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Abstrat. In this paper we onsider matries of speial form introdued

in [11℄ and used for the onstruting of resilient funtions with rypto-

graphially optimal parameters. For suh matries we establish lower

bound

1

log

2

(

p

5+1)

= 0:5902::: for the important ratio

t

t+k

of its parame-

ters and point out that there exists a sequene of matries for whih the

limit of ratio of these parameters is equal to lower bound. By means of

these matries we onstrut m-resilient n-variable funtions with maxi-

mum possible nonlinearity 2

n�1

�2

m+1

for m = 0:5902 : : : n+O (log

2

n).

This result supersedes the previous reord.

Keywords: stream ipher, Boolean funtion, nonlinear ombining funtion,
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1 Introdution

Di�erent types of iphers use Boolean funtions. So, LFSR based stream iphers

use Boolean funtions as a nonlinear ombiner or a nonlinear �lter, blok iphers

use Boolean funtions in substitution boxes and so on. Boolean funtions used

in iphers must satisfy some spei� properties to resist di�erent attaks. One

of the most important desired properties of Boolean funtions in LFSR based

stream iphers is orrelation immunity introdued by Siegenthaler [9℄. Another

important properties are nonlinearity, algebrai degree and so on.

The most usual theoreti motivation for the investigation of highly nonlinear

resilient Boolean funtions is the using of suh funtions as nonlinear ombiners

in stream iphers. But from the pratial point of view the number of variables

in suh system an not be too big (in opposite ase the key length will be too

long). It is neessary to note that all important funtions with small number

of variables are found already by exhaustive searh. At the same time another

important pratial type of stream iphers uses Boolean funtions as nonlinear

�lters. Here, in general, it is possible to use the funtions with big number of
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variables. But the main problems here is that e�etive (from implementation

point of view) onstrutions of suh funtions an not be found by exhaustive

searh, and also it was pointed out [4℄ that stream ipher of suh type an be

transformed into an equivalent (in some sene) with worse resilieny but the

same nonlinearity. It emphasizes the importane of diret e�etive onstrutions

of Boolean funtions with big number of variables and optimal ombination of

resilieny and nonlinearity.

Correlation immunity (or resilieny) is the property important in ryptogra-

phy not only in stream iphers. This is an important property if we want that

the knowledge of some spei�ed number of input bits does not give a (statistial)

information about the output bit. In this respet suh funtions are onsidered

in [3℄, [2℄ and other works.

It was proved independently in [8℄, [10℄ and [12℄ that the nonlinearity of n-

variable m-resilient funtion does not exeed 2

n�1

� 2

m+1

for m � n� 1. It was

proved that if this bound is ahieved thenm > 0:5n�2. In [10℄ it was proved that

if this bound is ahieved then the algebrai degree of the funtion is maximum

possible too (i. e. ahieves Siegenthaler's Inequality) and equal to n � m � 1.

In [10℄, [6℄ and [11℄ e�etive onstrutions of m-resilient n-variable funtions

with maximum possible nonlinearity 2

n�1

� 2

m+1

for m �

2n�7

3

, m �

2n�9

3

and m � 0:6n� 1 orrespondently were given. To obtain this result in [11℄ the

onept of a proper (k

0

; k; p; t)-matrix were introdued. In [11℄ it was pointed out

that the mostly important to �nd a proper (k; k; p; t)-matrix where the ratio

t

t+k

is as small as possible. In [11℄ it was given a proper (4; 4; 6; 6)-matrix for whih

this ratio is 0:6. At the same time the lowest possible value of the ratio

t

t+k

for proper matries was formulated in [11℄ as the open problem. In the present

paper we investigate the problem of the lowest possible value of the ratio

t

t+k

for

proper matries and establish that this ratio an not be less than

1

log

2

(

p

5+1)

=

0:5902::: At the same time we onstrut proper matries that approah this

lower bound with arbitrary preision. By means of these matries we onstrut

m-resilient n-variable funtions with maximum possible nonlinearity 2

n�1

�2

m+1

form = 0:5902 : : : n+O (log

2

n). Note that our nonexistene results demonstrate

that only proper matries tehnique is not suÆient to onstrut m-resilient n-

variable funtions with maximum possible nonlinearity 2

n�1

� 2

m+1

for m <

0:5902 : : : n + O (1). At the same time it is quite possible that suh funtions

there exist for any m, n provide 0:5n � 2 < m � n � 2. At least an opposite

result have not proved. Thus, the onstruting of suh funtions demands new

methods and new tehniques.

