se
ure℄ Let PE be a publi
 key

en
ryption s
heme and let DS be a digital signature s
heme. Then, if DS is WUF-CMA se
ure (resp.

SUF-CMA se
ure), then ESSR 
onstru
ted based on PE and DS as per Constru
tion 5.1 is RUF-PTXT

se
ure (resp. RUF-CTXT se
ure).

5.2 An EÆ
ient s
heme based on DiÆe-Hellman keys

Here we give se
urity analyses of an eÆ
ient publi
 key based authenti
ated en
ryption s
heme 
alled

DHETM, whi
h 
an be viewed as an adaptation of the DHIES (en
ryption) s
heme [1℄ to the publi
 key

setting where a sender as well as a re
eiver has its publi
, se
ret key pair for enabling 
onstru
tions of

authenti
ated en
ryption s
hemes. Note that the di�eren
e between the two is in their se
urity goals:

the se
urity goal of the DHIES en
ryption s
heme is to provide priva
y only and that of DHETM is to

provide the joint goals of priva
y and authenti
ity. The PKAE s
heme DHETM is 
onstru
ted based

on the following four primitives: a group of a prime order whi
h is generated by a group generator

algorithm, a hash fun
tion, a symmetri
 en
ryption s
heme, and a MAC s
heme. We des
ribe below

the synta
ti
 de�nitions of the primitives and then move onto the a
tual 
onstru
tion of DHETM.
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Group generator algorithm. A group generator algorithm GG is a randomized algorithm. It takes

as input a se
urity parameter k and returns a pair (q; g), where q is a prime number indi
ating the

order of a group G, and g is a generator of the group. We write (q; g)

R

 GG(k).

Hash fun
tion. A hash fun
tion H : f0; 1g

�

! f0; 1g

L

h

is a fun
tion that takes a string of an arbitray

length and returns a string of a 
ertain �xed length L

h

2 N.

Symmetri
 en
ryption s
heme. A symmetri
 en
ryption s
heme SE = (K; E ;D) 
onsists of three

algorithms. The randomized key generation algorithm K takes as input a se
urity parameter k and

returns a string 
alled key K; we let Keys(SE) denote the set of all strings that have non-zero probability

of being output by K(k); we write K

R

 K(k). The randomized or stateful en
ryption algorithm E takes

as input the key K 2 Keys(SE) and a plaintext M 2 f0; 1g

�

and returns a 
iphertext C 2 f0; 1g

�

; we

write C

R

 E

K

(M). The deterministi
 de
ryption algorithm D takes as input a key K 2 Keys(SE) and

a 
iphertext C 2 f0; 1g

�

and returns a plaintext M 2 f0; 1g

�

; we write M  D

K

(C). We require that

for any key K 2 Keys(SE) and any message M 2 f0; 1g

�

, D

K

(E

K

(M)) =M .

MAC s
heme. A MAC s
heme MA = (K;T;VT) 
onsists of three algorithms. The randomized key

generation algorithm K takes as input a se
urity parameter k and returns a key K; we let Keys(MA)

denote the set of all strings that have non-zero probability of being output by K(k); we writeK

R

 K(k).

The randomized or deterministi
 tagging algorithm T takes as input the key K 2 Keys(MA) and a

message M 2 f0; 1g

�

and returns a tag � 2 f0; 1g

L

t

, where L

t

2 N is a 
ertain �xed length 
alled a

tag length; we write �

R

 T

K

(M). The deterministi
 veri�
ation algorithm VT takes as input the key

K 2 Keys(MA), a message M , and a 
andidate tag � 2 f0; 1g

L

t

for M and returns a bit b; we write

b VT

K

(M; �). We require that VT

K

(M;T

K

(M)) = 1 for all M 2 f0; 1g

�

and K 2 Keys(MA).

DHETM. The PKAE s
heme DHETM is 
onstru
ted based on the En
rypt-then-MAC method using the


omputed DiÆe-Hellman key as the 
ommon se
ret key. The details of the 
onstru
tion are des
ribed

below.

Constru
tion 5.4 [DHETM℄ Let SE = (K

e

;E;D) be a symmetri
 en
ryption s
heme where the key

generation algorithm simply returns a random L

e

-bit string, so that the key spa
e is Keys(SE) = f0; 1g

L

e

.

Let MA = (K

m

;T;VT) be a MAC s
heme where the key generation algorithm returns a random L

m

-bit

string, so that the key spa
e is Keys(MA) = f0; 1g

L

m

. Let H : f0; 1g

�

! f0; 1g

L

h

be a hash fun
tion,

where L

h

= L

e

+L

m

, and let GG be a group generator algorithm. Based on these primitives, the PKAE

s
heme DHETM = (K




;K

s

;K

r

; E ;D) is 
onstru
ted as follows:

Algorithm K




(k)

(q; g)

R

 GG(k)

return (q; g)

Algorithm K

s

(q; g)

x

a

R

 Z

q

y

a

 g

x

a

return (y

a

; x

a

)

Algorithm K

r

(q; g)

x

b

R

 Z

q

y

b

 g

x

b

return (y

b

; x

b

)

Algorithm E

hx

a

;y

a

;y

b

i

(M)

K  H(y

x

a

b

) ; Parse K as K

e

kK

m

C

0

 E

K

e

(M) ; �  T

K

m

(C

0

)

C  y

a

kC

0

k�

return C

Algorithm D

x

b

(C)

Parse C as y

a

kC

0

k�

K  H(y

x

b

a

) ; Parse K as K

e

kK

m

If VT

K

m

(C

0

; �) = 0 then return ?

else M  D

K

e

(C

0

) ; return (y

a

;M)

Here the 
ommon key generation algorithm K




is the same as the group generation algorithm GG,

e�e
tively returning (q; g) as the global information I . The sender and re
eiver key generation algorithms

return the DiÆe-Hellman based keys, whi
h in turn are the basis for 
omputing the 
ommon key K.
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Parsing K as K

e

kK

m

means that it is divided into two strings of appropriate lengths (i.e. L

e

and L

m

,

resp.) and assigned to K

e

and K

m

, respe
tively.

Se
urity Analysis. We now show the formal se
urity results for DHETM as summerized in Figure 3.

Se
urity of DHETM depends on the se
urity of base primitives, namely a hash fun
tion H operating

on a group G generated by a group generator algorithm GG, a symmetri
 en
ryption s
heme SE and

a MAC s
heme MA. We will �rst de�ne the se
urity notions of the base primitives starting from the

following se
urity assumption on H operating on a group.

Diffie-Hellman Assumptions. Sin
e the 
omputed 
ommon key K is generated from a hash of the

DiÆe-Hellman based key (H(g

x

a

x

b

)) in the DiÆe-Hellan based s
heme DHETM, we make an assumption


alled \Ora
le DiÆe-Hellman" (ODH) following [1℄ for their IND-CCA se
urity analyses. For the TUF-

CTXT se
urity of DHETM, a weaker assumption 
alled \Hash DiÆe-Hellman" (HDH) is needed. The

assumptions are 
omposite ones in the sense that they are about the intera
tion between the hash

fun
tion and the DiÆe-Hellman problem. We re
all their formal de�nitions below.

De�nition 5.5 [1℄[ODH and HDH℄ Let GG be a group generator algorithm, and let k 2 N be a

se
urity parameter. Let H : f0; 1g

�

! f0; 1g

L

h

be a hash fun
tion, where L

h

2 N. Let A

odh

and A

hdh

be adversaries. Consider the following experiments.

Experiment Exp

odh-b

H;GG;A

odh

(k)

(q; g)

R

 GG(k)

u; v

R

 Z

q

; U  g

u

; V  g

v

If b = 1 then W  H(g

uv

) else W

R

 f0; 1g

L

h

d A

H

v

(�)

odh

((q; g); U; V;W ) ; Return d

Experiment Exp

hdh-b

H;GG;A

hdh

(k)

(q; g)

R

 GG(k)

u; v

R

 Z

q

; U  g

u

; V  g

v

If b = 1 then W  H(g

uv

) else W

R

 f0; 1g

L

h

d A

hdh

((q; g); U; V;W ) ; Return d

Above, H

v

(X)

def

= H(X

v

), and A

odh

is not allowed to query its ora
le on g

u

. We de�ne the advantages

of the adversary via,

Adv

odh

H;GG;A

odh

(k) = Pr

h

Exp

odh-1

H;GG;A

odh

(k) = 1

i

� Pr

h

Exp

odh-0

H;GG;A

odh

(k) = 1

i

Adv

hdh

H;GG;A

hdh

(k) = Pr

h

Exp

hdh-1

H;GG;A

hdh

(k) = 1

i

� Pr

h

Exp

hdh-0

H;GG;A

hdh

(k) = 1

i

We de�ne the advantage fun
tions of (H,GG) as follows. For any integers t; q � 0,

Adv

odh

H;GG

(k ; t; q) = max

A

odh

fAdv

odh

H;GG;A

odh

(k)g

Adv

hdh

H;GG

(k ; t) = max

A

hdh

fAdv

hdh

H;GG;A

hdh

(k)g ;

where the maximum is over all adversaries A

odh

; A

hdh

with time-
omplexity t, and in the 
ase of A

odh

,

also making at most q queries to H

v

(�). The hash fun
tionH is said to be hard
ore on GG under adaptive

DH atta
k (resp. hard
ore on GG) if the fun
tion Adv

odh

H;GG;A

(�) (resp. Adv

hdh

H;GG;A

(�)) is negligible for

any adversary A whose time-
omplexity is polynomial in the se
urity parameter k .

Se
urity notion of symmetri
 en
ryption s
hemes. The priva
y of symmetri
 en
ryption

s
hemes is measured in a similar manner as per De�nition 2.2 ex
ept for the following di�eren
es:

The main di�eren
es in the se
urity measure between the publi
 key and symmetri
 settings are �rst,

the key stru
tures |in the symmetri
 setting, the sender and the re
eiver share the same (symmetri
)

se
ret key (for both en
ryption and de
ryption algorithms), whereas in the publi
 key setting, they

have their own publi
 and se
ret key pair and the keys for the en
ryption and de
ryption algorithms
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are di�erent (asymmetri
)| and se
ond, the information that is publi
ly available |in the symmetri


setting, no information about the key is given to the publi
 (in
luding the adversary) unlike the publi


key setting. We will use essentially the same se
urity notions for the priva
y of symmetri
 en
ryp-

tion s
hemes with slight modi�
ations re
e
ting the di�eren
es. In parti
ular, we use the left-or-right

indistinguishability notions shown in [3℄ and omit the details of their des
riptions here.

