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Abstra
t. In this paper we 
onsider matri
es of spe
ial form introdu
ed

in [11℄ and used for the 
onstru
ting of resilient fun
tions with 
rypto-

graphi
ally optimal parameters. For su
h matri
es we establish lower

bound

1

log

2

(

p

5+1)

= 0:5902::: for the important ratio

t

t+k

of its parame-

ters and point out that there exists a sequen
e of matri
es for whi
h the

limit of ratio of these parameters is equal to lower bound. By means of

these matri
es we 
onstru
t m-resilient n-variable fun
tions with maxi-

mum possible nonlinearity 2

n�1

�2

m+1

for m = 0:5902 : : : n+O (log

2

n).

This result supersedes the previous re
ord.
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1 Introdu
tion

Di�erent types of 
iphers use Boolean fun
tions. So, LFSR based stream 
iphers

use Boolean fun
tions as a nonlinear 
ombiner or a nonlinear �lter, blo
k 
iphers

use Boolean fun
tions in substitution boxes and so on. Boolean fun
tions used

in 
iphers must satisfy some spe
i�
 properties to resist di�erent atta
ks. One

of the most important desired properties of Boolean fun
tions in LFSR based

stream 
iphers is 
orrelation immunity introdu
ed by Siegenthaler [9℄. Another

important properties are nonlinearity, algebrai
 degree and so on.

The most usual theoreti
 motivation for the investigation of highly nonlinear

resilient Boolean fun
tions is the using of su
h fun
tions as nonlinear 
ombiners

in stream 
iphers. But from the pra
ti
al point of view the number of variables

in su
h system 
an not be too big (in opposite 
ase the key length will be too

long). It is ne
essary to note that all important fun
tions with small number

of variables are found already by exhaustive sear
h. At the same time another

important pra
ti
al type of stream 
iphers uses Boolean fun
tions as nonlinear

�lters. Here, in general, it is possible to use the fun
tions with big number of
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variables. But the main problems here is that e�e
tive (from implementation

point of view) 
onstru
tions of su
h fun
tions 
an not be found by exhaustive

sear
h, and also it was pointed out [4℄ that stream 
ipher of su
h type 
an be

transformed into an equivalent (in some sen
e) with worse resilien
y but the

same nonlinearity. It emphasizes the importan
e of dire
t e�e
tive 
onstru
tions

of Boolean fun
tions with big number of variables and optimal 
ombination of

resilien
y and nonlinearity.

Correlation immunity (or resilien
y) is the property important in 
ryptogra-

phy not only in stream 
iphers. This is an important property if we want that

the knowledge of some spe
i�ed number of input bits does not give a (statisti
al)

information about the output bit. In this respe
t su
h fun
tions are 
onsidered

in [3℄, [2℄ and other works.

It was proved independently in [8℄, [10℄ and [12℄ that the nonlinearity of n-

variable m-resilient fun
tion does not ex
eed 2

n�1

� 2

m+1

for m � n� 1. It was

proved that if this bound is a
hieved thenm > 0:5n�2. In [10℄ it was proved that

if this bound is a
hieved then the algebrai
 degree of the fun
tion is maximum

possible too (i. e. a
hieves Siegenthaler's Inequality) and equal to n � m � 1.

In [10℄, [6℄ and [11℄ e�e
tive 
onstru
tions of m-resilient n-variable fun
tions

with maximum possible nonlinearity 2

n�1

� 2

m+1

for m �

2n�7

3

, m �

2n�9

3

and m � 0:6n� 1 
orrespondently were given. To obtain this result in [11℄ the


on
ept of a proper (k

0

; k; p; t)-matrix were introdu
ed. In [11℄ it was pointed out

that the mostly important to �nd a proper (k; k; p; t)-matrix where the ratio

t

t+k

is as small as possible. In [11℄ it was given a proper (4; 4; 6; 6)-matrix for whi
h

this ratio is 0:6. At the same time the lowest possible value of the ratio

t

t+k

for proper matri
es was formulated in [11℄ as the open problem. In the present

paper we investigate the problem of the lowest possible value of the ratio

t

t+k

for

proper matri
es and establish that this ratio 
an not be less than

1

log

2

(

p

5+1)

=

0:5902::: At the same time we 
onstru
t proper matri
es that approa
h this

lower bound with arbitrary pre
ision. By means of these matri
es we 
onstru
t

m-resilient n-variable fun
tions with maximum possible nonlinearity 2

n�1

�2

m+1

form = 0:5902 : : : n+O (log

2

n). Note that our nonexisten
e results demonstrate

that only proper matri
es te
hnique is not suÆ
ient to 
onstru
t m-resilient n-

variable fun
tions with maximum possible nonlinearity 2

n�1

� 2

m+1

for m <

0:5902 : : : n + O (1). At the same time it is quite possible that su
h fun
tions

there exist for any m, n provide 0:5n � 2 < m � n � 2. At least an opposite

result have not proved. Thus, the 
onstru
ting of su
h fun
tions demands new

methods and new te
hniques.

