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Abstra
t

We present several new and fairly pra
ti
al publi
-key en
ryption s
hemes and prove them

se
ure against adaptive 
hosen 
iphertext atta
k. One s
heme is based on Paillier's De
ision

Composite Residuosity (DCR) assumption, while another is based in the 
lassi
al Quadrati


Residuosity (QR) assumption. The analysis is in the standard 
ryptographi
 model, i.e., the

se
urity of our s
hemes does not rely on the Random Ora
le model.

We also introdu
e the notion of a universal hash proof system. Essentially, this is a spe
ial

kind of non-intera
tive zero-knowledge proof system for a language. We do not show that

universal hash proof systems exist for all NP languages, but we do show how to 
onstru
t very

eÆ
ient universal hash proof systems for a general 
lass of group-theoreti
 language membership

problems.

Given an eÆ
ient universal hash proof system for a language with 
ertain natural 
ryp-

tographi
 indistinguishability properties, we show how to 
onstru
t an eÆ
ient publi
-key en-


ryption s
hemes se
ure against adaptive 
hosen 
iphertext atta
k in the standard model. Our


onstru
tion only uses the universal hash proof system as a primitive: no other primitives are re-

quired, although even more eÆ
ient en
ryption s
hemes 
an be obtained by using hash fun
tions

with appropriate 
ollision-resistan
e properties.

We show how to 
onstru
t eÆ
ient universal hash proof systems for languages related to the

DCR and QR assumptions. From these we get 
orresponding publi
-key en
ryption s
hemes

that are se
ure under these assumptions. We also show that the Cramer-Shoup en
ryption

s
heme (whi
h up until now was the only pra
ti
al en
ryption s
heme that 
ould be proved

se
ure against adaptive 
hosen 
iphertext atta
k under a reasonable assumption, namely, the

De
ision DiÆe-Hellman assumption) is also a spe
ial 
ase of our general theory.
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 DCR-based and QR-based s
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1 Introdu
tion

It is generally 
onsidered that the \right" notion of se
urity for se
urity for a general-purpose

publi
-key en
ryption s
heme is that of se
urity against adaptive 
hosen 
iphertext atta
k.

This notion was introdu
ed by Ra
ko� and Simon [RS℄. While there are weaker notions of

se
urity, su
h as that de�ned by Naor and Yung [NY2℄, experien
e in the design and analysis

of 
ryptographi
 proto
ols has shown that se
urity against adaptive 
hosen 
iphertext atta
k is

both ne
essary and suÆ
ient in many appli
ations. Dolev, Dwork, and Naor [DDN℄ introdu
ed

the notion of non-malleable en
ryption, whi
h turns out to be equivalent to the notion of se
urity

against adaptive 
hosen 
iphertext atta
k (at least, when one 
onsiders the strongest possible type

of adversary).

Although Ra
ko� and Simon de�ned the notion of se
urity against adaptive 
hosen 
iphertext

atta
k, they did not a
tually present a s
heme that satis�ed this property. Indeed, although they

present an en
ryption s
heme, it requires the involvement of a trusted third party that plays a spe
ial

role. Dolev, Dwork, and Naor present a s
heme that 
an be proven se
ure against adaptive 
hosen


iphertext atta
k under a reasonable intra
tability assumption. However, although their s
heme is

polynomial time, it is horrendously impra
ti
al, and so although their s
heme is a valuable proof

of 
on
ept, it appears that it has no pra
ti
al signi�
an
e.

Up until now, the only pra
ti
al s
heme that has been proposed that 
an be proven se
ure

against adaptive 
hosen 
iphertext atta
k under a reasonable intra
tability assumption is that of

Cramer and Shoup [CS℄. This s
heme is based on the De
ision DiÆe-Hellman (DDH) assumption,

and is not mu
h less eÆ
ient than traditional ElGamal en
ryption.

Other pra
ti
al s
hemes have been proposed and heuristi
ally proved se
ure against adaptive


hosen 
iphertext. More pre
isely, these s
hemes are proven se
ure under reasonable intra
tability

assumptions in the Random Ora
le model [BR℄. The Random Ora
le model is an idealized model of


omputation in whi
h a 
ryptographi
 hash fun
tion is modeled as a bla
k box, a

ess to whi
h is

allowed only through expli
it ora
le queries. While the Random Ora
le model is a useful heuristi
,

it does not rule out all possible atta
ks: a s
heme proven se
ure in this model might still be subje
t

to an atta
k \in the real world," even though the stated intra
tability assumption is true, and even

if there are no parti
ular weaknesses in the 
ryptographi
 hash fun
tion (see [CGH℄).

1.1 Our 
ontributions

We present several new and fairly pra
ti
al publi
-key en
ryption s
hemes and prove them se
ure

against adaptive 
hosen 
iphertext atta
k. One s
heme is based on Paillier's De
ision Composite

Residuosity (DCR) assumption [P℄, while another is based in the 
lassi
al Quadrati
 Residuosity

(QR) assumption. The analysis is in the standard 
ryptographi
 model, i.e., the se
urity of our

s
hemes does not rely on the Random Ora
le model.

We also introdu
e the notion of a universal hash proof system. Essentially, this is a spe
ial kind

of non-intera
tive zero-knowledge proof system for a language. We do not show that universal hash

proof systems exist for all NP languages, but we do show how to 
onstru
t very eÆ
ient universal

hash proof systems for a general 
lass of group-theoreti
 language membership problems.

Given an eÆ
ient universal hash proof system for a language with 
ertain natural 
ryptographi


indistinguishability properties, we show how to 
onstru
t an eÆ
ient publi
-key en
ryption s
hemes

se
ure against adaptive 
hosen 
iphertext atta
k in the standard model. Our 
onstru
tion only

uses the universal hash proof system as a primitive: no other primitives are required, although

even more eÆ
ient en
ryption s
hemes 
an be obtained by using hash fun
tions with appropriate


ollision-resistan
e properties.
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We show how to 
onstru
t eÆ
ient universal hash proof systems for languages related to the

DCR and QR assumptions. From these we get 
orresponding publi
-key en
ryption s
hemes that

are se
ure under these assumptions.

The DCR-based s
heme is very pra
ti
al. It uses an n-bit RSA modulusN (with, say, n = 1024).

The publi
 and private keys, as well as the 
iphertexts, require storage for O(n) bits. En
ryption

and de
ryption require O(n) multipli
ations modulo N

2

.

The QR-based s
heme is somewhat less pra
ti
al. It uses an n-bit RSA modulus N as above, as

well as an auxiliary parameter t (with, say, t = 128). The publi
 and private keys require O(nt) bits

of storage, although 
iphertexts require just O(n + t) bits of storage. En
ryption and de
ryption

require O(nt) multipli
ations modulo N .

We also show that the original Cramer-Shoup s
heme follows from of our general 
onstru
tion,

when applied to a universal hash proof system related to the DDH assumption.

1.1.1 Organization of the paper

The se
tions of this paper are organized as follows:

x2 re
alls some basi
 terminology;

x3 re
alls the 
lassi
al notion of \universal hashing," and introdu
es a generalization whi
h we


all \universal proje
tive hashing."

x4 formalizes the notion of a \subset membership problem";

x5 introdu
es the notion of a \universal hash proof system," whi
h is based on \universal pro-

je
tive hashing," and \subset membership problems";

x6 presents a general framework for building a se
ure publi
-key en
ryption s
heme using a

\universal hash proof system" for a \hard subset membership problem."

x7 shows how to build pra
ti
al \universal hash proof systems" for a general 
lass of group-

theoreti
 \subset membership problems."

x8 presents several new and fairly pra
ti
al en
ryption s
hemes based on the pre
eding general


onstru
tions, in
luding one based on the DCR assumption, and one based on the QR as-

sumption, and also shows that the original Cramer-Shoup en
ryption s
heme follows from

these general 
onstru
tions as well.

2 Some preliminaries

We re
all some basi
 terminology and notation.

A fun
tion f(`) mapping non-negative integers to non-negative reals if 
alled negligible (in `) if

for all 
 � 1, there exists `

0

> 0 su
h that f(`) � 1=`




for all ` � `

0

.

Let X and Y be random variables taking values in a �nite set S. The statisti
al distan
e between

X and Y is de�ned to be

Dist(X;Y ) =

1

2

�

X

s2S

jPr[X = s℄� Pr[Y = s℄j :

Equivalently,

Dist(X;Y ) = max

S

0

�S

�

�

Pr[X 2 S

0

℄� Pr[Y 2 S

0

℄

�

�

:
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We shall say that X and Y are �-
lose if Dist(X;Y ) � �.

Let X = (X

`

)

`�0

and Y = (Y

`

)

`�0

be sequen
es of random variables, where for ea
h ` � 0, X

`

and Y

`

take values in a �nite set S

`

. Then we say that X and Y are statisti
ally indistinguishable

if Dist(X

`

; Y

`

) is a negligible fun
tion in `. For 
omputational purposes, we will generally work in

a setting where the sets S

`


an be en
oded as bit strings whose length is polynomial in `. For any

probabilisti
 algorithm A that outputs 0 or 1, we de�ne the distinguishing advantage for A (with

respe
t to X and Y) as the fun
tion

Dist

X;Y

A

(`) =

�

�

�

Pr[A(1

`

;X

`

) = 1℄� Pr[A(1

`

; Y

`

) = 1℄

�

�

�

:

Here, the notation 1

`

denotes the unary en
oding of ` as a sequen
e of ` 
opies of 1, and the

probability is with respe
t to the random 
oin tosses of the algorithm A and the distributions of

X

`

and Y

`

. We say that X and Y are 
omputationally indistinguishable if for all probabilisti
,

polynomial-time A, the fun
tion Dist

X;Y

A

(`) is negligible in `.

For a positive integer Z, Z

N

denotes the ring of integers modulo N , and Z

�

N

denotes the


orresponding multipli
ative group of units. For a 2 Z, (a mod N) 2 Z

N

denotes the residue 
lass

of a modulo N .

For an element g of a group G, hgi denotes the subgroup of G generated by g. Likewise, for a

subset U of G, hUi denotes the subgroup of G generated by U .

3 Universal proje
tive hashing

3.1 Universal hashing

Before de�ning universal proje
tive hash fun
tions, we re
all some de�nitions relating to the 
lassi
al

notion of \universal hashing" [CW, WC℄.

Let X and � be �nite, non-empty sets. Let H = (H

k

)

k2K

be a 
olle
tion of fun
tions indexed

by K, so that for every k 2 K, H

k

is a fun
tion from X into �. Note that we may have H

k

= H

k

0

for k 6= k

0

. We 
all F = (H;K;X;�) a hash family, and ea
h H

k

a hash fun
tion.

De�nition 1 Let F = (H;K;X;�) be a hash family, and 
onsider the probability spa
e de�ned by


hoosing k 2 K at random.

We 
all F pair-wise independent if for all x; x

�

2 X with x 6= x

�

, it holds that H

k

(x) and

H

k

(x

�

) are uniformly and independently distributed over �.

Note that there are many well-known, and very simple 
onstru
tions of pair-wise independent

hash families.

3.2 De�nition of universal proje
tive hashing

We now introdu
e the 
on
ept of universal proje
tive hashing. Let F = (H;K;X;�) be a hash

family. Let L be a non-empty, proper subset of X. Let S be a �nite, non-empty set, and let

� : K ! S be a fun
tion. Set H = (H;K;X;L;�; S; �).

De�nition 2 H = (H;K;X;L;�; S; �), de�ned as above, is 
alled a proje
tive hash family (for

(X;L)) if for all k 2 K, the a
tion of H

k

on L is determined by �(k).

In other words, for all k 2 K, the value �(k) \en
odes" the a
tion of H

k

on L (and possibly

more than that), so that given �(k) and x 2 L, the value H

k

(x) is uniquely determined.
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De�nition 3 Let H = (H;K;X;L;�; S; �) be a proje
tive hash family, and let � � 0 be a real

number. Consider the probability spa
e de�ned by 
hoosing k 2 K at random.

We say that H is �-universal if for all s 2 S, x 2 X n L, and � 2 �, it holds that

Pr[H

k

(x) = � ^ �(k) = s℄ � �Pr[�(k) = s℄:

We say that H is �-universal

2

if for all s 2 S, x; x

�

2 X, and �; �

�

2 � with x =2 L [ fx

�

g, it

holds that

Pr[H

k

(x) = � ^ H

k

(x

�

) = �

�

^ �(k) = s℄ � �Pr[H

k

(x

�

) = �

�

^ �(k) = s℄

We will sometimes refer to the value of � in the above de�nition as the error rate of H.

Note that if H is �-universal

2

, then it is also �-universal (note that jXj � 2).

We 
an reformulate the above de�nition as follows. Let H = (H;K;X;L;�; S; �) be a pro-

je
tive hash family, and 
onsider the probability spa
e de�ned by 
hoosing k 2 K at random. H

is �-universal means that 
onditioned on a �xed value of �(k), even though the value of H

k

is


ompletely determined on L, for any x 2 X nL, the value of H

k

(x) 
an be guessed with probability

at most �. H is �-universal

2

means that in addition, for any x

�

2 X n L, 
onditioned on �xed

values of �(k) and H

k

(x

�

), for any x 2 X n L with x 6= x

�

, the value of H

k

(x) 
an be guessed with

probability at most �.

3.2.1 Motivation

We now dis
uss the motivation for De�nition 3. Let H be a proje
tive hash family, and 
onsider

the following game played by an adversary.

At the beginning of the game, k 2 K is 
hosen at random, and the adversary is given s = �(k).

Initially, the adversary has no other information about k, but during the 
ourse of the game, he is

allowed to make a sequen
e of ora
le queries to learn more about k.

There are two types of ora
le queries. One type of ora
le query is a test query: the adversary

submits x 2 X and � 2 � to the ora
le, and the ora
le tells the adversary whether or not H

k

(x) = �.

The other type of ora
le query is an evaluation query: the adversary submits x

�

2 X to the ora
le,

and the ora
le tells the adversary the value �

�

= H

k

(x

�

).

During the 
ourse of the game, the adversary is allowed to make an arbitrary number of test

queries, but only one evaluation query. Moreover, after the evaluation query, he is not allowed to

submit (x

�

; �

�

) to the ora
le in any subsequent test queries.

We say the adversary wins the game if he submits a test query (x; �) with x 2 X n L and

H

k

(x) = �.

That 
ompletes the des
ription of the game. Note that in this game, the adversary's strategy is

quite arbitrary, and need not be eÆ
iently 
omputable. Moreover, the strategy may be adaptive,

in the sense that an ora
le query made by the adversary may depend in an arbitrary way on all

information available to the adversary at that time.

It is easy to see from the de�nition that if H is �-universal

2

, then regardless of the adversary's

strategy, he wins the game with probability at most Q � �, where Q is a bound on the number of test

queries made by the adversary. Note that while this property is a 
onsequen
e of the de�nition of

�-universal

2

, it is not ne
essarily equivalent to the de�nition of �-universal

2

. In fa
t, this property

suÆ
es to prove the main results of this paper, and indeed, all we need is this property in the 
ase

where x

�

is 
hosen at random from X n L, and where the adversary is 
omputationally bounded.
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3.2.2 Trivial 
onstru
tions

Families satisfying De�nition 3 are trivial to 
onstru
t, at least from a 
ombinatorial point of view.

For instan
e, let F = (H;K;X;�) be a pair-wise independent hash family, let L be a non-empty,

�nite subset of X, and let �

0

2 �. Then let H = (H

0

;K;X;L;�; S; �), where for all k 2 K and

x 2 X, we de�ne H

0

k

(x) = �

0

if x 2 L, and H

0

k

(x) = H

k

(x), otherwise. We also de�ne S = f�

0

g and

�(k) = �

0

for all k 2 K. It is 
lear that H is a 1=j�j-universal

2

proje
tive hash family. However,

in our appli
ations later on, we want these hash fun
tions to be eÆ
iently 
omputable on all of X,

even if L is hard to distinguish from X n L. Therefore, this trivial \solution" is not useful in our


ontext.

3.3 Smooth proje
tive hashing

We will need a variation of universal proje
tive hashing, whi
h we 
all smooth proje
tive hashing.

Let H = (H;K;X;L;�; S; �) be a proje
tive hash family. We de�ne two random variables,

U(H) and V (H), as follows. Consider the probability spa
e de�ned by 
hoosing k 2 K at random,

x 2 X nL at random, and �

0

2 � at random. We set U(H) = (x; s; �

0

) and V (H) = (x; s; �), where

s = �(k) and � = H

k

(x).

De�nition 4 Let � � 0 be a real number. A proje
tive hash family H is �-smooth if U(H) and

V (H) are �-
lose.

3.4 Approximations to proje
tive hash families

Our de�nition of universal and universal

2

proje
tive hash families are quite strong: so strong,

in fa
t, that in many instan
es it is impossible to eÆ
iently implement them. However, in all

our appli
ations, it is suÆ
ient to eÆ
iently implement a proje
tive hash family that e�e
tively

approximates a universal or universal

2

proje
tive hash family. To this end, we de�ne an appropriate

notion of distan
e between proje
tive hash families.

