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Abstrat

We present several new and fairly pratial publi-key enryption shemes and prove them

seure against adaptive hosen iphertext attak. One sheme is based on Paillier's Deision

Composite Residuosity (DCR) assumption, while another is based in the lassial Quadrati

Residuosity (QR) assumption. The analysis is in the standard ryptographi model, i.e., the

seurity of our shemes does not rely on the Random Orale model.

We also introdue the notion of a universal hash proof system. Essentially, this is a speial

kind of non-interative zero-knowledge proof system for a language. We do not show that

universal hash proof systems exist for all NP languages, but we do show how to onstrut very

eÆient universal hash proof systems for a general lass of group-theoreti language membership

problems.

Given an eÆient universal hash proof system for a language with ertain natural ryp-

tographi indistinguishability properties, we show how to onstrut an eÆient publi-key en-

ryption shemes seure against adaptive hosen iphertext attak in the standard model. Our

onstrution only uses the universal hash proof system as a primitive: no other primitives are re-

quired, although even more eÆient enryption shemes an be obtained by using hash funtions

with appropriate ollision-resistane properties.

We show how to onstrut eÆient universal hash proof systems for languages related to the

DCR and QR assumptions. From these we get orresponding publi-key enryption shemes

that are seure under these assumptions. We also show that the Cramer-Shoup enryption

sheme (whih up until now was the only pratial enryption sheme that ould be proved

seure against adaptive hosen iphertext attak under a reasonable assumption, namely, the

Deision DiÆe-Hellman assumption) is also a speial ase of our general theory.
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1 Introdution

It is generally onsidered that the \right" notion of seurity for seurity for a general-purpose

publi-key enryption sheme is that of seurity against adaptive hosen iphertext attak.

This notion was introdued by Rako� and Simon [RS℄. While there are weaker notions of

seurity, suh as that de�ned by Naor and Yung [NY2℄, experiene in the design and analysis

of ryptographi protools has shown that seurity against adaptive hosen iphertext attak is

both neessary and suÆient in many appliations. Dolev, Dwork, and Naor [DDN℄ introdued

the notion of non-malleable enryption, whih turns out to be equivalent to the notion of seurity

against adaptive hosen iphertext attak (at least, when one onsiders the strongest possible type

of adversary).

Although Rako� and Simon de�ned the notion of seurity against adaptive hosen iphertext

attak, they did not atually present a sheme that satis�ed this property. Indeed, although they

present an enryption sheme, it requires the involvement of a trusted third party that plays a speial

role. Dolev, Dwork, and Naor present a sheme that an be proven seure against adaptive hosen

iphertext attak under a reasonable intratability assumption. However, although their sheme is

polynomial time, it is horrendously impratial, and so although their sheme is a valuable proof

of onept, it appears that it has no pratial signi�ane.

Up until now, the only pratial sheme that has been proposed that an be proven seure

against adaptive hosen iphertext attak under a reasonable intratability assumption is that of

Cramer and Shoup [CS℄. This sheme is based on the Deision DiÆe-Hellman (DDH) assumption,

and is not muh less eÆient than traditional ElGamal enryption.

Other pratial shemes have been proposed and heuristially proved seure against adaptive

hosen iphertext. More preisely, these shemes are proven seure under reasonable intratability

assumptions in the Random Orale model [BR℄. The Random Orale model is an idealized model of

omputation in whih a ryptographi hash funtion is modeled as a blak box, aess to whih is

allowed only through expliit orale queries. While the Random Orale model is a useful heuristi,

it does not rule out all possible attaks: a sheme proven seure in this model might still be subjet

to an attak \in the real world," even though the stated intratability assumption is true, and even

if there are no partiular weaknesses in the ryptographi hash funtion (see [CGH℄).

1.1 Our ontributions

We present several new and fairly pratial publi-key enryption shemes and prove them seure

against adaptive hosen iphertext attak. One sheme is based on Paillier's Deision Composite

Residuosity (DCR) assumption [P℄, while another is based in the lassial Quadrati Residuosity

(QR) assumption. The analysis is in the standard ryptographi model, i.e., the seurity of our

shemes does not rely on the Random Orale model.

We also introdue the notion of a universal hash proof system. Essentially, this is a speial kind

of non-interative zero-knowledge proof system for a language. We do not show that universal hash

proof systems exist for all NP languages, but we do show how to onstrut very eÆient universal

hash proof systems for a general lass of group-theoreti language membership problems.

Given an eÆient universal hash proof system for a language with ertain natural ryptographi

indistinguishability properties, we show how to onstrut an eÆient publi-key enryption shemes

seure against adaptive hosen iphertext attak in the standard model. Our onstrution only

uses the universal hash proof system as a primitive: no other primitives are required, although

even more eÆient enryption shemes an be obtained by using hash funtions with appropriate

ollision-resistane properties.
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We show how to onstrut eÆient universal hash proof systems for languages related to the

DCR and QR assumptions. From these we get orresponding publi-key enryption shemes that

are seure under these assumptions.

The DCR-based sheme is very pratial. It uses an n-bit RSA modulusN (with, say, n = 1024).

The publi and private keys, as well as the iphertexts, require storage for O(n) bits. Enryption

and deryption require O(n) multipliations modulo N

2

.

The QR-based sheme is somewhat less pratial. It uses an n-bit RSA modulus N as above, as

well as an auxiliary parameter t (with, say, t = 128). The publi and private keys require O(nt) bits

of storage, although iphertexts require just O(n + t) bits of storage. Enryption and deryption

require O(nt) multipliations modulo N .

We also show that the original Cramer-Shoup sheme follows from of our general onstrution,

when applied to a universal hash proof system related to the DDH assumption.

1.1.1 Organization of the paper

The setions of this paper are organized as follows:

x2 realls some basi terminology;

x3 realls the lassial notion of \universal hashing," and introdues a generalization whih we

all \universal projetive hashing."

x4 formalizes the notion of a \subset membership problem";

x5 introdues the notion of a \universal hash proof system," whih is based on \universal pro-

jetive hashing," and \subset membership problems";

x6 presents a general framework for building a seure publi-key enryption sheme using a

\universal hash proof system" for a \hard subset membership problem."

x7 shows how to build pratial \universal hash proof systems" for a general lass of group-

theoreti \subset membership problems."

x8 presents several new and fairly pratial enryption shemes based on the preeding general

onstrutions, inluding one based on the DCR assumption, and one based on the QR as-

sumption, and also shows that the original Cramer-Shoup enryption sheme follows from

these general onstrutions as well.

2 Some preliminaries

We reall some basi terminology and notation.

A funtion f(`) mapping non-negative integers to non-negative reals if alled negligible (in `) if

for all  � 1, there exists `

0

> 0 suh that f(`) � 1=`



for all ` � `

0

.

Let X and Y be random variables taking values in a �nite set S. The statistial distane between

X and Y is de�ned to be

Dist(X;Y ) =

1

2

�

X

s2S

jPr[X = s℄� Pr[Y = s℄j :

Equivalently,

Dist(X;Y ) = max

S

0

�S

�

�

Pr[X 2 S

0

℄� Pr[Y 2 S

0

℄

�

�

:
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We shall say that X and Y are �-lose if Dist(X;Y ) � �.

Let X = (X

`

)

`�0

and Y = (Y

`

)

`�0

be sequenes of random variables, where for eah ` � 0, X

`

and Y

`

take values in a �nite set S

`

. Then we say that X and Y are statistially indistinguishable

if Dist(X

`

; Y

`

) is a negligible funtion in `. For omputational purposes, we will generally work in

a setting where the sets S

`

an be enoded as bit strings whose length is polynomial in `. For any

probabilisti algorithm A that outputs 0 or 1, we de�ne the distinguishing advantage for A (with

respet to X and Y) as the funtion

Dist

X;Y

A

(`) =

�

�

�

Pr[A(1

`

;X

`

) = 1℄� Pr[A(1

`

; Y

`

) = 1℄

�

�

�

:

Here, the notation 1

`

denotes the unary enoding of ` as a sequene of ` opies of 1, and the

probability is with respet to the random oin tosses of the algorithm A and the distributions of

X

`

and Y

`

. We say that X and Y are omputationally indistinguishable if for all probabilisti,

polynomial-time A, the funtion Dist

X;Y

A

(`) is negligible in `.

For a positive integer Z, Z

N

denotes the ring of integers modulo N , and Z

�

N

denotes the

orresponding multipliative group of units. For a 2 Z, (a mod N) 2 Z

N

denotes the residue lass

of a modulo N .

For an element g of a group G, hgi denotes the subgroup of G generated by g. Likewise, for a

subset U of G, hUi denotes the subgroup of G generated by U .

3 Universal projetive hashing

3.1 Universal hashing

Before de�ning universal projetive hash funtions, we reall some de�nitions relating to the lassial

notion of \universal hashing" [CW, WC℄.

Let X and � be �nite, non-empty sets. Let H = (H

k

)

k2K

be a olletion of funtions indexed

by K, so that for every k 2 K, H

k

is a funtion from X into �. Note that we may have H

k

= H

k

0

for k 6= k

0

. We all F = (H;K;X;�) a hash family, and eah H

k

a hash funtion.

De�nition 1 Let F = (H;K;X;�) be a hash family, and onsider the probability spae de�ned by

hoosing k 2 K at random.

We all F pair-wise independent if for all x; x

�

2 X with x 6= x

�

, it holds that H

k

(x) and

H

k

(x

�

) are uniformly and independently distributed over �.

Note that there are many well-known, and very simple onstrutions of pair-wise independent

hash families.

3.2 De�nition of universal projetive hashing

We now introdue the onept of universal projetive hashing. Let F = (H;K;X;�) be a hash

family. Let L be a non-empty, proper subset of X. Let S be a �nite, non-empty set, and let

� : K ! S be a funtion. Set H = (H;K;X;L;�; S; �).

De�nition 2 H = (H;K;X;L;�; S; �), de�ned as above, is alled a projetive hash family (for

(X;L)) if for all k 2 K, the ation of H

k

on L is determined by �(k).

In other words, for all k 2 K, the value �(k) \enodes" the ation of H

k

on L (and possibly

more than that), so that given �(k) and x 2 L, the value H

k

(x) is uniquely determined.

3



De�nition 3 Let H = (H;K;X;L;�; S; �) be a projetive hash family, and let � � 0 be a real

number. Consider the probability spae de�ned by hoosing k 2 K at random.

We say that H is �-universal if for all s 2 S, x 2 X n L, and � 2 �, it holds that

Pr[H

k

(x) = � ^ �(k) = s℄ � �Pr[�(k) = s℄:

We say that H is �-universal

2

if for all s 2 S, x; x

�

2 X, and �; �

�

2 � with x =2 L [ fx

�

g, it

holds that

Pr[H

k

(x) = � ^ H

k

(x

�

) = �

�

^ �(k) = s℄ � �Pr[H

k

(x

�

) = �

�

^ �(k) = s℄

We will sometimes refer to the value of � in the above de�nition as the error rate of H.

Note that if H is �-universal

2

, then it is also �-universal (note that jXj � 2).

We an reformulate the above de�nition as follows. Let H = (H;K;X;L;�; S; �) be a pro-

jetive hash family, and onsider the probability spae de�ned by hoosing k 2 K at random. H

is �-universal means that onditioned on a �xed value of �(k), even though the value of H

k

is

ompletely determined on L, for any x 2 X nL, the value of H

k

(x) an be guessed with probability

at most �. H is �-universal

2

means that in addition, for any x

�

2 X n L, onditioned on �xed

values of �(k) and H

k

(x

�

), for any x 2 X n L with x 6= x

�

, the value of H

k

(x) an be guessed with

probability at most �.

3.2.1 Motivation

We now disuss the motivation for De�nition 3. Let H be a projetive hash family, and onsider

the following game played by an adversary.

At the beginning of the game, k 2 K is hosen at random, and the adversary is given s = �(k).

Initially, the adversary has no other information about k, but during the ourse of the game, he is

allowed to make a sequene of orale queries to learn more about k.

There are two types of orale queries. One type of orale query is a test query: the adversary

submits x 2 X and � 2 � to the orale, and the orale tells the adversary whether or not H

k

(x) = �.

The other type of orale query is an evaluation query: the adversary submits x

�

2 X to the orale,

and the orale tells the adversary the value �

�

= H

k

(x

�

).

During the ourse of the game, the adversary is allowed to make an arbitrary number of test

queries, but only one evaluation query. Moreover, after the evaluation query, he is not allowed to

submit (x

�

; �

�

) to the orale in any subsequent test queries.

We say the adversary wins the game if he submits a test query (x; �) with x 2 X n L and

H

k

(x) = �.

That ompletes the desription of the game. Note that in this game, the adversary's strategy is

quite arbitrary, and need not be eÆiently omputable. Moreover, the strategy may be adaptive,

in the sense that an orale query made by the adversary may depend in an arbitrary way on all

information available to the adversary at that time.

It is easy to see from the de�nition that if H is �-universal

2

, then regardless of the adversary's

strategy, he wins the game with probability at most Q � �, where Q is a bound on the number of test

queries made by the adversary. Note that while this property is a onsequene of the de�nition of

�-universal

2

, it is not neessarily equivalent to the de�nition of �-universal

2

. In fat, this property

suÆes to prove the main results of this paper, and indeed, all we need is this property in the ase

where x

�

is hosen at random from X n L, and where the adversary is omputationally bounded.
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3.2.2 Trivial onstrutions

Families satisfying De�nition 3 are trivial to onstrut, at least from a ombinatorial point of view.

For instane, let F = (H;K;X;�) be a pair-wise independent hash family, let L be a non-empty,

�nite subset of X, and let �

0

2 �. Then let H = (H

0

;K;X;L;�; S; �), where for all k 2 K and

x 2 X, we de�ne H

0

k

(x) = �

0

if x 2 L, and H

0

k

(x) = H

k

(x), otherwise. We also de�ne S = f�

0

g and

�(k) = �

0

for all k 2 K. It is lear that H is a 1=j�j-universal

2

projetive hash family. However,

in our appliations later on, we want these hash funtions to be eÆiently omputable on all of X,

even if L is hard to distinguish from X n L. Therefore, this trivial \solution" is not useful in our

ontext.

3.3 Smooth projetive hashing

We will need a variation of universal projetive hashing, whih we all smooth projetive hashing.

Let H = (H;K;X;L;�; S; �) be a projetive hash family. We de�ne two random variables,

U(H) and V (H), as follows. Consider the probability spae de�ned by hoosing k 2 K at random,

x 2 X nL at random, and �

0

2 � at random. We set U(H) = (x; s; �

0

) and V (H) = (x; s; �), where

s = �(k) and � = H

k

(x).

De�nition 4 Let � � 0 be a real number. A projetive hash family H is �-smooth if U(H) and

V (H) are �-lose.

3.4 Approximations to projetive hash families

Our de�nition of universal and universal

2

projetive hash families are quite strong: so strong,

in fat, that in many instanes it is impossible to eÆiently implement them. However, in all

our appliations, it is suÆient to eÆiently implement a projetive hash family that e�etively

approximates a universal or universal

2

projetive hash family. To this end, we de�ne an appropriate

notion of distane between projetive hash families.

Let H = (H;K;X;L;�; S; �) be a projetive hash family. Consider the distribution de�ned

by sampling k 2 K at random, and de�ne the random variable View(H) = (H

k

; �(k)). Note that

View(H) omprises the value of H

k

at all points x 2 X.

