
A Sufficient Condition for Secure Ping–Pong Protocols

Masao Mori

Department of Informatics, Kyushu University, Fukuoka 33, 812–8581, Japan

masa@i.kyushu-u.ac.jp

September 21, 2001

Abstract

A sufficient condition for secure ping–pong protocols is repretsented. This condition, called name–

suffixing, is essentially to insert identities of participants in messages. We prove its sufficiency and discuss

the feature of security in terms of name–suffixing.

Keywords: Cryptography; Verification of cryptographic protocols

1 Introduction

The state machine approach verifying cryptographic protocols by Dolev and Yao [5], and Dolev, Even and
Karp [4], however it is aimed at a simple type of cryptographic protocols, called ping–pong protocols, has
been a fundamental model of some contemporary verifying techniques [8], namely NRL Protocol Analyzer
and Interrogator etc. In their approach the state machines are designed to accept strings of cryptographic
operations which express both legitimate executions of protocols and sabotuers’ devices. Verification is done
by an algorithm seeking a binary relation of states which indicates vulnerability of cryptographic protocols.

That algorithm by Dolev et al. does not give any advice to revise vulnerable protocols but only verifies
them. Designing cryptographic protocols some guiding principles for security, such as [2], is required. In this
paper we represent a sufficient condition, called name–suffixing, and give its proof in order to design secure
ping–pong protocols. This condition is simply to insert identities of participants in messages . The similar
our result has been found by Lowe [6] who points out a vulnerability of the Needham–Schroeder protocol and
gives its correction. That is essentially to include participants identities in messages. Insertion of identities in
messages is an instance of Principle 3 in [2].

In addition we will introduce examples in which insertion of identities is more effective rather than digital
signatures. Sabotures are supposed to accomplish attacking without being noticed by anyone. We have
examples which is determined to be vulnerable in the sence of [4] but such smart attack has not been found
for those examples. In section 5 we mention not only the above discussion but also the way to consider secure
conditions for more contemporary cryptographic protocols with respect to name–insertion.

2 Preliminary

Names of legitimate participants, initiator and responder, are denoted by A and B respectively which belong
to the set {0, 1}∗ of finite bit–strings. The name S ∈ {0, 1}∗ denotes the sabotuer who can participate in the
network as a legitimate user. As all of participants can act as either initiator and responder, it is necessary
to describe protocols with variables of participants. Variables of participants, X and Y , range over the set of
participants U = {A,B, S}. We use small characters for subscripts of symbols, i.e., x, y range over U = {a, b, s}.
For instance, when the sabotuer impersonate a user X, we write Sx.

Each participant possesses private keys Dx and public keys Ex, which are defined on {0, 1}∗. When a
message M ∈ {0, 1}∗ is concatinated with a name X, denoting MX, we use a name–suffix operator ix defined
as ix(M) = MX. On the other hand, deleting a name–suffix from MX, we use a name–cancellation operator
dx defined if X is a suffix of T , i.e., T = MX, dx(MX) = M ; else dx(T ) is undefined. We call all of ix and
dx by name–operations. All of operators Ex, Dx, ix, dx for each user X are defined on the finite set {0, 1}∗ of

1



bit–strings. If a participant receives (or sends) a cryptographic message, it is necessary to decode (or encode,
respectively) the message. We call decoding and encodeing in one step execution by procedure.

By means of cryptographic functions and name–operations, a set of cancellation rules is given as follows.
Let ε be an identity function on a set of messages. The cancellation rules are ExDx = ε, DxEx = ε, and
dxix = ε for each user X. Note that the cancellation rules of dx and ix cannot be symmetric. For a sequence
ϕ of operators we denote a reduced form ϕ if no cancellation rule is applicable. The identity function ε can be
regarded as the empty sequence (identitiy) in terms of a rewriting system on strings of cryptographic functions.

It is necessary to specify a set Σx of available operations for each user X. Define

Σx = {Dx} ∪ {Ey, iy, dy | y ∈ U}

Σ =
⋃

{Σx | x ∈ U}.

