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Abstrat. Many of the keystream generators whih are used in pratie

are LFSR-based in the sense that they produe the keystream aording

to a rule y = C(L(x)), where L(x) denotes an internal linear bitstream,

produed by a small number of parallel linear feedbak shift registers

(LFSRs), and C denotes some nonlinear ompression funtion. We present an

n

O(1)

2

(1��)=(1+�)n

time bounded attak, the FBDD-attak, against LFSR-

based generators, whih omputes the seret initial state x 2 f0; 1g

n

from n

onseutive keystream bits, where � denotes the rate of information, whih C

reveals about the internal bitstream, and  denotes some small onstant. The

algorithm uses Free Binary Deision Diagrams (FBDDs), a data struture for

minimizing and manipulating Boolean funtions. The FBDD-attak yields

better bounds on the e�etive key length for several keystream generators of

pratial use, so a 0:656n bound for the self-shrinking generator, a 0:6403n

bound for the A5/1 generator, used in the GSM standard, a 0:6n bound for

the E

0

enryption standard in the one level mode, and a 0:8823n bound for

the two-level E

0

generator used in the Bluetooth wireless LAN system.

1 Introdution

A keystream generator is a �nite automaton, E, determined by a set Q of inner

states, a state transition funtion Æ

E

: Q �! Q, and an output funtion a

E

: Q �!

f0; 1g. The usual ase is that Q = f0; 1g

n

for some integer n � 1, n is alled the

keylength of E. Starting from an initial state x

0

2 Q, in eah time unit i, E outputs

a key bit y

i

= a

E

(x

i

) and hanges the inner state aording to x

i+1

= Æ

E

(x

i

). For

eah initial state x 2 f0; 1g

n

we denote by

y = E(x)

the keystream y = y

0

; y

1

; : : : produed by E when starting on x.

Keystream generators are designed for fast online enryption of bitstreams whih

have to pass an inseure hannel. A standard appliation is to ensure the over-the-

air privay of ommuniating via mobile ellular telephones. A plaintext bit stream

p

0

; p

1

; p

2

; : : : is enrypted into a iphertext bitstream e

0

; e

1

; e

2

; : : : via the rule

e

i

= p

i

� y

i

;

where y = E(x). The legal reeiver knows x and an derypt the bitstream using

the same rule. The only seret information is the initial state x, whih is exhanged

before starting the transmission using a suitable key-exhange protool. It is usual

to make the pessimisti assumption that an attaker knows not only the enrypted

bitstream, but even some short piee of the plaintext, and, therefore, an easily

ompute some piee of the keystream. Consequently, the seurity of keystream

generators has to be based on the assumption that there is no feasible way to

ompute the seret initial state x from y = E(x). Observe that the trivial exhaustive

searh attak needs time n

O(1)

2

n

:



In this paper we suggest a new type of attak against keystream generators,

whih we will all FBDD-attak, and show that LFSR-based keystream generators

are vulnerable against FBDD-attaks. We will all a generator to be LFSR-based

if it onsists of two omponents, a linear bitstream generator L whih generates

for eah initial state x 2 f0; 1g

n

a linear bitstream L(x) by one or more parallel

LFSRs, and a ompressor C whih transforms the internal bitstream into the output

keystream y = C(L(x)). Due to the ease of implementing LFSRs in hardware, and

due to the nie pseudorandomness properties of bitstreams generated by maximal

length LFSRs, many keystream generators ouring in pratie are LFSR-based.

FBDD is the abbreviation for free binary deision diagrams, a data struture for

representing and manipulating Boolean funtion, whih were introdued by Gergov

and Meinel in [8℄ and Sieling and Wegener in [14℄. Due to spei� algorithmi

properties, FBDDs and in partiular ordered BDDs (OBDDs), a speial kind of

FBDDs, beame a very usefull tool in the area of automati hardware design and

veri�ation (see also the paper of Bryant [4℄ who initiated the study of graph-based

data strutures for Boolean funtion manipulation). The important properties of

FBDDs are that they an be eÆiently minimized, that they allow an eÆient

enumeration of all satisfying assignments, and that the minimal FBDD-size of a

Boolean funtion is not muh larger than the number of satisfying assignments.

We show that these properties an also be suessfully used for ryptanalysis. The

problem of �nding a seret key x ful�lling y = E(x) for a given enryption algorithm

E and a given iphertext y an be redued to �nding the minimal FBDD P for the

deision if x ful�ls y = E(x). If the length of y is lose to the uniity distane of E

then P is small, and x an be eÆiently omputed from P . The main result of this

paper is that the speial struture of LFSR-based keystream generators implies a

nontrivial dynami algorithm for omputing this FBDD P .

In partiular, the weakness of LFSR-based keystream generators is that the

ompressor C has to produe the keystream in an online manner. For getting a

high bitrate, C should use only a small memory, and should onsume only a few

new internal bits for poduing the next output bit. These requirements imply that

the deision if an internal bitstream z generates a pre�x of a given keystream y

via C an be omputed by small FBDDs. This allows to ompute dynamially a

sequene of FBDDs P

m

, m � n, whih test a given initial state x 2 f0; 1g

n

whether

C(L

�m

(x)) is pre�x of y, where L

�m

(x) denotes the �rst m bits of the internal

linear bitstream generated via L on x. On average, the solution beomes unique for

m � d�

�1

ne, where � denotes the rate of information whih C reveals about the

internal bitstream. The FBDDs P

m

are small at the beginning and again small if

m approahes d�

�1

ne, and we will show that all intermediate FBDDs have a size

of at most n

O(1)

2

(1��)=(1+�)n

. For all m the FBDD P

m

has to read the �rst dme

bits of the keystream, where  denotes the best ase ompression ratio of C. Thus,

our algorithm omputes the seret initial state x from the �rst d�

�1

ne bits of

y = E(x). Observe that  = � if C onsumes always the same number of internal

bits for produing one output bit, and � <  if not. It holds �

�1

� 2:5 in all

our examples. Note that for gaining a high bit-rate, � and  should be as large as

possible. Our results say that a higher bit-rate has to be paid by a loss of seurity.

One advantage of the FBDD-attak is that it is a short-keystream attak, i.e.,

the number of keybits needed for omputing the seret initial state x 2 f0; 1g

n

is at

most n for some small onstant  � 1. We apply the FBDD-attak to some of the

keystream generators whih are most intensively disussed in the urrent literature,

the A5/1 generator whih is used in the GSM standard, the self-shrinking generator,

and the E

0

-enryption standard, whih is inluded in the Bluetooth wireless LAN

system. For all theses iphers, the FBDD-attak has a better time behaviour than all

short-keystream attaks known before. In some ases there have been obtained long-

keystream attaks whih have a better time behaviour. They use a time-memeory

2



tradeo� tehnique suggested by Goli� [7℄ and are based on the assumption that a

long piee of keystream of length 2

dn

, d < 1 some onstant, is available. We give an

overview on previous results and the relations to our results in setion 7.