Se
urity notion of MAC s
hemes. Here we re
all the notion of strong unforgeability under 
hosen-

message atta
k (SUF-CMA) for a MAC s
heme following [5℄. Note that the same se
urity notion has

been de�ned for a digital signature s
heme in De�nition 2.4. We overload the experiment Exp

suf-
ma

DS;F

(k)

used in De�nition 2.4 for the de�nition for the se
urity of a MAC s
heme here. The de�nition is similar

to that of a digital signature s
heme, but the di�eren
e is that the adversary is allowed a

ess to a

veri�
ation ora
le as well as a tag ora
le in the atta
k model for a MAC s
heme, whereas in the atta
k

model for a signature s
hem, the adversary is given a

ess to a signing ora
le only and instead of a

veri�
ation ora
le, it is given a publi
 key for the digital signature s
heme. Note that by giving the

publi
 key for the signature s
heme, the adversary 
an perform veri�
ation by itself, hen
e there is

no need for allowing ora
le a

ess to the veri�
ation algorithm in the atta
k model for the signature

s
heme. Similarly to the atta
k model for a digital signature s
heme, the adversary against the se
urity

of a MAC s
heme is allowed a

ess to a tagging ora
le modeling a 
hosen message atta
k. Sin
e the

adversary against the se
urity of a MAC s
heme is allowed a

ess to a veri�
ation ora
le, we let the

adversary win if it makes the veri�
ation ora
le a

ept by querying it on a valid message and tag pair

(M; tag) that is \new" as a pair. What is meant by \new" here is that the forgery tag tag was never

output by the tagging ora
le in response to query M .

De�nition 5.6 [Strong unforgeability under 
hosen message atta
k (SUF-CMA) of a MAC℄

Let MA = (K;T;VT) be a a MAC s
heme. Let k 2 N. Let F be an adversary. Consider the following

experiment:

Experiment Exp

suf-
ma

MA;F

(k)

K

R

 K(k)

If F

T

K

(�);VT

K

(�;�)

(k) makes a query (M; �) to the ora
le VT

K

(�; �) su
h that

{ VT

K

(M; �) returns 1, and

{ � was never returned by the ora
le T

K

(�) in response to query M

then return 1 else return 0

We de�ne the advantage of the adversary via,

Adv

suf-
ma

MA;F

(k) = Pr

h

Exp

suf-
ma

MA;F

(k) = 1

i

We de�ne the advantage fun
tion of the s
heme as follows. For any integers t; q

t

; q

v

; � � 0,

Adv

suf-
ma

MA

(k ; t; q

t

; q

v

; �) = max

F

fAdv

suf-
ma

MA;F

(k)g

where the maximum is over all F with time-
omplexity t, making at most q

t

ora
le queries to T

K

(�)

and at most q

v

ora
le queries to VT

K

(�; �) su
h that the sum of the lengths of all ora
le queries is at most

� bits. The MAC s
heme MA is said to be SUF-CMA se
ure if the fun
tion Adv

suf-
ma

MA;F

(�) is negligible

for any adversary F whose time-
omplexity is polynomial in k .

Se
urity of DHETM. As usual, the se
urity of DHETM is based on its base primitives. In parti
ular,

the IND-CCA se
urity of DHETM is based on IND-CPA, SUF-CMA, ODH assumptions on SE, MA,

and (H;GG), respe
tively. Its TUF-CTXT se
urity, however, is based only on SUF-CMA and HDH

assumptions onMA and (H;GG), respe
tively. As 
an be seen in De�nition 5.5, the atta
k model against
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the HDH se
urity is very similar to that against the ODH se
urity ex
ept that the adversary does not

get a

ess to the hash ora
le H

v

(�) in the HDH 
ase; hen
e, HDH is a weaker assumption than the

ODH assumption. As with the analyses of ESSR, other se
urity results (i.e. IND-CPA, TUF-PTXT) of

DHETM 
an be inferred from the relations among notions shown Figure 1, and their expli
it statements

are omitted. Note, however, that DHETM is not se
ure under the re
eiver unforgeability notions (RUF-

PTXT, RUF-CTXT) be
ause the key used for generating valid 
iphertexts 
an be 
omputed by the

re
eiver as well as the sender. The following theorems state the se
urity results. Con
rete se
urity

assessments are made in the following theorems by taking the maximum advantage over all adversaries

limited to the given resour
es.

Theorem 5.7 [DHETM is IND-CCA se
ure℄ Let H be a hash fun
tion, and let GG be a group

generator algorithm. Let MA be a MAC s
heme, and let SE be a symmetri
 en
ryption s
heme. Let

DHETM be a PKAE s
heme 
onstru
ted based on SE, MA, H, and GG as per Constru
tion 5.4. Then,

if H is hard
ore on GG under adaptive DH atta
k (i.e. the ODH assumption), SE is IND-CPA se
ure,

and MA is SUF-CMA se
ure then DHETM is IND-CCA se
ure. Con
retely,

Adv

ind-

a

DHETM

(k ; t; q

e

; �

e

; q

d

; �

d

)

� 2 �Adv

odh

H;GG

(k ; t; q

d

) +Adv

ind-
pa

SE

(k ; t; q

e

; �

e

) + 2 �Adv

suf-
ma

MA

(k ; t; q

e

; q

d

; �

e

+ �

d

)

Theorem 5.8 [DHETM is TUF-CTXT se
ure℄ Let H be a hash fun
tion, and let GG be a group

generator algorithm. Let MA be a MAC s
heme, and let SE be a symmetri
 en
ryption s
heme. Let

DHETM be a PKAE s
heme 
onstru
ted based on SE, MA, H, and GG as per Constru
tion 5.4. Then,

if H is hard
ore on GG (i.e. the HDH assumption) and MA is SUF-CMA se
ure, then DHETM is

TUF-CTXT se
ure. Con
retely,

Adv

tuf-
txt

DHETM

(k ; t; q; �) � Adv

odh

H;GG

(k ; t) +Adv

suf-
ma

MA

(k ; t; q; 1; �)

Theorem 5.9 [DHETM is neither RUF-PTXT se
ure nor RUF-CTXT se
ure℄ Let H be a

hash fun
tion, and let GG be a group generator algorithm. Let MA be a MAC s
heme, and let SE be

a symmetri
 en
ryption s
heme. Let DHETM be a PKAE s
heme 
onstru
ted based on SE, MA, H,

and GG as per Constru
tion 5.4. Then, DHETM is neither RUF-PTXT se
ure nor RUF-CTXT se
ure.

Con
retely, there is an adversary B making zero ora
le queries, and a
hieving

Adv

ruf-
txt

DHETM;B

(k) = Adv

ruf-
txt

DHETM;B

(k) = 1

Comparison to DHIES. Sin
e DHETM 
an also be thought of as an adaptation of the IND-CCA

se
ure asymmetri
 en
ryption s
heme, DHIES of [1℄, into the PKAE s
heme's setting, the IND-CCA

se
urity of DHETM 
an be shown in a similar manner as that of DHIES. However, it turns out that

there is no dire
t redu
tion from the IND-CCA se
urity of DHETM to the IND-CCA se
urity of DHIES,

be
ause of the di�eren
e in the way en
ryption is done. In parti
ular, in DHETM, the 
omputed 
ommon

key remains the same throughout multiple invo
ations of the en
ryption algorithm (ora
le) be
ause the

key is 
omputed based on the �xed keys of the sender and re
eiver, while in DHIES, the 
ommon key

may 
hange ea
h time the en
ryption algorithm is invoked be
ause the key is 
omputed depending not

only on the �xed publi
 key of the re
eiver, but also on a \fresh", random 
hoi
e of an element (in Z

q

)

by the en
ryption algorithm. This is mainly be
ause of the fa
t that DHIES is not an authenti
ated

en
ryption s
heme and the en
ryption key does not depend on a �xed, se
ret key of a sender. (For

sending an en
rypted message using DHIES, a sender's key is not needed.) This is re
e
ted in the

atta
k model of the adversaries against IND-CCA se
urity: the inputs given to the adversaries are

di�erent in the following sense: the adversary against the IND-CCA se
urity of DHETM gets the publi
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keys of both sender and re
eiver, while that of DHIES gets just the re
eiver's publi
 key be
ause DHIES

is an en
ryption s
heme, but not an authenti
ated en
ryption s
heme.

Effi
ien
y of DHETM. Compared to the s
hemes 
onstru
ted from the generi
 
omposition method

based on publi
 key en
ryption s
hemes and signature s
hemes, the main 
ost savings 
ome from the fa
t

that the DiÆe-Hellman based 
ommon se
ret (symmetri
 en
ryption and MAC keys) 
an be 
omputed

o�-line using the publi
 key of the other party and 
an also be stored on
e 
omputed, saving the 
ost of


omputing the 
ommon se
ret ea
h time. Also the use of symmetri
 key based s
hemes (i.e. a symmetri


en
ryption s
heme and a MAC) as its base primitives is another 
ontributing fa
tor for eÆ
ien
y.
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A Proofs

Proof of Proposition 3.1:

Intuitively, the horizontal impli
ations among the unforgeability notions hold be
ause the adversary gets

more power as it goes from the third-person unforgeability to the re
eiver unforgeability atta
k models.

We show the proof for the unforgeability of 
iphertext 
ase (RUF-CTXT ! TUF-CTXT) only here.

The unforgeability of plaintext 
ase (RUF-PTXT ! TUF-PTXT) 
an be shown in a similar manner.

Let PKAE = (K




;K

s

;K

r

; E ;D) be a PKAE s
heme. Let F be any poly(k)-time adversary atta
king

TUF-CTXT of PKAE . Using the adversary F , we 
an 
onstru
t an adversary B = (B

1

; B

2

) atta
king

RUF-CTXT of PKAE , having time-
omplexity also polynomial in the se
urity parameter. Sin
e B has

more 
exibility in the atta
k model than F , B 
an run F answering F 's queries using its own en
ryption

ora
le and outputting the same 
iphertext as F without 
hanging the key pair it originally 
hose in its

�rst stage. The algorithm for B is shown below.

