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Abstrat

This paper addresses the seurity of authentiated enryption shemes in the publi key setting.

We present two new notions of authentiity that are stronger than the integrity notions given in the

symmetri setting [5℄. We also show that hosen-iphertext attak seurity (IND-CCA) in the publi

key setting is not obtained in general from the ombination of hosen-plaintext seurity (IND-CPA)

and integrity of iphertext (INT-CTXT), whih is in ontrast to the results shown in the symmetri

setting [13, 5℄. We provide seurity analyses of authentiated enryption shemes onstruted by

ombining a given publi key enryption sheme and a given digital signature sheme in a \generi"

manner |namely, Enrypt-and-Sign, Sign-then-Enrypt, and Enrypt-then-Sign| and show that

none of them, in general, provide seurity under all notions de�ned in this paper. We then present a

sheme alled ESSR that meets all seurity notions de�ned here. We also give seurity analyses on an

eÆient DiÆe-Hellman based sheme alled DHETM, whih an be thought of as a transform of the

enryption sheme \DHIES" [1℄ into an authentiated enryption sheme in the publi key setting.
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1 Introdution

Bakground. Authentiity and Privay have been the main goals of data ommuniation in both

private and publi key settings. There are various shemes that are designed to meet these goals

separately. In the publi key setting, asymmetri enryption shemes are designed to provide privay,

while (digital) signature shemes are designed to provide authentiity. Well de�ned formal seurity

notions for enryption shemes [9, 15, 7℄ and signature shemes [10℄ exist, and shemes have been

analyzed aording to those notions. Reently, there have been rising interests in ombining these

shemes in suh a way that the goals of both privay and authentiity are met at the same time

[12, 17, 14, 11℄. However, shemes that are designed to meet both goals have not reeived formal seurity

treatments. No lear formal de�nitions of seurity or omprehensive seurity analyses on the shemes

have been provided in the publi key setting, although a reent work [5℄ gives these in the symmetri

setting. Here we provide formal seurity de�nitions and seurity analyses for shemes whose goal is to

provide both privay and authentiity in the publi key setting. Note that seurity de�nitions from

the symmetri setting annot just be \lifted up" for the publi key setting beause of the asymmetri

nature of the latter. The asymmetry of keys makes a di�erene in the notions of both authentiity and

privay. In order to see this more learly, we begin by desribing the setting and seurity notions in

more detail below.

The setting. We onsider a publi key setting where two parties (a sender and a reeiver) want to

ommuniate seurely over an inseure hannel. In order to provide both privay and authentiity at

the same time, both sender and reeiver need to have their own publi, seret key pairs. Note that this

does not mean that the keys are unique for the spei� pair of sender and reeiver. Although we are

onsidering just the two party ase here, the setting an be extended to a multi-party ase by assuming

that eah user has its own publi, seret key pair.

We use the term publi key based authentiated enryption (abbreviated to PKAE) shemes to refer to

shemes whose goal is to provide both privay and authentiity in the publi key setting. Authentiated

enryption shemes an also be viewed as enryption shemes with an added seurity goal of authentiity.

1.1 Seurity notions for publi key based authentiated enryption shemes

Privay. We onsider privay under both hosen-plaintext and hosen-iphertext attaks. Notie that,

unlike the usual publi key enryption shemes, enryption in an authentiated enryption sheme is

done based on a sender's seret key as well as a reeiver's publi key, and hene an adversary that does

not have its own publi, seret key pair annot enrypt a message of its hoie using the publi key of

the reeiver only. Therefore, in order to model a hosen-plaintext attak, it is not suÆient to provide

aess to a reeiver's publi key. Adopting the left-or-right indistinguishability notion (IND-CPA) of

the symmetri setting [3℄ to the publi key setting, we model the hosen-plaintext attak by allowing an

adversary aess to a left-or-right enryption orale. For the notion of privay under hosen-iphertext

attak (i.e. IND-CCA), we allow aess to a deryption orale in addition to the left-or-right enryption

orale, following [3℄. Beause we allow a deryption orale aess to the adversary, we onsider an

adversary who has its own publi, seret key pair. In this ase, even though the adversary might not

be able to generate a iphertext that is valid with respet to the publi key of a partiular sender, it

may be able to generate a iphertext that is onsidered valid with respet to its own publi key. This

might make a di�erene in the adversary's ability to attak the given sheme in the IND-CCA sense.

Authentiity. Seurity regarding authentiity in the symmetri setting is normally measured by

\unforgeability" by an adversarial third-person (meaning, exluding the sender and reeiver) who is

allowed a hosen message attak. Sine the sender and reeiver both share the same key, there is no
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distintion between the sender and reeiver in their ability to reate valid iphertexts. However, in the

publi key setting, there is a distintion |only a sender has all the information (i.e. the sender's seret

key and the reeiver's publi key) to reate a valid (authenti) iphertext. Hene, an adversary against

a sender's authentiity may be a reeiver as well as a third-person. Note, however, that a reeiver and

third-person may not have the same ability in forging a sender's iphertext. This is beause the reeiver's

key is also involved in reating valid iphertexts and by reating and manipulating its own key pair,

the reeiver may be able to ome up with a forgery whih a third-person adversary annot. Reeting

this di�erene into the unforgeability notion, we divide the notion into two parts: reeiver unforgeability

(RUF) and third-person unforgeability (TUF). In the third-person unforgeability notion, whih is the

usual notion for authentiity, the goal of an adversary is to make the intended reeiver believe that

the forgery it reeived has indeed ome from the original sender. In the reeiver unforgeability notion,

however, the goal of an adversary (i.e. reeiver) is to onvine a \third-party" (e.g. a judge) that a

forgery it reated has indeed ome from the original sender. We note that this notion an model what

is usually alled \non-repudiation" for authentiated enryption shemes in the publi key setting.

In the attak models for both notions, the adversary is allowed a hosen-message attak. Addition-

ally, in the reeiver unforgeability attak model, the adversary (reeiver) is allowed to reate its own key

pair initially, and hange its key pair later when it outputs a forgery so that its forgery is derypted and

veri�ed using the new key pair. This models the versatility of the publi key setting where it is possible

for a party to register its own publi key with a erti�ation authority (CA) and later re-register a dif-

ferent publi key without being deteted by others. (Although assoiating timestamps with iphertexts

may help avoid this type of attak, it may not always be possible. Hene, we allow this type of attak

for generality.) We remark that this kind of attak has appeared in the literature [2, 6℄. The third-

person unforgeability models unforgeability in the usual setting (similar to the symmetri setting). In

both models, suess of an adversary is measured by its ability to output a \new" and \valid" forgery.

Depending on the de�nition of \newness", the forgery is further divided into two ases: iphertext and

plaintext. A forgery of a \new" iphertext indiates that the forgery iphertext output by the adversary

is never output by the orale given to the adversary while a forgery of a \new" plaintext indiates that

the plaintext orresponding to the forgery iphertext was never queried by the adversary to the ora-

le. Combining the reeiver and third-person unforgeability (RUF, TUF) with iphertext and plaintext

forgery (CTXT, PTXT), we get the following four notions: RUF-CTXT, RUF-PTXT, TUF-CTXT,

and TUF-PTXT. We note that the third-person unforgeability notions (TUF-CTXT and TUF-PTXT)

in the publi key setting are analogous to the integrity notions (INT-CTXT and INT-PTXT) in the

symmetri setting shown in [5℄, while reeiver unforgeability notions (RUF-CTXT and RUF-PTXT)

are new and apply only to the publi key setting.

1.2 Relations among the seurity notions

Figure 1 depits the relations among the new notions (RUF-CTXT, RUF-PTXT, TUF-CTXT, TUF-

PTXT) and the existing notions (IND-CCA, IND-CPA) presented in the style of [4, 5℄. An impliation

A! B means that all shemes seure in the sense of A are also seure in the sense of B. A separation

A 6! B means that there exists a sheme that is seure in the sense of A but not in the sense of B.

Sine TUF-CTXT and TUF-PTXT are analogous to INT-CTXT and INT-PTXT in the symmetri

setting, the relations among them are not expliitly proved in this paper; instead we ite the papers

that establish the relations. We ombine IND-CPA with the unforgeability notions in Figure 1 in order

to relate the ombined seurity with privay notions (i.e. IND-CPA, IND-CCA).

Note the horizontal relations that indiate that the reeiver unforgeability properties are in general

stronger than the third-person unforgeability |this is expeted from the de�nitions of their attak

models, where an adversarial reeiver is given more \power" than an adversarial third-person. More
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IND-CCA TUF-CTXT ^ IND-CPA RUF-CTXT ^ IND-CPA

IND-CPA TUF-PTXT ^ IND-CPA RUF-PTXT ^ IND-CPA

3.5

3.5

[5℄

[4℄

3.2

3.1

3.2

3.1

[5℄ 3.33.4

Figure 1: Relations among seurity notions for publi key based authentiated enryption

shemes. An arrow denotes an impliation while a hathed arrow denotes a separation. The solid arrows

indiate relations proved in this paper with the annotations orresponding to the propositions, and dotted arrows

indiate existing relations (adapted to the publi key setting desribed in this paper) annotated with itations.

interesting relations are shown between RUF-CTXT and RUF-PTXT notions |unlike the third-person

ase (where TUF-CTXT is a stronger notion than TUF-PTXT), the two notions RUF-CTXT and

RUF-PTXT are not omparable, meaning the relative strengths between the two notions annot be

determined beause a separation exists in both diretions. (Note that, although not expliitly shown in

Figure 1, RUF-PTXT does not imply RUF-CTXT beause otherwise, by following arrows, we would get

RUF-PTXT ! TUF-CTXT, ontraditing the stated separation.) This means that both RUF-CTXT

and RUF-PTXT seurity (along with the IND-CCA seurity) need to be shown in order to prove that

a sheme is seure for all notions.

In the symmetri setting, IND-CCA is implied by the ombined notions of IND-CPA and INT-CTXT

[13, 5℄. However, in the publi key setting, IND-CCA is not implied by IND-CPA and RUF-CTXT

(whih is a stronger notion than TUF-CTXT, the asymmetri ounterpart of INT-CTXT). This is an

important distintion that exists between the symmetri setting and the publi key setting.

1.3 Generi omposition of enryption and signature shemes

One of the most straightforward methods to design an authentiated enryption sheme in the publi key

setting is perhaps to \ombine" the enryption and signature shemes in some \generi" way (whih is

alled \generi omposition", following [5℄). We examine the seurity of three possible ways to ombine

the enryption and signature shemes: Enrypt-and-Sign plaintext, Sign-then-Enrypt, and Enrypt-

then-Sign. The three methods are onstruted based on a publi key based enryption sheme and a

signature sheme. The Enrypt-and-Sign method enrypts the plaintext and appends the signature of

the plaintext. The Sign-then-Enrypt method appends a signature to the plaintext and then enrypts

the plaintext and the signature together. The Enrypt-then-Sign method enrypts the plaintext to get

a iphertext C and then appends the signature of C to the iphertext.

The summary of the results obtained from seurity analyses of the onstrutions is displayed in

Figure 2 and Figure 3. The results shown in Figure 2 are obtained by assuming that the base signature

sheme is \weakly unforgeable" (WUF-CMA), while those shown in Figure 3 are obtained by assum-

ing that the base signature sheme is \strongly unforgeable" (SUF-CMA). The notions for signature

shemes are adopted from the MAC seurity in [5℄. In both �gures, the seurity assumption on the base

enryption sheme is hosen-plaintext seurity (IND-CPA). Strong unforgeability requires that it be

omputationally infeasible for an adversary to forge a \new" message, tag pair under a hosen message

attak. What is di�erent from the standard notion, weak unforgeability under hosen-message attak,

is that the message does not need to be \new" as long as the tag is \new", meaning either the message

or the tag needs to be new. In both �gures, \seure" means that the sheme is shown to meet the

seurity notion in question under the above-mentioned assumptions, while \inseure" means that there

exist some IND-CPA seure enryption sheme and some signature sheme unforgeable under hosen-

message attak suh that the PKAE sheme that is onstruted from them does not meet the seurity
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Composition Privay Authentiity

Method IND-CPA IND-CCA TUF-PTXT TUF-CTXT RUF-PTXT RUF-CTXT

Enrypt-and-Sign inseure inseure seure inseure seure inseure

Sign-then-Enrypt seure inseure seure inseure seure inseure

Enrypt-then-Sign seure inseure seure inseure inseure inseure

Figure 2: Summary of seurity results for the omposed PKAE shemes under the assumptions that the base

signature sheme is weakly unforgeable (WUF-CMA) and the base enryption sheme is IND-CPA seure. The

shaded regions indiate the new or di�erent results ompared to those shown for the symmetri setting [5℄.

Composition Privay Authentiity

Method IND-CPA IND-CCA TUF-PTXT TUF-CTXT RUF-PTXT RUF-CTXT

Enrypt-and-Sign inseure inseure seure inseure seure inseure

Sign-then-Enrypt seure inseure seure inseure seure inseure

Enrypt-then-Sign seure inseure seure seure inseure seure

Figure 3: Summary of seurity results for the omposed PKAE shemes under the assumptions that the base

signature sheme is strongly unforgeable (SUF-CMA) and the base enryption sheme is IND-CPA seure. The

shaded regions indiate the new or di�erent results ompared to those shown for the symmetri setting [5℄.

notion in question.

Attaks on the protools that enrypt before signing are presented in [2, 6℄, whih inludes an

attak against RUF-PTXT of the shemes onstruted via the Enrypt-then-Sign method, and hene,

the Sign-then-Enrypt method has been onsidered to be a better method for onstruting PKAE

shemes. However, a drawbak in the Sign-then-Enrypt method is that the iphertext is not publily

veri�able. A iphertext is publily veri�able if the validity of the iphertext an be veri�ed using the

publi information only. Publi veri�ability of iphertexts may be useful when a third-party needs to

distinguish invalid iphertexts from valid ones, and network �ltering by �rewalls shown in [8℄ is one

suh example. Hene, for some appliations like �rewall �lters, the Sign-then-Enrypt method may not

be appropriate. Also, the Sign-then-Enrypt method provides neither TUF-CTXT nor RUF-CTXT.

Regarding privay, a stronger property suh as IND-CCA is not obtained in general from a weaker

property like IND-CPA using either method. Furthermore, it turns out that the Enrypt-then-Sign

method does not provide IND-CCA seurity even when the base enryption sheme has a stronger

seurity property like IND-CCA. The result signi�antly di�ers from the symmetri key ase where

the Enrypt-then-MAC method provides IND-CCA seurity based only on the IND-CPA and SUF-

CMA assumptions on the base primitives [5℄. This implies that none of the three omposition methods

provides a PKAE sheme that is seure under all notions de�ned in this paper even when we make

stronger assumptions on the base primitives. However, this does not mean that we annot onstrut

any sheme that is seure under all notions. In fat, we show below that the Enrypt-then-Sign method

an be modi�ed so as to provide seurity in all notions given in this paper under appropriate assumptions.

We also show that an eÆient sheme with \reasonable" seurity gurantees an be onstruted when

we onsider a spei� setting like a DiÆe-Hellman (disrete-log) based key setting.

1.4 Generi and spei� onstrutions ahieving seurity and eÆieny

The Enrypt-then-Sign method an be modi�ed so as to give a generi onstrution that is seure for

all notions inluding IND-CCA and RUF-PTXT, for whih the original method is not seure. The

modi�ation is simple: for IND-CCA seurity, enrypt the sender's publi key together with the plain-

text, and for RUF-PTXT seurity, sign the reeiver's publi key together with the iphertext. These
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Constrution Privay Authentiity

Method IND-CPA IND-CCA TUF-PTXT TUF-CTXT RUF-PTXT RUF-CTXT

ESSR seure seure seure seure seure seure

DHETM seure seure seure seure inseure inseure

Figure 4: Summary of seurity results for the two example PKAE shemes. The assumptions for ESSR is that

the base publi key enryption sheme is IND-CCA seure, and the base signature sheme is strongly unforgeable.

The assumptions for DHETM is that the base symmetri enryption sheme is IND-CPA seure, and the base

MAC is strongly unforgeable, and a hash of a DiÆe-Hellman based key looks random.

modi�ations are made from observing that hanging the sender or reeiver keys assoiated with the

iphertext is the main type of attaks against IND-CTXT and RUF-PTXT seurity. The reason that

these modi�ations in the Enrypt-then-Sign method result in IND-CCA and RUF-PTXT seurity is

that they e�etively \bind" the publi keys of the sender and reeiver to the iphertext so that the

mentioned type of attaks does not work any more. We all the sheme onstruted based on this

modi�ed generi method ESSR (Enrypt Sender-key then Sign Reeiver-key), and its seurity results

are shown in Figure 4. Note that the seurity assumption on the base enryption sheme for ESSR is

IND-CCA, whih is stronger than that for the generi omposition method. This might be onsidered

as a weakness in the sheme. Reall, however, that the Enrypt-then-Sign method does not provide

IND-CCA seurity even under the IND-CCA assumption on the base enryption sheme. Also, the

other methods do not provide TUF-CTXT seurity regardless of the assumption on the base signature

sheme. Hene, ESSR provides better seurity guarantees than the shemes onstruted via the generi

omposition methods even if it omes at a ost of a strong assumption on the base enryption sheme.