Let H = (H;K;X;L;�; S; �) be a proje
tive hash family. Consider the distribution de�ned

by sampling k 2 K at random, and de�ne the random variable View(H) = (H

k

; �(k)). Note that

View(H) 
omprises the value of H

k

at all points x 2 X.

De�nition 5 Let Æ � 0 be a real number. Let H = (H;K;X;L;�; S; �) and H

�

=

(H

�

;K

�

;X; L;�; S; �

�

) be proje
tive hash families. We say that H and H

�

are Æ-
lose if View(H)

and View(H

�

) are Æ-
lose.

Note that if H and H

�

are Æ-
lose for some \small" value of Æ, and if H

�

is �-universal or

�-universal

2

for some \small" value of �, this does not imply that H is �

0

-universal or �

0

-universal

2

for any parti
ularly small value of �

0

. However, if H and H

�

are Æ-
lose and H

�

is �-smooth, then

it is 
lear that H is (�+ Æ)-smooth.

3.5 Some elementary redu
tions

We show some elementary redu
tions among the various notions introdu
ed. Most of the redu
tions

given here are primarily theoreti
ally motivated. Later on, in a spe
ialized 
ontext, we present

redu
tions that are 
onsiderably more eÆ
ient.
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3.5.1 Redu
ing the error rate

Let H = (H;K;X;L;�; S; �) be an �-universal (respe
tively, -universal

2

) proje
tive hash family.

The 
onstru
tion below redu
es the error rate from � to �

t

, by simple t-fold \parallelization."

Let t be a positive integer, and let

�

H = (

�

H;K

t

;X; L;�

t

; S

t

; ��), where

�

H and �� are de�ned as

follows.

For

~

k = (k

1

; : : : ; k

t

) 2 K

t

and x 2 X, we de�ne

�

H

~

k

(x) = (H

k

1

(x); : : : ;H

k

t

(x)), and we de�ne

��(

~

k) = (�(k

1

); : : : ; �(k

t

)).

The proof of the following lemma is straightforward, and is left to the reader.

Lemma 1 Let H and

�

H be as in the above 
onstru
tion. If H is an �-universal (respe
tively,

-universal

2

) proje
tive hash family, then

�

H is an �

t

-universal (respe
tively, -universal

2

) proje
tive

hash family.

3.5.2 From universal proje
tive to universal

2

proje
tive

Let H = (H;K;X;L;�; S; �) be an �-universal proje
tive hash family. The next 
onstru
tion turns

H into an �-universal

2

proje
tive hash family H

y

for (X;L).

Let us assume that we have inje
tive fun
tions � : X ! f0; 1g

n

and �

0

: �! f0; 1g

n

0

for some

appropriately large positive integers n and n

0

. Let H

y

= (H

y

;K

2n

;X; L; f0; 1g

n

0

; S

2n

; �

y

), where

H

y

and �

y

are de�ned as follows.

For

~

k = (k

1;0

; k

1;1

; : : : ; k

n;0

; k

n;1

) 2 K

2n

, and x 2 X with �(x) = (


1

; : : : ; 


n

) 2 f0; 1g

n

, we

de�ne

H

y

~

k

(x) =

n

M

i=1

�

0

(H

k

i;


i

(x))

and

�

y

(

~

k) = (�(k

1;0

); �(k

1;1

); : : : ; �(k

n;0

); �(k

n;1

)):

Here, \

L

" denotes the bit-wise \ex
lusive or" operation on n

0

-bit strings.

Lemma 2 Let H and H

y

be as de�ned in the above 
onstru
tion. If H is an �-universal proje
tive

hash family, then H

y

is an �-universal

2

proje
tive hash family.

Proof. It is immediate that De�nition 2 is satis�ed.

The proof that De�nition 3 is satis�ed follows from a simple \
onditioning argument," the

details of whi
h we now provide.

Consider the probability spa
e de�ned by 
hoosing

~

k 2 K

2n

at random. To show that H

y

is

�-universal

2

, we have to show that for any x; x

�

2 X with x =2 L [ fx

�

g, 
onditioned on any �xed

values of H

y

~

k

(x

�

) and �

y

(

~

k), the value of H

y

~

k

(x) 
an be guessed with probability at most �.

Let �(x) = (


1

; : : : ; 


n

) 2 f0; 1g

n

and �(x

�

) = (


�

1

; : : : ; 


�

n

) 2 f0; 1g

n

. Sin
e x 6= x

�

, we must

have 


i

6= 


�

i

for some 1 � i � n, and without loss of generality, let us assume that i = n.

In addition to 
onditioning on �xed values of H

y

~

k

(x

�

) and �

y

(

~

k), let us further 
ondition on �xed

values of k

1;0

; k

1;1

; : : : ; k

n�1;0

; k

n�1;1

, as well as k

n;


�

n

(
onsistent with the �xed values of H

y

~

k

(x

�

) and

�

y

(

~

k)). In this 
onditional probability spa
e, the value of H

y

~

k

(x) determines the value of H

k

n;


n

(x),

and thus, if the value of H

y

~

k

(x) 
ould be guessed with probability greater than �, then so 
ould

the value of H

k

n;


n

(x). But sin
e H is �-universal, it follows that the value of H

k

n;


n

(x) 
annot be

guessed with probability greater than �. We 
on
lude that value of H

y

~

k

(x) 
annot be guessed with

6



probability greater than � in this 
onditional probability spa
e. Sin
e this holds for all �xed values

of k

1;0

; k

1;1

; : : : ; k

n�1;0

; k

n�1;1

, and k

n;


�

n

under 
onsideration, it holds as well in the 
onditional

probability spa
e where just H

y

~

k

(x

�

) and �

y

(

~

k) are �xed, whi
h proves the theorem. 4

The following 
onstru
tion is a variation on Lemma 2. It extends the sets X and L by taking

the Cartesian produ
t of these sets with a �xed, �nite set E. Su
h extensions will prove useful in

the sequel.

Let H = (H;K;X;L;�; S; �) be an �-universal proje
tive hash family. Let E be a non-empty,

�nite set.

Let us assume that we have inje
tive fun
tions � : X � E ! f0; 1g

n

and �

0

: � ! f0; 1g

n

0

for some appropriately large positive integers n and n

0

. Let H

z

= (H

z

;K

2n

;X � E;L �

E; f0; 1g

n

0

; S

2n

; �

z

), where H

z

and �

z

are de�ned as follows.

For

~

k = (k

1;0

; k

1;1

; : : : ; k

n;0

; k

n;1

) 2 K

2n

, and (x; e) 2 X�E with �(x; e) = (


1

; : : : ; 


n

) 2 f0; 1g

n

,

we de�ne

H

z

~

k

(x; e) =

n

M

i=1

�

0

(H

k

i;


i

(x))

and

�

z

(

~

k) = (�(k

1;0

); �(k

1;1

); : : : ; �(k

n;0

); �(k

n;1

)):

The proof of the following lemma is essentially the same as the proof of Lemma 2.

Lemma 3 Let H and H

z

be as de�ned in the above 
onstru
tion. If H is an �-universal proje
tive

hash family, then H

z

is an �-universal

2

proje
tive hash family.

3.5.3 From universal proje
tive to smooth proje
tive

Let H = (H;K;X;L;�; S; �) be an �-universal proje
tive hash family. The next 
onstru
tion turns

H into a Æ-smooth proje
tive hash family H

�

for (X;L), where the hash outputs are a-bit strings,

provided � and a are not too big, and Æ is not too small.

The 
onstru
tion is a simple appli
ation of the Leftover Hash Lemma (a.k.a., Entropy Smoothing

Lemma; see, e.g., [L, p. 86℄).

Let F = (

�

H;

�

K;�;

�

�) be a pair-wise independent hash family, where

�

� = f0; 1g

a

for some

integer a � 1. Su
h a hash family 
an easily be 
onstru
ted using well-known and quite pra
ti
al

te
hniques based on arithmeti
 in �nite �elds. We do not dis
uss this any further here.

Let H

�

= (H

�

;K �

�

K;X;L;

�

�; S�

�

K;�

�

), where H

�

and �

�

are de�ned as follows. For k 2 K,

�

k 2

�

K, and x 2 X, we de�ne H

�

k;

�

k

=

�

H

�

k

(H

k

(x)), and we de�ne �

�

(k;

�

k) = (�(k);

�

k).

Lemma 4 Let H, F, H

�

, and a be as in the above 
onstru
tion. Suppose that H is an �-universal

proje
tive hash family. For any integer b � 0 su
h that a+ 2b � log

2

(1=�), H

�

is a 2

�(b+1)

-smooth

proje
tive hash family.

Proof. It is 
lear that H

�

satis�es the basi
 requirements of a proje
tive hash family.

Consider the random variables U(H

�

) and V (H

�

), as de�ned in the paragraph pre
eding Def-

inition 4. That is, 
onsider the probability spa
e where k 2 K,

�

k 2

�

K, x 2 X n L, and ��

0

2

�

�

are 
hosen at random, and set U(H

�

) = (x; s;

�

k; ��

0

) and V (H

�

) = (x; s;

�

k; ��), where s = �(k) and

�� =

�

H

�

k

(H

k

(x)).

Consider any 
onditional probability spa
e where parti
ular values of x 2 X n L and s 2 S are

�xed, and let U(H

�

j x; s) and V (H

�

j x; s) be the random variables in this 
onditional probability

7



spa
e 
orresponding to U(H

�

) and V (H

�

). In su
h a 
onditional probability spa
e, by the de�nition

of �-universal proje
tive hashing, the distribution of H

k

(x) has min-entropy at least log

2

(1=�), and

�

k is uniformly and independently distributed over

�

K. The Leftover Hash Lemma then dire
tly

implies that U(H

�

j x; s) and V (H

�

j x; s) are 2

�(b+1)

-
lose. Sin
e this bound holds uniformly for

all x; s, it follows that U(H

�

) and V (H

�

) are also 2

�(b+1)

-
lose. 4

4 Subset membership problems

In this se
tion we de�ne a 
lass of languages with some natural 
ryptographi
 indistinguishabil-

ity properties. The de�nitions below 
apture the natural properties of well-known 
ryptographi


problems su
h as the Quadrati
 Residuosity and De
ision DiÆe-Hellman problems, as well as

others.

A subset membership problem M spe
i�es a 
olle
tion (I

`

)

`�0

of distributions. For every value

of a se
urity parameter ` � 0, I

`

is a probability distribution of instan
e des
riptions.

An instan
e des
ription � spe
i�es the following:

� Finite, non-empty sets X, L, and W , su
h that L is a proper subset of X.

� A binary relation R � X �W .

For all ` � 0, [I

`

℄ denotes the instan
e des
riptions that are assigned non-zero probability in

the distribution I

`

. We write �[X;L;W;R℄ to indi
ate that the instan
e � spe
i�es X, L, W and

R as above.

For x 2 X and w 2W with (x;w) 2 R, we say that w is a witness for x. Note that it would be

quite natural to require that for all x 2 X, we have (x;w) 2 R for some w 2W if and only if x 2 L,

and that the relation R is eÆ
iently 
omputable; however, we will not make these requirements

here, as they are not ne
essary for our purposes. The a
tual role of a witness will be
ome apparent

in the next se
tion.

A subset membership problem also provides several algorithms. For this purpose, we require

that instan
e des
riptions, as well as elements of the sets X and W , 
an be uniquely en
oded as

bit strings of length polynomially bounded in `. The following algorithms are provided:

� a probabilisti
, polynomial time sampling algorithm that on input 1

`

for ` � 0 samples an

instan
e � a

ording to the distribution I

`

.

We do not require that the output distribution of the sampling algorithm and I

`

are equal;

rather, we only require that they are �(`)-
lose, where �(`) is a negligible fun
tion. In parti
-

ular, with negligible probability, the sampling algorithm may output something that is not

even an element of [I

`

℄.

We 
all this algorithm the instan
e sampling algorithm of M, and we 
all the statisti
al

distan
e �(`) dis
ussed above its approximation error.

� a probabilisti
, polynomial time sampling algorithm that takes as input 1

`

for ` � 0 and an

instan
e �[X;L;W;R℄ 2 [I

`

℄, and outputs a random x 2 L, together with a witness w 2 W

for x.

We do not require that the distribution of the output value x and the uniform distribution

on L are equal; rather, we only require that they are �

0

(`)-
lose, where �

0

(`) is a negligible

fun
tion. However, we do require that the output x is always in L.

8



We 
all this algorithm the subset sampling algorithm forM, and we 
all the statisti
al distan
e

�

0

(`) dis
ussed above its approximation error.

� a deterministi
, polynomial time algorithm that takes as input 1

`

for ` � 0, an instan
e

�[X;L;W;R℄ 2 [I

`

℄, and � 2 f0; 1g

�

, and 
he
ks whether � is a valid binary en
oding of an

element of X.

This 
ompletes the de�nition of a subset membership problem.

We next de�ne the notion of a hard subset membership problem. Essentially, this means that

it is 
omputationally hard to distinguish random elements of L from random elements of X n L.

We now formulate this notion more pre
isely.

LetM be a subset membership problem as above. We de�ne two sequen
es of random variables,

(U

`

(M))

`�0

and (V

`

(M))

`�0

, as follows. Fix ` � 0, and 
onsider the probability spa
e de�ned by

sampling �[X;L;W;R℄ from I

`

, and 
hoosing x 2 L at random and x

0

2 X � L at random. Set

U

`

(M) = (�; x) and V

`

(M) = (�; x

0

).

De�nition 6 Let M be a subset membership problem. We say that M is hard if (U

`

(M))

`�0

and

(V

`

(M))

`�0

are 
omputationally indistinguishable.

5 Universal hash proof systems

5.1 Hash proof systems

Let M be a subset membership problem, as de�ned in x4, spe
ifying a sequen
e (I

`

)

`�0

of instan
e

distributions.

A hash proof system (HPS) P for M asso
iates with ea
h instan
e �[X;L;W;R℄ of M a pro-

je
tive hash family H = (H;K;X;L;�; S; �) for (X;L).

Additionally, P provides several algorithms to 
arry out basi
 operations we have de�ned for an

asso
iated proje
tive hash family; namely, sampling k 2 K at random, 
omputing �(k) 2 S given

k 2 K, 
omputing H

k

(x) 2 � given k 2 K and x 2 X. We 
all this latter algorithm the private

evaluation algorithm for P. Moreover, a 
ru
ial property is that the system provides an eÆ
ient

algorithm to 
ompute H

k

(x) 2 �, given �(k) 2 S, x 2 L, and w 2 W , where w is a witness for x.

We 
all this algorithm the publi
 evaluation algorithm for P. The system should also provide an

algorithm that re
ognizes elements of �.

We now dis
uss the above-mentioned algorithms in a bit more detail. In this dis
ussion,

whenever �[X;L;W;R℄ 2 [I

`

℄ is �xed in some 
ontext, it is to be understood that H =

(H;K;X;L;�; S; �) is the proje
tive hash family that P asso
iates with �. These algorithms

work with bit strings of length bounded by a polynomial in ` to represent elements of K, � and

S. We also assume that these algorithms use the same en
odings of the sets X, L and W as the

algorithms from the subset membership problem M.

The system P provides the following algorithms:

� a probabilisti
, polynomial time algorithm that takes as input 1

`

and an instan
e � 2 [I

`

℄,

and outputs k 2 K, distributed uniformly over K.

� a deterministi
, polynomial time algorithm that takes as input 1

`

, an instan
e � 2 [I

`

℄, k 2 K,

and outputs s 2 S su
h that �(k) = s.

9



� a deterministi
, polynomial time algorithm that takes as input 1

`

, an instan
e � 2 [I

`

℄, k 2 K

and x 2 X, and outputs � 2 � su
h that H

k

(x) = �.

This is the private evaluation algorithm.

� a deterministi
, polynomial time algorithm that takes as input 1

`

, an instan
e � 2 [I

`

℄, s 2 S

su
h that �(k) = s for some k 2 S, and x 2 L together with a witness w 2 W for x, and

outputs � 2 � su
h that H

k

(x) = �.

This is the publi
 evaluation algorithm.

� a deterministi
, polynomial time algorithm that takes as input 1

`

, an instan
e � 2 [I

`

℄, and

� 2 f0; 1g

�

, and determines if � is a valid en
oding of an element of �.

5.2 Universal hash proof systems

De�nition 7 Let �(`) be a fun
tion mapping non-negative integers to non-negative reals. Let M

be a subset membership problem spe
ifying a sequen
e (I

`

)

`�0

of instan
e distributions. Let P be

an HPS for M.

We say that P is �(`)-universal (respe
tively, -universal

2

, -smooth) if there exists a negligible

fun
tion Æ(`) su
h that for all ` � 0 and for all �[X;L;W;R℄ 2 [I

`

℄, the proje
tive hash family

H = (H;K;X;L;�; S; �) that P asso
iates with � is Æ(`)-
lose to an �(`)-universal (respe
tively,

-universal

2

, -smooth) proje
tive hash family H

�

= (H

�

;K

�

;X; L;�; S; �

�

).