The rest of this paper is organized as follows. In Se
tion 2 we give preliminary


on
epts and notions. In Se
tion 3 we formulate ne
essary 
on
epts and results

from the previous work [11℄ on proper matri
es. In Se
tion 4 we give geometri
al

interpretation of proper matri
es. In Se
tion 5 we prove that there does not exist

a proper (k

0

; k; p; t)-matrix if

t

k+t

<

1

log

2

(

p

5+1)

= 0:5902::: In Se
tion 6 we 
on-

stru
t proper (k

0

; k; p; t)-matri
es with ratio

t

k+t


lose to

1

log

2

(

p

5+1)

and k > �k

0

where � <

p

5 log

2

�

p

5+1

2

�

= 1:5523 : : :. In Se
tion 7 by means of proper matri-




es 
onstru
ted in Se
tion 6 we 
onstru
t m-resilient n-variable fun
tions with

maximum possible nonlinearity 2

n�1

�2

m+1

for m =

1

log

2

(

p

5+1

)

n+O (log

2

n) =

0:5902 : : : n+O (log

2

n). In Se
tion 8 we dis
uss the method that probably gives

the best possible in some sen
e 
on
rete proper matri
es.

2 Preliminary 
on
epts and notions

We 
onsider V

n

, the ve
tor spa
e of n tuples of elements from GF (2). A Boolean

fun
tion is a fun
tion from V

n

to GF (2). The weight wt(f) of a fun
tion f on

V

n

is the number of ve
tors x on V

n

su
h that f(x) = 1. A fun
tion f is said to

be balan
ed if wt(f) = wt(f � 1). Obviously, if a fun
tion f on V

n

is balan
ed

then wt(f) = 2

n�1

. A subfun
tion of the Boolean fun
tion f is a fun
tion f

0

obtained by substitution some 
onstants for some variables in f . If a variable x

i

is not substituted by 
onstant then x

i

is 
alled a free variable for f

0

.

The Hamming distan
e d(x

0

; x

00

) between two ve
tors x

0

and x

00

is the number

of 
omponents where ve
tors x

0

and x

00

di�er. For two Boolean fun
tions f

1

and

f

2

on V

n

, we de�ne the distan
e between f

1

and f

2

by d(f

1

; f

2

) = #fx 2

V

n

jf

1

(x) 6= f

2

(x)g. The minimum distan
e between f and the set of all aÆne

fun
tions (i. e. fun
tions of the form f(x) = 


0

�

n

L

i=1




i

x

i

) is 
alled the nonlinearity

of f and denoted by nl(f).

A Boolean fun
tion f on V

n

is said to be 
orrelation-immune of order m,

with 1 � m � n, if wt(f

0

) = wt(f)=2

m

for any its subfun
tion f

0

of n � m

variables. This 
on
ept was introdu
ed by Siegenthaler [9℄. A balan
ed mth

order 
orrelation immune fun
tion is 
alled an m-resilient fun
tion. From this

point of view it is possible to 
onsider formally any balan
ed Boolean fun
tion as

0-resilient (this 
onvention is a

epted in [1℄, [7℄, [5℄) and an arbitrary Boolean

fun
tion as (�1)-resilient (this 
onvention is a

epted in [10℄ and [11℄). The


on
ept of an m-resilient fun
tion was introdu
ed in [3℄.

3 Results of previous work on proper matri
es

In [11℄ for the 
onstru
ting of new m-resilient n-variable Boolean fun
tions with

maximum possible nonlinearity 2

n�1

� 2

m+1

the 
on
ept of a proper matrix was

introdu
ed.

De�nition 1. [11℄ Let B = (b

ij

) be (2

k

� p) matrix of 2

k

rows and p 
olumns

with entries from the set f1; 2; �g. Let k

0

and t be positive integers. We assume

that

(i) for every two rows i

1

and i

2

there exists a 
olumn j su
h that b

i

1

j

= 1,

b

i

2

j

= 2 or b

i

1

j

= 2, b

i

2

j

= 1.

(ii) for every row i the inequality

p

P

j=1

b

ij

� t holds (a sign � does not give an

in
uen
e to these sums).



(iii) in every row the number of ones does not ex
eed k

0

.

If the matrix B satis�es all properties (i), (ii), (iii) we say that B is a proper

(k

0

; k; p; t)-matrix.

The proper (k

0

, k, p, t)-matrix is denoted in [11℄ by B

k

0

;k;p;t

. The next

examples of proper matri
es are given in [11℄.

B

1;0;1;1

= ( 1 ) ; B

1;1;1;2

=

�

1

2

�

; B

3;2;3;3

=

0

B

�

2 1 �

� 2 1

1 � 2

1 1 1

1

C

A

;

B

3;3;4;5

=

0

B

B

B

B

B

B

B

B

B

�

� 1 2 2

2 � 1 2

2 2 � 1

1 2 2 �

2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2

1

C

C

C

C

C

C

C

C

C

A

; B

4;4;6;6

=

0

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

B

�

2 2 2 � � �

1 2 � 1 2 �

1 2 � � 1 2

1 2 � 2 � 1

� 1 2 1 2 �

� 1 2 � 1 2

� 1 2 2 � 1

2 � 1 1 2 �

2 � 1 � 1 2

2 � 1 2 � 1

2 � 1 1 1 1

1 2 � 1 1 1

� 1 2 1 1 1

1 1 1 2 � 1

1 1 1 1 2 �

1 1 1 � 1 2

1

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

A

:

The next de�nitions were given in [11℄.