Actually name–cancellation operators would not be used in encoding procedure. Moreover each participant
would not use their own public key because no one could decode the associated message. So that a set ∆x of
available operations in encoding and a set ∆−1

x of their inverse is defined as follows.

∆x = Σx − ({dy | y ∈ U} ∪ {Ex})

∆−1
x = {f−1 | f ∈ ∆x}

where i−1
x = dx and d−1

x = ix.

Ping–pong protocols are given as a series of sequences consisting of cryptographic functions and name–
operations. Following [5] and [4] we assume to fix a message in the whole communication, i.e., participants
decode received messages and send encoded messages where those messages are the same message that the
initiator has sent. If one receives an message, he needs to know that it was dealt in the legitimate procedure
of encoding, signature and name–operation in the protocol. We assume each procedure to have two parts,
receiving operations and sending operations.

Definition 1
A ping–pong protocol P (X,Y ) is a finite series {αxy

k | x 6= y, 1 ≤ k ≤ n} of sequence of operators such that

α
xy

k ∈ ∆∗

x if k is an odd number, or α
xy

k ∈ ∆∗

y if k is an even number. We call each sequence α
xy

k of operators

and its application procedure.

In a communication between A and B, denoting their protocol by P (A,B), the initiator A sends the first mes-
sage αab

1 (M), the responder B applies (αab
1 )−1 to the received message and obtain M . Next B sends the second

message αab
2 (M) back to A, the initiator gets M using (αab

2 )−1 and sends the third message αab
3 (M) again. By

the k–th step the messageM has been applied operations as following: {αab
k (αab

k−1)
−1} · · · {αab

2 (αab
1 )−1}{αab

1 }(M) =

αab
k (M) where k ≥ 2.

We distinguish terminology initiator and responder from sender and receiver. Initiator and responder would
be fixed in executions of protocols. We call a sender (receiver) to those who sends (receives, respectively) a
message in one procedure.

3 Examples of attack

The purpose of the sabotuer is to read other participant’s messages making use of flaws in cryptographic
protocols, moreover eavesdropping must be done without being noticed by legitimate participants. Since the
sabotuer may take part in the network as a legitimate user, he is supposed to follow procedures in the protocol
and does not know other’s private keys. However, we assume that the sabotuer can intercept and substitute
transferring messages, impersonate legitimate participants, and initiate the protocol. In the following examples
the notation X → Y : ϕ(ψ(M)) means that a received message ψ(M) is sent by X with operation ϕ. In each
step the message should be revealed successfully. So that we assume that it must hold that ϕ′′ψ = ε where
ϕ = ϕ′ϕ′′.

The simplest ping–pong protocol, called echo protocol, P0(X,Y ) = {αxy
1 = Ey, α

ab
2 = Ex} is vulnerable

because it is impossible for a receiver to verify and the message which is indeed sent by a legitimate sender.
If the sabotuer succeeds to intercept a message and impersonates the initiator, then the attack would be done
successfully. Now one would try to improve the echo protocol using adding digital signature, i.e., adding private
key Dx in each procedure, but with no success.

2



Example 1
The protocol

P1(X,Y ) = {αxy
1 = EyDx, α

xy
2 = ExDy}

is vulnerable.

(1.1) A→ B : EbDa(M)
(2.1) S → B : EbDs(EbDa(M))

{ S intercepts (1.1) and sends to B. }
(2.2) B → S : EsDbEsDb(EbDs(EbDa(M)))

= EsDa(M)
{ Eavesdropping has been successful. }

(3.1) S → B : EbDsEaDs(EsDa(M))
= EbDs(M)
{ Preparation for responding to A }

(3.2) B → S : EsDbEsDb(EbDs(M))
= EsDb(M)

(1.2) Sb → A : EaDs(EsDb(M))
= EaDb(M)
{ A also successfully received the reply message. }

The sabotuer S impersonate B in the final session to terminate the session beginning at (1.1). The under-
lined operator Eb is the target operator for the sabotuer. Note that in (2.2) the signature Db by B is abused
for decryption of Eb.✷

Dolev, Even and Karp[4] represented an O(n3) verification algorithm for ping–pong protocols where n is
the number of operators appearing in a protocol. The protocol P2(X,Y ) = {αxy

1 = Eyix, α
xy
2 = Ex} was

verified by the algorithm in [4]. However if we add a digital signature Dy to αxy
2 in P2(X,Y ) then it becomes

insecure.

