
An Extended Quadratic Frobenius Primality Test

with Average Case Error Estimates ∗

Ivan Bjerre Damg̊ard Gudmund Skovbjerg Frandsen

BRICS†

Department of Computer Science
University of Aarhus

Ny Munkegade
DK-8000 Aarhus C, Denmark

DRAFT - November 16, 2001

Abstract

We present an Extended Quadratic Frobenius Primality Test (EQFT),
which is related to the Miller-Rabin test and the Quadratic Frobenius test
(QFT) by Grantham. EQFT is well-suited for generating large, random
prime numbers since on a random input number, it takes time about
equivalent to 2 Miller-Rabin tests, but has much smaller error probability.
EQFT extends QFT by verifying additional algebraic properties related
to the existence of elements of order 3 and 4. We obtain a simple closed
expression that upper bounds the probability of acceptance for any input
number. This in turn allows us to give strong bounds on the average-case
behaviour of the test: consider the algorithm that repeatedly chooses
random odd k bit numbers, subjects them to t iterations of our test and
outputs the first one found that passes all tests. We obtain numeric upper
bounds for the error probability of this algorithm as well as a general
closed expression bounding the error. For instance, it is at most 2−143 for
k = 500, t = 2. Compared to earlier similar results for the Miller-Rabin
test, the results indicates that our test in the average case has the effect
of 9 Miller-Rabin tests, while only taking time equivalent to about 2 such
tests. We also give bounds for the error in case a prime is sought by
incremental search from a random starting point. While EQFT is slower
than the average case on a small set of inputs, we present a variant that
is always fast, i.e. takes time about 2 Miller-Rabin tests. The variant has
slightly larger worst case error probability than EQFT, but still improves
on previous proposed tests.

∗Partially supported by the IST Programme of the EU under contract number IST-1999-
14186 (ALCOM-FT).

†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.

1

1 Introduction

Efficient methods for primality testing are extremely important, in theory as
well as in practice. In public-key cryptography, for instance, efficient methods
for generating large, random primes are indispensable tools. Although tests that
always return correct results do exist, tests that accept composite numbers with
bounded probability continue to be much more efficient. This paper presents
and analyses one such test.

Virtually all known probabilistic tests are built on the same basic principle:
from the input number n, one defines an Abelian group in such a way that if
n is prime, then the structure of the group (e.g., its order and the number of
cyclic components) is known. But if n is in fact composite, the actual group
structure is different. We then do a number of computations in the group, to
see if the structure we expect if n is prime is actually present. If not, we know
for sure that n is composite and reject, otherwise we accept, but n may still
be composite because we may have failed to detect that the group had a ”bad”
structure.

The well-known Miller-Rabin test uses the group Z∗
n in exactly this way. A

natural alternative is to try a quadratic extension of Zn, that is, we look at the
ring Zn[x]/(f(x)) where f(x) is a degree 2 polynomial chosen such that it is guar-
anteed to be irreducible if n is prime. In that case the ring is isomorphic to the
finite field with n2 elements, GF (n2). This approach was used successfully by
Grantham[6], who proposed the Quadratic Frobenius Test (QFT), and showed
that it accepts a composite with probability at most 1/7710, i.e. a better bound
than may be achieved using 6 independent Miller-Rabin tests, while asymptoti-
cally taking time approximately equivalent to only 3 such tests. Müller proposes
a different approach based on computation of square roots, the MQFT [7] which
takes the same time as QFT and has error probability essentially 1/1310401.
Just as for the Miller-Rabin test, however, it seems that most composites would
be accepted with probability much smaller than the worst-case numbers. A pre-
cise result quantifying this intuition would allow us to analyse the average case
behaviour of the test, i.e., when it is used to test numbers chosen at random,
say, from some interval. Such an analysis has been done by Damg̊ard, Landrock
and Pomerance for the Miller-Rabin test, but no corresponding result for QFT
or MQFT is known.

In this paper, we propose a new test that can be seen as an extension of QFT.
We call this the Extended Quadratic Frobenius test (EQFT). Under the ERH,
our test takes expected time 2/3 of the time needed for QFT/MQFT (the ERH
is only used to bound the run time and does not affect the error probability).
The error probability is analysed both in average case and worst case scenarios:

For the average case analysis: consider an algorithm that repeatedly chooses
random odd k-bit numbers, subject each number to t iterations of our test,
and outputs the first number found that passes all t tests. Let qk,t be the
probability that a composite is output. We derive numeric upper bounds for
qk,t, e.g., we show q500,2 ≤ 2−143, and also show a general upper bound, namely

for 2 ≤ t ≤ k−1, qk,t is O(k3/22(σt+1)tt−1/24−
√

2σttk) with an easily computable
big-O constant, where σt = log2 24 − 2/t.