The paper is organized as follows. In setion 2 we give some formal de�nitions

onerning LFSR-based keystream generators and present the keystream generators

whih we want to ryptanalyze. In setion 3 FBDDs are introdued. In setion

4 we derive FBDD-relevant properties of LFSR-based keystream generators. In

setion 5 we derive the relevant parameters of LFSR-based keystream generators

and formulate the main result. Our ryptanalysis algorithm is presented in setion 6

and is applied to partiular generators in setion 7. Due to spae restritions we had

to put some of the alulations and FBDD-onstrutions into an appendix setion.

At the �rst glane it may seem ontraditory that we onsider pratial iphers

like the A5/1 generator with variable keylength n. But observe that de�nitions of

LFSR-based keystream generators, even if they originally were designed for �xed

keylength, an be generalized to variable keylength in a very natural way, simply by

onsidering the internal LFSRs to have variable length. Considering variable key-

length n allows to evaluate the seurity of iphers in terms of how many polynomial

time operations are neessary for breaking the ipher. This 'rough' way of seurity

evaluation is suÆient in our ontext, sine the aim of this paper is to present only

the general algorithmi idea of the FBDD-attak, to give a rather rough estimation

of the time behaviour, and to show the inherent weakness of LFSR-based generators.

For pratial implementations of FBDD attaks against real-life generators muh

more e�ort has to be invested for making the partiular polynomial time operations

as eÆient as possible, see the disussion in setion 8.

2 LFSR-based Keystream Generators

Let us all a keystream generator to be LFSR-based if the generation rule y = E(x)

an be written as

y = C(L(x));

where L denotes a linear bitstream generator onsisting of one or more LFSRs, and

C : f0; 1g

�

�! f0; 1g

�

denotes a nonlinear ompression funtion, whih transforms

the internal linear bitstream L(x) into the nonlinear (ompressed) output keystream

y = C(L(x)).

1

Formally, an n-LFSR is a devie whih produes a bitstream

L(x) = L

0

(x); L

1

(x); : : : ; L

m

(x); : : :

on the basis of a publi string  = (

1

; : : : ; 

n

) 2 f0; 1g

n

, the generator polynomial,

and a seret initial state x = (x

0

; : : : ; x

n�1

) 2 f0; 1g

n

, aording to the relation

L

i

(x) = x

i

for 0 � i � n� 1 and

L

m

(x) = 

1

L

m�1

(x)� 

2

L

m�2

(x)� : : :� 

n

L

m�n

(x) (1)

for m � n. Observe that for all m � 1, L

m

(x) is a GF(2)-linear Boolean funtion

in x

0

; : : : ; x

n�1

whih an be easily determined via iteratively applying (1).

A linear bitstream generator L of keylength n is de�ned to be an algorithm

whih, for some k � 1, generates a linear bitstream L(x)

L(x) = L

0

(x); L

1

(x); L

2

(x); : : :

1

C ompresses the internal bit-stream in an online manner, i.e., C(z

0

) is pre�x of C(z) if

z

0

is pre�x of z, for all z; z

0

2 f0; 1g

�

. This justi�es to write y = C(L(x)) despite of the

fat that L(x) is assumed to be in�nitely long.

3



by k parallel LFSRs L

0

; : : : ; L

k�1

of keylengths n

0

; : : : ; n

k�1

, where n = n

0

+

: : : + n

k�1

. The initial states x 2 f0; 1g

n

for L are formed by the initial states

x

r

2 f0; 1g

n

r

, r = 0; : : : ; k� 1, of L

0

; : : : ; L

k�1

. L produes in eah time unit j � 0

the bit L

j

(x) aording to the rule

L

j

(x) = L

r

s

(x

r

);

where r = j mod k and s = j div k. Observe that for all j � 0 L

j

(x) is a GF(2)-

linear funtion in x.

The motivation for taking LFSRs as building bloks for keystream generators

is that they an be easily implemented using n register ells onneted by a

feedbak hannel. Moreover, if the generator polynomial is primitive, they produe

bit streams with nie pseudorandomness properties (maximal period, good auto

orrelation and loal statistis). See, e.g., the monograph by Golomb [9℄ or the

artile by Rueppel [13℄ for more about the theory of shift register sequenes.

Clearly, LFSR-sequenes alone do not provide any ryptographi seurity. Thus,

the aim of the ompression funtion C : f0; 1g

�

�! f0; 1g

�

is to destroy the

low linear omplexity of the internal linear bit stream while preserving its nie

pseudorandomness properties. Many keystream generators ouring in pratie are

LFSR-based in the above sense. In this paper we investigate the following LFSR-

based generators.

The Connekt-k onstrution ombines k parallele LFSRs L

0

; : : : ; L

k�1

with

an appropriate onnetion funtion  : f0; 1g

k

�! f0; 1g. The keystream y =

y

0

; y

1

; y

2

; : : : is de�ned via the rule

y

j

= (L

0

j

(x

0

); : : : ; L

k�1

j

(x

k�1

)); j � 0;

where x

r

denotes the initial state for L

r

, for r = 0 : : : ; k � 1. The Connet-k

onstrution is one of the lassial onstrutions of nonlinear keystream generators

whih use LFSRs as building bloks, see again [9℄ and [13℄ for more detailed

onsiderations of suh onstrutions.

The Self-Shrinking Generator was introdued by Meier and Sta�elbah in

[12℄. It onsists of only one LFSR L. The ompression is de�ned via the shrinking

funtion

shrink : f0; 1g

2

�! f0; 1; "g;

de�ned as shrink(ab) = b if a = 1; and shrink(ab) = ", the empty word, otherwise.

The shrinking-funtion an be extended to bit-strings of even length r as

shrink(z

0

z

1

: : : z

r�1

) = y

0

y

1

: : : y

r=2�1

;

where y

i

= shrink(z

2i

z

2i+1

) for i = 0; : : : ; r=2 � 1. For eah initial state x for L,

the self-shrinking generator produes the keystream y aording to

y = shrink(L(x)):

The E

0

Generator is the keystream generator used in the Bluetooth wireless

LAN system [3℄. It is de�ned as E

0

(x) = C(L(x)), where the linear bitstream

generator L of E

0

onsists of 4 LFSRs L

0

; : : : ; L

3

. The ompression is organized

by a �nite automaton M with external input alphabet f0; 1; 2g, state spae Q =

f0; 1; : : : ; 15g and output alphabet f0; 1g, whih is de�ned by an output funtion

a : Q � f0; 1; 2g �! f0; 1g and a state transition funtion Æ : Q � f0; 1; 2g �! Q.

The exat spei�ation of M is published in [3℄ but does not matter for our purpose

and is therefore omitted.

4



The ompression C(z) = y = y

0

y

1

: : : y

m�1

of an internal bit-stream

z = z

0

0

z

1

0

z

2

0

z

3

0

z

0

1

z

1

1

z

2

1

z

3

1

: : : z

0

m�1

z

1

m�1

z

2

m�1

z

3

m�1

is de�ned as y

j

= a(q

j

; s

j

) � t

j

, where s

j

= (z

0

j

+ z

1

j

+ z

2

j

+ z

3

j

) div 2 and

t

j

= (z

0

j

+ z

1

j

+ z

2

j

+ z

3

j

) mod 2, for all 0 � j � m � 1. The atual inner state

is updated in eah yle aording to the rule q

j+1

= Æ(q

j

; s

j

); where q

0

denotes the

initial state of M . In pratie, the E

0

generator is used with key length 128, the

four LFSRs have lengths 39, 33, 31, 25.