De�nition 2. A Boolean fun
tion f = f(x

1

; : : : ; x

n

) depends on a pair of its

variables (x

i

; x

j

) quasilinearly if f(x

0

) 6= f(x

00

) for any two ve
tors x

0

and x

00

of

length n that di�er only in ith and jth 
omponents. A pair (x

i

; x

j

) in this 
ase

is 
alled a pair of quasilinear variables in f .

De�nition 3. Let F be a set of Boolean fun
tions su
h that for every s, 0 �

s � k, the set F 
ontains an (m+s)-resilient fun
tion on V

n+s

with nonlinearity

at least 2

s

(2

n�1

� 2

m+�

) (� is not ne
essary integer). Moreover, we assume that

ea
h f

s


ontains s disjoint pairs of quasilinear variables. Then we say that F is

a S

n;m;k;�

-system of Boolean fun
tions.

Remark. [11℄ To provide an existen
e of a S

n;m;k;�

-system of Boolean fun
-

tions it is suÆ
ient to have only one (m+ k)-resilient fun
tion f on V

n+k

with

nonlinearity at least 2

k

(2

n�1

�2

m+�

) that 
ontains k disjoint pairs of quasilinear

variables. All other ne
essary fun
tions of S

n;m;k;�

-system 
an be obtained from

f by substitutions of 
onstants for the variables from di�erent disjoint pairs of

quasilinear variables.

The next theorem was proved in [11℄.



Theorem 1. [11℄ Suppose that there exists an S

n;m;k

0

;�

-system of Boolean fun
-

tions F and there exists a proper (k

0

; k; p; t)-matrix B, n � 2p� t. Then there

exists an S

n+k+t;m+t;k;�

-system of Boolean fun
tions.

An appli
ation of the 
onstru
tion given in Theorem 1 is denoted in [11℄ by

S

n;m;k

0

;�

T

k

0

;k;p;t

= S

n+k+t;m+t;k;�

:

Lemma 1. [11℄ There exists an S

2;�1;2;1

-system of Boolean fun
tions.

Indeed, the fun
tions f

0

0

= x

1

x

2

, f

0

1

= (x

1

� x

2

)x

3

� x

1

, f

0

2

= (x

1

� x

2

)(x

3

�

x

4

)�x

1

�x

3

forms the S

2;�1;2;1

-system of Boolean fun
tions, i. e. for i = 0; 1; 2 the

system 
ontains (2+i)-variable (�1+i)-resilient Boolean fun
tion of nonlinearity

2

1+i

� 2

i

.

The results of [11℄ demonstrate that if there exists a proper (k; k; p; t)-matrix

then there exists a 
onstant C

0

su
h that for any n andm providedm �

t

k+t

n+C

0

there exists an m-resilient n-variable Boolean fun
tion with the nonlinearity

2

n�1

� 2

m+1

. Thus, the important problem is to 
onstru
t a proper (k; k; p; t)-

matrix with ratio

t

k+t

as small as possible. In [11℄ it was given an example of a

proper (4; 4; 6; 6)-matrix where the value

t

k+t

is equal to 0:6.

In this work we study the problem of the existen
e of proper (k

0

; k; p; t)-

matri
es.

4 Geometri
al interpretation

In this paper we 
onsider a Boolean 
ube B

p

as the set of all ve
tors (x

1

; : : : ; x

p

)

where x

i

2 f1; 2g. The lth level of the Boolean 
ube B

p

is the set of all ve
tors

of B

p

with exa
tly l ones. The 
ardinality of lth level of B

p

is

�

p

l

�

.

A proper (k

0

; k; p; t)-matrix B 
an be interpreted [11℄ as a 
olle
tion of 2

k

disjoint sub
ubes in Boolean 
ube f1; 2g

p

. Indeed, a row of B 
an be interpreted

as a sub
ube where the 
omponents with � are free whereas the 
omponents

with 1 or 2 are substituted by 
orrespondent 
onstants. The next illustration at

the example of a proper (3; 3; 4; 5)-matrix B is given in [11℄.

row of B points of a sub
ube

�122 f(1; 1; 2; 2); (2; 1; 2; 2)g

2 � 12 f(2; 1; 1; 2); (2; 2; 1; 2)g

22 � 1 f(2; 2; 1; 1); (2; 2; 2; 1)g

122� f(1; 2; 2; 1); (1; 2; 2; 2)g

2111 f(2; 1; 1; 1)g

1211 f(1; 2; 1; 1)g

1121 f(1; 1; 2; 1)g

1112 f(1; 1; 1; 2)g

The property (i) of a proper matrix provides that sub
ubes are disjoint. The

properties (ii) and (iii) 
hara
terize the lo
ation of sub
ubes in a 
ube and the

size of sub
ubes.



5 Lower bound for the value

t

k+t

In this Se
tion we prove that there does not exist a proper (k

0

; k; p; t)-matrix if

t

k + t

<

1

log

2

(

p

5 + 1)

= 0:5902:::

Lemma 2. If there exists a proper (k

0

; k; p; t)-matrix B then for any p

0

> p

there exists a proper (k

0

; k; p

0

; t)-matrix.

Proof. We obtain a proper (k

0

; k; p

0

; t)-matrix simply adding p

0

� p new all-�


olumns to B. ut

The next lemma is obvious.

Lemma 3. If there does not exist a proper (k

0

; k; p; t)-matrix B then for any

k

0

0

< k

0

there does not exist a proper (k

0

0

; k; p; t)-matrix.