De�nition 5 Let Æ � 0 be a real number. Let H = (H;K;X;L;�; S; �) and H

�

=

(H

�

;K

�

;X; L;�; S; �

�

) be projetive hash families. We say that H and H

�

are Æ-lose if View(H)

and View(H

�

) are Æ-lose.

Note that if H and H

�

are Æ-lose for some \small" value of Æ, and if H

�

is �-universal or

�-universal

2

for some \small" value of �, this does not imply that H is �

0

-universal or �

0

-universal

2

for any partiularly small value of �

0

. However, if H and H

�

are Æ-lose and H

�

is �-smooth, then

it is lear that H is (�+ Æ)-smooth.

3.5 Some elementary redutions

We show some elementary redutions among the various notions introdued. Most of the redutions

given here are primarily theoretially motivated. Later on, in a speialized ontext, we present

redutions that are onsiderably more eÆient.
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3.5.1 Reduing the error rate

Let H = (H;K;X;L;�; S; �) be an �-universal (respetively, -universal

2

) projetive hash family.

The onstrution below redues the error rate from � to �

t

, by simple t-fold \parallelization."

Let t be a positive integer, and let

�

H = (

�

H;K

t

;X; L;�

t

; S

t

; ��), where

�

H and �� are de�ned as

follows.

For

~

k = (k

1

; : : : ; k

t

) 2 K

t

and x 2 X, we de�ne

�

H

~

k

(x) = (H

k

1

(x); : : : ;H

k

t

(x)), and we de�ne

��(

~

k) = (�(k

1

); : : : ; �(k

t

)).

The proof of the following lemma is straightforward, and is left to the reader.

Lemma 1 Let H and

�

H be as in the above onstrution. If H is an �-universal (respetively,

-universal

2

) projetive hash family, then

�

H is an �

t

-universal (respetively, -universal

2

) projetive

hash family.

3.5.2 From universal projetive to universal

2

projetive

Let H = (H;K;X;L;�; S; �) be an �-universal projetive hash family. The next onstrution turns

H into an �-universal

2

projetive hash family H

y

for (X;L).

Let us assume that we have injetive funtions � : X ! f0; 1g

n

and �

0

: �! f0; 1g

n

0

for some

appropriately large positive integers n and n

0

. Let H

y

= (H

y

;K

2n

;X; L; f0; 1g

n

0

; S

2n

; �

y

), where

H

y

and �

y

are de�ned as follows.

For

~

k = (k

1;0

; k

1;1

; : : : ; k

n;0

; k

n;1

) 2 K

2n

, and x 2 X with �(x) = (

1

; : : : ; 

n

) 2 f0; 1g

n

, we

de�ne

H

y

~

k

(x) =

n

M

i=1

�

0

(H

k

i;

i

(x))

and

�

y

(

~

k) = (�(k

1;0

); �(k

1;1

); : : : ; �(k

n;0

); �(k

n;1

)):

Here, \

L

" denotes the bit-wise \exlusive or" operation on n

0

-bit strings.

Lemma 2 Let H and H

y

be as de�ned in the above onstrution. If H is an �-universal projetive

hash family, then H

y

is an �-universal

2

projetive hash family.

Proof. It is immediate that De�nition 2 is satis�ed.

The proof that De�nition 3 is satis�ed follows from a simple \onditioning argument," the

details of whih we now provide.

Consider the probability spae de�ned by hoosing

~

k 2 K

2n

at random. To show that H

y

is

�-universal

2

, we have to show that for any x; x

�

2 X with x =2 L [ fx

�

g, onditioned on any �xed

values of H

y

~

k

(x

�

) and �

y

(

~

k), the value of H

y

~

k

(x) an be guessed with probability at most �.

Let �(x) = (

1

; : : : ; 

n

) 2 f0; 1g

n

and �(x

�

) = (

�

1

; : : : ; 

�

n

) 2 f0; 1g

n

. Sine x 6= x

�

, we must

have 

i

6= 

�

i

for some 1 � i � n, and without loss of generality, let us assume that i = n.

In addition to onditioning on �xed values of H

y

~

k

(x

�

) and �

y

(

~

k), let us further ondition on �xed

values of k

1;0

; k

1;1

; : : : ; k

n�1;0

; k

n�1;1

, as well as k

n;

�

n

(onsistent with the �xed values of H

y

~

k

(x

�

) and

�

y

(

~

k)). In this onditional probability spae, the value of H

y

~

k

(x) determines the value of H

k

n;

n

(x),

and thus, if the value of H

y

~

k

(x) ould be guessed with probability greater than �, then so ould

the value of H

k

n;

n

(x). But sine H is �-universal, it follows that the value of H

k

n;

n

(x) annot be

guessed with probability greater than �. We onlude that value of H

y

~

k

(x) annot be guessed with
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probability greater than � in this onditional probability spae. Sine this holds for all �xed values

of k

1;0

; k

1;1

; : : : ; k

n�1;0

; k

n�1;1

, and k

n;

�

n

under onsideration, it holds as well in the onditional

probability spae where just H

y

~

k

(x

�

) and �

y

(

~

k) are �xed, whih proves the theorem. 4

The following onstrution is a variation on Lemma 2. It extends the sets X and L by taking

the Cartesian produt of these sets with a �xed, �nite set E. Suh extensions will prove useful in

the sequel.

Let H = (H;K;X;L;�; S; �) be an �-universal projetive hash family. Let E be a non-empty,

�nite set.

Let us assume that we have injetive funtions � : X � E ! f0; 1g

n

and �

0

: � ! f0; 1g

n

0

for some appropriately large positive integers n and n

0

. Let H

z

= (H

z

;K

2n

;X � E;L �

E; f0; 1g

n

0

; S

2n

; �

z

), where H

z

and �

z

are de�ned as follows.

For

~

k = (k

1;0

; k

1;1

; : : : ; k

n;0

; k

n;1

) 2 K

2n

, and (x; e) 2 X�E with �(x; e) = (

1

; : : : ; 

n

) 2 f0; 1g

n

,

we de�ne

H

z

~

k

(x; e) =

n

M

i=1

�

0

(H

k

i;

i

(x))

and

�

z

(

~

k) = (�(k

1;0

); �(k

1;1

); : : : ; �(k

n;0

); �(k

n;1

)):

The proof of the following lemma is essentially the same as the proof of Lemma 2.

Lemma 3 Let H and H

z

be as de�ned in the above onstrution. If H is an �-universal projetive

hash family, then H

z

is an �-universal

2

projetive hash family.

3.5.3 From universal projetive to smooth projetive

Let H = (H;K;X;L;�; S; �) be an �-universal projetive hash family. The next onstrution turns

H into a Æ-smooth projetive hash family H

�

for (X;L), where the hash outputs are a-bit strings,

provided � and a are not too big, and Æ is not too small.

The onstrution is a simple appliation of the Leftover Hash Lemma (a.k.a., Entropy Smoothing

Lemma; see, e.g., [L, p. 86℄).

Let F = (

�

H;

�

K;�;

�

�) be a pair-wise independent hash family, where

�

� = f0; 1g

a

for some

integer a � 1. Suh a hash family an easily be onstruted using well-known and quite pratial

tehniques based on arithmeti in �nite �elds. We do not disuss this any further here.

Let H

�

= (H

�

;K �

�

K;X;L;

�

�; S�

�

K;�

�

), where H

�

and �

�

are de�ned as follows. For k 2 K,

�

k 2

�

K, and x 2 X, we de�ne H

�

k;

�

k

=

�

H

�

k

(H

k

(x)), and we de�ne �

�

(k;

�

k) = (�(k);

�

k).

Lemma 4 Let H, F, H

�

, and a be as in the above onstrution. Suppose that H is an �-universal

projetive hash family. For any integer b � 0 suh that a+ 2b � log

2

(1=�), H

�

is a 2

�(b+1)

-smooth

projetive hash family.

Proof. It is lear that H

�

satis�es the basi requirements of a projetive hash family.

Consider the random variables U(H

�

) and V (H

�

), as de�ned in the paragraph preeding Def-

inition 4. That is, onsider the probability spae where k 2 K,

�

k 2

�

K, x 2 X n L, and ��

0

2

�

�

are hosen at random, and set U(H

�

) = (x; s;

�

k; ��

0

) and V (H

�

) = (x; s;

�

k; ��), where s = �(k) and

�� =

�

H

�

k

(H

k

(x)).

Consider any onditional probability spae where partiular values of x 2 X n L and s 2 S are

�xed, and let U(H

�

j x; s) and V (H

�

j x; s) be the random variables in this onditional probability

7



spae orresponding to U(H

�

) and V (H

�

). In suh a onditional probability spae, by the de�nition

of �-universal projetive hashing, the distribution of H

k

(x) has min-entropy at least log

2

(1=�), and

�

k is uniformly and independently distributed over

�

K. The Leftover Hash Lemma then diretly

implies that U(H

�

j x; s) and V (H

�

j x; s) are 2

�(b+1)

-lose. Sine this bound holds uniformly for

all x; s, it follows that U(H

�

) and V (H

�

) are also 2

�(b+1)

-lose. 4

4 Subset membership problems

In this setion we de�ne a lass of languages with some natural ryptographi indistinguishabil-

ity properties. The de�nitions below apture the natural properties of well-known ryptographi

problems suh as the Quadrati Residuosity and Deision DiÆe-Hellman problems, as well as

others.

A subset membership problem M spei�es a olletion (I

`

)

`�0

of distributions. For every value

of a seurity parameter ` � 0, I

`

is a probability distribution of instane desriptions.

An instane desription � spei�es the following:

� Finite, non-empty sets X, L, and W , suh that L is a proper subset of X.

� A binary relation R � X �W .

For all ` � 0, [I

`

℄ denotes the instane desriptions that are assigned non-zero probability in

the distribution I

`

. We write �[X;L;W;R℄ to indiate that the instane � spei�es X, L, W and

R as above.

For x 2 X and w 2W with (x;w) 2 R, we say that w is a witness for x. Note that it would be

quite natural to require that for all x 2 X, we have (x;w) 2 R for some w 2W if and only if x 2 L,

and that the relation R is eÆiently omputable; however, we will not make these requirements

here, as they are not neessary for our purposes. The atual role of a witness will beome apparent

in the next setion.

A subset membership problem also provides several algorithms. For this purpose, we require

that instane desriptions, as well as elements of the sets X and W , an be uniquely enoded as

bit strings of length polynomially bounded in `. The following algorithms are provided:

� a probabilisti, polynomial time sampling algorithm that on input 1

`

for ` � 0 samples an

instane � aording to the distribution I

`

.

We do not require that the output distribution of the sampling algorithm and I

`

are equal;

rather, we only require that they are �(`)-lose, where �(`) is a negligible funtion. In parti-

ular, with negligible probability, the sampling algorithm may output something that is not

even an element of [I

`

℄.

We all this algorithm the instane sampling algorithm of M, and we all the statistial

distane �(`) disussed above its approximation error.

� a probabilisti, polynomial time sampling algorithm that takes as input 1

`

for ` � 0 and an

instane �[X;L;W;R℄ 2 [I

`

℄, and outputs a random x 2 L, together with a witness w 2 W

for x.

We do not require that the distribution of the output value x and the uniform distribution

on L are equal; rather, we only require that they are �

0

(`)-lose, where �

0

(`) is a negligible

funtion. However, we do require that the output x is always in L.

8



We all this algorithm the subset sampling algorithm forM, and we all the statistial distane

�

0

(`) disussed above its approximation error.

� a deterministi, polynomial time algorithm that takes as input 1

`

for ` � 0, an instane

�[X;L;W;R℄ 2 [I

`

℄, and � 2 f0; 1g

�

, and heks whether � is a valid binary enoding of an

element of X.

This ompletes the de�nition of a subset membership problem.

We next de�ne the notion of a hard subset membership problem. Essentially, this means that

it is omputationally hard to distinguish random elements of L from random elements of X n L.

We now formulate this notion more preisely.

LetM be a subset membership problem as above. We de�ne two sequenes of random variables,

(U

`

(M))

`�0

and (V

`

(M))

`�0

, as follows. Fix ` � 0, and onsider the probability spae de�ned by

sampling �[X;L;W;R℄ from I

`

, and hoosing x 2 L at random and x

0

2 X � L at random. Set

U

`

(M) = (�; x) and V

`

(M) = (�; x

0

).

De�nition 6 Let M be a subset membership problem. We say that M is hard if (U

`

(M))

`�0

and

(V

`

(M))

`�0

are omputationally indistinguishable.

5 Universal hash proof systems

5.1 Hash proof systems

Let M be a subset membership problem, as de�ned in x4, speifying a sequene (I

`

)

`�0

of instane

distributions.

A hash proof system (HPS) P for M assoiates with eah instane �[X;L;W;R℄ of M a pro-

jetive hash family H = (H;K;X;L;�; S; �) for (X;L).

Additionally, P provides several algorithms to arry out basi operations we have de�ned for an

assoiated projetive hash family; namely, sampling k 2 K at random, omputing �(k) 2 S given

k 2 K, omputing H

k

(x) 2 � given k 2 K and x 2 X. We all this latter algorithm the private

evaluation algorithm for P. Moreover, a ruial property is that the system provides an eÆient

algorithm to ompute H

k

(x) 2 �, given �(k) 2 S, x 2 L, and w 2 W , where w is a witness for x.

We all this algorithm the publi evaluation algorithm for P. The system should also provide an

algorithm that reognizes elements of �.

We now disuss the above-mentioned algorithms in a bit more detail. In this disussion,

whenever �[X;L;W;R℄ 2 [I

`

℄ is �xed in some ontext, it is to be understood that H =

(H;K;X;L;�; S; �) is the projetive hash family that P assoiates with �. These algorithms

work with bit strings of length bounded by a polynomial in ` to represent elements of K, � and

S. We also assume that these algorithms use the same enodings of the sets X, L and W as the

algorithms from the subset membership problem M.

The system P provides the following algorithms:

� a probabilisti, polynomial time algorithm that takes as input 1

`

and an instane � 2 [I

`

℄,

and outputs k 2 K, distributed uniformly over K.

� a deterministi, polynomial time algorithm that takes as input 1

`

, an instane � 2 [I

`

℄, k 2 K,

and outputs s 2 S suh that �(k) = s.

9



� a deterministi, polynomial time algorithm that takes as input 1

`

, an instane � 2 [I

`

℄, k 2 K

and x 2 X, and outputs � 2 � suh that H

k

(x) = �.

This is the private evaluation algorithm.

� a deterministi, polynomial time algorithm that takes as input 1

`

, an instane � 2 [I

`

℄, s 2 S

suh that �(k) = s for some k 2 S, and x 2 L together with a witness w 2 W for x, and

outputs � 2 � suh that H

k

(x) = �.

This is the publi evaluation algorithm.

� a deterministi, polynomial time algorithm that takes as input 1

`

, an instane � 2 [I

`

℄, and

� 2 f0; 1g

�

, and determines if � is a valid enoding of an element of �.

5.2 Universal hash proof systems

De�nition 7 Let �(`) be a funtion mapping non-negative integers to non-negative reals. Let M

be a subset membership problem speifying a sequene (I

`

)

`�0

of instane distributions. Let P be

an HPS for M.

We say that P is �(`)-universal (respetively, -universal

2

, -smooth) if there exists a negligible

funtion Æ(`) suh that for all ` � 0 and for all �[X;L;W;R℄ 2 [I

`

℄, the projetive hash family

H = (H;K;X;L;�; S; �) that P assoiates with � is Æ(`)-lose to an �(`)-universal (respetively,

-universal

2

, -smooth) projetive hash family H

�

= (H

�

;K

�

;X; L;�; S; �

�

).