The E

0

Enryption Standard (Two-Level Mode). In the Bluetooth

system, the keystream is generated via a generator E

2

0

(of key length n) whih

ombines two E

0

devies of internal keylength N � n in the following way.

For x 2 f0; 1g

n

it holds y = E

2

0

(x) = E

0

(z); where z denotes the pre�x of length

N of E

0

(u), and where

u = (x

0

; : : : ; x

n�1

; U

n

(x) : : : ; U

N�1

(x)):

U

i

, i = n : : :N � 1, are publi GF(2)-linear funtions in (x

0

; : : : ; x

n�1

). In pratie,

the string u results from putting n seret bits together with N � n known dummy

bits into the LFSRs and running them a ertain number of steps. The Bluetooth

system uses N = 128, and n an be hosen as 8, 16, 32, or 64. It is a bit more

involved to write the E

2

0

generator in a y = C(L(x)) fashion. We will do this in the

appendix, subsetion A.2. The reason for hoosing a larger internal key length N is

to ahieve a larger e�etive key length in n.

The A5/1 generator is used in the GSM standard of mobile telephones. The

de�nition was disovered by Brieno et. al. [5℄ via reverse engineering. The A5/1

generator of key-length n onsists of 3 LFSRs L

0

, L

1

, and L

2

of key-lengthes n

0

,

n

1

, and n

2

. In eah time step i, the output key bit y

i

is the XOR of the atual

output bits of the 3 LFSRs. A lok ontrol deides in eah timestep whih of the

3 LFSRs are shifted, and whih not. The lok ontrol takes for all k 2 f0; 1; 2g a

ontrol value 

k

from the N

k

� th register ell of L

k

, and omputes the ontrol value

m = maj

3

(

0

; 

1

; 

2

).

2

LFSR L

k

is shifted if m = 

k

, for k = 0; 1; 2. The ontrol

positions N

k

are �xed and ful�l N

k

2

��

n

k

2

�

� 1;

�

n

k

2

�	

:

This keystream generation rule an be written down in a y = C(L(x)) fashion

in the following way. Given an internal bitstream

z = (z

0

0

; z

1

0

; z

2

0

; : : : ; z

0

m

; z

1

m

; z

2

m

; : : :)

the keystream y = C(z) is de�ned as follows. In eah timestep, C holds 3

output positions i[1℄; i[2℄; i[3℄ and 3 ontrol positions j[1℄; j[2℄; j[3℄. C outputs

x

1

i[1℄

� x

2

i[2℄

� x

3

i[3℄

, omputes the new ontrol value m = maj

3

(x

1

j[1℄

; x

2

j[2℄

; x

3

j[3℄

),

and updates the i- and j-values via i[k℄ := i[k℄ + 1 and j[k℄ := j[k℄ + 1, for those

k 2 f0; 1; 2g for whih m = x

k

j[k℄

. The output positions are initialized by 0. The

ontrol positions are initialized by N

1

; N

2

; N

3

. Note that in the GSM standard the

A5/1 generator is used with key length 64, the 3 LFSRs have lengthes 19, 22 and

23

3 Binary Deision Diagrams (BDDs)

For m a natural number let X

m

denote the set of m Boolean variables

fx

0

; : : : ; x

m�1

g. A BDD P over X

m

is an ayli direted graph with inner nodes of

2

maj

3

is de�ned to output  2 f0; 1g i� at least 2 of its 3 arguments have value .

5



outdegree 2, a distinguished inner node of indegree 0, the soure, and two sink nodes

of outdegree 0, one 0-sink and one 1-sink. All inner nodes, i.e. nodes of outdegree

> 0, are labelled with queries x

i

?, 0 � i � m� 1, and are left by one edge labelled

0 (orresponding to the answer x

i

= 0) and one edge labelled 1 (orresponding to

the answer x

i

= 1).

Eah assignment b to the X

m

-variables de�nes a unique omputational path in

P , whih will be alled the b-path in P . The b-path starts at the soure, answers

always b

i

on queries x

i

? and, thus, leads to a unique sink. The label of this sink is

de�ned to be the output P (b) 2 f0; 1g of P on input b 2 f0; 1g

m

. We denote by

One(P ) � f0; 1g

m

the set of inputs aepted by P ,

One(P ) = fb 2 f0; 1g

m

; P (b) = 1g:

Eah BDD P over X

m

omputes a unique funtion f : f0; 1g

m

�! f0; 1g, by

f(b) = 1 () b 2 One(P ). The size of P , jP j, is de�ned to be the number of inner

nodes of P . Two BDDs are alled equivalent if they ompute the same funtion.

We all an BDD P to be a free binary deision diagram (FBDD) if along eah

omputational path in P eah variable ours at most one. In [8℄ and [14℄ it was

observed that FBDDs an be eÆiently minimized with respet to all equivalent

FBDDs whih read the input variables in an equivalent order. The equivalene of

orders of reading the input variables is expressed by using the notion of graph

orderings.

De�nition 1. A graph ordering G of X

m

is an FBDD over X

m

with only one

(unlabelled) sink, for whih on eah path from the root to the sink all m variables

our.

Graph orderings are not designed for omputing Boolean funtions. Their aim is

to de�ne for eah assignments b = (b

0

; : : : ; b

m�1

) to X

m

a unique variable ordering

�

G

(b) = (x

i

1

(b)

; : : : ; x

i

m

(b)

), namely the ordering in whih the variables are requested

along the unique b-path in G.

De�nition 2. An FBDD is alled G-driven, for short, G-FBDD, if the ordering

in whih the variables are requested along the b-path in P respets �

G

(b), for all

assignments b. I.e., there do not exist assignments b, variables x

i

and x

j

suh that

x

i

is requested above x

j

at �

G

(b), but below x

j

at the b-path in P .

A speial, extensively studied variant of FBDDs are Ordered Binary Deision

Diagrams (OBDDs). An FBDD P is alled OBDD with variable ordering � (for

short �-OBDD) if all pathes in P respet �.

We need the following nie algorithmi properties of graph-driven FBDDs. Let

f; g : f0; 1g

m

�! f0; 1g be Boolean funtions, let G be a graph ordering for X

m

,

and let P and Q be G-driven FBDDs for f and g, respetively.

Property 3.01 There is an algorithmMIN whih omputes from P in time O(jP j)

the (uniquely de�ned) minimal G-driven FBDD min(P ) for f .

Property 3.02 It holds that jmin(P )j � mjOne(P )j:

Property 3.03 There is an algorithm SY NTH whih omputes in time

O(jP jjQjjGj) a G-driven FBDD P ^Q, jP ^Qj � jP jjQjjGj, whih omputes f ^ g.

Property 3.04 There is another algorithm SAT whih enumerates all elements in

One(P ) in time O(jOne(P )jjP j).