The sheme DHETM (DiÆe-Hellman based Enrypt-Then-MAC) uses symmetri enryption and

MAC shemes whose keys are obtained from the omputed ommon key K by dividing it into two

parts. (The ommon key K = hash(g

x

a

x

b

) is omputed from the DiÆe-Hellman based keys (g

x

a

; x

a

)

and (g

x

b

; x

b

) of the sender and reeiver, respetively.) After obtaining the keys for the symmetri

enryption and MAC shemes, authentiated enryption is done by enrypting the plaintext to get

a iphertext C and appending a MAC of C. This onstrution an be viewed as an adaptation of

the asymmetri enryption sheme \DHIES" [1℄ to the setting mentioned above in order to ahieve

an additional goal of authentiity, as well as privay. The summary of its seurity results are shown

in Figure 4. Note that this sheme is more eÆient than the generi shemes desribed earlier, and

with regard to privay, it ahieves IND-CCA seurity based on the weaker IND-CPA assumption (as

opposed to the IND-CCA assumption) on the base enryption sheme. With regard to authentiity,

it ahieves TUF-CTXT seurity although it does not ahieve the reeiver unforgeability. In ase the

stronger authentiity property (i.e. reeiver unforgeability) is not needed, this sheme has pragmati

value due to its eÆieny and reasonable seurity guarantees.

1.5 Related work

A omprehensive treatment of authentiated enryption (the goal of joint privay and authentiity) in

the symmetri setting is provided in [5℄. However, the seurity notions annot just be lifted up to the

publi key setting due to asymmetry of this setting.

Construtions of authentiated enryption shemes with low ommuniation osts in the publi key

setting based on a disrete logarithm based signature sheme are given in [12℄, however, without any

proofs of seurity.

In [17℄, a primitive alled \signryption" is introdued for the �rst time, and two lever and eÆient

onstrutions based on (shortened) variants of the ElGamal signature sheme are given as proposed

7



signryption shemes. Also, some seurity goals and seurity arguments are made for the proposed

onstrutions. Nevertheless, they are not baked up by formal seurity notions and proofs of seurity.

Subsequently, in [14℄, the mentioned signryption shemes are ryptanalyzed and an improvement is

suggested, whih in turn is ryptanalyzed in [11℄. However, most of these ryptanalysis laims are made

without lear attak models or de�nitions of the properties that they are violating.

The seurity of a signed ElGamal enryption sheme is analyzed in the random-orale and generi

model in [16℄; however, the goal of the sheme is to provide privay, but not authentiity, and the

signature sheme is used in order to provide privay under hosen-iphertext attak. Its setting assumes

only the key pair of the reeiver; hene, the signature sheme in this ase does not involve the sender's

seret key.

2 De�nitions

This setion provides formal de�nitions for the notions of seurity of a publi key based authentiated

enryption sheme disussed in Setion 1, and also of digital signature shemes. Assoiated to eah

sheme, eah notion of seurity and eah adversary is an experiment, and based on that, an advantage.

The latter is a funtion of the seurity parameter that measures the suess probability of the adversary.

Asymptoti notions of seurity result by asking this funtion to be negligible for adversaries of time

omplexity polynomial in the seurity parameter. Conrete seurity assessments are made by assoiating

to the sheme another advantage funtion that for eah value of the seurity parameter and given

resoures for an adversary returns the maximum, over all adversaries limited to the given resoures, of

the advantage of the adversary.

We begin by desribing the syntax of a publi key based authentiated enryption sheme, distin-

guishing syntax from the notions of seurity.

2.1 Syntax of publi key based authentiated enryption shemes

The usual syntax of a publi key (or asymmetri) enryption sheme is that the reeiver has a publi,

seret key pair and enryption depends on the publi key while deryption depends on the seret key.

Here we wish to onsider a setting where both sender and reeiver have their own publi and seret key

pairs. We onsider this setting in order to examine shemes whose goal is to ahieve both privay and

authentiity in a publi key setting. This requires a hange in enryption sheme syntax. Aordingly,

we de�ne a publi key based authentiated enryption (PKAE) sheme whih extends the usual publi

key enryption sheme by addition of another key generation algorithm (i.e. a key generation algorithm

for the sender). Spei�ally, we de�ne a publi key based authentiated enryption sheme PKAE as

follows:

De�nition 2.1 [Publi key based authentiated enryption (PKAE)℄ A publi key based au-

thentiated enryption sheme PKAE = (K



;K

s

;K

r

; E ;D) onsists of �ve algorithms as follows:

� The ommon key generation algorithm K



is randomized. It takes as input a seurity parameter k

and returns some global information I ; we write I

R

 K



(k).

� The sender key generation algorithm K

s

is randomized. It takes as input some global information

I and returns a mathing publi and seret key pair (pk

s

; sk

s

) for the sender; we write (pk

s

; sk

s

)

R

 

K

s

(I).

� The reeiver key generation algorithm K

r

is randomized. It takes as input some global information

I and returns a mathing publi and seret key pair (pk

r

; sk

r

) for the reeiver; we write (pk

r

; sk

r

)

R

 

K

r

(I).
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� The enryption algorithm E is randomized. It takes as input a sender's seret key sk

s

, a sender's

publi key pk

s

, a reeiver's publi key pk

r

and a plaintext M 2M, and it ips some oins internally,

and then it returns a iphertext C 2 C; we write C

R

 E

hsk

s

;pk

s

;pk

r

i

(M)

� The deryption algorithm D is deterministi. It takes as input a reeiver's seret key sk

r

, and a

string C to return either a pair (pk;M) or the distinguished symbol ?, where pk is a sender's publi

key and M is the orresponding plaintext; we write x D

sk

r

(C), where x is either (pk;M) or ?.

Above, M and C denote the message spae and the iphertext spae assoiated to the sheme,

respetively. We require that D

sk

r

(E

hsk

s

;pk

s

;pk

r

i

(M)) = (pk

s

;M) for all M 2M.

Disussion of Syntax. The ommon key generation algorithm produes the global information that

is shared by everyone in the system. The global information I inludes a seurity parameter, and

possibly some other information. For instane, in a DiÆe-Hellman based sheme, I might inlude a

global prime number and generator of a group whih all parties use to reate their keys. The presene

or absene of global information depends on eah individual sheme. In ase a sheme does not have any

global information, the ommon key generation algorithm an be just the identity funtion that outputs

the seurity parameter that is given as its input. Note that this algorithm should also be inluded

in the usual publi key based enryption sheme syntax when disussing its seurity in an asymptoti

setting. Hene, this is not an added algorithm with respet to the usual publi key based enryption

sheme syntax. The sender key generation algorithm is what is added in order to onsider the goal

of authentiity in a publi key setting. To generate an \authenti" iphertext, a sender performs the

enryption operation on a plaintext based on its own key pairs as well as the publi key of the reeiver.

Hene, the enryption algorithm takes as input the sender's key pair as well as the reeiver's publi key.

For the goal of authentiity, the reeiver should be able to know if a iphertext it reeived is \valid" (i.e.

authenti) or not. Sine there may be more than one sender who an send a iphertext to a reeiver

using the reeiver's publi key, the reeiver needs to be able to know who the sender is in order to

hek whether the iphertext is authenti with respet to the purported sender. We let the deryption

algorithm perform this funtionality by requiring it to output the sender's publi key (impliitly telling

who is the sender), as well as the plaintext. In ase the iphertext is not valid (i.e. unauthenti with

respet to the purported sender), the deryption algorithm outputs the distinguished symbol ?. The

key expliitly used in the deryption algorithm as input is just the seret key of the reeiver, indiating

that the deryption algorithm does not initially know whih sender's publi key to use, but it somehow

extrats the needed information from the iphertext and returns the sender's publi key as part of the

output.

Verifiable publi key based authentiated enryption sheme. Similarly to digital signature

shemes, whih allow publi veri�ability, a publi key based authentiated enryption sheme may al-

low publi veri�ability by providing a veri�ation algorithm that heks the validity of the iphertext

depending only on the publi information (suh as the publi key of a sender or reeiver). This is an

optional algorithm beause not all shemes may have publi veri�ability |whether or not a sheme is

publily veri�able depends on how it is onstruted| and we stress that publi veri�ability has to do

with funtionality rather than seurity. We de�ne the veri�able publi key based authentiated enryp-

tion as follows: A veri�able publi key based authentiated enryption sheme (VPKAE) is a 6-tuple

(K



;K

s

;K

r

; E ;D;V), where (K



;K

s

;K

r

; E ;D) is a PKAE and V is a deterministi, publi veri�ation

algorithm. The latter takes a reeiver's publi key pk

r

, and a string C to return either pk or ?; we

write y  V

pk

r

(C), where y is either pk or ?. We require that V

pk

r

(C) output pk if D

sk

r

(C) = (pk;M)

for some M 2M and ? otherwise.

Publi key (asymmetri) enryption sheme. A standard publi key based (or asymmetri)

enryption sheme, namely one where there is no sender key, an be reovered as the speial ase

9



where the sender key generation algorithm K

s

returns the empty string. Formally, we say that PE =

(K



;K

r

; E ;D) is a publi key (or asymmetri) enryption sheme if PKAE = (K



;K

s

;K

r

; E ;D) is a

PKAE sheme where K

s

is the algorithm whih, on any input, returns the empty string. When the

sender key pair (pk

s

; sk

s

) is the empty string, we may also omit it wherever appliable. For example,

the deryption algorithm D

sk

r

(�) will return M instead of a pair (pk

s

;M) in the standard asymmetri

enryption sheme.

2.2 Privay of publi key based authentiated enryption shemes

PKAE shemes are di�erent from the usual publi key enryption shemes in that the enryption

algorithm is omputed based on a sender's seret key as well as a reeiver's publi key. This means

that in order to send a message using an authentiated enryption sheme, a party must have its own

publi, seret key pair. It is not suÆient for it to have aess to the reeiver's publi key. Beause of

this, we allow the adversary aess to a left-or-right (LR) enryption orale, modeling a hosen-plaintext

attak as in the symmetri setting [3℄, instead of as in the publi key setting [9, 4℄. Note that this is

quantitatively a stronger attak model than the usual one [4℄, where the adversary is given only the

publi key for the enryption sheme and no aess to the left-or-right enryption orale. For IND-CPA,

a hallenge bit b is hosen, the adversary is given publi information (inluding publi keys), and an

query, adaptively and as often as it likes, the left-or-right enryption orale. The format of eah query

to the left-or-right enryption orale is mandated to be a pair (x

0

; x

1

) of equal length messages. The

adversary wins if it an guess b. For IND-CCA the adversary gets, in addition, a deryption orale with

the restrition that it is not allowed to query it on a iphertext previously returned by the left-or-right

enryption orale.

De�nition 2.2 [Privay of publi key based authentiated enryption shemes℄ Let PKAE =

(K



;K

s

;K

r

; E ;D) be a PKAE sheme. Let b 2 f0; 1g and let k 2 N be a seurity parameter. Let A

pa

and

A

a

be adversaries that output a bit d. The left-or-right (LR) enryption orale E

hsk

s

;pk

s

;pk

r

i

(LR(�; �; b)),

given to A

pa

and A

a

, takes as input a pair (x

0

; x

1

) of equal-length messages, omputes a iphertext

Y  E

hsk

s

;pk

s

;pk

r

i

(x

b

), and returns Y to the adversary. The deryption orale D

sk

r

(�), given to A

a

,

takes as input a iphertext C, omputes (pk;M)  D

sk

r

(C), and returns (pk;M) to the adversary.

Now, we onsider the following experiments:

Experiment Exp

ind-pa-b

PKAE;A

pa

(k)

I

R

 K



(k)

(pk

s

; sk

s

)

R

 K

s

(I)

(pk

r

; sk

r

)

R

 K

r

(I)

d A

E

hsk

s

;pk

s

;pk

r

i

(LR(�;�;b))

pa

(I ; pk

s

; pk

r

)

Return d

Experiment Exp

ind-a-b

PKAE;A

a

(k)

I

R

 K



(k)

(pk

s

; sk

s

)

R

 K

s

(I)

(pk

r

; sk

r

)

R

 K

r

(I)

d A

E

hsk

s

;pk

s

;pk

r

i

(LR(�;�;b));D

sk

r

(�)

a

(I ; pk

s

; pk

r

)

Return d

Above it is mandated that A

a

never queries the deryption orale D

sk

r

(�) on a iphertext previously

output by the LR-enryption orale E

hsk

s

;pk

s

;pk

r

i

(LR(�; �; b)), and that the queries made to the LR-

enryption orale always onsist of messages of equal length.

We de�ne the advantages of the adversaries via

Adv

ind-pa

PKAE ;A

pa

(k) = Pr

h

Exp

ind-pa-1

PKAE ;A

pa

(k) = 1

i

� Pr

h

Exp

ind-pa-0

PKAE ;A

pa

(k) = 1

i

Adv

ind-a

PKAE ;A

a

(k) = Pr

h

Exp

ind-a-1

PKAE ;A

a

(k) = 1

i

� Pr

h

Exp

ind-a-0

PKAE ;A

a

(k) = 1

i

:

10



We de�ne the advantage funtions of the sheme as follows. For any integers t; q

e

; q

d

; �

e

; �

d

� 0,

Adv

ind-pa

PKAE

(k ; t; q

e

; �

e

) = max

A

pa

fAdv

ind-pa

PKAE ;A

pa

(k)g

Adv

ind-a

PKAE

(k ; t; q

e

; q

d

; �

e

; �

d

) = max

A

a

fAdv

ind-a

PKAE ;A

a

(k)g

where the maximum is over all adversaries with time omplexity t, eah making at most q

e

queries to

the E

hsk

s

;pk

r

i

(LR(�; �; b)) orale, totaling at most �

e

bits, and, in the ind-a ase, also making at most q

d

queries to the D

sk

r

(�) orale, totaling at most �

d

bits. The sheme PKAE is said to be IND-CPA seure

(resp. IND-CCA seure) if the advantage funtion Adv

ind-pa

PKAE ;A

(�) (resp. Adv

ind-a

PKAE ;A

(�)) is negligible for

any adversary A whose time omplexity is polynomial in the seurity parameter k.

2.3 Authentiity of publi key based authentiated enryption shemes

Usually, in the symmetri setting, the adversary is a third-person that is wathing over the ommunia-

tion link between the sender and reeiver, who share the same key. The seurity regarding authentiity

in this ase is normally measured by \unforgeability" by an adversarial third-person (meaning, exluding

the sender and reeiver). However, when we onsider a publi key setting where the sender and reeiver

do not neessarily share the same key, the goal of authentiity an be divided further depending on the

adversarial power. For the shemes where only the sender's seret key is involved in reating authenti

data, (e.g. signature shemes), the adversary an be anyone (inluding the intended reeiver as well as

a third-person) who does not know the seret key of the sender. When a message is signed and sent to

an intended reeiver, there is no di�erene between a third-person (who interepts the signed data) and

the reeiver (who atually reeives the data) in their ability to forge a signature. This is beause anyone

an verify the signature, and only the sender who owns its seret key an sign the data. However, when

we onsider a PKAE sheme, where the iphertext is generated based not only on the sender's key but

also on the reeiver's publi key, there may be a distintion between a third-person and reeiver in their

ability to forge a iphertext. What distinguishes a reeiver from a third-person is that the reeiver's

publi key is involved in generating the iphertext, and only the reeiver knows its own seret key.

Furthermore, the reeiver is the one who reated its own publi, seret key pair in the �rst plae and

an hange it later. Taking this distintion into aount, we divide the goal of authentiity into two

parts: unforgeability by a third-person and unforgeability by a reeiver. In a third-person attak model

against unforgeability, the goal of the adversary is to reate a \new forgery" so that the reeiver may

aept it as valid. This resembles the usual attak model for what is typially alled \authentiity" or

\data integrity" in the symmetri setting. In a reeiver attak model, the goal of the adversary may

be to reate a forgery so that a third party, suh as a judge, may aept it as valid. Proving to a third

party that a message has been originated from the purported sender an be onsidered as the goal of so

alled \non-repudiation", whih is a term ommonly used in the literature as an additional seurity goal

(other than \unforgeability") for digital signature shemes. Although there exist formal seurity notions

for authentiity of digital signature shemes, no formal seurity notions for authentiated enryption

shemes exist, regarding the goal of authentiity.

The usual goal of integrity against a third-person adversary for authentiated enryption shemes in

the publi key setting an be \lifted up" from that in the symmetri setting [5℄, due to their resemblane.

However, the goal of unforgeability against an adversarial reeiver (i.e. non-repudiation) has not been

formally modeled before for authentiated enryption shemes and is an additional goal that is only

appliable in the asymmetri (publi key) setting. We all this goal \reeiver unforgeability" and

desribe the attak model and the goal of an adversary in more detail below.
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Reeiver unforgeability. A reeiver adversary publishes its publi key by registering it with a CA

(erti�ation authority), and a sender enrypts a message using a PKAE sheme based on its own keys

and the publi key of the reeiver. We allow a hosen message attak, modeling the ase where the

reeiver is able to get the sender to enrypt any message that the reeiver asks to enrypt. At some

point, we allow the reeiver to hange its key pair, and publish a new publi key by re-registering with

the CA. The goal of the reeiver adversary is to ome up with a iphertext so that a third-party (e.g. a

judge) will aept it as \valid", meaning it ame from the real sender it laims to have ome from. The

reeiver may hoose not to hange its key pair, but we allow the hange of keys for exibility on the

reeiver part. Having aurate timestamps on messages (iphertexts) and keys an make it possible to

determine if a key was registered before or after the given iphertext was generated, but it may impose

additional burdens of lok synhronization and authentiation, and it may not always be possible.