The rest of this paper is organized as follows. In Setion 2 we give preliminary

onepts and notions. In Setion 3 we formulate neessary onepts and results

from the previous work [11℄ on proper matries. In Setion 4 we give geometrial

interpretation of proper matries. In Setion 5 we prove that there does not exist

a proper (k

0

; k; p; t)-matrix if

t

k+t

<

1

log

2

(

p

5+1)

= 0:5902::: In Setion 6 we on-

strut proper (k

0

; k; p; t)-matries with ratio

t

k+t

lose to

1

log

2

(

p

5+1)

and k > �k

0

where � <

p

5 log

2

�

p

5+1

2

�

= 1:5523 : : :. In Setion 7 by means of proper matri-



es onstruted in Setion 6 we onstrut m-resilient n-variable funtions with

maximum possible nonlinearity 2

n�1

�2

m+1

for m =

1

log

2

(

p

5+1

)

n+O (log

2

n) =

0:5902 : : : n+O (log

2

n). In Setion 8 we disuss the method that probably gives

the best possible in some sene onrete proper matries.

2 Preliminary onepts and notions

We onsider V

n

, the vetor spae of n tuples of elements from GF (2). A Boolean

funtion is a funtion from V

n

to GF (2). The weight wt(f) of a funtion f on

V

n

is the number of vetors x on V

n

suh that f(x) = 1. A funtion f is said to

be balaned if wt(f) = wt(f � 1). Obviously, if a funtion f on V

n

is balaned

then wt(f) = 2

n�1

. A subfuntion of the Boolean funtion f is a funtion f

0

obtained by substitution some onstants for some variables in f . If a variable x

i

is not substituted by onstant then x

i

is alled a free variable for f

0

.

The Hamming distane d(x

0

; x

00

) between two vetors x

0

and x

00

is the number

of omponents where vetors x

0

and x

00

di�er. For two Boolean funtions f

1

and

f

2

on V

n

, we de�ne the distane between f

1

and f

2

by d(f

1

; f

2

) = #fx 2

V

n

jf

1

(x) 6= f

2

(x)g. The minimum distane between f and the set of all aÆne

funtions (i. e. funtions of the form f(x) = 

0

�

n

L

i=1



i

x

i

) is alled the nonlinearity

of f and denoted by nl(f).

A Boolean funtion f on V

n

is said to be orrelation-immune of order m,

with 1 � m � n, if wt(f

0

) = wt(f)=2

m

for any its subfuntion f

0

of n � m

variables. This onept was introdued by Siegenthaler [9℄. A balaned mth

order orrelation immune funtion is alled an m-resilient funtion. From this

point of view it is possible to onsider formally any balaned Boolean funtion as

0-resilient (this onvention is aepted in [1℄, [7℄, [5℄) and an arbitrary Boolean

funtion as (�1)-resilient (this onvention is aepted in [10℄ and [11℄). The

onept of an m-resilient funtion was introdued in [3℄.

3 Results of previous work on proper matries

In [11℄ for the onstruting of new m-resilient n-variable Boolean funtions with

maximum possible nonlinearity 2

n�1

� 2

m+1

the onept of a proper matrix was

introdued.

De�nition 1. [11℄ Let B = (b

ij

) be (2

k

� p) matrix of 2

k

rows and p olumns

with entries from the set f1; 2; �g. Let k

0

and t be positive integers. We assume

that

(i) for every two rows i

1

and i

2

there exists a olumn j suh that b

i

1

j

= 1,

b

i

2

j

= 2 or b

i

1

j

= 2, b

i

2

j

= 1.

(ii) for every row i the inequality

p

P

j=1

b

ij

� t holds (a sign � does not give an

inuene to these sums).



(iii) in every row the number of ones does not exeed k

0

.

If the matrix B satis�es all properties (i), (ii), (iii) we say that B is a proper

(k

0

; k; p; t)-matrix.

The proper (k

0

, k, p, t)-matrix is denoted in [11℄ by B

k

0

;k;p;t

. The next

examples of proper matries are given in [11℄.

B

1;0;1;1

= ( 1 ) ; B

1;1;1;2

=

�

1

2

�

; B

3;2;3;3

=

0

B

�

2 1 �

� 2 1

1 � 2

1 1 1

1

C

A

;

B

3;3;4;5

=

0

B

B

B

B

B

B

B

B

B

�

� 1 2 2

2 � 1 2

2 2 � 1

1 2 2 �

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

1

C

C

C

C

C

C

C

C

C

A

; B

4;4;6;6

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

2 2 2 � � �

1 2 � 1 2 �

1 2 � � 1 2

1 2 � 2 � 1

� 1 2 1 2 �

� 1 2 � 1 2

� 1 2 2 � 1

2 � 1 1 2 �

2 � 1 � 1 2

2 � 1 2 � 1

2 � 1 1 1 1

1 2 � 1 1 1

� 1 2 1 1 1

1 1 1 2 � 1

1 1 1 1 2 �

1 1 1 � 1 2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

The next de�nitions were given in [11℄.

De�nition 2. A Boolean funtion f = f(x

1

; : : : ; x

n

) depends on a pair of its

variables (x

i

; x

j

) quasilinearly if f(x

0

) 6= f(x

00

) for any two vetors x

0

and x

00

of

length n that di�er only in ith and jth omponents. A pair (x

i

; x

j

) in this ase

is alled a pair of quasilinear variables in f .

