
BDD-based Cryptanalysis of Keystream

Generators

Matthias Krause

Theoretis
he Informatik, Universit�at Mannheim, 68131 Mannheim, Germany

e-mail: krause�informatik.uni-mannheim.de

Abstra
t. Many of the keystream generators whi
h are used in pra
ti
e

are LFSR-based in the sense that they produ
e the keystream a

ording

to a rule y = C(L(x)), where L(x) denotes an internal linear bitstream,

produ
ed by a small number of parallel linear feedba
k shift registers

(LFSRs), and C denotes some nonlinear 
ompression fun
tion. We present an

n

O(1)

2

(1��)=(1+�)n

time bounded atta
k, the FBDD-atta
k, against LFSR-

based generators, whi
h 
omputes the se
ret initial state x 2 f0; 1g

n

from 
n


onse
utive keystream bits, where � denotes the rate of information, whi
h C

reveals about the internal bitstream, and 
 denotes some small 
onstant. The

algorithm uses Free Binary De
ision Diagrams (FBDDs), a data stru
ture for

minimizing and manipulating Boolean fun
tions. The FBDD-atta
k yields

better bounds on the e�e
tive key length for several keystream generators of

pra
ti
al use, so a 0:656n bound for the self-shrinking generator, a 0:6403n

bound for the A5/1 generator, used in the GSM standard, a 0:6n bound for

the E

0

en
ryption standard in the one level mode, and a 0:8823n bound for

the two-level E

0

generator used in the Bluetooth wireless LAN system.

1 Introdu
tion

A keystream generator is a �nite automaton, E, determined by a set Q of inner

states, a state transition fun
tion Æ

E

: Q �! Q, and an output fun
tion a

E

: Q �!

f0; 1g. The usual 
ase is that Q = f0; 1g

n

for some integer n � 1, n is 
alled the

keylength of E. Starting from an initial state x

0

2 Q, in ea
h time unit i, E outputs

a key bit y

i

= a

E

(x

i

) and 
hanges the inner state a

ording to x

i+1

= Æ

E

(x

i

). For

ea
h initial state x 2 f0; 1g

n

we denote by

y = E(x)

the keystream y = y

0

; y

1

; : : : produ
ed by E when starting on x.

Keystream generators are designed for fast online en
ryption of bitstreams whi
h

have to pass an inse
ure 
hannel. A standard appli
ation is to ensure the over-the-

air priva
y of 
ommuni
ating via mobile 
ellular telephones. A plaintext bit stream

p

0

; p

1

; p

2

; : : : is en
rypted into a 
iphertext bitstream e

0

; e

1

; e

2

; : : : via the rule

e

i

= p

i

� y

i

;

where y = E(x). The legal re
eiver knows x and 
an de
rypt the bitstream using

the same rule. The only se
ret information is the initial state x, whi
h is ex
hanged

before starting the transmission using a suitable key-ex
hange proto
ol. It is usual

to make the pessimisti
 assumption that an atta
ker knows not only the en
rypted

bitstream, but even some short pie
e of the plaintext, and, therefore, 
an easily


ompute some pie
e of the keystream. Consequently, the se
urity of keystream

generators has to be based on the assumption that there is no feasible way to


ompute the se
ret initial state x from y = E(x). Observe that the trivial exhaustive

sear
h atta
k needs time n

O(1)

2

n

:



In this paper we suggest a new type of atta
k against keystream generators,

whi
h we will 
all FBDD-atta
k, and show that LFSR-based keystream generators

are vulnerable against FBDD-atta
ks. We will 
all a generator to be LFSR-based

if it 
onsists of two 
omponents, a linear bitstream generator L whi
h generates

for ea
h initial state x 2 f0; 1g

n

a linear bitstream L(x) by one or more parallel

LFSRs, and a 
ompressor C whi
h transforms the internal bitstream into the output

keystream y = C(L(x)). Due to the ease of implementing LFSRs in hardware, and

due to the ni
e pseudorandomness properties of bitstreams generated by maximal

length LFSRs, many keystream generators o

uring in pra
ti
e are LFSR-based.

FBDD is the abbreviation for free binary de
ision diagrams, a data stru
ture for

representing and manipulating Boolean fun
tion, whi
h were introdu
ed by Gergov

and Meinel in [8℄ and Sieling and Wegener in [14℄. Due to spe
i�
 algorithmi


properties, FBDDs and in parti
ular ordered BDDs (OBDDs), a spe
ial kind of

FBDDs, be
ame a very usefull tool in the area of automati
 hardware design and

veri�
ation (see also the paper of Bryant [4℄ who initiated the study of graph-based

data stru
tures for Boolean fun
tion manipulation). The important properties of

FBDDs are that they 
an be eÆ
iently minimized, that they allow an eÆ
ient

enumeration of all satisfying assignments, and that the minimal FBDD-size of a

Boolean fun
tion is not mu
h larger than the number of satisfying assignments.

We show that these properties 
an also be su

essfully used for 
ryptanalysis. The

problem of �nding a se
ret key x ful�lling y = E(x) for a given en
ryption algorithm

E and a given 
iphertext y 
an be redu
ed to �nding the minimal FBDD P for the

de
ision if x ful�ls y = E(x). If the length of y is 
lose to the uni
ity distan
e of E

then P is small, and x 
an be eÆ
iently 
omputed from P . The main result of this

paper is that the spe
ial stru
ture of LFSR-based keystream generators implies a

nontrivial dynami
 algorithm for 
omputing this FBDD P .

In parti
ular, the weakness of LFSR-based keystream generators is that the


ompressor C has to produ
e the keystream in an online manner. For getting a

high bitrate, C should use only a small memory, and should 
onsume only a few

new internal bits for podu
ing the next output bit. These requirements imply that

the de
ision if an internal bitstream z generates a pre�x of a given keystream y

via C 
an be 
omputed by small FBDDs. This allows to 
ompute dynami
ally a

sequen
e of FBDDs P

m

, m � n, whi
h test a given initial state x 2 f0; 1g

n

whether

C(L

�m

(x)) is pre�x of y, where L

�m

(x) denotes the �rst m bits of the internal

linear bitstream generated via L on x. On average, the solution be
omes unique for

m � d�

�1

ne, where � denotes the rate of information whi
h C reveals about the

internal bitstream. The FBDDs P

m

are small at the beginning and again small if

m approa
hes d�

�1

ne, and we will show that all intermediate FBDDs have a size

of at most n

O(1)

2

(1��)=(1+�)n

. For all m the FBDD P

m

has to read the �rst d
me

bits of the keystream, where 
 denotes the best 
ase 
ompression ratio of C. Thus,

our algorithm 
omputes the se
ret initial state x from the �rst d
�

�1

ne bits of

y = E(x). Observe that 
 = � if C 
onsumes always the same number of internal

bits for produ
ing one output bit, and � < 
 if not. It holds 
�

�1

� 2:5 in all

our examples. Note that for gaining a high bit-rate, � and 
 should be as large as

possible. Our results say that a higher bit-rate has to be paid by a loss of se
urity.

One advantage of the FBDD-atta
k is that it is a short-keystream atta
k, i.e.,

the number of keybits needed for 
omputing the se
ret initial state x 2 f0; 1g

n

is at

most 
n for some small 
onstant 
 � 1. We apply the FBDD-atta
k to some of the

keystream generators whi
h are most intensively dis
ussed in the 
urrent literature,

the A5/1 generator whi
h is used in the GSM standard, the self-shrinking generator,

and the E

0

-en
ryption standard, whi
h is in
luded in the Bluetooth wireless LAN

system. For all theses 
iphers, the FBDD-atta
k has a better time behaviour than all

short-keystream atta
ks known before. In some 
ases there have been obtained long-

keystream atta
ks whi
h have a better time behaviour. They use a time-memeory

2



tradeo� te
hnique suggested by Goli�
 [7℄ and are based on the assumption that a

long pie
e of keystream of length 2

dn

, d < 1 some 
onstant, is available. We give an

overview on previous results and the relations to our results in se
tion 7.