Hene, we allow this type of key hange attaks in order to ahieve a stronger seurity guarantee in

that aspet. Also, we note that this type of attaks has appeared in the literature [2, 6℄, whih partially

motivated our formalization. For an adversary to be onsidered suessful in forging a iphertext, in

addition to the \validity" requirement, the iphertext itself needs to be \fresh" |meaning, it was not

legitimately generated (i.e. enrypted) by the sender. This is onsidered one type of suessful forgery,

and we all the seurity against this type of forgery \unforgeability of iphertext". However, there

is another type of forgery, whih may deem to be more useful and meaningful in pratie. That is a

forgery of the plaintext orresponding to the iphertext. The adversary is onsidered suessful in this

ase if it an ome up with a \valid" iphertext whose orresponding plaintext has not been asked to

be enrypted by the sender. We all seurity against this type of forgery \unforgeability of plaintext".

There remains an important issue of how the adversary will be able to onvine a third-party (alled

\judge" hereafter) to aept the forgery as valid. One of the simplest methods for the adversary may

be to give the judge its deryption key, so that it may freely derypt and hek the validity just like the

adversary an. All the adversary needs to do is onvine the judge that its seret key really mathes its

publi key (i.e. their mathematial relationship holds), whih must be veri�ed in some way. Of ourse,

if the seret key is given to the judge, the adversary would not be able to reuse it again (assuming

the judge annot be trusted not to reveal or use the seret key). This may be onsidered to be too

muh to ask from an adversary, but this is generally appliable to most PKAE shemes and failitates

seurity analysis in a uniform and simple way. We are aware that this makes the seurity notion

weaker, but it enables us to provide a framework with whih we an analyze seurity with regard to

reeiver unforgeability under one simple and uniform de�nition for all PKAE shemes, regardless of their

onstrution methods. Other more robust and stronger de�nitions may be built upon this framework.

There may be a number of other ways to onvine a judge about the validity of the iphertext. For

example, if the PKAE sheme in question is publily veri�able, validity of the iphertext an be proven

without revealing the seret key of the reeiver adversary. It may also be possible for an adversary to

onvine a judge that the plaintext orresponding to the forgery iphertext is valid without revealing any

information about its seret key |for example, performing a zero-knowledge protool with the judge if

it's appliable for the sheme. Note however that these methods may not be universally appliable to all

PKAE shemes. Appliability of these methods are dependent on how eah sheme is onstruted. All

these methods may be aptured as \forgery veri�ation proedures" and having a \forgery veri�ation

proedure" for eah PKAE sheme may be one solution to this problem. However, it is not lear how

this an be systematially analyzed and having a di�erent veri�ation method for eah PKAE sheme

may make it impossible to ompare seurity aross the shemes. Note that having di�erent methods

for onvining a judge an make a di�erene in the seurity results for the same sheme. Sine one of our

goals is to provide omparative seurity analyses on di�erent methods of onstruting PKAE shemes,

having a uni�ed measure of seurity is important. Although there may be better uniform methods for

onvining a judge about the validity of the iphertext than simply giving him the seret deryption
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Figure 5: The experiments for De�nition 2.3 that de�nes notions of authentiity of a PKAE sheme

PKAE = (K



;K

s

;K

r

; E ;D). The variable st denotes internal state information.

key, it is not lear at this point, and pursuing this issue is left for future researh.

Summary. The di�erene between a third-person and a reeiver is in its ability to reate and hange its

own key pair. The reeiver (to whom a sender sends a iphertext) an reate its own publi, seret key

pair and later hange it. The third-person annot do so. In both ases, the adversary is allowed a hosen

message attak modeled by giving it aess to an enryption orale. Suess is measured by its ability

to output a \new" forgery that makes the deryption algorithm output a plaintext rather than rejet by

outputting ?. Depending on the de�nition of \newness" of the forgery, we divide the forgery into two

types: iphertext forgery (CTXT) and plaintext forgery (PTXT). A \iphertext forgery" means that

the iphertext output by the adversary is di�erent from the iphertexts obtained from the enryption

orale, and a \plaintext forgery" means that the plaintext orresponding to the iphertext output by

the adversary is di�erent from the plaintext queries made by the adversary to the enryption orale.

Combining the reeiver and third-person unforgeability (abbreviated to RUF, TUF) with iphertext and

plaintext forgery (abbreviated to CTXT, PTXT), we get the following four notions: RUF-CTXT, RUF-

PTXT, TUF-CTXT, and TUF-PTXT. Note that the symmetri setting ounterparts of TUF-CTXT

and TUF-PTXT are INT-CTXT and INT-PTXT, de�ned in [5℄. The formal de�nitions of authentiity

(i.e. the four unforgeability notions) are given below.

De�nition 2.3 [Authentiity of a PKAE sheme℄ Let PKAE = (K



;K

s

;K

r

; E ;D) be a PKAE

sheme, and let k 2 N be a seurity parameter. Let F

p

; F



; B

p

; B



be adversaries. Consider the experi-

ments shown in Figure 5.

The experiments Exp

tuf-ptxt

PKAE ;F

p

(k) and Exp

tuf-txt

PKAE ;F



(k) model the forgery attaks by a third-person

who is given the publi information only, and a valid forgery is measured by the \newness" of either

the plaintext or the iphertext, respetively. The experiments Exp

ruf-ptxt

PKAE ;B

p

(k) and Exp

ruf-txt

PKAE ;B



(k)

model the forgery attaks (of plaintext and iphertext, respetively) by a reeiver, where the adversary
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reates its own key pair in the �rst stage and is allowed to hange its key pair in the seond stage. It

is mandated that a \valid" publi, seret key pair relationship hold for every key pair reated by an

adversary if suh a relationship should exist for a given sheme.

We de�ne the advantages of the adversaries via,

Adv

xxx-yyyy

PKAE ;F

(k) = Pr

h

Exp

xxx-yyyy

PKAE ;F

(k) = 1

i

where xxx 2 ftuf; rufg and yyyy 2 fptxt; txtg.

We de�ne the advantage funtions of the sheme for third-person/reeiver unforgeability of plain-

text/iphertext (TUF-PTXT, TUF-CTXT, RUF-PTXT, RUF-CTXT resp.) as follows. For t; q; � � 0,

and xxx 2 ftuf; rufg and yyyy 2 fptxt; txtg let

Adv

xxx-yyyy

PKAE

(k ; t; q; �) = max

F

fAdv

xxx-yyyy

PKAE ;F

(k)g

where the maximum is taken over all F with time omplexity t, making at most q queries to the orale

E

hsk

s

;pk

s

;pk

r

i

(�), suh that the sum of the lengths of all orale queries is at most � bits. The sheme PKAE

is said to be XXX-YYYY seure, where XXX 2 fTUF;RUFg and Y Y Y Y 2 fPTXT;CTXTg, if the

funtion Adv

xxx-yyyy

PKAE ;F

(�), where xxx 2 ftuf; rufg and yyyy 2 fptxt; txtg, is negligible for any adversary

F whose time omplexity is polynomial in the seurity parameter k.

2.4 Signature shemes

Syntax of Signature shemes. A digital signature sheme DS = (K



;KS ;S;VS) onsists of four

algorithms. The randomized ommon key generation algorithm K



takes as input the seurity parameter

k and returns some global information I ; we write I

R

 K



(k). The randomized signature key generation

algorithm KS takes as input some global information I and returns a publi and seret key pair (pk; sk);

we write (pk; sk)

R

 KS(I). The randomized or deterministi signing algorithm S takes as input sk

and a message M to be signed and returns a signature � ; we write �

R

 S

sk

(M). The deterministi

signature veri�ation algorithm VS takes as input pk, a message M and a andidate signature � for

M and returns a bit b 2 f0; 1g; we write b  VS

pk

(M;�). We require that for all (pk; sk) and M ,

VS

pk

(M;S

sk

(M)) = 1.

Seurity Notions of signature shemes. We reall the standard de�nition of seurity (\unforge-

ability") of a signature sheme under hosen-message attak (f. [10℄), and adapt a stronger notion of

seurity (\strong unforgeability") de�ned for message authentiation shemes [5℄ to signature shemes.

Seurity for signature shemes onsiders an adversary F who is allowed a hosen-message attak, mod-

eled by allowing it aess to an orale for S

sk

(�). F is \suessful" if it an make the verifying algorithm

VS

pk

(�; �) aept a pair (M;�) that was not \legitimately produed." There are two possible onven-

tions depending on the meaning of \legitimately produed", leading to two measures of advantage. The

\standard" measure is that the message M is \new," meaning F never made query M to its signing

orale. We all this seurity measure weak unforgeability under hosen-message attak (WUF-CMA). A

more stringent measure, alled strong unforgeability under hosen-message attak (SUF-CMA), onsid-

ers the adversary suessful even if the message is not new, as long as the signature is new. This means

that the adversary wins as long as � was never returned by the signing orale in response to query M

(i.e. (M;�) as a pair is new). The formal de�nitions of these notions are given below.

De�nition 2.4 [Signature Sheme Seurity℄ Let DS = (K



;KS;S;VS) be a digital signature

sheme, and let k 2 N be a seurity parameter. Let F be an adversary (forger) that has aess to

a signing orale S

sk

(�). Consider the following experiments:
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Experiment Exp

wuf-ma

DS;F

(k)

I

R

 K



(k)

(pk; sk)

R

 KS(I)

(M;�) F

S

sk

(�)

(I ; pk)

If VS

pk

(M;�) = 1 and M was never

a query to the orale S

sk

(�)

then return 1 else return 0

Experiment Exp

suf-ma

DS;F

(k)

I

R

 K



(k)

(pk; sk)

R

 KS(I)

(M;�) F

S

sk

(�)

(I ; pk)

If VS

pk

(M;�) = 1 and S

sk

(�) never

returned � on input M

then return 1 else return 0

We de�ne the advantages of adversaries via,

Adv

wuf-ma

DS;F

(k) = Pr

h

Exp

wuf-ma

DS;F

(k) = 1

i

Adv

suf-ma

DS;F

(k) = Pr

h

Exp

suf-ma

DS;F

(k) = 1

i

We de�ne the advantage funtions of the sheme DS as follows. For any t; q; � � 0,

Adv

wuf-ma

DS

(k ; t; q; �) = max

F

fAdv

wuf-ma

DS;F

(k)g

Adv

suf-ma

DS

(k ; t; q; �) = max

F

fAdv

suf-ma

DS;F

(k)g

where the maximum is over all F with time omplexity t, making at most q orale queries to S

sk

(�),

suh that the sum of the lengths of all queries is at most � bits. The sheme DS is said to be WUF-

CMA seure (resp. SUF-CMA seure) if the advantage funtion Adv

wuf-ma

DS;F

(�) (resp. Adv

suf-ma

DS;F

(�)) is

negligible for any adversary F whose time omplexity is polynomial in the seurity parameter k .

3 Relations among notions of unforgeability

In this setion, we provide formal statements of the results summarized in Figure 1. We start with

impliations �rst and then present separations.

The third-person unforgeability notions (TUF-CTXT and TUF-PTXT) in the publi key setting

are analogous to the integrity notions (INT-CTXT and INT-PTXT) in the symmetri setting shown in

[5℄. Sine the proofs for the separation and impliation relations between INT-CTXT and INT-PTXT

for the symmetri setting an be easily \lifted up" to the publi key setting, we omit the proofs for the

relations between TUF-PTXT and TUF-CTXT here, and move onto the other relations.

The impliation relations between RUF-CTXT and TUF-CTXT, and between RUF-PTXT and

TUF-PTXT shown in Proposition 3.1 an be diretly obtained from their de�nitions. We prove the

impliation relations using the standard redution arguments. A separation relation is shown by pre-

senting a sheme that is seure under the assumed seurity notion, and yet not seure under the other

seurity notion.

There is an important distintion between the symmetri setting and the publi key setting regarding

the relationship between unforgeability of iphertext and hosen-iphertext attak seurity. Reall that,

in the symmetri setting, the hosen-iphertext attak seurity (IND-CCA) is implied by the ombined

seurity of IND-CPA and INT-CTXT [13, 5℄. Note, however, that in the publi key setting, IND-CCA is

not implied by the ombination of IND-CPA and even a stronger notion of unforgeability, RUF-CTXT.

This is mainly beause there is a distintion between the notions of IND-CCA and RUF-CTXT with

regard to the de�nitions of \valid iphertexts", whih, in turn, is aused by the orthogonality of the

goals of privay and authentiity and the asymmetry of the key struture in the publi key setting. In

the hosen-iphertext attak model, a iphertext queried to a deryption orale is onsidered \valid" if it

is valid with respet to the publi key of any sender, allowing the adversary to use its own publi, seret
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key pair to generate a \valid" iphertext query with respet to its own key. This is beause the goal of

the adversary is not to \forge" a iphertext, but to obtain information about the hallenge iphertexts

output by its left-or-right enryption orale. However, to be onsidered suessful in an attak against

\authentiity" of a partiular sender, the adversary must generate a iphertext that is onsidered valid

with respet to the publi key of the partiular sender, but not its own.

In the following propositions, we omit the onrete statements for simpliity; but, they an be easily

derived from the asymptoti ones. The proofs of the following propositions are given in Setion A.

Proposition 3.1 [RUF-CTXT ! TUF-CTXT (resp. RUF-PTXT ! TUF-PTXT)℄ Let PKAE be a

PKAE sheme. If PKAE is RUF-CTXT seure (resp. RUF-PTXT seure), then it is TUF-CTXT

seure (resp. TUF-PTXT seure).

Proposition 3.2 [TUF-CTXT 6! RUF-CTXT (resp. TUF-PTXT 6! RUF-PTXT)℄ Given a group

generator algorithm GG and a hash funtionH, whereH is hardore on group GG (the HDH assumption)

as per De�nition 5.5, and a SUF-CMA seure MAC sheme MA, we an onstrut a PKAE sheme that

is TUF-CTXT seure (resp. TUF-PTXT seure) but is not RUF-CTXT seure (resp. RUF-PTXT

seure).

Proposition 3.3 [RUF-CTXT 6!RUF-PTXT℄ Given an IND-CPA seure publi key enryption sheme

PE and a SUF-CMA seure signature sheme DS, we an onstrut a PKAE sheme PKAE that is

RUF-CTXT seure, but is not RUF-PTXT seure.

Proposition 3.4 [RUF-PTXT 6! TUF-CTXT℄ Given a PKAE sheme PKAE that is RUF-PTXT

seure, we an onstrut another PKAE sheme PKAE

0

that is also RUF-PTXT seure but is not

TUF-CTXT seure.

Proposition 3.5 [IND-CPA ^ RUF-CTXT 6! IND-CCA (resp. IND-CPA ^ TUF-CTXT 6! IND-

CCA)℄ Given an IND-CPA seure publi key based enryption sheme PE and a SUF-CMA seure

signature sheme DS, we an onstrut a PKAE sheme PKAE that is IND-CPA seure and RUF-

CTXT seure (resp. IND-CPA seure and TUF-CTXT seure), but is not IND-CCA seure.

4 Generi ompositions of signature and enryption

We now present PKAE shemes onstruted based on generi ompositions of a signature and an

enryption sheme, and their formal seurity results.

4.1 Construtions

Here we show onstrutions of a PKAE sheme PKAE = (K



;K

s

;K

r

; E ;D) based on PE = (K

e

;K

e

; E ;

D) and DS = (K

s

;KS ;S;VS) using the following three omposition methods: Enrypt-and-Sign, Sign-

then-Enrypt and Enrypt-then-Sign. The key generation algorithms K



, K

s

and K

r

remain the same

aross the three methods. Hene, we do not present the key generation algorithms for eah method

separately, but present them below one for all three omposition methods:

Algorithm K



(k)

I

e

R

 K

e

(k)

I

s

R

 K

s

(k)

I  (I

e

; I

s

)

return I

Algorithm K

s

(I)

Parse I as (I

e

; I

s

)

(pk

s

; sk

s

)

R

 KS(I

s

)

return (pk

s

; sk

s

)

Algorithm K

r

(I)

Parse I as (I

e

; I

s

)

(pk

r

; sk

r

)

R

 K

e

(I

e

)

return (pk

r

; sk

r

)
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We now present the enryption and deryption algorithms for eah omposition method separately,

starting from the Enrypt-and-Sign method.

Constrution 4.1 [Enrypt-and-Sign℄ The Enrypt-and-Sign method enrypts the plaintext using

the base publi key enryption sheme and signs the plaintext using the signature sheme, and then

onatenates the enryption output and the signature. The details of the enryption and deryption

algorithms are shown below:

Algorithm E

hsk

s

;pk

s

;pk

r

i

(M)

C

0

 E

pk

r

(M)

�  S

sk

s

(M)

return pk

s

kC

0

k�

Algorithm D

sk

r

(C)

Parse C as pk

s

kC

0

k� ; M  D

sk

r

(C

0

)

If VS

pk

s

(M;�) = 1

then return (pk

s

;M) else return ?

Above, the enryption algorithm outputs the publi key of the sender as part of the output iphertext so

that the deryption algorithm an output the publi key of the sender upon reeiving the iphertext.

