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Abstract. In this paper we consider matrices of special form introduced
in [11] and used for the constructing of resilient functions with crypto-
graphically optimal parameters. For such matrices we establish lower
bound m = 0.5902... for the important ratio H_Lk of its parame-
ters and point out that there exists a sequence of matrices for which the
limit of ratio of these parameters is equal to lower bound. By means of
these matrices we construct m-resilient n-variable functions with maxi-
mum possible nonlinearity 2"~' —2™%! for m = 0.5902...n+0O (log, n).
This result supersedes the previous record.
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1 Introduction

Different types of ciphers use Boolean functions. So, LFSR based stream ciphers
use Boolean functions as a nonlinear combiner or a nonlinear filter, block ciphers
use Boolean functions in substitution boxes and so on. Boolean functions used
in ciphers must satisfy some specific properties to resist different attacks. One
of the most important desired properties of Boolean functions in LFSR based
stream ciphers is correlation immunity introduced by Siegenthaler [9]. Another
important properties are nonlinearity, algebraic degree and so on.

The most usual theoretic motivation for the investigation of highly nonlinear
resilient Boolean functions is the using of such functions as nonlinear combiners
in stream ciphers. But from the practical point of view the number of variables
in such system can not be too big (in opposite case the key length will be too
long). It is necessary to note that all important functions with small number
of variables are found already by exhaustive search. At the same time another
important practical type of stream ciphers uses Boolean functions as nonlinear
filters. Here, in general, it is possible to use the functions with big number of
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variables. But the main problems here is that effective (from implementation
point of view) constructions of such functions can not be found by exhaustive
search, and also it was pointed out [4] that stream cipher of such type can be
transformed into an equivalent (in some sence) with worse resiliency but the
same nonlinearity. It emphasizes the importance of direct effective constructions
of Boolean functions with big number of variables and optimal combination of
resiliency and nonlinearity.

Correlation immunity (or resiliency) is the property important in cryptogra-
phy not only in stream ciphers. This is an important property if we want that
the knowledge of some specified number of input bits does not give a (statistical)
information about the output bit. In this respect such functions are considered
in [3], [2] and other works.

It was proved independently in [8], [10] and [12] that the nonlinearity of n-
variable m-resilient function does not exceed 27! —2™+1! for m < n — 1. It was
proved that if this bound is achieved then m > 0.5n—2. In [10] it was proved that
if this bound is achieved then the algebraic degree of the function is maximum
possible too (i. e. achieves Siegenthaler’s Inequality) and equal to n — m — 1.
In [10], [6] and [11] effective constructions of m-resilient n-variable functions
with maximum possible nonlinearity 2"~' — 2m+! for m > 227y > 209
and m > 0.6n — 1 correspondently were given. To obtain this result in [11] the
concept of a proper (ko, k, p, t)-matrix were introduced. In [11] it was pointed out
that the mostly important to find a proper (k, k, p, t)-matrix where the ratio H_Lk
is as small as possible. In [11] it was given a proper (4,4, 6,6)-matrix for which
this ratio is 0.6. At the same time the lowest possible value of the ratio HL,C
for proper matrices was formulated in [11] as the open problem. In the present

paper we investigate the problem of the lowest possible value of the ratio H_Lk for
. . . . 1 _
proper matrices and establish that this ratio can not be less than o (AT =

0.5902... At the same time we construct proper matrices that approach this
lower bound with arbitrary precision. By means of these matrices we construct
m-resilient n-variable functions with maximum possible nonlinearity 27! —2m+1
form = 0.5902...n40 (log, n). Note that our nonexistence results demonstrate
that only proper matrices technique is not sufficient to construct m-resilient n-
variable functions with maximum possible nonlinearity 27~1 — 2™+ for m <
0.5902...n + O (1). At the same time it is quite possible that such functions
there exist for any m, n provide 0.5n — 2 < m < n — 2. At least an opposite
result have not proved. Thus, the constructing of such functions demands new
methods and new techniques.