Algorithm B

1

(I)

(pk

r

; sk

r

)

R

 K

r

(I)

st  (I ; sk

r

)

Return (st ; pk

r

)

Algorithm B

E

hsk

s

;pk

s

;pk

r

i

(�)

2

(st ; pk

s

; pk

r

)

Parse st as (I ; sk

r

)

Run F (I ; pk

s

; pk

r

) answering F 's queries as follows:

When F makes a query x to its en
ryption ora
le do


 E

hsk

s

;pk

s

;pk

r

i

(x) ; return 
 to F

Until F outputs a 
iphertext forgery C

Return (C; pk

r

; sk

r

)
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Sin
e the en
ryption ora
le B a

esses is essentially the same as the ora
le F a

esses in the de�nition

of the atta
k models, the adversary B uses its own en
ryption ora
le to answer F 's queries. It is easy

to see that B su

eeds as long as F su

eeds in forging the 
iphertext be
ause B did not 
hange its

publi
, se
ret key pair, and hen
e the de�nitions of a su

essful forgery in both atta
k models be
ome

e�e
tively the same. Hen
e, the following equation holds:

Adv

ruf-
txt

PKAE ;B

(k) � Adv

tuf-
txt

PKAE ;F

(k) :

The assumption that PKAE is RUF-CTXT se
ure implies that Adv

ruf-
txt

PKAE ;B

(�) is negligible, and hen
e

it follows that Adv

tuf-
txt

PKAE ;F

(�) is also negligible, whi
h results in the 
on
lusion of Proposition 3.1.

Proof of Proposition 3.2:

Instead of expli
itly presenting the 
onstru
tion of the PKAE s
heme here, we point to a 
onstru
tion

presented in another se
tion (i.e. Se
tion 5.2) whi
h also provides the se
urity results regarding the


onstru
ted s
heme that support the statements in Proposition 3.2. It turns out that the PKAE s
heme

DHETM 
onstru
ted as per Constru
tion 5.4 is su
h a s
heme. Based on the HDH assumption on the

base hash fun
tion and group (H;GG) and SUF-CMA se
urity assumption on the base MAC s
heme,

the proof of Theorem 5.8 shows that DHETM is TUF-CTXT se
ure (whi
h in turn implies TUF-PTXT

se
urity [5℄), and the proof of Theorem 5.9 shows that DHETM is neither RUF-CTXT se
ure nor RUF-

PTXT se
ure. Hen
e, from the two mentioned theorems, we obtain the 
on
lusion of the Proposition 3.2.

Proof of Proposition 3.3:

For the proof of separation, we show a PKAE s
heme that is RUF-CTXT se
ure, and yet not RUF-

PTXT se
ure. It turns out that one of the generi
 
omposition methods shown in Se
tion 4 gives the

desired result in general. Given a publi
 key en
ryption s
heme and a digital signature s
heme, generi



omposition methods are methods that 
ombine the en
ryption and signature s
hemes, treating the un-

derlying s
hemes as bla
k-boxes, in order to obtain a PKAE s
heme. Generi
 
omposition methods are

des
ribed in more detail in Se
tion 4. Among the methods, the \En
rypt-then-Sign" method 
omposed

as per Constru
tion 4.3 gives a PKAE s
heme that is RUF-CTXT se
ure, but not RUF-PTXT se
ure

under the assumptions that the underlying en
ryption s
heme is IND-CPA se
ure and the signature

s
heme is SUF-CMA se
ure. The proofs that the method is RUF-CTXT se
ure and not RUF-PTXT

se
ure under the assumptions that the underlying en
ryption s
heme is IND-CPA se
ure and the sig-

nature is SUF-CMA se
ure are shown in the proofs of Theorem 4.8 and Theorem 4.6, respe
tively.

Proof of Proposition 3.4:

The idea is similar to that of the proof of the third-person unforgeability 
ase (i.e. TUF-PTXT 6!

TUF-CTXT). The ability of an adversary to 
reate and manipulate the re
eiver's key pair does not

a�e
t the proof in this 
ase. Given any RUF-PTXT se
ure s
heme PKAE , we 
an transform it to a

s
heme PKAE

0

that is still RUF-PTXT se
ure, but not even TUF-CTXT se
ure. Basi
 modi�
ation is

in the en
ryption algorithm whi
h adds a redundant bit to a 
iphertext and the de
ryption algorithm

that ignores the redundant bit. Be
ause the bit is ignored in the de
ryption algorithm, an adversary

against TUF-CTXT 
an 
ip the redundant bit in the 
iphertext obtained from the en
ryption ora
le

and output it as a \new" forgery 
iphertext, whi
h in turn would be 
onsidered su

essful with respe
t

to the TUF-CTXT sense. It is easy to see that PKAE

0

is RUF-PTXT se
ure if PKAE is RUF-PTXT

se
ure, be
ause the modi�
ation of adding a redundan
y bit to the 
iphertext, whi
h in turn is ignored

by the de
ryption algorithm does not a�e
t its RUF-PTXT se
urity. Intuitively, it is RUF-PTXT se
ure
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but not RUF-CTXT se
ure be
ause of the distin
tion in the de�nition of the \newness" of 
iphertext

(i.e. for RUF-PTXT, the plaintext 
orresponding to the forgery 
iphertext has to be \new" while for

RUF-CTXT, the forgery 
iphertext itself has to be \new"). The details are shown below.

Let PKAE = (K




;K

s

;K

r

; E ;D) be the given PKAE s
heme. We de�ne a new s
heme PKAE

0

=

(K




;K

s

;K

r

; E

0

;D

0

) based on the original s
heme PKAE , where the key generation algorithms are the

same as the original ones and the en
ryption and de
ryption algorithms are modi�ed as follows:

Algorithm E

0

hsk

s

;pk

s

;pk

r

i

(M)

C  E

hsk

s

;pk

s

;pk

r

i

(M)

Return 0kC

Algorithm D

0

sk

r

(C)

Parse C as bkC

0

where b is a bit

X  D

sk

r

(C

0

) ; Return X

The new en
ryption algorithm prepends a redundant bit '0' to the 
iphertext output by the original

en
ryption algorithm and the new de
ryption algorithm ignores the �rst bit and outputs whatever the

original de
ryption algorithm outputs (i.e. X 
an be either ? or (pk

s

;M), where M 2 M) on the rest

of the 
iphertext input C

0

(whi
h ex
ludes the �rst bit b).

We �rst show that PKAE

0

is not TUF-CTXT se
ure and then show that it is yet RUF-PTXT se
ure

as long as the original PKAE s
heme is RUF-PTXT se
ure. Both proofs are pretty straightforward.

In order to show that PKAE

0

is not TUF-CTXT se
ure, we show an atta
k against PKAE

0

in the

TUF-CTXT sense. The atta
k exploits the fa
t that the �rst 
iphertext bit is ignored in the de
ryption

algorithm. The adversary queries the en
ryption ora
le with a message (\0" in this 
ase) and repla
es

the �rst bit 0 by 1 in the 
iphertext obtained as a response and outputs the new 
iphertext. The

adversary F against TUF-CTXT of PKAE

0

is shown in more detail below.

Algorithm F

E

0

hsk

s

;pk

s

;pk

r

i

(�)

(I ;pk

s

;pk

r

)

C  E

0

hsk

s

;pk

s

;pk

r

i

(0) ; Parse C as 0kC

0

Return (1kC

0

)

Note that F 's output 
iphertext 1kC

0

is \new", meaning that it was never output by the en
ryption

ora
le, whose 
iphertext output always begins with the bit 0. It is easy to see that the 
iphertext 1kC

0

is \valid" be
ause the un-ignored part C

0

is valid. Hen
e, F su

eeds in atta
king TUF-CTXT se
urity

of the s
heme PKAE

0

with the probability 1.

We now move to the proof that PKAE

0

is RUF-PTXT se
ure if PKAE is RUF-PTXT se
ure. Using the

standard redu
tion argument, we show that if given any adversary A = (A

1

; A

2

) atta
king PKAE

0

in

the RUF-PTXT sense, we 
an 
onstru
t an adversary B = (B

1

; B

2

) atta
king PKAE in the RUF-PTXT

sense using the adversary A. The adversary B runs A in a straightforward manner answering A's ora
le

queries using its own ora
le and uses A's output forgery as part of its own output forgery. The details

of the algorithms are shown below.

Algorithm B

1

(I)

(st ; pk

r

)

R

 A

1

(I)

Return (st ; pk

r

)

Algorithm B

E

hsk

s

;pk

s

;pk

r

i

(�)

2

(st ; pk

s

; pk

r

)

Run A

2

(st ; pk

s

; pk

r

) answering its ora
le queries as follows:

When A

2

makes a query m to its en
ryption ora
le do


 0kE

hsk

s

;pk

s

;pk

r

i

(m) ; return 
 to A

2

Until A

2

outputs (C; pk

r

0

; sk

r

0

)

Parse C as bkC

0

where b is a bit

Return (C

0

; pk

r

0

; sk

r

0

)

It is easy to see that B su

eeds in atta
king RUF-PTXT se
urity of PKAE if A su

eeds in atta
king

RUF-PTXT se
urity of PKAE

0

sin
e the de�nitions for a su

essful forgery are the same in both 
ases.
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Hen
e, this implies that PKAE

0

is RUF-PTXT se
ure if PKAE is RUF-PTXT se
ure, whi
h in turn is

implied by the assumption.

Proof of Proposition 3.5:

The separation relation that the 
ombined notions of IND-CPA and RUF-CTXT do not imply IND-CCA

also means that the 
ombined notions of IND-CPA and TUF-CTXT do not imply IND-CCA either,

sin
e TUF-CTXT is a weaker notion than RUF-CTXT, as shown in Proposition 3.1. Hen
e, here we

just prove the separation for the stronger notion, RUF-CTXT. For the proof of separation, we present a

PKAE s
heme that is IND-CPA and RUF-CTXT se
ure, and yet not IND-CCA se
ure. Assuming that

the base en
ryption s
heme is IND-CPA se
ure and the base signature s
heme is SUF-CMA se
ure, a

PKAE s
heme 
omposed via the En
rypt-then-Sign method as per Constru
tion 4.3 is IND-CPA and

RUF-CTXT se
ure, but is not IND-CCA se
ure. The proof that the 
omposed PKAE s
heme is IND-

CPA se
ure is straightforward and is omitted. The proof that the s
heme is RUF-CTXT se
ure is given

in the proof of Theorem 4.8, and the proof that the s
heme is not IND-CCA se
ure is given in the proof

of Theorem 4.9. This 
ompletes the proof.