Theorem 2. There does not exist a proper (k

0

; k; p; t)-matrix for

t

k + t

<

1

log

2

(

p

5 + 1)

= 0:5902:::

Proof.

By Lemma 3 it is suÆ
ient to prove this theorem for k

0

= t.

Let B be an arbitrary proper (t; k; p; t)-matrix. We 
an 
onsider B as the

set of disjoint sub
ubes of the Boolean 
ube B

p

if we 
onsider ea
h row of B as

a sub
ube. These sub
ubes are disjoint by item (i) in de�nition 1 of a proper

matrix.

If t is even then we repla
e in rows with odd number of ones some asterisk

by one (if there are not asterisks in a row then we add preliminary all-� 
olumn

to the matrix B, after this pro
edure the parameter p will in
rease but this is

not important for us). If t is odd we do the same for all rows with even number

of ones. Now for even t all rows 
ontain even number of ones and for odd t all

rows 
ontain odd number of ones. If the matrix B 
ontains rows where the sum

of ones and twos is less than t�1 then we repla
e asterisks in these rows by twos

(adding if ne
essary new all-� 
olumns to B) until the sum of ones and twos will

be
ome greater than t� 1, i. e. t.

Thus, without loss of generality we 
an assume that the sum of ones and

twos in any row of B is exa
tly t.

Consider a sub
ube de�ned by a row of B with exa
tly s twos and exa
tly

r ones. Then lth level of Boolean 
ube B

p


ontains exa
tly

�

p�s�r

l�r

�

ve
tors of

this sub
ube if l = r; : : : ; p� s, and does not 
ontain su
h ve
tors for another l.

Suppose that t is even (for odd t the reasoning is analogous). Then lth level of

Boolean 
ube 
ontains

�

p�t=2

l

�

ve
tors from ea
h sub
ube de�ned by the rows

of B with exa
tly t=2 twos and exa
tly 0 ones,

�

p�t=2�1

l�2

�

ve
tors from ea
h

sub
ube de�ned by the rows of B with exa
tly t=2� 1 twos and exa
tly 2 ones



and so on. Denote the number of rows of B with exa
tly i ones by 


i

. Then for

any l = 0; 1; : : : ; p the next inequality holds:

t=2

X

i=0




2i

�

p� t=2� i

l � 2i

�

�

�

p

l

�

:

It follows

t=2

X

i=0




2i

(p� t=2� i)!

(l � 2i)!(p� t=2� l + i)!

�

p!

l!(p� l)!

:

Put l = � � p. Then

t=2

X

i=0




2i

(p� t=2� i) : : : (p� t=2� t=2 + 1)

(�p� 2i) : : : (�p� t+ 1)(p(1� �) � t=2 + 1) : : : (p(1� �)� t=2 + i)

�

p(p� 1) : : : (p� t=2� t=2 + 1)

�p(�p� 1) : : : (�p� t+ 1)(p(1� �)� t=2 + 1) : : : (p(1� �)� 1)(p(1� �))

:

Note that adding new all-� 
olumns to B we 
an obtain a proper (t; k; p

0

; t)-

matrix for any p

0

> p. Thus, if there does not exist a proper (t; k; p

0

; t)-matrix

for any p

0

> p then there does not exist a proper (t; k; p; t)-matrix B. Therefore

below we 
an suppose p as large as ne
essary. Removing the parentheses we have

t=2

X

i=0




2i

p

t=2�i

+ a

1

i

p

t=2�i�1

+ : : :

((�p)

t�2i

+ a

2

i

(�p)

t�2i�1

+ : : :)(((1� �)p)

i

+ a

3

i

((1� �)p)

i�1

+ : : :)

�

p

t

+ b

1

p

t�1

+ : : :

((�p)

t

+ b

2

(�p)

t�1

+ : : :)((p(1� �))

t=2

+ b

3

(p(1� �))

t=2�1

+ : : :)

where a

1

i

; a

2

i

; a

3

i

; b

1

; b

2

; b

3

| numbers that do not depend on p.

Next, we multiply both parts of this inequality by p

t=2

�

t

and transform the

fra
tions. We have

t=2

X

i=0




2i

�

�

2

1� �

�

i

(1 + a

i

=p+ O(1=p

2

)) �

(1 + maxfa

i

g=p+O(1=p

2

))

t=2

X

i=0




2i

�

�

2

1� �

�

i

�

1

(1� �)

t=2

(1 + b=p+O(1=p

2

))

where a

i

; b do not depend on p. Next,

t=2

X

i=0




2i

�

�

2

1� �

�

i

�

1

(1� �)

t=2

(1 + b=p+O(1=p

2

))

(1 + maxfa

i

g=p+O(1=p

2

))

�

1

(1� �)

t=2

(1 + b

0

=p+O(1=p

2

)):



Pointing in a view that we 
an take p as large as desired for �xed remained

parameters, we have

t=2

X

i=0




2i

�

�

2

1� �

�

i

�

1

(1� �)

t=2

:

To �nd the sum of 


i

we take � =

p

5�1

2

(the root of the equation

�

2

1��

= 1).