De�nition 3. Let F be a set of Boolean funtions suh that for every s, 0 �

s � k, the set F ontains an (m+s)-resilient funtion on V

n+s

with nonlinearity

at least 2

s

(2

n�1

� 2

m+�

) (� is not neessary integer). Moreover, we assume that

eah f

s

ontains s disjoint pairs of quasilinear variables. Then we say that F is

a S

n;m;k;�

-system of Boolean funtions.

Remark. [11℄ To provide an existene of a S

n;m;k;�

-system of Boolean fun-

tions it is suÆient to have only one (m+ k)-resilient funtion f on V

n+k

with

nonlinearity at least 2

k

(2

n�1

�2

m+�

) that ontains k disjoint pairs of quasilinear

variables. All other neessary funtions of S

n;m;k;�

-system an be obtained from

f by substitutions of onstants for the variables from di�erent disjoint pairs of

quasilinear variables.

The next theorem was proved in [11℄.



Theorem 1. [11℄ Suppose that there exists an S

n;m;k

0

;�

-system of Boolean fun-

tions F and there exists a proper (k

0

; k; p; t)-matrix B, n � 2p� t. Then there

exists an S

n+k+t;m+t;k;�

-system of Boolean funtions.

An appliation of the onstrution given in Theorem 1 is denoted in [11℄ by

S

n;m;k

0

;�

T

k

0

;k;p;t

= S

n+k+t;m+t;k;�

:

Lemma 1. [11℄ There exists an S

2;�1;2;1

-system of Boolean funtions.

Indeed, the funtions f

0

0

= x

1

x

2

, f

0

1

= (x

1

� x

2

)x

3

� x

1

, f

0

2

= (x

1

� x

2

)(x

3

�

x

4

)�x

1

�x

3

forms the S

2;�1;2;1

-system of Boolean funtions, i. e. for i = 0; 1; 2 the

system ontains (2+i)-variable (�1+i)-resilient Boolean funtion of nonlinearity

2

1+i

� 2

i

.

The results of [11℄ demonstrate that if there exists a proper (k; k; p; t)-matrix

then there exists a onstant C

0

suh that for any n andm providedm �

t

k+t

n+C

0

there exists an m-resilient n-variable Boolean funtion with the nonlinearity

2

n�1

� 2

m+1

. Thus, the important problem is to onstrut a proper (k; k; p; t)-

matrix with ratio

t

k+t

as small as possible. In [11℄ it was given an example of a

proper (4; 4; 6; 6)-matrix where the value

t

k+t

is equal to 0:6.

In this work we study the problem of the existene of proper (k

0

; k; p; t)-

matries.

4 Geometrial interpretation

In this paper we onsider a Boolean ube B

p

as the set of all vetors (x

1

; : : : ; x

p

)

where x

i

2 f1; 2g. The lth level of the Boolean ube B

p

is the set of all vetors

of B

p

with exatly l ones. The ardinality of lth level of B

p

is

�

p

l

�

.

A proper (k

0

; k; p; t)-matrix B an be interpreted [11℄ as a olletion of 2

k

disjoint sububes in Boolean ube f1; 2g

p

. Indeed, a row of B an be interpreted

as a subube where the omponents with � are free whereas the omponents

with 1 or 2 are substituted by orrespondent onstants. The next illustration at

the example of a proper (3; 3; 4; 5)-matrix B is given in [11℄.

row of B points of a subube

�122 f(1; 1; 2; 2); (2; 1; 2; 2)g

2 � 12 f(2; 1; 1; 2); (2; 2; 1; 2)g

22 � 1 f(2; 2; 1; 1); (2; 2; 2; 1)g

122� f(1; 2; 2; 1); (1; 2; 2; 2)g

2111 f(2; 1; 1; 1)g

1211 f(1; 2; 1; 1)g

1121 f(1; 1; 2; 1)g

1112 f(1; 1; 1; 2)g

The property (i) of a proper matrix provides that sububes are disjoint. The

properties (ii) and (iii) haraterize the loation of sububes in a ube and the

size of sububes.



5 Lower bound for the value

t

k+t

In this Setion we prove that there does not exist a proper (k

0

; k; p; t)-matrix if

t

k + t

<

1

log

2

(

p

5 + 1)

= 0:5902:::

Lemma 2. If there exists a proper (k

0

; k; p; t)-matrix B then for any p

0

> p

there exists a proper (k

0

; k; p

0

; t)-matrix.

Proof. We obtain a proper (k

0

; k; p

0

; t)-matrix simply adding p

0

� p new all-�

olumns to B. ut

The next lemma is obvious.

Lemma 3. If there does not exist a proper (k

0

; k; p; t)-matrix B then for any

k

0

0

< k

0

there does not exist a proper (k

0

0

; k; p; t)-matrix.

Theorem 2. There does not exist a proper (k

0

; k; p; t)-matrix for

t

k + t

<

1

log

2

(

p

5 + 1)

= 0:5902:::

Proof.

By Lemma 3 it is suÆient to prove this theorem for k

0

= t.