Proof of Proposition 4.4:

The RUF-PTXT se
urity of the PKAE s
heme that is 
onstru
ted via the En
rypt-and-Sign or Sign-

then-En
rypt method depends only on the se
urity (WUF-CMA) of the underlying signature s
heme. In

both 
ases, the se
urity is shown by the standard redu
tion argument. Given an adversary B = (B

1

; B

2

)

atta
king RUF-PTXT of the PKAE s
heme, we 
an easily 
onstru
t an adversary F atta
king WUF-

CMA of the underlying signature s
heme. We �rst prove the se
urity of the En
rypt-and-Sign method

by showing the redu
tion algorithm below and then move on to the se
urity of the Sign-then-En
rypt

method.

Let PE = (K


e

;K

e

; E ;D) be a publi
 key en
ryption s
heme and let DS = (K


s

;KS ;S;VS) be a digital

signature s
heme. Let PKAE = (K




;K

s

;K

r

; E ;D) be a PKAE s
heme 
onstru
ted based on PE and

DS via the En
rypt-and-Sign method. We �rst show the adversary F atta
king WUF-CMA of the

base signature s
heme DS using the adversary B atta
king RUF-PTXT of the PKAE s
heme PKAE

as follows:

Algorithm F

S

sk

(�)

(I

s

;pk)

I

e

R

 K


e

(k) ; I  (I

e

; I

s

)

(st ;pk

r

) B

1

(I)

Run B

2

(st ;pk;pk

r

) answering B's ora
le queries as follows:

When B

2

makes a query x to its en
ryption ora
le do




0

 E

pk

r

(x) ; �  S

sk

(x) ; 
 pkk


0

k� ; return 
 to B

2

Until B

2

outputs (C;pk

r

0

; sk

r

0

)

Parse C as pkkC

0

k�

0

; M

0

 D

sk

r

0

(C

0

)

Return (M

0

; �

0

)

As 
an be seen, F simulates the en
ryption ora
le for the PKAE s
heme 
onstru
ted via the En
rypt-

and-Sign method using its sign-ora
le and the en
ryption key obtained from B

1

in the above algo-

rithm. Be
ause the de�nitions of \newness" and \validity" of B's forgery 
iphertext mat
h those

of F 's signature forgery output, F su

eeds if B su

eeds. Hen
e, the following equation holes:

Adv

wuf-
ma

DS;F

(k) � Adv

ruf-ptxt

PKAE ;B

(k). The assumption that DS is se
ure in the WUF-CMA sense implies

that Adv

wuf-
ma

DS;F

(�) is negligible, and hen
e it follows that Adv

ruf-ptxt

PKAE ;B

(�) is negligible, whi
h results in

the 
on
lusion of the proposition. Note that the forgery of the adversary F shown above is not only an
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atta
k in the WUF-CMA sense but also in the SUF-CMA sense sin
e by de�nition a su

essful forgery

in the WUF-CMA sense is also 
onsidered a su

essful forgery in the SUF-CMA sense.

The se
urity of the Sign-then-En
rypt method 
an be proven in a similar manner. For the proof of

the Sign-then-En
rypt 
ase, the di�eren
e in the redu
tion algorithm will be in the way F generates

the en
ryption ora
le for B

2

(i.e. instead of using the En
rypt-and-Sign method, F will generate the


iphertext based on the Sign-then-En
rypt method) and how F gets its forgery signature from B's

forgery 
iphertext. For 
ompleteness, we show the algorithm below:

Algorithm F

S

sk

(�)

(I

s

;pk)

I

e

R

 K


e

(k) ; I  (I

e

; I

s

)

(st ;pk

r

) B

1

(I)

Run B

2

(st ;pk;pk

r

) answering B's ora
le queries as follows:

When B

2

makes a query x to its en
ryption ora
le do

�  S

sk

(x) ; 


0

 E

pk

r

(xk�) ; 
 pkk


0

; return 
 to B

2

Until B

2

outputs (C;pk

r

0

; sk

r

0

)

Parse C as pkkC

0

; X

0

 D

sk

r

0

(C

0

) ; Parse X

0

as M

0

k�

0

Return (M

0

; �

0

)

It is easy to see that by a similar reason as the proof for the En
rypt-and-Sign 
ase, Adv

wuf-
ma

DS;F

(k) �

Adv

ruf-ptxt

PKAE ;B

(k).

Proof of Proposition 4.5:

Let PE = (K


e

;K

e

; E ;D) be the given IND-CPA se
ure publi
 key based en
ryption s
heme. Based on

PE , we de�ne the s
heme PE

0

= (K


e

;K

e

; E

0

;D

0

) su
h that PE

0

is IND-CPA se
ure, but its asso
iated

PKAE s
heme PKAE = (K




;K

s

;K

r

; E ;D) 
onstru
ted via the En
rypt-and-Sign or Sign-then-En
rypt

method is not TUF-CTXT se
ure. By showing it is not TUF-CTXT se
ure, we 
an infer also that it is

not RUF-CTXT se
ure be
ause RUF-CTXT se
urity implies TUF-CTXT se
urity (whi
h is shown in

Proposition 3.1).

Basi
ally, the modi�
ation in PE 
omes in the en
ryption and de
ryption algorithms: the en
ryption

algorithm E

0

pk

(�) adds a redundant bit to the 
iphertext output by the original en
ryption algorithm

E

pk

(�) and the de
ryption algorithm D

0

sk

(�) ignores the redundant bit and de
rypts the rest of the


iphertext using the original de
ryption algorithm D

sk

(�). The new s
heme PE

0

= (K


e

;K

e

; E

0

;D

0

) has

the same key generation algorithms as the original s
heme PE , and the en
ryption and de
ryption

algorithms are shown below:

Algorithm E

0

pk

(M)

C  E

pk

(M)

Return 0kC

Algorithm D

0

sk

(C)

Parse C as bkC

0

where b is a bit

M  D

sk

(C

0

) ; Return M

We show that the s
heme PKAE 
onstru
ted based on the above en
ryption s
heme PE

0

and a signa-

ture s
heme DS via the En
rypt-and-Sign or Sign-then-En
rypt method is not TUF-CTXT se
ure by

presenting an adversary F atta
king PKAE in the TUF-CTXT sense.

Algorithm F

E

hsk

s

;pk

s

;pk

r

i

(�)

(I ;pk

s

;pk

r

)

C  E

hsk

s

;pk

s

;pk

r

i

(0) ; Parse C as pk

s

k0kC

0

Return (pk

s

k1kC

0

)
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In both En
rypt-and-Sign and Sign-then-En
rypt methods, the same adversary shown above will su

eed

in atta
king the TUF-CTXT se
urity where the 
iphertext 1kC

0

in the above algorithm is interpreted

di�erently in ea
h 
ase. For the En
rypt-and-Sign method, 1kC

0

will be further divided into two parts:

the en
ryption output part (1kC

00

), where C

00

is the output of the original en
ryption algorithm E

pk

r

(�)

of PE and the signature part (�). For the Sign-then-En
rypt method, 1kC

0

will be the en
ryption

output, where C

0

is the output of the original en
ryption algorithm. In both 
ases, it is easy to see that

the 
iphertext is \valid" be
ause the �rst bit in 1kC

0

is ignored by the de
ryption algorithm D

0

sk

r

(�) and

hen
e is de
rypted to be the same plaintext as F 's original en
ryption query, whose signature remains

the same in the forgery 
iphertext. Be
ause the bit 0 in front of C

0

is 
ipped to 1, it is 
onsidered

\new". Hen
e, F su

eeds in atta
king TUF-CTXT of PKAE in both methods.

Intuitively, the reason why the En
rypt-and-Sign and Sign-then-En
rypt methods are vulnerable to this

kind of atta
k is that the signature is based on the plaintext, but not on the 
iphertext. Hen
e, the


hange in the 
iphertext goes undete
ted if its 
orresponding plaintext remains the same as before.

There is a more dire
t atta
k when we 
onsider the RUF-CTXT notion. Consider the following adversary

B = (B

1

; B

2

) atta
king RUF-CTXT se
urity of a PKAE s
heme PKAE = (K




;K

s

;K

r

; E ;D) 
onstru
ted

based on any publi
 key en
ryption s
heme PE = (K


e

;K

e

; E ;D) and any signature s
heme DS =

(K


s

;KS ;S;VS) via the En
rypt-and-Sign method:

Algorithm B

1

(I)

(pk

r

; sk

r

)

R

 K

r

(I) ; st  (I ; sk

r

)

Return (st ; pk

r

)

Algorithm B

E

hsk

s

;pk

s

;pk

r

i

(�)

2

(st ; pk

s

; pk

r

)

C  E

hsk

s

;pk

s

;pk

r

i

(0) ; Parse C as pk

s

kC

0

k�

(pk

r

0

; sk

r

0

)

R

 K

r

(I) ; C

00

 E

pk

r

0

(0)

Return (pk

s

kC

00

k�; pk

r

0

; sk

r

0

)

Sin
e an adversary atta
king against the RUF-CTXT se
urity 
an 
reate its own en
ryption key and

is allowed to 
hange it later, with just one query to the (authenti
ated) en
ryption ora
le, it 
an get

the signature 
orresponding the query message (plaintext) and then re-en
rypt the same message with

a di�erent key it generated, and then output the \new" 
iphertext as a forgery 
iphertext. (We are

assuming here that the probability that the 
iphertext resulting from re-en
rypting the same plaintext

under a new publi
 key di�ers from the original 
iphertext is non-negligible when its key is randomly

generated by the re
eiver key generation algorithm. If this is not the 
ase, B

2


an repeat the pro
ess

of 
hoosing its key pair until this is true). Basi
ally, in both En
rypt-and-Sign and Sign-then-En
rypt

methods, the ability to generate and 
hange the en
ryption key will enable the adversary to be able

to 
hange the 
iphertext part by re-en
rypting it with a de�erent key. Sin
e the signature is based

on the plaintext only in both methods, the signature obtained from the ora
le (by the 
hosen message

atta
k) 
an be reused with the new 
iphertext be
ause the 
iphertext is just an en
ryption of the same

plaintext (under a di�erent key). Above, the adversary B

2

does not need to de
rypt the 
iphertext

using its se
ret key be
ause it already knows the plaintext and the signature part is not en
rypted.