Moreover, if this is the ase, and �(`) is a negligible funtion, then we say that P is strongly

universal (respetively, universal

2

, smooth).

We shall all the funtion Æ(`) in the above de�nition the approximation error of P, and we

shall refer to the projetive hash family H

�

as the idealization of H.

It is perhaps worth remarking that if a hash proof system is strongly universal, and the under-

lying subset membership problem is hard, then the problem of evaluating H

k

(x) for random k 2 K

and arbitrary x 2 X, given only x and �(k), must be hard.

We also need an extension of this notion.

The de�nition of an extended HPS P for M is the same as that of ordinary HPS for M, exept

that for eah k � 0 and for eah � = �[X;L;W;R℄ 2 [I

k

℄, the proof system P assoiates with � a

�nite set E along with a projetive hash familyH = (H;K;X�E;L�E;�; S; �) for (X�E;L�E).

Note that in this setting, to ompute H

k

(x; e) for x 2 L and e 2 E, the publi evaluation algorithm

takes as input �(k) 2 S, x 2 L, e 2 E, and a witness w 2 W for x, and the private evaluation

algorithm takes as input k 2 K, x 2 X, and e 2 E. We shall also require that elements of E are

uniquely enoded as bit strings of length bounded by a polynomial in `, and that P provides an

algorithm that eÆiently determines whether a bit string is a valid enoding of an element of E.

De�nition 7 an be modi�ed in the obvious way to de�ne extended �(`)-universal

2

HPS's (we

do not need any of the other notions, nor are they partiularly interesting).

5.2.1 Construtions

Note that based on the onstrutions in Lemmas 1, 2, 3, and 4, given an HPS that is (say) 1=2-

universal, we an onstrut a strongly universal HPS, a (possibly extended) strongly universal

2

HPS, and a strongly smooth HPS. However, in most speial ases of pratial interest, there are

muh more eÆient onstrutions.
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6 A general framework for seure publi-key enryption

In this setion, we present a general tehnique for building seure publi-key enryption shemes

using appropriate hash proof systems for a hard subset membership problem. But �rst, we reall

the de�nition of a publi-key enryption sheme and the notion of seurity against adaptive hosen

iphertext attak.

6.1 Publi-key enryption shemes

A publi key enryption sheme provides three algorithms:

� a probabilisti, polynomial-time key generation algorithm that on input 1

`

, where ` � 0 is a

seurity parameter, outputs a publi-key/private-key pair (PK;SK).

A publi key PK spei�es an �nite message spae M

PK

. The message spae should be easy

to reognize; that is, there should be a deterministi, polynomial-time algorithm that takes

as input 1

`

and PK, along with a bit string �, and determines if � is a proper enoding of an

element of M

PK

.

� a probabilisti, polynomial-time enryption algorithm that on input 1

`

, PK, and m, where

` � 0, PK is a publi key assoiated with seurity parameter `, and m 2M

PK

, outputs a bit

string �.

� a deterministi, polynomial-time deryption algorithm that on input 1

`

, SK, and �, where

` � 0, SK is a private key assoiated with seurity parameter `, and � is a bit string, outputs

either a message m 2 M

PK

, where PK is the publi-key orresponding to SK, or a speial

symbol rejet.

Any publi-key enryption sheme should satisfy a \orretness" or \soundness" property, whih

loosely speaking means that the deryption operation \undoes" the enryption operation. For our

purposes, we an formulate this as follows. Let us all a key pair (PK;SK) bad if for some m 2M

PK

,

and for some enryption � of m under PK, the deryption of � under SK is not m. Let us all a

publi-key enryption sheme sound if the probability that the key generation algorithm on input

1

`

outputs a bad key pair is a negligible funtion in `.

For all enryption shemes presented in this paper, it is trivial to verify this soundness property,

and so we will not expliitly deal with this issue again.

Note that in this paper, we only work with �nite message spaes.

6.2 Adaptive hosen iphertext seurity

Consider a publi-key enryption sheme, and onsider the following game, played against an arbi-

trary probabilisti, polynomial-time adversary.

1. Key-Generation Phase. Let ` � 0 be the seurity parameter. We run the key-generation

algorithm of the publi-key enryption sheme on input 1

`

, and get a key pair (PK;SK).

We equip an enryption orale with the publi key PK, and a deryption orale with the seret

key SK.

The publi-key PK is presented to the adversary.

11



2. Probing Phase I. In this phase, the attaker gets to interat with the deryption orale in an

arbitrary, adaptive fashion. This phase goes on for a polynomial amount of time, spei�ed

by the adversary.

More preisely, in eah round of this interation, the adversary sends a query � to the de-

ryption orale. A query is a bit string hosen by the adversary.

The deryption orale in turn runs the deryption algorithm on input of the seret key SK

and the query �, and responds to the query by returning the output to the adversary.

Note that a query is not required to represent an enryption (under PK) of a message; a query

an indeed be any string designed to probe the behavior of the deryption orale.

The interation is adaptive in the sense that the next query may depend on the history so

far, in some way deemed advantageous by the adversary.

3. Target-Seletion Phase. The adversary selets two messages m

0

and m

1

from the message

spae, and presents (m

0

;m

1

) to the enryption orale.

The enryption orale selets a random � 2 f0; 1g, and enrypts m

�

under PK.

The resulting enryption �

�

, the target iphertext, is presented to the adversary.

4. Probing Phase II. This phase is as Probing Phase I, the only di�erene being that the de-

ryption orale only responds to queries � that are di�erent from the target iphertext �

�

.

5. Guessing-Phase. The adversary outputs a bit

^

�.

The adversary is said to win the game if

^

� = �. We de�ne the advantage (over random guessing)

of the adversary as the absolute value of the di�erene of the probability that he wins and 1/2.

A publi key enryption sheme is said to be seure against adaptive hosen iphertext attak if

for all polynomial time, probabilisti adversaries, the advantage in this guessing game is negligible

as a funtion of the seurity parameter.

6.3 The generi sheme and its analysis

We now desribe our generi method for onstruting a seure publi-key enryption sheme.

Let M be a subset membership problem speifying a sequene (I

`

)

`�0

of instane distributions.

We also need a strongly smooth hash proof system P for M, as well as a strongly universal

2

extended hash proof system

^

P for M. We disuss P and

^

P below in greater detail.

To simplify the notation, we will desribe the sheme with respet to a �xed value ` � 0 of

the seurity parameter, and a �xed instane desription �[X;L;W;R℄ 2 [I

`

℄. Thus, it is to be

understood that the key generation algorithm for the sheme generates this instane desription,

using the instane sampling algorithm provided by M, and that this instane desription is a part

of the publi key as well; alternatively, in an appropriately de�ned \multi-user setting," di�erent

users ould work with the same instane desription.

With � �xed as above, let H = (H;K;X;L;�; S; �) be the projetive hash family that P

assoiates with �, and let

^

H = (

^

H;

^

K;X ��; L��;

^

�;

^

S; �̂) be the projetive hash family that

^

P

assoiates with �. We require that � is an abelian group, for whih we use additive notation, and

that elements of � an be eÆiently added and subtrated.

We now desribe the key generation, enryption, and deryption algorithms for the sheme, as

they behave for a �xed instane desription �, with orresponding projetive hash families H and

^

H, as above. The message spae is �.
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Key Generation

Choose k 2 K and

^

k 2

^

K at random, and ompute s = �(k) 2 S and ŝ = �̂(

^

k) 2

^

S. Note

that all of these operations an be eÆiently performed using the algorithms provided by P

and

^

P.

The publi key is (s; ŝ).

The private key is (k;

^

k).

Enryption

To enrypt a message m 2 � under a publi key as above, one does the following.

Generate a random x 2 L, together with a orresponding witness w 2 W , using the subset

sampling algorithm provided by M.

Compute � = H

k

(x) 2 �, using the publi evaluation algorithm for P on inputs s, x, and w.

Compute e = m+ � 2 �.

Compute �̂ =

^

H

^

k

(x; e) 2

^

�, using the publi evaluation algorithm for

^

P on inputs ŝ, x, e,

and w.

The iphertext is (x; e; �̂).

Deryption

To derypt a iphertext (x; e; �̂) 2 X � � �

^

� under a seret key as above, one does the

following.

Compute �̂

0

=

^

H

^

k

(x; e) 2

^

�, using the private evaluation algorithm for

^

P on inputs

^

k, x, and

e.

Chek whether �̂ = �̂

0

; if not, then output rejet and halt.

Compute � = H

k

(x) 2 �, using the private evaluation algorithm for P on inputs k and x.

Compute m = e� � 2 �, and output the message m.

It is to be impliitly understood that when the deryption algorithm is presented with a i-

phertext, this iphertext is atually just a bit string, and that the deryption algorithm must parse

this string to ensure that it properly enodes some (x; e; �̂) 2 X � � �

^

�; if not, the deryption

algorithm outputs rejet and halts.

We remark that to implement this sheme, all we really need is a 1=2-universal HPS, sine we

an onvert this into appropriate strongly smooth and strongly universal

2

HPS's using the general

onstrutions disussed in x5.2.1. Indeed, the Leftover Hash onstrution in Lemma 4 gives us a

strongly smooth HPS whose hash outputs are bit strings of a given length a, and so we an take

the group � in the above onstrution to be the group of a-bit strings with \exlusive or" as the

group operation.

Theorem 1 The above sheme is seure against adaptive hosen iphertext attak, assuming M

is a hard subset membership problem.

Proof. We show that the existene of an eÆient adaptive hosen iphertext attak with non-

negligible advantage implies the existene of an eÆient distinguishing algorithm that ontradits

the hardness assumption for M.
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We de�ne the following game between a simulator and an adversary that arries out an adaptive

hosen iphertext attak. The simulator takes as input 1

`

, for ` � 0, along with �[X;L;W;R℄ 2 [I

`

℄,

and x

�

2 X.

The simulator provides a \simulated environment" for the adversary as follows. In this desrip-

tion, H and

^

H are �xed as in the desription above of the enryption sheme.

In the Key-Generation Phase, the simulator runs the key-generation as usual, using the given

value of �.

In both Probing Phases I and II, the simulator runs the deryption algorithm, as usual, using

the seret key generated in the Key-Generation Phase.

In the Target-Seletion Phase, the attaker presents messages m

0

and m

1

of his hoie to the

simulator. The simulator ips a random oin �, and omputes the target iphertext (x

�

; e

�

; �̂

�

),

where x

�

is the value input to the simulator, in the following way. It �rst omputes �

�

= H

k

(x

�

)

using the private evaluation algorithm for P on inputs k and x

�

. It then omputes e

�

= m

�

+ �

�

.

Finally, it omputes �̂

�

=

^

H

^

k

(x

�

; e

�

), using the private evaluation algorithm for

^

P on inputs

^

k, x

�

,

and e

�

.

In the Guessing Phase, the adversary outputs a bit

^

�. The simulator outputs 1 if � =

^

�, and 0

otherwise, after whih, the simulator halts.

For eah value of the seurity parameter ` � 0, we onsider the behavior of this simula-

tor/adversary pair in two di�erent experiments. In the �rst experiment, the simulator is given

(�; x

�

), where �[X;L;W;R℄ is sampled from I

`

, and x

�

is sampled at random from L; let T

0

`

be the

event that the simulator outputs a 1 in this experiment. In the seond experiment, the simulator

is given (�; x

�

), where �[X;L;W;R℄ is sampled from I

`

, and x

�

is sampled at random from X n L;

let T

`

be the event that the simulator outputs a 1 in this experiment.

Let AdvDist(`) = jPr[T

`

℄ � Pr[T

0

`

℄j; that is, AdvDist(`) is the distinguishing advantage of our

simulator. Let AdvCCA(`) be the adversary's advantage in an adaptive hosen iphertext attak.

Our goal is to show that AdvCCA(`) is negligible, provided AdvDist(`) is negligible.

To make the proof more onrete and the eÆieny of the redution more transparent, we

introdue the following notation. We let Q(`) denote an upper bound on the number of deryp-

tion orale queries made by the adversary; we assume that this upper bound holds regardless of

the environment in whih the adversary operates. Next, we suppose that P is �(`)-smooth with

approximation error Æ(`), and that

^

P is �̂(`)-universal

2

with approximation error

^

Æ(`). Also, we

assume that the instane sampling algorithm for M has approximation error �(`), and that the

subset sampling algorithm for M has approximation error �

0

(`).

Case x

�

2 L. In this ase, the simulation is perfet, exept for the approximation errors introdued

by the instane and subset sampling algorithms for M. Thus, we have

jPr[T

0

`

℄� 1=2j � AdvCCA(`)� (�(`) + �

0

(`)): (1)

Case x

�

2 X n L. To analyze the behavior of the simulator in this ase, it is onvenient to

make a sequene of modi�ations to the simulator. We refer to the experiment run with the

unmodi�ed simulator as experiment 0, and to the experiments run with subsequent modi�ations

as experiments 1, 2, et. Eah of these experiments are best viewed as operating on the same

underlying probability spae; we de�ne the event T

(i)

`

, for i � 0, as the event that the simulator in

experiment i outputs a 1. Note that unlike the original simulator, these modi�ed simulators need

not be eÆiently implementable.
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Experiment 1. To de�ne experiment 1, we modify the simulator as follows. We replae the projetive

hash family H that P assoiates with � with its idealization, whih is an �(`)-smooth projetive

hash family that is Æ(`)-lose to H. We also replae the projetive hash family

^

H that

^

P assoiates

with � with its idealization, whih is an �̂(`)-universal

2

projetive hash family that is

^

Æ(`)-lose to

^

H. By de�nition, we have

jPr[T

(1)

`

℄� Pr[T

(0)

`

℄j � Æ(`) +

^

Æ(`): (2)

To keep the notation simple, we refer to these idealized projetive hash families as H and

^

H as

well, and ontinue to use the notation established in the desription of the enryption sheme for

these two projetive hash families.

Experiment 2. In experiment 2, we modify the simulator yet again, so that in addition to rejeting

a iphertext (x; e; �̂) 2 X ���

^

� if

^

H

^

k

(x; e) 6= �̂, the deryption orale also rejets the iphertext

if x =2 L. Let F

2

be the event in experiment 2 that some iphertext (x; e; �̂) 2 X � � �

^

� with

x =2 L is rejeted by the deryption orale but

^

H

^

k

(x; e) = �̂.

We laim that

Pr[F

2

℄ � Q(`)�̂(`): (3)

To prove (3), let us ondition on a �xed value of �[X;L;W;R℄ (whih determines the proje-

tive hash families H and

^

H), as well as �xed values of k, ŝ, and the adversary's oins. These

values ompletely determine the publi key, and all the deryption queries of the adversary and

the responses of the simulator in Probing Phase I, and also determine if the adversary enters the

Target-Seletion Phase, and if so, the orresponding values of m

0

and m

1

. Consider any iphertext

(x; e; �̂) 2 X �� �

^

�, with x =2 L, that is submitted as a deryption orale query during Probing

Phase I. In this onditional probability spae, x, e, and �̂ are �xed, whereas

^

k is still uniformly

distributed over

^

K, subjet only to the onstraint that �̂(

^

k) = ŝ, where ŝ is �xed as above. There-

fore, from the �̂(`)-universal

2

property of

^

H, the probability that

^

H

^

k

(x; e) = �̂ in this onditional

probability spae is at most �̂(`).