Note that the enryption algorithms for the remaining two methods also output the publi key of the

sender as part of the iphertext. Intuitively, it is used for an identi�ation purpose in the deryption

algorithm so as to tell who is the sender or whih key to use to verify the iphertext.

Constrution 4.2 [Sign-then-Enrypt℄ The Sign-then-Enrypt method �rst signs the plaintext us-

ing the base signature sheme, and then enrypts the plaintext along with the signature (i.e. the

signature is appended to the plaintext and then the resulting string is enrypted). The details of the

algorithms are shown below:

Algorithm E

hsk

s

;pk

s

;pk

r

i

(M)

�  S

sk

s

(M)

C

0

 E

pk

r

(Mk�)

return pk

s

kC

0

Algorithm D

sk

r

(C)

Parse C as pk

s

kC

0

; Mk�  D

sk

r

(C

0

)

If VS

pk

s

(M;�) = 1

then return (pk

s

;M) else return ?

Above, Mk�  D

sk

r

(C

0

) denotes the ombined opertations of derypting and parsing (i.e. a string is

obtained from the deryption algorithm on input C

0

and then divided into two parts M and �).

Constrution 4.3 [Enrypt-then-Sign℄ The Enrypt-then-Sign method �rst enrypts the plaintext

using the base publi key enryption sheme to obtain a iphertext, and then signs the obtained i-

phertext. A sheme onstruted based on the Enrypt-then-Sign method is not only a PKAE sheme,

but also a veri�able PKAE (VPKAE) sheme sine the iphertext is publily veri�able. Hene, for

the Enrypt-then-Sign method, we present the veri�ation algorithm as well as the enryption and

deryption algorithms. The details of the algorithms are shown below:

Algorithm E

hsk

s

;pk

s

;pk

r

i

(M)

C

0

 E

pk

r

(M)

�  S

sk

s

(C

0

)

return pk

s

kC

0

k�

Algorithm D

sk

r

(C)

Parse C as pk

s

kC

0

k�

M  D

sk

r

(C

0

)

If VS

pk

s

(C

0

; �) = 1

then return (pk

s

;M) else return ?

Algorithm V

pk

r

(C)

Parse C as pk

s

kC

0

k�

If VS

pk

s

(C

0

; �) = 1

then return pk

s

else return ?

Above, the veri�ation algorithm an be thought of as a deryption algorithm that does not perform

deryption but just heks the validity of the iphertext using the publi information (i.e. publi keys)

only.
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4.2 Seurity Analyses

We now show the formal seurity results for the above shemes as summerized in Figure 3. Seurity

of shemes based on generi ompositions of symmetri enryption and MAC has been shown in the

symmetri setting (with respet to symmetri enryption and MAC seurity) in [5℄. With regard to the

privay properties, their analyses on the IND-CPA and IND-CCA seurity an be easily arried over to

the publi key setting for the Enrypt-and-Sign and Sign-then-Enrypt methods beause the signature

is omputed based on the plaintext in both methods. However, for the Enrypt-then-Sign method,

there is a distintion, espeially with regard to the IND-CCA seurity. Hene, regarding the privay

properties, we will give expliit analysis only on the IND-CCA seurity of the Enrypt-then-Sign method

here, and omit the analyses for other methods. With regard to the authentiity properties, reall that

the integrity notions (INT-CTXT, INT-PTXT) in [5℄ are analogous to the third-person unforgeability

notions (TUF-CTXT, TUF-PTXT) de�ned in this paper. However, the notions related to the reeiver

unforgeability (RUF-PTXT and RUF-CTXT) are new and spei� to the publi key setting. Here we

fous on seurity analyses with respet to these new notions of unforgeability and refer to the analyses

of [5℄ for the rest of seurity results.

For seurity analyses, we assume that the base enryption sheme is IND-CPA seure and the

base digital signature sheme is either WUF-CMA or SUF-CMA seure, whose notions are de�ned

in Setion 2. We note that SUF-CMA seurity implies WUF-CMA seurity, whih is shown in [5℄.

For the Enrypt-and-Sign and Sign-then-Enrypt methods, both WUF-CMA and SUF-CMA seurity

assumptions on the base signature sheme give rise to the same results for all seurity notions. For the

Enrypt-then-Sign method, however, the SUF-CMA assumption on the base signature sheme makes

a di�erene in the TUF-CTXT and RUF-CTXT seurity results; that is, the WUF-CMA assumption

is not strong enough to make the PKAE sheme seure even in the TUF-CTXT sense (whih in turn

makes it not strong enough for the RUF-CTXT seurity), while the SUF-CMA assumption on the base

signature sheme suÆes to make the assoiated PKAE sheme seure in the RUF-CTXT sense. Note

that regardless of the assumptions on the base enryption or signature sheme, any sheme onstruted

via the Enrypt-then-Sign method is neither RUF-PTXT seure nor IND-CCA seure. These negative

results are quite strong sine they mean that the method is inherently inseure in these senses. The

fat that the Enrypt-then-Sign method does not provide IND-CCA seurity regardless of the seurity

assumption on the base primitives is one of the main di�erenes between the results in the publi key

setting and those in the symmetri setting. This means that the PKAE sheme onstruted via the

Enrypt-then-Sign method annot be IND-CCA seure even when the base enryption sheme is IND-

CCA seure. The main reason for this is that the iphertext part and the signature part in the output

of the enryption algorithm are generated independently. Sine the keys for the base enryption sheme

and the signature sheme are independent of eah other, anyone who an sign with its own seret key an

just take the iphertext part of enrypted output and replae the signature part with its own signature

on the iphertext.

The Enrypt-and-Sign and Sign-then-Enrypt methods are not TUF-CTXT seure and sine RUF-

CTXT seurity implies TUF-CTXT seurity (f. Proposition 3.1), by the ontrapositive argument, they

are not RUF-CTXT seure. The proofs of the following propositions and theorems are presented in

Setion A.

Proposition 4.4 [Enrypt-and-Sign and Sign-then-Enrypt methods are RUF-PTXT se-

ure℄ Let PE be a publi key enryption sheme, and let DS be a digital signature sheme. Then, the

PKAE sheme onstruted from PE and DS via the Enrypt-and-Sign method or Sign-then-Enrypt

method is RUF-PTXT seure if DS is WUF-CMA or SUF-CMA seure.
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Proposition 4.5 [Enrypt-and-Sign and Sign-then-Enrypt methods are not TUF-CTXT

seure℄ Given an IND-CPA seure publi key enryption sheme PE , and a WUF-CMA or SUF-CMA

seure digital signature sheme DS, we an onstrut a publi key enryption sheme PE

0

suh that

PE

0

is IND-CPA seure, but the PKAE sheme onstruted from PE

0

and DS via the Enrypt-and-Sign

method or Sign-then-Enrypt method is not TUF-CTXT seure.

Theorem 4.6 [Enrypt-then-Sign method is not RUF-PTXT seure for any enryption

and signature sheme℄ Let PE be a publi key enryption sheme, and let DS be a digital signature

sheme. Then, the PKAE sheme onstruted from PE and DS via the Enrypt-then-Sign method is

not RUF-PTXT seure.

Theorem 4.7 [Enrypt-then-Sign method with WUF-CMA signature sheme is not TUF-

CTXT seure℄ Given an IND-CPA seure publi key enryption sheme PE , and a WUF-CMA seure

digital signature sheme DS, we an onstrut a digital signature sheme DS

0

suh that DS

0

is WUF-

CMA seure, but the PKAE sheme PKAE onstruted from PE and DS

0

via the Enrypt-then-Sign

method is not TUF-CTXT seure.

Theorem 4.8 [Enrypt-then-Sign method with SUF-CMA seure signature sheme is RUF-

CTXT seure℄ Let PE be a publi key enryption sheme, and let DS be a digital signature sheme.

Then, the PKAE sheme onstruted from PE andDS via the Enrypt-then-Sign method is RUF-CTXT

seure if DS is SUF-CMA seure.

Theorem 4.9 [Enrypt-then-Sign method is not IND-CCA seure for any enryption and

signature sheme℄ Let PE be a publi key enryption sheme, and letDS be a signature sheme. Then,

the PKAE sheme onstruted from PE and DS via the Enrypt-then-Sign method is not IND-CCA

seure.

5 Example onstrutions for ahieving seurity and eÆieny

In this setion, we give analyses of two example onstrutions, alled ESSR and DHETM, where the

former ahieves seurity under all notions and the latter ahieves eÆieny with \reasonable" seurity

guarantees.

5.1 A modi�ed generi omposition method that meets all seurity notions

Here we give a generi onstrution of a publi key based authentiated enryption sheme that is seure

under all notions of privay and authentiity de�ned in this paper. The sheme is onstruted based on

the Enrypt-then-Sign method with slight modi�ations in order to provide seurity in the RUF-PTXT

and IND-CCA sense, for whih the (unmodi�ed) Enrypt-then-Sign method is not seure. Basially,

the modi�ations ome in two plaes: in the ontent that is being enrypted, and in the ontent that is

being signed. In the modi�ed Enrypt-then-Sign method, the sender's publi key is enrypted together

with the plaintext, and also the reeiver's publi key is signed together with the iphertext.

We now present the onstrution of ESSR = (K



;K

s

;K

r

; E ;D). The key generation algorithms (K



,

K

s

, K

r

) are the same as those for the generi omposition methods shown in Setion 4.1; hene, we

omit their desriptions here. The onstrution is shown in more detail below:

Constrution 5.1 [ESSR℄ Let PE = (K

e

;K

e

; E ;D) be a symmetri enryption sheme. Let DS =

(K

s

;KS ;S;VS) be a signature sheme. From these primitives, we de�ne the publi key based authen-

tiated enryption sheme ESSR = (K



;K

s

;K

r

; E ;D) as follows (where the key generation algorithms

K



, K

s

, K

r

are the same as the ones shown in Setion 4.1):
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Algorithm E

hsk

s

;pk

s

;pk

r

i

(M)

C

0

 E

pk

r

(Mkpk

s

)

�  S

sk

s

(C

0

kpk

r

)

C  pk

s

kC

0

k�

return C

Algorithm D

sk

r

(C)

Parse C as pk

s

kC

0

k�

Obtain pk

r

from sk

r

If VS

pk

s

(C

0

kpk

r

; �) = 0 then return ?

Mkpk  D

sk

r

(C

0

)

If pk = pk

s

then return M else return ?

Above, the statement \Obtain pk

r

from sk

r

" in the deryption algorithm is based on the assumption

that the publi key is inluded in the seret key. Note that the assumption does not neessarily impose

a restrition in real implemtations of the sheme, beause the reeiver's publi key is usually inluded

as part of the seret key anyway.

Note that ESSR is not a VPKAE sheme, unlike the original Enrypt-then-Sign method. This is beause

the veri�ation requires deryption (for the omparison of the derypted sender key against the sender

key used in the signature veri�ation), hene not allowing iphertext veri�ation based only on publi

keys.

Seurity analysis. In order to show that the sheme is seure under all notions, we just need

to show it is seure under IND-CCA, RUF-PTXT, and RUF-CTXT sine the rest follows from the

impliations of notions summarized in Figure 1. Sine the onstrution is based on the Enrypt-then-

Sign method, its seurity is preserved and with the modi�ations, additional seurity properties (i.e.

IND-CCA and RUF-PTXT) that are missing in the original Enrypt-then-Sign method are obtained.

Intuitively, enrypting the sender's publi key together with the plaintext and signing the reeiver's

publi key together with the iphertext help provide seurity in the IND-CCA and RUF-PTXT sense,

sine the former binds the plaintext with the sender's publi key (for the IND-CCA seurity), while the

latter binds the iphertext with the reeiver's publi key (for the RUF-PTXT seurity). Note that in

order to obtain the IND-CCA seurity for ESSR, we assume that the underlying publi key enryption

sheme is IND-CCA seure, whih is di�erent from the assumption we make for seurity of the generi

omposition methods in Setion 4. The proofs of the following theorems are given in Setion A.

Theorem 5.2 [ESSR is IND-CCA seure℄ Let PE be a publi key enryption sheme, and let DS

be a digital signature sheme. Then, if PE is IND-CCA seure, and DS is SUF-CMA seure then ESSR

onstruted based on PE and DS as per Constrution 5.1 is IND-CCA seure.

Theorem 5.3 [ESSR is both RUF-PTXT and RUF-CTXT seure℄ Let PE be a publi key

enryption sheme and let DS be a digital signature sheme. Then, if DS is WUF-CMA seure (resp.

SUF-CMA seure), then ESSR onstruted based on PE and DS as per Constrution 5.1 is RUF-PTXT

seure (resp. RUF-CTXT seure).

5.2 An EÆient sheme based on DiÆe-Hellman keys

Here we give seurity analyses of an eÆient publi key based authentiated enryption sheme alled

DHETM, whih an be viewed as an adaptation of the DHIES (enryption) sheme [1℄ to the publi key

setting where a sender as well as a reeiver has its publi, seret key pair for enabling onstrutions of

authentiated enryption shemes. Note that the di�erene between the two is in their seurity goals:

the seurity goal of the DHIES enryption sheme is to provide privay only and that of DHETM is to

provide the joint goals of privay and authentiity. The PKAE sheme DHETM is onstruted based

on the following four primitives: a group of a prime order whih is generated by a group generator

algorithm, a hash funtion, a symmetri enryption sheme, and a MAC sheme. We desribe below

the syntati de�nitions of the primitives and then move onto the atual onstrution of DHETM.
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Group generator algorithm. A group generator algorithm GG is a randomized algorithm. It takes

as input a seurity parameter k and returns a pair (q; g), where q is a prime number indiating the

order of a group G, and g is a generator of the group. We write (q; g)

R

 GG(k).

Hash funtion. A hash funtion H : f0; 1g

�

! f0; 1g

L

h

is a funtion that takes a string of an arbitray

length and returns a string of a ertain �xed length L

h

2 N.

Symmetri enryption sheme. A symmetri enryption sheme SE = (K; E ;D) onsists of three

algorithms. The randomized key generation algorithm K takes as input a seurity parameter k and

returns a string alled key K; we let Keys(SE) denote the set of all strings that have non-zero probability

of being output by K(k); we write K

R

 K(k). The randomized or stateful enryption algorithm E takes

as input the key K 2 Keys(SE) and a plaintext M 2 f0; 1g

�

and returns a iphertext C 2 f0; 1g

�

; we

write C

R

 E

K

(M). The deterministi deryption algorithm D takes as input a key K 2 Keys(SE) and

a iphertext C 2 f0; 1g

�

and returns a plaintext M 2 f0; 1g

�

; we write M  D

K

(C). We require that

for any key K 2 Keys(SE) and any message M 2 f0; 1g

�

, D

K

(E

K

(M)) =M .

MAC sheme. A MAC sheme MA = (K;T;VT) onsists of three algorithms. The randomized key

generation algorithm K takes as input a seurity parameter k and returns a key K; we let Keys(MA)

denote the set of all strings that have non-zero probability of being output by K(k); we writeK

R

 K(k).

The randomized or deterministi tagging algorithm T takes as input the key K 2 Keys(MA) and a

message M 2 f0; 1g

�

and returns a tag � 2 f0; 1g

L

t

, where L

t

2 N is a ertain �xed length alled a

tag length; we write �

R

 T

K

(M). The deterministi veri�ation algorithm VT takes as input the key

K 2 Keys(MA), a message M , and a andidate tag � 2 f0; 1g

L

t

for M and returns a bit b; we write

b VT

K

(M; �). We require that VT

K

(M;T

K

(M)) = 1 for all M 2 f0; 1g

�

and K 2 Keys(MA).

DHETM. The PKAE sheme DHETM is onstruted based on the Enrypt-then-MAC method using the

omputed DiÆe-Hellman key as the ommon seret key. The details of the onstrution are desribed

below.

Constrution 5.4 [DHETM℄ Let SE = (K

e

;E;D) be a symmetri enryption sheme where the key

generation algorithm simply returns a random L

e

-bit string, so that the key spae is Keys(SE) = f0; 1g

L

e

.

Let MA = (K

m

;T;VT) be a MAC sheme where the key generation algorithm returns a random L

m

-bit

string, so that the key spae is Keys(MA) = f0; 1g

L

m

. Let H : f0; 1g

�

! f0; 1g

L

h

be a hash funtion,

where L

h

= L

e

+L

m

, and let GG be a group generator algorithm. Based on these primitives, the PKAE

sheme DHETM = (K



;K

s

;K

r

; E ;D) is onstruted as follows:

Algorithm K



(k)

(q; g)

R

 GG(k)

return (q; g)

Algorithm K

s

(q; g)

x

a

R

 Z

q

y

a

 g

x

a

return (y

a

; x

a

)

Algorithm K

r

(q; g)

x

b

R

 Z

q

y

b

 g

x

b

return (y

b

; x

b

)

Algorithm E

hx

a

;y

a

;y

b

i

(M)

K  H(y

x

a

b

) ; Parse K as K

e

kK

m

C

0

 E

K

e

(M) ; �  T

K

m

(C

0

)

C  y

a

kC

0

k�

return C

Algorithm D

x

b

(C)

Parse C as y

a

kC

0

k�

K  H(y

x

b

a

) ; Parse K as K

e

kK

m

If VT

K

m

(C

0

; �) = 0 then return ?

else M  D

K

e

(C

0

) ; return (y

a

;M)

Here the ommon key generation algorithm K



is the same as the group generation algorithm GG,

e�etively returning (q; g) as the global information I . The sender and reeiver key generation algorithms

return the DiÆe-Hellman based keys, whih in turn are the basis for omputing the ommon key K.
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Parsing K as K

e

kK

m

means that it is divided into two strings of appropriate lengths (i.e. L

e

and L

m

,

resp.) and assigned to K

e

and K

m

, respetively.