Note, however, that for the Sign-then-En
rypt method, the adversary needs to de
rypt the 
iphertext

in order to get the signature part be
ause the signature part is en
rypted. This is a stronger result than

the TUF-CTXT 
ase, be
ause the atta
k works on any publi
 key en
ryption s
heme PE , not just on a

parti
ular s
heme PE

0

, and this is where the ability to 
reate and manipulate the re
eiver's key makes

a di�eren
e.

Note also that we did not use the se
urity of signature s
hemes expli
itly in our atta
k (the atta
k does

not involve the se
urity of signature s
hemes). This means that regardless of the se
urity (strength) of

the given signature s
heme is (whether it be SUF-CMA or WUF-CMA), the s
heme PKAE 
omposed

by the En
rypt-and-Sign method is not RUF-CTXT se
ure.
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It is easy to see that the new s
heme PE

0

is also IND-CPA se
ure if the original s
heme PE is IND-CPA

se
ure. Intuitively, prepending a �xed bit to a 
iphertext does not reveal any additional information

about its plaintext, hen
e does not help an adversary to distinguish a 
iphertext output by the new left-

or-right en
ryption ora
le any more than that output by the original left-or-right en
ryption ora
le.

Hen
e, an adversary against IND-CPA of PE 
an do as well as that against IND-CPA of PE

0

in

distinguishing the left-or-right ora
le.

Proof of Theorem 4.6:

Let PKAE = (K




;K

s

;K

r

; E ;D;V) be a publi
 key based authenti
ated en
ryption s
heme 
onstru
ted

via the En
rypt-then-Sign method from the en
ryption s
heme PE = (K


e

;K

e

; E ;D) and the signature

s
heme DS = (K


s

;KS ;S;VS). We show that PKAE is RUF-PTXT inse
ure by presenting a poly(k)-

time adversary B = (B

1

; B

2

) atta
king PKAE in the RUF-PTXT sense with su

ess probability of 1.

The algorithm B in the �rst stage 
hooses its key pair and outputs the pair. In its se
ond stage B

2

, it

makes one plaintext query m to the en
ryption ora
le and obtains a 
iphertext C as a response. From

C, it then extra
ts the �rst part 


0

that 
orresponds to the en
ryption of plaintext m (i.e. 


0

= E

pk

r

(m))

and pi
ks a publi
, se
ret key pair (pk

r

0

; sk

r

0

) su
h that D

sk

r

0

(


0

) 6= m, and then it returns the 
iphertext

C obtained from the ora
le response and the newly pi
ked publi
 se
ret key pair (pk

r

0

; sk

r

0

) as its output

forgery and key pair, respe
tively. The algorithm is des
ribed in more detail below.

Algorithm B

1

(I)

(pk

r

; sk

r

)

R

 K

r

(I)

st  (I ; sk

r

)

Return (st ; pk

r

)

Algorithm B

E

hsk

s

;pk

s

;pk

r

i

(�)

2

(st ; pk

s

; pk

r

)

Parse st as (I ; sk

r

) ; m 0

C  E

hsk

s

;pk

s

;pk

r

i

(m) ; Parse C as pk

s

k


0

k�

Pi
k a key pair (pk

r

0

; sk

r

0

) from K

r

(I)

su
h that D

sk

r

0

(


0

) 6= m

Return (C; pk

r

0

; sk

r

0

)

Re
all that C is 
onsidered a su

essful forgery if D

sk

r

0

(C) 6= ? and its 
orresponding plaintext M was

never a query to E

hsk

s

;pk

s

;pk

r

i

(�). Sin
e C was originally output by the en
ryption ora
le, the signature

veri�
ation algorithm VS

pk

s

(�) will return 1 on input (


0

; �), where C is parsed as pk

s

k


0

k�. The

plaintext M 
orresponding to 


0

obtained from applying the underlying de
ryption algorithm D

sk

r

0

(�)

with a new se
ret key sk

r

0

on input 


0

is di�erent from m be
ause in the algorithm B

2

shown above,

the se
ret key is pi
ked so that the de
rypted message obtained from using the new key di�er from

the original message. Hen
e, the plaintext M would be 
onsidered \new" (i.e. was never a query to

the en
ryption ora
le), whi
h makes the forgery valid in the RUF-PTXT sense. Note that sin
e we

did not assume anything spe
i�
 for the underlying primitives, the atta
k works for any s
heme that is


onstru
ted from an en
ryption and signature s
heme via the En
rypt-then-Sign method.

Proof of Theorem 4.7:

Let PE = (K


e

;K

e

; E ;D) be a publi
 key en
ryption s
heme, and let DS = (K


s

;KS ;S;VS) be

the given WUF-CMA se
ure digital signature s
heme. Based on DS, we de�ne the s
heme DS

0

=

(K


s

;KS ;S

0

;VS

0

) su
h that DS

0

is WUF-CMA se
ure, but its asso
iated PKAE s
heme PKAE =

(K




;K

s

;K

r

; E ;D) 
onstru
ted via the En
rypt-then-Sign method is not TUF-CTXT se
ure. By show-

ing it is not TUF-CTXT se
ure, we 
an infer also that it is not RUF-CTXT se
ure be
ause RUF-CTXT

se
urity implies TUF-CTXT se
urity (whi
h is shown in Proposition 3.1).

The key generation algorithms K


s

(�), KS(�) in DS

0

remain the same as DS and the signing and verifying

algorithm S

0

sk

(�), VS

0

pk

(�) are modi�ed as follows:
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Algorithm S

0

sk

(M)

�

0

 S

sk

(M)

Return �

0

k0

Algorithm VS

0

pk

(M;�)

Parse � as �

0

kb where b is a bit

If VS

pk

(M;�

0

) = 1 then return 1 else return 0

As shown above in the modi�ed signing algorithm, a redundant bit is appended to the output of the

original signing algorithm S

sk

(�) and is ignored in the modi�ed veri�
ation algorithm. This makes the

PKAE s
heme PKAE 
onstru
ted based on PE and DS

0

via the En
rypt-then-Sign method to be TUF-

CTXT inse
ure. We show this by presenting an adversary atta
king against TUF-CTXT of PKAE as

follows:

Algorithm F

E

hsk

s

;pk

s

;pk

r

i

(�)

(I ;pk

s

;pk

r

)

C  E

hsk

s

;pk

s

;pk

r

i

(0)

Parse C as pk

s

kC

0

k0

C  pk

s

kC

0

k1

Return C

It is easy to see that the forgery output C is a \new" 
iphertext (i.e. it was never a response from the

en
ryption ora
le) sin
e the last bit of the 
iphertext is 
hanged with respe
t to the en
ryption ora
le

output. The 
iphertext part C

0

k1 
an be further divided into C

00

k�

0

k1 where C

00


orresponds to the

base en
ryption output part and and �

0

k1 is the signature part. Sin
e the last bit in the signature part

is ignored by the signature veri�
ation algorithm, the pair (C

00

; �

0

k1) will be 
onsidered valid by the

signature veri�
ation algorithm VS

0

pk

s

(�; �). Hen
e, the adversary su

eeds in atta
king RUF-CTXT of

PKAE .

It remains to show that DS

0

is WUF-CMA se
ure if DS is WUF-CMA se
ure. To do so, we 
an build

an adversary A against WUF-CMA of DS using an assumed adversary A

0

against WUF-CMA of DS

0

as follows:

Algorithm A

S

sk

(�)

(I ;pk)

Run A

0

(I ;pk) answering its sign-ora
le queries as follows:

When A

0

makes a query x to the sign-ora
le do

y  S

sk

(x)k0 ; return y to A

0

Until A

0

outputs a forgery (M;�)

Parse � as �

0

kb where b is a bit

Return (M;�

0

)

It is easy to see that if the forgery output (M;�) of A

0

is \valid" (i.e. VS

0

pk

(M;�) = 1) and M is

\new" (i.e. A

0

never made an ora
le queryM), then the forgery output (M;�

0

) of A will be also \valid"

and M will be also 
onsidered \new" with respe
t to its sign-ora
le. This implies Adv

wuf-
ma

DS;A

(k) �

Adv

wuf-
ma

DS

0

;A

0

(k), as desired.

Proof of Theorem 4.8:

Let PKAE = (K




;K

s

;K

r

; E ;D;V) be a publi
 key based authenti
ated en
ryption s
heme 
onstru
ted

via the En
rypt-then-Sign method from the en
ryption s
heme PE = (K


e

;K

e

; E ;D) and the signature

s
heme DS = (K


s

;KS ;S;VS). We show that PKAE is RUF-CTXT se
ure if DS is SUF-CMA se
ure

using the standard redu
tion method. We 
onstru
t an adversary F atta
king SUF-CMA of DS using

an adversary B = (B

1

; B

2

) atta
king RUF-CTXT of PKAE as follows:
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Algorithm F

S

sk

(�)

(I

s

;pk)

I

e

R

 K


e

(k) ; I  (I

e

; I

s

)

(st ;pk

r

) B

1

(I)

Run B

2

(st ;pk;pk

r

) answering its en
ryption ora
le queries as follows:

When B

2

makes a query x to the en
ryption ora
le do




0

 E

pk

r

(x) ; �  S

sk

(


0

) ; 
 pkk


0

k� ; return 
 to B

2

Until B

2

outputs (C;pk

r

0

; sk

r

0

)

Parse C as pk

0

kC

0

k�

0

Return (C

0

; �

0

)

Using its signing ora
le, F 
an easily simulate B's en
ryption ora
le and the adversary F su

eeds as

long as B su

eeds be
ause their de�nitions of valid forgery (signature and 
iphertext) mat
h. Hen
e,

Adv

suf-
ma

DS;F

(k) � Adv

ruf-
txt

PKAE ;B

(k), whi
h results in the 
on
lusion of the theorem.