The rest of this paper is organized as follows. In Section 2 we give preliminary
concepts and notions. In Section 3 we formulate necessary concepts and results
from the previous work [11] on proper matrices. In Section 4 we give geometrical
interpretation of proper matrices. In Section 5 we prove that there does not exist

a proper (ko, k, p, t)-matrix if kLH < m = 0.5902... In Section 6 we con-
2
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struct proper (ko, k, p, t)-matrices with ratio 77 Close to o VATD and k > akq

where a < /5 log, (@) = 1.5523 .. .. In Section 7 by means of proper matri-



ces constructed in Section 6 we construct m-resilient n-variable functions with

maximum possible nonlinearity 27~ — 2m+! for m = mn +0 (logyn) =
2

0.5902...n+ O (log, n). In Section 8 we discuss the method that probably gives
the best possible in some sence concrete proper matrices.

2 Preliminary concepts and notions

We consider V™, the vector space of n tuples of elements from GF(2). A Boolean
function is a function from V™ to GF(2). The weight wt(f) of a function f on
V™ is the number of vectors x on V™ such that f(z) = 1. A function f is said to
be balanced if wt(f) = wt(f ® 1). Obviously, if a function f on V™ is balanced
then wt(f) = 2"~ A subfunction of the Boolean function f is a function f'
obtained by substitution some constants for some variables in f. If a variable z;
is not substituted by constant then z; is called a free variable for f’.

The Hamming distance d(z', z'") between two vectors 2’ and 2" is the number
of components where vectors 2’ and ' differ. For two Boolean functions f; and
f2 on V™ we define the distance between fi and fo by d(fi, f2) = #{z €
V™| fi(xz) # f2(z)}. The minimum distance between f and the set of all affine

n
functions (i. e. functions of the form f(z) = co® P c;x;) is called the nonlinearity
i=1

of f and denoted by nl(f).

A Boolean function f on V™ is said to be correlation-immune of order m,
with 1 < m < n, if wt(f') = wt(f)/2™ for any its subfunction f' of n —m
variables. This concept was introduced by Siegenthaler [9]. A balanced mth
order correlation immune function is called an m-resilient function. From this
point of view it is possible to consider formally any balanced Boolean function as
O-resilient (this convention is accepted in [1], [7], [5]) and an arbitrary Boolean
function as (—1)-resilient (this convention is accepted in [10] and [11]). The
concept, of an m-resilient function was introduced in [3].

3 Results of previous work on proper matrices

In [11] for the constructing of new m-resilient n-variable Boolean functions with
maximum possible nonlinearity 27! — 2™+1 the concept of a proper matriz was
introduced.

Definition 1. [11] Let B = (b;;) be (2¥ x p) matriz of 2% rows and p columns
with entries from the set {1,2,x}. Let ko and t be positive integers. We assume
that
(i) for every two rows i1 and i» there exists a column j such that b;,; = 1,
bigj =2 or bi1j = 2, bigj =1.
(i) for every row i the inequality f: bij <t holds (a sign x does not give an
j=1

influence to these sums).



(#3) in every row the number of ones does not exceed k.
If the matriz B satisfies all properties (i), (i), (i) we say that B is a proper
(ko, k, p, t)-matriz.

The proper (ko, k, p, t)-matrix is denoted in [11] by By, kpt. The next
examples of proper matrices are given in [11].

2 1 x

Bioi1=(1),Bii12= (;) y B3233 = ){ i ; )
1 1 1

2 2 2 % % %

1 2 x 1 2 %

1 2 x x 1 2

1 2 % 2 x 1

x 1 2 2 *x 1 2 1 2 x

2 x 1 2 *x 1 2 % 1 2

2 2 x 1 *x 1 2 2 x 1

1 2 2 x 2 x 1 1 2 x

Bazas=|lo 1 1 1| Buaes=]y w1 4 1 2

1 2 11 2 x 1 2 x 1

11 2 1 2 x 1 1 1 1

111 2 1 2 = 1 1 1

*x 1 2 1 1 1

1 11 2 % 1

1 1 1 1 2 %

1 11 % 1 2

The next definitions were given in [11].