The paper is organized as follows. In se
tion 2 we give some formal de�nitions


on
erning LFSR-based keystream generators and present the keystream generators

whi
h we want to 
ryptanalyze. In se
tion 3 FBDDs are introdu
ed. In se
tion

4 we derive FBDD-relevant properties of LFSR-based keystream generators. In

se
tion 5 we derive the relevant parameters of LFSR-based keystream generators

and formulate the main result. Our 
ryptanalysis algorithm is presented in se
tion 6

and is applied to parti
ular generators in se
tion 7. Due to spa
e restri
tions we had

to put some of the 
al
ulations and FBDD-
onstru
tions into an appendix se
tion.

At the �rst glan
e it may seem 
ontradi
tory that we 
onsider pra
ti
al 
iphers

like the A5/1 generator with variable keylength n. But observe that de�nitions of

LFSR-based keystream generators, even if they originally were designed for �xed

keylength, 
an be generalized to variable keylength in a very natural way, simply by


onsidering the internal LFSRs to have variable length. Considering variable key-

length n allows to evaluate the se
urity of 
iphers in terms of how many polynomial

time operations are ne
essary for breaking the 
ipher. This 'rough' way of se
urity

evaluation is suÆ
ient in our 
ontext, sin
e the aim of this paper is to present only

the general algorithmi
 idea of the FBDD-atta
k, to give a rather rough estimation

of the time behaviour, and to show the inherent weakness of LFSR-based generators.

For pra
ti
al implementations of FBDD atta
ks against real-life generators mu
h

more e�ort has to be invested for making the parti
ular polynomial time operations

as eÆ
ient as possible, see the dis
ussion in se
tion 8.

2 LFSR-based Keystream Generators

Let us 
all a keystream generator to be LFSR-based if the generation rule y = E(x)


an be written as

y = C(L(x));

where L denotes a linear bitstream generator 
onsisting of one or more LFSRs, and

C : f0; 1g

�

�! f0; 1g

�

denotes a nonlinear 
ompression fun
tion, whi
h transforms

the internal linear bitstream L(x) into the nonlinear (
ompressed) output keystream

y = C(L(x)).

1

Formally, an n-LFSR is a devi
e whi
h produ
es a bitstream

L(x) = L

0

(x); L

1

(x); : : : ; L

m

(x); : : :

on the basis of a publi
 string 
 = (


1

; : : : ; 


n

) 2 f0; 1g

n

, the generator polynomial,

and a se
ret initial state x = (x

0

; : : : ; x

n�1

) 2 f0; 1g

n

, a

ording to the relation

L

i

(x) = x

i

for 0 � i � n� 1 and

L

m

(x) = 


1

L

m�1

(x)� 


2

L

m�2

(x)� : : :� 


n

L

m�n

(x) (1)

for m � n. Observe that for all m � 1, L

m

(x) is a GF(2)-linear Boolean fun
tion

in x

0

; : : : ; x

n�1

whi
h 
an be easily determined via iteratively applying (1).

A linear bitstream generator L of keylength n is de�ned to be an algorithm

whi
h, for some k � 1, generates a linear bitstream L(x)

L(x) = L

0

(x); L

1

(x); L

2

(x); : : :

1

C 
ompresses the internal bit-stream in an online manner, i.e., C(z

0

) is pre�x of C(z) if

z

0

is pre�x of z, for all z; z

0

2 f0; 1g

�

. This justi�es to write y = C(L(x)) despite of the

fa
t that L(x) is assumed to be in�nitely long.

3



by k parallel LFSRs L

0

; : : : ; L

k�1

of keylengths n

0

; : : : ; n

k�1

, where n = n

0

+

: : : + n

k�1

. The initial states x 2 f0; 1g

n

for L are formed by the initial states

x

r

2 f0; 1g

n

r

, r = 0; : : : ; k� 1, of L

0

; : : : ; L

k�1

. L produ
es in ea
h time unit j � 0

the bit L

j

(x) a

ording to the rule

L

j

(x) = L

r

s

(x

r

);

where r = j mod k and s = j div k. Observe that for all j � 0 L

j

(x) is a GF(2)-

linear fun
tion in x.

The motivation for taking LFSRs as building blo
ks for keystream generators

is that they 
an be easily implemented using n register 
ells 
onne
ted by a

feedba
k 
hannel. Moreover, if the generator polynomial is primitive, they produ
e

bit streams with ni
e pseudorandomness properties (maximal period, good auto


orrelation and lo
al statisti
s). See, e.g., the monograph by Golomb [9℄ or the

arti
le by Rueppel [13℄ for more about the theory of shift register sequen
es.

Clearly, LFSR-sequen
es alone do not provide any 
ryptographi
 se
urity. Thus,

the aim of the 
ompression fun
tion C : f0; 1g

�

�! f0; 1g

�

is to destroy the

low linear 
omplexity of the internal linear bit stream while preserving its ni
e

pseudorandomness properties. Many keystream generators o

uring in pra
ti
e are

LFSR-based in the above sense. In this paper we investigate the following LFSR-

based generators.

The Connekt-k 
onstru
tion 
ombines k parallele LFSRs L

0

; : : : ; L

k�1

with

an appropriate 
onne
tion fun
tion 
 : f0; 1g

k

�! f0; 1g. The keystream y =

y

0

; y

1

; y

2

; : : : is de�ned via the rule

y

j

= 
(L

0

j

(x

0

); : : : ; L

k�1

j

(x

k�1

)); j � 0;

where x

r

denotes the initial state for L

r

, for r = 0 : : : ; k � 1. The Conne
t-k


onstru
tion is one of the 
lassi
al 
onstru
tions of nonlinear keystream generators

whi
h use LFSRs as building blo
ks, see again [9℄ and [13℄ for more detailed


onsiderations of su
h 
onstru
tions.

The Self-Shrinking Generator was introdu
ed by Meier and Sta�elba
h in

[12℄. It 
onsists of only one LFSR L. The 
ompression is de�ned via the shrinking

fun
tion

shrink : f0; 1g

2

�! f0; 1; "g;

de�ned as shrink(ab) = b if a = 1; and shrink(ab) = ", the empty word, otherwise.

The shrinking-fun
tion 
an be extended to bit-strings of even length r as

shrink(z

0

z

1

: : : z

r�1

) = y

0

y

1

: : : y

r=2�1

;

where y

i

= shrink(z

2i

z

2i+1

) for i = 0; : : : ; r=2 � 1. For ea
h initial state x for L,

the self-shrinking generator produ
es the keystream y a

ording to

y = shrink(L(x)):

The E

0

Generator is the keystream generator used in the Bluetooth wireless

LAN system [3℄. It is de�ned as E

0

(x) = C(L(x)), where the linear bitstream

generator L of E

0


onsists of 4 LFSRs L

0

; : : : ; L

3

. The 
ompression is organized

by a �nite automaton M with external input alphabet f0; 1; 2g, state spa
e Q =

f0; 1; : : : ; 15g and output alphabet f0; 1g, whi
h is de�ned by an output fun
tion

a : Q � f0; 1; 2g �! f0; 1g and a state transition fun
tion Æ : Q � f0; 1; 2g �! Q.

The exa
t spe
i�
ation of M is published in [3℄ but does not matter for our purpose

and is therefore omitted.