1The test and analysis results are a bit different, depending on whether the input is 3 or 1
modulo 4, see [7] for details

2

A similar analysis has been carried out by Damg̊ard, Landrock and Pomer-
ance for the Miller-Rabin test. One result of that paper was that the cor-

responding error probability pk,t for Miller-Rabin is O(k3/22tt−1/24−
√

tk) for
2 ≤ t ≤ k/9. This indicates that for t ≥ 2, our test in the average case roughly
speaking has the effect of between 7 and 9 Miller-Rabin tests, while only taking
time equivalent to 2 such tests.

We also analyze the error probability when a random k-bit prime is instead
generated using incremental search from a random starting point, still using (up
to) t iterations of our test to distinguish primes from composites.

Concerning worst case analysis, it can be shown that t iterations of EQFT
err with probability at most 256/331776t except for an explicit finite set of
numbers. However, we have to consider, in addition to the worst case error
probability, the worst case running time. Unfortunately, EQFT is up to 4 times
slower on worst case inputs than in the average case, namely on numbers n
where very large powers of 2 and 3 divide n2 − 1. We therefore present a vari-
ant of EQFT that always takes time equivalent to about 2 Miller-Rabin tests
(still assuming ERH) but has a worst case error slightly weaker than EQFT.
For this variant, we show that if a composite n has no prime factors less than
27, or if n ≥ 267.5, and if we do t iterations of the test, we err with probability
at most 16/4096t. For comparison with Granthams test, assume that we are
willing to spend the same fixed amount of time testing an input number. Then
our test gives asymptotically a better bound on the error probability: using
time approximately corresponding to 6t Miller-Rabin test, we get error proba-
bility 1/77102t ≈ 1/19.86t using QFT, 1/1310402t ≈ 1/50.86t using MQFT, and
16/40963t = 16/646t using the modified version of EQFT. Note that since we
can recognize in negligible time numbers on which EQFT will take unusually
long time, we can choose intially which version of EQFT to run, and in this
way obtain error probability about 256/3317763t = 256/5766t for most input
numbers, at no significant cost in running time.

2 Extended Quadratic Frobenius Test (EQFT)

We start by giving an intuitive explanation of the basic ideas behind EQFT.
The easiest way to understand the test is to think of it as a way to generalize
the Miller-Rabin test so that instead of Z∗

n, we use the quadratic extension
Zn[x]/(f(x)).

The basic strategy is unchanged: choose a random element z in the group
and test if z has some number of properties. In the Miller-Rabin case, part of
what we do is the Fermat-test, which is based on the fact that Z∗

n has order
n − 1 if n is prime, so we verify that zn−1 = 1. In the quadratic extension we
expect to have a group of order n2−1, so one might expect that we should verify
that zn2−1 = 1. However, if n is prime Zn[x]/(f(x)) is not just a group, but
an extension field and so offers additional structure on top of the multiplicative
group. In particular, it has three nontrivial maps, the Frobenius automorphism:
z 7→ zn; the norm: z 7→ N(z) (a multiplicative homomorphism mapping GF (n2)
to the subfield GF (n)); and conjugation: z → z (a standard notion that is
defined below). It turns out that we can verify instead that zn = z. For any

invertible z, this implies zn2−1 = 1 and is faster to check. On top of this, we can
use an additional idea, namely instead of choosing z uniformly, we only choose

3

values such that N(z) has Jacobi symbol 1. In other words, we make sure that
z “looks like a square” in the sense that z is guaranteed to be a square if n
is a prime. We can therefore expect such a z to have order a factor 2 smaller
than otherwise, and this turns out to improve the error probability by a factor
of 21−ω, where ω is the number of distinct prime factors in n.

The second main part of the Miller-Rabin test is the part where we look
for non-trivial square roots of 1. This is based on the fact that if the Fermat
test was passed, we have a random z for which zn−1 = 1. Since n − 1 can be
assumed to be even, we can use this to construct a square root of 1, i.e., an
element of order 1 or 2, chosen among all such elements in the group. If n is
prime, there are only 2 such elements, namely 1,−1, whereas in general there
are 2ω of them because Z∗

n is the direct product of ω cyclic subgroups. The
probability of running into ±1 if we choose uniformly among the elements of
order 1 or 2 is 21−ω, and this is the reason why the error probability of the
Miller Rabin test is at most the probability of passing the Fermat test times
21−ω 2.