Seurity Analysis. We now show the formal seurity results for DHETM as summerized in Figure 3.

Seurity of DHETM depends on the seurity of base primitives, namely a hash funtion H operating

on a group G generated by a group generator algorithm GG, a symmetri enryption sheme SE and

a MAC sheme MA. We will �rst de�ne the seurity notions of the base primitives starting from the

following seurity assumption on H operating on a group.

Diffie-Hellman Assumptions. Sine the omputed ommon key K is generated from a hash of the

DiÆe-Hellman based key (H(g

x

a

x

b

)) in the DiÆe-Hellan based sheme DHETM, we make an assumption

alled \Orale DiÆe-Hellman" (ODH) following [1℄ for their IND-CCA seurity analyses. For the TUF-

CTXT seurity of DHETM, a weaker assumption alled \Hash DiÆe-Hellman" (HDH) is needed. The

assumptions are omposite ones in the sense that they are about the interation between the hash

funtion and the DiÆe-Hellman problem. We reall their formal de�nitions below.

De�nition 5.5 [1℄[ODH and HDH℄ Let GG be a group generator algorithm, and let k 2 N be a

seurity parameter. Let H : f0; 1g

�

! f0; 1g

L

h

be a hash funtion, where L

h

2 N. Let A

odh

and A

hdh

be adversaries. Consider the following experiments.

Experiment Exp

odh-b

H;GG;A

odh

(k)

(q; g)

R

 GG(k)

u; v

R

 Z

q

; U  g

u

; V  g

v

If b = 1 then W  H(g

uv

) else W

R

 f0; 1g

L

h

d A

H

v

(�)

odh

((q; g); U; V;W ) ; Return d

Experiment Exp

hdh-b

H;GG;A

hdh

(k)

(q; g)

R

 GG(k)

u; v

R

 Z

q

; U  g

u

; V  g

v

If b = 1 then W  H(g

uv

) else W

R

 f0; 1g

L

h

d A

hdh

((q; g); U; V;W ) ; Return d

Above, H

v

(X)

def

= H(X

v

), and A

odh

is not allowed to query its orale on g

u

. We de�ne the advantages

of the adversary via,

Adv

odh

H;GG;A

odh

(k) = Pr

h

Exp

odh-1

H;GG;A

odh

(k) = 1

i

� Pr

h

Exp

odh-0

H;GG;A

odh

(k) = 1

i

Adv

hdh

H;GG;A

hdh

(k) = Pr

h

Exp

hdh-1

H;GG;A

hdh

(k) = 1

i

� Pr

h

Exp

hdh-0

H;GG;A

hdh

(k) = 1

i

We de�ne the advantage funtions of (H,GG) as follows. For any integers t; q � 0,

Adv

odh

H;GG

(k ; t; q) = max

A

odh

fAdv

odh

H;GG;A

odh

(k)g

Adv

hdh

H;GG

(k ; t) = max

A

hdh

fAdv

hdh

H;GG;A

hdh

(k)g ;

where the maximum is over all adversaries A

odh

; A

hdh

with time-omplexity t, and in the ase of A

odh

,

also making at most q queries to H

v

(�). The hash funtionH is said to be hardore on GG under adaptive

DH attak (resp. hardore on GG) if the funtion Adv

odh

H;GG;A

(�) (resp. Adv

hdh

H;GG;A

(�)) is negligible for

any adversary A whose time-omplexity is polynomial in the seurity parameter k .

Seurity notion of symmetri enryption shemes. The privay of symmetri enryption

shemes is measured in a similar manner as per De�nition 2.2 exept for the following di�erenes:

The main di�erenes in the seurity measure between the publi key and symmetri settings are �rst,

the key strutures |in the symmetri setting, the sender and the reeiver share the same (symmetri)

seret key (for both enryption and deryption algorithms), whereas in the publi key setting, they

have their own publi and seret key pair and the keys for the enryption and deryption algorithms
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are di�erent (asymmetri)| and seond, the information that is publily available |in the symmetri

setting, no information about the key is given to the publi (inluding the adversary) unlike the publi

key setting. We will use essentially the same seurity notions for the privay of symmetri enryp-

tion shemes with slight modi�ations reeting the di�erenes. In partiular, we use the left-or-right

indistinguishability notions shown in [3℄ and omit the details of their desriptions here.

Seurity notion of MAC shemes. Here we reall the notion of strong unforgeability under hosen-

message attak (SUF-CMA) for a MAC sheme following [5℄. Note that the same seurity notion has

been de�ned for a digital signature sheme in De�nition 2.4. We overload the experiment Exp

suf-ma

DS;F

(k)

used in De�nition 2.4 for the de�nition for the seurity of a MAC sheme here. The de�nition is similar

to that of a digital signature sheme, but the di�erene is that the adversary is allowed aess to a

veri�ation orale as well as a tag orale in the attak model for a MAC sheme, whereas in the attak

model for a signature shem, the adversary is given aess to a signing orale only and instead of a

veri�ation orale, it is given a publi key for the digital signature sheme. Note that by giving the

publi key for the signature sheme, the adversary an perform veri�ation by itself, hene there is

no need for allowing orale aess to the veri�ation algorithm in the attak model for the signature

sheme. Similarly to the attak model for a digital signature sheme, the adversary against the seurity

of a MAC sheme is allowed aess to a tagging orale modeling a hosen message attak. Sine the

adversary against the seurity of a MAC sheme is allowed aess to a veri�ation orale, we let the

adversary win if it makes the veri�ation orale aept by querying it on a valid message and tag pair

(M; tag) that is \new" as a pair. What is meant by \new" here is that the forgery tag tag was never

output by the tagging orale in response to query M .

De�nition 5.6 [Strong unforgeability under hosen message attak (SUF-CMA) of a MAC℄

Let MA = (K;T;VT) be a a MAC sheme. Let k 2 N. Let F be an adversary. Consider the following

experiment:

Experiment Exp

suf-ma

MA;F

(k)

K

R

 K(k)

If F

T

K

(�);VT

K

(�;�)

(k) makes a query (M; �) to the orale VT

K

(�; �) suh that

{ VT

K

(M; �) returns 1, and

{ � was never returned by the orale T

K

(�) in response to query M

then return 1 else return 0

We de�ne the advantage of the adversary via,

Adv

suf-ma

MA;F

(k) = Pr

h

Exp

suf-ma

MA;F

(k) = 1

i

We de�ne the advantage funtion of the sheme as follows. For any integers t; q

t

; q

v

; � � 0,

Adv

suf-ma

MA

(k ; t; q

t

; q

v

; �) = max

F

fAdv

suf-ma

MA;F

(k)g

where the maximum is over all F with time-omplexity t, making at most q

t

orale queries to T

K

(�)

and at most q

v

orale queries to VT

K

(�; �) suh that the sum of the lengths of all orale queries is at most

� bits. The MAC sheme MA is said to be SUF-CMA seure if the funtion Adv

suf-ma

MA;F

(�) is negligible

for any adversary F whose time-omplexity is polynomial in k .

Seurity of DHETM. As usual, the seurity of DHETM is based on its base primitives. In partiular,

the IND-CCA seurity of DHETM is based on IND-CPA, SUF-CMA, ODH assumptions on SE, MA,

and (H;GG), respetively. Its TUF-CTXT seurity, however, is based only on SUF-CMA and HDH

assumptions onMA and (H;GG), respetively. As an be seen in De�nition 5.5, the attak model against
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the HDH seurity is very similar to that against the ODH seurity exept that the adversary does not

get aess to the hash orale H

v

(�) in the HDH ase; hene, HDH is a weaker assumption than the

ODH assumption. As with the analyses of ESSR, other seurity results (i.e. IND-CPA, TUF-PTXT) of

DHETM an be inferred from the relations among notions shown Figure 1, and their expliit statements

are omitted. Note, however, that DHETM is not seure under the reeiver unforgeability notions (RUF-

PTXT, RUF-CTXT) beause the key used for generating valid iphertexts an be omputed by the

reeiver as well as the sender. The following theorems state the seurity results. Conrete seurity

assessments are made in the following theorems by taking the maximum advantage over all adversaries

limited to the given resoures.

Theorem 5.7 [DHETM is IND-CCA seure℄ Let H be a hash funtion, and let GG be a group

generator algorithm. Let MA be a MAC sheme, and let SE be a symmetri enryption sheme. Let

DHETM be a PKAE sheme onstruted based on SE, MA, H, and GG as per Constrution 5.4. Then,

if H is hardore on GG under adaptive DH attak (i.e. the ODH assumption), SE is IND-CPA seure,

and MA is SUF-CMA seure then DHETM is IND-CCA seure. Conretely,

Adv

ind-a

DHETM

(k ; t; q

e

; �

e

; q

d

; �

d

)

� 2 �Adv

odh

H;GG

(k ; t; q

d

) +Adv

ind-pa

SE

(k ; t; q

e

; �

e

) + 2 �Adv

suf-ma

MA

(k ; t; q

e

; q

d

; �

e

+ �

d

)

Theorem 5.8 [DHETM is TUF-CTXT seure℄ Let H be a hash funtion, and let GG be a group

generator algorithm. Let MA be a MAC sheme, and let SE be a symmetri enryption sheme. Let

DHETM be a PKAE sheme onstruted based on SE, MA, H, and GG as per Constrution 5.4. Then,

if H is hardore on GG (i.e. the HDH assumption) and MA is SUF-CMA seure, then DHETM is

TUF-CTXT seure. Conretely,

Adv

tuf-txt

DHETM

(k ; t; q; �) � Adv

odh

H;GG

(k ; t) +Adv

suf-ma

MA

(k ; t; q; 1; �)

Theorem 5.9 [DHETM is neither RUF-PTXT seure nor RUF-CTXT seure℄ Let H be a

hash funtion, and let GG be a group generator algorithm. Let MA be a MAC sheme, and let SE be

a symmetri enryption sheme. Let DHETM be a PKAE sheme onstruted based on SE, MA, H,

and GG as per Constrution 5.4. Then, DHETM is neither RUF-PTXT seure nor RUF-CTXT seure.

Conretely, there is an adversary B making zero orale queries, and ahieving

Adv

ruf-txt

DHETM;B

(k) = Adv

ruf-txt

DHETM;B

(k) = 1

Comparison to DHIES. Sine DHETM an also be thought of as an adaptation of the IND-CCA

seure asymmetri enryption sheme, DHIES of [1℄, into the PKAE sheme's setting, the IND-CCA

seurity of DHETM an be shown in a similar manner as that of DHIES. However, it turns out that

there is no diret redution from the IND-CCA seurity of DHETM to the IND-CCA seurity of DHIES,

beause of the di�erene in the way enryption is done. In partiular, in DHETM, the omputed ommon

key remains the same throughout multiple invoations of the enryption algorithm (orale) beause the

key is omputed based on the �xed keys of the sender and reeiver, while in DHIES, the ommon key

may hange eah time the enryption algorithm is invoked beause the key is omputed depending not

only on the �xed publi key of the reeiver, but also on a \fresh", random hoie of an element (in Z

q

)

by the enryption algorithm. This is mainly beause of the fat that DHIES is not an authentiated

enryption sheme and the enryption key does not depend on a �xed, seret key of a sender. (For

sending an enrypted message using DHIES, a sender's key is not needed.) This is reeted in the

attak model of the adversaries against IND-CCA seurity: the inputs given to the adversaries are

di�erent in the following sense: the adversary against the IND-CCA seurity of DHETM gets the publi
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keys of both sender and reeiver, while that of DHIES gets just the reeiver's publi key beause DHIES

is an enryption sheme, but not an authentiated enryption sheme.

Effiieny of DHETM. Compared to the shemes onstruted from the generi omposition method

based on publi key enryption shemes and signature shemes, the main ost savings ome from the fat

that the DiÆe-Hellman based ommon seret (symmetri enryption and MAC keys) an be omputed

o�-line using the publi key of the other party and an also be stored one omputed, saving the ost of

omputing the ommon seret eah time. Also the use of symmetri key based shemes (i.e. a symmetri

enryption sheme and a MAC) as its base primitives is another ontributing fator for eÆieny.
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A Proofs

Proof of Proposition 3.1:

Intuitively, the horizontal impliations among the unforgeability notions hold beause the adversary gets

more power as it goes from the third-person unforgeability to the reeiver unforgeability attak models.

We show the proof for the unforgeability of iphertext ase (RUF-CTXT ! TUF-CTXT) only here.

The unforgeability of plaintext ase (RUF-PTXT ! TUF-PTXT) an be shown in a similar manner.

Let PKAE = (K



;K

s

;K

r

; E ;D) be a PKAE sheme. Let F be any poly(k)-time adversary attaking

TUF-CTXT of PKAE . Using the adversary F , we an onstrut an adversary B = (B

1

; B

2

) attaking

RUF-CTXT of PKAE , having time-omplexity also polynomial in the seurity parameter. Sine B has

more exibility in the attak model than F , B an run F answering F 's queries using its own enryption

orale and outputting the same iphertext as F without hanging the key pair it originally hose in its

�rst stage. The algorithm for B is shown below.

Algorithm B

1

(I)

(pk

r

; sk

r

)

R

 K

r

(I)

st  (I ; sk

r

)

Return (st ; pk

r

)

Algorithm B

E

hsk

s

;pk

s

;pk

r

i

(�)

2

(st ; pk

s

; pk

r

)

Parse st as (I ; sk

r

)

Run F (I ; pk

s

; pk

r

) answering F 's queries as follows:

When F makes a query x to its enryption orale do

 E

hsk

s

;pk

s

;pk

r

i

(x) ; return  to F

Until F outputs a iphertext forgery C

Return (C; pk

r

; sk

r

)
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Sine the enryption orale B aesses is essentially the same as the orale F aesses in the de�nition

of the attak models, the adversary B uses its own enryption orale to answer F 's queries. It is easy

to see that B sueeds as long as F sueeds in forging the iphertext beause B did not hange its

publi, seret key pair, and hene the de�nitions of a suessful forgery in both attak models beome

e�etively the same. Hene, the following equation holds:

Adv

ruf-txt

PKAE ;B

(k) � Adv

tuf-txt

PKAE ;F

(k) :

The assumption that PKAE is RUF-CTXT seure implies that Adv

ruf-txt

PKAE ;B

(�) is negligible, and hene

it follows that Adv

tuf-txt

PKAE ;F

(�) is also negligible, whih results in the onlusion of Proposition 3.1.

Proof of Proposition 3.2:

Instead of expliitly presenting the onstrution of the PKAE sheme here, we point to a onstrution

presented in another setion (i.e. Setion 5.2) whih also provides the seurity results regarding the

onstruted sheme that support the statements in Proposition 3.2. It turns out that the PKAE sheme

DHETM onstruted as per Constrution 5.4 is suh a sheme. Based on the HDH assumption on the

base hash funtion and group (H;GG) and SUF-CMA seurity assumption on the base MAC sheme,

the proof of Theorem 5.8 shows that DHETM is TUF-CTXT seure (whih in turn implies TUF-PTXT

seurity [5℄), and the proof of Theorem 5.9 shows that DHETM is neither RUF-CTXT seure nor RUF-

PTXT seure. Hene, from the two mentioned theorems, we obtain the onlusion of the Proposition 3.2.

Proof of Proposition 3.3:

For the proof of separation, we show a PKAE sheme that is RUF-CTXT seure, and yet not RUF-

PTXT seure. It turns out that one of the generi omposition methods shown in Setion 4 gives the

desired result in general. Given a publi key enryption sheme and a digital signature sheme, generi

omposition methods are methods that ombine the enryption and signature shemes, treating the un-

derlying shemes as blak-boxes, in order to obtain a PKAE sheme. Generi omposition methods are

desribed in more detail in Setion 4. Among the methods, the \Enrypt-then-Sign" method omposed

as per Constrution 4.3 gives a PKAE sheme that is RUF-CTXT seure, but not RUF-PTXT seure

under the assumptions that the underlying enryption sheme is IND-CPA seure and the signature

sheme is SUF-CMA seure. The proofs that the method is RUF-CTXT seure and not RUF-PTXT

seure under the assumptions that the underlying enryption sheme is IND-CPA seure and the sig-

nature is SUF-CMA seure are shown in the proofs of Theorem 4.8 and Theorem 4.6, respetively.

Proof of Proposition 3.4:

The idea is similar to that of the proof of the third-person unforgeability ase (i.e. TUF-PTXT 6!