Now assume that in this onditional probability spae, the adversary enters the Target-Seletion

Phase. Let us now further ondition on �xed values of � and x

�

(whih determine �

�

and e

�

), as well

as a �xed value of �̂

�

. These values ompletely determine all the deryption queries of the adversary

and the responses of the simulator in Probing Phase II. Consider any iphertext (x; e; �̂) 2 X���

^

�,

with x =2 L, that is submitted as a deryption orale query during Probing Phase II.

� Suppose that (x; e) = (x

�

; e

�

). Sine we must have (x; e; �̂) 6= (x

�

; e

�

; �̂

�

), it follows that

�̂ 6= �̂

�

, and hene

^

H

^

k

(x; e) 6= �̂ with ertainty.

� Suppose that (x; e) 6= (x

�

; e

�

). In this onditional probability spae, x, e, and �̂ are �xed,

whereas

^

k is still uniformly distributed over

^

K, subjet only to the onstraint that �̂(

^

k) =

ŝ and

^

H

^

k

(x

�

; e

�

) = �̂

�

, where ŝ, x

�

, e

�

, and �̂

�

are �xed as above. Therefore, from the

�̂(`)-universal

2

property of

^

H, the probability that

^

H

^

k

(x; e) = �̂ in this onditional probability

spae is at most �̂(`).

The above arguments show that for any individual iphertext (x; e; �̂) 2 X���

^

�, with x =2 L,

that is submitted to the deryption orale, the probability that

^

H

^

k

(x; e) = �̂ is at most �̂(`), from

whih the bound (3) immediately follows.

Note that experiments 1 and 2 proeed identially until event F

2

ours. More preisely, T

(2)

`

^

:F

2

ours if and only if T

(1)

`

^ :F

2

ours, whih implies that

jPr[T

(2)

`

℄� Pr[T

(1)

`

℄j � Pr[F

2

℄: (4)
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Experiment 3. In experiment 3, we modify the simulator yet again. This time, in the enryption

orale, instead of omputing �

�

as H

k

(x

�

), the simulator sets �

�

= �

0

, where �

0

2 � is hosen at

random. Now, let us ondition on a �xed value of �[X;L;W;R℄ (whih determines the projetive

hash familiesH and

^

H), as well as �xed values of

^

k, �, and the adversary's oins. In this onditional

probability spae, sine the ation of H

k

on L is determined by s, and sine the simulator rejets

all iphertexts (x; e; �̂) with x =2 L, it follows that the output of the simulator in experiment

2 is ompletely determined as a funtion of x

�

, s, and H

k

(x

�

), while the output in experiment

3 is determined as the same funtion of x

�

, s, and �

0

. Moreover, by independene, the joint

distribution of (k; x

�

; �

0

) does not hange in passing from the original probability spae to the

onditional probability spae. It now follows diretly from the �(`)-smooth property of H that

jPr[T

(3)

`

℄� Pr[T

(2)

`

℄j � �(`): (5)

It is evident from the de�nition of the simulator in experiment 3 that the adversary's output

^

�

in this experiment is independent of the hidden bit �; therefore,

Pr[T

(3)

`

℄ = 1=2: (6)

Putting it all together. Combining the relations (2)-(6), we see that

jPr[T

`

℄� 1=2j � Æ(`) + �(`) +

^

Æ(`) +Q(`)�̂(`): (7)

Combining the inequalities (1) and (7), we see that

AdvCCA(`) � AdvDist(`) + Æ(`) + �(`) +

^

Æ(`) +Q(`)�̂(`) + �(`) + �

0

(`); (8)

from whih the theorem immediately follows. 4

7 Universal projetive hash families: onstrutions

We now present group-theoreti onstrutions of universal projetive hash families.

7.1 Diverse group systems and derived projetive hash families

Let X, L and � be �nite abelian groups, where L is a proper subgroup of X. We will use additive

notation for these groups.

Let Hom(X;�) denote the group of all homomorphisms � : X ! �. This is also a �nite abelian

group for whih we use additive notation as well. For �; �

0

2 Hom(X;�), x 2 X, and a 2 Z, we

have (� + �

0

)(x) = �(x) + �

0

(x), (� � �

0

)(x) = �(x) � �

0

(x), and (a�)(x) = a�(x) = �(ax). The

zero element of Hom(X;�) sends all elements of X to 0 2 �.

De�nition 8 Let X;L;� be as above. Let H be a subgroup of Hom(X;�). We all G =

(H;X; L;�) a group system.

Let G = (H;X; L;�) be a group system, and let g

1

; : : : ; g

d

2 L be a set of generators for L.

Let H = (H;K;X;L;�; S; �), where

� for randomly hosen k 2 K, H

k

is uniformly distributed over H,

� S = �

d

, and
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� the map � : K ! S sends k 2 K to (�(g

1

); : : : ; �(g

d

)) 2 S, where � = H

k

.

It is easily seen that H is a projetive hash family. To see this, note that if x 2 L, then there

exist w

1

; : : : ; w

d

2 Z suh that x =

P

d

i=1

w

i

g

i

; now, for k 2 K withH

k

= � and �(k) = (�

1

; : : : ; �

d

),

we have

H

k

(x) = �(

d

X

i=1

w

i

g

i

) =

d

X

i=1

w

i

�(g

i

) =

d

X

i=1

w

i

�

i

:

Thus, the ation of H

k

on L is determined by �(k), as required.

De�nition 9 Let G be a group system as above and let H be a projetive hash family as above.

Then we say that H is a projetive hash family derived from G.

Looking ahead, we remark that the reason for de�ning � in this way is to failitate eÆient

implementation of the publi evaluation algorithm for a hash proof system with whih H may be

assoiated. In this ontext, if a \witness" for x is (w

1

; : : : ; w

d

) as above, thenH

k

(x) an be eÆiently

omputed from �(k) and (w

1

; : : : ; w

d

), assuming arithmeti in � is eÆiently implemented.

Our �rst goal is to investigate the onditions under whih a projetive hash family derived from

a group system is �-universal for some � < 1.

De�nition 10 Let G = (H;X; L;�) be a group system. We say that G is diverse if for all

x 2 X n L, there exists � 2 H suh that �(L) = h0i, but �(x) 6= 0.

It is not diÆult to see that diversity is a neessary ondition for a group system if any derived

projetive hash family is to be �-universal for some � < 1. We will show in Theorem 2 below that

any projetive hash family derived from a diverse group system is �-universal, where � = 1=~p, and

~p is the smallest prime dividing jX=Lj.

7.2 A universal projetive hash family

Throughout this setion, G = (H;X; L;�) denotes a group system, H = (H;K;X;L;�; S; �)

denotes a projetive hash family derived from G, and ~p denotes the smallest prime dividing jX=Lj.

De�nition 11 For a set Y � X, let us de�ne A(Y ) to be the set of � 2 H suh that �(x) = 0 for

all x 2 Y ; that is, A(Y ) is the olletion of homomorphisms in H that annihilate Y .

It is lear that A(Y ) is a subgroup of H, and that A(Y ) = A(hY i).

The following is a straightforward re-statement of De�nition 10.

Lemma 5 G is diverse if and only if for all x 2 X n L, A(L [ fxg) is a proper subgroup of A(L).

Lemma 6 If p is a prime dividing jA(L)j, then p divides jX=Lj.

Proof. Let p be a prime dividing jA(L)j. Then there exists an element � 2 A(L) of order p.

Let a = jX=Lj, and note that for all x 2 X, we must have ax 2 L, sine a is the order of the fator

group X=L. Therefore, for all x 2 X, we have (a � �)(x) = �(ax) = 0, the latter equality holding

sine � annihilates L and ax 2 L. It follows that p divides a. 4

De�nition 12 For x 2 X, let E

x

: H ! � be the map that sends � 2 H to �(x) 2 �. Let us also

de�ne I(x) = E

x

(A(L)).
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Clearly, E

x

is a group homomorphism, and I(x) is a subgroup of �.

Lemma 7 If G is diverse, then for all x 2 X n L, jI(x)j is at least ~p.

Proof. Let x 2 X n L. Consider the restrition of the map E

x

to A(L). The image of this

map is I(x), and the kernel is A(L [ fxg). Therefore, I(x) is isomorphi to the fator group

A(L)=A(L [ fxg). Sine G is assumed diverse, by Lemma 5, A(L [ fxg) is a proper subgroup of

A(L). Thus, the order order of I(x) is a divisor of A(L) not equal to 1, and so is divisible by some

prime p dividing A(L). By Lemma 6, this prime p divides jX=Lj. 4

Lemma 8 Let s 2 �(K) be �xed. Consider the probability spae de�ned by hoosing k 2 �

�1

(s) at

random, and let � = H

k

. Then � is uniformly distributed over a oset  

s

+ A(L) of A(L) in H,

the preise oset depending on s.

Proof. Let g

1

; : : : ; g

d

be the set of generators de�ning �. Let ~� : H ! S be the map that

sends � 2 H to (�(g

1

); : : : ; �(g

d

)) 2 S. It is evident that � is uniformly distributed over ~�

�1

(s).

Moreover, ~� is learly a group homomorphism with kernel A(fg

1

; : : : ; g

d

g) = A(L). It follows that

~�

�1

(s) is a oset of A(L) in H. 4

In Lemma 8, there are many hoies for the \oset leader"  

s

2 H; however, let us �x one suh

hoie arbitrarily, so that for the for the rest of this setion  

s

denotes this oset leader.

Theorem 2 Let s 2 �(K) and x 2 X be �xed. Consider the probability spae de�ned by hoosing

k 2 �

�1

(s) at random, and let � = H

k

(x). Then � is uniformly distributed over a oset of I(x) in

� (the preise oset depending on s and x). In partiular, if G is diverse, then H is 1=~p-universal.

Proof. Let � = H

k

. By Lemma 8, � is uniformly distributed over  

s

+A(L). Sine � = �(x),

it follows that � is uniformly distributed over E

x

( 

s

+A(L)) =  

s

(x) + I(x). That proves the �rst

statement of the theorem. The seond statement follows immediately from Lemma 7, and the fat

that j 

s

(x) + I(x)j = jI(x)j. 4

7.3 A universal

2

projetive hash family

We ontinue with the notation established in x7.2; in partiular, G = (H;X; L;�) denotes a group

system, H = (H;K;X;L;�; S; �) denotes a projetive hash family derived from G, and ~p denotes

the smallest prime dividing jX=Lj.

Starting with H, and applying the onstrution of Lemma 2 or Lemma 3, we an obtain a

universal

2

projetive hash family. However, by exploiting the group struture underlying H, we

an onstrut a more eÆient universal

2

projetive hash family

^

H.

Let E be an arbitrary �nite set.

^

H is to be a projetive hash family for (X � E;L � E). Fix

an injetive enoding funtion

� : X �E ! f0; : : : ; ~p� 1g

n

;

where n is suÆiently large.

Let

^

H = (

^

H;K

n+1

;X � E;L � E;�; S

n+1

; �̂), where

^

H and �̂ are de�ned as follows. For

~

k = (k

0

; k

1

; : : : ; k

n

) 2 K

n+1

, x 2 X, and e 2 E, we de�ne

^

H

~

k

(x; e) = H

k

0

(x) +

n

X

i=1



i

H

k

i

(x);

18



where (

1

; : : : ; 

n

) = �(x; e), and we de�ne

�̂(

~

k) = (�(k

0

); �(k

1

); : : : ; �(k

n

)):

It is lear that

^

H is a projetive hash family. We shall prove:

Theorem 3 Let

^

H be as above. Let ~s 2 �(K)

n+1

, x; x

�

2 X, and e; e

�

2 E be �xed, where

(x; e) 6= (x

�

; e

�

). Consider the probability spae de�ned by hoosing

~

k 2 �̂

�1

(~s) at random, and let

� =

^

H

~

k

(x; e) and �

�

=

^

H

~

k

(x

�

; e

�

). Then � is uniformly distributed over a oset of I(x) in � (the

preise oset depending on s, x, and e), and �

�

is uniformly and independently distributed over a

oset of I(x

�

) in � (the preise oset depending on s, x

�

, and e

�

). In partiular, if the underlying

group system G is diverse, then

^

H is 1=~p-universal

2

.

Before proving this theorem, we state another elementary lemma.

Let M 2 Z

a�b

be an integer matrix with a rows and b olumns. Let G be a �nite abelian group.

Let T(M;G) : G

b

! G

a

be the map that sends ~u 2 G

b

to ~v 2 G

a

, where

~v

>

=M~u

>

;

here, (� � �)

>

denotes transposition. Clearly, T(M;G) is a group homomorphism.

Lemma 9 Let M and G be as above. If for all primes p dividing jGj, the rows of M are linearly

independent modulo p, then T(M;G) is surjetive.

Proof. The proof is by basi linear algebra, and we inlude it for ompleteness. Let

Q

r

i=1

p



i

i

be the prime fatorization of jGj. From the onditions of the lemma, it follows that for eah

1 � i � r, there is a square sub-matrix M

i

, onsisting of a olumns of M , that is invertible over

Z

p

i

and, therefore, also over Z

p



i

i

. Hene, for eah 1 � i � r there is a matrix N

i

2 Z

b�a

suh that

M �N

i

� I (mod p



i

i

), where I is the a�a identity matrix over Z. Combining N

1

; : : : ; N

r

using the

Chinese Remainder Theorem, there is a matrix N 2 Z

b�a

suh that M �N � I (mod jGj). Hene,

for all ~v 2 G

a

, we have ~v

>

=M~u

>

, where ~u

>

= N~v

>

. 4

Proof of Theorem 3. Let ~s = (s

0

; s

1

; : : : ; s

n

), (

1

; : : : ; 

n

) = �(x; e), and (

�

1

; : : : ; 

�

n

) =

�(x

�

; e

�

). Let (�

0

; �

1

; : : : ; �

n

) = (H

k

0

;H

k

1

; : : : ;H

k

n

).

Now de�ne the matrix M 2 Z

2�(n+1)

as

M =

�

1 

1



2

� � � 

n

1 

�

1



�

2

� � � 

�

n

�

;

so that if

(~�; ~�

�

)

>

=M(�

0

; �

1

; : : : ; �

n

)

>

then we have (�; �

�

) = (�(x); �

�

(x

�

)).

By the de�nition of �, and by Lemma 6, we see that (

1

; : : : ; 

n

) and (

�

1

; : : : ; 

�

n

) are distint

modulo any prime p that divides A(L). Therefore, Lemma 9 implies that the map T(M;A(L)) is

surjetive. By Lemma 8, (�

0

; �

1

; : : : ; �

n

) is uniformly distributed over

( 

s

0

+A(L);  

s

1

+A(L); : : : ;  

s

n

+A(L)):

Thus, (~�; ~�

�

) is uniformly distributed over (

~

 +A(I);

~

 

�

+A(I)), where

(

~

 ;

~

 

�

)

>

=M( 

s

0

;  

s

1

; : : : ;  

s

n

)

>

:
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It follows that (�; �

�

) is uniformly distributed over (

~

 (x) + I(x);

~

 

�

(x

�

) + I(x

�

)).

That proves the �rst statement of the theorem. The seond statement now follows from

Lemma 7. 4

If ~p is small, then Lemma 1 an be used to redue the error to at most 1=~p

t

for a suitable value

of t. However, this omes at the ost of a multipliative fator t in eÆieny. We now desribe

another onstrution that ahieves an error rate of 1=~p

t

that omes at the ost of just an additive

fator of O(t) in eÆieny.