4



The 
ompression C(z) = y = y

0

y

1

: : : y

m�1

of an internal bit-stream

z = z

0

0

z

1

0

z

2

0

z

3

0

z

0

1

z

1

1

z

2

1

z

3

1

: : : z

0

m�1

z

1

m�1

z

2

m�1

z

3

m�1

is de�ned as y

j

= a(q

j

; s

j

) � t

j

, where s

j

= (z

0

j

+ z

1

j

+ z

2

j

+ z

3

j

) div 2 and

t

j

= (z

0

j

+ z

1

j

+ z

2

j

+ z

3

j

) mod 2, for all 0 � j � m � 1. The a
tual inner state

is updated in ea
h 
y
le a

ording to the rule q

j+1

= Æ(q

j

; s

j

); where q

0

denotes the

initial state of M . In pra
ti
e, the E

0

generator is used with key length 128, the

four LFSRs have lengths 39, 33, 31, 25.

The E

0

En
ryption Standard (Two-Level Mode). In the Bluetooth

system, the keystream is generated via a generator E

2

0

(of key length n) whi
h


ombines two E

0

devi
es of internal keylength N � n in the following way.

For x 2 f0; 1g

n

it holds y = E

2

0

(x) = E

0

(z); where z denotes the pre�x of length

N of E

0

(u), and where

u = (x

0

; : : : ; x

n�1

; U

n

(x) : : : ; U

N�1

(x)):

U

i

, i = n : : :N � 1, are publi
 GF(2)-linear fun
tions in (x

0

; : : : ; x

n�1

). In pra
ti
e,

the string u results from putting n se
ret bits together with N � n known dummy

bits into the LFSRs and running them a 
ertain number of steps. The Bluetooth

system uses N = 128, and n 
an be 
hosen as 8, 16, 32, or 64. It is a bit more

involved to write the E

2

0

generator in a y = C(L(x)) fashion. We will do this in the

appendix, subse
tion A.2. The reason for 
hoosing a larger internal key length N is

to a
hieve a larger e�e
tive key length in n.

The A5/1 generator is used in the GSM standard of mobile telephones. The

de�nition was dis
overed by Bri
eno et. al. [5℄ via reverse engineering. The A5/1

generator of key-length n 
onsists of 3 LFSRs L

0

, L

1

, and L

2

of key-lengthes n

0

,

n

1

, and n

2

. In ea
h time step i, the output key bit y

i

is the XOR of the a
tual

output bits of the 3 LFSRs. A 
lo
k 
ontrol de
ides in ea
h timestep whi
h of the

3 LFSRs are shifted, and whi
h not. The 
lo
k 
ontrol takes for all k 2 f0; 1; 2g a


ontrol value 


k

from the N

k

� th register 
ell of L

k

, and 
omputes the 
ontrol value

m = maj

3

(


0

; 


1

; 


2

).

2

LFSR L

k

is shifted if m = 


k

, for k = 0; 1; 2. The 
ontrol

positions N

k

are �xed and ful�l N

k

2

��

n

k

2

�

� 1;

�

n

k

2

�	

:

This keystream generation rule 
an be written down in a y = C(L(x)) fashion

in the following way. Given an internal bitstream

z = (z

0

0

; z

1

0

; z

2

0

; : : : ; z

0

m

; z

1

m

; z

2

m

; : : :)

the keystream y = C(z) is de�ned as follows. In ea
h timestep, C holds 3

output positions i[1℄; i[2℄; i[3℄ and 3 
ontrol positions j[1℄; j[2℄; j[3℄. C outputs

x

1

i[1℄

� x

2

i[2℄

� x

3

i[3℄

, 
omputes the new 
ontrol value m = maj

3

(x

1

j[1℄

; x

2

j[2℄

; x

3

j[3℄

),

and updates the i- and j-values via i[k℄ := i[k℄ + 1 and j[k℄ := j[k℄ + 1, for those

k 2 f0; 1; 2g for whi
h m = x

k

j[k℄

. The output positions are initialized by 0. The


ontrol positions are initialized by N

1

; N

2

; N

3

. Note that in the GSM standard the

A5/1 generator is used with key length 64, the 3 LFSRs have lengthes 19, 22 and

23

3 Binary De
ision Diagrams (BDDs)

For m a natural number let X

m

denote the set of m Boolean variables

fx

0

; : : : ; x

m�1

g. A BDD P over X

m

is an a
y
li
 dire
ted graph with inner nodes of

2

maj

3

is de�ned to output 
 2 f0; 1g i� at least 2 of its 3 arguments have value 
.

5



outdegree 2, a distinguished inner node of indegree 0, the sour
e, and two sink nodes

of outdegree 0, one 0-sink and one 1-sink. All inner nodes, i.e. nodes of outdegree

> 0, are labelled with queries x

i

?, 0 � i � m� 1, and are left by one edge labelled

0 (
orresponding to the answer x

i

= 0) and one edge labelled 1 (
orresponding to

the answer x

i

= 1).

Ea
h assignment b to the X

m

-variables de�nes a unique 
omputational path in

P , whi
h will be 
alled the b-path in P . The b-path starts at the sour
e, answers

always b

i

on queries x

i

? and, thus, leads to a unique sink. The label of this sink is

de�ned to be the output P (b) 2 f0; 1g of P on input b 2 f0; 1g

m

. We denote by

One(P ) � f0; 1g

m

the set of inputs a

epted by P ,

One(P ) = fb 2 f0; 1g

m

; P (b) = 1g:

Ea
h BDD P over X

m


omputes a unique fun
tion f : f0; 1g

m

�! f0; 1g, by

f(b) = 1 () b 2 One(P ). The size of P , jP j, is de�ned to be the number of inner

nodes of P . Two BDDs are 
alled equivalent if they 
ompute the same fun
tion.

We 
all an BDD P to be a free binary de
ision diagram (FBDD) if along ea
h


omputational path in P ea
h variable o

urs at most on
e. In [8℄ and [14℄ it was

observed that FBDDs 
an be eÆ
iently minimized with respe
t to all equivalent

FBDDs whi
h read the input variables in an equivalent order. The equivalen
e of

orders of reading the input variables is expressed by using the notion of graph

orderings.

De�nition 1. A graph ordering G of X

m

is an FBDD over X

m

with only one

(unlabelled) sink, for whi
h on ea
h path from the root to the sink all m variables

o

ur.

Graph orderings are not designed for 
omputing Boolean fun
tions. Their aim is

to de�ne for ea
h assignments b = (b

0

; : : : ; b

m�1

) to X

m

a unique variable ordering

�

G

(b) = (x

i

1

(b)

; : : : ; x

i

m

(b)

), namely the ordering in whi
h the variables are requested

along the unique b-path in G.

De�nition 2. An FBDD is 
alled G-driven, for short, G-FBDD, if the ordering

in whi
h the variables are requested along the b-path in P respe
ts �

G

(b), for all

assignments b. I.e., there do not exist assignments b, variables x

i

and x

j

su
h that

x

i

is requested above x

j

at �

G

(b), but below x

j

at the b-path in P .

A spe
ial, extensively studied variant of FBDDs are Ordered Binary De
ision

Diagrams (OBDDs). An FBDD P is 
alled OBDD with variable ordering � (for

short �-OBDD) if all pathes in P respe
t �.

We need the following ni
e algorithmi
 properties of graph-driven FBDDs. Let

f; g : f0; 1g

m

�! f0; 1g be Boolean fun
tions, let G be a graph ordering for X

m

,

and let P and Q be G-driven FBDDs for f and g, respe
tively.

Property 3.01 There is an algorithmMIN whi
h 
omputes from P in time O(jP j)

the (uniquely de�ned) minimal G-driven FBDD min(P ) for f .