Definition 2. A Boolean function f = f(z1,...,2,) depends on a pair of its
variables (z;,x;) quasilinearly if f(z') # f(z") for any two vectors z' and z" of
length n that differ only in ith and jth components. A pair (z;,x;) in this case
is called a pair of quasilinear variables in f.

Definition 3. Let F be a set of Boolean functions such that for every s, 0 <
s < k, the set F contains an (m+ s)-resilient function on V"% with nonlinearity
at least 25(27~1 —2™+A) (X is not necessary integer). Moreover, we assume that
each fs contains s disjoint pairs of quasilinear variables. Then we say that F is
a Sp,m,k,x-System of Boolean functions.

Remark. [11] To provide an existence of a Sy, m x,x-system of Boolean func-
tions it is sufficient to have only one (m + k)-resilient function f on V"t with
nonlinearity at least 2%(27~! —2™+) that contains k disjoint pairs of quasilinear
variables. All other necessary functions of S, k., A-system can be obtained from
f by substitutions of constants for the variables from different disjoint pairs of
quasilinear variables.

The next theorem was proved in [11].



Theorem 1. [11] Suppose that there ezists an Sy, m, ko x-system of Boolean func-
tions F and there exists a proper (ko,k,p,t)-matriz B, n > 2p —t. Then there
exists an Spiktt,m+t,k,\-System of Boolean functions.

An application of the construction given in Theorem 1 is denoted in [11] by

Snymko AT ko k,pyt = Snotkrt,met k-
Lemma 1. [11] There exists an S2 1 2.1-system of Boolean functions.

Indeed, the functions f§ = z122, f| = (21 ® z2)x3 D 1, f3 = (21 D x2) (23 B
24)@®r1 Dxg forms the Sz 1 2 1-system of Boolean functions, i. e. for i = 0, 1,2 the
system contains (2+1i)-variable (—1+14)-resilient Boolean function of nonlinearity
21+i _ 21’_

The results of [11] demonstrate that if there exists a proper (k, k, p, t)-matrix
then there exists a constant C’ such that for any n and m provided m > kL_‘_tn+C”
there exists an m-resilient n-variable Boolean function with the nonlinearity
2=t — 2m+1 Thus, the important problem is to construct a proper (k,k,p,t)-
matrix with ratio X5 as small as possible. In [11] it was given an example of a
proper (4,4, 6, 6)-matrix where the value 45 is equal to 0.6.

In this work we study the problem of the existence of proper (ko,k,p,t)-
matrices.

4 Geometrical interpretation

In this paper we consider a Boolean cube BP as the set of all vectors (z1,...,2p)
where z; € {1,2}. The Ith level of the Boolean cube BP is the set of all vectors
of BP with exactly [ ones. The cardinality of lth level of B is (7).

A proper (ko, k,p,t)-matrix B can be interpreted [11] as a collection of 2*
disjoint subcubes in Boolean cube {1,2}?. Indeed, a row of B can be interpreted
as a subcube where the components with * are free whereas the components
with 1 or 2 are substituted by correspondent constants. The next illustration at
the example of a proper (3, 3,4, 5)-matrix B is given in [11].

row of B points of a subcube

122 {(1
2 %12 {(2,
22 %1 {(2
122x {(1,2,
2111 {
1211 {
1121 {

1112 {(1,1,1,2)}

The property (i) of a proper matrix provides that subcubes are disjoint. The
properties (i) and (iii) characterize the location of subcubes in a cube and the
size of subcubes.