Let B be an arbitrary proper (t; k; p; t)-matrix. We an onsider B as the

set of disjoint sububes of the Boolean ube B

p

if we onsider eah row of B as

a subube. These sububes are disjoint by item (i) in de�nition 1 of a proper

matrix.

If t is even then we replae in rows with odd number of ones some asterisk

by one (if there are not asterisks in a row then we add preliminary all-� olumn

to the matrix B, after this proedure the parameter p will inrease but this is

not important for us). If t is odd we do the same for all rows with even number

of ones. Now for even t all rows ontain even number of ones and for odd t all

rows ontain odd number of ones. If the matrix B ontains rows where the sum

of ones and twos is less than t�1 then we replae asterisks in these rows by twos

(adding if neessary new all-� olumns to B) until the sum of ones and twos will

beome greater than t� 1, i. e. t.

Thus, without loss of generality we an assume that the sum of ones and

twos in any row of B is exatly t.

Consider a subube de�ned by a row of B with exatly s twos and exatly

r ones. Then lth level of Boolean ube B

p

ontains exatly

�

p�s�r

l�r

�

vetors of

this subube if l = r; : : : ; p� s, and does not ontain suh vetors for another l.

Suppose that t is even (for odd t the reasoning is analogous). Then lth level of

Boolean ube ontains

�

p�t=2

l

�

vetors from eah subube de�ned by the rows

of B with exatly t=2 twos and exatly 0 ones,

�

p�t=2�1

l�2

�

vetors from eah

subube de�ned by the rows of B with exatly t=2� 1 twos and exatly 2 ones



and so on. Denote the number of rows of B with exatly i ones by 

i

. Then for

any l = 0; 1; : : : ; p the next inequality holds:

t=2

X

i=0



2i

�

p� t=2� i

l � 2i

�

�

�

p

l

�

:

It follows

t=2

X

i=0



2i

(p� t=2� i)!

(l � 2i)!(p� t=2� l + i)!

�

p!

l!(p� l)!

:

Put l = � � p. Then

t=2

X

i=0



2i

(p� t=2� i) : : : (p� t=2� t=2 + 1)

(�p� 2i) : : : (�p� t+ 1)(p(1� �) � t=2 + 1) : : : (p(1� �)� t=2 + i)

�

p(p� 1) : : : (p� t=2� t=2 + 1)

�p(�p� 1) : : : (�p� t+ 1)(p(1� �)� t=2 + 1) : : : (p(1� �)� 1)(p(1� �))

:

Note that adding new all-� olumns to B we an obtain a proper (t; k; p

0

; t)-

matrix for any p

0

> p. Thus, if there does not exist a proper (t; k; p

0

; t)-matrix

for any p

0

> p then there does not exist a proper (t; k; p; t)-matrix B. Therefore

below we an suppose p as large as neessary. Removing the parentheses we have

t=2

X

i=0



2i

p

t=2�i

+ a

1

i

p

t=2�i�1

+ : : :

((�p)

t�2i

+ a

2

i

(�p)

t�2i�1

+ : : :)(((1� �)p)

i

+ a

3

i

((1� �)p)

i�1

+ : : :)

�

p

t

+ b

1

p

t�1

+ : : :

((�p)

t

+ b

2

(�p)

t�1

+ : : :)((p(1� �))

t=2

+ b

3

(p(1� �))

t=2�1

+ : : :)

where a

1

i

; a

2

i

; a

3

i

; b

1

; b

2

; b

3

| numbers that do not depend on p.

Next, we multiply both parts of this inequality by p

t=2

�

t

and transform the

frations. We have

t=2

X

i=0



2i

�

�

2

1� �

�

i

(1 + a

i

=p+ O(1=p

2

)) �

(1 + maxfa

i

g=p+O(1=p

2

))

t=2

X

i=0



2i

�

�

2

1� �

�

i

�

1

(1� �)

t=2

(1 + b=p+O(1=p

2

))

where a

i

; b do not depend on p. Next,

t=2

X

i=0



2i

�

�

2

1� �

�

i

�

1

(1� �)

t=2

(1 + b=p+O(1=p

2

))

(1 + maxfa

i

g=p+O(1=p

2

))

�

1

(1� �)

t=2

(1 + b

0

=p+O(1=p

2

)):



Pointing in a view that we an take p as large as desired for �xed remained

parameters, we have

t=2

X

i=0



2i

�

�

2

1� �

�

i

�

1

(1� �)

t=2

:

To �nd the sum of 

i

we take � =

p

5�1

2

(the root of the equation

�

2

1��

= 1).

This number is irrational but we an approah it by the sequene of rational

numbers. As a result, we have:

bt=2

X

i=0



2i

�

 

p

5 + 1

2

!

t

:

Therefore, k � log

2

bt=2

P

i=0



2i

� log

2

�

p

5+1

2

�

t

and

t

t+k

�

1

log

2

(

p

5+1)

. ut

6 The sequene of proper matries with

t

k+t

! 0:5902 : : :

In the previous Setion we had demonstrated that for any proper (k

0

; k; p; t)-

matrix the inequality

t

k+t

<

1

log

2

(

p

5+1)

= 0:5902::: holds. Nevertheless, it appears

that the ratio

t

k+t

an approah the value

1

log

2

(

p

5+1)

= 0:5902::: with arbitrary

preision. In this Setion we onstrut proper (k

0

; k; p; t)-matries with ratio

t

k+t

lose to

1

log

2

(

p

5+1)

and k > �k

0

where � <

p

5 log

2

�

p

5+1

2

�

= 1:5523 : : :.