Let t � 1 be �xed, and let E be an arbitrary �nite set. Our onstrution yields a projetive

hash family

^

H for (X � E;L � E). We use the same name

^

H for this projetive hash family as

in the onstrution of Theorem 3, beause when t = 1, the onstrutions are idential. Fix an

injetive enoding funtion

� : X �E ! f0; : : : ; ~p� 1g

n

;

where n is suÆiently large.

Let

^

H = (

^

H;K

n+2t�1

;X �E;L�E;�; S

n+2t�1

; �̂), where

^

H and �̂ are de�ned as follows. For

~

k = (k

0

1

; : : : ; k

0

t

; k

1

; : : : ; k

n+t�1

) 2 K

n+2t�1

;

x 2 X, and e 2 E, we de�ne

^

H

~

k

(x; e) = (�

1

; : : : ; �

t

);

where

�

j

= H

k

0

j

(x) +

n

X

i=1



i

H

k

i+j�1

(x) (j = 1; : : : ; t);

and (

1

; : : : ; 

n

) = �(x; e). We also de�ne

�̂(

~

k) = (�(k

0

1

); : : : ; �(k

0

t

); �(k

1

); : : : ; �(k

n+t�1

)):

Again, it is lear that

^

H is a projetive hash family.

Theorem 4 Let

^

H be as above. Let ~s 2 �(K)

n+2t�1

, x; x

�

2 X, and e; e

�

2 E be �xed, where

(x; e) 6= (x

�

; e

�

). Consider the probability spae de�ned by hoosing

~

k 2 �̂

�1

(~s) at random, and let

~� =

^

H

~

k

(x; e) and ~�

�

=

^

H

~

k

(x

�

; e

�

). Then ~� is uniformly distributed over a oset of I(x)

t

in �

t

(the

preise oset depending on s, x, and e), and ~�

�

is uniformly and independently distributed over a

oset of I(x

�

)

t

in �

t

(the preise oset depending on s, x

�

, and e

�

). In partiular, if the underlying

group system G is diverse, then

^

H is 1=~p

t

-universal

2

.

Proof. Let (

1

; : : : ; 

n

) = �(x; e), and (

�

1

; : : : ; 

�

n

) = �(x

�

; e

�

). Let

~� = (H

k

0

1

; : : : ;H

k

0

t

; H

k

1

; : : : ;H

k

n+t�1

) 2 H

n+2t�1

:

Now de�ne the matrix M 2 Z

2t�(n+2t�1)

as

M =

0

B

B

B

B

B

B

B

B

B

B

�

1

1

.

.

.

1

1

1

.

.

.

1

| {z }

t olumns



1



2

� � � 

n



1



2

� � � 

n

.

.

.

.

.

.

.

.

.



1



2

� � � 

n



�

1



�

2

� � � 

�

n



�

1



�

2

� � � 

�

n

.

.

.

.

.

.

.

.

.



�

1



�

2

� � � 

�

n

| {z }

n+t�1 olumns

1

C

C

C

C

C

C

C

C

C

C

A
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so that if

(~�

1

; : : : ; ~�

t

; ~�

�

1

; : : : ; ~�

�

t

)

>

=M~�

>

;

then

~� = (~�

1

(x); : : : ; ~�

t

(x)) and ~�

�

= (~�

�

1

(x); : : : ; ~�

�

t

(x)):

Claim. The rows of M are linearly independent modulo p for any prime p dividing jA(L)j.

The theorem is implied by the laim, as we now argue. By Lemma 9, the map T(M;A(L))

is surjetive. By Lemma 8, ~� is uniformly distributed over a oset of A(L)

n+2t�1

in H

n+2t�1

.

It follows that (~�

1

; : : : ; ~�

t

; ~�

�

1

; : : : ; ~�

�

t

) is uniformly distributed over a oset of A(L)

2t

in H

2t

, and

therefore, ~� and ~�

�

are uniformly and independently distributed over osets of I(x)

t

and I(x

�

)

t

,

respetively, in �

t

.

That proves the �rst statement of the theorem. The seond statement of the theorem now

follows from Lemma 7.

So now it remains to prove the above laim. Fix a prime p dividing jA(L)j, and for 1 � i � n,

let �

i

and �

�

i

denote the images of 

i

and 

�

i

, respetively, in Z

p

, and let

�

M denote the image of M

in Z

2t�(n+2t�1)

p

. By the de�nition of � and Lemma 6, we know that �

i

6= �

�

i

for some 1 � i � n; let

i

0

be the least suh i.

Now, suppose that

(

1

; : : : ; 

t

; d

1

; : : : ; d

n+t�1

) = (a

1

; : : : ; a

t

; b

1

; : : : ; b

t

)

�

M;

for



1

; : : : ; 

t

; d

1

; : : : ; d

n+t�1

; a

1

; : : : ; a

t

; b

1

; : : : ; b

t

2 Z

p

:

Further suppose that 

1

; : : : ; 

t

; d

1

; : : : ; d

n+t�1

are all zero. To prove the laim, we need to show

that a

1

; : : : ; a

t

; b

1

; : : : ; b

t

are all zero as well. It is lear from the struture of the matrix M , and

sine 

1

; : : : ; 

t

are all zero, that we must have a

j

= �b

j

for all 1 � j � t. By way of ontradition,

suppose that some a

j

6= 0 for some 1 � j � t, and let j

0

be the least suh j. By diret alulation,

one sees that

d

i

0

+j

0

�1

= a

j

0

(�

i

0

� �

�

i

0

) 6= 0;

whih is a ontradition. That proves the laim. 4

7.4 Examples of diverse group systems

In this setion, we disuss two examples of diverse group systems that have ryptographi impor-

tane.

7.4.1 Example 1

Let G be a group of prime of prime order q, and let X = G

r

, i.e., X is the diret produt of r

opies of G. Let L be any proper subgroup of X, and let H = Hom(X;G). Consider the group

system G = (H;X; L;G).

The group X is isomorphi as a Z

q

-vetor spae to Z

r

q

. For the purposes of this disussion, let

us simply identify X with Z

r

q

and G with Z

q

. Under this identi�ation, L is a proper Z

q

-subspae

of X. Moreover, H an be identi�ed with the vetor spae Z

r

q

, as follows: for every � 2 Z

r

q

, we

de�ne �

�

2 H to be the map that sends x 2 Z

r

q

to (x; �) 2 Z

q

, where (�; �) denotes the standard

inner produt of vetors.
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For any set U � Z

r

q

, A(U) is the orthogonal omplement in Z

r

q

of the subspae of Z

r

q

generated

by U . Therefore, if U generates a subspae of dimension a, A(U) is a subspae dimension r � a.

Now suppose L has dimension d, and that x 2 X nL. It follows A(L) has dimension r� d, and

A(L[fxg) has dimension r�d� 1. This shows that G is diverse. Moreover, for any x 2 X nL, we

have I(x) = E

x

(A(L)) = Z

q

. Therefore, a projetive hash family derived from G is 1=q-universal,

or equivalently, 0-smooth.

7.4.2 Example 2

Let X be a yli group of order a = bb

0

, where b

0

> 1 and gd(b; b

0

) = 1, and let L be the unique

subgroup of X of order b. Let H = Hom(X;X), and onsider the group system G = (H;X; L;X).

The group X is isomorphi to Z

a

. If we identify X with Z

a

, then H an be identi�ed with Z

a

as follows: for every � 2 Z

a

, de�ne �

�

2 H to be the map that sends x 2 Z

a

to x � � 2 Z

a

.

The group X is of ourse also isomorphi to Z

b

� Z

b

0

. If we identify X with Z

b

� Z

b

0

, then L

orresponds to Z

b

�h0i. Moreover, we an identify H with Z

b

�Z

b

0

as follows: for (�; �

0

) 2 Z

b

�Z

b

0

,

let  

�;�

0

2 H be the map that sends (x; x

0

) 2 Z

b

� Z

b

0

to (x � �; x

0

� �

0

) 2 Z

b

� Z

b

0

.

Under the identi�ation in the previous paragraph, it is evident that A(L) is the subgroup of

H generated by  

0;1

. If we take any (x; x

0

) 2 X nL, so that x

0

6= 0, we see that  

0;1

(x; x

0

) = (0; x

0

).

Thus,  

0;1

=2 A(L [ f(x; x

0

)g), whih shows that G is diverse. Therefore, a projetive hash family

derived from G is 1=~p-universal, where ~p is the smallest prime dividing b

0

.

It is also useful to haraterize the group I(x; x

0

) = E

x;x

0

(A(L)). Evidently, sine A(L) = h 

0;1

i,

we must have I(x; x

0

) = h0i � hx

0

i.

8 Conrete enryption shemes

We present two new publi-key enryption shemes seure against adaptive hosen iphertext attak.

These are derived from the general onstrution in x6, although we also present several variations

that do not quite �t into this framework.

The �rst sheme is based on Paillier's Deision Composite Residuosity assumption. Ours is the

�rst pratial publi-key enryption sheme seure against adaptive hosen iphertext attak under

this assumption.

The seond is based on the lassial Quadrati Residuosity assumption. Ours is the �rst publi-

key enryption sheme seure against adaptive hosen iphertext attak under this assumption that

is at all pratial, as opposed to theoretial onstrutions suh as [DDN℄.

Before presenting the new shemes, we show how the publi-key enryption sheme from [CS℄

an be viewed as a speial ase of our general onstrution.

8.1 Shemes based on the Deision DiÆe-Hellman assumption

8.1.1 Derivation

We show how to derive a seure enryption sheme based on the Deision DiÆe-Hellman assumption

from our generi enryption sheme onstrution in x6, together with our general tehniques for

building universal projetive hash families in x7.

The DDH assumption. Let G be a group of given large prime order q. We shall use additive

notation for G, and view G as a Z

q

-module in the natural way. The Deision DiÆe-Hellman
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(DDH) assumption is the assumption that it is hard to distinguish tuples of the form

(g

0

; g

1

; rg

0

; r

0

g

1

)

from tuples of the form

(g

0

; g

1

; rg

0

; rg

1

);

where g

1

and g

1

are randomly hosen from G, and r and r

0

are randomly hosen from Z

q

.

To be ompletely formal, one should atually speify a sequene of distributions of groups, suh

that for eah value of a seurity parameter ` � 0, a desription of a group G, together with q, an

be eÆiently sampled from some distribution parameterized by `. Also, for suh a group G, eah

element of the group should have a unique, ompat binary enoding, and it should be the ase

that valid binary enodings of group elements are easily reognizable, that the group operation an

be eÆiently implemented, and that random elements of G an be eÆiently generated. We assume

that 1=q is bounded by � = �(`) for all groups assoiated with seurity parameter `, where �(`) is a

negligible funtion in k.

There are many possible realizations of suitable groups G. For instane, let p be a large prime,

and let q be a large prime fator of p � 1. Then G is the unique sub-group of order q in Z

�

p

.

Alternatively, we an hoose G as a prime-order subgroup of the group de�ned by an ellipti urve.

A subset membership problem. With G and q given, we now de�ne an instane of a subset mem-

bership problem as follows. Let g

0

and g

1

be randomly hosen elements of G. De�ne X = G�G,

and let L be the subgroup of X generated by (g

0

; g

1

) 2 X. A witness for (x

0

; x

1

) 2 L is w 2 Z

q

suh that (x

0

; x

1

) = (wg

0

; wg

1

). The instane desription � onsists of desriptions of G, q, g

0

, and

g

1

.

Obviously, one an eÆiently sample a random element of L, together with a orresponding

witness, by generating w 2 Z

q

at random, and omputing (x

0

; x

1

) = (wg

0

; wg

1

).

It is lear that this de�nes a subset membership problem, and that the hardness of this subset

membership problem is implied by the DDH assumption for G.

Hash proof systems. Now it remains to onstrut appropriate strongly smooth and strongly

universal

2

HPS's for the onstrution in x6. To do this, we �rst onstrut a diverse group sys-

tem (see De�nition 10), from whih we an then derive the required HPS's.

Fix an instane desription �, where � spei�es a group G of order q, along with g

0

; g

1

2 G,

and let X and L be groups as de�ned above. Let H = Hom(X;G), and onsider the group system

G = (H;X; L;G). As shown in x7.4.1, G is a diverse group system.

Let K = Z

q

� Z

q

, and for (k

0

; k

1

) 2 K, let H

k

0

;k

1

2 Hom(X;G) be the map that sends

(x

0

; x

1

) 2 X to k

0

x

0

+ k

1

x

1

2 G. As disussed in x7.4.1, the orrespondene (k

0

; k

1

) 7! H

k

0

;k

1

is a

bijetion between K and Hom(X;G).

Consider the projetive projetive hash family H = (H;K;X;L;G;G; �), where H and K are

as in the previous paragraph, and � maps (k

0

; k

1

) 2 K to H

k

0

;k

1

(g

0

; g

1

) = k

0

g

0

+ k

1

g

1

2 G. It is

lear that H is a projetive hash family derived from G, and so by Theorem 2 is 1=q-universal, or

equivalently, 0-smooth.

This immediately yields a strongly smooth HPS P orresponding to H | one simply needs

to verify that all the algorithms that must be provided by an HPS are available. This is rather

straightforward, and we leave the details to the reader (see the remark in the paragraph following

De�nition 9).

So now we have a strongly smooth HPS P as needed for the onstrution in x6.
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Applying the onstrution in Theorem 3 to H, we obtain a 1=q-universal

2

projetive hash

family

^

H for (X �G;L�G), and from this, a orresponding strongly universal

2

HPS

^

P. Again, it

is straightforward to verify that all the neessary algorithms required by an HPS are available.

8.1.2 The enryption sheme

We now present in detail the enryption algorithm obtained from the HPS's H and

^

H above.

We desribe the sheme in terms of a �xed group of G of order q. The message spae for the

sheme is the group G.

Let � : G�G�G! Z

n

q

be an eÆiently omputable injetive map for an appropriate n � 1.

Key Generation

Generate g

0

; g

1

2 G at random and hoose

k

0

; k

1

;

~

k

0

;

~

k

1

;

^

k

1;1

;

^

k

1;1

; : : : ;

^

k

n;0

;

^

k

n;1

2 Z

q

at random.

Compute

s = k

0

g

0

+ k

1

g

1

2 G; ~s =

~

k

0

g

0

+

~

k

1

g

1

2 G; ŝ

i

=

^

k

i;0

g

0

+

^

k

i;1

g

1

2 G (i = 1; : : : ; n):

The publi key is (g

0

; g

1

; s; ~s; ŝ

1

; : : : ; ŝ

n

).

The private key is (k

0

; k

1

;

~

k

0

;

~

k

1

;

^

k

1;1

;

^

k

1;1

; : : : ;

^

k

n;0

;

^

k

n;1

).

Enryption

To enrypt a message m 2 G under a publi key as above, one does the following.

Choose w 2 Z

q

at random, and ompute

x

0

= wg

0

2 G; x

1

= wg

1

2 G; � = ws 2 G; e = m+ � 2 G:

Compute

�̂ = w~s+

n

X

i=1

w

i

ŝ

i

2 G;

where (

1

; : : : ; 

n

) = �(x

0

; x

1

; e) 2 Z

n

q

.

The iphertext is (x

0

; x

1

; e; �̂).

Deryption

To derypt a iphertext (x

0

; x

1

; e; �̂) 2 G

4

under a seret key as above, one does the following.