Moreover, if this is the 
ase, and �(`) is a negligible fun
tion, then we say that P is strongly

universal (respe
tively, universal

2

, smooth).

We shall 
all the fun
tion Æ(`) in the above de�nition the approximation error of P, and we

shall refer to the proje
tive hash family H

�

as the idealization of H.

It is perhaps worth remarking that if a hash proof system is strongly universal, and the under-

lying subset membership problem is hard, then the problem of evaluating H

k

(x) for random k 2 K

and arbitrary x 2 X, given only x and �(k), must be hard.

We also need an extension of this notion.

The de�nition of an extended HPS P for M is the same as that of ordinary HPS for M, ex
ept

that for ea
h k � 0 and for ea
h � = �[X;L;W;R℄ 2 [I

k

℄, the proof system P asso
iates with � a

�nite set E along with a proje
tive hash familyH = (H;K;X�E;L�E;�; S; �) for (X�E;L�E).

Note that in this setting, to 
ompute H

k

(x; e) for x 2 L and e 2 E, the publi
 evaluation algorithm

takes as input �(k) 2 S, x 2 L, e 2 E, and a witness w 2 W for x, and the private evaluation

algorithm takes as input k 2 K, x 2 X, and e 2 E. We shall also require that elements of E are

uniquely en
oded as bit strings of length bounded by a polynomial in `, and that P provides an

algorithm that eÆ
iently determines whether a bit string is a valid en
oding of an element of E.

De�nition 7 
an be modi�ed in the obvious way to de�ne extended �(`)-universal

2

HPS's (we

do not need any of the other notions, nor are they parti
ularly interesting).

5.2.1 Constru
tions

Note that based on the 
onstru
tions in Lemmas 1, 2, 3, and 4, given an HPS that is (say) 1=2-

universal, we 
an 
onstru
t a strongly universal HPS, a (possibly extended) strongly universal

2

HPS, and a strongly smooth HPS. However, in most spe
ial 
ases of pra
ti
al interest, there are

mu
h more eÆ
ient 
onstru
tions.
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6 A general framework for se
ure publi
-key en
ryption

In this se
tion, we present a general te
hnique for building se
ure publi
-key en
ryption s
hemes

using appropriate hash proof systems for a hard subset membership problem. But �rst, we re
all

the de�nition of a publi
-key en
ryption s
heme and the notion of se
urity against adaptive 
hosen


iphertext atta
k.

6.1 Publi
-key en
ryption s
hemes

A publi
 key en
ryption s
heme provides three algorithms:

� a probabilisti
, polynomial-time key generation algorithm that on input 1

`

, where ` � 0 is a

se
urity parameter, outputs a publi
-key/private-key pair (PK;SK).

A publi
 key PK spe
i�es an �nite message spa
e M

PK

. The message spa
e should be easy

to re
ognize; that is, there should be a deterministi
, polynomial-time algorithm that takes

as input 1

`

and PK, along with a bit string �, and determines if � is a proper en
oding of an

element of M

PK

.

� a probabilisti
, polynomial-time en
ryption algorithm that on input 1

`

, PK, and m, where

` � 0, PK is a publi
 key asso
iated with se
urity parameter `, and m 2M

PK

, outputs a bit

string �.

� a deterministi
, polynomial-time de
ryption algorithm that on input 1

`

, SK, and �, where

` � 0, SK is a private key asso
iated with se
urity parameter `, and � is a bit string, outputs

either a message m 2 M

PK

, where PK is the publi
-key 
orresponding to SK, or a spe
ial

symbol reje
t.

Any publi
-key en
ryption s
heme should satisfy a \
orre
tness" or \soundness" property, whi
h

loosely speaking means that the de
ryption operation \undoes" the en
ryption operation. For our

purposes, we 
an formulate this as follows. Let us 
all a key pair (PK;SK) bad if for some m 2M

PK

,

and for some en
ryption � of m under PK, the de
ryption of � under SK is not m. Let us 
all a

publi
-key en
ryption s
heme sound if the probability that the key generation algorithm on input

1

`

outputs a bad key pair is a negligible fun
tion in `.

For all en
ryption s
hemes presented in this paper, it is trivial to verify this soundness property,

and so we will not expli
itly deal with this issue again.

Note that in this paper, we only work with �nite message spa
es.

6.2 Adaptive 
hosen 
iphertext se
urity

Consider a publi
-key en
ryption s
heme, and 
onsider the following game, played against an arbi-

trary probabilisti
, polynomial-time adversary.

1. Key-Generation Phase. Let ` � 0 be the se
urity parameter. We run the key-generation

algorithm of the publi
-key en
ryption s
heme on input 1

`

, and get a key pair (PK;SK).

We equip an en
ryption ora
le with the publi
 key PK, and a de
ryption ora
le with the se
ret

key SK.

The publi
-key PK is presented to the adversary.
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2. Probing Phase I. In this phase, the atta
ker gets to intera
t with the de
ryption ora
le in an

arbitrary, adaptive fashion. This phase goes on for a polynomial amount of time, spe
i�ed

by the adversary.

More pre
isely, in ea
h round of this intera
tion, the adversary sends a query � to the de-


ryption ora
le. A query is a bit string 
hosen by the adversary.

The de
ryption ora
le in turn runs the de
ryption algorithm on input of the se
ret key SK

and the query �, and responds to the query by returning the output to the adversary.

Note that a query is not required to represent an en
ryption (under PK) of a message; a query


an indeed be any string designed to probe the behavior of the de
ryption ora
le.

The intera
tion is adaptive in the sense that the next query may depend on the history so

far, in some way deemed advantageous by the adversary.

3. Target-Sele
tion Phase. The adversary sele
ts two messages m

0

and m

1

from the message

spa
e, and presents (m

0

;m

1

) to the en
ryption ora
le.

The en
ryption ora
le sele
ts a random � 2 f0; 1g, and en
rypts m

�

under PK.

The resulting en
ryption �

�

, the target 
iphertext, is presented to the adversary.

4. Probing Phase II. This phase is as Probing Phase I, the only di�eren
e being that the de-


ryption ora
le only responds to queries � that are di�erent from the target 
iphertext �

�

.

5. Guessing-Phase. The adversary outputs a bit

^

�.

The adversary is said to win the game if

^

� = �. We de�ne the advantage (over random guessing)

of the adversary as the absolute value of the di�eren
e of the probability that he wins and 1/2.

A publi
 key en
ryption s
heme is said to be se
ure against adaptive 
hosen 
iphertext atta
k if

for all polynomial time, probabilisti
 adversaries, the advantage in this guessing game is negligible

as a fun
tion of the se
urity parameter.

6.3 The generi
 s
heme and its analysis

We now des
ribe our generi
 method for 
onstru
ting a se
ure publi
-key en
ryption s
heme.

Let M be a subset membership problem spe
ifying a sequen
e (I

`

)

`�0

of instan
e distributions.

We also need a strongly smooth hash proof system P for M, as well as a strongly universal

2

extended hash proof system

^

P for M. We dis
uss P and

^

P below in greater detail.

To simplify the notation, we will des
ribe the s
heme with respe
t to a �xed value ` � 0 of

the se
urity parameter, and a �xed instan
e des
ription �[X;L;W;R℄ 2 [I

`

℄. Thus, it is to be

understood that the key generation algorithm for the s
heme generates this instan
e des
ription,

using the instan
e sampling algorithm provided by M, and that this instan
e des
ription is a part

of the publi
 key as well; alternatively, in an appropriately de�ned \multi-user setting," di�erent

users 
ould work with the same instan
e des
ription.

With � �xed as above, let H = (H;K;X;L;�; S; �) be the proje
tive hash family that P

asso
iates with �, and let

^

H = (

^

H;

^

K;X ��; L��;

^

�;

^

S; �̂) be the proje
tive hash family that

^

P

asso
iates with �. We require that � is an abelian group, for whi
h we use additive notation, and

that elements of � 
an be eÆ
iently added and subtra
ted.

We now des
ribe the key generation, en
ryption, and de
ryption algorithms for the s
heme, as

they behave for a �xed instan
e des
ription �, with 
orresponding proje
tive hash families H and

^

H, as above. The message spa
e is �.
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Key Generation

Choose k 2 K and

^

k 2

^

K at random, and 
ompute s = �(k) 2 S and ŝ = �̂(

^

k) 2

^

S. Note

that all of these operations 
an be eÆ
iently performed using the algorithms provided by P

and

^

P.

The publi
 key is (s; ŝ).

The private key is (k;

^

k).

En
ryption

To en
rypt a message m 2 � under a publi
 key as above, one does the following.

Generate a random x 2 L, together with a 
orresponding witness w 2 W , using the subset

sampling algorithm provided by M.

Compute � = H

k

(x) 2 �, using the publi
 evaluation algorithm for P on inputs s, x, and w.

Compute e = m+ � 2 �.

Compute �̂ =

^

H

^

k

(x; e) 2

^

�, using the publi
 evaluation algorithm for

^

P on inputs ŝ, x, e,

and w.

The 
iphertext is (x; e; �̂).

De
ryption

To de
rypt a 
iphertext (x; e; �̂) 2 X � � �

^

� under a se
ret key as above, one does the

following.

Compute �̂

0

=

^

H

^

k

(x; e) 2

^

�, using the private evaluation algorithm for

^

P on inputs

^

k, x, and

e.

Che
k whether �̂ = �̂

0

; if not, then output reje
t and halt.

Compute � = H

k

(x) 2 �, using the private evaluation algorithm for P on inputs k and x.

Compute m = e� � 2 �, and output the message m.

It is to be impli
itly understood that when the de
ryption algorithm is presented with a 
i-

phertext, this 
iphertext is a
tually just a bit string, and that the de
ryption algorithm must parse

this string to ensure that it properly en
odes some (x; e; �̂) 2 X � � �

^

�; if not, the de
ryption

algorithm outputs reje
t and halts.

We remark that to implement this s
heme, all we really need is a 1=2-universal HPS, sin
e we


an 
onvert this into appropriate strongly smooth and strongly universal

2

HPS's using the general


onstru
tions dis
ussed in x5.2.1. Indeed, the Leftover Hash 
onstru
tion in Lemma 4 gives us a

strongly smooth HPS whose hash outputs are bit strings of a given length a, and so we 
an take

the group � in the above 
onstru
tion to be the group of a-bit strings with \ex
lusive or" as the

group operation.

Theorem 1 The above s
heme is se
ure against adaptive 
hosen 
iphertext atta
k, assuming M

is a hard subset membership problem.

Proof. We show that the existen
e of an eÆ
ient adaptive 
hosen 
iphertext atta
k with non-

negligible advantage implies the existen
e of an eÆ
ient distinguishing algorithm that 
ontradi
ts

the hardness assumption for M.
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We de�ne the following game between a simulator and an adversary that 
arries out an adaptive


hosen 
iphertext atta
k. The simulator takes as input 1

`

, for ` � 0, along with �[X;L;W;R℄ 2 [I

`

℄,

and x

�

2 X.

The simulator provides a \simulated environment" for the adversary as follows. In this des
rip-

tion, H and

^

H are �xed as in the des
ription above of the en
ryption s
heme.

In the Key-Generation Phase, the simulator runs the key-generation as usual, using the given

value of �.

In both Probing Phases I and II, the simulator runs the de
ryption algorithm, as usual, using

the se
ret key generated in the Key-Generation Phase.

In the Target-Sele
tion Phase, the atta
ker presents messages m

0

and m

1

of his 
hoi
e to the

simulator. The simulator 
ips a random 
oin �, and 
omputes the target 
iphertext (x

�

; e

�

; �̂

�

),

where x

�

is the value input to the simulator, in the following way. It �rst 
omputes �

�

= H

k

(x

�

)

using the private evaluation algorithm for P on inputs k and x

�

. It then 
omputes e

�

= m

�

+ �

�

.

Finally, it 
omputes �̂

�

=

^

H

^

k

(x

�

; e

�

), using the private evaluation algorithm for

^

P on inputs

^

k, x

�

,

and e

�

.

In the Guessing Phase, the adversary outputs a bit

^

�. The simulator outputs 1 if � =

^

�, and 0

otherwise, after whi
h, the simulator halts.

For ea
h value of the se
urity parameter ` � 0, we 
onsider the behavior of this simula-

tor/adversary pair in two di�erent experiments. In the �rst experiment, the simulator is given

(�; x

�

), where �[X;L;W;R℄ is sampled from I

`

, and x

�

is sampled at random from L; let T

0

`

be the

event that the simulator outputs a 1 in this experiment. In the se
ond experiment, the simulator

is given (�; x

�

), where �[X;L;W;R℄ is sampled from I

`

, and x

�

is sampled at random from X n L;

let T

`

be the event that the simulator outputs a 1 in this experiment.

Let AdvDist(`) = jPr[T

`

℄ � Pr[T

0

`

℄j; that is, AdvDist(`) is the distinguishing advantage of our

simulator. Let AdvCCA(`) be the adversary's advantage in an adaptive 
hosen 
iphertext atta
k.

Our goal is to show that AdvCCA(`) is negligible, provided AdvDist(`) is negligible.

To make the proof more 
on
rete and the eÆ
ien
y of the redu
tion more transparent, we

introdu
e the following notation. We let Q(`) denote an upper bound on the number of de
ryp-

tion ora
le queries made by the adversary; we assume that this upper bound holds regardless of

the environment in whi
h the adversary operates. Next, we suppose that P is �(`)-smooth with

approximation error Æ(`), and that

^

P is �̂(`)-universal

2

with approximation error

^

Æ(`). Also, we

assume that the instan
e sampling algorithm for M has approximation error �(`), and that the

subset sampling algorithm for M has approximation error �

0

(`).

Case x

�

2 L. In this 
ase, the simulation is perfe
t, ex
ept for the approximation errors introdu
ed

by the instan
e and subset sampling algorithms for M. Thus, we have

jPr[T

0

`

℄� 1=2j � AdvCCA(`)� (�(`) + �

0

(`)): (1)

Case x

�

2 X n L. To analyze the behavior of the simulator in this 
ase, it is 
onvenient to

make a sequen
e of modi�
ations to the simulator. We refer to the experiment run with the

unmodi�ed simulator as experiment 0, and to the experiments run with subsequent modi�
ations

as experiments 1, 2, et
. Ea
h of these experiments are best viewed as operating on the same

underlying probability spa
e; we de�ne the event T

(i)

`

, for i � 0, as the event that the simulator in

experiment i outputs a 1. Note that unlike the original simulator, these modi�ed simulators need

not be eÆ
iently implementable.

14



Experiment 1. To de�ne experiment 1, we modify the simulator as follows. We repla
e the proje
tive

hash family H that P asso
iates with � with its idealization, whi
h is an �(`)-smooth proje
tive

hash family that is Æ(`)-
lose to H. We also repla
e the proje
tive hash family

^

H that

^

P asso
iates

with � with its idealization, whi
h is an �̂(`)-universal

2

proje
tive hash family that is

^

Æ(`)-
lose to

^

H. By de�nition, we have

jPr[T

(1)

`

℄� Pr[T

(0)

`

℄j � Æ(`) +

^

Æ(`): (2)

To keep the notation simple, we refer to these idealized proje
tive hash families as H and

^

H as

well, and 
ontinue to use the notation established in the des
ription of the en
ryption s
heme for

these two proje
tive hash families.

Experiment 2. In experiment 2, we modify the simulator yet again, so that in addition to reje
ting

a 
iphertext (x; e; �̂) 2 X ���

^

� if

^

H

^

k

(x; e) 6= �̂, the de
ryption ora
le also reje
ts the 
iphertext

if x =2 L. Let F

2

be the event in experiment 2 that some 
iphertext (x; e; �̂) 2 X � � �

^

� with

x =2 L is reje
ted by the de
ryption ora
le but

^

H

^

k

(x; e) = �̂.

We 
laim that

Pr[F

2

℄ � Q(`)�̂(`): (3)

To prove (3), let us 
ondition on a �xed value of �[X;L;W;R℄ (whi
h determines the proje
-

tive hash families H and

^

H), as well as �xed values of k, ŝ, and the adversary's 
oins. These

values 
ompletely determine the publi
 key, and all the de
ryption queries of the adversary and

the responses of the simulator in Probing Phase I, and also determine if the adversary enters the

Target-Sele
tion Phase, and if so, the 
orresponding values of m

0

and m

1

. Consider any 
iphertext

(x; e; �̂) 2 X �� �

^

�, with x =2 L, that is submitted as a de
ryption ora
le query during Probing

Phase I. In this 
onditional probability spa
e, x, e, and �̂ are �xed, whereas

^

k is still uniformly

distributed over

^

K, subje
t only to the 
onstraint that �̂(

^

k) = ŝ, where ŝ is �xed as above. There-

fore, from the �̂(`)-universal

2

property of

^

H, the probability that

^

H

^

k

(x; e) = �̂ in this 
onditional

probability spa
e is at most �̂(`).