5 Lower bound for the value k%_t

In this Section we prove that there does not exist a proper (ko, k, p, t)-matrix if

t

1
< = 0.5902...
E+t " logy(v5+1)

Lemma 2. If there exists a proper (ko,k,p,t)-matriz B then for any p' > p
there exists a proper (ko,k,p’,t)-matriz.

Proof. We obtain a proper (ko, k,p’, t)-matrix simply adding p’ — p new all-*
columns to B. m|
The next lemma is obvious.

Lemma 3. If there does not exist a proper (ko,k,p,t)-matrix B then for any
kl < ko there does not exist a proper (kj, k,p,t)-matriz.

Theorem 2. There does not exist a proper (ko, k,p,t)-matriz for

t

1
< = 0.5902...
E+t  log,(vV5+1)

Proof.

By Lemma 3 it is sufficient to prove this theorem for ky = ¢.

Let B be an arbitrary proper (¢, k, p,t)-matrix. We can consider B as the
set, of disjoint subcubes of the Boolean cube BP? if we consider each row of B as
a subcube. These subcubes are disjoint by item (i) in definition 1 of a proper
matrix.

If t is even then we replace in rows with odd number of ones some asterisk
by one (if there are not asterisks in a row then we add preliminary all-* column
to the matrix B, after this procedure the parameter p will increase but this is
not important for us). If ¢ is odd we do the same for all rows with even number
of ones. Now for even ¢ all rows contain even number of ones and for odd ¢ all
rows contain odd number of ones. If the matrix B contains rows where the sum
of ones and twos is less than ¢ — 1 then we replace asterisks in these rows by twos
(adding if necessary new all-* columns to B) until the sum of ones and twos will
become greater than ¢t — 1, i. e. t.

Thus, without loss of generality we can assume that the sum of ones and
twos in any row of B is exactly t.

Consider a subcube defined by a row of B with exactly s twos and exactly

p—s—r
l—r

this subcube if I = r,...,p — s, and does not contain such vectors for another [.
Suppose that ¢ is even (for odd ¢ the reasoning is analogous). Then [th level of

r ones. Then [th level of Boolean cube B? contains exactly ( vectors of

Boolean cube contains (p 7/ 2) vectors from each subcube defined by the rows

of B with exactly /2 twos and exactly 0 ones, (pflti 2271) vectors from each
subcube defined by the rows of B with exactly ¢t/2 — 1 twos and exactly 2 ones



and so on. Denote the number of rows of B with exactly ¢ ones by ¢;. Then for
any [ = 0,1,...,p the next inequality holds:

—t/2—1i D
Zc?’( 1 -2 )S(l)
=0
It follows
t/2
i —t/2—z) < p!
7 (p—t/2—=1+0)! ~ llp—D

Put [ = a - p. Then

/2 (p—t/2—i)...(p—t/2—1t/2+1)

ZCQ@ (ap—2i)...(ap—t+1)(p(1 —a) —t/24+1)...(p(1 —a) —t/2+1) =

plp—1)...(p—t/2—-1t/2+1)
aplap—1)...(ap—t+1)(p(1 —a) —t/2+1)...(p(1 —a) = 1)(p(1 — a))’

Note that adding new all-* columns to B we can obtain a proper (¢, k,p’,t)-
matrix for any p’ > p. Thus, if there does not exist a proper (t,k,p’,t)-matrix
for any p’ > p then there does not exist a proper (¢, k, p, t)-matrix B. Therefore
below we can suppose p as large as necessary. Removing the parentheses we have
t/2 . .
i pt2=i 4 alpt/2i-1 4 B
C2i » <
"((ap)'=2 + af(ap)' =271 + . )((1 = @)p)’ + af ((1 —a)p)t+..)

pt+blpt=t 4+ ...
((ap)t + 02 (ap)t=t + .. ) ((p(1 — a))/2 + B3 (p(1 — a))/271 4 ...)

where a},a?,a?,b',b?,b> — numbers that do not depend on p.