With the quadratic extension, we have a group that has order n2 − 1 if n
is prime. Since we constrained our choice of z to a subgroup of index 2 (N(z)
must have Jacobi symbol 1), the group we expect to be working in is cyclic of
order (n2 − 1)/2 if n is prime. If we make sure that n’s divisible by 2 or 3 are
excluded, it is always the case that 22 · 3 divides (n2 − 1)/2. So if n is prime
there are exactly 4 elements of order 1, 2 or 4, namely 1,−1, ξ4,−ξ4 where ξ4

has order 4. And there are exactly 3 elements of order 1 or 3: 1, ξ3, ξ
−1
3 . Now,

assuming we have found a random z with z(n2−1)/2 = 1, then we can use z to
produce an element R4(z) of order 1, 2 or 4 and R3(z) of order 1 or 3, just
like we produced square roots of 1 in the Miller-Rabin test. Assume for the
moment that we are given elements ξ4, ξ3 of order 4 and 3. Then, if R4(z) is not
one of 1,−1, ξ4,−ξ4 or R3(z) is not one of 1, ξ3, ξ

−1
3 , then n is composite. The

quadratic extension typically has 4ω, resp. 3ω elements of order 1, 2, 4, resp. 1, 3
3. So a random choice will reveal that n is composite with probability (3 ·4)1−ω.
Together with the factor of 21−ω that we gained by constraining the choice of z,
this gives a factor of 241−ω on the error probability. This seems to be what we
can naturally expect: for Miller-Rabin, we used that n − 1 is always divisible
by 2, and gained a factor of 21−ω. Here, we have used that n2 − 1 is always
divisible by 24, and this is the maximal divisor that can always be guaranteed.

However, we did not yet address the problem that we do not know the
elements ξ4, ξ3 a priori. However, as we have already seen, if z passes the
Fermat-like part of the test, then we have a chance of producing elements of
order 3 and 4 from z. So if we iterate the test several times using independent
choices of z but the same quadratic extension, as soon as an iteration finds an
element of order 3 or 4, this can be used as ξ4 or ξ3 by subsequent iterations.
A detailed analysis shows that, although initial iterations may be weaker than
241−ω, the overall probability is almost as good as if we had known ξ4, ξ3 from
the beginning: we loose a factor of at most 4ω−1, for any number of iterations.
To show this result, we exploit that some partial testing of R4(z), R3(z) is
possible even if we do not know suitable elements ξ3, ξ4. For instance, if we see

2For some n’s the distribution will be biased towards non-trivial square roots of 1, this
only makes the test stronger

3There may be less than that, but then the Fermat-like part of the test is much stronger
than otherwise, so we only have to consider the maximal case.

4

an element of order 2, different from ±1, it is already clear that n is composite.
This is detailed below.

To facilitate comparison, we include some comments on the similarities and
difference between EQFT and Grantham’s QFT. In QFT the quadratic exten-
sion, that is, the polynomial f(x), is randomly chosen, whereas the element
corresponding to our z is chosen deterministically, given f(x). Other than that,
the Fermat part of QFT is transplanted almost directly to EQFT. For the test
for roots of 1, QFT does something directly corresponding to the square root of
1 test from Miller-Rabin, but does nothing relating to elements of order 3 or 4.
In fact, our idea of using elements produced in one iteration of the test in other
executions cannot be directly applied to QFT because f(x) changes between
iterations. As for the running time, since our error analysis works for any (i.e.
a worst case) quadratic extension, we can pick one that has a particularly fast
implementation of arithmetic, and this is the basis for the earlier mentioned
difference in running time between EQFT and QFT. As for the error analysis,
using a fixed polynomial but a random choice in the group seems to simplify the
analysis for EQFT, in particular concrete expressions for the error probability
follow directly from knowledge of the group structure of Zn[x]/(f(x)).