Now assume that in this 
onditional probability spa
e, the adversary enters the Target-Sele
tion

Phase. Let us now further 
ondition on �xed values of � and x

�

(whi
h determine �

�

and e

�

), as well

as a �xed value of �̂

�

. These values 
ompletely determine all the de
ryption queries of the adversary

and the responses of the simulator in Probing Phase II. Consider any 
iphertext (x; e; �̂) 2 X���

^

�,

with x =2 L, that is submitted as a de
ryption ora
le query during Probing Phase II.

� Suppose that (x; e) = (x

�

; e

�

). Sin
e we must have (x; e; �̂) 6= (x

�

; e

�

; �̂

�

), it follows that

�̂ 6= �̂

�

, and hen
e

^

H

^

k

(x; e) 6= �̂ with 
ertainty.

� Suppose that (x; e) 6= (x

�

; e

�

). In this 
onditional probability spa
e, x, e, and �̂ are �xed,

whereas

^

k is still uniformly distributed over

^

K, subje
t only to the 
onstraint that �̂(

^

k) =

ŝ and

^

H

^

k

(x

�

; e

�

) = �̂

�

, where ŝ, x

�

, e

�

, and �̂

�

are �xed as above. Therefore, from the

�̂(`)-universal

2

property of

^

H, the probability that

^

H

^

k

(x; e) = �̂ in this 
onditional probability

spa
e is at most �̂(`).

The above arguments show that for any individual 
iphertext (x; e; �̂) 2 X���

^

�, with x =2 L,

that is submitted to the de
ryption ora
le, the probability that

^

H

^

k

(x; e) = �̂ is at most �̂(`), from

whi
h the bound (3) immediately follows.

Note that experiments 1 and 2 pro
eed identi
ally until event F

2

o

urs. More pre
isely, T

(2)

`

^

:F

2

o

urs if and only if T

(1)

`

^ :F

2

o

urs, whi
h implies that

jPr[T

(2)

`

℄� Pr[T

(1)

`

℄j � Pr[F

2

℄: (4)
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Experiment 3. In experiment 3, we modify the simulator yet again. This time, in the en
ryption

ora
le, instead of 
omputing �

�

as H

k

(x

�

), the simulator sets �

�

= �

0

, where �

0

2 � is 
hosen at

random. Now, let us 
ondition on a �xed value of �[X;L;W;R℄ (whi
h determines the proje
tive

hash familiesH and

^

H), as well as �xed values of

^

k, �, and the adversary's 
oins. In this 
onditional

probability spa
e, sin
e the a
tion of H

k

on L is determined by s, and sin
e the simulator reje
ts

all 
iphertexts (x; e; �̂) with x =2 L, it follows that the output of the simulator in experiment

2 is 
ompletely determined as a fun
tion of x

�

, s, and H

k

(x

�

), while the output in experiment

3 is determined as the same fun
tion of x

�

, s, and �

0

. Moreover, by independen
e, the joint

distribution of (k; x

�

; �

0

) does not 
hange in passing from the original probability spa
e to the


onditional probability spa
e. It now follows dire
tly from the �(`)-smooth property of H that

jPr[T

(3)

`

℄� Pr[T

(2)

`

℄j � �(`): (5)

It is evident from the de�nition of the simulator in experiment 3 that the adversary's output

^

�

in this experiment is independent of the hidden bit �; therefore,

Pr[T

(3)

`

℄ = 1=2: (6)

Putting it all together. Combining the relations (2)-(6), we see that

jPr[T

`

℄� 1=2j � Æ(`) + �(`) +

^

Æ(`) +Q(`)�̂(`): (7)

Combining the inequalities (1) and (7), we see that

AdvCCA(`) � AdvDist(`) + Æ(`) + �(`) +

^

Æ(`) +Q(`)�̂(`) + �(`) + �

0

(`); (8)

from whi
h the theorem immediately follows. 4

7 Universal proje
tive hash families: 
onstru
tions

We now present group-theoreti
 
onstru
tions of universal proje
tive hash families.

7.1 Diverse group systems and derived proje
tive hash families

Let X, L and � be �nite abelian groups, where L is a proper subgroup of X. We will use additive

notation for these groups.

Let Hom(X;�) denote the group of all homomorphisms � : X ! �. This is also a �nite abelian

group for whi
h we use additive notation as well. For �; �

0

2 Hom(X;�), x 2 X, and a 2 Z, we

have (� + �

0

)(x) = �(x) + �

0

(x), (� � �

0

)(x) = �(x) � �

0

(x), and (a�)(x) = a�(x) = �(ax). The

zero element of Hom(X;�) sends all elements of X to 0 2 �.

De�nition 8 Let X;L;� be as above. Let H be a subgroup of Hom(X;�). We 
all G =

(H;X; L;�) a group system.

Let G = (H;X; L;�) be a group system, and let g

1

; : : : ; g

d

2 L be a set of generators for L.

Let H = (H;K;X;L;�; S; �), where

� for randomly 
hosen k 2 K, H

k

is uniformly distributed over H,

� S = �

d

, and
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� the map � : K ! S sends k 2 K to (�(g

1

); : : : ; �(g

d

)) 2 S, where � = H

k

.

It is easily seen that H is a proje
tive hash family. To see this, note that if x 2 L, then there

exist w

1

; : : : ; w

d

2 Z su
h that x =

P

d

i=1

w

i

g

i

; now, for k 2 K withH

k

= � and �(k) = (�

1

; : : : ; �

d

),

we have

H

k

(x) = �(

d

X

i=1

w

i

g

i

) =

d

X

i=1

w

i

�(g

i

) =

d

X

i=1

w

i

�

i

:

Thus, the a
tion of H

k

on L is determined by �(k), as required.

De�nition 9 Let G be a group system as above and let H be a proje
tive hash family as above.

Then we say that H is a proje
tive hash family derived from G.

Looking ahead, we remark that the reason for de�ning � in this way is to fa
ilitate eÆ
ient

implementation of the publi
 evaluation algorithm for a hash proof system with whi
h H may be

asso
iated. In this 
ontext, if a \witness" for x is (w

1

; : : : ; w

d

) as above, thenH

k

(x) 
an be eÆ
iently


omputed from �(k) and (w

1

; : : : ; w

d

), assuming arithmeti
 in � is eÆ
iently implemented.

Our �rst goal is to investigate the 
onditions under whi
h a proje
tive hash family derived from

a group system is �-universal for some � < 1.

De�nition 10 Let G = (H;X; L;�) be a group system. We say that G is diverse if for all

x 2 X n L, there exists � 2 H su
h that �(L) = h0i, but �(x) 6= 0.

It is not diÆ
ult to see that diversity is a ne
essary 
ondition for a group system if any derived

proje
tive hash family is to be �-universal for some � < 1. We will show in Theorem 2 below that

any proje
tive hash family derived from a diverse group system is �-universal, where � = 1=~p, and

~p is the smallest prime dividing jX=Lj.

7.2 A universal proje
tive hash family

Throughout this se
tion, G = (H;X; L;�) denotes a group system, H = (H;K;X;L;�; S; �)

denotes a proje
tive hash family derived from G, and ~p denotes the smallest prime dividing jX=Lj.

De�nition 11 For a set Y � X, let us de�ne A(Y ) to be the set of � 2 H su
h that �(x) = 0 for

all x 2 Y ; that is, A(Y ) is the 
olle
tion of homomorphisms in H that annihilate Y .

It is 
lear that A(Y ) is a subgroup of H, and that A(Y ) = A(hY i).

The following is a straightforward re-statement of De�nition 10.

Lemma 5 G is diverse if and only if for all x 2 X n L, A(L [ fxg) is a proper subgroup of A(L).

Lemma 6 If p is a prime dividing jA(L)j, then p divides jX=Lj.

Proof. Let p be a prime dividing jA(L)j. Then there exists an element � 2 A(L) of order p.

Let a = jX=Lj, and note that for all x 2 X, we must have ax 2 L, sin
e a is the order of the fa
tor

group X=L. Therefore, for all x 2 X, we have (a � �)(x) = �(ax) = 0, the latter equality holding

sin
e � annihilates L and ax 2 L. It follows that p divides a. 4

De�nition 12 For x 2 X, let E

x

: H ! � be the map that sends � 2 H to �(x) 2 �. Let us also

de�ne I(x) = E

x

(A(L)).
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Clearly, E

x

is a group homomorphism, and I(x) is a subgroup of �.

Lemma 7 If G is diverse, then for all x 2 X n L, jI(x)j is at least ~p.

Proof. Let x 2 X n L. Consider the restri
tion of the map E

x

to A(L). The image of this

map is I(x), and the kernel is A(L [ fxg). Therefore, I(x) is isomorphi
 to the fa
tor group

A(L)=A(L [ fxg). Sin
e G is assumed diverse, by Lemma 5, A(L [ fxg) is a proper subgroup of

A(L). Thus, the order order of I(x) is a divisor of A(L) not equal to 1, and so is divisible by some

prime p dividing A(L). By Lemma 6, this prime p divides jX=Lj. 4

Lemma 8 Let s 2 �(K) be �xed. Consider the probability spa
e de�ned by 
hoosing k 2 �

�1

(s) at

random, and let � = H

k

. Then � is uniformly distributed over a 
oset  

s

+ A(L) of A(L) in H,

the pre
ise 
oset depending on s.

Proof. Let g

1

; : : : ; g

d

be the set of generators de�ning �. Let ~� : H ! S be the map that

sends � 2 H to (�(g

1

); : : : ; �(g

d

)) 2 S. It is evident that � is uniformly distributed over ~�

�1

(s).

Moreover, ~� is 
learly a group homomorphism with kernel A(fg

1

; : : : ; g

d

g) = A(L). It follows that

~�

�1

(s) is a 
oset of A(L) in H. 4

In Lemma 8, there are many 
hoi
es for the \
oset leader"  

s

2 H; however, let us �x one su
h


hoi
e arbitrarily, so that for the for the rest of this se
tion  

s

denotes this 
oset leader.

Theorem 2 Let s 2 �(K) and x 2 X be �xed. Consider the probability spa
e de�ned by 
hoosing

k 2 �

�1

(s) at random, and let � = H

k

(x). Then � is uniformly distributed over a 
oset of I(x) in

� (the pre
ise 
oset depending on s and x). In parti
ular, if G is diverse, then H is 1=~p-universal.

Proof. Let � = H

k

. By Lemma 8, � is uniformly distributed over  

s

+A(L). Sin
e � = �(x),

it follows that � is uniformly distributed over E

x

( 

s

+A(L)) =  

s

(x) + I(x). That proves the �rst

statement of the theorem. The se
ond statement follows immediately from Lemma 7, and the fa
t

that j 

s

(x) + I(x)j = jI(x)j. 4

7.3 A universal

2

proje
tive hash family

We 
ontinue with the notation established in x7.2; in parti
ular, G = (H;X; L;�) denotes a group

system, H = (H;K;X;L;�; S; �) denotes a proje
tive hash family derived from G, and ~p denotes

the smallest prime dividing jX=Lj.

Starting with H, and applying the 
onstru
tion of Lemma 2 or Lemma 3, we 
an obtain a

universal

2

proje
tive hash family. However, by exploiting the group stru
ture underlying H, we


an 
onstru
t a more eÆ
ient universal

2

proje
tive hash family

^

H.

Let E be an arbitrary �nite set.

^

H is to be a proje
tive hash family for (X � E;L � E). Fix

an inje
tive en
oding fun
tion

� : X �E ! f0; : : : ; ~p� 1g

n

;

where n is suÆ
iently large.

Let

^

H = (

^

H;K

n+1

;X � E;L � E;�; S

n+1

; �̂), where

^

H and �̂ are de�ned as follows. For

~

k = (k

0

; k

1

; : : : ; k

n

) 2 K

n+1

, x 2 X, and e 2 E, we de�ne

^

H

~

k

(x; e) = H

k

0

(x) +

n

X

i=1




i

H

k

i

(x);
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where (


1

; : : : ; 


n

) = �(x; e), and we de�ne

�̂(

~

k) = (�(k

0

); �(k

1

); : : : ; �(k

n

)):

It is 
lear that

^

H is a proje
tive hash family. We shall prove:

Theorem 3 Let

^

H be as above. Let ~s 2 �(K)

n+1

, x; x

�

2 X, and e; e

�

2 E be �xed, where

(x; e) 6= (x

�

; e

�

). Consider the probability spa
e de�ned by 
hoosing

~

k 2 �̂

�1

(~s) at random, and let

� =

^

H

~

k

(x; e) and �

�

=

^

H

~

k

(x

�

; e

�

). Then � is uniformly distributed over a 
oset of I(x) in � (the

pre
ise 
oset depending on s, x, and e), and �

�

is uniformly and independently distributed over a


oset of I(x

�

) in � (the pre
ise 
oset depending on s, x

�

, and e

�

). In parti
ular, if the underlying

group system G is diverse, then

^

H is 1=~p-universal

2

.

Before proving this theorem, we state another elementary lemma.

Let M 2 Z

a�b

be an integer matrix with a rows and b 
olumns. Let G be a �nite abelian group.

Let T(M;G) : G

b

! G

a

be the map that sends ~u 2 G

b

to ~v 2 G

a

, where

~v

>

=M~u

>

;

here, (� � �)

>

denotes transposition. Clearly, T(M;G) is a group homomorphism.

Lemma 9 Let M and G be as above. If for all primes p dividing jGj, the rows of M are linearly

independent modulo p, then T(M;G) is surje
tive.

Proof. The proof is by basi
 linear algebra, and we in
lude it for 
ompleteness. Let

Q

r

i=1

p




i

i

be the prime fa
torization of jGj. From the 
onditions of the lemma, it follows that for ea
h

1 � i � r, there is a square sub-matrix M

i

, 
onsisting of a 
olumns of M , that is invertible over

Z

p

i

and, therefore, also over Z

p




i

i

. Hen
e, for ea
h 1 � i � r there is a matrix N

i

2 Z

b�a

su
h that

M �N

i

� I (mod p




i

i

), where I is the a�a identity matrix over Z. Combining N

1

; : : : ; N

r

using the

Chinese Remainder Theorem, there is a matrix N 2 Z

b�a

su
h that M �N � I (mod jGj). Hen
e,

for all ~v 2 G

a

, we have ~v

>

=M~u

>

, where ~u

>

= N~v

>

. 4

Proof of Theorem 3. Let ~s = (s

0

; s

1

; : : : ; s

n

), (


1

; : : : ; 


n

) = �(x; e), and (


�

1

; : : : ; 


�

n

) =

�(x

�

; e

�

). Let (�

0

; �

1

; : : : ; �

n

) = (H

k

0

;H

k

1

; : : : ;H

k

n

).

Now de�ne the matrix M 2 Z

2�(n+1)

as

M =

�

1 


1




2

� � � 


n

1 


�

1




�

2

� � � 


�

n

�

;

so that if

(~�; ~�

�

)

>

=M(�

0

; �

1

; : : : ; �

n

)

>

then we have (�; �

�

) = (�(x); �

�

(x

�

)).

By the de�nition of �, and by Lemma 6, we see that (


1

; : : : ; 


n

) and (


�

1

; : : : ; 


�

n

) are distin
t

modulo any prime p that divides A(L). Therefore, Lemma 9 implies that the map T(M;A(L)) is

surje
tive. By Lemma 8, (�

0

; �

1

; : : : ; �

n

) is uniformly distributed over

( 

s

0

+A(L);  

s

1

+A(L); : : : ;  

s

n

+A(L)):

Thus, (~�; ~�

�

) is uniformly distributed over (

~

 +A(I);

~

 

�

+A(I)), where

(

~

 ;

~

 

�

)

>

=M( 

s

0

;  

s

1

; : : : ;  

s

n

)

>

:
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It follows that (�; �

�

) is uniformly distributed over (

~

 (x) + I(x);

~

 

�

(x

�

) + I(x

�

)).

That proves the �rst statement of the theorem. The se
ond statement now follows from

Lemma 7. 4

If ~p is small, then Lemma 1 
an be used to redu
e the error to at most 1=~p

t

for a suitable value

of t. However, this 
omes at the 
ost of a multipli
ative fa
tor t in eÆ
ien
y. We now des
ribe

another 
onstru
tion that a
hieves an error rate of 1=~p

t

that 
omes at the 
ost of just an additive

fa
tor of O(t) in eÆ
ien
y.

Let t � 1 be �xed, and let E be an arbitrary �nite set. Our 
onstru
tion yields a proje
tive

hash family

^

H for (X � E;L � E). We use the same name

^

H for this proje
tive hash family as

in the 
onstru
tion of Theorem 3, be
ause when t = 1, the 
onstru
tions are identi
al. Fix an

inje
tive en
oding fun
tion

� : X �E ! f0; : : : ; ~p� 1g

n

;

where n is suÆ
iently large.