Example 2
The protocol

P3(X,Y ) = {αxy
1 = Eyix, α

xy
2 = ExDy}

is vulnerable. One can attack in the following way. The underlined Eb is a target operator for the sabotuer.

(1.1) A→ B : Ebia(M)
(2.1) S → B : Ebis(Ebia(M))

{Intercept and apply Ebis. }
(2.2) B → S : EsDbdsDb(EbisEbia(M))

= Esia(M)
{ S can obtain M . }

(3.1) S → B : EbisdaDs(Esia(M))
= Ebis(M)

(3.2) B → S : EsDbdsDb(Ebis(M))
= EsDb(M)

(1.2) Sb → A : EaDs(EsDb(M))
= EaDb(M)
{ A received the message. }

Note that the signature function Db is abused to decrypt message as well as Example 1.

4 Secure Patterns

We will give a sufficient condition of ping–pong protocols in terms of security. Since the condition is simple, if
one finds a security flaw in protocols with some verification algorithms almost all of the insecure protocols can
be improved, or one can design a secure protocol satisfying the condition.

The definition of security of ping–pong protocol follows [4]. Let the set Γ to be the sabotuer’s devices in a
given protocol P (X,Y ), that is,

Γ = [Σs ∪ {αxy
1 | x, y ∈ U} ∪ {(αxy

k )(αxy

k−1)
−1 | x, y ∈ U , 2 ≤ k ≤ n}]∗.

3



where x, y ∈ U . In examples of the previous section, the sabotuer attempts to lead legitimate participants to
reduce messages using protocols P (A,B), P (S,A) and P (S,B) except αab

1 (M).

Definition 2
A protocol P (A,B) is vulnerable if there exists γ ∈ Γ such that γαab

1 = ε.

The first procedure of the next protocol includes a name-suffix operator. It is impossible for the sabotuer
to crack the protocol. The next proposition leads us to the general idea of a secure design of protocols.

Proposition 1
Let a protocol

P4(X,Y ) = {αxy
1 = Eyix, α

xy
2 = Ex}.

P4(A,B) is secure.

[Proof] Suppose P (A,B) to be insecure, i.e., ∃γ ∈ Γ such that γαab
1 = γEbia = ε. The B’s private key Db

which cancel with Eb in αab
1 appears in subsequences of γ, that is, αab

2 (αab
1 )−1 (for case 1.) or αsb

2 (αsb
1 )−1 (for

case 2.).

1. Assume that Eb is suppose to cancel with Db in αsb
2 (αsb

1 )−1. Then we have the following: γEbia =
ϕαsb

2 τEbia = ϕEsdsDbτEbia where γ = ϕαsb
2 (αsb

1 )−1τ for some ϕ, τ ∈ Γ. By assumption the subsequence
DbτEb would be reduced to ε. But there is no is in the right side from ds, which should be cancelled with ds.

This contradicts that γαab
1 = ε.

2. Next assume that Eb is suppose to cancel with Db in αab
2 (αab

1 )−1. We have γEbia = ϕαab
2 (αab

1 )−1τEbia =
ϕEadaDbτEbia where γ = ϕαab

2 (αab
1 )−1τ for some ϕ, τ ∈ Γ. As the subsequence daDbτEbia is cancelled, it

must holds that ϕEa = ε. Then we have two cases that Ea is suppose to be cancelled with Da which appears
in αsa

2 (αsa
1 )−1 or αba

2 (αba
1 )−1. In case of αsa

2 (αsa
1 )−1 it contradicts the assumption like case 1. The case of

αba
2 (αba

1 )−1 leads us to contradiction which conflicts finiteness of γ.