Compute

�̂

0

= (

~

k

0

+

n

X

i=1



i

^

k

i;0

)x

0

+ (

~

k

1

+

n

X

i=1



i

^

k

i;1

)x

1

2 G;

where (

1

; : : : ; 

n

) = �(x

0

; x

1

; e) 2 Z

n

q

.

Chek whether �̂

0

= �̂; if not, then output rejet and halt.

Compute

� = k

0

x

0

+ k

1

x

1

2 G; m = e� � 2 G;

and output m.
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Note that in the deryption algorithm, we are assuming that x

0

; x

1

; e; �̂ are elements of G. This

impliitly means that the deryption algorithm should test that this is the ase, and otherwise rejet

the iphertext. These tests may have a non-trivial omputational ost, and so it is worth noting

that the test that �̂ 2 G an be omitted, without hanging the funtionality of the deryption

algorithm.

This is preisely the sheme that our general onstrution in x6 yields, although we have simpli-

�ed a few expressions using trivial algebrai identities. Thus, the sheme is seure against adaptive

hosen iphertext attak, provided the DDH assumption holds. This sheme is essentially the

enryption sheme presented in x5.3 of [CS℄, with just a few very minor di�erenes.

Minor variations. To obtain a more eÆient sheme, one ould drop the requirement that � is

injetive. This would allow us to use a smaller value of n, possibly n = 1, thereby obtaining a muh

more ompat and eÆient sheme. It is straightforward to adapt our general framework to show

that if � is a ollision resistant hash funtion (CRHF), then we still get a sheme that is seure

against adaptive hosen iphertext attak.

With a somewhat more re�ned analysis, one an show that a universal one-way hash funtion

(UOWHF) [NY1℄ suÆes. This analysis requires some additional, speial properties of the subset

membership problem; namely, that elements of XnL an be eÆiently sampled at random, and that

given appropriate \trapdoor" information (in this ase, the disrete logarithm of g

1

with respet

to g

0

), elements of X n L an be eÆiently distinguished from elements of L. When n = 1, the

resulting enryption sheme is the main enryption sheme presented in [CS℄, with just a few very

minor di�erenes.

8.2 Shemes based on the Deision Composite Residuosity assumption

8.2.1 Derivation

The DCR assumption. Let p; q; p

0

; q

0

be distint odd primes with p = 2p

0

+1 and q = 2q

0

+1, and

where p

0

and q

0

are both � bits in length. Let N = pq and N

0

= p

0

q

0

. Consider the group Z

�

N

2

and

the subgroup P of Z

�

N

2

onsisting of all Nth powers of elements in Z

�

N

2

.

Paillier's Deision Composite Residuosity (DCR) assumption is that given only N , it is hard to

distinguish random elements of Z

�

N

2

from random elements of P .

To be ompletely formal, one should speify speify a sequene of bit lengths �(`), parameterized

by a seurity parameter ` � 0, and to generate an instane of the problem for seurity parameter

`, the primes p

0

and q

0

should be distint, random primes of length � = �(`), suh that p = 2p

0

+ 1

and q = 2q

0

+ 1 are also primes.

The primes p

0

and q

0

are alled Sophie Germain primes by mathematiians, while p and q are

alled strong (or safe) primes by ryptographers. It has never been proven that there are in�nitely

many Sophie Germain primes. Nevertheless, it is widely onjetured, and amply supported by

empirial evidene, that the probability that a random �-bit number is Sophie Germain prime is


(1=�

2

). We shall assume that this onjeture holds, so that we an assume that problem instanes

an be eÆiently generated.

Note that Paillier did not make the restrition to strong primes in originally formulating the

DCR assumption. As will beome evident, we need to restrit ourselves to strong primes for

tehnial reasons. However, it is easy to see that the DCR assumption without this restrition

implies the DCR assumption with this restrition, assuming that strong primes are suÆiently

dense, as we are here.
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A subset membership problem. We an deompose Z

�

N

2

as an internal diret produt

Z

�

N

2

= G

N

�G

N

0

�G

2

� T;

where eah group G

�

is a yli group of order � , and T is the subgroup of Z

�

N

2

generated by

(�1 mod N

2

). This deomposition is unique, exept for the hoie of G

2

(there are two possible

hoies). For any x 2 Z

�

N

2

, we an express x uniquely as x = x(G

N

)x(G

N

0

)x(G

2

)x(T ), where for

eah G

�

, x(G

�

) 2 G

�

, and x(T ) 2 T . Note that the element � = (1 +N mod N

2

) 2 Z

�

N

2

has order

N , i.e., it generates G

N

, and that �

a

= (1 + aN mod N

2

) for 0 � a < N .

De�ne the map

� : Z

�

N

2

! f�1g;

(a mod N

2

) 7! (a j N);

where (� j �) is the Jaobi symbol. It is lear that � is a group homomorphism.

Let X be the kernel of �. It is easy to see that X = G

N

G

N

0

T , sine jZ

�

N

2

=Xj = 2 and T � X.

In partiular, X is a yli group of order 2NN

0

. Let L be the subgroup of Nth powers of X. Then

evidently, L = G

N

0

T , and so is a yli group of order 2N

0

. These groups X and L will de�ne our

subset membership problem.

Our instane desription � will ontain N , along with a random generator g for L. It is easy to

generate suh a g: hoose a random � 2 Z

�

N

2

, and set g = ��

2N

. With overwhelming probability,

suh a g will generate L; indeed, the output distribution of this sampling algorithm is O(2

��

)-lose

the uniform distribution over all generators.

Let us de�ne the set of witnesses as W = f0; : : : ; bN=2g. We say w 2W is a witness for x 2 X

if x = g

w

. To generate x 2 L at random together with a orresponding witness, we simply generate

w 2 W at random, and ompute x = g

w

. The output distribution of this algorithm is not the

uniform distribution over L, but one that is O(2

��

)-lose to it.

This ompletes the desription of our subset membership problem. It is easy to see that it

satis�es all the basi requirements spei�ed in x4. The reason for using (X;L) instead of (Z

�

N

2

; P )

is that Z

�

N

2

and P are not yli, whih is inonvenient for a number of tehnial reasons.

Next, we argue that the DCR assumption implies that this subset membership problem is hard.

Suppose we are given x sampled at random from Z

�

N

2

(respetively, P ). If we hoose b 2 f0; 1g

at random, then x

2

(�1)

b

is uniformly distributed over X (respetively, L). This implies that

distinguishing X from L is at least as hard as distinguishing Z

�

N

2

from P , and so under the DCR

assumption, it is hard to distinguish X from L. It is easy to see that this implies that it is hard to

distinguish X n L from L as well.

Hash proof systems. Now it remains to onstrut appropriate strongly smooth and strongly

universal

2

HPS's for the onstrution in x6. To do this, we �rst onstrut a diverse group sys-

tem (see De�nition 10), from whih we an then derive the required HPS's.

Fix an instane desription �, where � spei�es an integer N | de�ning groups X and L as

above | along with a generator g for L. Let H = Hom(X;X) and onsider the group system

G = (H;X; L;X). As disussed in x7.4.2, G is a diverse group system; moreover, for x 2 X, we

have I(x) = hx(G

N

)i; thus, for x 2 X n L, I(x) has order p, q, or N , aording to whether x(G

N

)

has order p, q, or N .

For k 2 Z, let H

k

2 Hom(X;X) be the kth power map; that is, H

k

sends x 2 X to x

k

2 X.

Let K

�

= f0; : : : ; 2NN

0

� 1g. As disussed in x7.4.2, the orrespondene k 7! H

k

yields a bijetion

between K

�

and Hom(X;X).
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Consider the projetive hash family H

�

= (H;K

�

;X; L;X;L; �), where H and K

�

are as in

the previous paragraph, and � maps k 2 Z to H

k

(g) 2 L. Clearly, H

�

is a projetive hash family

derived fromG, and so by Theorem 2, it is 2

��

-universal. From this, we an obtain a orresponding

HPS P; however, as we annot readily sample elements from K

�

, the projetive hash family H that

P assoiates with the instane desription � is slightly di�erent than H

�

; namely, we use the set

K = f0; : : : ; bN

2

=2g in plae of the set K

�

, but otherwise, H and H

�

are the same. It is readily

seen that the uniform distribution on K

�

is O(2

��

)-lose to the uniform distribution on K, and so

H andH

�

are also O(2

��

)-lose (see De�nition 5). It is also easy to verify that all of the algorithms

that P should provide are available.

So we now have a 2

��(`)

-universal HPS P. We ould easily onvert P into a strongly smooth

HPS by applying the Leftover Hash Lemma onstrution in Lemma 4 to the underlying universal

projetive hash family H

�

. However, there is a muh more diret and pratial way to proeed, as

we now desribe.

Aording to Theorem 2, for any s; x 2 X, if k is hosen at random fromK

�

, subjet to �(k) = s,

then H

k

(x) is uniformly distributed over a oset of I(x) in X. As disussed above, I(x) = hx(G

N

)i,

and so is a subgroup of G

N

. Moreover, for random x 2 X nL, we have I(x) 6= G

N

with probability

at most 2

��+1

.

Now de�ne the map

� : Z

N

2
! Z

N

;

(a+ bN mod N

2

) 7! (b mod N) (0 � a; b < N):

This map does not preserve any algebrai struture; however, the restrition of � to any oset of

G

N

in X is a one-to-one map from that oset onto Z

N

. To see this, let x = (a+ bN mod N

2

) 2 X,

where 0 � a; b < N , and note that we must have gd(a;N) = 1; for 0 �  < N , we have

x�



= (a+(a+ b)N mod N), and so �(x�



) = (a+ b mod N). For a; b �xed as above, as  ranges

over f0; : : : ; N � 1g, we see that (a+ b mod N) ranges over Z

N

.

Let us de�ne H

�

�

= (H

�

;K

�

;X; L;Z

N

; L; �), where for k 2 Z, H

�

k

= �ÆH

k

. That is, H

�

�

is the

same as H

�

, exept that in H

�

�

, we pass the output of the hash funtion for H

�

through �. From

the observations in the previous two paragraphs, it is lear that H

�

�

is a 2

��+1

-smooth projetive

hash family. From H

�

�

we get a orresponding approximation H

�

(using K in plae of K

�

), and

from this we get orresponding 2

��(`)+1

-smooth HPS P

�

.

We an apply the onstrution in Theorem 3 to H

�

, obtaining a 2

��

-universal

2

projetive hash

family

^

H

�

for (X � Z

N

; L� Z

N

). From

^

H

�

we get a orresponding approximation

^

H (using K in

plae of K

�

), and from this we get a orresponding 2

��(`)

-universal

2

extended HPS

^

P.

We ould build our enryption sheme diretly using

^

P; however, we get more ompat i-

phertexts if we modify

^

H

�

by passing its hash outputs through �, just as we did in building H

�

�

,

obtaining the analogous projetive hash family

^

H

�

�

for (X � Z

N

; L � Z

N

). From Theorem 4, and

the above disussion, it is lear that

^

H

�

�

is also 2

��

-universal

2

. From

^

H

�

�

we get a orresponding

approximation

^

H

�

(using K in plae of K

�

), and from this we get a orresponding 2

��(`)

-universal

2

extended HPS

^

P

�

.

8.2.2 The enryption sheme

We now present in detail the enryption sheme obtained from the HPS's P

�

and

^

P

�

above.

We desribe the sheme for a �xed value of N that is the produt of two (� + 1)-bit strong

primes. The message spae for this sheme is Z

N

.
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Let X, L, �, and � be as de�ned above. Also, letW = f0; : : : ; bN=2g andK = f0; : : : ; bN

2

=2g,

as above. Let R = f0; : : : ; 2

�

�1g, and let � : Z

N

2
�Z

N

! R

n

be an eÆiently omputable injetive

map for an appropriate n � 1. For suÆiently large �, n = 7 suÆes.

Key Generation

Choose � 2 Z

�

N

2

at random and set g = ��

2N

2 L.

Choose

k;

~

k;

^

k

1

; : : : ;

^

k

n

2 K

at random, and ompute

s = g

k

2 L; ~s = g

~

k

2 L; ŝ

i

= g

^

k

i

2 L (i = 1; : : : ; n):

The publi key is (g; s; ~s; ŝ

1

; : : : ; ŝ

n

).

The private key is (k;

~

k;

^

k

1

; : : : ;

^

k

n

).

Enryption

To enrypt a message m 2 Z

N

under a publi key as above, one does the following.

Choose w 2W at random, and ompute

x = g

w

2 L; y = s

w

2 L; � = �(y) 2 Z

N

; e = m+ � 2 Z

N

:

Compute

ŷ = ~s

w

n

Y

i=1

ŝ



i

w

i

2 L; �̂ = �(ŷ) 2 Z

N

;

where (

1

; : : : ; 

n

) = �(x; e) 2 R

n

.

The iphertext is (x; e; �̂).

Deryption

To derypt a iphertext (x; e; �̂) 2 X � Z

N

� Z

N

under a seret key as above, one does the

following.

Compute

ŷ = x

~

k+

P

n

i=1



i

^

k

i

2 X; �̂

0

= �(ŷ) 2 Z

N

;

where (

1

; : : : ; 

n

) = �(x; e) 2 R

n

.

Chek whether �̂ = �̂

0

; if not, then output rejet and halt.

Compute

y = x

k

2 X; � = �(y) 2 Z

N

; m = e� � 2 Z

N

;

and output m.

Note that in the deryption algorithm, we are assuming that x 2 X, whih impliitly means that

the deryption algorithm should hek that x 2 Z

�

N

2

and that �(x) = 1, and rejet the iphertext

if this does not hold.

This is preisely the sheme that our general onstrution in x6 yields. Thus, the sheme is

seure against adaptive hosen iphertext attak, provided the DCR assumption holds.
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Minor variations. As in x8.1, if we replae � by a CRHF we get an even more eÆient sheme

with a smaller value of n, possibly even n = 1. Moreover, as in x8.1, a UOWHF suÆes, although

this requires a more involved analysis.

Note that in this sheme, the fatorization of N is not a part of the private key. This would

allow, for example, many parties to work with the same modulus N , whih may be onvenient

in some situations. Alternatively, if we inlude the fatorization of N in the private key, some

optimizations in the deryption algorithm are possible, suh as Chinese Remaindering tehniques.

8.2.3 Variation 1

We now desribe a variation on the above sheme. This variation is a bit simpler (but only

marginally more eÆient) than the sheme in x8.2.2. This sheme does not quite �t into our

general framework, but an nevertheless be proven seure using the same basi ideas. This variation

demonstrates that some aspets of the design of the sheme in x8.2.2 were arefully rafted so as

to make that sheme �t into the general framework, but are not really neessary. We use this

variation, along with the one in x8.2.3, as motivation for exploring some natural extensions to our

general enryption framework.

We desribe the sheme for a �xed value of N that is the produt of two (� + 1)-bit strong

primes. The message spae for this sheme is Z

N

.

Let L

0

= G

N

0

, and let � be as de�ned as in x8.2.1. Also, let W

0

= f0; : : : ; bN=4g and

K = f0; : : : ; bN

2

=2g. Let R = f0; : : : ; 2

�

� 1g, and let � : Z

N

2
� Z

N

! R

n

be an eÆiently

omputable injetive map for an appropriate n � 1.

Key Generation

Choose � 2 Z

�

N

2

at random and set g = �

2N

2 L

0

.