See, e.g., the book by Wegener [15℄ for a detailed desription and analysis of

the OBDD- and FBDD-algorithms. FBDDs together with the proedures MIN ,

6



SY NTH and SAT will be the basi data struture used in our ryptanalysis.

FBDDs for a given deision problems F � f0; 1g

�

an be onstruted using the

following folklore result, whih, for instane, is given in the monograph by Meinel

[10℄.

Theorem 1. Eah s(n)-spae bounded algorithm for F an be eÆiently

transformed into a sequene of 2

O(s(n)+log(n))

-spae bounded BDDs for F . Moreover,

if the algorithm reads eah input bit at most one then the resulting BDDs are

FBDDs. 2

Thus, one way to prove the existene of polynomial size FBDDs for given Boolean

funtions is to look for logarithmially spae bounded read-one algorithms.

4 FBDD-Aspets of Key-Stream Generators

Let E be a LFSR-based keystream generator of key-length n with linear keystream

generator L and ompression funtion C : f0; 1g

�

�! f0; 1g

�

. Let x 2 f0; 1g

n

denote an initial state for L.

De�nition 3. For all m � 1 let G

C

m

denote the graph ordering, whih assigns to

eah internal bitstream z the order in whih C reads the �rst m bits of z.

Observe that for the E

0

generator, the self-shrinking generator, as well as for

Connet-k generators, the order in whih the ompressor reads the internal bits

does not depend of the internal bitstream itself, i.e., G

C

m

has size m and G

C

m

-driven

FBDDs are OBDDs. But in the ase of the A5/1 generator, this order is governed

by the lok ontrol, and an be di�erent for di�erent inputs. The eÆieny of our

ryptanalysis algorithm is based on the following FBDD assumption on E.

FBDD Assumption. The graph ordering G

C

m

has polynomial size in m.

Moreover, for arbitrary keystreams y, the minimal G

C

m

-driven FBDDs whih deide

for z 2 f0; 1g

m

whether C(z) is pre�x of y have polynomial size in m.

It is quite easy to see that the ompression funtion of a Connet-k generators,

de�ned by a funtion  : f0; 1g

k

�! f0; 1g, ful�ls the FBDD-assumption.

The ompressor reads the internal bits in the anonial order � = 0; 1; 2; 3; : : :.

Polynomial size (even linear size) �-OBDDs whih deide whether z 2 f0; 1g

m

generates the �rst bm=k bits of a given keystream y via  an be onstruted, via

Theorem 1, aording to the following algorithm

1. For j := 0 to bm=k

2. if (z

0

j

; : : : ; z

k�1

j

) 6= y

j

then stop(0)

3. stop(1)

whih is obviously O(log(m))-spae bounded.

Polynomial (even quadrati) size �-OBDDs whih deide for z 2 f0; 1g

m

whether

shrink(z) is pre�x of a given keystream y an be onstruted, via Theorem 1,

aording to the following algorithm

1. k := 0, j := 0

2. while j < m� 1

3. if z

j

= 0

4. then j := j + 2

5. else

6. if z

j+1

= y

k

7



7. then j := j + 2, k := k + 1

7. else stop(0)

8. stop(1)

whih is obviously O(log(m))-spae bounded. The FBDD onstrutions for all

the E

0

-, the E

2

0

-, and the A5/1 generator are given in the appendix.

We still need to estimate the size of FBDDs whih deide whether a given

z 2 f0; 1g

m

is a linear bit-stream.

Lemma 1. For all m � n, the deision whether z 2 f0; 1g

m

is generated via linear

bitstream generator L of keylength n an be omputed by a G

C

m

-driven FBDD of size

at most jG

C

m

j2

m�n

.

Proof: Let V

m

denote the set of inner nodes of G

C

m

. We onstrut a G

C

m

-driven

FBDD R

m

with the set W

m

= V

m

� f0; 1g

m�n

of inner nodes.

For all initial states x 2 f0; 1g

n

and all internal positions j; n � j � m�1, write

L

j

(x) as

L

j

(x) =

n�1

M

k=0

L

k;j

x

k

:

G

C

m

ensures that x

k

is always read before x

j

if L

k;j

= 1.

Let the root of R

m

be the node (v

0

;

!

0

) where v

0

denotes the root of G

C

m

. Let

all nodes (v; b) have the same label as v does in G

C

m

. The edges of R

m

are de�ned

aording to the following rules. Let v 2 V

m

and b = (b

n

; : : : ; b

m�1

) 2 f0; 1g

m�n

be

arbitrarily �xed. For  2 f0; 1g let v() be the -suessor of v in G

C

m

. We have to

distinguish two ases.

{ v is labelled with some x

k

, 0 � k � n�1. Then, for all  2 f0; 1g, the -suessor

of (v; b) is (v(); b()), where b() = (b

0

� L

k;n

; : : : ; b

r�1

� L

k;m�1

).

{ v is labelled with some x

j

, n � j � m� 1. Then, for all  2 f0; 1g, if b

j�n

6= ,

the -suessor of (v; b) is the 0-sink. If b

j�n

=  and v() is the *-sink, then let

the -suessor of (v; b) be the 1-sink. Otherwise let the -suessor of (v; b) be

(v(); b).

It an be easily heked that R

m

(after removing non-reahable nodes) mathes all

requirements of the Lemma. 2

5 The Main Result

We �x an LFSR-based keystream generator of key-length n with linear bit-stream

generator L and a ompression funtion C. We assume that for all m � 1 the

probability that C(z) is pre�x of y for a randomly hosen and uniformly distributed

z 2 f0; 1g

m

is the same for all keystreams y. Observe that all generators ouring

in this paper have this property. Let us denote this probability by p

C

(m):

The ost of our ryptanalysis algorithm depends on two parameters of C. The

�rst is the information rate (per bit) whih a keystream y reveales about the �rst

m bits of the underlying internal bitstream. It an be omputed as

1

m

I(Z

(m)

; Y ) =

1

m

�

H(Z

(m)

)�H(Z

(m)

jY )

�

=

=

1

m

(m� log(p

C

(m)2

m

)) = �

1

m

log(p

C

(m)): (2)

where Z

(m)

denotes a random z 2 f0; 1g

m

and Y a random keystream.
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As the ompression algorithm omputes the keystream in an online manner, the

time di�erene between two sueeding key bits should be small in the average,

and not vary too muh. This implies the following partition rule: Eah internal bit-

stream z an be divided into onseutive elementary bloks z = z

0

z

1

: : : z

s�1

, suh

that C(z) = y

0

y

1

: : : y

s�1

with y

j

= C(z

j

) for all j = 0; : : : ; s� 1, and the average

length of the elementary bloks is a small onstant. This partition rule implies that

p

C

(m) an be supposed to behave as p

C

(m) = 2

��m

, for a onstant � 2 (0; 1℄. Due

to (2), � oinides with the information rate of C.

The seond parameter of C is the maximal number of output bits whih C

produes on internal bitstreams of length m. Due to the partition rule, this value

an be supposed to behave as m, for some onstant  2 (0; 1℄. We all  to be the

(best ase) ompression ratio of C.