Let

^

H = (

^

H;K

n+2t�1

;X �E;L�E;�; S

n+2t�1

; �̂), where

^

H and �̂ are de�ned as follows. For

~

k = (k

0

1

; : : : ; k

0

t

; k

1

; : : : ; k

n+t�1

) 2 K

n+2t�1

;

x 2 X, and e 2 E, we de�ne

^

H

~

k

(x; e) = (�

1

; : : : ; �

t

);

where

�

j

= H

k

0

j

(x) +

n

X

i=1




i

H

k

i+j�1

(x) (j = 1; : : : ; t);

and (


1

; : : : ; 


n

) = �(x; e). We also de�ne

�̂(

~

k) = (�(k

0

1

); : : : ; �(k

0

t

); �(k

1

); : : : ; �(k

n+t�1

)):

Again, it is 
lear that

^

H is a proje
tive hash family.

Theorem 4 Let

^

H be as above. Let ~s 2 �(K)

n+2t�1

, x; x

�

2 X, and e; e

�

2 E be �xed, where

(x; e) 6= (x

�

; e

�

). Consider the probability spa
e de�ned by 
hoosing

~

k 2 �̂

�1

(~s) at random, and let

~� =

^

H

~

k

(x; e) and ~�

�

=

^

H

~

k

(x

�

; e

�

). Then ~� is uniformly distributed over a 
oset of I(x)

t

in �

t

(the

pre
ise 
oset depending on s, x, and e), and ~�

�

is uniformly and independently distributed over a


oset of I(x

�

)

t

in �

t

(the pre
ise 
oset depending on s, x

�

, and e

�

). In parti
ular, if the underlying

group system G is diverse, then

^

H is 1=~p

t

-universal

2

.

Proof. Let (


1

; : : : ; 


n

) = �(x; e), and (


�

1

; : : : ; 


�

n

) = �(x

�

; e

�

). Let

~� = (H

k

0

1

; : : : ;H

k

0

t

; H

k

1

; : : : ;H

k

n+t�1

) 2 H

n+2t�1

:

Now de�ne the matrix M 2 Z

2t�(n+2t�1)

as

M =

0

B

B

B

B

B

B

B

B

B

B

�

1

1

.

.

.

1

1

1

.

.

.

1

| {z }

t 
olumns




1




2

� � � 


n




1




2

� � � 


n

.

.

.

.

.

.

.

.

.




1




2

� � � 


n




�

1




�

2

� � � 


�

n




�

1




�

2

� � � 


�

n

.

.

.

.

.

.

.

.

.




�

1




�

2

� � � 


�

n

| {z }

n+t�1 
olumns

1

C

C

C

C

C

C

C

C

C

C

A
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so that if

(~�

1

; : : : ; ~�

t

; ~�

�

1

; : : : ; ~�

�

t

)

>

=M~�

>

;

then

~� = (~�

1

(x); : : : ; ~�

t

(x)) and ~�

�

= (~�

�

1

(x); : : : ; ~�

�

t

(x)):

Claim. The rows of M are linearly independent modulo p for any prime p dividing jA(L)j.

The theorem is implied by the 
laim, as we now argue. By Lemma 9, the map T(M;A(L))

is surje
tive. By Lemma 8, ~� is uniformly distributed over a 
oset of A(L)

n+2t�1

in H

n+2t�1

.

It follows that (~�

1

; : : : ; ~�

t

; ~�

�

1

; : : : ; ~�

�

t

) is uniformly distributed over a 
oset of A(L)

2t

in H

2t

, and

therefore, ~� and ~�

�

are uniformly and independently distributed over 
osets of I(x)

t

and I(x

�

)

t

,

respe
tively, in �

t

.

That proves the �rst statement of the theorem. The se
ond statement of the theorem now

follows from Lemma 7.

So now it remains to prove the above 
laim. Fix a prime p dividing jA(L)j, and for 1 � i � n,

let �


i

and �


�

i

denote the images of 


i

and 


�

i

, respe
tively, in Z

p

, and let

�

M denote the image of M

in Z

2t�(n+2t�1)

p

. By the de�nition of � and Lemma 6, we know that �


i

6= �


�

i

for some 1 � i � n; let

i

0

be the least su
h i.

Now, suppose that

(


1

; : : : ; 


t

; d

1

; : : : ; d

n+t�1

) = (a

1

; : : : ; a

t

; b

1

; : : : ; b

t

)

�

M;

for




1

; : : : ; 


t

; d

1

; : : : ; d

n+t�1

; a

1

; : : : ; a

t

; b

1

; : : : ; b

t

2 Z

p

:

Further suppose that 


1

; : : : ; 


t

; d

1

; : : : ; d

n+t�1

are all zero. To prove the 
laim, we need to show

that a

1

; : : : ; a

t

; b

1

; : : : ; b

t

are all zero as well. It is 
lear from the stru
ture of the matrix M , and

sin
e 


1

; : : : ; 


t

are all zero, that we must have a

j

= �b

j

for all 1 � j � t. By way of 
ontradi
tion,

suppose that some a

j

6= 0 for some 1 � j � t, and let j

0

be the least su
h j. By dire
t 
al
ulation,

one sees that

d

i

0

+j

0

�1

= a

j

0

(�


i

0

� �


�

i

0

) 6= 0;

whi
h is a 
ontradi
tion. That proves the 
laim. 4

7.4 Examples of diverse group systems

In this se
tion, we dis
uss two examples of diverse group systems that have 
ryptographi
 impor-

tan
e.

7.4.1 Example 1

Let G be a group of prime of prime order q, and let X = G

r

, i.e., X is the dire
t produ
t of r


opies of G. Let L be any proper subgroup of X, and let H = Hom(X;G). Consider the group

system G = (H;X; L;G).

The group X is isomorphi
 as a Z

q

-ve
tor spa
e to Z

r

q

. For the purposes of this dis
ussion, let

us simply identify X with Z

r

q

and G with Z

q

. Under this identi�
ation, L is a proper Z

q

-subspa
e

of X. Moreover, H 
an be identi�ed with the ve
tor spa
e Z

r

q

, as follows: for every � 2 Z

r

q

, we

de�ne �

�

2 H to be the map that sends x 2 Z

r

q

to (x; �) 2 Z

q

, where (�; �) denotes the standard

inner produ
t of ve
tors.
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For any set U � Z

r

q

, A(U) is the orthogonal 
omplement in Z

r

q

of the subspa
e of Z

r

q

generated

by U . Therefore, if U generates a subspa
e of dimension a, A(U) is a subspa
e dimension r � a.

Now suppose L has dimension d, and that x 2 X nL. It follows A(L) has dimension r� d, and

A(L[fxg) has dimension r�d� 1. This shows that G is diverse. Moreover, for any x 2 X nL, we

have I(x) = E

x

(A(L)) = Z

q

. Therefore, a proje
tive hash family derived from G is 1=q-universal,

or equivalently, 0-smooth.

7.4.2 Example 2

Let X be a 
y
li
 group of order a = bb

0

, where b

0

> 1 and g
d(b; b

0

) = 1, and let L be the unique

subgroup of X of order b. Let H = Hom(X;X), and 
onsider the group system G = (H;X; L;X).

The group X is isomorphi
 to Z

a

. If we identify X with Z

a

, then H 
an be identi�ed with Z

a

as follows: for every � 2 Z

a

, de�ne �

�

2 H to be the map that sends x 2 Z

a

to x � � 2 Z

a

.

The group X is of 
ourse also isomorphi
 to Z

b

� Z

b

0

. If we identify X with Z

b

� Z

b

0

, then L


orresponds to Z

b

�h0i. Moreover, we 
an identify H with Z

b

�Z

b

0

as follows: for (�; �

0

) 2 Z

b

�Z

b

0

,

let  

�;�

0

2 H be the map that sends (x; x

0

) 2 Z

b

� Z

b

0

to (x � �; x

0

� �

0

) 2 Z

b

� Z

b

0

.

Under the identi�
ation in the previous paragraph, it is evident that A(L) is the subgroup of

H generated by  

0;1

. If we take any (x; x

0

) 2 X nL, so that x

0

6= 0, we see that  

0;1

(x; x

0

) = (0; x

0

).

Thus,  

0;1

=2 A(L [ f(x; x

0

)g), whi
h shows that G is diverse. Therefore, a proje
tive hash family

derived from G is 1=~p-universal, where ~p is the smallest prime dividing b

0

.

It is also useful to 
hara
terize the group I(x; x

0

) = E

x;x

0

(A(L)). Evidently, sin
e A(L) = h 

0;1

i,

we must have I(x; x

0

) = h0i � hx

0

i.

8 Con
rete en
ryption s
hemes

We present two new publi
-key en
ryption s
hemes se
ure against adaptive 
hosen 
iphertext atta
k.

These are derived from the general 
onstru
tion in x6, although we also present several variations

that do not quite �t into this framework.

The �rst s
heme is based on Paillier's De
ision Composite Residuosity assumption. Ours is the

�rst pra
ti
al publi
-key en
ryption s
heme se
ure against adaptive 
hosen 
iphertext atta
k under

this assumption.

The se
ond is based on the 
lassi
al Quadrati
 Residuosity assumption. Ours is the �rst publi
-

key en
ryption s
heme se
ure against adaptive 
hosen 
iphertext atta
k under this assumption that

is at all pra
ti
al, as opposed to theoreti
al 
onstru
tions su
h as [DDN℄.

Before presenting the new s
hemes, we show how the publi
-key en
ryption s
heme from [CS℄


an be viewed as a spe
ial 
ase of our general 
onstru
tion.

8.1 S
hemes based on the De
ision DiÆe-Hellman assumption

8.1.1 Derivation

We show how to derive a se
ure en
ryption s
heme based on the De
ision DiÆe-Hellman assumption

from our generi
 en
ryption s
heme 
onstru
tion in x6, together with our general te
hniques for

building universal proje
tive hash families in x7.

The DDH assumption. Let G be a group of given large prime order q. We shall use additive

notation for G, and view G as a Z

q

-module in the natural way. The De
ision DiÆe-Hellman
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(DDH) assumption is the assumption that it is hard to distinguish tuples of the form

(g

0

; g

1

; rg

0

; r

0

g

1

)

from tuples of the form

(g

0

; g

1

; rg

0

; rg

1

);

where g

1

and g

1

are randomly 
hosen from G, and r and r

0

are randomly 
hosen from Z

q

.

To be 
ompletely formal, one should a
tually spe
ify a sequen
e of distributions of groups, su
h

that for ea
h value of a se
urity parameter ` � 0, a des
ription of a group G, together with q, 
an

be eÆ
iently sampled from some distribution parameterized by `. Also, for su
h a group G, ea
h

element of the group should have a unique, 
ompa
t binary en
oding, and it should be the 
ase

that valid binary en
odings of group elements are easily re
ognizable, that the group operation 
an

be eÆ
iently implemented, and that random elements of G 
an be eÆ
iently generated. We assume

that 1=q is bounded by � = �(`) for all groups asso
iated with se
urity parameter `, where �(`) is a

negligible fun
tion in k.

There are many possible realizations of suitable groups G. For instan
e, let p be a large prime,

and let q be a large prime fa
tor of p � 1. Then G is the unique sub-group of order q in Z

�

p

.

Alternatively, we 
an 
hoose G as a prime-order subgroup of the group de�ned by an ellipti
 
urve.

A subset membership problem. With G and q given, we now de�ne an instan
e of a subset mem-

bership problem as follows. Let g

0

and g

1

be randomly 
hosen elements of G. De�ne X = G�G,

and let L be the subgroup of X generated by (g

0

; g

1

) 2 X. A witness for (x

0

; x

1

) 2 L is w 2 Z

q

su
h that (x

0

; x

1

) = (wg

0

; wg

1

). The instan
e des
ription � 
onsists of des
riptions of G, q, g

0

, and

g

1

.

Obviously, one 
an eÆ
iently sample a random element of L, together with a 
orresponding

witness, by generating w 2 Z

q

at random, and 
omputing (x

0

; x

1

) = (wg

0

; wg

1

).

It is 
lear that this de�nes a subset membership problem, and that the hardness of this subset

membership problem is implied by the DDH assumption for G.

Hash proof systems. Now it remains to 
onstru
t appropriate strongly smooth and strongly

universal

2

HPS's for the 
onstru
tion in x6. To do this, we �rst 
onstru
t a diverse group sys-

tem (see De�nition 10), from whi
h we 
an then derive the required HPS's.

Fix an instan
e des
ription �, where � spe
i�es a group G of order q, along with g

0

; g

1

2 G,

and let X and L be groups as de�ned above. Let H = Hom(X;G), and 
onsider the group system

G = (H;X; L;G). As shown in x7.4.1, G is a diverse group system.

Let K = Z

q

� Z

q

, and for (k

0

; k

1

) 2 K, let H

k

0

;k

1

2 Hom(X;G) be the map that sends

(x

0

; x

1

) 2 X to k

0

x

0

+ k

1

x

1

2 G. As dis
ussed in x7.4.1, the 
orresponden
e (k

0

; k

1

) 7! H

k

0

;k

1

is a

bije
tion between K and Hom(X;G).

Consider the proje
tive proje
tive hash family H = (H;K;X;L;G;G; �), where H and K are

as in the previous paragraph, and � maps (k

0

; k

1

) 2 K to H

k

0

;k

1

(g

0

; g

1

) = k

0

g

0

+ k

1

g

1

2 G. It is


lear that H is a proje
tive hash family derived from G, and so by Theorem 2 is 1=q-universal, or

equivalently, 0-smooth.

This immediately yields a strongly smooth HPS P 
orresponding to H | one simply needs

to verify that all the algorithms that must be provided by an HPS are available. This is rather

straightforward, and we leave the details to the reader (see the remark in the paragraph following

De�nition 9).

So now we have a strongly smooth HPS P as needed for the 
onstru
tion in x6.
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Applying the 
onstru
tion in Theorem 3 to H, we obtain a 1=q-universal

2

proje
tive hash

family

^

H for (X �G;L�G), and from this, a 
orresponding strongly universal

2

HPS

^

P. Again, it

is straightforward to verify that all the ne
essary algorithms required by an HPS are available.

8.1.2 The en
ryption s
heme

We now present in detail the en
ryption algorithm obtained from the HPS's H and

^

H above.

We des
ribe the s
heme in terms of a �xed group of G of order q. The message spa
e for the

s
heme is the group G.

Let � : G�G�G! Z

n

q

be an eÆ
iently 
omputable inje
tive map for an appropriate n � 1.

Key Generation

Generate g

0

; g

1

2 G at random and 
hoose

k

0

; k

1

;

~

k

0

;

~

k

1

;

^

k

1;1

;

^

k

1;1

; : : : ;

^

k

n;0

;

^

k

n;1

2 Z

q

at random.

Compute

s = k

0

g

0

+ k

1

g

1

2 G; ~s =

~

k

0

g

0

+

~

k

1

g

1

2 G; ŝ

i

=

^

k

i;0

g

0

+

^

k

i;1

g

1

2 G (i = 1; : : : ; n):

The publi
 key is (g

0

; g

1

; s; ~s; ŝ

1

; : : : ; ŝ

n

).

The private key is (k

0

; k

1

;

~

k

0

;

~

k

1

;

^

k

1;1

;

^

k

1;1

; : : : ;

^

k

n;0

;

^

k

n;1

).

En
ryption

To en
rypt a message m 2 G under a publi
 key as above, one does the following.

Choose w 2 Z

q

at random, and 
ompute

x

0

= wg

0

2 G; x

1

= wg

1

2 G; � = ws 2 G; e = m+ � 2 G:

Compute

�̂ = w~s+

n

X

i=1

w


i

ŝ

i

2 G;

where (


1

; : : : ; 


n

) = �(x

0

; x

1

; e) 2 Z

n

q

.

The 
iphertext is (x

0

; x

1

; e; �̂).

De
ryption

To de
rypt a 
iphertext (x

0

; x

1

; e; �̂) 2 G

4

under a se
ret key as above, one does the following.

Compute

�̂

0

= (

~

k

0

+

n

X

i=1




i

^

k

i;0

)x

0

+ (

~

k

1

+

n

X

i=1




i

^

k

i;1

)x

1

2 G;

where (


1

; : : : ; 


n

) = �(x

0

; x

1

; e) 2 Z

n

q

.

Che
k whether �̂

0

= �̂; if not, then output reje
t and halt.

Compute

� = k

0

x

0

+ k

1

x

1

2 G; m = e� � 2 G;

and output m.
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Note that in the de
ryption algorithm, we are assuming that x

0

; x

1

; e; �̂ are elements of G. This

impli
itly means that the de
ryption algorithm should test that this is the 
ase, and otherwise reje
t

the 
iphertext. These tests may have a non-trivial 
omputational 
ost, and so it is worth noting

that the test that �̂ 2 G 
an be omitted, without 
hanging the fun
tionality of the de
ryption

algorithm.

This is pre
isely the s
heme that our general 
onstru
tion in x6 yields, although we have simpli-

�ed a few expressions using trivial algebrai
 identities. Thus, the s
heme is se
ure against adaptive


hosen 
iphertext atta
k, provided the DDH assumption holds. This s
heme is essentially the

en
ryption s
heme presented in x5.3 of [CS℄, with just a few very minor di�eren
es.