A final comment relates to the comparison in running times between Miller-
Rabin, Grantham’s and our test. We stated above that Granthams test (our
test) takes time approximately equivalent to 3 (2) Miller-Rabin tests. What we
mean by this more precisely is that the running time of Miller-Rabin, resp. Gran-
tham’s, resp. our test is log n + o(log n) resp. 3 log n + o(log n) resp. 2 logn +
o(log n)) multiplications in Zn, this is also consistent with the way running times
have been stated earlier in the literature. However, taking a closer look, we find
that the running time of Miller-Rabin is actually log n squarings +o(log n) mul-
tiplications in Zn, while the 3 logn (2 logn) multiplications mentioned for the
other tests are really a mix of squarings and multiplications. So for an accurate
comparison we should consider how the times for modular multiplications and
squarings compare. In turns out that on a standard, say, 32 bit architecture, a
modular multiplication takes time about 1.25 times that of a modular squaring
if the numbers involved are very large. However, if we use the fastest known
modular multiplication method (which is Montgomery’s in this case, where n
stays constant over many multiplications), the factor is smaller for numbers in
the range of practical interest. Concrete measurements using highly optimized
C code shows that it is between 1 and 1.08 for numbers of length 500-1000 bits.
This is due to the fact that optimizing squarings by avoiding computation of
some partial products requires additional bookkeeping that eats up the savings
unless the numbers contain more than 40-50 words. Finally, when using dedi-
cated hardware the factor is exactly 1 in most cases. So we conclude that the
comparisons we stated are quite accurate also for practical purposes.

2.1 The ring R(n, c) and the extended quadratic Frobenius
test

Definition 1 Let n be an odd integer and let c be a unit modulo n.
Let R(n, c) denote the ring Z[x]/(n, x2 − c).

More concretely, an element z ∈ R(n, c) can be thought of as a degree 1
polynomial z = ax + b, where a, b ∈ Zn, and arithmetic on polynomials is

5

modulo x2 − c where coefficients are computed on modulo n.
Let p be an odd prime. If c is not a square modulo p, i.e. (c/p) = −1,

then the polynomial x2 − c is irreducible modulo p and R(p, c) is isomorphic to
GF (p2).

Definition 2 Define the following multiplicative homomorphisms on R(n, c)
(assume z = ax + b):

· : R(n, c) 7→ R(n, c), z = −ax + b (1)

N(·) : R(n, c) 7→ Zn, N(z) = z · z = b2 − ca2 (2)

and define the map (·/·) : Z× Z 7→ {−1, 0, 1} to be the Jacobi symbol.

The maps · and N(·) are both multiplicative homomorphisms whether n is
composite or n is a prime. The primality test will be based on some additional
properties that are satisfied when p is a prime and (c/p) = −1, in which case
R(p, c) ≃ GF (p2):

Frobenius property / generalised Fermat property: Conjugation, z 7→ z, is
a field automorphism on GF (p2). In characteristic p, the Frobenius map that
raises to the p’th power is also an automorphism, using this it follows easily that

z = zp (3)

Quadratic residue property / generalised Solovay-Strassen property: The
norm, z 7→ N(z), is a surjective multiplicative homomorphism from GF (p2)
to the subfield GF (p). As such the norm maps squares to squares and non-
squares to non-squares, it follows from the definition of the norm and (3) that

z(p2−1)/2 = N(z)(p−1)/2 = (N(z)/p) (4)

4’th-root-of-1-test / generalised Miller-Rabin property: Since GF (p2) is a
field there is only four possible 4th roots of 1 namely 1, −1 and ξ4, −ξ4, the two
roots of the cyclotomic polynomial Φ4(x) = x2 + 1. In particular, this implies
for p2 − 1 = 2u3vq where (q, 6) = 1 that if z ∈ GF (p2) \ {0} is a square then

z3vq = ±1, or z2i3vq = ±ξ4 for some i = 0, . . . , u − 3 (5)

3’rd-root-of-1-test: Since GF (p2) is a field there is only three possible 3rd
roots of 1 namely 1 and ξ3, ξ−1

3 , the two roots of the cyclotomic polynomial
Φ3(x) = x2 + x + 1. In particular, this implies for p2 − 1 = 2u3vq where
(q, 6) = 1 that if z ∈ GF (p2) \ {0} then

z2uq = 1, or z2u3iq = ξ±1
3 for some i = 0, . . . , v − 1 (6)

The actual test will have two parts. In the first part, a specific quadratic
extension is chosen, i.e. R(n, c) for an explicit c. In the second part, the above
properties of R(n, c) is tested for a random choice of z. When the EQFT is run
several times on the same n, only the second part is executed multiple times.
The second part receives two extra inputs, a 3rd and a 4th root of 1. On the
first execution of the second part these are both 1. During later executions of
the second part some nontrivial roots are possibly constructed. If so they are
transfered to all subsequent executions of the second part. Figure 1 illustrates
4 consecutive tests, where a primitive 3rd root, ξ3, is found immediately and a
primitive 4th root, ξ4, is found later.