Observe that if C always reads the same number k of internal bits for produing

one output bit, then � =  =

1

k

. If this number is not a onstant then � an be

obtained by the formulae

2

��m

= p

C

(m) =

dme

X

i=0

2

�i

Prob

z

[jC(z)j = i℄ ; (3)

where z denotes a random, uniformly distributed element from f0; 1g

m

. Observe

that (3) yields  � �, i.e. �

�1

� 1.

For all x 2 f0; 1g

n

and m � 1 let L

�m

(x) denote the �rst m bits of L(x). Note

the following design riterion for well-designed keystream generators.

Pseudorandomness Assumption For all keystreams y and all m � d�

�1

ne

it holds that

Prob

z

[C(z) is pre�x of y℄ � Prob

x

[C(L

�m

(x)) is pre�x of y℄ ;

where z and x denote uniformly distributed random elements from f0; 1g

m

and

f0; 1g

n

, respetively.

Lemma 2. If the keystream generator ful�ls the above pseudorandomness

assumption then for all keystreams y and m � �

�1

n there are approximately 2

n��m

initial states x for whih C(L

m

(x)) is pre�x of y. 2

Observe that a severe violation of the pseudorandomness assumption implies the

possibility of attaking the ipher via a orrelation attak. Our main result an now

be formulated as

Theorem 2. Let E be an LFSR-based keystream generator of key-length n with

linear bit-stream generator L, and ompression funtion C of information rate

� and (best ase) ompression ratio . Let C and L ful�l the BDD- and the

pseudorandomness assumption. Then there is an n

O(1)

2

(1��)=(1+�)n

-time bounded

algorithm, whih omputes the seret initial state x from the �rst d�

�1

ne

onseutive bits of y = C(L(x)).

As usual, we de�ne the e�etive key length of a ipher of key length n to be

the minimal number of polynomial time operations that are neessary to break

the ipher. We obtain a bound of

1��

1+�

n for the e�etive key length of keystream

generators whih ful�l the above onditions.
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6 The Algorithm

Let us �x n, E, L, C, � and  as in Theorem 2. For all m � 1 let G

m

denote

the graph ordering de�ned by C on internal bitstreams of length m. Let y be an

arbitrarily �xed keystream whih was generated via E. For all m � 1 let Q

m

denote

a minimal G

m

-FBDD whih deides for z 2 f0; 1g

m

whether C(z) is pre�x of y.

Observe that Q

m

has to read the �rst dme bits of y. The FBDD-assumption yields

that Q

m

has polynomial size in m.

For m � n let P

m

denote the minimal G

m

-driven FBDD whih deides whether

z 2 f0; 1g

m

is a linear bitstream generated via L and if C(z) is pre�x of y. Observe

that by Property 3.03 and Lemma 1

Lemma 3. jP

m

j � jQ

m

jjG

m

j

2

2

m�n

for all m � n. 2

The strategy of our algorithm is simple, it dynamially omputes P

m

for

m = n; : : : ; d�

�1

ne. Lemma 2 implies that for m = d�

�1

ne with high probability

only one bit-stream z

�

will be aepted by P

m

. Due to property 3.04 this bit-stream

an be eÆiently omputed. The �rst n omponents of z

�

form the initial state that

we are searhing for.

For all m � n let S

m

denote a minimal G

m

-FBDD whih deides for z =

(z

0

; : : : ; z

m

) whether z

m

= L

m

(z

0

; : : : ; z

n�1

). From Lemma 1 we obtain that

jS

m

j � 2jG

m

j. Now our algorithm an be formulated as

(1) P := Q

n

(2) For m := n+ 1 to d�

�1

ne

(3) P := min(P ^Q

m

^ S

m�1

)

For the orretness of the minimization in step (3) observe that the de�nition

of G

m

implies that G

m

is G

m

0

-driven for all m

0

� m. It follows from the de�nitions

that for all m � n P oinides with P

m

after iteration m.

The FBDD-operation min(P ^ Q

m

^ S

m�1

) takes time p(m)jP

m�1

j for some

polynomial p. Consequently, the running time of the algorithm an be estimated by

n

O(1)

maxfjP

m

j; m � ng:

Observe that on the one hand, by Lemma 3, jP

m

j � p

0

(m)2

m�n

for some polynomial

p

0

, while on the other hand, by Property 3.02 and Lemma 2, jP

m

j � mjOne(P

m

)j,

where

jOne(P

m

)j � 2

n��m

= 2

(1��)n��(m�n)

:

Consequently, jP

m

j does not exeed n

O(1)

2

r(n)

, where r(n) is the solution of

2

r(n)

= 2

(1��)n��r(n)

whih yields r(n) =

1��

1+�

n. We have proved Theorem 2. 2

7 Appliations

We apply Theorem 2 to the keystream generators introdued in setion 2. We

suppose that these generators ful�ll the pseudorandomness assumption, otherwise

the running time estimations of our ryptanalysis hold on average. It remains to

determine the information rate and the ompression ratio, and to prove that the

FBDD-assumption is true. For the Connet-k onstrution it holds � =  =

1

k

. The

FBDD-assumption has shown to be true in setion 4.
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Theorem 3. For all k � 2 and all stream iphers E of key-length n whih are a

Connet-k onstrution, our algorithm omputes the seret initial state x 2 f0; 1g

n

from the �rst n bits of y = E(x) in time n

O(1)

2

k�1

k+1

n

. 2

This is, as far as we know, the �rst general upper bound on the e�etive key-

length of the Connet-k onstrution.

For the E

0

-enryption standard in the one-level mode we obtain � =  =

1

4

.

That E

0

ful�ls the FBDD-assumption is shown in the appendix-subsetion A.1. We

obtain

Theorem 4. For the E

0

-enryption standard with key-length n, our algorithm

omputes the seret initial state x 2 f0; 1g

n

from the �rst n bits of y = E

0

(x)

in time n

O(1)

2

0:6n

. 2

Observe that 128 � 0:6 � 77. Note that the best known attak against the E

0

generator of key length 128 was derived by Fluhrer and Luks [6℄ and yields a

tradeo� result between time and length of available keystream. It varies from O(2

84

)

neessary operations if 132 bit are available to O(2

73

) neessary operations if 2

43

bits are available. Observe that the FBDD attak yields d128 � 0:6e = 77. Observe

that due to our general assumption that the initial states of the LFSRs are the only

seret information we suppose that the initial state of M is publi. If this is not the

ase we have to run our algorithm 16 times, one round for eah possible state of M .

Let us onsider the E

0

generator in the two level mode with real key length

n and internal key length N � n. Observe that E

2

0

needs 4 � 4 = 16 internal

bits per key bit for produing the �rst N=4 key bits, while for later key bits

only 4 internal bits per key bit are needed (see appendix, subsetion A.2 for the

details). Observe further that our algorithm reahes maximal FBDD-size in iteration

m

�

:= n+

1��

1+�

n. For � = 1=16 this gives m

�

= 32=17n. As m

�

=16 < N=4 we obtain

� =  = 1=16 as relevant parameters for our algorithm on E

2

0

. That E

2

0

ful�ls the

FBDD-assumption is shown in the appendix, subsetion A.2. Taking into aount

that

1��

1+�

=

15

17

� 0:8824 we get

Theorem 5. For the E

2

0

-enryption generator with key-length n, our algorithm

omputes the seret initial state x 2 f0; 1g

n

from the �rst n bits of y = E

2

0

(x) in

time n

O(1)

2

0:8824n

. 2

As far as we know this is the �rst nontrivial upper bound on the key length of

the E

0

2

generator.