TUF-CTXT). The ability of an adversary to reate and manipulate the reeiver's key pair does not

a�et the proof in this ase. Given any RUF-PTXT seure sheme PKAE , we an transform it to a

sheme PKAE

0

that is still RUF-PTXT seure, but not even TUF-CTXT seure. Basi modi�ation is

in the enryption algorithm whih adds a redundant bit to a iphertext and the deryption algorithm

that ignores the redundant bit. Beause the bit is ignored in the deryption algorithm, an adversary

against TUF-CTXT an ip the redundant bit in the iphertext obtained from the enryption orale

and output it as a \new" forgery iphertext, whih in turn would be onsidered suessful with respet

to the TUF-CTXT sense. It is easy to see that PKAE

0

is RUF-PTXT seure if PKAE is RUF-PTXT

seure, beause the modi�ation of adding a redundany bit to the iphertext, whih in turn is ignored

by the deryption algorithm does not a�et its RUF-PTXT seurity. Intuitively, it is RUF-PTXT seure
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but not RUF-CTXT seure beause of the distintion in the de�nition of the \newness" of iphertext

(i.e. for RUF-PTXT, the plaintext orresponding to the forgery iphertext has to be \new" while for

RUF-CTXT, the forgery iphertext itself has to be \new"). The details are shown below.

Let PKAE = (K



;K

s

;K

r

; E ;D) be the given PKAE sheme. We de�ne a new sheme PKAE

0

=

(K



;K

s

;K

r

; E

0

;D

0

) based on the original sheme PKAE , where the key generation algorithms are the

same as the original ones and the enryption and deryption algorithms are modi�ed as follows:

Algorithm E

0

hsk

s

;pk

s

;pk

r

i

(M)

C  E

hsk

s

;pk

s

;pk

r

i

(M)

Return 0kC

Algorithm D

0

sk

r

(C)

Parse C as bkC

0

where b is a bit

X  D

sk

r

(C

0

) ; Return X

The new enryption algorithm prepends a redundant bit '0' to the iphertext output by the original

enryption algorithm and the new deryption algorithm ignores the �rst bit and outputs whatever the

original deryption algorithm outputs (i.e. X an be either ? or (pk

s

;M), where M 2 M) on the rest

of the iphertext input C

0

(whih exludes the �rst bit b).

We �rst show that PKAE

0

is not TUF-CTXT seure and then show that it is yet RUF-PTXT seure

as long as the original PKAE sheme is RUF-PTXT seure. Both proofs are pretty straightforward.

In order to show that PKAE

0

is not TUF-CTXT seure, we show an attak against PKAE

0

in the

TUF-CTXT sense. The attak exploits the fat that the �rst iphertext bit is ignored in the deryption

algorithm. The adversary queries the enryption orale with a message (\0" in this ase) and replaes

the �rst bit 0 by 1 in the iphertext obtained as a response and outputs the new iphertext. The

adversary F against TUF-CTXT of PKAE

0

is shown in more detail below.

Algorithm F

E

0

hsk

s

;pk

s

;pk

r

i

(�)

(I ;pk

s

;pk

r

)

C  E

0

hsk

s

;pk

s

;pk

r

i

(0) ; Parse C as 0kC

0

Return (1kC

0

)

Note that F 's output iphertext 1kC

0

is \new", meaning that it was never output by the enryption

orale, whose iphertext output always begins with the bit 0. It is easy to see that the iphertext 1kC

0

is \valid" beause the un-ignored part C

0

is valid. Hene, F sueeds in attaking TUF-CTXT seurity

of the sheme PKAE

0

with the probability 1.

We now move to the proof that PKAE

0

is RUF-PTXT seure if PKAE is RUF-PTXT seure. Using the

standard redution argument, we show that if given any adversary A = (A

1

; A

2

) attaking PKAE

0

in

the RUF-PTXT sense, we an onstrut an adversary B = (B

1

; B

2

) attaking PKAE in the RUF-PTXT

sense using the adversary A. The adversary B runs A in a straightforward manner answering A's orale

queries using its own orale and uses A's output forgery as part of its own output forgery. The details

of the algorithms are shown below.

Algorithm B

1

(I)

(st ; pk

r

)

R

 A

1

(I)

Return (st ; pk

r

)

Algorithm B

E

hsk

s

;pk

s

;pk

r

i

(�)

2

(st ; pk

s

; pk

r

)

Run A

2

(st ; pk

s

; pk

r

) answering its orale queries as follows:

When A

2

makes a query m to its enryption orale do

 0kE

hsk

s

;pk

s

;pk

r

i

(m) ; return  to A

2

Until A

2

outputs (C; pk

r

0

; sk

r

0

)

Parse C as bkC

0

where b is a bit

Return (C

0

; pk

r

0

; sk

r

0

)

It is easy to see that B sueeds in attaking RUF-PTXT seurity of PKAE if A sueeds in attaking

RUF-PTXT seurity of PKAE

0

sine the de�nitions for a suessful forgery are the same in both ases.
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Hene, this implies that PKAE

0

is RUF-PTXT seure if PKAE is RUF-PTXT seure, whih in turn is

implied by the assumption.

Proof of Proposition 3.5:

The separation relation that the ombined notions of IND-CPA and RUF-CTXT do not imply IND-CCA

also means that the ombined notions of IND-CPA and TUF-CTXT do not imply IND-CCA either,

sine TUF-CTXT is a weaker notion than RUF-CTXT, as shown in Proposition 3.1. Hene, here we

just prove the separation for the stronger notion, RUF-CTXT. For the proof of separation, we present a

PKAE sheme that is IND-CPA and RUF-CTXT seure, and yet not IND-CCA seure. Assuming that

the base enryption sheme is IND-CPA seure and the base signature sheme is SUF-CMA seure, a

PKAE sheme omposed via the Enrypt-then-Sign method as per Constrution 4.3 is IND-CPA and

RUF-CTXT seure, but is not IND-CCA seure. The proof that the omposed PKAE sheme is IND-

CPA seure is straightforward and is omitted. The proof that the sheme is RUF-CTXT seure is given

in the proof of Theorem 4.8, and the proof that the sheme is not IND-CCA seure is given in the proof

of Theorem 4.9. This ompletes the proof.

Proof of Proposition 4.4:

The RUF-PTXT seurity of the PKAE sheme that is onstruted via the Enrypt-and-Sign or Sign-

then-Enrypt method depends only on the seurity (WUF-CMA) of the underlying signature sheme. In

both ases, the seurity is shown by the standard redution argument. Given an adversary B = (B

1

; B

2

)

attaking RUF-PTXT of the PKAE sheme, we an easily onstrut an adversary F attaking WUF-

CMA of the underlying signature sheme. We �rst prove the seurity of the Enrypt-and-Sign method

by showing the redution algorithm below and then move on to the seurity of the Sign-then-Enrypt

method.

Let PE = (K

e

;K

e

; E ;D) be a publi key enryption sheme and let DS = (K

s

;KS ;S;VS) be a digital

signature sheme. Let PKAE = (K



;K

s

;K

r

; E ;D) be a PKAE sheme onstruted based on PE and

DS via the Enrypt-and-Sign method. We �rst show the adversary F attaking WUF-CMA of the

base signature sheme DS using the adversary B attaking RUF-PTXT of the PKAE sheme PKAE

as follows:

Algorithm F

S

sk

(�)

(I

s

;pk)

I

e

R

 K

e

(k) ; I  (I

e

; I

s

)

(st ;pk

r

) B

1

(I)

Run B

2

(st ;pk;pk

r

) answering B's orale queries as follows:

When B

2

makes a query x to its enryption orale do



0

 E

pk

r

(x) ; �  S

sk

(x) ;  pkk

0

k� ; return  to B

2

Until B

2

outputs (C;pk

r

0

; sk

r

0

)

Parse C as pkkC

0

k�

0

; M

0

 D

sk

r

0

(C

0

)

Return (M

0

; �

0

)

As an be seen, F simulates the enryption orale for the PKAE sheme onstruted via the Enrypt-

and-Sign method using its sign-orale and the enryption key obtained from B

1

in the above algo-

rithm. Beause the de�nitions of \newness" and \validity" of B's forgery iphertext math those

of F 's signature forgery output, F sueeds if B sueeds. Hene, the following equation holes:

Adv

wuf-ma

DS;F

(k) � Adv

ruf-ptxt

PKAE ;B

(k). The assumption that DS is seure in the WUF-CMA sense implies

that Adv

wuf-ma

DS;F

(�) is negligible, and hene it follows that Adv

ruf-ptxt

PKAE ;B

(�) is negligible, whih results in

the onlusion of the proposition. Note that the forgery of the adversary F shown above is not only an
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attak in the WUF-CMA sense but also in the SUF-CMA sense sine by de�nition a suessful forgery

in the WUF-CMA sense is also onsidered a suessful forgery in the SUF-CMA sense.

The seurity of the Sign-then-Enrypt method an be proven in a similar manner. For the proof of

the Sign-then-Enrypt ase, the di�erene in the redution algorithm will be in the way F generates

the enryption orale for B

2

(i.e. instead of using the Enrypt-and-Sign method, F will generate the

iphertext based on the Sign-then-Enrypt method) and how F gets its forgery signature from B's

forgery iphertext. For ompleteness, we show the algorithm below:

Algorithm F

S

sk

(�)

(I

s

;pk)

I

e

R

 K

e

(k) ; I  (I

e

; I

s

)

(st ;pk

r

) B

1

(I)

Run B

2

(st ;pk;pk

r

) answering B's orale queries as follows:

When B

2

makes a query x to its enryption orale do

�  S

sk

(x) ; 

0

 E

pk

r

(xk�) ;  pkk

0

; return  to B

2

Until B

2

outputs (C;pk

r

0

; sk

r

0

)

Parse C as pkkC

0

; X

0

 D

sk

r

0

(C

0

) ; Parse X

0

as M

0

k�

0

Return (M

0

; �

0

)

It is easy to see that by a similar reason as the proof for the Enrypt-and-Sign ase, Adv

wuf-ma

DS;F

(k) �

Adv

ruf-ptxt

PKAE ;B

(k).

Proof of Proposition 4.5:

Let PE = (K

e

;K

e

; E ;D) be the given IND-CPA seure publi key based enryption sheme. Based on

PE , we de�ne the sheme PE

0

= (K

e

;K

e

; E

0

;D

0

) suh that PE

0

is IND-CPA seure, but its assoiated

PKAE sheme PKAE = (K



;K

s

;K

r

; E ;D) onstruted via the Enrypt-and-Sign or Sign-then-Enrypt

method is not TUF-CTXT seure. By showing it is not TUF-CTXT seure, we an infer also that it is

not RUF-CTXT seure beause RUF-CTXT seurity implies TUF-CTXT seurity (whih is shown in

Proposition 3.1).

Basially, the modi�ation in PE omes in the enryption and deryption algorithms: the enryption

algorithm E

0

pk

(�) adds a redundant bit to the iphertext output by the original enryption algorithm

E

pk

(�) and the deryption algorithm D

0

sk

(�) ignores the redundant bit and derypts the rest of the

iphertext using the original deryption algorithm D

sk

(�). The new sheme PE

0

= (K

e

;K

e

; E

0

;D

0

) has

the same key generation algorithms as the original sheme PE , and the enryption and deryption

algorithms are shown below:

Algorithm E

0

pk

(M)

C  E

pk

(M)

Return 0kC

Algorithm D

0

sk

(C)

Parse C as bkC

0

where b is a bit

M  D

sk

(C

0

) ; Return M

We show that the sheme PKAE onstruted based on the above enryption sheme PE

0

and a signa-

ture sheme DS via the Enrypt-and-Sign or Sign-then-Enrypt method is not TUF-CTXT seure by

presenting an adversary F attaking PKAE in the TUF-CTXT sense.

Algorithm F

E

hsk

s

;pk

s

;pk

r

i

(�)

(I ;pk

s

;pk

r

)

C  E

hsk

s

;pk

s

;pk

r

i

(0) ; Parse C as pk

s

k0kC

0

Return (pk

s

k1kC

0

)
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In both Enrypt-and-Sign and Sign-then-Enrypt methods, the same adversary shown above will sueed

in attaking the TUF-CTXT seurity where the iphertext 1kC

0

in the above algorithm is interpreted

di�erently in eah ase. For the Enrypt-and-Sign method, 1kC

0

will be further divided into two parts:

the enryption output part (1kC

00

), where C

00

is the output of the original enryption algorithm E

pk

r

(�)

of PE and the signature part (�). For the Sign-then-Enrypt method, 1kC

0

will be the enryption

output, where C

0

is the output of the original enryption algorithm. In both ases, it is easy to see that

the iphertext is \valid" beause the �rst bit in 1kC

0

is ignored by the deryption algorithm D

0

sk

r

(�) and

hene is derypted to be the same plaintext as F 's original enryption query, whose signature remains

the same in the forgery iphertext. Beause the bit 0 in front of C

0

is ipped to 1, it is onsidered

\new". Hene, F sueeds in attaking TUF-CTXT of PKAE in both methods.

Intuitively, the reason why the Enrypt-and-Sign and Sign-then-Enrypt methods are vulnerable to this

kind of attak is that the signature is based on the plaintext, but not on the iphertext. Hene, the

hange in the iphertext goes undeteted if its orresponding plaintext remains the same as before.

There is a more diret attak when we onsider the RUF-CTXT notion. Consider the following adversary

B = (B

1

; B

2

) attaking RUF-CTXT seurity of a PKAE sheme PKAE = (K



;K

s

;K

r

; E ;D) onstruted

based on any publi key enryption sheme PE = (K

e

;K

e

; E ;D) and any signature sheme DS =

(K

s

;KS ;S;VS) via the Enrypt-and-Sign method:

Algorithm B

1

(I)

(pk

r

; sk

r

)

R

 K

r

(I) ; st  (I ; sk

r

)

Return (st ; pk

r

)

Algorithm B

E

hsk

s

;pk

s

;pk

r

i

(�)

2

(st ; pk

s

; pk

r

)

C  E

hsk

s

;pk

s

;pk

r

i

(0) ; Parse C as pk

s

kC

0

k�

(pk

r

0

; sk

r

0

)

R

 K

r

(I) ; C

00

 E

pk

r

0

(0)

Return (pk

s

kC

00

k�; pk

r

0

; sk

r

0

)

Sine an adversary attaking against the RUF-CTXT seurity an reate its own enryption key and

is allowed to hange it later, with just one query to the (authentiated) enryption orale, it an get

the signature orresponding the query message (plaintext) and then re-enrypt the same message with

a di�erent key it generated, and then output the \new" iphertext as a forgery iphertext. (We are

assuming here that the probability that the iphertext resulting from re-enrypting the same plaintext

under a new publi key di�ers from the original iphertext is non-negligible when its key is randomly

generated by the reeiver key generation algorithm. If this is not the ase, B

2

an repeat the proess

of hoosing its key pair until this is true). Basially, in both Enrypt-and-Sign and Sign-then-Enrypt

methods, the ability to generate and hange the enryption key will enable the adversary to be able

to hange the iphertext part by re-enrypting it with a de�erent key. Sine the signature is based

on the plaintext only in both methods, the signature obtained from the orale (by the hosen message

attak) an be reused with the new iphertext beause the iphertext is just an enryption of the same

plaintext (under a di�erent key). Above, the adversary B

2

does not need to derypt the iphertext

using its seret key beause it already knows the plaintext and the signature part is not enrypted.

Note, however, that for the Sign-then-Enrypt method, the adversary needs to derypt the iphertext

in order to get the signature part beause the signature part is enrypted. This is a stronger result than

the TUF-CTXT ase, beause the attak works on any publi key enryption sheme PE , not just on a

partiular sheme PE

0

, and this is where the ability to reate and manipulate the reeiver's key makes

a di�erene.

Note also that we did not use the seurity of signature shemes expliitly in our attak (the attak does

not involve the seurity of signature shemes). This means that regardless of the seurity (strength) of

the given signature sheme is (whether it be SUF-CMA or WUF-CMA), the sheme PKAE omposed

by the Enrypt-and-Sign method is not RUF-CTXT seure.
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It is easy to see that the new sheme PE

0

is also IND-CPA seure if the original sheme PE is IND-CPA

seure. Intuitively, prepending a �xed bit to a iphertext does not reveal any additional information

about its plaintext, hene does not help an adversary to distinguish a iphertext output by the new left-

or-right enryption orale any more than that output by the original left-or-right enryption orale.

Hene, an adversary against IND-CPA of PE an do as well as that against IND-CPA of PE

0

in

distinguishing the left-or-right orale.

Proof of Theorem 4.6:

Let PKAE = (K



;K

s

;K

r

; E ;D;V) be a publi key based authentiated enryption sheme onstruted

via the Enrypt-then-Sign method from the enryption sheme PE = (K

e

;K

e

; E ;D) and the signature

sheme DS = (K

s

;KS ;S;VS). We show that PKAE is RUF-PTXT inseure by presenting a poly(k)-

time adversary B = (B

1

; B

2

) attaking PKAE in the RUF-PTXT sense with suess probability of 1.

The algorithm B in the �rst stage hooses its key pair and outputs the pair. In its seond stage B

2

, it

makes one plaintext query m to the enryption orale and obtains a iphertext C as a response. From

C, it then extrats the �rst part 

0

that orresponds to the enryption of plaintext m (i.e. 

0

= E

pk

r

(m))

and piks a publi, seret key pair (pk

r

0

; sk

r

0

) suh that D

sk

r

0

(

0

) 6= m, and then it returns the iphertext

C obtained from the orale response and the newly piked publi seret key pair (pk

r

0

; sk

r

0

) as its output

forgery and key pair, respetively. The algorithm is desribed in more detail below.