This number is irrational but we 
an approa
h it by the sequen
e of rational

numbers. As a result, we have:

bt=2


X

i=0




2i

�

 

p

5 + 1

2

!

t

:

Therefore, k � log

2

bt=2


P

i=0




2i

� log

2

�

p

5+1

2

�

t

and

t

t+k

�

1

log

2

(

p

5+1)

. ut

6 The sequen
e of proper matri
es with

t

k+t

! 0:5902 : : :

In the previous Se
tion we had demonstrated that for any proper (k

0

; k; p; t)-

matrix the inequality

t

k+t

<

1

log

2

(

p

5+1)

= 0:5902::: holds. Nevertheless, it appears

that the ratio

t

k+t


an approa
h the value

1

log

2

(

p

5+1)

= 0:5902::: with arbitrary

pre
ision. In this Se
tion we 
onstru
t proper (k

0

; k; p; t)-matri
es with ratio

t

k+t


lose to

1

log

2

(

p

5+1)

and k > �k

0

where � <

p

5 log

2

�

p

5+1

2

�

= 1:5523 : : :.

Lemma 4. Suppose that � <

p

5 log

2

�

p

5+1

2

�

. Let

k

0

(t; �) =

$

t

�

log

2

 

p

5 + 1

2

!

+

1

�

log

2

 

p

5 + 1

2

p

5

!

� 1

%

:

Then

0

�

j

t+k

0

(t;�)�1

2

k

k

0

(t; �) + 1

1

A

�

0

�

j

t+k

0

(t;�)+1

2

k

k

0

(t; �) + 3

1

A

(1 + o(1))

and

0

�

j

t+k

0

(t;�)

2

k

k

0

(t; �) + 2

1

A

�

0

�

j

t+k

0

(t;�)+2

2

k

k

0

(t; �) + 4

1

A

(1 + o(1)):

Proof. We solve the inequality

0

�

j

t+k

0

(t;�)�1

2

k

k

0

(t; �) + 1

1

A

�

0

�

j

t+k

0

(t;�)+1

2

k

k

0

(t; �) + 3

1

A

(1)



(the inequality

0

�

j

t+k

0

(t;�)

2

k

k

0

+ 2

1

A

�

0

�

j

t+k

0

(t;�)+2

2

k

k

0

+ 4

1

A

gives the same asymptoti
s). Using the fa
torial representation for binomial 
o-

eÆ
ients we solve the quadrati
 inequality for k

0

(t; �) 
onsidering t as some

parameter. As a result we obtain that the inequality (1) holds if

k

0

(t; �) �

1

p

5

t(1 + o(1)): (2)

But by the hypothesis of Lemma we have that k

0

(t; �) is asymptoti
ally

t

�

log

2

�

p

5+1

2

�

and � <

p

5 log

2

�

p

5+1

2

�

. It follows the same 
ondition (2) on k

0

(t; �) that 
om-

pletes the proof. ut

Theorem 3. For any �, 0 < � <

p

5 log

2

�

p

5+1

2

�

= 1:5523 : : :, and any " > 0

there exists a proper (k

0

; k; p; t)-matrix su
h that

t

t+k

<

1

log

2

(

p

5+1)

+ " and k >

�k

0

.

Proof. If this Theorem holds for some �, 0 < � <

p

5 log

2

�

p

5+1

2

�

, then,

obviously, this Theorem holds for any �

0

, 0 < �

0

< �. Therefore we 
an assume

that � > log

2

�

p

5+1

2

�

= 0:6942 : : :

At �rst, we 
onstru
t re
ursively the sequen
e of matri
es A

t

, t = 1; 2; : : :,

that satisfy properties (i) and (ii) of proper matri
es but the number of rows in

these matri
es is not ne
essary power of two. We denote by s(t) the number of

rows in the matrix A

t

obtained after tth step.

At tth step we 
onstru
t the matrix A

t

su
h that the sum of ones and twos in

any row of A

t

does not ex
eed t and for any two di�erent rows of A

t

there exists

a 
olumn su
h that one of these two rows has one in this 
olumn, and the se
ond

row has two in this 
olumn. We suppose that the matri
es A

t�1

and A

t�2

were


onstru
ted at the previous steps. We suppose that the matri
es A

t�1

and A

t�2

have the same number of 
olumns (in opposite 
ase we add to one of them the

de�
ient number of all-� 
olumns). Next, we add to ea
h of these matri
es from

the right side an additional 
olumn: the all-ones 
olumn to the matrix A

t�1

and

the all-twos 
olumn to the matrix A

t�2

. Write the obtained matri
es one over

another. We say the resulting matrix is the matrix A

t

, A

t

=

 

A

t�1

�!

1

T

A

t�2

�!

2

T

!

.

The matrix A

t

is the matrix of desired form su
h that the sum of ones and

twos in ea
h row of A

t

does not ex
eed t. The number of rows in A

t

is equal to

s(t) = s(t� 2) + s(t� 1):

Thus, s(t) forms the Fibona

i sequen
e and s(t) is asymptoti
ally

1

p

5

�

�

p

5+1

2

�

�

�

p

5+1

2

�

t

if we take the matri
es A

1

= ( 1 ) and A

2

=

�

1

2

�

as initial. In this




onstru
tion the matrix A

t


ontains the rows with the number of ones greater

than k

0

(t; �) =

j

t

�

log

2

�

p

5+1

2

�

+

1

�

log

2

�

p

5+1

2

p

5

�

� 1

k

. Cal
ulate the ratio of the

number of rows that 
ontain more than k

0

ones to the number of all rows in A

t

(i. e. s(t)). Denote by l

j

(t) the number of rows with exa
tly j ones in the matrix

A

t

. By 
onstru
tion l

0

(t) = l

0

(t � 2), l

j

(t) = l

j

(t � 2) + l

j�1

(t � 1) for j � 1.