Both case 1. and case 2. lead to contradiction. The proof completes.✷ ✷

It seems enough for secure protocols to have a name–suffix function in α1. However there is a counterexample
shown in Example 2. Now we will state that protocols in which each procedure has a name–suffix function at
the first operation are secure. In a name–suffixed protocol P (X,Y ) = {αxy

k | x 6= y, 1 ≤ k ≤ n}, each encoding
is of the following reduced form:

α
xy

k = ξ
xy

k Evπ
xy

k iu

where

ξ
xy

k ∈

{
∆∗

x if k is odd,
∆∗

y if k is even,

π
xy

k ∈

{
(∆x − {Ey})

∗ if k is odd,
(∆y − {Ex})

∗ if k is even,

and

(u, v) =

{
(x, y) if k is odd,
(y, x) if k is even.

That is, each encoding begins with a name–suffixed operator of the sender and has at least one encryption
function. The next lemma is important.

Lemma 1
For every procedure αab

k in a name–suffixed ping–pong protocol P (A,B), it holds that γαab
k 6= ε for any γ ∈ Γ∗.

[Proof] Suppose that there exists γ ∈ Γ such that γαab
k = γξab

k Ebπ
ab
k ia = ε By assumption there is a decryption

function Db which is cancelled with Eb in αab
1 , that is, we can assume that there exists j ≥ 2 where such Db is

included in subsequences, αab
j (αab

j−1)
−1 or αsb

j (αsb
j−1)

−1 if j is even, else αba
j (αba

j−1)
−1 or αbs

j (αbs
j−1)

−1. Now we
prove the case that j is even. Assume that the sabotuer does not take part in the execution, i.e., the sequences
neither αsb

l (αsb
l−1)

−1 nor αbs
l (αbs

l−1)
−1 appears in γ for any l ≥ 2. Then γ = ϕαab

j (αab
j−1)

−1ϕ′ for some ϕ, ϕ′ ∈ Γ.
So that

γαab
k = ϕ · ξab

j Eaπ
ab
j ib

︸ ︷︷ ︸

αab
j

· da(π
ab
j−1)

−1Db(ξ
ab
j−1)

−1

︸ ︷︷ ︸

(αab
j−1

)−1

·ϕ′ · ξab
k Ebπ

ab
k ia

4



It is possible to include Db in either ξab
j or Db(ξ

ab
j−1)

−1. Consider that the target Eb is cancelled with Db in

ξab
j , then the subsequence

(the rest of ξab
j )Eaπ

ab
j ibda(π

ab
j−1)

−1Db(ξ
ab
j−1)

−1ϕ′ξab
k

should corrupts by itself. As db does not however exist in the right side from ib, this is a contradiction. Next
consider the target Eb is cancelled withDb inDb(ξ

ab
j−1)

−1. Then Ea in the right αab
j must be cancelled withDa in

ϕ. Now we have series of encodings related to that cancellation above. By assumption that the sabotuer does not
participate in the execution, γ is of the following form: γ = · · ·αjν

(αjν−1)
−1 · · ·αj1(αj1−1)

−1 · · ·αj(αj−1)
−1.

The participants must be A or B but cannot be determined for j1, j2, j3, · · ·. This contradicts to the corruption
of the whole string γαab

k because of the fact that Ea or Eb will remain anyway. Whence the sabotuer must
participate in the execution γ. Now assume that Eb in γαab

k is cancelled with Db in αsb
j (αsb

j−1). We have

γαab
1 = ϕ · ξsb

j Esπ
sb
j ib

︸ ︷︷ ︸

αsb
j

· ds(π
sb
j−1)

−1Db(ξ
sb
j−1)

−1

︸ ︷︷ ︸

(αsb
j−1

)−1

·ϕ′ · ξab
k Ebπ

ab
k ia

It is possible to consider that Eb is cancelled with in either ξsb
j or Db(ξ

sb
j−1)

−1. We can conclude a contradiction
that ib cannot be cancelled for the former case and neither can ds for the latter case. We can prove the case
that j is odd by symmetry.✷ ✷

If there is k ≥ 1 such that ∃γ′ ∈ Γ : γ′αab
k = ε, then the protocol is vulnerable because we can set

γ = γ′αab
k · · · (αab

1 )−1.