Lemma 4. Suppose that � <

p

5 log

2

�

p

5+1

2

�

. Let

k

0

(t; �) =

$

t

�

log

2

 

p

5 + 1

2

!

+

1

�

log

2

 

p

5 + 1

2

p

5

!

� 1

%

:

Then

0

�

j

t+k

0

(t;�)�1

2

k

k

0

(t; �) + 1

1

A

�

0

�

j

t+k

0

(t;�)+1

2

k

k

0

(t; �) + 3

1

A

(1 + o(1))

and

0

�

j

t+k

0

(t;�)

2

k

k

0

(t; �) + 2

1

A

�

0

�

j

t+k

0

(t;�)+2

2

k

k

0

(t; �) + 4

1

A

(1 + o(1)):

Proof. We solve the inequality

0

�

j

t+k

0

(t;�)�1

2

k

k

0

(t; �) + 1

1

A

�

0

�

j

t+k

0

(t;�)+1

2

k

k

0

(t; �) + 3

1

A

(1)



(the inequality

0

�

j

t+k

0

(t;�)

2

k

k

0

+ 2

1

A

�

0

�

j

t+k

0

(t;�)+2

2

k

k

0

+ 4

1

A

gives the same asymptotis). Using the fatorial representation for binomial o-

eÆients we solve the quadrati inequality for k

0

(t; �) onsidering t as some

parameter. As a result we obtain that the inequality (1) holds if

k

0

(t; �) �

1

p

5

t(1 + o(1)): (2)

But by the hypothesis of Lemma we have that k

0

(t; �) is asymptotially

t

�

log

2

�

p

5+1

2

�

and � <

p

5 log

2

�

p

5+1

2

�

. It follows the same ondition (2) on k

0

(t; �) that om-

pletes the proof. ut

Theorem 3. For any �, 0 < � <

p

5 log

2

�

p

5+1

2

�

= 1:5523 : : :, and any " > 0

there exists a proper (k

0

; k; p; t)-matrix suh that

t

t+k

<

1

log

2

(

p

5+1)

+ " and k >

�k

0

.

Proof. If this Theorem holds for some �, 0 < � <

p

5 log

2

�

p

5+1

2

�

, then,

obviously, this Theorem holds for any �

0

, 0 < �

0

< �. Therefore we an assume

that � > log

2

�

p

5+1

2

�

= 0:6942 : : :

At �rst, we onstrut reursively the sequene of matries A

t

, t = 1; 2; : : :,

that satisfy properties (i) and (ii) of proper matries but the number of rows in

these matries is not neessary power of two. We denote by s(t) the number of

rows in the matrix A

t

obtained after tth step.

At tth step we onstrut the matrix A

t

suh that the sum of ones and twos in

any row of A

t

does not exeed t and for any two di�erent rows of A

t

there exists

a olumn suh that one of these two rows has one in this olumn, and the seond

row has two in this olumn. We suppose that the matries A

t�1

and A

t�2

were

onstruted at the previous steps. We suppose that the matries A

t�1

and A

t�2

have the same number of olumns (in opposite ase we add to one of them the

de�ient number of all-� olumns). Next, we add to eah of these matries from

the right side an additional olumn: the all-ones olumn to the matrix A

t�1

and

the all-twos olumn to the matrix A

t�2

. Write the obtained matries one over

another. We say the resulting matrix is the matrix A

t

, A

t

=

 

A

t�1

�!

1

T

A

t�2

�!

2

T

!

.

The matrix A

t

is the matrix of desired form suh that the sum of ones and

twos in eah row of A

t

does not exeed t. The number of rows in A

t

is equal to

s(t) = s(t� 2) + s(t� 1):

Thus, s(t) forms the Fibonai sequene and s(t) is asymptotially

1

p

5

�

�

p

5+1

2

�

�

�

p

5+1

2

�

t

if we take the matries A

1

= ( 1 ) and A

2

=

�

1

2

�

as initial. In this



onstrution the matrix A

t

ontains the rows with the number of ones greater

than k

0

(t; �) =

j

t

�

log

2

�

p

5+1

2

�

+

1

�

log

2

�

p

5+1

2

p

5

�

� 1

k

. Calulate the ratio of the

number of rows that ontain more than k

0

ones to the number of all rows in A

t

(i. e. s(t)). Denote by l

j

(t) the number of rows with exatly j ones in the matrix

A

t

. By onstrution l

0

(t) = l

0

(t � 2), l

j

(t) = l

j

(t � 2) + l

j�1

(t � 1) for j � 1.