Proof of Theorem 4.9:

In order to prove that the En
rypt-then-Sign method does not provide IND-CCA se
urity in general, we

present an adversary A atta
king the IND-CCA se
urity of a PKAE s
heme PKAE = (K




;K

s

;K

r

; E ;D),


onstru
ted based on any publi
 key en
ryption s
heme PE = (K


e

;K

e

; E ;D) and any digital signature

s
heme DS = (K


s

;KS ;S;VS) via the En
rypt-then-Sign method. The algorithm for the adversary A

is shown below:

Algorithm A

E

hsk

s

;pk

s

;pk

r

i

(LR(�;�;b));D

sk

r

(�)

(I ;pk

s

;pk

r

)

M

0

 0 ; M

1

 1

C  E

hsk

s

;pk

s

;pk

r

i

(LR(M

0

;M

1

; b))

Parse C as pk

s

kC

0

k�

(pk

0

; sk

0

)

R

 K

s

(I)

�

0

 S

sk

0

(C

0

)

M  D

sk

r

(pk

0

kC

0

k�

0

)

If M =M

1

then return 1 else return 0

Above, the de
ryption ora
le query (pk

0

kC

0

k�

0

) will be 
onsidered valid by the de
ryption ora
le be
ause

it was never output by the LR-en
ryption ora
le (be
ause pk

0

kC

0

k�

0

6= pk

s

C

0

k�) and the signature �

0

is valid with respe
t to the adversary's own publi
 key pk

0

(meaning, VS

pk

0

(C

0

; �

0

) = 1). Be
ause A

used C

0

(whi
h is the 
iphertext part of the LR-en
ryption ora
le 
orresponding to the en
ryption of

M

b

) as the 
iphertext part of its de
ryption ora
le query, the plaintext M output by the de
ryption

ora
le will the same as the original plaintextM

b

, whi
h was en
rypted by the LR-en
ryption ora
le. By


omparing M

b

with M

0

and M

1

, the adversary 
an determine the bit b. Note that this atta
k works

regardless of the se
urity properties of the base primitives of PKAE (meaning, even if the base publi


key en
ryption s
heme is IND-CCA se
ure, the asso
iated PKAE s
heme is still INC-CCA inse
ure).

This implies that the En
rypt-then-Sign method is inherently inse
ure in the IND-CCA sense.

Proof of Theorem 5.2:

Let ESSR = (K




;K

s

;K

r

; E ;D) be the PKAE s
heme as per Constru
tion 5.1, and let PE = (K


e

;K

e

; E ;

D) and DS = (K


s

;KS ;S;VS) be its base (asymmetri
) en
ryption s
heme and a digital signature

s
heme, respe
tively.

Let B be an adversary atta
king IND-CCA of ESSR. We will 
onstru
t adversaries A and F atta
king
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IND-CCA of PE , and SUF-CMA of DS, respe
tively, running B as a subroutine, and show

Adv

ind-

a

ESSR;B

(k) � Adv

ind-

a

PE ;A

(k) +Adv

suf-
ma

DS;F

(k) :

The adversary A is given as input the publi
 information I

e

and the publi
 key pk

r

for the en
ryption

s
heme PE and has a

ess to a left-or-right en
ryption ora
le E

pk

r

(LR(�; �; b)). It generates a signature

key, and runs B answering its en
ryption query using the generated signature key and its own en
ryption

ora
le. When B outputs a bit d, A outputs the same bit. The adversary F is given as input the publi


informations (I

s

;pk

s

) for the signature s
heme DS and has a

ess to the sign-ora
le S

pk

s

(�). It generates

an en
ryption key, and runs B answering its en
ryption ora
le using the generated en
ryption key and

its own sign-ora
le. The details of the algorithms A and F are shown in Figure 6.

In Figure 6, the algorithm for A simulates the en
ryption ora
le in the same way as the real experiment

for B. It also simulates the de
ryption ora
le in the same way as the real experiment ex
ept when

B makes a query that 
auses A to query its de
ryption ora
le on one of A's LR-en
ryption ora
le

outputs |i.e. when B's de
ryption ora
le query is of the form pk

s

kE

0

k�

0

, where E

0

was output by

A's LR-en
ryption ora
le | and when this happens, A just sets SBad to true and halts. Let AskedSig

denote this event. Note that 
on
atenating the sender key pk

s

to the plaintext and en
rypting it as the


iphertext part E for the en
ryption algorithm and then 
he
king whether the de
rypted sender key

mat
hes the purported sender key in the de
ryption algorithm prevent B from using the same en
rypted


iphertext part E and repla
ing the signature part with its own signature under its own key. This is

why A 
an give ? to B as a response without invoking its de
ryption ora
le when B's query is of the

form pkkE

0

k�

0

where pk 6= pk

s

and E

0

is one of the responses of A's LR-en
ryption ora
le. In other


ases, A 
an invoke the de
ryption ora
le and responds to B's de
ryption query in a straightforward

manner.

Hen
e, under the absen
e of the event AskedSig, A 
an use B to atta
k against IND-CCA of PE as

shown in the algorithm for A above. Sin
e A outputs the same bit as what B outputs, we have

Pr

h

Exp

ind-

a-1

ESSR;B

(k) = 1 ^ AskedSig

i

� Pr

h

Exp

ind-

a-0

ESSR;B

(k) = 1 ^ AskedSig

i

= Pr

h

Exp

ind-

a-1

PE ;A

(k) = 1

i

� Pr

h

Exp

ind-

a-0

PE;A

(k) = 1

i

When the event AskedSig o

urs, F 
an use B to atta
k SUF-CMA of DS as shown in the algorithm

for F above. The reason is that when B's query is of the form pk

s

kE

0

k�

0

, and when it is \new" as

a 
iphertext, it implies that (E

0

; �

0

) as a pair is \new" as a pair, and if �

0

is a valid signature of E

0

,

then it is exa
tly what is 
onsidered a su

essful forgery against SUF-CMA. Note that the algorithm

for the adversary F does not 
omplete the exe
ution of B when the event AskedSig o

urs, but it just

outputs (E

0

; �) as the forgery. This means that regardless of whi
h bit B outputs as its guess or what

the value of the bit b was 
hosen for the LR-en
ryption ora
le, as long as the event AskedSig o

urs,

F 
an su

eed in atta
king SUF-CMA of DS, whi
h means the advantage of B in this 
ase is upper

bounded by the advantage of F . Hen
e, the following equation holds:

Pr

h

Exp

ind-

a-1

ESSR;B

(k) = 1 ^ AskedSig

i

�Pr

h

Exp

ind-

a-0

ESSR;B

(k) = 1 ^ AskedSig

i

� Pr

h

Exp

suf-
ma

DS;F

(k) = 1

i

Combining the above two equations, we have

Adv

ind-

a

ESSR;B

(k)

= Pr

h

Exp

ind-

a-1

ESSR;B

(k) = 1

i

� Pr

h

Exp

ind-

a-0

ESSR;B

(k) = 1

i
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Algorithm A

E

pk

r

(LR(�;�;b));D

sk

r

(�)

(I

e

; pk

r

)

I

s

R

 K


s

(k) ; (pk

s

; sk

s

)

R

 KS(I

s

) ; I  (I

e

; I

s

)

Run B(I ; pk

s

; pk

r

) answering B's queries as follows:

When B makes a LR-en
ryption ora
le query (m

0

;m

1

) do

E  E

pk

r

(LR(m

0

kpk

s

;m

1

kpk

s

; b)) ; �  S

sk

s

(Ekpk

r

)

C  pk

s

kEk� ; return C to B

When B makes a de
ryption ora
le query C

0

do

Parse C

0

as pkkE

0

k�

0

If VS

pk

(E

0

kpk

r

; �

0

) = 0 then return ? to B

If pk = pk

s

then

If E

0

was output by A's LR-en
ryption ora
le

then SBad true ; halt

else X  D

sk

r

(E

0

)

Parse X as Mkpk

0

If pk

0

= pk then return (pk;M) to B else return ? to B

If pk 6= pk

s

then

If E

0

was output by A's LR-en
ryption ora
le

then return ? to B

else X  D

sk

r

(E

0

)

Parse X as M

0

kpk

0

If pk

0

= pk then return (pk;M) to B else return ? to B

Until B outputs a bit d

Return d

Algorithm F

S

sk

s

(�)

(I

s

; pk

s

)

I

e

R

 K


e

(k) ; I  (I

e

; I

s

) ; (pk

r

; sk

r

)

R

 K

e

(I

e

) ; b

R

 f0; 1g

Run B(I ; pk

s

; pk

r

) answering B's queries as follows:

When B makes a LR-en
ryption ora
le query (m

0

;m

1

) do

E  E

pk

r

(m

b

) ; �  S

sk

s

(Ekpk

r

)

C  pk

s

kEk� ; return C to B

When B makes a de
ryption ora
le query C

0

do

Parse C

0

as pkkE

0

k�

0

If VS

pk

(E

0

kpk

r

; �

0

) = 0 then return ? to B

If pk = pk

s

then

Return (E

0

; �

0

) as the forgery output

If pk 6= pk

s

then

X  D

sk

r

(E

0

)

Parse X as Mkpk

0

If pk

0

= pk then return (pk;M) to B else return ? to B

Until B outputs a bit d

Figure 6: Algorithms for the proof of Theorem 5.2

= Pr

h

Exp

ind-

a-1

ESSR;B

(k) = 1 ^ AskedSig

i

+ Pr

h

Exp

ind-

a-1

ESSR;B

(k) = 1 ^ AskedSig

i

�Pr

h

Exp

ind-

a-0

ESSR;B

(k) = 1 ^ AskedSig

i

� Pr

h

Exp

ind-

a-0

ESSR;B

(k) = 1 ^ AskedSig

i

� Pr

h

Exp

ind-

a-1

PE ;A

(k) = 1

i

� Pr

h

Exp

ind-

a-0

PE ;A

(k) = 1

i

+ Pr

h

Exp

suf-
ma

DS;F

(k) = 1

i
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� Adv

ind-

a

PE ;A

(k) +Adv

suf-
ma

DS;F

(k)

as desired.