Conerning the self-shrinking generator observe that for all even m and all

keystreams y, shrink(z) is pre�x of y for exatly 3

m=2

strings z of length m. We

obtain an information rate � = 1�log(3)=2 � 0:2075 for the self-shrinking generator

by evaluating the relation 2

��m

2

m

= 3

m=2

. The (best ase) ompression ratio of

the self-shrinking generator is obviously 0:5. That the self-shrinking generator ful�ls

the FBDD-ondition was already shown in setion 4. Taking into aount that for

� = 0:2075 it holds

1��

1+�

� 0:6563 and 0:5�

�1

� 2:41 we get

Theorem 6. For the self-shrinking generator of an n-LFSR L, our algorithm

omputes the seret initial state x 2 f0; 1g

n

from the �rst d2:41ne bits of y =

shrink(L(x)) in time n

O(1)

2

0:6563n

. 2

Observe that the best short-keystream attaks previously known against the self-

shrinking generator were given byMeier and Sta�elbah [12℄ (2

0:75n

polynomial time

operations) and Zenner et. al. [17℄ (2

0:694n

polynomial time operations). Mihaljevi�

[11℄ presented an attak whih yields a tradeo� between time and length of available

keystream. It gives 2

0:5n

neessary polynomial time operations if 2

0:5n

bits of
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keystream are available, and mathes our bound of 2

0:6563n

neessary polynomial

time operation if 2

0:3n

bits of keystream are available, whih is a quite unrealisti

assumption.

The diÆulty in applying our algorithm to the A5/1 generator is that the

ompression algorithm reads most of the internal bits twie, one time for the lok

ontrol and a ertain time later for produing an output key bit. Read-twie BDDs

do not have any of the nie algorithmi properties 3.01 - 3.04, unless P = NP .

For making the A5/1 generator aessable to our approah we have to modify the

keystream generation rule. We de�ne the internal bitstream to be mixed of 6 LFSR-

sequenes L

0

; : : : ; L

5

, instead of 3. The �rst 3 LFSR-sequenes are generated by the

3 LFSRs of the A5/1 generator. They are used for produing the output bits. The

sequenes L

3

; L

4

; L

5

are used for omputing the ontrol values. They are shifted

opies of the �rst 3 sequenes, de�ned by the rule L

3+k

j

= L

k

j+N

k

, for k = 0; 1; 2.

After this modi�ation, the ompression algorithm an be designed in suh a way

that eah internal bit is read exatly one (see the appendix, subsetion A.3 for the

details).

The (best ase) ompression ratio of the modi�ed version of A5/1 is  =

1

4

, as

either 4 or 6 new internal bits are used for produing the next output bit. It is

proved in the appendix-subsetion A.4 that the information rate � is the solution

of

2

1�4�

=

1

4

�

3 + 2

2�

�

;

whih yields � � 0:2193. That the (modi�ed) A5/1 generator ful�ls the FBDD-

assumption is shown in subsetion A.3. Taking into aount that

1��

1+�

� 0:6403 and

�

�1

� 1:14 we obtain

Theorem 7. For an A5/1 generator E of key length n, our algorithm omputes the

seret initial state x from the �rst d1:14ne bits of y = E(x) in time n

O(1)

2

0:6403n

.

2

The best previously known short-keystream attak was given by Goli� [7℄. It

is against a version of A5/1 generator with keylength 64, whih slightly deviates

from the spei�ation disovered in [5℄. A tight analysis of the time behaviour of

Goli�'s attak, when applied to the real A5/1 generator, was given by Zenner in

[16℄ and yields 2

42

polynomial time operations. We get a marginal improvement,

as d64 � 0:6403e = 41. The best long-keystream attaks were given by Biryukov,

Shamir and Wagner in [2℄, and Biham and Dunkelman in [1℄. After a preproessing

of 2

42

operations the �rst attak in [2℄ breaks the ipher within seonds on a modern

PC if around 2

20

bits of keystream are available. The seond attak in [2℄ breaks

the ipher within minutes after a preproessing of 2

48

operations and under the

ondition that around 2

15

bits of keystream are available. The attak in [1℄ breaks

the ipher within 2

39:91

A5/1 lokings on the basis of 2

20:8

available keystream

bits.

8 Disussion

There are lassial design riterions for keystream generators like a large period, a

large linear omplexity, orrelation immunity and good loal statistis. In this paper

we suggest a new design riterion: resistane against FBDD-attaks. We have seen

that there are two strategies to ahieve this resistane. The �rst is to highly ompress

the internal bitstream (as in the ase of E

2

0

). This implies a low bit-rate whih is

not desirable. The seond strategy is to design the ompression funtion C in suh

a way that the deision if for an internal bitstream z it holds that C(z) is a pre�x of

a given keystream y requires exponential size FBDDs. It is an interesting hallenge

12



to look for suh onstrutions of ompression funtions whih math also pratial

requirements. For demonstrating the universality of our approah we presented the

FBDD-attak in a very general setting. The obvious disadvantage of this general

setting is that the algorithm needs a lot of spae as all intermediate FBDDs have to

be expliitely onstruted. It is an interesting open question if the algorithmi idea of

FBDD-minimization an be used in a more subtle way for getting, at least for some

iphers, an algorithm whih is less spae onsuming. Another interesting diretion

of further researh is to hek whether the FBDD-attak ould be suessfully

ombined with other more sophistiated methods of ryptanalysis like the tradeo�

attaks suggested in [7℄, [2℄ and [1℄. Moreover, it would be interesting to get some

experimental results for smaller key lengths with real implementations of the FBDD-

attak. How muh do the real sizes of the minimized intermediate FBDDs deviate

from the pessimisti upper bounds proved in our analysis?

Aknowledgement

I would like to thank Stefan Luks, Erik Zenner, Christoph Meinel, Ingo Wegener,

and R�udiger Reishuk for helpful disussions.

Referenes

1. E. Biham, O.Dunkelman. Cryptanalysis of the A5/1 GSM Stream Cipher. Pro. of

INDOCRYPT 2000, LNCS 1977, 43-51.

2. A.Biryukov, A. Shamir, D. Wagner. Real Time Cryptanalysis of A5/1 on a PC. Pro.

of Fast Software Enryption 2000, LNCS 1978, 1-18.

3. Bluetooth SIG. Bluetooth Spei�ation Version 1.0 B, http//:www.bluetooth.om/

4. R.E. Bryant. Graph-based algorithms for Boolean funtion manipulations. IEEE

Trans. on Computers 35, 1986, 677-691.

5. M.Brieno, I. Goldberg, D.Wagner. A pedagogial implementation of A5/1.

http//:www.sard.org, May 1999.