These reursive relations follow the next diret formula:

l

j

(t) =

 

t+j�2

2

j

!

l

0

(2) +

 

t+j�4

2

j � 1

!

l

1

(1) + a

2

l

2

+ : : :+ a

j

l

j

if (t+ j) even and

l

j

(t) =

 

t+j�3

2

j

!

l

0

(1) +

 

t+j�3

2

j � 1

!

l

1

(2) + a

2

l

2

+ : : :+ a

j

l

j

if (t+ j) odd where a

2

; : : : ; a

j

| some numbers and arguments of l

2

; : : : ; l

j

are 1

or 2 (it depends on the parity). For initial matries A

1

and A

2

introdued above

we have l

0

(1) = 0, l

0

(2) = 1, l

1

(1) = l

1

(2) = 1, l

j

(1) = l

j

(2) = 0 for j � 2.

Therefore,

l

j

(t) =

 

t+j�2

2

j

!

+

 

t+j�4

2

j � 1

!

if (t+ j) even and

l

j

(t) =

 

t+j�3

2

j � 1

!

if (t+ j) odd.

It follows

t

P

j=k

0

(t;�)+1

l

j

(t)

s(t)

�

t

P

j=k

0

(t;�)+1

��

d

t+j�2

2

e

j

�

� 1 +

�

d

t+j�3

2

e

j�1

�

� 1

�

onst �

�

p

5+1

2

�

t

�

(by Lemma 4 for k

0

(t; �) =

j

t

�

log

2

�

p

5+1

2

�

+

1

�

log

2

�

p

5+1

2

p

5

�

� 1

k

)

onst

(t� k

0

(t; �))

�

�

t+k

0

(t;�)�1

2

�

k

0

(t;�)+1

�

�

p

5+1

2

�

t

�

(denoting v = log

2

�

p

5+1

2

�

and using the Stirling formula),

� onst � t

r

1

2

t

(

1+

v

�

)

tv

�

�

1

2

t

(

1�

u

�

)

(

1

2

t

(

1+

v

�

))

1

2

t

(

1+

v

�

)

(

tv

�

)

tv

�

(

1

2

t

(

1�

v

�

))

1

2

t

(

1�

v

�

)

�

p

5+1

2

�

t

=



onst �

p

t

�

1 +

v

�

�

1

2

t

(

1+

v

�

)

�

2v

�

�

tv

�

�

1�

v

�

�

1

2

t

(

1�

v

�

)

�

p

5+1

2

�

t

=

onst �

p

t

0

B

�

�

1 +

v

�

�

1

2

(

1+

v

�

)

�

p

5+1

2

�

1+

1

�

�

v

�

�

v

�

�

1�

v

�

�

1

2

(

1�

v

�

)

1

C

A

t

:

It is easy to hek that the expression in the parentheses inreases monoton-

ially on � for log

2

�

p

5+1

2

�

= 0:6942 : : : < � �

p

5 log

2

�

p

5+1

2

�

= 1:5523 : : :

and takes the value 1 for � =

p

5 log

2

�

p

5+1

2

�

. Therefore this expression takes

values less than 1 for log

2

�

p

5+1

2

�

< � <

p

5 log

2

�

p

5+1

2

�

. It follows that

t

P

j=k

0

(t;�)+1

l

j

(t)

s(t)

t!1

�! 0 for log

2

�

p

5+1

2

�

< � <

p

5 log

2

�

p

5+1

2

�

.

Thus, in the matrix A

t

the number of rows that ontain more than k

0

(t; �)

ones is asymptotially small with respet to the total number of rows. We

eliminate from the matrix A

t

all rows that ontain more than k

0

(t; �) ones.

For suÆiently large t the number of suh rows is smaller than 2

k(t)

where

k(t) = blog

2

s(t) � 1; therefore the obtained matrix will ontain at least 2

k(t)

rows. Now the matrix satis�es the property (iii) of a proper matrix (see De�nition

1) for k

0

= k

0

(t; �), k = k(t). Next, we eliminate if neessary some rows more to

obtain the matrix with exatly 2

k(t)

rows. As a result, we have onstruted the

proper (k

0

(t; �); k(t); p; t)-matrix for some p. Thus, for the sequene of proper

(k

0

(t; �); k(t); p; t)-matries onstruted above we have

t

t+ k(t)

=

t

t+ bt log

2

�

p

5+1

2

�

+ log

2

�

p

5+1

2

p

5

�

� 1

t!1

�!

1

log

2

(

p

5 + 1)

and

k(t)

k

0

(t; �)

=

j

t log

2

�

p

5+1

2

�

+ log

2

�

p

5+1

2

p

5

�

� 1

k

j

t

�

log

2

�

p

5+1

2

�

+

1

�

log

2

�

p

5+1

2

p

5

�

� 1

k

t!1

�! �;

moreover, if � > 1 then

k(t)

k

0

(t;�)

> � for the in�nite sequene of t.

The onlusion of the Theorem follows.

ut

Remark. Note that in the onstrution in the proof of Theorem 3 in fat we

have p = 1 for t = 1 and p = t� 1 for t > 1.