Property 3.02 It holds that jmin(P )j � mjOne(P )j:

Property 3.03 There is an algorithm SY NTH whi
h 
omputes in time

O(jP jjQjjGj) a G-driven FBDD P ^Q, jP ^Qj � jP jjQjjGj, whi
h 
omputes f ^ g.

Property 3.04 There is another algorithm SAT whi
h enumerates all elements in

One(P ) in time O(jOne(P )jjP j).

See, e.g., the book by Wegener [15℄ for a detailed des
ription and analysis of

the OBDD- and FBDD-algorithms. FBDDs together with the pro
edures MIN ,

6



SY NTH and SAT will be the basi
 data stru
ture used in our 
ryptanalysis.

FBDDs for a given de
ision problems F � f0; 1g

�


an be 
onstru
ted using the

following folklore result, whi
h, for instan
e, is given in the monograph by Meinel

[10℄.

Theorem 1. Ea
h s(n)-spa
e bounded algorithm for F 
an be eÆ
iently

transformed into a sequen
e of 2

O(s(n)+log(n))

-spa
e bounded BDDs for F . Moreover,

if the algorithm reads ea
h input bit at most on
e then the resulting BDDs are

FBDDs. 2

Thus, one way to prove the existen
e of polynomial size FBDDs for given Boolean

fun
tions is to look for logarithmi
ally spa
e bounded read-on
e algorithms.

4 FBDD-Aspe
ts of Key-Stream Generators

Let E be a LFSR-based keystream generator of key-length n with linear keystream

generator L and 
ompression fun
tion C : f0; 1g

�

�! f0; 1g

�

. Let x 2 f0; 1g

n

denote an initial state for L.

De�nition 3. For all m � 1 let G

C

m

denote the graph ordering, whi
h assigns to

ea
h internal bitstream z the order in whi
h C reads the �rst m bits of z.

Observe that for the E

0

generator, the self-shrinking generator, as well as for

Conne
t-k generators, the order in whi
h the 
ompressor reads the internal bits

does not depend of the internal bitstream itself, i.e., G

C

m

has size m and G

C

m

-driven

FBDDs are OBDDs. But in the 
ase of the A5/1 generator, this order is governed

by the 
lo
k 
ontrol, and 
an be di�erent for di�erent inputs. The eÆ
ien
y of our


ryptanalysis algorithm is based on the following FBDD assumption on E.

FBDD Assumption. The graph ordering G

C

m

has polynomial size in m.

Moreover, for arbitrary keystreams y, the minimal G

C

m

-driven FBDDs whi
h de
ide

for z 2 f0; 1g

m

whether C(z) is pre�x of y have polynomial size in m.

It is quite easy to see that the 
ompression fun
tion of a Conne
t-k generators,

de�ned by a fun
tion 
 : f0; 1g

k

�! f0; 1g, ful�ls the FBDD-assumption.

The 
ompressor reads the internal bits in the 
anoni
al order � = 0; 1; 2; 3; : : :.

Polynomial size (even linear size) �-OBDDs whi
h de
ide whether z 2 f0; 1g

m

generates the �rst bm=k
 bits of a given keystream y via 
 
an be 
onstru
ted, via

Theorem 1, a

ording to the following algorithm

1. For j := 0 to bm=k


2. if 
(z

0

j

; : : : ; z

k�1

j

) 6= y

j

then stop(0)

3. stop(1)

whi
h is obviously O(log(m))-spa
e bounded.

Polynomial (even quadrati
) size �-OBDDs whi
h de
ide for z 2 f0; 1g

m

whether

shrink(z) is pre�x of a given keystream y 
an be 
onstru
ted, via Theorem 1,

a

ording to the following algorithm

1. k := 0, j := 0

2. while j < m� 1

3. if z

j

= 0

4. then j := j + 2

5. else

6. if z

j+1

= y

k

7



7. then j := j + 2, k := k + 1

7. else stop(0)

8. stop(1)

whi
h is obviously O(log(m))-spa
e bounded. The FBDD 
onstru
tions for all

the E

0

-, the E

2

0

-, and the A5/1 generator are given in the appendix.

We still need to estimate the size of FBDDs whi
h de
ide whether a given

z 2 f0; 1g

m

is a linear bit-stream.

Lemma 1. For all m � n, the de
ision whether z 2 f0; 1g

m

is generated via linear

bitstream generator L of keylength n 
an be 
omputed by a G

C

m

-driven FBDD of size

at most jG

C

m

j2

m�n

.

Proof: Let V

m

denote the set of inner nodes of G

C

m

. We 
onstru
t a G

C

m

-driven

FBDD R

m

with the set W

m

= V

m

� f0; 1g

m�n

of inner nodes.

For all initial states x 2 f0; 1g

n

and all internal positions j; n � j � m�1, write

L

j

(x) as

L

j

(x) =

n�1

M

k=0

L

k;j

x

k

:

G

C

m

ensures that x

k

is always read before x

j

if L

k;j

= 1.

Let the root of R

m

be the node (v

0

;

!

0

) where v

0

denotes the root of G

C

m

. Let

all nodes (v; b) have the same label as v does in G

C

m

. The edges of R

m

are de�ned

a

ording to the following rules. Let v 2 V

m

and b = (b

n

; : : : ; b

m�1

) 2 f0; 1g

m�n

be

arbitrarily �xed. For 
 2 f0; 1g let v(
) be the 
-su

essor of v in G

C

m

. We have to

distinguish two 
ases.

{ v is labelled with some x

k

, 0 � k � n�1. Then, for all 
 2 f0; 1g, the 
-su

essor

of (v; b) is (v(
); b(
)), where b(
) = (b

0

� L

k;n


; : : : ; b

r�1

� L

k;m�1


).

{ v is labelled with some x

j

, n � j � m� 1. Then, for all 
 2 f0; 1g, if b

j�n

6= 
,

the 
-su

essor of (v; b) is the 0-sink. If b

j�n

= 
 and v(
) is the *-sink, then let

the 
-su

essor of (v; b) be the 1-sink. Otherwise let the 
-su

essor of (v; b) be

(v(
); b).

It 
an be easily 
he
ked that R

m

(after removing non-rea
hable nodes) mat
hes all

requirements of the Lemma. 2

5 The Main Result

We �x an LFSR-based keystream generator of key-length n with linear bit-stream

generator L and a 
ompression fun
tion C. We assume that for all m � 1 the

probability that C(z) is pre�x of y for a randomly 
hosen and uniformly distributed

z 2 f0; 1g

m

is the same for all keystreams y. Observe that all generators o

uring

in this paper have this property. Let us denote this probability by p

C

(m):

The 
ost of our 
ryptanalysis algorithm depends on two parameters of C. The

�rst is the information rate (per bit) whi
h a keystream y reveales about the �rst

m bits of the underlying internal bitstream. It 
an be 
omputed as

1

m

I(Z

(m)

; Y ) =

1

m

�

H(Z

(m)

)�H(Z

(m)

jY )

�

=

=

1

m

(m� log(p

C

(m)2

m

)) = �

1

m

log(p

C

(m)): (2)

where Z

(m)

denotes a random z 2 f0; 1g

m

and Y a random keystream.

8



As the 
ompression algorithm 
omputes the keystream in an online manner, the

time di�eren
e between two su

eeding key bits should be small in the average,

and not vary too mu
h. This implies the following partition rule: Ea
h internal bit-

stream z 
an be divided into 
onse
utive elementary blo
ks z = z

0

z

1

: : : z

s�1

, su
h

that C(z) = y

0

y

1

: : : y

s�1

with y

j

= C(z

j

) for all j = 0; : : : ; s� 1, and the average

length of the elementary blo
ks is a small 
onstant. This partition rule implies that

p

C

(m) 
an be supposed to behave as p

C

(m) = 2

��m

, for a 
onstant � 2 (0; 1℄. Due

to (2), � 
oin
ides with the information rate of C.