Algorithm B

1

(I)

(pk

r

; sk

r

)

R

 K

r

(I)

st  (I ; sk

r

)

Return (st ; pk

r

)

Algorithm B

E

hsk

s

;pk

s

;pk

r

i

(�)

2

(st ; pk

s

; pk

r

)

Parse st as (I ; sk

r

) ; m 0

C  E

hsk

s

;pk

s

;pk

r

i

(m) ; Parse C as pk

s

k

0

k�

Pik a key pair (pk

r

0

; sk

r

0

) from K

r

(I)

suh that D

sk

r

0

(

0

) 6= m

Return (C; pk

r

0

; sk

r

0

)

Reall that C is onsidered a suessful forgery if D

sk

r

0

(C) 6= ? and its orresponding plaintext M was

never a query to E

hsk

s

;pk

s

;pk

r

i

(�). Sine C was originally output by the enryption orale, the signature

veri�ation algorithm VS

pk

s

(�) will return 1 on input (

0

; �), where C is parsed as pk

s

k

0

k�. The

plaintext M orresponding to 

0

obtained from applying the underlying deryption algorithm D

sk

r

0

(�)

with a new seret key sk

r

0

on input 

0

is di�erent from m beause in the algorithm B

2

shown above,

the seret key is piked so that the derypted message obtained from using the new key di�er from

the original message. Hene, the plaintext M would be onsidered \new" (i.e. was never a query to

the enryption orale), whih makes the forgery valid in the RUF-PTXT sense. Note that sine we

did not assume anything spei� for the underlying primitives, the attak works for any sheme that is

onstruted from an enryption and signature sheme via the Enrypt-then-Sign method.

Proof of Theorem 4.7:

Let PE = (K

e

;K

e

; E ;D) be a publi key enryption sheme, and let DS = (K

s

;KS ;S;VS) be

the given WUF-CMA seure digital signature sheme. Based on DS, we de�ne the sheme DS

0

=

(K

s

;KS ;S

0

;VS

0

) suh that DS

0

is WUF-CMA seure, but its assoiated PKAE sheme PKAE =

(K



;K

s

;K

r

; E ;D) onstruted via the Enrypt-then-Sign method is not TUF-CTXT seure. By show-

ing it is not TUF-CTXT seure, we an infer also that it is not RUF-CTXT seure beause RUF-CTXT

seurity implies TUF-CTXT seurity (whih is shown in Proposition 3.1).

The key generation algorithms K

s

(�), KS(�) in DS

0

remain the same as DS and the signing and verifying

algorithm S

0

sk

(�), VS

0

pk

(�) are modi�ed as follows:
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Algorithm S

0

sk

(M)

�

0

 S

sk

(M)

Return �

0

k0

Algorithm VS

0

pk

(M;�)

Parse � as �

0

kb where b is a bit

If VS

pk

(M;�

0

) = 1 then return 1 else return 0

As shown above in the modi�ed signing algorithm, a redundant bit is appended to the output of the

original signing algorithm S

sk

(�) and is ignored in the modi�ed veri�ation algorithm. This makes the

PKAE sheme PKAE onstruted based on PE and DS

0

via the Enrypt-then-Sign method to be TUF-

CTXT inseure. We show this by presenting an adversary attaking against TUF-CTXT of PKAE as

follows:

Algorithm F

E

hsk

s

;pk

s

;pk

r

i

(�)

(I ;pk

s

;pk

r

)

C  E

hsk

s

;pk

s

;pk

r

i

(0)

Parse C as pk

s

kC

0

k0

C  pk

s

kC

0

k1

Return C

It is easy to see that the forgery output C is a \new" iphertext (i.e. it was never a response from the

enryption orale) sine the last bit of the iphertext is hanged with respet to the enryption orale

output. The iphertext part C

0

k1 an be further divided into C

00

k�

0

k1 where C

00

orresponds to the

base enryption output part and and �

0

k1 is the signature part. Sine the last bit in the signature part

is ignored by the signature veri�ation algorithm, the pair (C

00

; �

0

k1) will be onsidered valid by the

signature veri�ation algorithm VS

0

pk

s

(�; �). Hene, the adversary sueeds in attaking RUF-CTXT of

PKAE .

It remains to show that DS

0

is WUF-CMA seure if DS is WUF-CMA seure. To do so, we an build

an adversary A against WUF-CMA of DS using an assumed adversary A

0

against WUF-CMA of DS

0

as follows:

Algorithm A

S

sk

(�)

(I ;pk)

Run A

0

(I ;pk) answering its sign-orale queries as follows:

When A

0

makes a query x to the sign-orale do

y  S

sk

(x)k0 ; return y to A

0

Until A

0

outputs a forgery (M;�)

Parse � as �

0

kb where b is a bit

Return (M;�

0

)

It is easy to see that if the forgery output (M;�) of A

0

is \valid" (i.e. VS

0

pk

(M;�) = 1) and M is

\new" (i.e. A

0

never made an orale queryM), then the forgery output (M;�

0

) of A will be also \valid"

and M will be also onsidered \new" with respet to its sign-orale. This implies Adv

wuf-ma

DS;A

(k) �

Adv

wuf-ma

DS

0

;A

0

(k), as desired.

Proof of Theorem 4.8:

Let PKAE = (K



;K

s

;K

r

; E ;D;V) be a publi key based authentiated enryption sheme onstruted

via the Enrypt-then-Sign method from the enryption sheme PE = (K

e

;K

e

; E ;D) and the signature

sheme DS = (K

s

;KS ;S;VS). We show that PKAE is RUF-CTXT seure if DS is SUF-CMA seure

using the standard redution method. We onstrut an adversary F attaking SUF-CMA of DS using

an adversary B = (B

1

; B

2

) attaking RUF-CTXT of PKAE as follows:
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Algorithm F

S

sk

(�)

(I

s

;pk)

I

e

R

 K

e

(k) ; I  (I

e

; I

s

)

(st ;pk

r

) B

1

(I)

Run B

2

(st ;pk;pk

r

) answering its enryption orale queries as follows:

When B

2

makes a query x to the enryption orale do



0

 E

pk

r

(x) ; �  S

sk

(

0

) ;  pkk

0

k� ; return  to B

2

Until B

2

outputs (C;pk

r

0

; sk

r

0

)

Parse C as pk

0

kC

0

k�

0

Return (C

0

; �

0

)

Using its signing orale, F an easily simulate B's enryption orale and the adversary F sueeds as

long as B sueeds beause their de�nitions of valid forgery (signature and iphertext) math. Hene,

Adv

suf-ma

DS;F

(k) � Adv

ruf-txt

PKAE ;B

(k), whih results in the onlusion of the theorem.

Proof of Theorem 4.9:

In order to prove that the Enrypt-then-Sign method does not provide IND-CCA seurity in general, we

present an adversary A attaking the IND-CCA seurity of a PKAE sheme PKAE = (K



;K

s

;K

r

; E ;D),

onstruted based on any publi key enryption sheme PE = (K

e

;K

e

; E ;D) and any digital signature

sheme DS = (K

s

;KS ;S;VS) via the Enrypt-then-Sign method. The algorithm for the adversary A

is shown below:

Algorithm A

E

hsk

s

;pk

s

;pk

r

i

(LR(�;�;b));D

sk

r

(�)

(I ;pk

s

;pk

r

)

M

0

 0 ; M

1

 1

C  E

hsk

s

;pk

s

;pk

r

i

(LR(M

0

;M

1

; b))

Parse C as pk

s

kC

0

k�

(pk

0

; sk

0

)

R

 K

s

(I)

�

0

 S

sk

0

(C

0

)

M  D

sk

r

(pk

0

kC

0

k�

0

)

If M =M

1

then return 1 else return 0

Above, the deryption orale query (pk

0

kC

0

k�

0

) will be onsidered valid by the deryption orale beause

it was never output by the LR-enryption orale (beause pk

0

kC

0

k�

0

6= pk

s

C

0

k�) and the signature �

0

is valid with respet to the adversary's own publi key pk

0

(meaning, VS

pk

0

(C

0

; �

0

) = 1). Beause A

used C

0

(whih is the iphertext part of the LR-enryption orale orresponding to the enryption of

M

b

) as the iphertext part of its deryption orale query, the plaintext M output by the deryption

orale will the same as the original plaintextM

b

, whih was enrypted by the LR-enryption orale. By

omparing M

b

with M

0

and M

1

, the adversary an determine the bit b. Note that this attak works

regardless of the seurity properties of the base primitives of PKAE (meaning, even if the base publi

key enryption sheme is IND-CCA seure, the assoiated PKAE sheme is still INC-CCA inseure).

This implies that the Enrypt-then-Sign method is inherently inseure in the IND-CCA sense.

Proof of Theorem 5.2:

Let ESSR = (K



;K

s

;K

r

; E ;D) be the PKAE sheme as per Constrution 5.1, and let PE = (K

e

;K

e

; E ;

D) and DS = (K

s

;KS ;S;VS) be its base (asymmetri) enryption sheme and a digital signature

sheme, respetively.

Let B be an adversary attaking IND-CCA of ESSR. We will onstrut adversaries A and F attaking
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IND-CCA of PE , and SUF-CMA of DS, respetively, running B as a subroutine, and show

Adv

ind-a

ESSR;B

(k) � Adv

ind-a

PE ;A

(k) +Adv

suf-ma

DS;F

(k) :

The adversary A is given as input the publi information I

e

and the publi key pk

r

for the enryption

sheme PE and has aess to a left-or-right enryption orale E

pk

r

(LR(�; �; b)). It generates a signature

key, and runs B answering its enryption query using the generated signature key and its own enryption

orale. When B outputs a bit d, A outputs the same bit. The adversary F is given as input the publi

informations (I

s

;pk

s

) for the signature sheme DS and has aess to the sign-orale S

pk

s

(�). It generates

an enryption key, and runs B answering its enryption orale using the generated enryption key and

its own sign-orale. The details of the algorithms A and F are shown in Figure 6.

In Figure 6, the algorithm for A simulates the enryption orale in the same way as the real experiment

for B. It also simulates the deryption orale in the same way as the real experiment exept when

B makes a query that auses A to query its deryption orale on one of A's LR-enryption orale

outputs |i.e. when B's deryption orale query is of the form pk

s

kE

0

k�

0

, where E

0

was output by

A's LR-enryption orale | and when this happens, A just sets SBad to true and halts. Let AskedSig

denote this event. Note that onatenating the sender key pk

s

to the plaintext and enrypting it as the

iphertext part E for the enryption algorithm and then heking whether the derypted sender key

mathes the purported sender key in the deryption algorithm prevent B from using the same enrypted

iphertext part E and replaing the signature part with its own signature under its own key. This is

why A an give ? to B as a response without invoking its deryption orale when B's query is of the

form pkkE

0

k�

0

where pk 6= pk

s

and E

0

is one of the responses of A's LR-enryption orale. In other

ases, A an invoke the deryption orale and responds to B's deryption query in a straightforward

manner.

Hene, under the absene of the event AskedSig, A an use B to attak against IND-CCA of PE as

shown in the algorithm for A above. Sine A outputs the same bit as what B outputs, we have

Pr

h

Exp

ind-a-1

ESSR;B

(k) = 1 ^ AskedSig

i

� Pr

h

Exp

ind-a-0

ESSR;B

(k) = 1 ^ AskedSig

i

= Pr

h

Exp

ind-a-1

PE ;A

(k) = 1

i

� Pr

h

Exp

ind-a-0

PE;A

(k) = 1

i

When the event AskedSig ours, F an use B to attak SUF-CMA of DS as shown in the algorithm

for F above. The reason is that when B's query is of the form pk

s

kE

0

k�

0

, and when it is \new" as

a iphertext, it implies that (E

0

; �

0

) as a pair is \new" as a pair, and if �

0

is a valid signature of E

0

,

then it is exatly what is onsidered a suessful forgery against SUF-CMA. Note that the algorithm

for the adversary F does not omplete the exeution of B when the event AskedSig ours, but it just

outputs (E

0

; �) as the forgery. This means that regardless of whih bit B outputs as its guess or what

the value of the bit b was hosen for the LR-enryption orale, as long as the event AskedSig ours,

F an sueed in attaking SUF-CMA of DS, whih means the advantage of B in this ase is upper

bounded by the advantage of F . Hene, the following equation holds:

Pr

h

Exp

ind-a-1

ESSR;B

(k) = 1 ^ AskedSig

i

�Pr

h

Exp

ind-a-0

ESSR;B

(k) = 1 ^ AskedSig

i

� Pr

h

Exp

suf-ma

DS;F

(k) = 1

i

Combining the above two equations, we have

Adv

ind-a

ESSR;B

(k)

= Pr

h

Exp

ind-a-1

ESSR;B

(k) = 1

i

� Pr

h

Exp

ind-a-0

ESSR;B

(k) = 1

i
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Algorithm A

E

pk

r

(LR(�;�;b));D

sk

r

(�)

(I

e

; pk

r

)

I

s

R

 K

s

(k) ; (pk

s

; sk

s

)

R

 KS(I

s

) ; I  (I

e

; I

s

)

Run B(I ; pk

s

; pk

r

) answering B's queries as follows:

When B makes a LR-enryption orale query (m

0

;m

1

) do

E  E

pk

r

(LR(m

0

kpk

s

;m

1

kpk

s

; b)) ; �  S

sk

s

(Ekpk

r

)

C  pk

s

kEk� ; return C to B

When B makes a deryption orale query C

0

do

Parse C

0

as pkkE

0

k�

0

If VS

pk

(E

0

kpk

r

; �

0

) = 0 then return ? to B

If pk = pk

s

then

If E

0

was output by A's LR-enryption orale

then SBad true ; halt

else X  D

sk

r

(E

0

)

Parse X as Mkpk

0

If pk

0

= pk then return (pk;M) to B else return ? to B

If pk 6= pk

s

then

If E

0

was output by A's LR-enryption orale

then return ? to B

else X  D

sk

r

(E

0

)

Parse X as M

0

kpk

0

If pk

0

= pk then return (pk;M) to B else return ? to B

Until B outputs a bit d

Return d

Algorithm F

S

sk

s

(�)

(I

s

; pk

s

)

I

e

R

 K

e

(k) ; I  (I

e

; I

s

) ; (pk

r

; sk

r

)

R

 K

e

(I

e

) ; b

R

 f0; 1g

Run B(I ; pk

s

; pk

r

) answering B's queries as follows:

When B makes a LR-enryption orale query (m

0

;m

1

) do

E  E

pk

r

(m

b

) ; �  S

sk

s

(Ekpk

r

)

C  pk

s

kEk� ; return C to B

When B makes a deryption orale query C

0

do

Parse C

0

as pkkE

0

k�

0

If VS

pk

(E

0

kpk

r

; �

0

) = 0 then return ? to B

If pk = pk

s

then

Return (E

0

; �

0

) as the forgery output

If pk 6= pk

s

then

X  D

sk

r

(E

0

)

Parse X as Mkpk

0

If pk

0

= pk then return (pk;M) to B else return ? to B

Until B outputs a bit d

Figure 6: Algorithms for the proof of Theorem 5.2

= Pr

h

Exp

ind-a-1

ESSR;B

(k) = 1 ^ AskedSig

i

+ Pr

h

Exp

ind-a-1

ESSR;B

(k) = 1 ^ AskedSig

i

�Pr

h

Exp

ind-a-0

ESSR;B

(k) = 1 ^ AskedSig

i

� Pr

h

Exp

ind-a-0

ESSR;B

(k) = 1 ^ AskedSig

i

� Pr

h

Exp

ind-a-1

PE ;A

(k) = 1

i

� Pr

h

Exp

ind-a-0

PE ;A

(k) = 1

i

+ Pr

h

Exp

suf-ma

DS;F

(k) = 1

i
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� Adv

ind-a

PE ;A

(k) +Adv

suf-ma

DS;F

(k)

as desired.

The assumption that PE is IND-CCA seure and DS is SUF-CMA seure implies that Adv

ind-a

PE;A

(�)

and Adv

suf-ma

DS;F

(�) are negligible, and hene it follows that Adv

ind-a

ESSR;B

(�) is also negligible, whih results

in the onlusion of the theorem.

Proof of Theorem 5.3:

We will �rst show that ESSR is RUF-PTXT seure if DS is WUF-CMA seure. Let B = (B

1

; B

2

) be

any adversary attaking RUF-PTXT of ESSR. We onstrut an adversary F attaking WUF-CMA of

DS running the adversary B and show that F sueeds in attaking WUF-CMA of DS if B sueeds

in attaking RUF-PTXT of ESSR. The adversary F has aess to a sign orale S

sk

s

(�) and is given

as input the publi information inluding the publi key (pk

s

) of the signature sheme, and runs B as

follows:

Algorithm F

S

sk

s

(�)

(I

s

;pk

s

)

I

e

R

 K

e

(k) ; I  (I

e

; I

s

)

(st ;pk

r

) B

1

(I)

Run B

2

(st ;pk

s

;pk

r

) answering its orale queries as follows:

When B

2

makes a query m to its enryption orale do

E  E

pk

r

(mkpk

s

) ; �  S

sk

s

(Ekpk

r

)

return pk

s

kEk� to B

2

Until B

2

outputs (C;pk

r

0

; sk

r

0

)

Parse C as (pkkC

0

k�

0

)

Return (C

0

kpk

r

0

; �

0

)

Let x denote the output of the deryption algorithm omputed on B's iphertext forgery C = pkkC

0

k�

0

(i.e. x  D

sk

r

0

(C)). The suess of B in attaking RUF-PTXT of ESSR requires that x 6= ?, whih

means x an be parsed as (pk;M). Furthermore, it requires that pk = pk

s

and M be \new" (i.e.

was never queried to the enryption orale E

hsk

s

;pk

s

;pk

r

i

(�)). Sine pk has to equal pk

s

, pk

s

needs to

be used for veri�ation throughtout the proof. For the deryption x to be \valid" with respet to pk

s

,

VS

pk

s

(C

0

kpk

r

0

; �) needs to return 1. For M to be \new", either C

0

or pk

r

0

has to be \new" beause

otherwise D

sk

r

0

(C

0

) will not return a \new" message M . If either C

0

or pk

r

0

is \new", the message

part C

0

kpk

r

0

of the adversary F 's forgery will be \new" with respet to previous sign-orale queries.