70 Wi Wi

Next, we multlply both parts of this inequality by p/2at and transform the
fractions. We have

t/2

> e (5

t/2 i
(1 +max{a;}/p+ O(1/p*) 202’< — ) S(l_la)t/2(1+b/p+0(1/1l72))

) (1 +ai/p+ O(L/") <

where a;, b do not depend on p. Next,

& " 1 (1+b/p+0(1/p)
Z( - ) = T a) (L + max{ai}/p + O0/p0) =
1

m(l +0'/p+0(1/p%).




Pointing in a view that we can take p as large as desired for fixed remained
parameters, we have

ZC» OL2 Z< 1
L \1—a) ~ Q—a)t/?

To find the sum of ¢; we take o = @ (the root of the equation % =1).
This number is irrational but we can approach it by the sequence of rational
numbers. As a result, we have:

L% c2; < <\/_+ 1)

[t/2] t
. V541
Therefore, k < log, i:EO c2; < log, ( 5 ) and t+k > oS (\f+1) O
6 The sequence of proper matrices with — — 0.5902.

k:-l—t

In the previous Section we had demonstrated that for any proper (ko, k,p,t)-

matrix the inequality 15 < m = 0.5902... holds. Nevertheless, it appears
2

. t 1 _ . .
that the ratio 77 can approach the value a (AT = 0.5902... with arbitrary
precision. In this Section we construct proper (ko, k, p, t)-matrices with ratio LLH

1 V41
close to Toma(VAED) and k > aky where a < \/_log ( ) =1.5523....

Lemma 4. Suppose that o < \/_log2 (‘['H) Let

ko(t, o) = {2 log, <\/52+ 1) + ilog2 (%) - 1J )

Then
[t+k0(t,a)—1J Lt+k0(t,a)+1J
’ > ’ (1+0(1))
k‘o(t,a) +1 k‘o(t,a) +3
and

VH@O(W)J V+ko(t,a)+2J
2 > 2 (1 +o0(1)).
ko(t,a) +2 kO(taa) +4

Proof. We solve the inequality

lt+k0(;,a)—1J N

kg(t, a) +1 - kg(t,a) +3

[t+ko(;,a)+1J



(the inequality

2

V+k02(t7a)J N [t+k0(t7a)+2J
ko + 2 - ko +4

gives the same asymptotics). Using the factorial representation for binomial co-
efficients we solve the quadratic inequality for ko (t,«) considering ¢ as some
parameter. As a result we obtain that the inequality (1) holds if

1
ko(t, o) > ﬁt(l + o(1)). (2)

But by the hypothesis of Lemma we have that ko (¢, &) is asymptotically é log, (@)

and a < V/5log, (@) It follows the same condition (2) on ko(t, ) that com-
pletes the proof. O

Theorem 3. For any a, 0 < a < \/510g2 (@) =1.5523..., and any € > 0

there exists a proper (ko, k,p,t)-matriz such that H_Lk < m +¢e and k >
2

Oék() .

Proof. Tf this Theorem holds for some a, 0 < a < v/5log, (@), then,
obviously, this Theorem holds for any o', 0 < o' < a. Therefore we can assume
that a > log, (@) =0.6942...

At first, we construct recursively the sequence of matrices 4;, t = 1,2,...,
that satisfy properties (i) and (ii) of proper matrices but the number of rows in
these matrices is not necessary power of two. We denote by s(¢) the number of
rows in the matrix A; obtained after tth step.

At tth step we construct the matrix A; such that the sum of ones and twos in
any row of A; does not exceed ¢ and for any two different rows of A; there exists
a column such that one of these two rows has one in this column, and the second
row has two in this column. We suppose that the matrices A;_1 and A;_o were
constructed at the previous steps. We suppose that the matrices A; 1 and A;_»
have the same number of columns (in opposite case we add to one of them the
deficient number of all-x columns). Next, we add to each of these matrices from
the right side an additional column: the all-ones column to the matrix A;_; and
the all-twos column to the matrix A;_». Write the obtained matrices one over

—T
another. We say the resulting matrix is the matrix A;, 4; = (At_l ;T> .
t—2

The matrix A; is the matrix of desired form such that the sum of ones and

twos in each row of A; does not exceed ¢t. The number of rows in A4; is equal to

s(t) = s(t—2)+s(t—1).