7 Construtions of new reord highly nonlinear resilient

Boolean funtions

In this Setion by means of proper matries onstruted in the previous Setion

we onstrut m-resilient n-variable funtions with maximum possible nonlinear-



ity 2

n�1

� 2

m+1

for m =

1

log

2

(

p

5+1

)

n + O (log

2

n) = 0:5902 : : : n + O (log

2

n).

Until now suh funtions with maximum possible nonlinearity 2

n�1

�2

m+1

were

known only for m � 0:6n� 1 [11℄ and some small set of onrete parameters n

and m.

Lemma 5. For any positive integer k there exists a proper (1; k; 2

k

+1; 2

k

+1)-

matrix.

Proof. We form the quadrati matrix B of order 2

k

+ 1 writing in its rows

all possible yli shifts of the row (1 22 : : : 2

| {z }

2

k�1

� � : : : �

| {z }

2

k�1

): It is easy to hek that

in this matrix for any two di�erent rows there exists a olumn suh that one

of these two rows has one in this olumn, and the seond row has two in this

olumn. The sum of numbers in eah row of B is exatly 2

k

+1. Eliminating any

row from B we obtain a proper (1; k; 2

k

+ 1; 2

k

+ 1)-matrix B

1;k;2

k

+1;2

k

+1

. ut

Lemma 6. For given positive integer k and in�nite sequene of positive integer

n there exist proper S

n;m;k;1

-systems of Boolean funtions for some m.

Proof. By Lemma 1 there exists an S

2;�1;2;1

-system of Boolean funtions.

Using Lemma 5 we apply

S

2;�1;2;1

(T

1;1;1;2

)

h

T

1;k;2

k

+1;2

k

+1

:

By Theorem 1 this onstrution is valid if 2 + 3h � 2

k

+ 1. Therefore for all h

provided h �

2

k

�1

3

we onstrut S

2

k

+k+3h+3;2

k

+2h;k;1

-system of Boolean fun-

tions. ut

Note that the onstrutions in Lemmas 5 and 6 are obviously nonoptimal

from the pratial point of view but more easy for the proof.

Theorem 4. It is possible to onstrutm-resilient n-variable funtion with max-

imum possible nonlinearity 2

n�1

� 2

m+1

for m =

1

log

2

(

p

5+1

)

n+O (log

2

n).

Proof. We use proper (k

0

(t; �); k(t); p; t)-matries onstruted in the proof

of Theorem 3. Note that by Remark after the proof of Theorem 3 we have

p = t � 1 for t � 2. We hoose 1 < � <

p

5 log

2

�

p

5+1

2

�

= 1:5523 : : : and

form the sequene t

0

, t

1

, t

2

; : : : reursively. By Theorem 3 for given � beginning

with suÆiently large t the matries onstruted in the proof of Theorem 3 are

proper (k

0

(t; �); k(t); p; t)-matries. We denote this suÆiently large t by t

0

(we

an assume that t

0

� 2). Suppose that t

i

and k(t

i

) are already de�ned positive

integers. Then we de�ne t

i+1

as the maximal positive integer suh that

k

0

(t

i+1

; �) =

$

t

i+1

�

log

2

 

p

5 + 1

2

!

+

1

�

log

2

 

p

5 + 1

2

p

5

!

� 1

%

= k(t

i

): (3)



It is easy to see that k

0

(t; �) is nondereasing on t and k

0

(t+1; �)�k

0

(t; �) � 1,

therefore this de�nition of t

i+1

is orret. Finally, we put

k(t

i+1

) =

$

t

i+1

log

2

 

p

5 + 1

2

!

+ log

2

 

p

5 + 1

2

p

5

!

� 1

%

: (4)

The reursive de�nition is ompleted.

For de�ned t

0

by Lemma 6 we onstrut S

n

0

;m

0

;k(t

0

);1

-system of Boolean

funtions suh that n

0

� t

1

� 2. After this we de�ne reursively:

S

n

i

;m

i

;k(t

i

);1

T

k(t

i

);k(t

i+1

);t

i+1

�1;t

i+1

= S

n

i+1

;m

i+1

;k(t

i+1

);1

; i = 0; 1; 2; : : :

Here n

i+1

= n

i

+ k(t

i+1

) + t

i+1

, m

i+1

= m

i

+ t

i+1

.

By Theorem 1 this onstrution is valid if n

i

� 2p

i+1

�t

i+1

= t

i+1

�2 for all i.

We prove this statement by indution on i. We have n

0

� t

1

�2 by onstrution.

Next, suppose that n

i

� t

i+1

� 2. Then using (3) and (4) we have

n

i+1

� t

i+2

+ 2 = n

i

+ k(t

i+1

) + t

i+1

� t

i+2

+ 2 � k(t

i+1

) + 2t

i+1

� t

i+2

�

t

i+1

log

2

 

p

5 + 1

2

!

(2� �) +

p

5

 

log

2

 

p

5 + 1

2

!