The se
ond parameter of C is the maximal number of output bits whi
h C

produ
es on internal bitstreams of length m. Due to the partition rule, this value


an be supposed to behave as 
m, for some 
onstant 
 2 (0; 1℄. We 
all 
 to be the

(best 
ase) 
ompression ratio of C.

Observe that if C always reads the same number k of internal bits for produ
ing

one output bit, then � = 
 =

1

k

. If this number is not a 
onstant then � 
an be

obtained by the formulae

2

��m

= p

C

(m) =

d
me

X

i=0

2

�i

Prob

z

[jC(z)j = i℄ ; (3)

where z denotes a random, uniformly distributed element from f0; 1g

m

. Observe

that (3) yields 
 � �, i.e. 
�

�1

� 1.

For all x 2 f0; 1g

n

and m � 1 let L

�m

(x) denote the �rst m bits of L(x). Note

the following design 
riterion for well-designed keystream generators.

Pseudorandomness Assumption For all keystreams y and all m � d�

�1

ne

it holds that

Prob

z

[C(z) is pre�x of y℄ � Prob

x

[C(L

�m

(x)) is pre�x of y℄ ;

where z and x denote uniformly distributed random elements from f0; 1g

m

and

f0; 1g

n

, respe
tively.

Lemma 2. If the keystream generator ful�ls the above pseudorandomness

assumption then for all keystreams y and m � �

�1

n there are approximately 2

n��m

initial states x for whi
h C(L

m

(x)) is pre�x of y. 2

Observe that a severe violation of the pseudorandomness assumption implies the

possibility of atta
king the 
ipher via a 
orrelation atta
k. Our main result 
an now

be formulated as

Theorem 2. Let E be an LFSR-based keystream generator of key-length n with

linear bit-stream generator L, and 
ompression fun
tion C of information rate

� and (best 
ase) 
ompression ratio 
. Let C and L ful�l the BDD- and the

pseudorandomness assumption. Then there is an n

O(1)

2

(1��)=(1+�)n

-time bounded

algorithm, whi
h 
omputes the se
ret initial state x from the �rst d
�

�1

ne


onse
utive bits of y = C(L(x)).

As usual, we de�ne the e�e
tive key length of a 
ipher of key length n to be

the minimal number of polynomial time operations that are ne
essary to break

the 
ipher. We obtain a bound of

1��

1+�

n for the e�e
tive key length of keystream

generators whi
h ful�l the above 
onditions.

9



6 The Algorithm

Let us �x n, E, L, C, � and 
 as in Theorem 2. For all m � 1 let G

m

denote

the graph ordering de�ned by C on internal bitstreams of length m. Let y be an

arbitrarily �xed keystream whi
h was generated via E. For all m � 1 let Q

m

denote

a minimal G

m

-FBDD whi
h de
ides for z 2 f0; 1g

m

whether C(z) is pre�x of y.

Observe that Q

m

has to read the �rst d
me bits of y. The FBDD-assumption yields

that Q

m

has polynomial size in m.

For m � n let P

m

denote the minimal G

m

-driven FBDD whi
h de
ides whether

z 2 f0; 1g

m

is a linear bitstream generated via L and if C(z) is pre�x of y. Observe

that by Property 3.03 and Lemma 1

Lemma 3. jP

m

j � jQ

m

jjG

m

j

2

2

m�n

for all m � n. 2

The strategy of our algorithm is simple, it dynami
ally 
omputes P

m

for

m = n; : : : ; d�

�1

ne. Lemma 2 implies that for m = d�

�1

ne with high probability

only one bit-stream z

�

will be a

epted by P

m

. Due to property 3.04 this bit-stream


an be eÆ
iently 
omputed. The �rst n 
omponents of z

�

form the initial state that

we are sear
hing for.

For all m � n let S

m

denote a minimal G

m

-FBDD whi
h de
ides for z =

(z

0

; : : : ; z

m

) whether z

m

= L

m

(z

0

; : : : ; z

n�1

). From Lemma 1 we obtain that

jS

m

j � 2jG

m

j. Now our algorithm 
an be formulated as

(1) P := Q

n

(2) For m := n+ 1 to d�

�1

ne

(3) P := min(P ^Q

m

^ S

m�1

)

For the 
orre
tness of the minimization in step (3) observe that the de�nition

of G

m

implies that G

m

is G

m

0

-driven for all m

0

� m. It follows from the de�nitions

that for all m � n P 
oin
ides with P

m

after iteration m.

The FBDD-operation min(P ^ Q

m

^ S

m�1

) takes time p(m)jP

m�1

j for some

polynomial p. Consequently, the running time of the algorithm 
an be estimated by

n

O(1)

maxfjP

m

j; m � ng:

Observe that on the one hand, by Lemma 3, jP

m

j � p

0

(m)2

m�n

for some polynomial

p

0

, while on the other hand, by Property 3.02 and Lemma 2, jP

m

j � mjOne(P

m

)j,

where

jOne(P

m

)j � 2

n��m

= 2

(1��)n��(m�n)

:

Consequently, jP

m

j does not ex
eed n

O(1)

2

r(n)

, where r(n) is the solution of

2

r(n)

= 2

(1��)n��r(n)

whi
h yields r(n) =

1��

1+�

n. We have proved Theorem 2. 2

7 Appli
ations

We apply Theorem 2 to the keystream generators introdu
ed in se
tion 2. We

suppose that these generators ful�ll the pseudorandomness assumption, otherwise

the running time estimations of our 
ryptanalysis hold on average. It remains to

determine the information rate and the 
ompression ratio, and to prove that the

FBDD-assumption is true. For the Conne
t-k 
onstru
tion it holds � = 
 =

1

k

. The

FBDD-assumption has shown to be true in se
tion 4.

10



Theorem 3. For all k � 2 and all stream 
iphers E of key-length n whi
h are a

Conne
t-k 
onstru
tion, our algorithm 
omputes the se
ret initial state x 2 f0; 1g

n

from the �rst n bits of y = E(x) in time n

O(1)

2

k�1

k+1

n

. 2

This is, as far as we know, the �rst general upper bound on the e�e
tive key-

length of the Conne
t-k 
onstru
tion.

For the E

0

-en
ryption standard in the one-level mode we obtain � = 
 =

1

4

.

That E

0

ful�ls the FBDD-assumption is shown in the appendix-subse
tion A.1. We

obtain

Theorem 4. For the E

0

-en
ryption standard with key-length n, our algorithm


omputes the se
ret initial state x 2 f0; 1g

n

from the �rst n bits of y = E

0

(x)

in time n

O(1)

2

0:6n

. 2

Observe that 128 � 0:6 � 77. Note that the best known atta
k against the E

0

generator of key length 128 was derived by Fluhrer and Lu
ks [6℄ and yields a

tradeo� result between time and length of available keystream. It varies from O(2

84

)

ne
essary operations if 132 bit are available to O(2

73

) ne
essary operations if 2

43

bits are available. Observe that the FBDD atta
k yields d128 � 0:6e = 77. Observe

that due to our general assumption that the initial states of the LFSRs are the only

se
ret information we suppose that the initial state of M is publi
. If this is not the


ase we have to run our algorithm 16 times, one round for ea
h possible state of M .