\/§+1)_

Thus, s(t) forms the Fibonacci sequence and s(t) is asymptotically % : ( >

t
(@) if we take the matrices A; = (1) and Ay = <1

2) as initial. In this



construction the matrix A; contains the rows with the number of ones greater

than ko(t,a) = [t log, (‘/_+1) + Llog, (‘{}1) - lJ. Calculate the ratio of the

number of rows that contain more than kg ones to the number of all rows in A;
(i. e. s(t)). Denote by I;(¢) the number of rows with exactly j ones in the matrix
A;. By construction lo(t) = lo(t — 2), 1;(t) = 1;(t —2) +;_1(t — 1) for j > L.
These recursive relations follow the next direct formula:

tji—2 tj—4
1i(t) = ( j >lo(2)+ <ji1>l1(1)+a2l2+...+ajlj

if (t + j) even and

t+j—3 t+j—3
lj(ﬂ:( j >l0(1)+<ji1>ll(2)+a2l2+...+ajlj

if (t+7) odd where as, ..., a; — some numbers and arguments of I»,...,l; are 1
or 2 (it depends on the parity). For initial matrices A; and A, introduced above
we have Ip(1) =0, 1p(2) = 1, l1i(1) = h(2) = 1, [;(1) = 1;(2) = 0 for j > 2.

Therefore,
t+j—2 thj—4
L= 2 |+ .°>

if (t + j) even and

if (¢t + j) odd.
It follows

200 2 () (R )

j=ko (t,c)+1 j=ko (t,)+1 )t <

s(t) - const - (
%))

(by Lemma 4 for ko(t,a) = { log, (‘[H) L log, W

thko(to)—1
(t = ko(t,a)) < |— ko(t’za)+1 -| > <

const

=y
2
(denoting v = log, (‘/52“) and using the Stirling formula),
B(ies) () (%)
< const -t ©3t(1-2) (%’)%E%tt(l%))%t(l_g) —




const - \/Z

const -/t 4L a - —

(82) T ()T a-n
It is easy to check that the expression in the parentheses increases monoton-
ically on a for log, (¥35) = 0.6942... < a < VBlog, (¥) = 1.5523...

and takes the value 1 for a = v/5log, (@) Therefore this expression takes
values less than 1 for log, (\/32"'1) < a < V5log, (\/32"‘1). It follows that

t

S
% 2% 0 for log, (‘['H) < a < 5log, (‘[H)

Thus, in the matrix A; the number of rows that contain more than ko(¢, a)
ones is asymptotically small with respect to the total number of rows. We
eliminate from the matrix A; all rows that contain more than kq(¢,a) ones.
For sufficiently large ¢ the number of such rows is smaller than 28®) where
k(t) = |log, s(t)| — 1; therefore the obtained matrix will contain at least 2%(*)
rows. Now the matrix satisfies the property (iii) of a proper matrix (see Definition
1) for kg = ko(t, ), k = k(t). Next, we eliminate if necessary some rows more to
obtain the matrix with exactly 2¢(*) rows. As a result, we have constructed the
proper (ko(t, ), k(t),p, t)-matrix for some p. Thus, for the sequence of proper
(ko(t, ), k(t), p,t)-matrices constructed above we have

t _ t t—o00 1

bR 4y |tlog, ( + log, ( ) —1] - logs (v/5 + 1)

and

) + log, \2[\7_ ) B IJ t—00

)+ dlosa (558) -1

> « for the infinite sequence of .

by |tom (4%
ko(t,a) [élogQ( 541

moreover, if & > 1 then kk((t) 3

The conclusion of the Theorem follows.