Choose

k;

~

k;

^

k

1

; : : : ;

^

k

n

2 K

at random, and ompute

s = g

k

2 L

0

; ~s = g

~

k

2 L

0

; ŝ

i

= g

^

k

i

2 L

0

(i = 1; : : : ; n):

The publi key is (g; s; ~s; ŝ

1

; : : : ; ŝ

n

).

The private key is (k;

~

k;

^

k

1

; : : : ;

^

k

n

).

Enryption

To enrypt a message m 2 Z

N

under a publi key as above, one does the following.

Choose w 2W

0

at random, and ompute

x = g

w

2 L

0

; y = s

w

2 L

0

; � = �(y) 2 Z

N

; e = m+ � 2 Z

N

:

Compute

ŷ = ~s

w

n

Y

i=1

ŝ



i

w

i

2 L

0

; �̂ = �(ŷ) 2 Z

N

;

where (

1

; : : : ; 

n

) = �(x; e) 2 R

n

.

The iphertext is (x; e; �̂).
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Deryption

To derypt a iphertext (x; e; �̂) 2 Z

�

N

2

�Z

N

�Z

N

under a seret key as above, one does the

following.

Compute

ŷ = x

~

k+

P

n

i=1



i

^

k

i

2 Z

�

N

2

; �̂

0

= �(ŷ) 2 Z

N

;

where (

1

; : : : ; 

n

) = �(x; e) 2 R

n

.

Chek whether �̂ = �̂

0

; if not, then output rejet and halt.

Compute

y = x

k

2 Z

�

N

2

; � = �(y) 2 Z

N

; m = e� � 2 Z

N

;

and output m.

Note that in the deryption algorithm, we are assuming that x 2 Z

�

N

2

, whih impliitly means

that the deryption algorithm should hek that this is the ase, and rejet the iphertext if this

does not hold.

The only di�erenes between this variation and the sheme in x8.2.2 are that in this variation,

(1) g is omputed as �

2N

, rather than as ��

2N

, (2) w is hosen at random from W

0

, rather than

from W , and (3) the deryption algorithm heks that x 2 Z

�

N

2

, but does not additionally hek

that �(x) = 1.

Seurity analysis. Sine this sheme does not �t into our general framework, we have to analyze

its seurity. This sheme is seure against adaptive hosen iphertext attak, under the DCR

assumption. To prove this, we briey sketh how our general framework an be extended so that

this sheme �ts into the framework.

Let us �rst onsider a generalization of the notion of a smooth projetive hash family. Let

H = (H;K;X;L;�; S; �) be a projetive hash family, and let X

0

� X. We de�ne two random

variables, U

X

0

(H) and V

X

0

(H), as follows. Consider the probability spae de�ned by hoosing

k 2 K at random, x 2 X

0

n L at random, and �

0

2 � at random. We set U

X

0

(H) = (x; s; �

0

) and

V

X

0

(H) = (x; s; �), where s = �(k) and � = H

k

(x). For � � 0, we say that H is �-smooth over X

0

if U

X

0

(H) and V

X

0

(H) are �-lose.

Let us next onsider the following generalization of a subset membership problem. In this

generalization, an instane desription spei�es sets X, L, and W , and the relation R just as for

an ordinary subset membership problem, but in addition spei�es a set X

0

� X. The instane

sampling algorithm should behave just as for an ordinary subset membership problem; also, just

as for an ordinary subset membership problem, it should be easy to reognize valid enodings of

elements of X (but not neessarily X

0

). However, the subset sampling algorithm is a bit di�erent

from that of an ordinary subset membership problem: the distribution of the output x should

be statistially lose to the uniform distribution on X

0

\ L (rather than L). Also, the notion of

hardness for a generalized subset membership problem is slightly di�erent from that for an ordinary

subset membership problem: hardness means that it it omputationally hard to distinguish random

elements of X

0

nL from random elements of X

0

\L (rather than to distinguish random elements of

X n L from random elements of L).

We also generalize the notion of a hash proof system, as follows. A hash proof system P for a

generalized subset membership problem M assoiates with eah instane �[X;L;W;R;X

0

℄ of M a

projetive hash family H = (H;K;X;L;�; S; �), as well as a �nite set S

0

and an auxiliary funtion

�

0

: K ! S

0

. As for a hash proof system for an ordinary subset membership problem, there
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should be eÆient algorithms to sample random elements of K, and to reognize valid enodings

of elements of �; also, the private evaluation algorithm should eÆiently ompute H

k

(x) given

the instane desription � along with k 2 K and x 2 X. However, we do not require an eÆient

algorithm to ompute �(k) given the instane desription � along with k 2 K; rather, we only

require an eÆient algorithm to ompute �

0

(k) given the instane desription � along with k 2 K;

moreover, we require that for all k 2 K, the value of �(k) determines the value of �

0

(k). Also, the

publi evaluation algorithm should eÆiently ompute H

k

(x) given the instane desription � along

with �

0

(k) 2 S

0

, x 2 X

0

\L, and a witness w 2W for x. Note that although the private evaluation

algorithm should work for all x 2 X, inluding x 2 X nX

0

, the publi evaluation algorithm need

only work for x 2 X

0

\ L, and need not work for x 2 L nX

0

.

The de�nitions of �(`)-universal and �(`)-universal

2

hash proof systems for ordinary subset

membership problems extend verbatim to hash proof systems for generalized subset membership

problems. However, in de�ning an �(`)-smooth hash proof system for a generalized subset mem-

bership problem, the requirement is that the underlying projetive hash family is �(`)-smooth over

X

0

.

It is easy to adapt the generi enryption sheme presented in x6 to work with generalized hash

proof systems. We sketh how this is done. Let M be a generalized subset membership problem

speifying a sequene (I

`

)

`�0

of instane distributions. Let P be a strongly smooth HPS for M,

and for �xed ` � 0 and �[X;L;W;R;X

0

℄ 2 [I

`

℄, let H = (H;K;X;L;�; S; �) be the assoiated

projetive hash family, and let �

0

: K ! S

0

be the assoiated auxiliary funtion. As in x6, we assume

that � is an abelian group. Let

^

P be a strongly universal

2

extended HPS forM, and for �xed ` � 0

and �[X;L;W;R;X

0

℄ 2 [I

`

℄, let

^

H = (

^

H;

^

K;X��; L��;

^

�;

^

S; �̂) be the assoiated projetive hash

family, and let �̂

0

:

^

K !

^

S

0

be the assoiated auxiliary funtion. For the key generation algorithm,

we hoose k 2 K and

^

k 2

^

K at random, and ompute s

0

= �

0

(k) and ŝ

0

= �̂

0

(k); the publi key

is (s

0

; ŝ

0

), and the private key is (k;

^

k). The enryption algorithm is almost the same as in x6; the

only di�erene is that x is hosen at random from X

0

\ L, and the omputations of H

k

(x) and

^

H

^

k

(x; e) using the publi evaluation algorithms of P and

^

P make use of the values s

0

and ŝ

0

. The

deryption algorithm is idential to that in x6.

It is easy to adapt the proof of Theorem 1 to show that this sheme is seure against adaptive

hosen iphertext attak assuming the underlying generalized subset membership problem is hard.

One uses the same simulator as in the proof of Theorem 1, exept that now it is used to distinguish

random elements of X

0

n L from random elements of X

0

\ L. Exept for this hange, the proof of

Theorem 1 arries through verbatim.

We now show how our variation of the DCR-based sheme �ts into the above extended frame-

work and is seure under the DCR assumption.

We �rst desribe the generalized subset membership problem. For N as above, let X = Z

�

N

2

,

L = G

N

0

G

2

T , and let X

0

= G

N

G

N

0

. Note that X

0

\L = G

N

0

= L

0

. An instane desription � will

ontain N , along with a generator g for L

0

. To generate suh a g, one an simply hoose � 2 Z

�

N

2

at random, and ompute g = �

2N

. The set of witnesses is W

0

as de�ned as above, and we say that

w 2 W

0

is a witness for x 2 X if x = g

w

. It is lear that if we hoose w 2 W

0

at random, and set

x = g

w

, then we get a nearly random x 2 L

0

together with a orresponding witness w 2W

0

. That

ompletes the desription of our generalized subset membership problem.

The DCR assumption implies the hardness of this generalized subset membership problem.

Indeed, reall that P is the subgroup of Nth powers of Z

�

N

2

. Evidently, P = G

N

0

G

2

T = L.

Suppose we are given x sampled at random from Z

�

N

2

(respetively, P ); then x

2

is uniformly

distributed over X

0

(respetively, L

0

). This implies that distinguishing X

0

from L

0

is at least as

hard as distinguishing Z

�

N

2

from P , and so under the DCR assumption, it is hard to distinguish X

0
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from L

0

. It is easy to see that this implies that it is hard to distinguish X

0

n L

0

from L

0

as well.

For k 2 Z, let H

k

be the kth power map on X; that is, H

k

maps x 2 X to x

k

2 X. Consider the

group system G = (H;X; L;X), where H = fH

k

: k 2 Zg. Let K

�

= f0; : : : ; 2NN

0

� 1g. Sine X

has exponent 2NN

0

, we see that the orrespondene k 7! H

k

yields a bijetion between K

�

and H.

We leave it to the reader to verify that G is diverse, and moreover, for any x 2 X, I(x) = hx(G

N

)i.

Consider the derived projetive hash family H

�

= (H;K

�

;X; L;X; S; �), where H and K

�

are

as in the previous paragraph, S = L

0

�G

2

� T , and for k 2 Z, we de�ne �(k) = (g

k

; g

k

1

; g

k

2

), where

g

1

generates G

2

and g

2

= (�1 mod N

2

) generates T . In building a hash proof system from H

�

, we

also de�ne the auxiliary funtion �

0

that sends k 2 Z to g

k

2 L

0

, and as usual, we use the set K in

plae of K

�

. Using H

�

as the starting point, one sees that the variation presented in this setion

follows from preisely the same line of reasoning as in x8.2.1. It follows that the sheme is seure

under the DCR assumption.

Minor variations As usual, instead of using an injetive funtion �, we an use a CRHF, or even

a UOWHF. In this ase, we ould typially take n = 1.

8.2.4 Variation 2

We desribe another variation on the sheme in x8.2.2 that does not quite �t into our general

framework, but an still be easily proven seure against adaptive hosen iphertext attak using

the tehniques we have developed. In this variation, the iphertexts are not as ompat as those in

the shemes in x8.2.2 and x8.2.3; however, the iphertexts have more algebrai struture. A sheme

suh as this may be useful in ertain appliations.

We desribe the sheme for a �xed value of N that is the produt of two (� + 1)-bit strong

primes. The message spae for this sheme is Z

N

.

Let X

0

= G

N

G

N

0

and let L

0

= G

N

0

. Also, let W

0

= f0; : : : ; bN=4g and K = f0; : : : ; bN

2

=2g.

Let R = f0; : : : ; 2

�

� 1g, and let � : Z

N

2
� Z

N

2
! R

n

be an eÆiently omputable injetive map

for an appropriate n � 1.

The key generation algorithm of this variation is idential to that of the sheme in x8.2.3. Only

the enryption and deryption algorithms are di�erent. Reall that � = (1 + N mod N

2

) 2 Z

�

N

2

has order N , and that for 0 � a < N , �

a

= (1 + aN mod N

2

).

Enryption

To enrypt a message m 2 Z

N

under a publi key as above, one does the following.

Choose w 2W

0

at random, and ompute

x = g

w

2 L

0

; � = s

w

2 L

0

; e = �

m

� � 2 X

0

:

Compute

�̂ = ~s

w

n

Y

i=1

ŝ



i

w

i

2 L

0

;

where (

1

; : : : ; 

n

) = �(x; e) 2 R

n

.

The iphertext is (x; e; �̂).

Deryption

To derypt a iphertext (x; e; �̂) 2 Z

�

N

2

� Z

�

N

2

� Z

�

N

2

under a seret key as above, one does

the following.
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Compute

�̂

0

= x

~

k+

P

n

i=1



i

^

k

i

2 Z

�

N

2

;

where (

1

; : : : ; 

n

) = �(x; e) 2 R

n

.

Chek whether �̂ = �̂

0

; if not, then output rejet and halt.

Compute

� = x

k

2 X

0

; ~m = e � �

�1

2 Z

�

N

2

:

If ~m = �

m

for some m 2 Z

N

, output m; otherwise, output rejet.

Again, we impliitly assume that the deryption algorithm heks that x, e, and �̂ lie in Z

�

N

2

.

Clearly, however, the test that x 2 Z

�

N

2

(and e 2 Z

N

2
and �̂ 2 Z

N

2
) is suÆient, sine if x 2 Z

�

N

2

,

and either e =2 Z

�

N

2

or �̂ =2 Z

�

N

2

, the iphertext will anyway be rejeted for other reasons.

Seurity analysis. This sheme is seure against adaptive hosen iphertext attak, under the DCR

assumption. To prove this, we briey sketh how our general framework, as already extended in

x8.2.3, an be further extended so that this sheme �ts into the framework.

All we need to do is de�ne an appropriate generalization of a smooth projetive hash family.

Let H = (H;K;X;L;�; S; �) be a projetive hash family, and let X

0

� X. Further, suppose

that � is an abelian group (for whih we use additive notation), and that �

0

is a subgroup of �.

We de�ne two random variables, U

�

0

X

0

(H) and V

�

0

X

0

(H), as follows. Consider the probability spae

de�ned by hoosing k 2 K at random, x 2 X

0

n L at random, and �

0

2 �

0

at random. We set

U

�

0

X

0

(H) = (x; s; �

0

+ �) and V

�

0

X

0

(H) = (x; s; �), where s = �(k) and � = H

k

(x). For � � 0, we say

that H is �-smooth over X

0

on �

0

if U

�

0

X

0

(H) and V

�

0

X

0

(H) are �-lose.

In building an enryption sheme using suh a smooth projetive hash family, �

0

will be the

message spae, rather than �, and we require that it is easy to reognize valid binary enodings of

elements of �

0

.

We leave it to the reader to �ll in all of the details of this extension, as well as to adapt the

proof of Theorem 1 to this extension.

In the enryption sheme desribed above, we take � = Z

�

N

2

and �

0

= G

N

. We leave it to the

reader to �ll in the remaining details of the analysis of this sheme.

Minor variations. As usual, instead of using an injetive funtion �, we an use a CRHF, or even

a UOWHF. In this ase, we ould typially take n = 1.

8.3 Shemes based on the Quadrati Residuosity assumption

8.3.1 Derivation

The QR assumption. Let p; q; p

0

; q

0

be distint odd primes with p = 2p

0

+ 1 and q = 2q

0

+ 1, and

where p

0

and q

0

are both � bits in length. Let N = pq and let N

0

= p

0

q

0

. Consider the group Z

�

N

,

and let X be the subgroup of elements (a mod N) 2 Z

�

N

with Jaobi symbol (a j N) = 1, and let

L be the subgroup of squares (a.k.a., quadrati residues) of Z

�

N

. Note that L is a subgroup of X of

index 2.

The Quadrati Residuosity (QR) assumption is that given only N , it is hard to distinguish

random elements of X from random elements of L. This implies that it is hard to distinguish

random elements of X n L from random elements of L.
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To be ompletely formal, one should speify speify a sequene of bit lengths �(`), parameterized

by a seurity parameter ` � 0, and to generate an instane of the problem for seurity parameter

`, the primes p

0

and q

0

should be distint, random primes of length � = �(`), suh that p = 2p

0

+ 1

and q = 2q

0

+ 1 are also primes.