Minor variations. To obtain a more eÆ
ient s
heme, one 
ould drop the requirement that � is

inje
tive. This would allow us to use a smaller value of n, possibly n = 1, thereby obtaining a mu
h

more 
ompa
t and eÆ
ient s
heme. It is straightforward to adapt our general framework to show

that if � is a 
ollision resistant hash fun
tion (CRHF), then we still get a s
heme that is se
ure

against adaptive 
hosen 
iphertext atta
k.

With a somewhat more re�ned analysis, one 
an show that a universal one-way hash fun
tion

(UOWHF) [NY1℄ suÆ
es. This analysis requires some additional, spe
ial properties of the subset

membership problem; namely, that elements of XnL 
an be eÆ
iently sampled at random, and that

given appropriate \trapdoor" information (in this 
ase, the dis
rete logarithm of g

1

with respe
t

to g

0

), elements of X n L 
an be eÆ
iently distinguished from elements of L. When n = 1, the

resulting en
ryption s
heme is the main en
ryption s
heme presented in [CS℄, with just a few very

minor di�eren
es.

8.2 S
hemes based on the De
ision Composite Residuosity assumption

8.2.1 Derivation

The DCR assumption. Let p; q; p

0

; q

0

be distin
t odd primes with p = 2p

0

+1 and q = 2q

0

+1, and

where p

0

and q

0

are both � bits in length. Let N = pq and N

0

= p

0

q

0

. Consider the group Z

�

N

2

and

the subgroup P of Z

�

N

2


onsisting of all Nth powers of elements in Z

�

N

2

.

Paillier's De
ision Composite Residuosity (DCR) assumption is that given only N , it is hard to

distinguish random elements of Z

�

N

2

from random elements of P .

To be 
ompletely formal, one should spe
ify spe
ify a sequen
e of bit lengths �(`), parameterized

by a se
urity parameter ` � 0, and to generate an instan
e of the problem for se
urity parameter

`, the primes p

0

and q

0

should be distin
t, random primes of length � = �(`), su
h that p = 2p

0

+ 1

and q = 2q

0

+ 1 are also primes.

The primes p

0

and q

0

are 
alled Sophie Germain primes by mathemati
ians, while p and q are


alled strong (or safe) primes by 
ryptographers. It has never been proven that there are in�nitely

many Sophie Germain primes. Nevertheless, it is widely 
onje
tured, and amply supported by

empiri
al eviden
e, that the probability that a random �-bit number is Sophie Germain prime is


(1=�

2

). We shall assume that this 
onje
ture holds, so that we 
an assume that problem instan
es


an be eÆ
iently generated.

Note that Paillier did not make the restri
tion to strong primes in originally formulating the

DCR assumption. As will be
ome evident, we need to restri
t ourselves to strong primes for

te
hni
al reasons. However, it is easy to see that the DCR assumption without this restri
tion

implies the DCR assumption with this restri
tion, assuming that strong primes are suÆ
iently

dense, as we are here.
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A subset membership problem. We 
an de
ompose Z

�

N

2

as an internal dire
t produ
t

Z

�

N

2

= G

N

�G

N

0

�G

2

� T;

where ea
h group G

�

is a 
y
li
 group of order � , and T is the subgroup of Z

�

N

2

generated by

(�1 mod N

2

). This de
omposition is unique, ex
ept for the 
hoi
e of G

2

(there are two possible


hoi
es). For any x 2 Z

�

N

2

, we 
an express x uniquely as x = x(G

N

)x(G

N

0

)x(G

2

)x(T ), where for

ea
h G

�

, x(G

�

) 2 G

�

, and x(T ) 2 T . Note that the element � = (1 +N mod N

2

) 2 Z

�

N

2

has order

N , i.e., it generates G

N

, and that �

a

= (1 + aN mod N

2

) for 0 � a < N .

De�ne the map

� : Z

�

N

2

! f�1g;

(a mod N

2

) 7! (a j N);

where (� j �) is the Ja
obi symbol. It is 
lear that � is a group homomorphism.

Let X be the kernel of �. It is easy to see that X = G

N

G

N

0

T , sin
e jZ

�

N

2

=Xj = 2 and T � X.

In parti
ular, X is a 
y
li
 group of order 2NN

0

. Let L be the subgroup of Nth powers of X. Then

evidently, L = G

N

0

T , and so is a 
y
li
 group of order 2N

0

. These groups X and L will de�ne our

subset membership problem.

Our instan
e des
ription � will 
ontain N , along with a random generator g for L. It is easy to

generate su
h a g: 
hoose a random � 2 Z

�

N

2

, and set g = ��

2N

. With overwhelming probability,

su
h a g will generate L; indeed, the output distribution of this sampling algorithm is O(2

��

)-
lose

the uniform distribution over all generators.

Let us de�ne the set of witnesses as W = f0; : : : ; bN=2
g. We say w 2W is a witness for x 2 X

if x = g

w

. To generate x 2 L at random together with a 
orresponding witness, we simply generate

w 2 W at random, and 
ompute x = g

w

. The output distribution of this algorithm is not the

uniform distribution over L, but one that is O(2

��

)-
lose to it.

This 
ompletes the des
ription of our subset membership problem. It is easy to see that it

satis�es all the basi
 requirements spe
i�ed in x4. The reason for using (X;L) instead of (Z

�

N

2

; P )

is that Z

�

N

2

and P are not 
y
li
, whi
h is in
onvenient for a number of te
hni
al reasons.

Next, we argue that the DCR assumption implies that this subset membership problem is hard.

Suppose we are given x sampled at random from Z

�

N

2

(respe
tively, P ). If we 
hoose b 2 f0; 1g

at random, then x

2

(�1)

b

is uniformly distributed over X (respe
tively, L). This implies that

distinguishing X from L is at least as hard as distinguishing Z

�

N

2

from P , and so under the DCR

assumption, it is hard to distinguish X from L. It is easy to see that this implies that it is hard to

distinguish X n L from L as well.

Hash proof systems. Now it remains to 
onstru
t appropriate strongly smooth and strongly

universal

2

HPS's for the 
onstru
tion in x6. To do this, we �rst 
onstru
t a diverse group sys-

tem (see De�nition 10), from whi
h we 
an then derive the required HPS's.

Fix an instan
e des
ription �, where � spe
i�es an integer N | de�ning groups X and L as

above | along with a generator g for L. Let H = Hom(X;X) and 
onsider the group system

G = (H;X; L;X). As dis
ussed in x7.4.2, G is a diverse group system; moreover, for x 2 X, we

have I(x) = hx(G

N

)i; thus, for x 2 X n L, I(x) has order p, q, or N , a

ording to whether x(G

N

)

has order p, q, or N .

For k 2 Z, let H

k

2 Hom(X;X) be the kth power map; that is, H

k

sends x 2 X to x

k

2 X.

Let K

�

= f0; : : : ; 2NN

0

� 1g. As dis
ussed in x7.4.2, the 
orresponden
e k 7! H

k

yields a bije
tion

between K

�

and Hom(X;X).
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Consider the proje
tive hash family H

�

= (H;K

�

;X; L;X;L; �), where H and K

�

are as in

the previous paragraph, and � maps k 2 Z to H

k

(g) 2 L. Clearly, H

�

is a proje
tive hash family

derived fromG, and so by Theorem 2, it is 2

��

-universal. From this, we 
an obtain a 
orresponding

HPS P; however, as we 
annot readily sample elements from K

�

, the proje
tive hash family H that

P asso
iates with the instan
e des
ription � is slightly di�erent than H

�

; namely, we use the set

K = f0; : : : ; bN

2

=2
g in pla
e of the set K

�

, but otherwise, H and H

�

are the same. It is readily

seen that the uniform distribution on K

�

is O(2

��

)-
lose to the uniform distribution on K, and so

H andH

�

are also O(2

��

)-
lose (see De�nition 5). It is also easy to verify that all of the algorithms

that P should provide are available.

So we now have a 2

��(`)

-universal HPS P. We 
ould easily 
onvert P into a strongly smooth

HPS by applying the Leftover Hash Lemma 
onstru
tion in Lemma 4 to the underlying universal

proje
tive hash family H

�

. However, there is a mu
h more dire
t and pra
ti
al way to pro
eed, as

we now des
ribe.

A

ording to Theorem 2, for any s; x 2 X, if k is 
hosen at random fromK

�

, subje
t to �(k) = s,

then H

k

(x) is uniformly distributed over a 
oset of I(x) in X. As dis
ussed above, I(x) = hx(G

N

)i,

and so is a subgroup of G

N

. Moreover, for random x 2 X nL, we have I(x) 6= G

N

with probability

at most 2

��+1

.

Now de�ne the map

� : Z

N

2
! Z

N

;

(a+ bN mod N

2

) 7! (b mod N) (0 � a; b < N):

This map does not preserve any algebrai
 stru
ture; however, the restri
tion of � to any 
oset of

G

N

in X is a one-to-one map from that 
oset onto Z

N

. To see this, let x = (a+ bN mod N

2

) 2 X,

where 0 � a; b < N , and note that we must have g
d(a;N) = 1; for 0 � 
 < N , we have

x�




= (a+(a
+ b)N mod N), and so �(x�




) = (a
+ b mod N). For a; b �xed as above, as 
 ranges

over f0; : : : ; N � 1g, we see that (a
+ b mod N) ranges over Z

N

.

Let us de�ne H

�

�

= (H

�

;K

�

;X; L;Z

N

; L; �), where for k 2 Z, H

�

k

= �ÆH

k

. That is, H

�

�

is the

same as H

�

, ex
ept that in H

�

�

, we pass the output of the hash fun
tion for H

�

through �. From

the observations in the previous two paragraphs, it is 
lear that H

�

�

is a 2

��+1

-smooth proje
tive

hash family. From H

�

�

we get a 
orresponding approximation H

�

(using K in pla
e of K

�

), and

from this we get 
orresponding 2

��(`)+1

-smooth HPS P

�

.

We 
an apply the 
onstru
tion in Theorem 3 to H

�

, obtaining a 2

��

-universal

2

proje
tive hash

family

^

H

�

for (X � Z

N

; L� Z

N

). From

^

H

�

we get a 
orresponding approximation

^

H (using K in

pla
e of K

�

), and from this we get a 
orresponding 2

��(`)

-universal

2

extended HPS

^

P.

We 
ould build our en
ryption s
heme dire
tly using

^

P; however, we get more 
ompa
t 
i-

phertexts if we modify

^

H

�

by passing its hash outputs through �, just as we did in building H

�

�

,

obtaining the analogous proje
tive hash family

^

H

�

�

for (X � Z

N

; L � Z

N

). From Theorem 4, and

the above dis
ussion, it is 
lear that

^

H

�

�

is also 2

��

-universal

2

. From

^

H

�

�

we get a 
orresponding

approximation

^

H

�

(using K in pla
e of K

�

), and from this we get a 
orresponding 2

��(`)

-universal

2

extended HPS

^

P

�

.

8.2.2 The en
ryption s
heme

We now present in detail the en
ryption s
heme obtained from the HPS's P

�

and

^

P

�

above.

We des
ribe the s
heme for a �xed value of N that is the produ
t of two (� + 1)-bit strong

primes. The message spa
e for this s
heme is Z

N

.
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Let X, L, �, and � be as de�ned above. Also, letW = f0; : : : ; bN=2
g andK = f0; : : : ; bN

2

=2
g,

as above. Let R = f0; : : : ; 2

�

�1g, and let � : Z

N

2
�Z

N

! R

n

be an eÆ
iently 
omputable inje
tive

map for an appropriate n � 1. For suÆ
iently large �, n = 7 suÆ
es.

Key Generation

Choose � 2 Z

�

N

2

at random and set g = ��

2N

2 L.

Choose

k;

~

k;

^

k

1

; : : : ;

^

k

n

2 K

at random, and 
ompute

s = g

k

2 L; ~s = g

~

k

2 L; ŝ

i

= g

^

k

i

2 L (i = 1; : : : ; n):

The publi
 key is (g; s; ~s; ŝ

1

; : : : ; ŝ

n

).

The private key is (k;

~

k;

^

k

1

; : : : ;

^

k

n

).

En
ryption

To en
rypt a message m 2 Z

N

under a publi
 key as above, one does the following.

Choose w 2W at random, and 
ompute

x = g

w

2 L; y = s

w

2 L; � = �(y) 2 Z

N

; e = m+ � 2 Z

N

:

Compute

ŷ = ~s

w

n

Y

i=1

ŝ




i

w

i

2 L; �̂ = �(ŷ) 2 Z

N

;

where (


1

; : : : ; 


n

) = �(x; e) 2 R

n

.

The 
iphertext is (x; e; �̂).

De
ryption

To de
rypt a 
iphertext (x; e; �̂) 2 X � Z

N

� Z

N

under a se
ret key as above, one does the

following.

Compute

ŷ = x

~

k+

P

n

i=1




i

^

k

i

2 X; �̂

0

= �(ŷ) 2 Z

N

;

where (


1

; : : : ; 


n

) = �(x; e) 2 R

n

.

Che
k whether �̂ = �̂

0

; if not, then output reje
t and halt.

Compute

y = x

k

2 X; � = �(y) 2 Z

N

; m = e� � 2 Z

N

;

and output m.

Note that in the de
ryption algorithm, we are assuming that x 2 X, whi
h impli
itly means that

the de
ryption algorithm should 
he
k that x 2 Z

�

N

2

and that �(x) = 1, and reje
t the 
iphertext

if this does not hold.

This is pre
isely the s
heme that our general 
onstru
tion in x6 yields. Thus, the s
heme is

se
ure against adaptive 
hosen 
iphertext atta
k, provided the DCR assumption holds.
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Minor variations. As in x8.1, if we repla
e � by a CRHF we get an even more eÆ
ient s
heme

with a smaller value of n, possibly even n = 1. Moreover, as in x8.1, a UOWHF suÆ
es, although

this requires a more involved analysis.

Note that in this s
heme, the fa
torization of N is not a part of the private key. This would

allow, for example, many parties to work with the same modulus N , whi
h may be 
onvenient

in some situations. Alternatively, if we in
lude the fa
torization of N in the private key, some

optimizations in the de
ryption algorithm are possible, su
h as Chinese Remaindering te
hniques.

8.2.3 Variation 1

We now des
ribe a variation on the above s
heme. This variation is a bit simpler (but only

marginally more eÆ
ient) than the s
heme in x8.2.2. This s
heme does not quite �t into our

general framework, but 
an nevertheless be proven se
ure using the same basi
 ideas. This variation

demonstrates that some aspe
ts of the design of the s
heme in x8.2.2 were 
arefully 
rafted so as

to make that s
heme �t into the general framework, but are not really ne
essary. We use this

variation, along with the one in x8.2.3, as motivation for exploring some natural extensions to our

general en
ryption framework.

We des
ribe the s
heme for a �xed value of N that is the produ
t of two (� + 1)-bit strong

primes. The message spa
e for this s
heme is Z

N

.

Let L

0

= G

N

0

, and let � be as de�ned as in x8.2.1. Also, let W

0

= f0; : : : ; bN=4
g and

K = f0; : : : ; bN

2

=2
g. Let R = f0; : : : ; 2

�

� 1g, and let � : Z

N

2
� Z

N

! R

n

be an eÆ
iently


omputable inje
tive map for an appropriate n � 1.

Key Generation

Choose � 2 Z

�

N

2

at random and set g = �

2N

2 L

0

.

Choose

k;

~

k;

^

k

1

; : : : ;

^

k

n

2 K

at random, and 
ompute

s = g

k

2 L

0

; ~s = g

~

k

2 L

0

; ŝ

i

= g

^

k

i

2 L

0

(i = 1; : : : ; n):

The publi
 key is (g; s; ~s; ŝ

1

; : : : ; ŝ

n

).

The private key is (k;

~

k;

^

k

1

; : : : ;

^

k

n

).

En
ryption

To en
rypt a message m 2 Z

N

under a publi
 key as above, one does the following.

Choose w 2W

0

at random, and 
ompute

x = g

w

2 L

0

; y = s

w

2 L

0

; � = �(y) 2 Z

N

; e = m+ � 2 Z

N

:

Compute

ŷ = ~s

w

n

Y

i=1

ŝ




i

w

i

2 L

0

; �̂ = �(ŷ) 2 Z

N

;

where (


1

; : : : ; 


n

) = �(x; e) 2 R

n

.

The 
iphertext is (x; e; �̂).
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De
ryption

To de
rypt a 
iphertext (x; e; �̂) 2 Z

�

N

2

�Z

N

�Z

N

under a se
ret key as above, one does the

following.

Compute

ŷ = x

~

k+

P

n

i=1




i

^

k

i

2 Z

�

N

2

; �̂

0

= �(ŷ) 2 Z

N

;

where (


1

; : : : ; 


n

) = �(x; e) 2 R

n

.

Che
k whether �̂ = �̂

0

; if not, then output reje
t and halt.

Compute

y = x

k

2 Z

�

N

2

; � = �(y) 2 Z

N

; m = e� � 2 Z

N

;

and output m.