From Lemma 1 it is easy to state the theorem:

Theorem 1
For a name–suffixed ping–pong protocol P (X,Y ), P (A,B) is secure.

[Proof] It is clear by the case of k = 1 in Lemma 1. ✷

We need a reconsideration about the definition of security in the sense of [4] since there exists an attack
example which would be noticed by legitimate users. We leave this discussion in the next section.

5 Discussion

We represented a sufficient condition of security for ping–pong protocols from a standpoint of [4]. Now we need
to discuss attacking methods and definitions of security. Here are examples which are verified to be vulnerable
by means of the algorithm in [4], but smart attacks cannot be found.

Example 3
The protocol P5(X,Y ) = {αxy

1 = EyDx, α
xy
2 = Ex} and P6(X,Y ) = {αxy

1 = EyixDx, α
xy
2 = Ex} are

vulnerable by setting γ = EaDsDsα
sb
1 (αsb

1 )−1 for both P5 and P6.

Those examples are determined to be vulnerable by the algorithm in [4], but such smart attack as in Example 1
and 2 have not been found, i.e., during decoding the responder of the first session would notice intervention. In
those smart attacks, message–direct digital signatures in the second (and more, maybe) procedure are abused
for illegitimate decryption of public keys. For these reasons it is necessary to pay attentions for distinguishing
between smart attack, successful attack except that some execution are aborted, and attack which can be
noticed because of verifying digital signatures and name–suffixing.

Recalling the proof in Lemma 1 we can conclude two principles about robustness of name–suffixing as follows.
Firstly, secure cryptographic protocols are required that each procedure cannot be decoded in illegitimate ways.
This is a trivial principle. Secondly name–suffixing contributes security cooperating with encryption by public
keys. It is important that decryption in procedures before and after does not distrub machinery of name–
suffixing. The condition presented in this paper is one of the most essential and simple instance satisfying
this principle, however, more efficient and non-redundant name-suffixing condition would be studied, taking
account of simple feature of protocols. As Lowe [6], and Abadi and Needham [2] have pointed out, this is worth
while researching with respect to contemporary cryptographic protocols.

5



References

[1] Martin Abadi. Explicit communication revisited: Two new attacks on authentication protocols. Software

Engineering, 23(3):185–186, 1997.

[2] Mart́ın Abadi and Roger Needham. Prudent engineering practice for cryptographic protocols. IEEE

Transactions on Software Engineering, 22(1):6–15, January 1996.

[3] Whitfield Diffie, Paul C. Van Oorschot, and Michael Wiener. Authentication and authenticated key ex-
changes. Designs, Codes and Cryptography, 2:107–125, 1992.

[4] D. Dolev, S. Even, and R. M. Karp. On the security of ping-pong protocols. Information and Control,
55:57–68, 1982.

[5] Danny Dolev and Andrew C. Yao. On the security of public key protocols. IEEE Transactions on Infor-

mation Theory, 29(2):198–208, 1983.

[6] Gavin Lowe. An attack on the Needham-Schroeder public key authentication protocol. Information Pro-

cessing Letters, 56(3):131–136, 1995.

[7] Gavin Lowe. Some new attacks upon security protocols. In PCSFW: Proceedings of The 9th Computer

Security Foundations Workshop. IEEE Computer Society Press, 1996.

[8] Catherine Meadows. Formal verification of cryptographic protocols: A survey. In ASIACRYPT: Proceedings

of International Conference on the Theory and Application of Cryptology. LNCS 917, Springer-Verlag, 1994.

[9] Catherine Meadows. Open issues in formal methods for cryptographic protocol analysis. In Proceedings

of DARPA Information Survivability Conference and Exposition, pages 237–250. IEEE Computer Society
Press, 2000.

6