Let us 
onsider the E

0

generator in the two level mode with real key length

n and internal key length N � n. Observe that E

2

0

needs 4 � 4 = 16 internal

bits per key bit for produ
ing the �rst N=4 key bits, while for later key bits

only 4 internal bits per key bit are needed (see appendix, subse
tion A.2 for the

details). Observe further that our algorithm rea
hes maximal FBDD-size in iteration

m

�

:= n+

1��

1+�

n. For � = 1=16 this gives m

�

= 32=17n. As m

�

=16 < N=4 we obtain

� = 
 = 1=16 as relevant parameters for our algorithm on E

2

0

. That E

2

0

ful�ls the

FBDD-assumption is shown in the appendix, subse
tion A.2. Taking into a

ount

that

1��

1+�

=

15

17

� 0:8824 we get

Theorem 5. For the E

2

0

-en
ryption generator with key-length n, our algorithm


omputes the se
ret initial state x 2 f0; 1g

n

from the �rst n bits of y = E

2

0

(x) in

time n

O(1)

2

0:8824n

. 2

As far as we know this is the �rst nontrivial upper bound on the key length of

the E

0

2

generator.

Con
erning the self-shrinking generator observe that for all even m and all

keystreams y, shrink(z) is pre�x of y for exa
tly 3

m=2

strings z of length m. We

obtain an information rate � = 1�log(3)=2 � 0:2075 for the self-shrinking generator

by evaluating the relation 2

��m

2

m

= 3

m=2

. The (best 
ase) 
ompression ratio of

the self-shrinking generator is obviously 0:5. That the self-shrinking generator ful�ls

the FBDD-
ondition was already shown in se
tion 4. Taking into a

ount that for

� = 0:2075 it holds

1��

1+�

� 0:6563 and 0:5�

�1

� 2:41 we get

Theorem 6. For the self-shrinking generator of an n-LFSR L, our algorithm


omputes the se
ret initial state x 2 f0; 1g

n

from the �rst d2:41ne bits of y =

shrink(L(x)) in time n

O(1)

2

0:6563n

. 2

Observe that the best short-keystream atta
ks previously known against the self-

shrinking generator were given byMeier and Sta�elba
h [12℄ (2

0:75n

polynomial time

operations) and Zenner et. al. [17℄ (2

0:694n

polynomial time operations). Mihaljevi�


[11℄ presented an atta
k whi
h yields a tradeo� between time and length of available

keystream. It gives 2

0:5n

ne
essary polynomial time operations if 2

0:5n

bits of

11



keystream are available, and mat
hes our bound of 2

0:6563n

ne
essary polynomial

time operation if 2

0:3n

bits of keystream are available, whi
h is a quite unrealisti


assumption.

The diÆ
ulty in applying our algorithm to the A5/1 generator is that the


ompression algorithm reads most of the internal bits twi
e, one time for the 
lo
k


ontrol and a 
ertain time later for produ
ing an output key bit. Read-twi
e BDDs

do not have any of the ni
e algorithmi
 properties 3.01 - 3.04, unless P = NP .

For making the A5/1 generator a

essable to our approa
h we have to modify the

keystream generation rule. We de�ne the internal bitstream to be mixed of 6 LFSR-

sequen
es L

0

; : : : ; L

5

, instead of 3. The �rst 3 LFSR-sequen
es are generated by the

3 LFSRs of the A5/1 generator. They are used for produ
ing the output bits. The

sequen
es L

3

; L

4

; L

5

are used for 
omputing the 
ontrol values. They are shifted


opies of the �rst 3 sequen
es, de�ned by the rule L

3+k

j

= L

k

j+N

k

, for k = 0; 1; 2.

After this modi�
ation, the 
ompression algorithm 
an be designed in su
h a way

that ea
h internal bit is read exa
tly on
e (see the appendix, subse
tion A.3 for the

details).

The (best 
ase) 
ompression ratio of the modi�ed version of A5/1 is 
 =

1

4

, as

either 4 or 6 new internal bits are used for produ
ing the next output bit. It is

proved in the appendix-subse
tion A.4 that the information rate � is the solution

of

2

1�4�

=

1

4

�

3 + 2

2�

�

;

whi
h yields � � 0:2193. That the (modi�ed) A5/1 generator ful�ls the FBDD-

assumption is shown in subse
tion A.3. Taking into a

ount that

1��

1+�

� 0:6403 and


�

�1

� 1:14 we obtain

Theorem 7. For an A5/1 generator E of key length n, our algorithm 
omputes the

se
ret initial state x from the �rst d1:14ne bits of y = E(x) in time n

O(1)

2

0:6403n

.

2

The best previously known short-keystream atta
k was given by Goli�
 [7℄. It

is against a version of A5/1 generator with keylength 64, whi
h slightly deviates

from the spe
i�
ation dis
overed in [5℄. A tight analysis of the time behaviour of

Goli�
's atta
k, when applied to the real A5/1 generator, was given by Zenner in

[16℄ and yields 2

42

polynomial time operations. We get a marginal improvement,

as d64 � 0:6403e = 41. The best long-keystream atta
ks were given by Biryukov,

Shamir and Wagner in [2℄, and Biham and Dunkelman in [1℄. After a prepro
essing

of 2

42

operations the �rst atta
k in [2℄ breaks the 
ipher within se
onds on a modern

PC if around 2

20

bits of keystream are available. The se
ond atta
k in [2℄ breaks

the 
ipher within minutes after a prepro
essing of 2

48

operations and under the


ondition that around 2

15

bits of keystream are available. The atta
k in [1℄ breaks

the 
ipher within 2

39:91

A5/1 
lo
kings on the basis of 2

20:8

available keystream

bits.

8 Dis
ussion

There are 
lassi
al design 
riterions for keystream generators like a large period, a

large linear 
omplexity, 
orrelation immunity and good lo
al statisti
s. In this paper

we suggest a new design 
riterion: resistan
e against FBDD-atta
ks. We have seen

that there are two strategies to a
hieve this resistan
e. The �rst is to highly 
ompress

the internal bitstream (as in the 
ase of E

2

0

). This implies a low bit-rate whi
h is

not desirable. The se
ond strategy is to design the 
ompression fun
tion C in su
h

a way that the de
ision if for an internal bitstream z it holds that C(z) is a pre�x of

a given keystream y requires exponential size FBDDs. It is an interesting 
hallenge

12



to look for su
h 
onstru
tions of 
ompression fun
tions whi
h mat
h also pra
ti
al

requirements. For demonstrating the universality of our approa
h we presented the

FBDD-atta
k in a very general setting. The obvious disadvantage of this general

setting is that the algorithm needs a lot of spa
e as all intermediate FBDDs have to

be expli
itely 
onstru
ted. It is an interesting open question if the algorithmi
 idea of

FBDD-minimization 
an be used in a more subtle way for getting, at least for some


iphers, an algorithm whi
h is less spa
e 
onsuming. Another interesting dire
tion

of further resear
h is to 
he
k whether the FBDD-atta
k 
ould be su

essfully


ombined with other more sophisti
ated methods of 
ryptanalysis like the tradeo�

atta
ks suggested in [7℄, [2℄ and [1℄. Moreover, it would be interesting to get some

experimental results for smaller key lengths with real implementations of the FBDD-

atta
k. How mu
h do the real sizes of the minimized intermediate FBDDs deviate

from the pessimisti
 upper bounds proved in our analysis?

A
knowledgement

I would like to thank Stefan Lu
ks, Erik Zenner, Christoph Meinel, Ingo Wegener,

and R�udiger Reis
huk for helpful dis
ussions.

Referen
es

1. E. Biham, O.Dunkelman. Cryptanalysis of the A5/1 GSM Stream Cipher. Pro
. of

INDOCRYPT 2000, LNCS 1977, 43-51.