These re
ursive relations follow the next dire
t formula:

l

j

(t) =

 

t+j�2

2

j

!

l

0

(2) +

 

t+j�4

2

j � 1

!

l

1

(1) + a

2

l

2

+ : : :+ a

j

l

j

if (t+ j) even and

l

j

(t) =

 

t+j�3

2

j

!

l

0

(1) +

 

t+j�3

2

j � 1

!

l

1

(2) + a

2

l

2

+ : : :+ a

j

l

j

if (t+ j) odd where a

2

; : : : ; a

j

| some numbers and arguments of l

2

; : : : ; l

j

are 1

or 2 (it depends on the parity). For initial matri
es A

1

and A

2

introdu
ed above

we have l

0

(1) = 0, l

0

(2) = 1, l

1

(1) = l

1

(2) = 1, l

j

(1) = l

j

(2) = 0 for j � 2.

Therefore,

l

j

(t) =

 

t+j�2

2

j

!

+

 

t+j�4

2

j � 1

!

if (t+ j) even and

l

j

(t) =

 

t+j�3

2

j � 1

!

if (t+ j) odd.

It follows

t

P

j=k

0

(t;�)+1

l

j

(t)

s(t)

�

t

P

j=k

0

(t;�)+1

��

d

t+j�2

2

e

j

�

� 1 +

�

d

t+j�3

2

e

j�1

�

� 1

�


onst �

�

p

5+1

2

�

t

�

(by Lemma 4 for k

0

(t; �) =

j

t

�

log

2

�

p

5+1

2

�

+

1

�

log

2

�

p

5+1

2

p

5

�

� 1

k

)


onst

(t� k

0

(t; �))

�

�

t+k

0

(t;�)�1

2

�

k

0

(t;�)+1

�

�

p

5+1

2

�

t

�

(denoting v = log

2

�

p

5+1

2

�

and using the Stirling formula),

� 
onst � t

r

1

2

t

(

1+

v

�

)

tv

�

�

1

2

t

(

1�

u

�

)

(

1

2

t

(

1+

v

�

))

1

2

t

(

1+

v

�

)

(

tv

�

)

tv

�

(

1

2

t

(

1�

v

�

))

1

2

t

(

1�

v

�

)

�

p

5+1

2

�

t

=




onst �

p

t

�

1 +

v

�

�

1

2

t

(

1+

v

�

)

�

2v

�

�

tv

�

�

1�

v

�

�

1

2

t

(

1�

v

�

)

�

p

5+1

2

�

t

=


onst �

p

t

0

B

�

�

1 +

v

�

�

1

2

(

1+

v

�

)

�

p

5+1

2

�

1+

1

�

�

v

�

�

v

�

�

1�

v

�

�

1

2

(

1�

v

�

)

1

C

A

t

:

It is easy to 
he
k that the expression in the parentheses in
reases monoton-

i
ally on � for log

2

�

p

5+1

2

�

= 0:6942 : : : < � �

p

5 log

2

�

p

5+1

2

�

= 1:5523 : : :

and takes the value 1 for � =

p

5 log

2

�

p

5+1

2

�

. Therefore this expression takes

values less than 1 for log

2

�

p

5+1

2

�

< � <

p

5 log

2

�

p

5+1

2

�

. It follows that

t

P

j=k

0

(t;�)+1

l

j

(t)

s(t)

t!1

�! 0 for log

2

�

p

5+1

2

�

< � <

p

5 log

2

�

p

5+1

2

�

.

Thus, in the matrix A

t

the number of rows that 
ontain more than k

0

(t; �)

ones is asymptoti
ally small with respe
t to the total number of rows. We

eliminate from the matrix A

t

all rows that 
ontain more than k

0

(t; �) ones.

For suÆ
iently large t the number of su
h rows is smaller than 2

k(t)

where

k(t) = blog

2

s(t)
 � 1; therefore the obtained matrix will 
ontain at least 2

k(t)

rows. Now the matrix satis�es the property (iii) of a proper matrix (see De�nition

1) for k

0

= k

0

(t; �), k = k(t). Next, we eliminate if ne
essary some rows more to

obtain the matrix with exa
tly 2

k(t)

rows. As a result, we have 
onstru
ted the

proper (k

0

(t; �); k(t); p; t)-matrix for some p. Thus, for the sequen
e of proper

(k

0

(t; �); k(t); p; t)-matri
es 
onstru
ted above we have

t

t+ k(t)

=

t

t+ bt log

2

�

p

5+1

2

�

+ log

2

�

p

5+1

2

p

5

�

� 1


t!1

�!

1

log

2

(

p

5 + 1)

and

k(t)

k

0

(t; �)

=

j

t log

2

�

p

5+1

2

�

+ log

2

�

p

5+1

2

p

5

�

� 1

k

j

t

�

log

2

�

p

5+1

2

�

+

1

�

log

2

�

p

5+1

2

p

5

�

� 1

k

t!1

�! �;

moreover, if � > 1 then

k(t)

k

0

(t;�)

> � for the in�nite sequen
e of t.

The 
on
lusion of the Theorem follows.

ut

Remark. Note that in the 
onstru
tion in the proof of Theorem 3 in fa
t we

have p = 1 for t = 1 and p = t� 1 for t > 1.