Note that in the de
ryption algorithm, we are assuming that x 2 Z

�

N

2

, whi
h impli
itly means

that the de
ryption algorithm should 
he
k that this is the 
ase, and reje
t the 
iphertext if this

does not hold.

The only di�eren
es between this variation and the s
heme in x8.2.2 are that in this variation,

(1) g is 
omputed as �

2N

, rather than as ��

2N

, (2) w is 
hosen at random from W

0

, rather than

from W , and (3) the de
ryption algorithm 
he
ks that x 2 Z

�

N

2

, but does not additionally 
he
k

that �(x) = 1.

Se
urity analysis. Sin
e this s
heme does not �t into our general framework, we have to analyze

its se
urity. This s
heme is se
ure against adaptive 
hosen 
iphertext atta
k, under the DCR

assumption. To prove this, we brie
y sket
h how our general framework 
an be extended so that

this s
heme �ts into the framework.

Let us �rst 
onsider a generalization of the notion of a smooth proje
tive hash family. Let

H = (H;K;X;L;�; S; �) be a proje
tive hash family, and let X

0

� X. We de�ne two random

variables, U

X

0

(H) and V

X

0

(H), as follows. Consider the probability spa
e de�ned by 
hoosing

k 2 K at random, x 2 X

0

n L at random, and �

0

2 � at random. We set U

X

0

(H) = (x; s; �

0

) and

V

X

0

(H) = (x; s; �), where s = �(k) and � = H

k

(x). For � � 0, we say that H is �-smooth over X

0

if U

X

0

(H) and V

X

0

(H) are �-
lose.

Let us next 
onsider the following generalization of a subset membership problem. In this

generalization, an instan
e des
ription spe
i�es sets X, L, and W , and the relation R just as for

an ordinary subset membership problem, but in addition spe
i�es a set X

0

� X. The instan
e

sampling algorithm should behave just as for an ordinary subset membership problem; also, just

as for an ordinary subset membership problem, it should be easy to re
ognize valid en
odings of

elements of X (but not ne
essarily X

0

). However, the subset sampling algorithm is a bit di�erent

from that of an ordinary subset membership problem: the distribution of the output x should

be statisti
ally 
lose to the uniform distribution on X

0

\ L (rather than L). Also, the notion of

hardness for a generalized subset membership problem is slightly di�erent from that for an ordinary

subset membership problem: hardness means that it it 
omputationally hard to distinguish random

elements of X

0

nL from random elements of X

0

\L (rather than to distinguish random elements of

X n L from random elements of L).

We also generalize the notion of a hash proof system, as follows. A hash proof system P for a

generalized subset membership problem M asso
iates with ea
h instan
e �[X;L;W;R;X

0

℄ of M a

proje
tive hash family H = (H;K;X;L;�; S; �), as well as a �nite set S

0

and an auxiliary fun
tion

�

0

: K ! S

0

. As for a hash proof system for an ordinary subset membership problem, there
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should be eÆ
ient algorithms to sample random elements of K, and to re
ognize valid en
odings

of elements of �; also, the private evaluation algorithm should eÆ
iently 
ompute H

k

(x) given

the instan
e des
ription � along with k 2 K and x 2 X. However, we do not require an eÆ
ient

algorithm to 
ompute �(k) given the instan
e des
ription � along with k 2 K; rather, we only

require an eÆ
ient algorithm to 
ompute �

0

(k) given the instan
e des
ription � along with k 2 K;

moreover, we require that for all k 2 K, the value of �(k) determines the value of �

0

(k). Also, the

publi
 evaluation algorithm should eÆ
iently 
ompute H

k

(x) given the instan
e des
ription � along

with �

0

(k) 2 S

0

, x 2 X

0

\L, and a witness w 2W for x. Note that although the private evaluation

algorithm should work for all x 2 X, in
luding x 2 X nX

0

, the publi
 evaluation algorithm need

only work for x 2 X

0

\ L, and need not work for x 2 L nX

0

.

The de�nitions of �(`)-universal and �(`)-universal

2

hash proof systems for ordinary subset

membership problems extend verbatim to hash proof systems for generalized subset membership

problems. However, in de�ning an �(`)-smooth hash proof system for a generalized subset mem-

bership problem, the requirement is that the underlying proje
tive hash family is �(`)-smooth over

X

0

.

It is easy to adapt the generi
 en
ryption s
heme presented in x6 to work with generalized hash

proof systems. We sket
h how this is done. Let M be a generalized subset membership problem

spe
ifying a sequen
e (I

`

)

`�0

of instan
e distributions. Let P be a strongly smooth HPS for M,

and for �xed ` � 0 and �[X;L;W;R;X

0

℄ 2 [I

`

℄, let H = (H;K;X;L;�; S; �) be the asso
iated

proje
tive hash family, and let �

0

: K ! S

0

be the asso
iated auxiliary fun
tion. As in x6, we assume

that � is an abelian group. Let

^

P be a strongly universal

2

extended HPS forM, and for �xed ` � 0

and �[X;L;W;R;X

0

℄ 2 [I

`

℄, let

^

H = (

^

H;

^

K;X��; L��;

^

�;

^

S; �̂) be the asso
iated proje
tive hash

family, and let �̂

0

:

^

K !

^

S

0

be the asso
iated auxiliary fun
tion. For the key generation algorithm,

we 
hoose k 2 K and

^

k 2

^

K at random, and 
ompute s

0

= �

0

(k) and ŝ

0

= �̂

0

(k); the publi
 key

is (s

0

; ŝ

0

), and the private key is (k;

^

k). The en
ryption algorithm is almost the same as in x6; the

only di�eren
e is that x is 
hosen at random from X

0

\ L, and the 
omputations of H

k

(x) and

^

H

^

k

(x; e) using the publi
 evaluation algorithms of P and

^

P make use of the values s

0

and ŝ

0

. The

de
ryption algorithm is identi
al to that in x6.

It is easy to adapt the proof of Theorem 1 to show that this s
heme is se
ure against adaptive


hosen 
iphertext atta
k assuming the underlying generalized subset membership problem is hard.

One uses the same simulator as in the proof of Theorem 1, ex
ept that now it is used to distinguish

random elements of X

0

n L from random elements of X

0

\ L. Ex
ept for this 
hange, the proof of

Theorem 1 
arries through verbatim.

We now show how our variation of the DCR-based s
heme �ts into the above extended frame-

work and is se
ure under the DCR assumption.

We �rst des
ribe the generalized subset membership problem. For N as above, let X = Z

�

N

2

,

L = G

N

0

G

2

T , and let X

0

= G

N

G

N

0

. Note that X

0

\L = G

N

0

= L

0

. An instan
e des
ription � will


ontain N , along with a generator g for L

0

. To generate su
h a g, one 
an simply 
hoose � 2 Z

�

N

2

at random, and 
ompute g = �

2N

. The set of witnesses is W

0

as de�ned as above, and we say that

w 2 W

0

is a witness for x 2 X if x = g

w

. It is 
lear that if we 
hoose w 2 W

0

at random, and set

x = g

w

, then we get a nearly random x 2 L

0

together with a 
orresponding witness w 2W

0

. That


ompletes the des
ription of our generalized subset membership problem.

The DCR assumption implies the hardness of this generalized subset membership problem.

Indeed, re
all that P is the subgroup of Nth powers of Z

�

N

2

. Evidently, P = G

N

0

G

2

T = L.

Suppose we are given x sampled at random from Z

�

N

2

(respe
tively, P ); then x

2

is uniformly

distributed over X

0

(respe
tively, L

0

). This implies that distinguishing X

0

from L

0

is at least as

hard as distinguishing Z

�

N

2

from P , and so under the DCR assumption, it is hard to distinguish X

0
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from L

0

. It is easy to see that this implies that it is hard to distinguish X

0

n L

0

from L

0

as well.

For k 2 Z, let H

k

be the kth power map on X; that is, H

k

maps x 2 X to x

k

2 X. Consider the

group system G = (H;X; L;X), where H = fH

k

: k 2 Zg. Let K

�

= f0; : : : ; 2NN

0

� 1g. Sin
e X

has exponent 2NN

0

, we see that the 
orresponden
e k 7! H

k

yields a bije
tion between K

�

and H.

We leave it to the reader to verify that G is diverse, and moreover, for any x 2 X, I(x) = hx(G

N

)i.

Consider the derived proje
tive hash family H

�

= (H;K

�

;X; L;X; S; �), where H and K

�

are

as in the previous paragraph, S = L

0

�G

2

� T , and for k 2 Z, we de�ne �(k) = (g

k

; g

k

1

; g

k

2

), where

g

1

generates G

2

and g

2

= (�1 mod N

2

) generates T . In building a hash proof system from H

�

, we

also de�ne the auxiliary fun
tion �

0

that sends k 2 Z to g

k

2 L

0

, and as usual, we use the set K in

pla
e of K

�

. Using H

�

as the starting point, one sees that the variation presented in this se
tion

follows from pre
isely the same line of reasoning as in x8.2.1. It follows that the s
heme is se
ure

under the DCR assumption.

Minor variations As usual, instead of using an inje
tive fun
tion �, we 
an use a CRHF, or even

a UOWHF. In this 
ase, we 
ould typi
ally take n = 1.

8.2.4 Variation 2

We des
ribe another variation on the s
heme in x8.2.2 that does not quite �t into our general

framework, but 
an still be easily proven se
ure against adaptive 
hosen 
iphertext atta
k using

the te
hniques we have developed. In this variation, the 
iphertexts are not as 
ompa
t as those in

the s
hemes in x8.2.2 and x8.2.3; however, the 
iphertexts have more algebrai
 stru
ture. A s
heme

su
h as this may be useful in 
ertain appli
ations.

We des
ribe the s
heme for a �xed value of N that is the produ
t of two (� + 1)-bit strong

primes. The message spa
e for this s
heme is Z

N

.

Let X

0

= G

N

G

N

0

and let L

0

= G

N

0

. Also, let W

0

= f0; : : : ; bN=4
g and K = f0; : : : ; bN

2

=2
g.

Let R = f0; : : : ; 2

�

� 1g, and let � : Z

N

2
� Z

N

2
! R

n

be an eÆ
iently 
omputable inje
tive map

for an appropriate n � 1.

The key generation algorithm of this variation is identi
al to that of the s
heme in x8.2.3. Only

the en
ryption and de
ryption algorithms are di�erent. Re
all that � = (1 + N mod N

2

) 2 Z

�

N

2

has order N , and that for 0 � a < N , �

a

= (1 + aN mod N

2

).

En
ryption

To en
rypt a message m 2 Z

N

under a publi
 key as above, one does the following.

Choose w 2W

0

at random, and 
ompute

x = g

w

2 L

0

; � = s

w

2 L

0

; e = �

m

� � 2 X

0

:

Compute

�̂ = ~s

w

n

Y

i=1

ŝ




i

w

i

2 L

0

;

where (


1

; : : : ; 


n

) = �(x; e) 2 R

n

.

The 
iphertext is (x; e; �̂).

De
ryption

To de
rypt a 
iphertext (x; e; �̂) 2 Z

�

N

2

� Z

�

N

2

� Z

�

N

2

under a se
ret key as above, one does

the following.
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Compute

�̂

0

= x

~

k+

P

n

i=1




i

^

k

i

2 Z

�

N

2

;

where (


1

; : : : ; 


n

) = �(x; e) 2 R

n

.

Che
k whether �̂ = �̂

0

; if not, then output reje
t and halt.

Compute

� = x

k

2 X

0

; ~m = e � �

�1

2 Z

�

N

2

:

If ~m = �

m

for some m 2 Z

N

, output m; otherwise, output reje
t.

Again, we impli
itly assume that the de
ryption algorithm 
he
ks that x, e, and �̂ lie in Z

�

N

2

.

Clearly, however, the test that x 2 Z

�

N

2

(and e 2 Z

N

2
and �̂ 2 Z

N

2
) is suÆ
ient, sin
e if x 2 Z

�

N

2

,

and either e =2 Z

�

N

2

or �̂ =2 Z

�

N

2

, the 
iphertext will anyway be reje
ted for other reasons.

Se
urity analysis. This s
heme is se
ure against adaptive 
hosen 
iphertext atta
k, under the DCR

assumption. To prove this, we brie
y sket
h how our general framework, as already extended in

x8.2.3, 
an be further extended so that this s
heme �ts into the framework.

All we need to do is de�ne an appropriate generalization of a smooth proje
tive hash family.

Let H = (H;K;X;L;�; S; �) be a proje
tive hash family, and let X

0

� X. Further, suppose

that � is an abelian group (for whi
h we use additive notation), and that �

0

is a subgroup of �.

We de�ne two random variables, U

�

0

X

0

(H) and V

�

0

X

0

(H), as follows. Consider the probability spa
e

de�ned by 
hoosing k 2 K at random, x 2 X

0

n L at random, and �

0

2 �

0

at random. We set

U

�

0

X

0

(H) = (x; s; �

0

+ �) and V

�

0

X

0

(H) = (x; s; �), where s = �(k) and � = H

k

(x). For � � 0, we say

that H is �-smooth over X

0

on �

0

if U

�

0

X

0

(H) and V

�

0

X

0

(H) are �-
lose.

In building an en
ryption s
heme using su
h a smooth proje
tive hash family, �

0

will be the

message spa
e, rather than �, and we require that it is easy to re
ognize valid binary en
odings of

elements of �

0

.

We leave it to the reader to �ll in all of the details of this extension, as well as to adapt the

proof of Theorem 1 to this extension.

In the en
ryption s
heme des
ribed above, we take � = Z

�

N

2

and �

0

= G

N

. We leave it to the

reader to �ll in the remaining details of the analysis of this s
heme.

Minor variations. As usual, instead of using an inje
tive fun
tion �, we 
an use a CRHF, or even

a UOWHF. In this 
ase, we 
ould typi
ally take n = 1.

8.3 S
hemes based on the Quadrati
 Residuosity assumption

8.3.1 Derivation

The QR assumption. Let p; q; p

0

; q

0

be distin
t odd primes with p = 2p

0

+ 1 and q = 2q

0

+ 1, and

where p

0

and q

0

are both � bits in length. Let N = pq and let N

0

= p

0

q

0

. Consider the group Z

�

N

,

and let X be the subgroup of elements (a mod N) 2 Z

�

N

with Ja
obi symbol (a j N) = 1, and let

L be the subgroup of squares (a.k.a., quadrati
 residues) of Z

�

N

. Note that L is a subgroup of X of

index 2.

The Quadrati
 Residuosity (QR) assumption is that given only N , it is hard to distinguish

random elements of X from random elements of L. This implies that it is hard to distinguish

random elements of X n L from random elements of L.
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To be 
ompletely formal, one should spe
ify spe
ify a sequen
e of bit lengths �(`), parameterized

by a se
urity parameter ` � 0, and to generate an instan
e of the problem for se
urity parameter

`, the primes p

0

and q

0

should be distin
t, random primes of length � = �(`), su
h that p = 2p

0

+ 1

and q = 2q

0

+ 1 are also primes.

As in x8.2, we shall assume that strong primes (su
h as p and q) are suÆ
iently dense. Note that

the traditional QR assumption was not restri
ted to strong primes. However, the QR assumption

without this restri
tion implies the QR assumption with this restri
tion, assuming that strong

primes are suÆ
iently dense, as we are here.

A subset membership problem. The groups X and L above will de�ne our subset membership

problem.

We 
an de
ompose Z

�

N

as an internal dire
t produ
t

Z

�

N

= G

N

0

�G

2

� T;

where ea
h group G

�

is a 
y
li
 group of order � , and T is the subgroup of Z

�

N

generated by

(�1 mod N). This de
omposition is unique, ex
ept for the 
hoi
e of G

2

(there are two possible


hoi
es).

It is easy to see that X = G

N

0

T , so it is a 
y
li
 group, and that L = G

N

0

.

Our instan
e des
ription � will 
ontain N , along with a random generator g for L. It is easy to

generate su
h a g: 
hoose a random � 2 Z

�

N

, and set g = �

2

. With overwhelming probability, su
h

a g will generate L; indeed, the output distribution of this sampling algorithm is O(2

��

)-
lose the

uniform distribution over all generators.

Let us de�ne the set of witnesses as W = f0; : : : ; bN=4
g. We say w 2W is a witness for x 2 X

if x = g

w

. To generate x 2 L at random together with a 
orresponding witness, we simply generate

w 2 W at random, and 
ompute x = g

w

. The output distribution of this algorithm is not the

uniform distribution over L, but is O(2

��

)-
lose to it.

This 
ompletes the des
ription of our subset membership problem. It is easy to see that it

satis�es all the basi
 requirements spe
i�ed in x4. As already mentioned, the QR assumption

implies that this is a hard subset membership problem.

Hash proof systems. Now it remains to 
onstru
t appropriate strongly smooth and strongly

universal

2

HPS's for the 
onstru
tion in x6. To do this, we �rst 
onstru
t a diverse group sys-

tem (see De�nition 10), from whi
h we 
an then derive the required HPS's.