2. A.Biryukov, A. Shamir, D. Wagner. Real Time Cryptanalysis of A5/1 on a PC. Pro
.

of Fast Software En
ryption 2000, LNCS 1978, 1-18.

3. Bluetooth SIG. Bluetooth Spe
i�
ation Version 1.0 B, http//:www.bluetooth.
om/

4. R.E. Bryant. Graph-based algorithms for Boolean fun
tion manipulations. IEEE

Trans. on Computers 35, 1986, 677-691.

5. M.Bri
eno, I. Goldberg, D.Wagner. A pedagogi
al implementation of A5/1.

http//:www.s
ard.org, May 1999.

6. S.R. Fluhrer, S. Lu
ks. Analysis of the E

0

En
ryption System. Te
hni
al Report,

Universit�at Mannheim 2001.

7. J. D.Goli�
. Cryptanalysis of alleged A5/1 stream 
ipher. Pro
. of EUROCRYPT'97,

LNCS 1233, 239-255.

8. J.Gergov, Ch.Meinel. EÆ
ient Boolean fun
tion manipulation with OBDDs 
an be

generalized to FBDDs. IEEE Trans. on Computers 43, 1994, 1197-1209.

9. S.W.Golomb. Shift Register Sequen
es. Aegean Park Press, Laguna Hills, revised

edition 1982.

10. Ch.Meinel. Modi�ed Bran
hing Programs and their Computational Power. LNCS 370,

1989.

11. M. J.Mihaljevi�
. A faster Cryptanalysis of the Self-Shrinking Generator. Pro
. of

ACIPS'96, LNCS 1172, 182-189.

12. W.Meier, O. Sta�elba
h. The Self-Shrinking Generator. Pro
. of EUROCRYPT'94,

LNCS 950, 205-214.

13. R.A.Rueppel. Stream Ciphers. Contemporary Cryptology: The S
ien
e of Information

Integrity. G.Simmons ed., IEEE Press New York, 1991.

14. D. Sieling, I.Wegener. Graph driven BDDs - a new data stru
ture for Boolean

fun
tions. Theoreti
al Computer S
ien
e 141, 1995, 283-310.

15. I.Wegener. Bran
hing Programs and Binary De
ision Diagrams. SIAM Monographs

on Dis
rete Mathemati
s and Appli
ations. Philadelphia 2000.

16. E. Zenner. Kryptographis
he Protokolle im GSM Standard: Bes
hreibung und

Kryptanalyse (in german). Master Thesis, University of Mannheim, 1999.

17. E. Zenner, M.Krause, S. Lu
ks. Improved Cryptanalysis of the Self-Shrinking

Generator. Pro
. of ACIPS'2001, LNCS 2119, 21-35.

13



Appendix

A.1 FBDD-Constru
tions for the E

0

generator

Let us �x a keystream y. We 
onstru
t polynomial (even linear) size �-OBDDs Q

m

whi
h de
ide for an internal bit-stream

z = (z

0

0

; z

1

0

; z

2

0

; z

3

0

; z

0

1

; z

1

1

; z

2

1

; z

3

1

; : : : ; z

0

m�1

; z

1

m�1

; z

2

m�1

; z

3

m�1

);

using this variable ordering �, whether C(z) = (y

0

; : : : ; y

m�1

). The Q

m

follow, via

Theorem 1, from the following O(log(m))-spa
e bounded algorithm.

1. q := q

0

2. For j := 0 to m� 1

3. if a(q; d

j

)� p

j

= y

j

4. then q := Æ(q; d

j

)

5. else stop(0)

6. stop(1)

where d

j

= (z

0

j

+ z

1

j

+ z

2

j

+ z

3

j

) div 2 and p

j

= (z

0

j

+ z

1

j

+ z

2

j

+ z

3

j

) mod 2 for

j = 0; : : : ;m� 1.

We assume here that the initial state q

0

of M is publi
. If this is not the 
ase

we have to run our algorithm 16 times, one round for ea
h possible state of M .

A.2 FBDD-Constru
tions for the E

0

-Generator in the Two-Level Mode

Let us �x a keystream y. We des
ribe how FBDDs Q

m

, S

m

and P

m

from se
tion

6 have to be de�ned in the 
ase of the E

2

0

generator with key-length and internal

key-length N > n. For the sake of simpli
ity we suppose that N is divisible by 4.

Inputs for Q

m

and S

j

are internal bit-streams looking like

u

0

; : : : ; u

3

; z

0

; u

4

; : : : ; u

7

; z

1

; : : : ; u

4N�4

; : : : ; u

4N�1

; z

N�1

; z

N

; z

N+1

; : : :

whi
h are read in this order �, i.e., Q

m

and S

j

will be �-OBDDs.

Let L denote the linear bit-stream generator of the E

0

generator of key-length

N . Let q

0

and q

0

0

denote the (publi
) initial states of the two E

0

generators of E

0

2

.

Let C and C

0

denote the the 
ompression fun
tions of the E

0

generator with initial

states q

0

and q

0

0

, respe
tively.

For all m � n, the program P

m

reads the �rst m bits of the internal bit-stream

and tests if

{ u

r

= U

r

(u

0

; : : : ; u

n�1

) for r = n; : : : ; N � 1,

{ the bit-stream u = u

0

; u

1

; u

2

; : : : is generated via L and C(u) is pre�x of the

bit-stream z,

{ the bit-stream z is generated via L and C

0

(z) is pre�x of y.

These tests will be distributed to the programs S

m

and Q

m

as follows. The

programs S

m

test the linear restri
tions and are minimal �-OBDDs whi
h do the

following

{ If at position m stands some u

r

, for n � r � N � 1, then S

m

tests if

u

r

= U

r

(u

0

; : : : ; u

n�1

).

{ If at position m stands some u

r

, for N � r � 4N � 1, then S

m

tests if

u

r

= L

r

(u

0

; : : : ; u

N�1

).

{ If at position m stands some z

s

, for s � N , then S

m

tests if z

s

=

L

s

(z

0

; : : : ; z

N�1

).

14



For all other positions m, S

m

is de�ned to answer always 1.

For all m � n, the programs Q

m

are minimal �-OBDDs whi
h de
ide

{ whether C(u) is pre�x of z and

{ whether C

0

(z) is pre�x of y,

where u and z denote the strings of all u

r

-bits and z

s

bits, respe
tively, o

uring

among the �rst m bits of the internal bit-stream. Observe that running our


ryptanalysis algorithm from se
tion 6 with these Q

m

and S

m

yields th desired

P

m

for E

2

0

.

For 0 � j � N � 1 we write

{ d

j

= (u

4j

+ u

4j+1

+ u

4j+2

+ u

4j+3

) div 2;

{ p

j

= (u

4j

+ u

4j+1

+ u

4j+2

+ u

4j+3

) mod 2:

For j � N=4 we write

{ d

0

j

= (z

4j

+ z

4j+1

+ z

4j+2

+ z

4j+3

) div 2;

{ p

0

j

= (z

4j

+ z

4j+1

+ z

4j+2

+ z

4j+3

) mod 2:

For all m � n let 
(m) denote the number of key-bits produ
ed by the �rst

m bits of the internal bit-stream. Let us �x some m for whi
h 
(m) � N=4. The

programs Q

m


an be 
onstru
ted, via Theorem 1, a

ording to the following read-

on
e algorithm whi
h is obviously O(log(m))-spa
e bounded.