� log

2

 

p

5 + 1

2

p

5

!

� 1

!

+

log

2

�

p

5+1

2

p

5

�

log

2

�

p

5+1

2

�

� t

i+1

� 0:3107 : : :� 0:3123 : : : > 0

sine t

i+1

� 2. Thus, we use the Theorem 1 orretly.

After q steps we have n

q

= n

0

+

q

P

i=1

(k(t

i

) + t

i

), m

q

= m

0

+

q

P

i=1

t

i

. From (4)

we have

1

log

2

�

p

5+1

2

�

 

k(t

i

)� log

2

 

p

5 + 1

2

p

5

!!

< t

i

�

1

log

2

�

p

5+1

2

�

 

k(t

i

)� log

2

 

p

5 + 1

2

p

5

!

+ 1

!

:

It follows that

m

q

n

q

=

m

0

+

q

P

i=1

t

i

n

0

+

q

P

i=1

(k(t

i

) + t

i

)

=

1

log

2

�p

5+1

2

�

q

P

i=1

k(t

i

) +O(q)

�

1 +

1

log

2

�
p

5+1

2

�

�

q

P

i=1

k(t

i

) +O(q)

=

1

log

2

�
p

5 + 1

�

+O

�

q

n

q

�

:

It is easy to see that q = O(log

2

n

q

). Therefore, m

q

=

1

log

2

(

p

5+1

)

n

q

+O(log

2

n

q

):

ut



8 Construtions of proper matries by means of yli

matries

The onstrution of proper matries in Setion 6 gives the best limit value for

the ratio

t

t+k

but in general does not give the best possible matries for onrete

parameters. In this Setion we disuss the method that probably gives the best

possible in some sene onrete proper matries.

We denote by S(t) the maximum possible number of rows in matries that

satisfy properties (i) and (ii) of proper (t; k; p; t)-matries but the number of

rows in these matries is not neessary power of two. By the proof of Theorem

2 we have S(t) �

�

p

5+1

2

�

t

. Below we show that S(t) =

�

�

p

5+1

2

�

t

�

at least for

1 � t � 10. We searh desired matries for odd t in the lass of matries with

p = t that ontain with eah its row also all possible yli shifts of this row.

Theorem 5. S(t) =

�

�

p

5+1

2

�

t

�

for 1 � t � 10.

Proof. For t = 1; 3; 5; 7; 9 we give the desired matries M

t

diretly. Below we

give in the matries only one row from eah lass of yli shifts.

M

1

= f 1 g ; M

3

=

�

2 1 �

1 1 1

�

; M

5

=

8

<

:

1 2 2 � �

� 1 2 1 1

1 1 1 1 1

9

=

;

;

M

7

=

8

>

>

>

<

>

>

>

:

1 2 2 2 � � �

1 2 1 � 1 2 �

1 1 � � 1 2 2

2 1 1 1 1 � 1

1 1 1 1 1 1 1

9

>

>

>

=

>

>

>

;

; M

9

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1 2 2 2 2 � � � �

1 1 � 2 � 1 2 2 �

1 2 1 � � 1 2 2 �

1 2 1 2 � � 1 � 2

1 2 � 1 2 � 1 2 �

2 � � 1 1 2 1 1 1

2 2 � 1 1 1 1 � 1

� 2 1 2 1 1 1 � 1

2 1 1 � 1 1 1 1 1

1 1 1 1 1 1 1 1 1

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

:

For t = 2 we put M

2

=

�

2 �

1 1

�

(here we do not use yli shifts). Thus,

S(1) = 1, S(2) = 2, S(3) = 4, S(5) = 11, S(7) = 29, S(9) = 76. If t is even,

t > 2, then

�

�

p

5+1

2

�

t

�

=

�

�

p

5+1

2

�

t�1

�

+

�

�

p

5+1

2

�

t�2

�

. Therefore if t is even,

t > 2, and desired matries M

t�2

and M

t�1

are onstruted already then the

matrix M

t

an be onstruted in the form

M

t

=

 

M

t�1

�!

1

T

M

t�2

�!

�

T

�!

2

T

!

:

Thus, S(4) = 6, S(6) = 17, S(8) = 46, S(10) = 122. ut



Hypothesis. S(t) =

�

�

p

5+1

2

�

t

�

.

Note that if k

0

< t then a proper (k

0

; k; p; t)-matrix an be obtained from

M

t

by the anelling all rows where the number of ones is greater than k

0

and

some rows up to the nearest power of two.

Using the matries M

9

and M

10

as initial in the reursive onstrution of

Theorem 3 we have onstruted the 172-variable 102-resilient funtion with max-

imum possible nonlinearity as

S

2;�1;2;1

T

2;2;2;4

T

2;4;7;8

T

4;5;7;8

T

5;6;9;9

T

6;9;14;14

T

9;10;15;15

T

10;11;16;16

T

11;11;16;16

T

11;9;13;13

= S

172;102;9;1

:

These are the smallest parameters that we have found improving the bound in

[11℄.
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