6

EQFT part 2

EQFT part 2

EQFT part 2

EQFT part 2

1 1

n, c

ξ3 1 pr.pr.

n, c

ξ3 ξ4

n, c

ξ3 ξ4

n, c

ξ3 ξ4

n

c

EQFT part 1

prob.prime

composite

n

comp.

comp.

comp.

comp.

comp.

pr.pr.

pr.pr.

Figure 1: flowchart for 4 iterations of EQFT over a single n

7

Algorithm 3 Extended Quadratic Frobenius Test (EQFT).
First part (construct quadratic extension):

input: an odd number n ≥ 5.
output: “composite” or c satisfying (c/n) = −1.

1. if n is divisible by a prime less than 13 return “composite”

2. if n is a perfect square return “composite”

3. choose a small c with (c/n) = −1; return c

Second part (make actual test):
input: n ≥ 5 not divisible by 2 or 3.

c satisfying (c/n) = −1
r3 ∈ {1} ∪ {ξ ∈ R(n, c) | Φ3(ξ) = 0}
r4 ∈ {1,−1} ∪ {ξ ∈ R(n, c) | Φ4(ξ) = 0}

output: “composite”, or “probable prime” and
s3 ∈ {1} ∪ {ξ ∈ R(n, c) | Φ3(ξ) = 0}
s4 ∈ {1,−1} ∪ {ξ ∈ R(n, c) | Φ4(ξ) = 0}

Let n2 − 1 = 2u3vq for (q, 6) = 1.

4. select random z ∈ R(n, c)∗ with (N(z)/n) = 1

5. if z 6= zn or z(n2−1)/2 6= 1 return “composite”

6. if z3vq 6= 1 and z2i3vq 6= −1 for all i = 0, . . . , u − 2 return “composite”

7. if we found i0 ≥ 1 with z2i03vq = −1 (there can be at most one such

value) then let R4(z) = z2i0−13vq. Else let R4(z) = z3vq (= ±1);
if (r4 6= ±1 and R4(z) 6∈ {±1,±r4}) return “composite”

8. if z2uq 6= 1 and Φ3(z
2u3iq) 6= 0 for all i = 0, . . . , v−1 return “composite”

9. if we found i0 ≥ 0 with Φ3(z
2u3i0q) = 0 (there can be at most one such

value) then let R3(z) = z2u3i0q else let R3(z) = 1;
if (r3 6= 1 and R3(z) 6∈ {1, r±1

3 }) return “composite”

10. if r3 = 1 and R3(z) 6= 1 then let s3 = R3(z) else let s3 = r3;
if r4 = ±1 and R4(z) 6= ±1 then let s4 = R4(z) else let s4 = r4;
return “probable prime”, s3, s4

Remark. Line 1 ensures that 24 | n2 − 1.
Line 2 of the algorithm is necessary, since no c with (c/n) = −1 exists when

n is a perfect square.
Line 3 of the algorithm ensures that R(n, c) ≃ GF (n2) when n is a prime.

Lemma 5 defines more precisely what ”small” means.
Line 4 makes sure that z is a square, when n is a prime.
Line 5 checks equations (3) and (4), the latter in accordance with the con-

dition enforced in line 4.
Line 6 checks equation (5) to the extent possible without having knowledge

of ξ4, a primitive 4th root of 1.
Line 7f continues the check of equation (5) by using any ξ4 given on the

input.

8

Line 8 checks equation (6) to the extent possible without having knowledge
of ξ3, a primitive 3rd root of 1.

Line 9f continues the check of equation (6) by using any ξ3 given on the
input.

2.2 Implementation of the test

High powers of elements in R(n, c) may be computed efficiently when c is (nu-
merically) small. Represent z ∈ R(n, c) in the natural way by ((Az , Bz) ∈
Zn × Zn, i.e. z = Azx + Bz.