The assumption that PE is IND-CCA se
ure and DS is SUF-CMA se
ure implies that Adv

ind-

a

PE;A

(�)

and Adv

suf-
ma

DS;F

(�) are negligible, and hen
e it follows that Adv

ind-

a

ESSR;B

(�) is also negligible, whi
h results

in the 
on
lusion of the theorem.

Proof of Theorem 5.3:

We will �rst show that ESSR is RUF-PTXT se
ure if DS is WUF-CMA se
ure. Let B = (B

1

; B

2

) be

any adversary atta
king RUF-PTXT of ESSR. We 
onstru
t an adversary F atta
king WUF-CMA of

DS running the adversary B and show that F su

eeds in atta
king WUF-CMA of DS if B su

eeds

in atta
king RUF-PTXT of ESSR. The adversary F has a

ess to a sign ora
le S

sk

s

(�) and is given

as input the publi
 information in
luding the publi
 key (pk

s

) of the signature s
heme, and runs B as

follows:

Algorithm F

S

sk

s

(�)

(I

s

;pk

s

)

I

e

R

 K


e

(k) ; I  (I

e

; I

s

)

(st ;pk

r

) B

1

(I)

Run B

2

(st ;pk

s

;pk

r

) answering its ora
le queries as follows:

When B

2

makes a query m to its en
ryption ora
le do

E  E

pk

r

(mkpk

s

) ; �  S

sk

s

(Ekpk

r

)

return pk

s

kEk� to B

2

Until B

2

outputs (C;pk

r

0

; sk

r

0

)

Parse C as (pkkC

0

k�

0

)

Return (C

0

kpk

r

0

; �

0

)

Let x denote the output of the de
ryption algorithm 
omputed on B's 
iphertext forgery C = pkkC

0

k�

0

(i.e. x  D

sk

r

0

(C)). The su

ess of B in atta
king RUF-PTXT of ESSR requires that x 6= ?, whi
h

means x 
an be parsed as (pk;M). Furthermore, it requires that pk = pk

s

and M be \new" (i.e.

was never queried to the en
ryption ora
le E

hsk

s

;pk

s

;pk

r

i

(�)). Sin
e pk has to equal pk

s

, pk

s

needs to

be used for veri�
ation throughtout the proof. For the de
ryption x to be \valid" with respe
t to pk

s

,

VS

pk

s

(C

0

kpk

r

0

; �) needs to return 1. For M to be \new", either C

0

or pk

r

0

has to be \new" be
ause

otherwise D

sk

r

0

(C

0

) will not return a \new" message M . If either C

0

or pk

r

0

is \new", the message

part C

0

kpk

r

0

of the adversary F 's forgery will be \new" with respe
t to previous sign-ora
le queries.

Be
ause their requirements for \validness" and \newness" mat
h in both atta
k models, the su

ess of

B atta
king RUF-PTXT of ESSR implies the su

ess of F atta
king WUF-CMA of DS in the above

algorithm, whi
h results in the following equation:

Adv

wuf-
ma

DS;F

(k) � Adv

ruf-ptxt

ESSR;B

(k)

From the above equation, the theorem statement regarding the RUF-PTXT se
urity of ESSR is ob-

tained.

The RUF-CTXT se
urity of ESSR 
an be shown using the same algorithm F shown above. We show that

F su

eeds in atta
king SUF-CMA of DS if B su

eeds in atta
king RUF-CTXT of ESSR. From the def-

inition of SUF-CMA of DS, the adversary F wins (i.e. Exp

suf-
ma

DS;F

(k) returns 1) if VS

pk

s

(C

0

kpk

r

0

; �) = 1

and (C

0

kpk

r

0

; �) as a pair is \new". For B's forger 
iphertext C = pkkC

0

k� to be a su

essful forgery in

the RUF-CTXT sense, pk = pk

s

and the 
iphertext part C

0

k� needs to be \new" and D

hpk

s

;sk

r

i

(C) does
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not return ? (i.e. VS

pk

s

(C

0

kpk

r

0

; �) = 1). Sin
e meeting these two 
onditions are suÆ
ient for meeting

the two 
onditions for the su

ess of F , F will su

eed in atta
king SUF-CMA of DS if B su

eeds in

atta
king RUF-CTXT of ESSR. Hen
e, we have the following equation:

Adv

suf-
ma

DS;F

(k) � Adv

ruf-
txt

ESSR;B

(k)

From the above equation, the theorem statement regarding the RUF-CTXT se
urity of ESSR is ob-

tained.

Proof of Theorem 5.7:

Let H be a hash fun
tion, and let GG be a group generator algorithm. Let MA = (K

m

;T;VT) and

SE = (K

e

;E;D) be the given MAC and symmetri
 en
ryption s
heme, respe
tively. Let DHETM =

(K




;K

s

;K

r

; E ;D) be the given PKAE s
heme. We want to show IND-CCA of DHETM based on IND-

CPA of SE and SUF-CMA of MA under the ODH assumption on (H;GG).

The proof is based on the standard redu
tion argument. Given an adversary B atta
king IND-CCA of

DHETM, we 
an 
onstru
t an adversary A atta
king the \hard
oreness" of H on GG under adaptive

DH atta
k (the ODH assumption), and an adversary D atta
king IND-CPA of SE and an adversary F

atta
king SUF-CMA of SDS. The su

ess of ea
h adversary A, D, and F depends on the su

ess of B

in di�erent settings. Let (X;x), and (Y; y) be the publi
, se
ret key pairs of the sender and re
eiver,

respe
tively, where X = g

x

and Y = g

y

. There are two 
ases for the output of H: it 
an look random or

not random (i.e. H(g

xy

)). There are two types for B's query to the de
ryption ora
le D

y

(�), whi
h is of

the form X

0

kC, where X

0

is a publi
 key of a sender, C is a 
iphertext: 
riti
al query and non-
riti
al

query. A 
riti
al query is a query XkC, su
h that X

0

= X (i.e. the publi
 key X

0

is the same as the

real sender's publi
 key) and D

y

(X

0

kC) 6= ? (the 
iphertext is valid with respe
t to X

0

). A non-
riti
al

query is the rest of the query type (e.g. X

0

kC where X

0

6= X).

There are three 
ases to 
onsider depending on the output of H and the types of B's de
ryption ora
le

query. First 
ase is that the output of H does not look random, and in this 
ase, we 
an 
onstru
t A

that uses B to violate the ODH assumption. The se
ond 
ase is that the output of H looks random,

and B does not make a 
riti
al query to the de
ryption ora
le. In this 
ase, we 
an 
onstru
t D that

violates IND-CPA of SE using B. The third 
ase is that the output of H looks random, and B makes

a 
riti
al query, and in this 
ase, we 
an 
onstru
t F that violates SUF-CMA of SDS using B. From

the three 
ases, we 
an 
on
lude that if the base primitives are se
ure in their own senses, DHETM is

also se
ure in the IND-CCA sense.

The algorithms for the adversaries A, D, and F are shown in Figure 7.

From De�nition 5.5, we have

Adv

odh

H;GG;A

(k) = Pr

h

Exp

odh-1

H;GG;A

(k) = 1

i

� Pr

h

Exp

odh-0

H;GG;A

(k) = 1

i

Claim 1. When Z given as input to the adversary A shown in Figure 7 is of the form H(g

xy

), the

following equation holds:

Pr

h

Exp

odh-1

H;GG;A

(k) = 1

i

�

1

2

+

1

2

�Adv

ind-

a

ECSR;B

(k)

Proof: When Z is of the form of H(g

xy

) given X = g

x

and Y = g

y

, where x; y

R

 Z

q

, the en
ryption and

de
ryption ora
les are simulated by A in the same way as the real en
ryption and de
ryption ora
les
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Algorithm A

H

y

(�)

((q; g); X; Y; Z)

Parse Z as K

e

kK

m

; b

R

 f0; 1g

Run B on input ((q; g); X; Y )

For ea
h LR-en
ryption query (m

0

;m

1

) do

E  E

K

e

(m

b

) ; �  T

K

m

(E)

return XkEk� to B

For ea
h de
ryption query C do

Parse C as X

0

kC

0

k�

0

If X

0

6= X then K

0

e

kK

0

m

 H

y

(X

0

)

else K

0

e

 K

e

; K

0

m

 K

m

If VT

K

0

m

(C

0

; �

0

) = 1 then

M

0

 D

K

0

e

(C

0

)

return (X

0

;M

0

) to B

else return ? to B

Until B outputs a bit d

If b = d then return 1 else return 0

Algorithm D

E

K

e

(LR(�;�;b))

(k)

(q; g)

R

 K




(k) ; (X; x)

R

 K

s

(q; g)

(Y; y)

R

 K

r

(q; g) ; K

m

R

 f0; 1g

L

m

Run B on input ((q; g); X; Y )

For ea
h LR-en
ryption query (m

0

;m

1

) do

E  E

K

e

(LR(m

0

;m

1

; b)) ; �  T

K

m

(E)

return XkEk� to B

For ea
h de
ryption query C do

Parse C as X

0

kC

0

k�

0

If X

0

6= X then K

0

e

kK

0

m

 H((X

0

)

y

)

else K

0

m

 K

m

If VT

K

0

m

(C

0

; �

0

) = 1 then

If X

0

= X then Asked true ; halt

else M

0

 D

K

0

e

(C

0

) ; return (X

0

;M

0

) to B

else return ? to B

Until B outputs a bit d

return d

Algorithm F

T

K

m

(�);VT

K

m

(�)

(k)

(q; g)

R

 K




(k) ; (X; x)

R

 K

s

(q; g) ; (Y; y)

R

 K

r

(q; g) ; K

e

R

 f0; 1g

L

e

; b

R

 f0; 1g

Run B on input ((q; g); X; Y )

For ea
h LR-en
ryption query (m

0

;m

1

) do

E  E

K

e

(m

b

) ; �  T

K

m

(E) ; return XkEk� to B

For ea
h de
ryption query C do

Parse C as X

0

kC

0

k�

0

If X

0

6= X then

K

0

e

kK

0

m

 H((X

0

)

y

)

If VT

K

0

m

(C

0

; �) = 1 then M

0

 D

K

0

e

(C

0

) ; return (X

0

;M

0

) to B else return ? to B

If X

0

= X then

If VT

K

m

(C

0

; �

0

) = 1

then Return // F su

eeded in forging

else return ? to B

Until B outputs a bit d

Figure 7: Algorithms for the proof of Theorem 5.7

given to B in the experiment Exp

ind-

a-b

DHETM;B

(k). Hen
e, we have

Pr

h

Exp

odh-1

H;GG;A

(k) = 1

i

=

1

2

� Pr

h

Exp

ind-

a-1

DHETM;B

(k) = 1

i

+

1

2

� Pr

h

Exp

ind-

a-0

DHETM;B

(k) = 0

i

=

1

2

� Pr

h

Exp

ind-

a-1

DHETM;B

(k) = 1

i

+

1

2

�

�

1� Pr

h

Exp

ind-

a-0

DHETM;B

(k) = 1

i�

=

1

2

+

1

2

�Adv

ind-

a

DHETM;B

(k)

as desired.