Fix an instan
e des
ription �, where � spe
i�es an integer N | de�ning groups X and L as

above | along with a generator g for L. Let H = Hom(X;X) and 
onsider the group system

G = (H;X; L;X).

As dis
ussed in x7.4.2, G is a diverse group system; moreover, for x 2 X, if we de
ompose x as

x = x(L) � x(T ), where x(L) 2 L and x(T ) 2 T , then we have I(x) = hx(T )i; thus, for x 2 X n L,

I(x) = T .

For k 2 Z, let H

k

2 Hom(X;X) be the kth power map; that is, H

k

sends x 2 X to x

k

2 X.

Let K

�

= f0; : : : ; 2N

0

� 1g. As dis
ussed in x7.4.2, the 
orresponden
e k 7! H

k

yields a bije
tion

between K

�

and Hom(X;X).

Consider the proje
tive hash family H

�

= (H;K

�

;X; L;X;L; �), where H and K

�

are as in

the previous paragraph, and � maps k 2 Z to H

k

(g) 2 L. Clearly, H

�

is a proje
tive hash family

derived fromG, and so by Theorem 2, it is 1=2-universal. From this, we 
an obtain a 
orresponding

HPS P; however, as we 
annot readily sample elements from K

�

, the proje
tive hash family H that
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P asso
iates with the instan
e des
ription � is slightly di�erent than H

�

; namely, we use the set

K = f0; : : : ; bN=2
g in pla
e of the set K

�

, but otherwise, H and H

�

are the same. It is readily

seen that the uniform distribution on K

�

is O(2

��

)-
lose to the uniform distribution on K, and so

H and H

�

are also O(2

��

)-
lose. It is also easy to verify that all of the algorithms that P should

provide are available.

So we now have a 1=2-universal HPS P. We 
an apply the 
onstru
tion in Lemma 1 to H

�

,

using a parameter t = t(`), to get a 2

�t

-universal proje
tive hash family

�

H

�

. From

�

H

�

we get

a 
orresponding approximation

�

H (using K in pla
e of K

�

), and from this we get 
orresponding

2

�t

-universal HPS

�

P.

Now, we 
ould easily 
onvert

�

P into a strongly smooth HPS by applying the Leftover Hash

Lemma 
onstru
tion in Lemma 4 to the underlying proje
tive hash family

�

H

�

. However, there is a

mu
h more dire
t and pra
ti
al way to pro
eed, as we now des
ribe.

A

ording to Theorem 2, for any s; x 2 X, if k is 
hosen at random fromK

�

, subje
t to �(k) = s,

then H

k

(x) is uniformly distributed over a 
oset of I(x) in X. As dis
ussed above, for x 2 X n L,

I(x) = T .

Now de�ne the map � : Z

N

! Z

2

as follows: for x = (a mod N) 2 Z

�

N

, with 0 � a < N , let

�(x) = 1 if a > N=2, and �(x) = 0 otherwise. It is easy to verify that the restri
tion of � to any


oset of T in X (whi
h is a set of the form f�xg for some x 2 X) is a one-to-one map from that


oset onto Z

2

.

Let us de�ne H

�

�

= (H

�

;K

�

;X; L;Z

N

; L; �), where for k 2 Z, H

�

k

= � Æ H

k

. That is, H

�

�

is

the same as H

�

, ex
ept that in H

�

�

, we pass the output of the hash fun
tion for H

�

through �.

From the observations in the previous two paragraphs, it is 
lear that H

�

�

is a 1=2-universal, and

so 0-smooth, proje
tive hash family.

Now, we 
an apply the 
onstru
tion in Lemma 1 to H

�

�

with the parameter t = t(`) to get a 0-

smooth proje
tive hash family

�

H

�

�

whose hash output spa
e is Z

t

2

. From

�

H

�

�

we get a 
orresponding

approximation

�

H

�

(using K in pla
e of K

�

), and from this we get 
orresponding 0-smooth HPS

�

P

�

.

We 
an apply the 
onstru
tion in Theorem 4 to H

�

, using a parameter

^

t =

^

t(`), obtaining a

2

�

^

t

-universal

2

proje
tive hash family

^

H

�

for (X � Z

t

2

; L � Z

t

2

). From

^

H

�

we get a 
orresponding

approximation

^

H (using K in pla
e of K

�

), and from this we get a 
orresponding 2

�

^

t(`)

-universal

2

extended HPS

^

P.

We 
ould build our en
ryption s
heme dire
tly using

^

P; however, we get more 
ompa
t 
i-

phertexts if we modify

^

H

�

by passing its hash outputs through �, just as we did in building H

�

�

,

obtaining the analogous proje
tive hash family

^

H

�

�

for (X � Z

t

2

; L � Z

t

2

). From Theorem 4, and

the above dis
ussion, it is 
lear that

^

H

�

�

is also 2

�

^

t

-universal

2

. From

^

H

�

�

we get a 
orresponding

approximation

^

H

�

(using K in pla
e of K

�

), and from this we get a 
orresponding 2

�

^

t(`)

-universal

2

extended HPS

^

P

�

.

8.3.2 The en
ryption s
heme

We now present in detail the en
ryption obtained using the HPS's

�

P

�

and

^

P

�

above.

We des
ribe the s
heme for a �xed value of N that is produ
t of two (�+1)-bit strong primes.

The message spa
e for this s
heme is Z

t

2

, where t = t(`) is an auxiliary parameter. Note that t may

be any size | it need not be parti
ularly large. We also need an auxiliary parameter

^

t =

^

t(`). The

value of

^

t should be large; more pre
isely, 2

�

^

t(`)

should be a negligible fun
tion in `.

Let X, L, and � be as de�ned above. Also as above, let K = f0; : : : ; bN=2
g, and W =

f0; : : : ; bN=4
g. Let � : Z

N

� Z

t

2

! f0; 1g

n

be an eÆ
iently 
omputable inje
tive map for an
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appropriate n � 1.

Key Generation

Choose � 2 Z

�

N

at random and set g = �

2

2 L.

Randomly 
hoose

k

1

; : : : ; k

t

;

~

k

1

; : : : ;

~

k

^

t

;

^

k

1

; : : : ;

^

k

n+

^

t�1

2 K:

Compute

s

i

= g

k

i

2 L (i = 1; : : : ; t);

~s

i

= g

~

k

i

2 L (i = 1; : : : ;

^

t);

ŝ

i

= g

^

k

i

2 L (i = 1; : : : ; n+

^

t� 1):

The publi
 key is (g; s

1

; : : : ; s

t

; ~s

1

; : : : ; ~s

^

t

; ŝ

1

; : : : ; ŝ

n+

^

t�1

).

The private key is (k

1

; : : : ; k

t

;

~

k

1

; : : : ;

~

k

^

t

;

^

k

1

; : : : ;

^

k

n+

^

t�1

).

En
ryption

To en
rypt a message m 2 Z

t

2

under a publi
 key as above, one does the following.

Choose w 2W at random, and 
ompute

x = g

w

; y

i

= s

w

i

2 L (i = 1; : : : ; t):

Compute

� = (�(y

1

); : : : ; �(y

t

)) 2 Z

t

2

; e =m+ � 2 Z

t

2

:

Compute

~z

i

= ~s

w

i

2 L (i = 1; : : : ; t);

ẑ

i

= ŝ

w

i

2 L (i = 1; : : : ; n+

^

t� 1);

ŷ

i

= ~z

i

Q

n

j=1

(ẑ

i+j�1

)




j

2 L (i = 1; : : : ;

^

t);

where (


1

; : : : ; 


n

) = �(x; e) 2 f0; 1g

n

.

Compute

�̂ = (�(ŷ

1

); : : : ; �(ŷ

^

t

)) 2 Z

^

t

2

:

The 
iphertext is (x; e; �̂).

De
ryption

To de
rypt a 
iphertext (x; e; �̂) 2 X � Z

t

2

� Z

^

t

2

under a private key as above, one does the

following.

Compute

ŷ

i

= x

~

k

i

+

P

n

j=1




j

^

k

i+j�1

2 X (i = 1; : : : ;

^

t);

where (


1

; : : : ; 


n

) = �(x; e) 2 f0; 1g

n

.

Compute

�̂

0

= (�(ŷ

1

); : : : ; �(ŷ

^

t

)) 2 Z

^

t

2

:

Che
k whether �̂ = �̂

0

; if not, then output reje
t and halt.

Compute

y

i

= x

k

i

2 X (i = 1; : : : ; t); � = (�(y

1

); : : : ; �(y

t

)) 2 Z

t

2

; m = e� � 2 Z

t

2

;

and output m.
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Note that in the de
ryption algorithm, we are assuming that x 2 X, whi
h impli
itly means

that the de
ryption algorithm should 
he
k that x = (a mod N) with Ja
obi symbol (a j N) = 1.

This is pre
isely the s
heme that our general 
onstru
tion in x6 yields. Thus, the s
heme is

se
ure against adaptive 
hosen 
iphertext atta
k, provided the QR assumption holds.

Minor variations. As in x8.1, if we repla
e � by a CRHF we get an even more eÆ
ient s
heme

with a smaller value of n. In fa
t, just a UOWHF suÆ
es.

Note that in this s
heme, the fa
torization of N is not a part of the private key. This would

allow, for example, many parties to work with the same modulus N , whi
h may be 
onvenient

in some situations. Alternatively, if we in
lude the fa
torization of N in the private key, some

optimizations in the de
ryption algorithm are possible, su
h as Chinese Remaindering te
hniques.

EÆ
ien
y. While this s
heme is not nearly as eÆ
ient as our s
hemes based on the DDH and

DCR assumptions, it is based on an assumption that is better established and qualitatively weaker

than either of these assumptions. Moreover, the s
heme may just be pra
ti
al enough for some

appli
ations. Let us 
onsider some 
on
rete se
urity parameters. We might 
hoose N to be a

1024-bit number. If we use this s
heme just to en
rypt a symmetri
 en
ryption key, then t = 128

is a reasonable value. Setting

^

t = 128 is also reasonable. If we implement � using a hash fun
tion

like SHA-1, then we 
an take n = 160.

With these 
hoi
es of parameters, the size of a publi
 or private key will be less than 70KB.

Ciphertexts are quite 
ompa
t, requiring 160 bytes. An en
ryption takes less than 600 1024-bit

exponentiations moduloN ; this will take about 10 se
onds or so on typi
al a 1GHz PC. A de
ryption

will require about half as many exponentiations modulo N , and so without any optimizations, this

would take roughly half as mu
h time as en
ryption; however, if we use the Chinese Remaindering

optimizations mentioned above, this should 
ut the running time further by a fa
tor of between 3

and 4; also, if we exploit the fa
t that all exponentiations in the de
ryption algorithm are to the

same basis, further signi�
ant optimizations are possible, bringing the time for a de
ryption down

to around one se
ond or less.

So 
learly, this s
heme is not suitable for, say, implementation on a smart 
ard. However, it is

not astronomi
ally impra
ti
al, either.

8.3.3 A variation

We now des
ribe a variation on the above s
heme. This variation is analogous to the variation of

our basi
 DCR-based s
heme, des
ribed in x8.2.4. The 
iphertexts in this s
heme are mu
h less


ompa
t than those in the s
heme above in x8.3.2, but have more algebrai
 stru
ture, whi
h may

be useful in some appli
ations.

We des
ribe the s
heme for a �xed value of N that is produ
t of two (�+1)-bit strong primes.

The message spa
e for this s
heme is Z

t

2

, where t = t(`) is an auxiliary parameter. We also need

an auxiliary parameter

^

t =

^

t(`), where 2

�

^

t(`)

is a negligible fun
tion in `.

Let X and L be as de�ned in x8.3.1. Also as in x8.3.1, let K = f0; : : : ; bN=2
g, and W =

f0; : : : ; bN=4
g. Let � : Z

N

� Z

t

N

! f0; 1g

n

be an eÆ
iently 
omputable inje
tive map for an

appropriate n � 1.

The key generation algorithm is the same as that in x8.3.2. We des
ribe only the en
ryption

and de
ryption algorithms.
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En
ryption

To en
rypt a message m = (m

1

; : : : ;m

t

) 2 Z

t

2

under a publi
 key as above, one does the

following.

Choose w 2W at random, and 
ompute

x = g

w

; y

i

= s

w

i

2 L (i = 1; : : : ; t):

Compute

e = ((�1)

m

1

y

1

; : : : ; (�1)

m

t

y

t

) 2 X

t

:

Compute

~z

i

= ~s

w

i

2 L (i = 1; : : : ; t);

ẑ

i

= ŝ

w

i

2 L (i = 1; : : : ; n+

^

t� 1);

ŷ

i

= ~z

i

Q

n

j=1

(ẑ

i+j�1

)




j

2 L (i = 1; : : : ;

^

t);

where (


1

; : : : ; 


n

) = �(x; e) 2 f0; 1g

n

.

Compute

�̂ = (ŷ

1

; : : : ; ŷ

^

t

) 2 L

^

t

:

The 
iphertext is (x; e; �̂).

De
ryption

To de
rypt a 
iphertext (x; e; �̂) 2 X �X

t

�X

^

t

under a private key as above, one does the

following.

Compute

ŷ

i

= x

~

k

i

+

P

n

j=1




j

^

k

i+j�1

2 X (i = 1; : : : ;

^

t);

where (


1

; : : : ; 


n

) = �(x; e) 2 f0; 1g

n

.

Compute

�̂

0

= (ŷ

1

; : : : ; ŷ

^

t

) 2 X

^

t

:

Che
k whether �̂ = �̂

0

; if not, then output reje
t and halt.

Compute

y

i

= x

k

i

2 X; ~m

i

= y

i

=e

i

2 X (i = 1; : : : ; t);

where e = (e

1

; : : : ; e

t

). If for 1 � i � t, ~m

i

is of the form ((�1)

m

i

mod N) for some m

i

2 Z

2

,

then output m = (m

1

; : : : ;m

t

); otherwise, output reje
t.

Note that in the de
ryption algorithm, we are assuming that x 2 X, whi
h impli
itly means

that the de
ryption algorithm should 
he
k that x = (a mod N) with Ja
obi symbol (a j N) = 1.

It is suÆ
ient to 
he
k that the 
omponents of e and �̂ are elements of Z

N

; if they are not elements

of X as well, the 
iphertext will anyway be reje
ted.

It is easy to show that this s
heme is se
ure under the QR assumption, using the extended frame-

work sket
hed in x8.2.4 (one takes � = X and �

0

= T in the generalized smoothness de�nition),

along with the analysis in x8.3.1. We leave the details to the reader.

As usual, instead of using an inje
tive fun
tion �, we 
an use a CRHF, or even a UOWHF,

allowing one to use a smaller value of n.

38



A
knowledgments

Thanks to Ivan Damgaard for noting an improvement in the 1=p-bound stated in Theorem 2, and

thanks to Amit Sahai and Yehuda Lindell for useful dis
ussions.

Referen
es

[BR℄ M. Bellare and P. Rogaway. Random ora
les are pra
ti
al: a paradigm for designing eÆ-


ient proto
ols. In Pro
. ACM Computer and Communi
ation Se
urity '93, ACM Press,

1993.

[CGH℄ R. Canetti, O. Goldrei
h, and S. Halevi. The random ora
le model, revisited. In Pro
.

STOC '98, ACM Press, 1998.

[CW℄ J. Carter and M. Wegman. Universal 
lasses of hash fun
tions. Journal of Computer and

System S
ien
es, 18:143{154, 1979.

[CS℄ R. Cramer and V. Shoup. A pra
ti
al publi
 key 
ryptosystem se
ure against adaptive


hosen 
ipher text atta
ks. In Pro
. CRYPTO '98, Springer Verlag LNCS, 1998.

[DDN℄ D. Dolev, C. Dwork, and M. Naor. Non-malleable 
ryptography. SIAM Journal on Com-

puting, 30:391{437, 2000. Extended abstra
t in Pro
. STOC '91, ACM Press, 1991.

[L℄ M. Luby. Pseudorandomness and Cryptographi
 Appli
ations. Prin
eton University Press,

1996.

[NY1℄ M. Naor and M. Yung. Universal one-way hash fun
tions and their 
ryptographi
 appli-


ations. In Pro
. STOC '89, ACM Press, 1989.

[NY2℄ M. Naor and M. Yung. Publi
-key 
ryptosystems provably se
ure against 
hosen 
iphertext

atta
ks. In Pro
. STOC '90, ACM Press, 1990.

[P℄ P. Paillier. Publi
-key 
ryptosystems based on 
omposite degree residue 
lasses. In Pro
.

EUROCRYPT '99, Springer Verlag LNCS, 1999.

[RS℄ C. Ra
ko� and D. Simon. Non-intera
tive zero knowledge proof of knowledge and 
hosen


iphertext atta
ks. In Pro
. CRYPTO '91, Springer Verlag LNCS, 1991.

[WC℄ M. Wegman and J. Carter. New hash fun
tions and their use in authenti
ation and set

equality. Journal of Computer and System S
ien
es, 22:265{279, 1981.

39