Lemma 4 Let z, w ∈ R(n, c):

1. z · w may be computed from z and w using 3 multiplications and O(log c)
additions in Zn

2. z2 may be computed from z using 2 multiplications and O(log c) additions
in Zn

Proof. For 1, we use the equations

Azw = m1 + m2

Bzw = (cAz + Bz)(Aw + Bw) − (cm1 + m2)

with

m1 = AzBw

m2 = BzAw

For 2, we need only observe that in the proof of 1, z = w implies that m1 = m2.

We also need to argue that it is easy to find a small c with (c/n) = −1.
One may note that if n = 3 mod 4, then c = −1 can always be used, and if
n = 5 mod 8, then c = 2 will work. In general, we have the following:

Lemma 5 Let n be an odd composite number that is not a perfect square. Let
π−(x, n) denote the number of primes p ≤ x such that (p/n) = −1, and, as
usual, let π(x) denote the total number of primes p ≤ x. Assuming the Extended
Riemann Hypothesis (ERH), there exists a constant C (independent of n) such
that

π−(x, n)

π(x)
>

1

3
for all x ≥ C(log n log log n)2

Proof. π−(x, n) counts the number of primes outside the group G = {x ∈
Z∗

n | (x/n) = 1}. When n is not a perfect square, then G has index 2 in Z∗
n,

and by [1, th.8.4.6], the ERH implies that

π−(x, n) =
1

2
li(x) + O(

√
x(log x + log n)) (7)

similarly, by [1, th.8.3.3], the Riemann Hypothesis implies that

π(x) = li(x) + O(
√

x log x) (8)

9

where li(x) =
∫ x

2
dt/ ln t satisfies that

li(x) = Θ(x/ log x) (9)

In addition the constants implied by the O(·)-notation are all universal and
therefore one may readily verify that for any ǫ > 0 there is a universal constant
Cǫ such that

π−(x, n)

π(x)
>

1

2
− ǫ for all x ≥ Cǫ(log n log log n)2

Theorem 6 Let n be a number that is not divisible by 2 or 3, and let u ≥ 3
and v ≥ 1 be maximal such that n2 − 1 = 2u3vq. There is an implementation
of algorithm 3 that on input n takes expected time equivalent to 2 logn + O(u +
v) + o(log n) multiplications in Zn, when assuming the ERH.

Remark. We can only prove a bound on the expected time, due to the
random selection of an element z (in line 4) having a property that is only
satisfied by half the elements, and to the selection of a suitable c (line 3), where
at least a third of the candidates are usable. Although there is in principle no
bound on the maximal time needed, the variance around the expectation is small
because the probability of failing to find a useful z and c drops exponentially
with the number of attempts. We emphasize that the ERH is only used to
bound the running time (of line 3) and does not affect the error probability, as
is the case with the original Miller test.

The detailed implementation of algorithm 3 may be optimized in various
ways. The implementation given in the proof that follows this remark has
focused on simplicity more than saving a few multiplications. However, we are
not aware of any implementation that avoids the O(u+v) term in the complexity
analysis.

Proof. We will first argue that only lines 5-9 in the algorithm have any
significance in the complexity analysis.

line 2. By Newton iteration the square root of n may be computed using
O(log log n) multiplications.

line 3. By lemma 5, we expect to find a c of size O((log n log log n)2) such
that (c/n) = −1 after three attempts (or discover that n is composite).

line 4. z is selected randomly from R(n, c) \ {0}. We expect to find z with
(N(z)/n) = 1 after two attempts (or discover that n is composite).

line 5-9. Here we need to explain how it is possible to simultaneously verify
that z = zn, and do both a 4’th-root-of-1-test and a 3’rd-root-of-1-test without
using too many multiplications. We refer to lemma 4 for the implementation of
arithmetic in R(n, c).

Define s, r by n = 2u3vs+ r for 0 ≤ r < 2u3v. A simple calculation confirms
that

q = ns + rs + (r2 − 1)/(2u3v), (10)

where the last fraction is integral. Go through the following computational steps
using the z selected in line 4 of the algorithm:

10

1. compute zs.

This uses 2 log n + o(log n) multiplications in Zn.

2. compute zn.

Starting from step 1 this requires O(v + u) multiplications in Zn.

3. verify zn = z.

4. compute zq.

One may compute zq from step 1 using O(v + u) multiplications in Zn,
when using (10) and the shortcut zns = zs, where the shortcut is implied
by step 3 and exponentiation and conjugation being commuting maps.

5. compute z3vq, z2·3vq, z223vq, . . . , z2u−23vq.

Starting from step 4 this requires O(v + u) multiplications in Zn.