2

When Z is a random string (i.e. Z

R

 f0; 1g

L

h

), depending on whether a 
riti
al query is made by B
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or not, it 
an be further divided into two 
ases. Note that when a 
riti
al query is made by B, the

variable Asked set true in the algorithm D shown in Figure 7. Let AskedValid be the event where Asked

is set true (i.e. a 
riti
al query is made by B). In 
ase the event AskedValid did not o

ur, we have the

following 
laim.

Claim 2. When Z is a random string (Z

R

 f0; 1g

L

h

), and the event AskedValid o

urs, the following

equation holds:

Pr

h

Exp

odh-0

H;GG;A

(k) = 1 ^ AskedValid

i

�

1

2

+

1

2

�Adv

ind-
pa

SE;D

(k)

Proof: If Z given to A as input is randomly 
hosen (i.e. Z

R

 f0; 1g

L

h

), the simulation of the LR-

en
ryption ora
le provided by the adversary A to the adversary B is essentially the same as that provided

by the adversary D to B be
ause in both simulations, the keys for the base symmetri
 en
ryption s
heme

and MAC are e�e
tively 
hosen at random and independent of the values of X and Y . The simulation

of de
ryption ora
le is also 
orre
t ex
ept when the variable Asked is set. Sin
e A outputs 1 whenever

B guesses the bit b right, while D outputs whatever B outputs, the probability that A outputs 1 in this


ase is at most the probability that D guesses the bit b right (b = d). Hen
e, we have

Pr

h

Exp

odh-0

H;GG;A

(k) = 1 ^ AskedValid

i

�

1

2

� Pr

h

Exp

ind-
pa-1

SE;D

(k) = 1

i

+

1

2

� Pr

h

Exp

ind-
pa-0

SE;D

(k) = 0

i

=

1

2

+

1

2

�Adv

ind-
pa

SE;D

(k)

as desired.

2

If the event AskedValid o

urs when Z is a random string, the forger F 
an break the SUF-CMA se
urity

of the MAC s
heme MA = (T;VT) running the adversary B.

Claim 3. When Z is a random string (Z

R

 f0; 1g

L

h

), and the event AskedValid o

urs, the following

equation holds:

Pr

h

Exp

odh-0

H;GG;A

(k) = 1 ^ AskedValid

i

� Adv

suf-
ma

MA;F

(k)

Proof: If Z given to A as input is randomly 
hosen (i.e. Z

R

 f0; 1g

L

h

), the simulation of the LR-

en
ryption ora
le provided by the adversary A to the adversary B is essentially the same as that

provided by the forger F to B be
ause in both simulations, the keys for the base symmetri
 en
ryption

s
heme and MAC are e�e
tively 
hosen at random and independent of the values of X and Y . If

B makes a 
riti
al query X

0

kC

0

k�

0

to the de
ryption ora
le (whi
h de�nes the event AskedValid), it

implies, by de�nition, X

0

= X and C

0

k�

0

is valid with respe
t to X, meaning VT

K

m

(C

0

; �

0

) = 1. Sin
e

the de
ryption ora
le query X

0

kC

0

k� needs to be \new" with respe
t the en
ryption ora
le responses,

it implies that C

0

k�

0

is \new", whi
h means � was never output by VT

K

m

on input C

0

. These two


onditions implied by a 
riti
al query of B are the 
onditions required for a su

essful forgery against

SUF-CMA of MA. Hen
e, the forger F running B su

eeds in forging when B makes a 
riti
al query,

and this justi�es the above 
laim.

2

Combining the results from the above three 
laims, we have

Adv

odh

H;GG;A

(k) �

1

2

�Adv

ind-

a

ECSR;B

(k)�

1

2

�Adv

ind-
pa

SE;D

(k)�Adv

suf-
ma

MA;F

(k)

Transposing terms and taking the maximum of the advantages over all adversaries limited to the given

resour
es, we obtain the 
on
lusion of Theorem 5.7.
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Proof of Theorem 5.8:

LetH be a hash fun
tion, and let GG be a group generator algorithm. Let SE = (K

e

;E;D) be a symmetri


en
ryption s
heme, and let MA = (K

m

;T;VT) be a MAC s
heme. Let DHETM = (K




;K

s

;K

r

; E ;D) be

a PKAE s
heme 
onstru
ted based on H, SE and MA as per Constru
tion 5.4. We prove the se
urity

of DHETM using the standard redu
tion argument. Given an adversary F atta
king TUF-CTXT of

DHETM, we 
onstru
t an adversary A atta
king the \hard
oreness" of H on GG (the HDH assumption)

and an adversary B atta
king SUF-CMA of MA.

The adversary A and B run F as a subroutine answering its ora
le queries, and then using the output

forgery of F , A determines whether Z is random or not and B outputs a forgery in the SUF-CMA

sense. The details of the algorithms for A and B are shown below.

Algorithm A((q; g); X; Y; Z)

Parse Z as K

e

kK

m

Run F on input ((q; g); X; Y )

When F queries the E ora
le on m do

E  E

K

e

(m) ; �  T

K

m

(E)

return XkEk� to F

Until F outputs a forgery 
iphertext C

Parse C as X

0

kC

0

k�

0

If X

0

= X and C was never a response

given to F and VT

K

m

(C

0

; �

0

) = 1

then return 1 else return 0

Algorithm B

T

K

m

(�);VT

K

m

(�)

(k)

(q; g)

R

 K




(k) ; (X; x)

R

 K

s

(q; g)

(Y; y)

R

 K

r

(q; g) ; K

e

R

 f0; 1g

L

e

; b

R

 f0; 1g

Run F on input ((q; g); X; Y )

When F queries the E ora
le on m do

E  E

K

e

(m) ; �  T

K

m

(E)

return XkEk� to F

Until F outputs a forgery 
iphertext C

Parse C as X

0

kC

0

k�

0

b VT

K

m

(C

0

; �

0

)

As 
an be seen from the above algorithms, the algorithms A and F use B's outputs to a
hieve their

own goals depending on whether Z looks random or not. If Z is of the form H(g

xy

) (i.e. the 
ase where

the hash output does not look random), the en
ryption ora
le A simulates for B is the same as the real

en
ryption algorithm given to B in the experiment Exp

tuf-
txt

DHETM;F

(k). Sin
e A outputs 1 if B su

eeds

in forging a 
iphertext against TUF-CTXT of DHETM, the following equation holds:

Pr

h

Exp

hdh-1

H;Group;A

(k) = 1

i

= Pr

h

Exp

tuf-
txt

DHETM;F

(k) = 1

i

If Z

R

 f0; 1g

L

h

(i.e. the 
ase where the hash output does look random), the distribution of the

en
ryption ora
le responses A simulates for B is essen
ially the same as what F simulates for B, and F


an su

eed in atta
king SUF-CMA of MA using B's su

essful forgery 
iphertext in this 
ase. Hen
e,

the following equation holds:

Pr

h

Exp

suf-
ma

MA;B

(k) = 1

i

� Pr

h

Exp

hdh-0

H;GG;A

(k) = 1

i

Combining the above results, we obtain

Adv

hdh

H;GG;A

(k) � Pr

h

Exp

tuf-
txt

DHETM;F

(k) = 1

i

� Pr

h

Exp

suf-
ma

MA;B

(k) = 1

i

= Adv

tuf-
txt

DHETM;F

(k)�Adv

suf-
ma

MA;B

(k) :

Transposing the terms, and taking into a

ount the resour
es used by the adversaries, we get the


on
lusion of the theorem.

Proof of Theorem 5.9: Let DHETM = (K




;K

s

;K

r

; E ;D) be the PKAE s
heme 
onstru
ted as per

Constru
tion 5.4. The adversary B = (B

1

; B

2

) against RUF-CTXT of DHETM is given an ora
le

E

hx

a

;y

a

;x

b

i

(�) in its se
ond stage and works as follows:
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Algorithm B

1

(q; g)

x

b

R

 Z

q

y

b

 g

x

b

st  (x

b

; q; g)

return (st ; y

b

)

Algorithm B

E

hx

a

;y

a

;x

b

i

(�)

2

(st ; y

a

; y

b

)

Parse st as (x

b

; q; g)

K

R

 H(y

x

b

a

) ; Parse K as K

e

kK

m




0

 E

K

e

(0) ; �  T

K

m

(


0

)

C  y

a

k


0

k�

return (C; y

b

; x

b

)

It is easy to see that the 
iphertext C output by B in the se
ond stage is \valid", meaning D

x

b

(C) 6= ?.

Be
ause the en
ryption is based on the 
ommon key 
omputed from the keys of both sender and re
eiver,

B as an adversarial re
eiver who knows its own key 
an easily 
ompute the 
ommon key as well as the

sender. The adversary B does not have to invoke the en
ryption ora
le and it 
an en
rypt any messages

of its 
hoi
e. Sin
e B did not query the en
ryption ora
le, both the output forgery 
iphertext C and

its 
orresponding plaintext \0" will be 
onsidered \new". Hen
e, the same adversary B 
an be used for

atta
king both RUF-PTXT and RUF-CTXT se
urity of DHETM. Combining these results, we obtain

the following equation

Adv

ruf-ptxt

DHETM;B

(k) = Adv

ruf-
txt

DHETM;B

(k) = 1

as desired.

Note that although B did not 
hange its own key pair in the se
ond stage, it 
ould have easily 
hanged

its key and still su

eed in generating a valid 
iphertext forgery of its 
hoi
e with respe
t to the 
hanged

key. Here, B's ability to 
hange the key does not a�e
t its su

ess probability.
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