7 Constru
tions of new re
ord highly nonlinear resilient

Boolean fun
tions

In this Se
tion by means of proper matri
es 
onstru
ted in the previous Se
tion

we 
onstru
t m-resilient n-variable fun
tions with maximum possible nonlinear-



ity 2

n�1

� 2

m+1

for m =

1

log

2

(

p

5+1

)

n + O (log

2

n) = 0:5902 : : : n + O (log

2

n).

Until now su
h fun
tions with maximum possible nonlinearity 2

n�1

�2

m+1

were

known only for m � 0:6n� 1 [11℄ and some small set of 
on
rete parameters n

and m.

Lemma 5. For any positive integer k there exists a proper (1; k; 2

k

+1; 2

k

+1)-

matrix.

Proof. We form the quadrati
 matrix B of order 2

k

+ 1 writing in its rows

all possible 
y
li
 shifts of the row (1 22 : : : 2

| {z }

2

k�1

� � : : : �

| {z }

2

k�1

): It is easy to 
he
k that

in this matrix for any two di�erent rows there exists a 
olumn su
h that one

of these two rows has one in this 
olumn, and the se
ond row has two in this


olumn. The sum of numbers in ea
h row of B is exa
tly 2

k

+1. Eliminating any

row from B we obtain a proper (1; k; 2

k

+ 1; 2

k

+ 1)-matrix B

1;k;2

k

+1;2

k

+1

. ut

Lemma 6. For given positive integer k and in�nite sequen
e of positive integer

n there exist proper S

n;m;k;1

-systems of Boolean fun
tions for some m.

Proof. By Lemma 1 there exists an S

2;�1;2;1

-system of Boolean fun
tions.

Using Lemma 5 we apply

S

2;�1;2;1

(T

1;1;1;2

)

h

T

1;k;2

k

+1;2

k

+1

:

By Theorem 1 this 
onstru
tion is valid if 2 + 3h � 2

k

+ 1. Therefore for all h

provided h �

2

k

�1

3

we 
onstru
t S

2

k

+k+3h+3;2

k

+2h;k;1

-system of Boolean fun
-

tions. ut

Note that the 
onstru
tions in Lemmas 5 and 6 are obviously nonoptimal

from the pra
ti
al point of view but more easy for the proof.

Theorem 4. It is possible to 
onstru
tm-resilient n-variable fun
tion with max-

imum possible nonlinearity 2

n�1

� 2

m+1

for m =

1

log

2

(

p

5+1

)

n+O (log

2

n).

Proof. We use proper (k

0

(t; �); k(t); p; t)-matri
es 
onstru
ted in the proof

of Theorem 3. Note that by Remark after the proof of Theorem 3 we have

p = t � 1 for t � 2. We 
hoose 1 < � <

p

5 log

2

�

p

5+1

2

�

= 1:5523 : : : and

form the sequen
e t

0

, t

1

, t

2

; : : : re
ursively. By Theorem 3 for given � beginning

with suÆ
iently large t the matri
es 
onstru
ted in the proof of Theorem 3 are

proper (k

0

(t; �); k(t); p; t)-matri
es. We denote this suÆ
iently large t by t

0

(we


an assume that t

0

� 2). Suppose that t

i

and k(t

i

) are already de�ned positive

integers. Then we de�ne t

i+1

as the maximal positive integer su
h that

k

0

(t

i+1

; �) =

$

t

i+1

�

log

2

 

p

5 + 1

2

!

+

1

�

log

2

 

p

5 + 1

2

p

5

!

� 1

%

= k(t

i

): (3)



It is easy to see that k

0

(t; �) is nonde
reasing on t and k

0

(t+1; �)�k

0

(t; �) � 1,

therefore this de�nition of t

i+1

is 
orre
t. Finally, we put

k(t

i+1

) =

$

t

i+1

log

2

 

p

5 + 1

2

!

+ log

2

 

p

5 + 1

2

p

5

!

� 1

%

: (4)

The re
ursive de�nition is 
ompleted.

For de�ned t

0

by Lemma 6 we 
onstru
t S

n

0

;m

0

;k(t

0

);1

-system of Boolean

fun
tions su
h that n

0

� t

1

� 2. After this we de�ne re
ursively:

S

n

i

;m

i

;k(t

i

);1

T

k(t

i

);k(t

i+1

);t

i+1

�1;t

i+1

= S

n

i+1

;m

i+1

;k(t

i+1

);1

; i = 0; 1; 2; : : :

Here n

i+1

= n

i

+ k(t

i+1

) + t

i+1

, m

i+1

= m

i

+ t

i+1

.

By Theorem 1 this 
onstru
tion is valid if n

i

� 2p

i+1

�t

i+1

= t

i+1

�2 for all i.

We prove this statement by indu
tion on i. We have n

0

� t

1

�2 by 
onstru
tion.

Next, suppose that n

i

� t

i+1

� 2. Then using (3) and (4) we have

n

i+1

� t

i+2

+ 2 = n

i

+ k(t

i+1

) + t

i+1

� t

i+2

+ 2 � k(t

i+1

) + 2t

i+1

� t

i+2

�

t

i+1

log

2

 

p

5 + 1

2

!

(2� �) +

p

5

 

log

2

 

p

5 + 1

2

!

� log

2

 

p

5 + 1

2

p

5

!