O
Remark. Note that in the construction in the proof of Theorem 3 in fact we
havep=1fort=1and p=t¢t—1fort¢ > 1.

7 Constructions of new record highly nonlinear resilient
Boolean functions

In this Section by means of proper matrices constructed in the previous Section
we construct m-resilient n-variable functions with maximum possible nonlinear-



ity 27! — 2m+! for m = n+ O (logsn) = 0.5902...n + O (logy n).

1
log, (V5+1)
Until now such functions with maximum possible nonlinearity 27! — 2™+ were
known only for m > 0.6n — 1 [11] and some small set of concrete parameters n
and m.

Lemma 5. For any positive integer k there exists a proper (1,k,2%F +1,2% +1)-
matriz.

Proof. We form the quadratic matrix B of order 2¥ + 1 writing in its rows

all possible cyclic shifts of the row (122...2x%x...x). It is easy to check that
ok—1 ok—1

in this matrix for any two different rows there exists a column such that one

of these two rows has one in this column, and the second row has two in this

column. The sum of numbers in each row of B is exactly 2¥ + 1. Eliminating any

row from B we obtain a proper (1, k,2% + 1,2* + 1)-matrix By pori1okqq. O

Lemma 6. For given positive integer k and infinite sequence of positive integer
n there exist proper Sy m.k1-systems of Boolean functions for some m.

Proof. By Lemma 1 there exists an Sz _1 2 1-system of Boolean functions.
Using Lemma 5 we apply

h
So, 12,1 (Th,1,1,2) T g2k 41,2% 41

By Theorem 1 this construction is valid if 2 + 3h > 2% + 1. Therefore for all h
provided h > QkT_l we construct Sokypi3p43,2k12h,k,1-System of Boolean func-
tions. O

Note that the constructions in Lemmas 5 and 6 are obviously nonoptimal

from the practical point of view but more easy for the proof.

Theorem 4. [t is possible to construct m-resilient n-variable function with max-

imum possible nonlinearity 21 — 2™+ for m = mn + O (logy n).
2

Proof. We use proper (ko(t, «), k(t), p, t)-matrices constructed in the proof
of Theorem 3. Note that by Remark after the proof of Theorem 3 we have

p=t—1fort > 2. We choose 1 < a < \/510g2 (@) = 1.5523... and

form the sequence tg, 1, t2, ... recursively. By Theorem 3 for given a beginning
with sufficiently large ¢ the matrices constructed in the proof of Theorem 3 are
proper (ko(t, a), k(t), p, t)-matrices. We denote this sufficiently large ¢ by ¢, (we
can assume that to > 2). Suppose that ¢; and k(¢;) are already defined positive
integers. Then we define ¢;,1 as the maximal positive integer such that

k‘o(ti+1,a) — \‘ti;-l 10%2 (\/52—}— 1) + élogg (%) - 1| = k(tl) (3)




It is easy to see that ko (¢, @) is nondecreasing on ¢t and ko(t+ 1, ) — ko(t, ) < 1,
therefore this definition of ¢;,; is correct. Finally, we put

k(tipr) = \‘ti-i-l log, <@> + log, (%) - 1J : (4)

The recursive definition is completed.
For defined ¢, by Lemma 6 we construct Sy mq k(to),1-System of Boolean
functions such that ng > t; — 2. After this we define recursively:

Sni,mi’k(ti)’lTk(ti)7k(ti+1)’ti+1*1,ti+1 = Sni+1,mi+1’k(ti+1)71’ 1=0,1,2,...