6. S.R. Fluhrer, S. Luks. Analysis of the E

0

Enryption System. Tehnial Report,

Universit�at Mannheim 2001.

7. J. D.Goli�. Cryptanalysis of alleged A5/1 stream ipher. Pro. of EUROCRYPT'97,

LNCS 1233, 239-255.

8. J.Gergov, Ch.Meinel. EÆient Boolean funtion manipulation with OBDDs an be

generalized to FBDDs. IEEE Trans. on Computers 43, 1994, 1197-1209.

9. S.W.Golomb. Shift Register Sequenes. Aegean Park Press, Laguna Hills, revised

edition 1982.

10. Ch.Meinel. Modi�ed Branhing Programs and their Computational Power. LNCS 370,

1989.

11. M. J.Mihaljevi�. A faster Cryptanalysis of the Self-Shrinking Generator. Pro. of

ACIPS'96, LNCS 1172, 182-189.

12. W.Meier, O. Sta�elbah. The Self-Shrinking Generator. Pro. of EUROCRYPT'94,

LNCS 950, 205-214.

13. R.A.Rueppel. Stream Ciphers. Contemporary Cryptology: The Siene of Information

Integrity. G.Simmons ed., IEEE Press New York, 1991.

14. D. Sieling, I.Wegener. Graph driven BDDs - a new data struture for Boolean

funtions. Theoretial Computer Siene 141, 1995, 283-310.

15. I.Wegener. Branhing Programs and Binary Deision Diagrams. SIAM Monographs

on Disrete Mathematis and Appliations. Philadelphia 2000.

16. E. Zenner. Kryptographishe Protokolle im GSM Standard: Beshreibung und

Kryptanalyse (in german). Master Thesis, University of Mannheim, 1999.

17. E. Zenner, M.Krause, S. Luks. Improved Cryptanalysis of the Self-Shrinking

Generator. Pro. of ACIPS'2001, LNCS 2119, 21-35.

13



Appendix

A.1 FBDD-Construtions for the E

0

generator

Let us �x a keystream y. We onstrut polynomial (even linear) size �-OBDDs Q

m

whih deide for an internal bit-stream

z = (z

0

0

; z

1

0

; z

2

0

; z

3

0

; z

0

1

; z

1

1

; z

2

1

; z

3

1

; : : : ; z

0

m�1

; z

1

m�1

; z

2

m�1

; z

3

m�1

);

using this variable ordering �, whether C(z) = (y

0

; : : : ; y

m�1

). The Q

m

follow, via

Theorem 1, from the following O(log(m))-spae bounded algorithm.

1. q := q

0

2. For j := 0 to m� 1

3. if a(q; d

j

)� p

j

= y

j

4. then q := Æ(q; d

j

)

5. else stop(0)

6. stop(1)

where d

j

= (z

0

j

+ z

1

j

+ z

2

j

+ z

3

j

) div 2 and p

j

= (z

0

j

+ z

1

j

+ z

2

j

+ z

3

j

) mod 2 for

j = 0; : : : ;m� 1.

We assume here that the initial state q

0

of M is publi. If this is not the ase

we have to run our algorithm 16 times, one round for eah possible state of M .

A.2 FBDD-Construtions for the E

0

-Generator in the Two-Level Mode

Let us �x a keystream y. We desribe how FBDDs Q

m

, S

m

and P

m

from setion

6 have to be de�ned in the ase of the E

2

0

generator with key-length and internal

key-length N > n. For the sake of simpliity we suppose that N is divisible by 4.

Inputs for Q

m

and S

j

are internal bit-streams looking like

u

0

; : : : ; u

3

; z

0

; u

4

; : : : ; u

7

; z

1

; : : : ; u

4N�4

; : : : ; u

4N�1

; z

N�1

; z

N

; z

N+1

; : : :

whih are read in this order �, i.e., Q

m

and S

j

will be �-OBDDs.

Let L denote the linear bit-stream generator of the E

0

generator of key-length

N . Let q

0

and q

0

0

denote the (publi) initial states of the two E

0

generators of E

0

2

.

Let C and C

0

denote the the ompression funtions of the E

0

generator with initial

states q

0

and q

0

0

, respetively.

For all m � n, the program P

m

reads the �rst m bits of the internal bit-stream

and tests if

{ u

r

= U

r

(u

0

; : : : ; u

n�1

) for r = n; : : : ; N � 1,

{ the bit-stream u = u

0

; u

1

; u

2

; : : : is generated via L and C(u) is pre�x of the

bit-stream z,

{ the bit-stream z is generated via L and C

0

(z) is pre�x of y.

These tests will be distributed to the programs S

m

and Q

m

as follows. The

programs S

m

test the linear restritions and are minimal �-OBDDs whih do the

following

{ If at position m stands some u

r

, for n � r � N � 1, then S

m

tests if

u

r

= U

r

(u

0

; : : : ; u

n�1

).

{ If at position m stands some u

r

, for N � r � 4N � 1, then S

m

tests if

u

r

= L

r

(u

0

; : : : ; u

N�1

).

{ If at position m stands some z

s

, for s � N , then S

m

tests if z

s

=

L

s

(z

0

; : : : ; z

N�1

).
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For all other positions m, S

m

is de�ned to answer always 1.

For all m � n, the programs Q

m

are minimal �-OBDDs whih deide

{ whether C(u) is pre�x of z and

{ whether C

0

(z) is pre�x of y,

where u and z denote the strings of all u

r

-bits and z

s

bits, respetively, ouring

among the �rst m bits of the internal bit-stream. Observe that running our

ryptanalysis algorithm from setion 6 with these Q

m

and S

m

yields th desired

P

m

for E

2

0

.

For 0 � j � N � 1 we write

{ d

j

= (u

4j

+ u

4j+1

+ u

4j+2

+ u

4j+3

) div 2;

{ p

j

= (u

4j

+ u

4j+1

+ u

4j+2

+ u

4j+3

) mod 2:

For j � N=4 we write

{ d

0

j

= (z

4j

+ z

4j+1

+ z

4j+2

+ z

4j+3

) div 2;

{ p

0

j

= (z

4j

+ z

4j+1

+ z

4j+2

+ z

4j+3

) mod 2:

For all m � n let (m) denote the number of key-bits produed by the �rst

m bits of the internal bit-stream. Let us �x some m for whih (m) � N=4. The

programs Q

m

an be onstruted, via Theorem 1, aording to the following read-

one algorithm whih is obviously O(log(m))-spae bounded.

1. q := q

0

, q

0

:= q

0

0

2. For j := 0 to N=4� 1

3. S := 0

4. For k := 0 to 3

5. if a(q; d

4j+k

)� p

4j+k

= z

4j+k

6. then S := S + z

4j+k

, q := Æ(q; d

4j+k

)

7. else stop(0)

8. d := S div 2, p = S mod 2,

9. if a(q

0

; d)� p = y

j

10. then q

0

:= Æ(q

0

; d)

10. else stop(0)

12. For j := N=4 to t(m)� 1

13. if a(q

0

; d

0

j

)� p

0

j

= y

j

14. then q

0

:= Æ(q

0

; d

0

j

)

15. else stop(0)

16. stop(1)

For all j = 0; : : : ; N=4� 1, while heking C(u)

k

= z

k

, for k = z

4j

; : : : ; z

4j+3

the

algorithm stores in S all information neessary for heking that C

0

(z)

j

= y

j

.