Beause their requirements for \validness" and \newness" math in both attak models, the suess of

B attaking RUF-PTXT of ESSR implies the suess of F attaking WUF-CMA of DS in the above

algorithm, whih results in the following equation:

Adv

wuf-ma

DS;F

(k) � Adv

ruf-ptxt

ESSR;B

(k)

From the above equation, the theorem statement regarding the RUF-PTXT seurity of ESSR is ob-

tained.

The RUF-CTXT seurity of ESSR an be shown using the same algorithm F shown above. We show that

F sueeds in attaking SUF-CMA of DS if B sueeds in attaking RUF-CTXT of ESSR. From the def-

inition of SUF-CMA of DS, the adversary F wins (i.e. Exp

suf-ma

DS;F

(k) returns 1) if VS

pk

s

(C

0

kpk

r

0

; �) = 1

and (C

0

kpk

r

0

; �) as a pair is \new". For B's forger iphertext C = pkkC

0

k� to be a suessful forgery in

the RUF-CTXT sense, pk = pk

s

and the iphertext part C

0

k� needs to be \new" and D

hpk

s

;sk

r

i

(C) does
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not return ? (i.e. VS

pk

s

(C

0

kpk

r

0

; �) = 1). Sine meeting these two onditions are suÆient for meeting

the two onditions for the suess of F , F will sueed in attaking SUF-CMA of DS if B sueeds in

attaking RUF-CTXT of ESSR. Hene, we have the following equation:

Adv

suf-ma

DS;F

(k) � Adv

ruf-txt

ESSR;B

(k)

From the above equation, the theorem statement regarding the RUF-CTXT seurity of ESSR is ob-

tained.

Proof of Theorem 5.7:

Let H be a hash funtion, and let GG be a group generator algorithm. Let MA = (K

m

;T;VT) and

SE = (K

e

;E;D) be the given MAC and symmetri enryption sheme, respetively. Let DHETM =

(K



;K

s

;K

r

; E ;D) be the given PKAE sheme. We want to show IND-CCA of DHETM based on IND-

CPA of SE and SUF-CMA of MA under the ODH assumption on (H;GG).

The proof is based on the standard redution argument. Given an adversary B attaking IND-CCA of

DHETM, we an onstrut an adversary A attaking the \hardoreness" of H on GG under adaptive

DH attak (the ODH assumption), and an adversary D attaking IND-CPA of SE and an adversary F

attaking SUF-CMA of SDS. The suess of eah adversary A, D, and F depends on the suess of B

in di�erent settings. Let (X;x), and (Y; y) be the publi, seret key pairs of the sender and reeiver,

respetively, where X = g

x

and Y = g

y

. There are two ases for the output of H: it an look random or

not random (i.e. H(g

xy

)). There are two types for B's query to the deryption orale D

y

(�), whih is of

the form X

0

kC, where X

0

is a publi key of a sender, C is a iphertext: ritial query and non-ritial

query. A ritial query is a query XkC, suh that X

0

= X (i.e. the publi key X

0

is the same as the

real sender's publi key) and D

y

(X

0

kC) 6= ? (the iphertext is valid with respet to X

0

). A non-ritial

query is the rest of the query type (e.g. X

0

kC where X

0

6= X).

There are three ases to onsider depending on the output of H and the types of B's deryption orale

query. First ase is that the output of H does not look random, and in this ase, we an onstrut A

that uses B to violate the ODH assumption. The seond ase is that the output of H looks random,

and B does not make a ritial query to the deryption orale. In this ase, we an onstrut D that

violates IND-CPA of SE using B. The third ase is that the output of H looks random, and B makes

a ritial query, and in this ase, we an onstrut F that violates SUF-CMA of SDS using B. From

the three ases, we an onlude that if the base primitives are seure in their own senses, DHETM is

also seure in the IND-CCA sense.

The algorithms for the adversaries A, D, and F are shown in Figure 7.

From De�nition 5.5, we have

Adv

odh

H;GG;A

(k) = Pr

h

Exp

odh-1

H;GG;A

(k) = 1

i

� Pr

h

Exp

odh-0

H;GG;A

(k) = 1

i

Claim 1. When Z given as input to the adversary A shown in Figure 7 is of the form H(g

xy

), the

following equation holds:

Pr

h

Exp

odh-1

H;GG;A

(k) = 1

i

�

1

2

+

1

2

�Adv

ind-a

ECSR;B

(k)

Proof: When Z is of the form of H(g

xy

) given X = g

x

and Y = g

y

, where x; y

R

 Z

q

, the enryption and

deryption orales are simulated by A in the same way as the real enryption and deryption orales
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Algorithm A

H

y

(�)

((q; g); X; Y; Z)

Parse Z as K

e

kK

m

; b

R

 f0; 1g

Run B on input ((q; g); X; Y )

For eah LR-enryption query (m

0

;m

1

) do

E  E

K

e

(m

b

) ; �  T

K

m

(E)

return XkEk� to B

For eah deryption query C do

Parse C as X

0

kC

0

k�

0

If X

0

6= X then K

0

e

kK

0

m

 H

y

(X

0

)

else K

0

e

 K

e

; K

0

m

 K

m

If VT

K

0

m

(C

0

; �

0

) = 1 then

M

0

 D

K

0

e

(C

0

)

return (X

0

;M

0

) to B

else return ? to B

Until B outputs a bit d

If b = d then return 1 else return 0

Algorithm D

E

K

e

(LR(�;�;b))

(k)

(q; g)

R

 K



(k) ; (X; x)

R

 K

s

(q; g)

(Y; y)

R

 K

r

(q; g) ; K

m

R

 f0; 1g

L

m

Run B on input ((q; g); X; Y )

For eah LR-enryption query (m

0

;m

1

) do

E  E

K

e

(LR(m

0

;m

1

; b)) ; �  T

K

m

(E)

return XkEk� to B

For eah deryption query C do

Parse C as X

0

kC

0

k�

0

If X

0

6= X then K

0

e

kK

0

m

 H((X

0

)

y

)

else K

0

m

 K

m

If VT

K

0

m

(C

0

; �

0

) = 1 then

If X

0

= X then Asked true ; halt

else M

0

 D

K

0

e

(C

0

) ; return (X

0

;M

0

) to B

else return ? to B

Until B outputs a bit d

return d

Algorithm F

T

K

m

(�);VT

K

m

(�)

(k)

(q; g)

R

 K



(k) ; (X; x)

R

 K

s

(q; g) ; (Y; y)

R

 K

r

(q; g) ; K

e

R

 f0; 1g

L

e

; b

R

 f0; 1g

Run B on input ((q; g); X; Y )

For eah LR-enryption query (m

0

;m

1

) do

E  E

K

e

(m

b

) ; �  T

K

m

(E) ; return XkEk� to B

For eah deryption query C do

Parse C as X

0

kC

0

k�

0

If X

0

6= X then

K

0

e

kK

0

m

 H((X

0

)

y

)

If VT

K

0

m

(C

0

; �) = 1 then M

0

 D

K

0

e

(C

0

) ; return (X

0

;M

0

) to B else return ? to B

If X

0

= X then

If VT

K

m

(C

0

; �

0

) = 1

then Return // F sueeded in forging

else return ? to B

Until B outputs a bit d

Figure 7: Algorithms for the proof of Theorem 5.7

given to B in the experiment Exp

ind-a-b

DHETM;B

(k). Hene, we have

Pr

h

Exp

odh-1

H;GG;A

(k) = 1

i

=

1

2

� Pr

h

Exp

ind-a-1

DHETM;B

(k) = 1

i

+

1

2

� Pr

h

Exp

ind-a-0

DHETM;B

(k) = 0

i

=

1

2

� Pr

h

Exp

ind-a-1

DHETM;B

(k) = 1

i

+

1

2

�

�

1� Pr

h

Exp

ind-a-0

DHETM;B

(k) = 1

i�

=

1

2

+

1

2

�Adv

ind-a

DHETM;B

(k)

as desired.

2

When Z is a random string (i.e. Z

R

 f0; 1g

L

h

), depending on whether a ritial query is made by B
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or not, it an be further divided into two ases. Note that when a ritial query is made by B, the

variable Asked set true in the algorithm D shown in Figure 7. Let AskedValid be the event where Asked

is set true (i.e. a ritial query is made by B). In ase the event AskedValid did not our, we have the

following laim.

Claim 2. When Z is a random string (Z

R

 f0; 1g

L

h

), and the event AskedValid ours, the following

equation holds:

Pr

h

Exp

odh-0

H;GG;A

(k) = 1 ^ AskedValid

i

�

1

2

+

1

2

�Adv

ind-pa

SE;D

(k)

Proof: If Z given to A as input is randomly hosen (i.e. Z

R

 f0; 1g

L

h

), the simulation of the LR-

enryption orale provided by the adversary A to the adversary B is essentially the same as that provided

by the adversary D to B beause in both simulations, the keys for the base symmetri enryption sheme

and MAC are e�etively hosen at random and independent of the values of X and Y . The simulation

of deryption orale is also orret exept when the variable Asked is set. Sine A outputs 1 whenever

B guesses the bit b right, while D outputs whatever B outputs, the probability that A outputs 1 in this

ase is at most the probability that D guesses the bit b right (b = d). Hene, we have

Pr

h

Exp

odh-0

H;GG;A

(k) = 1 ^ AskedValid

i

�

1

2

� Pr

h

Exp

ind-pa-1

SE;D

(k) = 1

i

+

1

2

� Pr

h

Exp

ind-pa-0

SE;D

(k) = 0

i

=

1

2

+

1

2

�Adv

ind-pa

SE;D

(k)

as desired.

2

If the event AskedValid ours when Z is a random string, the forger F an break the SUF-CMA seurity

of the MAC sheme MA = (T;VT) running the adversary B.

Claim 3. When Z is a random string (Z

R

 f0; 1g

L

h

), and the event AskedValid ours, the following

equation holds:

Pr

h

Exp

odh-0

H;GG;A

(k) = 1 ^ AskedValid

i

� Adv

suf-ma

MA;F

(k)

Proof: If Z given to A as input is randomly hosen (i.e. Z

R

 f0; 1g

L

h

), the simulation of the LR-

enryption orale provided by the adversary A to the adversary B is essentially the same as that

provided by the forger F to B beause in both simulations, the keys for the base symmetri enryption

sheme and MAC are e�etively hosen at random and independent of the values of X and Y . If

B makes a ritial query X

0

kC

0

k�

0

to the deryption orale (whih de�nes the event AskedValid), it

implies, by de�nition, X

0

= X and C

0

k�

0

is valid with respet to X, meaning VT

K

m

(C

0

; �

0

) = 1. Sine

the deryption orale query X

0

kC

0

k� needs to be \new" with respet the enryption orale responses,

it implies that C

0

k�

0

is \new", whih means � was never output by VT

K

m

on input C

0

. These two

onditions implied by a ritial query of B are the onditions required for a suessful forgery against

SUF-CMA of MA. Hene, the forger F running B sueeds in forging when B makes a ritial query,

and this justi�es the above laim.

2

Combining the results from the above three laims, we have

Adv

odh

H;GG;A

(k) �

1

2

�Adv

ind-a

ECSR;B

(k)�

1

2

�Adv

ind-pa

SE;D

(k)�Adv

suf-ma

MA;F

(k)

Transposing terms and taking the maximum of the advantages over all adversaries limited to the given

resoures, we obtain the onlusion of Theorem 5.7.
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Proof of Theorem 5.8:

LetH be a hash funtion, and let GG be a group generator algorithm. Let SE = (K

e

;E;D) be a symmetri

enryption sheme, and let MA = (K

m

;T;VT) be a MAC sheme. Let DHETM = (K



;K

s

;K

r

; E ;D) be

a PKAE sheme onstruted based on H, SE and MA as per Constrution 5.4. We prove the seurity

of DHETM using the standard redution argument. Given an adversary F attaking TUF-CTXT of

DHETM, we onstrut an adversary A attaking the \hardoreness" of H on GG (the HDH assumption)

and an adversary B attaking SUF-CMA of MA.

The adversary A and B run F as a subroutine answering its orale queries, and then using the output

forgery of F , A determines whether Z is random or not and B outputs a forgery in the SUF-CMA

sense. The details of the algorithms for A and B are shown below.

Algorithm A((q; g); X; Y; Z)

Parse Z as K

e

kK

m

Run F on input ((q; g); X; Y )

When F queries the E orale on m do

E  E

K

e

(m) ; �  T

K

m

(E)

return XkEk� to F

Until F outputs a forgery iphertext C

Parse C as X

0

kC

0

k�

0

If X

0

= X and C was never a response

given to F and VT

K

m

(C

0

; �

0

) = 1

then return 1 else return 0

Algorithm B

T

K

m

(�);VT

K

m

(�)

(k)

(q; g)

R

 K



(k) ; (X; x)

R

 K

s

(q; g)

(Y; y)

R

 K

r

(q; g) ; K

e

R

 f0; 1g

L

e

; b

R

 f0; 1g

Run F on input ((q; g); X; Y )

When F queries the E orale on m do

E  E

K

e

(m) ; �  T

K

m

(E)

return XkEk� to F

Until F outputs a forgery iphertext C

Parse C as X

0

kC

0

k�

0

b VT

K

m

(C

0

; �

0

)

As an be seen from the above algorithms, the algorithms A and F use B's outputs to ahieve their

own goals depending on whether Z looks random or not. If Z is of the form H(g

xy

) (i.e. the ase where

the hash output does not look random), the enryption orale A simulates for B is the same as the real

enryption algorithm given to B in the experiment Exp

tuf-txt

DHETM;F

(k). Sine A outputs 1 if B sueeds

in forging a iphertext against TUF-CTXT of DHETM, the following equation holds:

Pr

h

Exp

hdh-1

H;Group;A

(k) = 1

i

= Pr

h

Exp

tuf-txt

DHETM;F

(k) = 1

i

If Z

R

 f0; 1g

L

h

(i.e. the ase where the hash output does look random), the distribution of the

enryption orale responses A simulates for B is essenially the same as what F simulates for B, and F

an sueed in attaking SUF-CMA of MA using B's suessful forgery iphertext in this ase. Hene,

the following equation holds:

Pr

h

Exp

suf-ma

MA;B

(k) = 1

i

� Pr

h

Exp

hdh-0

H;GG;A

(k) = 1

i

Combining the above results, we obtain

Adv

hdh

H;GG;A

(k) � Pr

h

Exp

tuf-txt

DHETM;F

(k) = 1

i

� Pr

h

Exp

suf-ma

MA;B

(k) = 1

i

= Adv

tuf-txt

DHETM;F

(k)�Adv

suf-ma

MA;B

(k) :

Transposing the terms, and taking into aount the resoures used by the adversaries, we get the

onlusion of the theorem.

Proof of Theorem 5.9: Let DHETM = (K



;K

s

;K

r

; E ;D) be the PKAE sheme onstruted as per

Constrution 5.4. The adversary B = (B

1

; B

2

) against RUF-CTXT of DHETM is given an orale

E

hx

a

;y

a

;x

b

i

(�) in its seond stage and works as follows:
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Algorithm B

1

(q; g)

x

b

R

 Z

q

y

b

 g

x

b

st  (x

b

; q; g)

return (st ; y

b

)

Algorithm B

E

hx

a

;y

a

;x

b

i

(�)

2

(st ; y

a

; y

b

)

Parse st as (x

b

; q; g)

K

R

 H(y

x

b

a

) ; Parse K as K

e

kK

m



0

 E

K

e

(0) ; �  T

K

m

(

0

)

C  y

a

k

0

k�

return (C; y

b

; x

b

)

It is easy to see that the iphertext C output by B in the seond stage is \valid", meaning D

x

b

(C) 6= ?.

Beause the enryption is based on the ommon key omputed from the keys of both sender and reeiver,

B as an adversarial reeiver who knows its own key an easily ompute the ommon key as well as the

sender. The adversary B does not have to invoke the enryption orale and it an enrypt any messages

of its hoie. Sine B did not query the enryption orale, both the output forgery iphertext C and

its orresponding plaintext \0" will be onsidered \new". Hene, the same adversary B an be used for

attaking both RUF-PTXT and RUF-CTXT seurity of DHETM. Combining these results, we obtain

the following equation

Adv

ruf-ptxt

DHETM;B

(k) = Adv

ruf-txt

DHETM;B

(k) = 1

as desired.

Note that although B did not hange its own key pair in the seond stage, it ould have easily hanged

its key and still sueed in generating a valid iphertext forgery of its hoie with respet to the hanged

key. Here, B's ability to hange the key does not a�et its suess probability.
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