As in x8.2, we shall assume that strong primes (suh as p and q) are suÆiently dense. Note that

the traditional QR assumption was not restrited to strong primes. However, the QR assumption

without this restrition implies the QR assumption with this restrition, assuming that strong

primes are suÆiently dense, as we are here.

A subset membership problem. The groups X and L above will de�ne our subset membership

problem.

We an deompose Z

�

N

as an internal diret produt

Z

�

N

= G

N

0

�G

2

� T;

where eah group G

�

is a yli group of order � , and T is the subgroup of Z

�

N

generated by

(�1 mod N). This deomposition is unique, exept for the hoie of G

2

(there are two possible

hoies).

It is easy to see that X = G

N

0

T , so it is a yli group, and that L = G

N

0

.

Our instane desription � will ontain N , along with a random generator g for L. It is easy to

generate suh a g: hoose a random � 2 Z

�

N

, and set g = �

2

. With overwhelming probability, suh

a g will generate L; indeed, the output distribution of this sampling algorithm is O(2

��

)-lose the

uniform distribution over all generators.

Let us de�ne the set of witnesses as W = f0; : : : ; bN=4g. We say w 2W is a witness for x 2 X

if x = g

w

. To generate x 2 L at random together with a orresponding witness, we simply generate

w 2 W at random, and ompute x = g

w

. The output distribution of this algorithm is not the

uniform distribution over L, but is O(2

��

)-lose to it.

This ompletes the desription of our subset membership problem. It is easy to see that it

satis�es all the basi requirements spei�ed in x4. As already mentioned, the QR assumption

implies that this is a hard subset membership problem.

Hash proof systems. Now it remains to onstrut appropriate strongly smooth and strongly

universal

2

HPS's for the onstrution in x6. To do this, we �rst onstrut a diverse group sys-

tem (see De�nition 10), from whih we an then derive the required HPS's.

Fix an instane desription �, where � spei�es an integer N | de�ning groups X and L as

above | along with a generator g for L. Let H = Hom(X;X) and onsider the group system

G = (H;X; L;X).

As disussed in x7.4.2, G is a diverse group system; moreover, for x 2 X, if we deompose x as

x = x(L) � x(T ), where x(L) 2 L and x(T ) 2 T , then we have I(x) = hx(T )i; thus, for x 2 X n L,

I(x) = T .

For k 2 Z, let H

k

2 Hom(X;X) be the kth power map; that is, H

k

sends x 2 X to x

k

2 X.

Let K

�

= f0; : : : ; 2N

0

� 1g. As disussed in x7.4.2, the orrespondene k 7! H

k

yields a bijetion

between K

�

and Hom(X;X).

Consider the projetive hash family H

�

= (H;K

�

;X; L;X;L; �), where H and K

�

are as in

the previous paragraph, and � maps k 2 Z to H

k

(g) 2 L. Clearly, H

�

is a projetive hash family

derived fromG, and so by Theorem 2, it is 1=2-universal. From this, we an obtain a orresponding

HPS P; however, as we annot readily sample elements from K

�

, the projetive hash family H that
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P assoiates with the instane desription � is slightly di�erent than H

�

; namely, we use the set

K = f0; : : : ; bN=2g in plae of the set K

�

, but otherwise, H and H

�

are the same. It is readily

seen that the uniform distribution on K

�

is O(2

��

)-lose to the uniform distribution on K, and so

H and H

�

are also O(2

��

)-lose. It is also easy to verify that all of the algorithms that P should

provide are available.

So we now have a 1=2-universal HPS P. We an apply the onstrution in Lemma 1 to H

�

,

using a parameter t = t(`), to get a 2

�t

-universal projetive hash family

�

H

�

. From

�

H

�

we get

a orresponding approximation

�

H (using K in plae of K

�

), and from this we get orresponding

2

�t

-universal HPS

�

P.

Now, we ould easily onvert

�

P into a strongly smooth HPS by applying the Leftover Hash

Lemma onstrution in Lemma 4 to the underlying projetive hash family

�

H

�

. However, there is a

muh more diret and pratial way to proeed, as we now desribe.

Aording to Theorem 2, for any s; x 2 X, if k is hosen at random fromK

�

, subjet to �(k) = s,

then H

k

(x) is uniformly distributed over a oset of I(x) in X. As disussed above, for x 2 X n L,

I(x) = T .

Now de�ne the map � : Z

N

! Z

2

as follows: for x = (a mod N) 2 Z

�

N

, with 0 � a < N , let

�(x) = 1 if a > N=2, and �(x) = 0 otherwise. It is easy to verify that the restrition of � to any

oset of T in X (whih is a set of the form f�xg for some x 2 X) is a one-to-one map from that

oset onto Z

2

.

Let us de�ne H

�

�

= (H

�

;K

�

;X; L;Z

N

; L; �), where for k 2 Z, H

�

k

= � Æ H

k

. That is, H

�

�

is

the same as H

�

, exept that in H

�

�

, we pass the output of the hash funtion for H

�

through �.

From the observations in the previous two paragraphs, it is lear that H

�

�

is a 1=2-universal, and

so 0-smooth, projetive hash family.

Now, we an apply the onstrution in Lemma 1 to H

�

�

with the parameter t = t(`) to get a 0-

smooth projetive hash family

�

H

�

�

whose hash output spae is Z

t

2

. From

�

H

�

�

we get a orresponding

approximation

�

H

�

(using K in plae of K

�

), and from this we get orresponding 0-smooth HPS

�

P

�

.

We an apply the onstrution in Theorem 4 to H

�

, using a parameter

^

t =

^

t(`), obtaining a

2

�

^

t

-universal

2

projetive hash family

^

H

�

for (X � Z

t

2

; L � Z

t

2

). From

^

H

�

we get a orresponding

approximation

^

H (using K in plae of K

�

), and from this we get a orresponding 2

�

^

t(`)

-universal

2

extended HPS

^

P.

We ould build our enryption sheme diretly using

^

P; however, we get more ompat i-

phertexts if we modify

^

H

�

by passing its hash outputs through �, just as we did in building H

�

�

,

obtaining the analogous projetive hash family

^

H

�

�

for (X � Z

t

2

; L � Z

t

2

). From Theorem 4, and

the above disussion, it is lear that

^

H

�

�

is also 2

�

^

t

-universal

2

. From

^

H

�

�

we get a orresponding

approximation

^

H

�

(using K in plae of K

�

), and from this we get a orresponding 2

�

^

t(`)

-universal

2

extended HPS

^

P

�

.

8.3.2 The enryption sheme

We now present in detail the enryption obtained using the HPS's

�

P

�

and

^

P

�

above.

We desribe the sheme for a �xed value of N that is produt of two (�+1)-bit strong primes.

The message spae for this sheme is Z

t

2

, where t = t(`) is an auxiliary parameter. Note that t may

be any size | it need not be partiularly large. We also need an auxiliary parameter

^

t =

^

t(`). The

value of

^

t should be large; more preisely, 2

�

^

t(`)

should be a negligible funtion in `.

Let X, L, and � be as de�ned above. Also as above, let K = f0; : : : ; bN=2g, and W =

f0; : : : ; bN=4g. Let � : Z

N

� Z

t

2

! f0; 1g

n

be an eÆiently omputable injetive map for an
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appropriate n � 1.

Key Generation

Choose � 2 Z

�

N

at random and set g = �

2

2 L.

Randomly hoose

k

1

; : : : ; k

t

;

~

k

1

; : : : ;

~

k

^

t

;

^

k

1

; : : : ;

^

k

n+

^

t�1

2 K:

Compute

s

i

= g

k

i

2 L (i = 1; : : : ; t);

~s

i

= g

~

k

i

2 L (i = 1; : : : ;

^

t);

ŝ

i

= g

^

k

i

2 L (i = 1; : : : ; n+

^

t� 1):

The publi key is (g; s

1

; : : : ; s

t

; ~s

1

; : : : ; ~s

^

t

; ŝ

1

; : : : ; ŝ

n+

^

t�1

).

The private key is (k

1

; : : : ; k

t

;

~

k

1

; : : : ;

~

k

^

t

;

^

k

1

; : : : ;

^

k

n+

^

t�1

).

Enryption

To enrypt a message m 2 Z

t

2

under a publi key as above, one does the following.

Choose w 2W at random, and ompute

x = g

w

; y

i

= s

w

i

2 L (i = 1; : : : ; t):

Compute

� = (�(y

1

); : : : ; �(y

t

)) 2 Z

t

2

; e =m+ � 2 Z

t

2

:

Compute

~z

i

= ~s

w

i

2 L (i = 1; : : : ; t);

ẑ

i

= ŝ

w

i

2 L (i = 1; : : : ; n+

^

t� 1);

ŷ

i

= ~z

i

Q

n

j=1

(ẑ

i+j�1

)



j

2 L (i = 1; : : : ;

^

t);

where (

1

; : : : ; 

n

) = �(x; e) 2 f0; 1g

n

.

Compute

�̂ = (�(ŷ

1

); : : : ; �(ŷ

^

t

)) 2 Z

^

t

2

:

The iphertext is (x; e; �̂).

Deryption

To derypt a iphertext (x; e; �̂) 2 X � Z

t

2

� Z

^

t

2

under a private key as above, one does the

following.

Compute

ŷ

i

= x

~

k

i

+

P

n

j=1



j

^

k

i+j�1

2 X (i = 1; : : : ;

^

t);

where (

1

; : : : ; 

n

) = �(x; e) 2 f0; 1g

n

.

Compute

�̂

0

= (�(ŷ

1

); : : : ; �(ŷ

^

t

)) 2 Z

^

t

2

:

Chek whether �̂ = �̂

0

; if not, then output rejet and halt.

Compute

y

i

= x

k

i

2 X (i = 1; : : : ; t); � = (�(y

1

); : : : ; �(y

t

)) 2 Z

t

2

; m = e� � 2 Z

t

2

;

and output m.
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Note that in the deryption algorithm, we are assuming that x 2 X, whih impliitly means

that the deryption algorithm should hek that x = (a mod N) with Jaobi symbol (a j N) = 1.

This is preisely the sheme that our general onstrution in x6 yields. Thus, the sheme is

seure against adaptive hosen iphertext attak, provided the QR assumption holds.

Minor variations. As in x8.1, if we replae � by a CRHF we get an even more eÆient sheme

with a smaller value of n. In fat, just a UOWHF suÆes.

Note that in this sheme, the fatorization of N is not a part of the private key. This would

allow, for example, many parties to work with the same modulus N , whih may be onvenient

in some situations. Alternatively, if we inlude the fatorization of N in the private key, some

optimizations in the deryption algorithm are possible, suh as Chinese Remaindering tehniques.

EÆieny. While this sheme is not nearly as eÆient as our shemes based on the DDH and

DCR assumptions, it is based on an assumption that is better established and qualitatively weaker

than either of these assumptions. Moreover, the sheme may just be pratial enough for some

appliations. Let us onsider some onrete seurity parameters. We might hoose N to be a

1024-bit number. If we use this sheme just to enrypt a symmetri enryption key, then t = 128

is a reasonable value. Setting

^

t = 128 is also reasonable. If we implement � using a hash funtion

like SHA-1, then we an take n = 160.

With these hoies of parameters, the size of a publi or private key will be less than 70KB.

Ciphertexts are quite ompat, requiring 160 bytes. An enryption takes less than 600 1024-bit

exponentiations moduloN ; this will take about 10 seonds or so on typial a 1GHz PC. A deryption

will require about half as many exponentiations modulo N , and so without any optimizations, this

would take roughly half as muh time as enryption; however, if we use the Chinese Remaindering

optimizations mentioned above, this should ut the running time further by a fator of between 3

and 4; also, if we exploit the fat that all exponentiations in the deryption algorithm are to the

same basis, further signi�ant optimizations are possible, bringing the time for a deryption down

to around one seond or less.

So learly, this sheme is not suitable for, say, implementation on a smart ard. However, it is

not astronomially impratial, either.

8.3.3 A variation

We now desribe a variation on the above sheme. This variation is analogous to the variation of

our basi DCR-based sheme, desribed in x8.2.4. The iphertexts in this sheme are muh less

ompat than those in the sheme above in x8.3.2, but have more algebrai struture, whih may

be useful in some appliations.

We desribe the sheme for a �xed value of N that is produt of two (�+1)-bit strong primes.

The message spae for this sheme is Z

t

2

, where t = t(`) is an auxiliary parameter. We also need

an auxiliary parameter

^

t =

^

t(`), where 2

�

^

t(`)

is a negligible funtion in `.

Let X and L be as de�ned in x8.3.1. Also as in x8.3.1, let K = f0; : : : ; bN=2g, and W =

f0; : : : ; bN=4g. Let � : Z

N

� Z

t

N

! f0; 1g

n

be an eÆiently omputable injetive map for an

appropriate n � 1.

The key generation algorithm is the same as that in x8.3.2. We desribe only the enryption

and deryption algorithms.
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Enryption

To enrypt a message m = (m

1

; : : : ;m

t

) 2 Z

t

2

under a publi key as above, one does the

following.

Choose w 2W at random, and ompute

x = g

w

; y

i

= s

w

i

2 L (i = 1; : : : ; t):

Compute

e = ((�1)

m

1

y

1

; : : : ; (�1)

m

t

y

t

) 2 X

t

:

Compute

~z

i

= ~s

w

i

2 L (i = 1; : : : ; t);

ẑ

i

= ŝ

w

i

2 L (i = 1; : : : ; n+

^

t� 1);

ŷ

i

= ~z

i

Q

n

j=1

(ẑ

i+j�1

)



j

2 L (i = 1; : : : ;

^

t);

where (

1

; : : : ; 

n

) = �(x; e) 2 f0; 1g

n

.

Compute

�̂ = (ŷ

1

; : : : ; ŷ

^

t

) 2 L

^

t

:

The iphertext is (x; e; �̂).

Deryption

To derypt a iphertext (x; e; �̂) 2 X �X

t

�X

^

t

under a private key as above, one does the

following.

Compute

ŷ

i

= x

~

k

i

+

P

n

j=1



j

^

k

i+j�1

2 X (i = 1; : : : ;

^

t);

where (

1

; : : : ; 

n

) = �(x; e) 2 f0; 1g

n

.

Compute

�̂

0

= (ŷ

1

; : : : ; ŷ

^

t

) 2 X

^

t

:

Chek whether �̂ = �̂

0

; if not, then output rejet and halt.

Compute

y

i

= x

k

i

2 X; ~m

i

= y

i

=e

i

2 X (i = 1; : : : ; t);

where e = (e

1

; : : : ; e

t

). If for 1 � i � t, ~m

i

is of the form ((�1)

m

i

mod N) for some m

i

2 Z

2

,

then output m = (m

1

; : : : ;m

t

); otherwise, output rejet.

Note that in the deryption algorithm, we are assuming that x 2 X, whih impliitly means

that the deryption algorithm should hek that x = (a mod N) with Jaobi symbol (a j N) = 1.

It is suÆient to hek that the omponents of e and �̂ are elements of Z

N

; if they are not elements

of X as well, the iphertext will anyway be rejeted.

It is easy to show that this sheme is seure under the QR assumption, using the extended frame-

work skethed in x8.2.4 (one takes � = X and �

0

= T in the generalized smoothness de�nition),

along with the analysis in x8.3.1. We leave the details to the reader.

As usual, instead of using an injetive funtion �, we an use a CRHF, or even a UOWHF,

allowing one to use a smaller value of n.
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