� 1

!

+

log

2

�

p

5+1

2

p

5

�

log

2

�

p

5+1

2

�

� t

i+1

� 0:3107 : : :� 0:3123 : : : > 0

sin
e t

i+1

� 2. Thus, we use the Theorem 1 
orre
tly.

After q steps we have n

q

= n

0

+

q

P

i=1

(k(t

i

) + t

i

), m

q

= m

0

+

q

P

i=1

t

i

. From (4)

we have

1

log

2

�

p

5+1

2

�

 

k(t

i

)� log

2

 

p

5 + 1

2

p

5

!!

< t

i

�

1

log

2

�

p

5+1

2

�

 

k(t

i

)� log

2

 

p

5 + 1

2

p

5

!

+ 1

!

:

It follows that

m

q

n

q

=

m

0

+

q

P

i=1

t

i

n

0

+

q

P

i=1

(k(t

i

) + t

i

)

=

1

log

2

�p

5+1

2

�

q

P

i=1

k(t

i

) +O(q)

�

1 +

1

log

2

�
p

5+1

2

�

�

q

P

i=1

k(t

i

) +O(q)

=

1

log

2

�
p

5 + 1

�

+O

�

q

n

q

�

:

It is easy to see that q = O(log

2

n

q

). Therefore, m

q

=

1

log

2

(

p

5+1

)

n

q

+O(log

2

n

q

):

ut



8 Constru
tions of proper matri
es by means of 
y
li


matri
es

The 
onstru
tion of proper matri
es in Se
tion 6 gives the best limit value for

the ratio

t

t+k

but in general does not give the best possible matri
es for 
on
rete

parameters. In this Se
tion we dis
uss the method that probably gives the best

possible in some sen
e 
on
rete proper matri
es.

We denote by S(t) the maximum possible number of rows in matri
es that

satisfy properties (i) and (ii) of proper (t; k; p; t)-matri
es but the number of

rows in these matri
es is not ne
essary power of two. By the proof of Theorem

2 we have S(t) �

�

p

5+1

2

�

t

. Below we show that S(t) =

�

�

p

5+1

2

�

t

�

at least for

1 � t � 10. We sear
h desired matri
es for odd t in the 
lass of matri
es with

p = t that 
ontain with ea
h its row also all possible 
y
li
 shifts of this row.

Theorem 5. S(t) =

�

�

p

5+1

2

�

t

�

for 1 � t � 10.

Proof. For t = 1; 3; 5; 7; 9 we give the desired matri
es M

t

dire
tly. Below we

give in the matri
es only one row from ea
h 
lass of 
y
li
 shifts.

M

1

= f 1 g ; M

3

=

�

2 1 �

1 1 1

�

; M

5

=

8

<

:

1 2 2 � �

� 1 2 1 1

1 1 1 1 1

9

=

;

;

M

7

=

8

>

>

>

<

>

>

>

:

1 2 2 2 � � �

1 2 1 � 1 2 �

1 1 � � 1 2 2

2 1 1 1 1 � 1

1 1 1 1 1 1 1

9

>

>

>

=

>

>

>

;

; M

9

=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

:

1 2 2 2 2 � � � �

1 1 � 2 � 1 2 2 �

1 2 1 � � 1 2 2 �

1 2 1 2 � � 1 � 2

1 2 � 1 2 � 1 2 �

2 � � 1 1 2 1 1 1

2 2 � 1 1 1 1 � 1

� 2 1 2 1 1 1 � 1

2 1 1 � 1 1 1 1 1

1 1 1 1 1 1 1 1 1

9

>

>

>

>

>

>

>

>

>

>

>

>

>

=

>

>

>

>

>

>

>

>

>

>

>

>

>

;

:

For t = 2 we put M

2

=

�

2 �

1 1

�

(here we do not use 
y
li
 shifts). Thus,

S(1) = 1, S(2) = 2, S(3) = 4, S(5) = 11, S(7) = 29, S(9) = 76. If t is even,

t > 2, then

�

�

p

5+1

2

�

t

�

=

�

�

p

5+1

2

�

t�1

�

+

�

�

p

5+1

2

�

t�2

�

. Therefore if t is even,

t > 2, and desired matri
es M

t�2

and M

t�1

are 
onstru
ted already then the

matrix M

t


an be 
onstru
ted in the form

M

t

=

 

M

t�1

�!

1

T

M

t�2

�!

�

T

�!

2

T

!

:

Thus, S(4) = 6, S(6) = 17, S(8) = 46, S(10) = 122. ut



Hypothesis. S(t) =

�

�

p

5+1

2

�

t

�

.

Note that if k

0

< t then a proper (k

0

; k; p; t)-matrix 
an be obtained from

M

t

by the 
an
elling all rows where the number of ones is greater than k

0

and

some rows up to the nearest power of two.

Using the matri
es M

9

and M

10

as initial in the re
ursive 
onstru
tion of

Theorem 3 we have 
onstru
ted the 172-variable 102-resilient fun
tion with max-

imum possible nonlinearity as

S

2;�1;2;1

T

2;2;2;4

T

2;4;7;8

T

4;5;7;8

T

5;6;9;9

T

6;9;14;14

T

9;10;15;15

T

10;11;16;16

T

11;11;16;16

T

11;9;13;13

= S

172;102;9;1

:

These are the smallest parameters that we have found improving the bound in

[11℄.
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