A.3 FBDD-Construtions for the A5=1-Generator

Let us �x 3 LFSRs L

0

, L

1

, L

2

of key-lengthes n

0

, n

1

and n

2

, where n = n

0

+n

1

+n

2

.

Let us further �x 3 ontrol positions N

0

, N

1

and N

2

, where for k = 0; 1; 2

N

k

2 fbn

k

=2 � 1; bn

k

=2g:

As already mentioned, for getting the read-one property for the ompression,

we have to de�ne the A5/1 generator with respet to the linear bit-stream L(x),

x 2 f0; 1g

n

, whih is mixed of 6 LFSR-sequenes L

0

(x); : : : ; L

5

(x) as

L(x) = L

0

0

(x); : : : ; L

5

0

(x); : : : ; L

0

m

(x); : : : ; L

5

m

(x); : : :
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where, for k = 0; 1; 2, L

3+k

(x) orresponds to L

k

(x) shifted by N

k

, i.e.,

L

3+k

j

(x) = L

k

j+N

k

(x):

for all j � 0. The internal state x onsists of x

0

; x

1

; x

2

, we write L

k

(x) instead of

L

k

(x

k

).

The de�nition of the ompression funtion C is as follows. In eah timestep i,

the ompressor holds 3 ontrol positions i[0℄, i[1℄, i[2℄, outputs the key-bit

y

i

= L

0

i[0℄

� L

1

i[1℄

� L

2

i[2℄

;

omputes the ontrol value

 = maj

3

�

L

3

i[0℄

; L

4

i[1℄

; L

5

i[2℄

�

;

and updates for k = 0; 1; 2 the ontrol positions aording to

if  = L

3+k

i[k℄

then i[k℄ := i[k℄ + 1:

for k = 0; 1; 2. The order in whih C reads the internal bits is governed by the

ontrol positions. As for internal bit-streams of length m there are at most O(m

3

)

possible assignments to the 3 ontrol values, G

C

m

an be shown to have size O(m

4

).

Polynomial size G

C

m

-driven FBDDs whih deide for a bit-stream

z = z

0

0

; : : : ; z

5

0

; z

0

1

; : : : ; z

5

1

; : : : ;

of length m whether C(z) is pre�x of a given keystream y, an be onstruted

(via Theorem 3) aording to the following O(log(m))-spae bounded read-one

algorithm. For the sake of simpliity let m be divisible by 6.

0. j := 0

1. for all k = 0; 1; 2 let i[k℄ := 0

2. for all k = 0; 1; 2 let status[k℄ := read

3. while for all k = 0; 1; 2 i[k℄ < m=6 do

4. for k = 0; 1; 2

5. if status[k℄ = read then out[k℄ := z

k

i[k℄

; [k℄ := z

3+k

i[k℄

6. if y

j

6= out[1℄� out[2℄� out[3℄ then stop(0)

7. m := maj

3

([1℄; [2℄; [3℄)

8. for k = 1; 2; 3

9. if m = [k℄

10. then i[k℄ := i[k℄ + 1; status[k℄ := read

11. else status[k℄ := notread

12. j:=j+1

13. stop(1)

Observe that the ontrol variable status(k) ensures that no x

k

and no x

3+k

variable will be read more than one while i[k℄, out[k℄ and [k℄ are updated.

A.4 Estimating the Information Rate of the A5/1 generator

Let C denote the ompression funtion of the modi�ed A5/1 generator. We need

to onsider how C produes their output bits on a random uniformly distributed

internal bitstream of �xed length m. For i = 0; 1; 2; : : : ; let Y

i

denote the random

variable orresponding to the number of internal bits whih are neessary for

produing the i-th output bit. Observe that, for all i, either 6 or 4 bits are
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neessary, depending on whether all three ontrol bits are equal or not. It is quite

straightforward to hek that Y

i

and Y

j

are independent for all i 6= j and that

Prob[Y

i

= 6℄ =

1

4

and Prob[Y

i

= 4℄ =

3

4

:

Let � denote the information rate (per bit) of the A5/1 generator. For all integers

m � 0 and k � m let p(m) := 2

�m

and

p(m; k) := Prob

x2

U

f0; 1g

m

[jC(x)j = k℄:

We derive an estimation for � from the relation

p(m) =

m=4

X

k=m=6

p(m; k)2

�k

(4)

On eah internal bitstream of length m at least m=6 output bits are produed. We

denote by Z the random variable orresponding to the number of internal bits whih

are proessed after produing the �rst m=6 output bits. It holds that

Z = 6Z

0

+ 4(m=6� Z

0

);

where Z

0

is an (m=6; 1=4)-binomially distributed random variable, whih

orresponds to the number of those of the �rst m=6 output bits, whih used 6

internal bits. Observe that m� Z, the number of internal bits remaining after the

prodution of m=6 output bits, an be written as

m� Z = m� 6Z

0

�

2

3

m+ 4Z

0

= m=3� 2Z

0

:

Now, the probability p(m) an be written as

p(m) =

m=6

X

i=0

2

�m=6

Prob[Z

0

= i℄

(m=3�2i)=4

X

j=(m=3�2i)=6

p(m=3� 2i; j)2

�j

=

m=6

X

i=0

2

�m=6

�

m=6

i

�

1

4

i

3

4

m=6�i

p(m=3� 2i):

We get the following reurrene for �:

2

��m

= 2

�m=6

m=6

X

i=0

�

m=6

i

�

1

4

i

3

4

m=6�i

2

��(m=3�2i)

= 2

�(1=6+�=3)m

m=6

X

i=0

�

m=6

i

�

1

4

i

3

4

m=6�i

2

2�i

: (5)

For a further simpli�ation of this expression we use the following tehnial

lemma.

Lemma 4. For all integers n � 0, p 2 (0; 1) and reals � it holds

n

X

i=0

�

n

i

�

p

i

(1� p)

n�i

2

�i

=

�

1� p+ p2

�

�

n

:
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Proof. For all integers n � 0 let f(n) :=

P

n

i=0

�

n

i

�

p

i

(1 � p)

n�i

2

�i

. Observe that

f(0) = 1. Using the well-known relation that for all i; 1 � i � n, it holds

�

n

i

�

=

�

n� 1

i

�

+

�

n� 1

i� 1

�

one an derive that

f(n) =

�

1� p+ p2

�

�

f(n� 1);

whih immediately yields the lemma. 2 ut

Applying the lemma to relation (5) we obtain

2

��m

= 2

�(1=6+�=3)m

1

4

�

3 + 2

2�

�

m=6

; i.e.

2

�6�

= 2

�(1+2�)

1

4

�

3 + 2

2�

�

; i.e.

2

1�4�

=

1

4

�

3 + 2

2�

�

:

Evaluating this expression yields � � 0:2193.
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