1. q := q

0

, q

0

:= q

0

0

2. For j := 0 to N=4� 1

3. S := 0

4. For k := 0 to 3

5. if a(q; d

4j+k

)� p

4j+k

= z

4j+k

6. then S := S + z

4j+k

, q := Æ(q; d

4j+k

)

7. else stop(0)

8. d := S div 2, p = S mod 2,

9. if a(q

0

; d)� p = y

j

10. then q

0

:= Æ(q

0

; d)

10. else stop(0)

12. For j := N=4 to t(m)� 1

13. if a(q

0

; d

0

j

)� p

0

j

= y

j

14. then q

0

:= Æ(q

0

; d

0

j

)

15. else stop(0)

16. stop(1)

For all j = 0; : : : ; N=4� 1, while 
he
king C(u)

k

= z

k

, for k = z

4j

; : : : ; z

4j+3

the

algorithm stores in S all information ne
essary for 
he
king that C

0

(z)

j

= y

j

.

A.3 FBDD-Constru
tions for the A5=1-Generator

Let us �x 3 LFSRs L

0

, L

1

, L

2

of key-lengthes n

0

, n

1

and n

2

, where n = n

0

+n

1

+n

2

.

Let us further �x 3 
ontrol positions N

0

, N

1

and N

2

, where for k = 0; 1; 2

N

k

2 fbn

k

=2
 � 1; bn

k

=2
g:

As already mentioned, for getting the read-on
e property for the 
ompression,

we have to de�ne the A5/1 generator with respe
t to the linear bit-stream L(x),

x 2 f0; 1g

n

, whi
h is mixed of 6 LFSR-sequen
es L

0

(x); : : : ; L

5

(x) as

L(x) = L

0

0

(x); : : : ; L

5

0

(x); : : : ; L

0

m

(x); : : : ; L

5

m

(x); : : :

15



where, for k = 0; 1; 2, L

3+k

(x) 
orresponds to L

k

(x) shifted by N

k

, i.e.,

L

3+k

j

(x) = L

k

j+N

k

(x):

for all j � 0. The internal state x 
onsists of x

0

; x

1

; x

2

, we write L

k

(x) instead of

L

k

(x

k

).

The de�nition of the 
ompression fun
tion C is as follows. In ea
h timestep i,

the 
ompressor holds 3 
ontrol positions i[0℄, i[1℄, i[2℄, outputs the key-bit

y

i

= L

0

i[0℄

� L

1

i[1℄

� L

2

i[2℄

;


omputes the 
ontrol value


 = maj

3

�

L

3

i[0℄

; L

4

i[1℄

; L

5

i[2℄

�

;

and updates for k = 0; 1; 2 the 
ontrol positions a

ording to

if 
 = L

3+k

i[k℄

then i[k℄ := i[k℄ + 1:

for k = 0; 1; 2. The order in whi
h C reads the internal bits is governed by the


ontrol positions. As for internal bit-streams of length m there are at most O(m

3

)

possible assignments to the 3 
ontrol values, G

C

m


an be shown to have size O(m

4

).

Polynomial size G

C

m

-driven FBDDs whi
h de
ide for a bit-stream

z = z

0

0

; : : : ; z

5

0

; z

0

1

; : : : ; z

5

1

; : : : ;

of length m whether C(z) is pre�x of a given keystream y, 
an be 
onstru
ted

(via Theorem 3) a

ording to the following O(log(m))-spa
e bounded read-on
e

algorithm. For the sake of simpli
ity let m be divisible by 6.

0. j := 0

1. for all k = 0; 1; 2 let i[k℄ := 0

2. for all k = 0; 1; 2 let status[k℄ := read

3. while for all k = 0; 1; 2 i[k℄ < m=6 do

4. for k = 0; 1; 2

5. if status[k℄ = read then out[k℄ := z

k

i[k℄

; 
[k℄ := z

3+k

i[k℄

6. if y

j

6= out[1℄� out[2℄� out[3℄ then stop(0)

7. m := maj

3

(
[1℄; 
[2℄; 
[3℄)

8. for k = 1; 2; 3

9. if m = 
[k℄

10. then i[k℄ := i[k℄ + 1; status[k℄ := read

11. else status[k℄ := notread

12. j:=j+1

13. stop(1)

Observe that the 
ontrol variable status(k) ensures that no x

k

and no x

3+k

variable will be read more than on
e while i[k℄, out[k℄ and 
[k℄ are updated.

A.4 Estimating the Information Rate of the A5/1 generator

Let C denote the 
ompression fun
tion of the modi�ed A5/1 generator. We need

to 
onsider how C produ
es their output bits on a random uniformly distributed

internal bitstream of �xed length m. For i = 0; 1; 2; : : : ; let Y

i

denote the random

variable 
orresponding to the number of internal bits whi
h are ne
essary for

produ
ing the i-th output bit. Observe that, for all i, either 6 or 4 bits are

16



ne
essary, depending on whether all three 
ontrol bits are equal or not. It is quite

straightforward to 
he
k that Y

i

and Y

j

are independent for all i 6= j and that

Prob[Y

i

= 6℄ =

1

4

and Prob[Y

i

= 4℄ =

3

4

:

Let � denote the information rate (per bit) of the A5/1 generator. For all integers

m � 0 and k � m let p(m) := 2

�m

and

p(m; k) := Prob

x2

U

f0; 1g

m

[jC(x)j = k℄:

We derive an estimation for � from the relation

p(m) =

m=4

X

k=m=6

p(m; k)2

�k

(4)

On ea
h internal bitstream of length m at least m=6 output bits are produ
ed. We

denote by Z the random variable 
orresponding to the number of internal bits whi
h

are pro
essed after produ
ing the �rst m=6 output bits. It holds that

Z = 6Z

0

+ 4(m=6� Z

0

);

where Z

0

is an (m=6; 1=4)-binomially distributed random variable, whi
h


orresponds to the number of those of the �rst m=6 output bits, whi
h used 6

internal bits. Observe that m� Z, the number of internal bits remaining after the

produ
tion of m=6 output bits, 
an be written as

m� Z = m� 6Z

0

�

2

3

m+ 4Z

0

= m=3� 2Z

0

:

Now, the probability p(m) 
an be written as

p(m) =

m=6

X

i=0

2

�m=6

Prob[Z

0

= i℄

(m=3�2i)=4

X

j=(m=3�2i)=6

p(m=3� 2i; j)2

�j

=

m=6

X

i=0

2

�m=6

�

m=6

i

�

1

4

i

3

4

m=6�i

p(m=3� 2i):

We get the following re
urren
e for �:

2

��m

= 2

�m=6

m=6

X

i=0

�

m=6

i

�

1

4

i

3

4

m=6�i

2

��(m=3�2i)

= 2

�(1=6+�=3)m

m=6

X

i=0

�

m=6

i

�

1

4

i

3

4

m=6�i

2

2�i

: (5)

For a further simpli�
ation of this expression we use the following te
hni
al

lemma.

Lemma 4. For all integers n � 0, p 2 (0; 1) and reals � it holds

n

X

i=0

�

n

i

�

p

i

(1� p)

n�i

2

�i

=

�

1� p+ p2

�

�

n

:

17



Proof. For all integers n � 0 let f(n) :=

P

n

i=0

�

n

i

�

p

i

(1 � p)

n�i

2

�i

. Observe that

f(0) = 1. Using the well-known relation that for all i; 1 � i � n, it holds

�

n

i

�

=

�

n� 1

i

�

+

�

n� 1

i� 1

�

one 
an derive that

f(n) =

�

1� p+ p2

�

�

f(n� 1);

whi
h immediately yields the lemma. 2 ut

Applying the lemma to relation (5) we obtain

2

��m

= 2

�(1=6+�=3)m

1

4

�

3 + 2

2�

�

m=6

; i.e.

2

�6�

= 2

�(1+2�)

1

4

�

3 + 2

2�

�

; i.e.

2

1�4�

=

1

4

�

3 + 2

2�

�

:

Evaluating this expression yields � � 0:2193.

18