Here Niy1 = N; + k(ti+1) F+tig1, Migr =My + i1

By Theorem 1 this construction is valid if n; > 2p;11 —t;41 = t;41 —2 for all .
We prove this statement by induction on i. We have ng > ¢t; — 2 by construction.
Next, suppose that n; > t;+1 — 2. Then using (3) and (4) we have

Niy1 — tivo +2 =05 + k(tig1) + tig1 — bigo +2 > k(tip1) + 2ty — tiyo >
5+1 5+1 5+1
ti+1log, <\/_2 ) (2-a)+ V5 <108§2 <\/_T> — log, <\/2_7> - 1) +
VB+1
log, ( v )
log, (—\/52“)

since ;1 > 2. Thus, we use the Theorem 1 correctly.

> tiy1-0.3107...-0.3123... >0

a g
After ¢ steps we have ng = ng + Y (k(t;) + ti), mg = mo + > t;. From (4)

=1 =1
we have
1 ( V541
log, (Y5 25
1 V5 +1
log, (Y5 ( 25
It follows that
g q
Mg _ e +i; . 10g2(‘/52+1) z; ( )+ (Q) B
ng, q = - _
= 082 2 i=1
1 q
— 40 <_>
logy (V5 +1) g

It is easy to see that ¢ = O(log, ng). Therefore, m, = mnq +O(log, ng).
2
a



8 Constructions of proper matrices by means of cyclic
matrices

The construction of proper matrices in Section 6 gives the best limit value for
the ratio Hik but in general does not give the best possible matrices for concrete
parameters. In this Section we discuss the method that probably gives the best
possible in some sence concrete proper matrices.

We denote by S(t) the maximum possible number of rows in matrices that
satisfy properties (i) and (ii) of proper (t,k,p,t)-matrices but the number of

rows in these matrices is not necessary power of two. By the proof of Theorem
t t

2 we have S(t) < (@) . Below we show that S(t) = \‘(@) J at least for

1 <t < 10. We search desired matrices for odd ¢ in the class of matrices with

p =t that contain with each its row also all possible cyclic shifts of this row.

¢
Theorem 5. S(t) = \‘(@) J for 1 <t <10.

Proof. For t =1,3,5,7,9 we give the desired matrices M; directly. Below we
give in the matrices only one row from each class of cyclic shifts.

9 1 « 1 2 2 x x
Mlz{l},Mgz{lll},M5= x 1 2 1 1%,
111 1 1
fl2222****w
1 1 x 2 %= 1 2 2 x
L2 9 9 5 % » 1 2 1 % x 1 2 2 %
1 21 2 % x 1 % 2
L2l w12 12 %12 % 1 2 «
Me=ql T s 1220, My=95 1 1 211 1
2 1 1 1 1 % 1
L 111111 2 2 %« 11 1 1 % 1
x 2 1 2 1 1 1 % 1
2 1 1 « 1 1 11 1
(11111111 1)
2 %

For t = 2 we put My, = <

S(1) =1, 8(2) =2,53) =4, S(5) =11, S(7) = 29, S(9) = 76. If ¢ is even,
t t—1 t—2

t > 2, then {(@) J = {(‘/52“) J + {(@) J Therefore if ¢ is even,

t > 2, and desired matrices M; 5 and M; ; are constructed already then the
matrix M; can be constructed in the form

v [ M 77
T\ 2T

Thus, S(4) = 6, S(6) = 17, S(8) = 46, S(10) = 122. 0

(here we do not use cyclic shifts). Thus,




t
Hypothesis. S(t) = \‘(@) J

Note that if kg < ¢ then a proper (ko, k,p,t)-matrix can be obtained from
M; by the cancelling all rows where the number of ones is greater than ko and
some rows up to the nearest power of two.

Using the matrices My and Mo as initial in the recursive construction of
Theorem 3 we have constructed the 172-variable 102-resilient function with max-
imum possible nonlinearity as

So,—1,2115,2,2.4T5 4,7,.8T4,5,7,875,6,9,076,9,14,14T9,10,15,15

Ti0,11,16,16111,11,16,16711,9,13,13 = S172,102,9,1-

These are the smallest parameters that we have found improving the bound in
[11].
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