6. verify that z3vq = 1 or z2i3vq = −1 for some 0 ≤ i ≤ u − 2. If there is
i0 ≥ 1 with z2i03vq = −1 and if ξ4 is present, verify that z2i0−13vq = ±ξ4.

7. compute z2uq, z2u3q, z2u32q, . . . , z2u3v−1q.

Starting from step 4 this requires O(v + u) multiplications in Zn.

8. By step 6 there must be an i (0 ≤ i ≤ v) such that z2u3iq = 1. Let i0 be

the smallest such i. If i0 ≥ 1 verify that z2u3i0−1q is a root of x2 + x + 1.
If ξ3 is present, verify in addition that z2u3i0−1q = ξ±1

3

3 An expression bounding the error probability

The analysis of our primality test falls in two parts. In the first subsection, we
deduce an expression describing the probability of passing the basic Frobenius
test (line 5 of algorithm 3). In the second subsection this analysis is aug-
mented to encompass the 4’th-root-of-1 and 3’rd-root-of-1 tests (lines 6-9f of
algorithm 3).

3.1 The Frobenius test

The analysis of the Frobenius test is based on understanding the structure of the
following groups and thereby constructing expressions for bounding the absolute
and relative sizes of them.

Definition 7 Let n be an odd number, let c be a unit modulo n.

U(n, c)
def
= {z ∈ R(n, c)∗ | (N(z)/n) = 1}

G(n, c)
def
= {z ∈ U(n, c) | z = zn and z(n2−1)/2 = 1}

For prime power pm dividing n, let G(n, pm, c) denote the set of those z0 ∈
R(pm, c) for which there exists z ∈ G(n, c) satisfying that z ≡ z0 mod pm.

11

R(n, c)∗ ≃ R(pm1
1 , c)∗ × · · · × R(pmω

ω , c)∗

| | |
U(n, c) | |

| | |
G(n, c) ≃ G(n, p1, c) × · · · × G(n, pω, c)

Figure 2: Subgroup and isomorphism relations

Expressed in terms of these definitions, the EQFT draws a random z ∈
U(n, c) and in line 5 of algorithm 3 it checks that z ∈ G(n, c), which should
be the case if n is a prime and (c/n) = −1. Hence, the probability of not
discovering a composite n in line 5 alone is

|G(n, c)|
|U(n, c)| (11)

It is fairly clear from the definitions that U(n, c), G(n, c) and G(n, pm, c) are all
groups.

Figure 2 illustrates the subgroup and isomorphism relations that holds (as-
suming n =

∏ω
i=1 pmi

i). We will in turn characterise the structure and size of
R(n, c) and G(n, c).

Lemma 8 Let n be an odd integer and let c be a unit modulo n.

1. if p is a prime and (c/p) = −1 then

R(p, c)∗ ≃ Zp2−1

and zp = z for z ∈ R(p, c)

2. if p is a prime and (c/p) = 1 then

R(p, c)∗ ≃ Zp−1 × Zp−1,

zp = z and (z1, z2) = (z2, z1) for z = (z1, z2) ∈ R(p, c)

3. if pm is a prime power divisor of n, then

R(pm, c)∗ ≃ Zpm−1 × Zpm−1 × R(p, c)∗

4. If n has prime power factorisation n =
∏ω

i=1 pmi

i then

R(n, c)∗ ≃ R(pm1
1 , c)∗ × · · · × R(pmω

ω , c)∗

Proof. 1. The condition (c/p) = −1 implies that x2 − c is irreducible over
Zp, and hence R(p, c) is isomorphic to GF (p2), the finite field with p2 elements.
In this field the map z 7→ zp is a field automorphism (it is the identity map on
the subfield GF (p)). Hence, If z = ax + b then

zp = (ax + b)p = axp + b = ac(p−1)/2x + b = a(c/p)x + b = −ax + b = z

12

2. The condition (c/p) = 1 implies that c has a square root d ∈ Zp, i.e.
x2 − c = (x − d)(x + d). Hence, by Chinese remaindering

R(p, c) ≃ Z[x]/(p, x − d) × Z[x]/(p, x + d) ≃ GF (p) × GF (p)

Let (z1, z2) ∈ R(p, c). The map z 7→ zp is the identity map on GF (p). Hence,
(z1, z2)

p = (zp
1 , zp

2) = (z1, z2). Let (z1, z2) = ax + b. Using that ax + b =

(ad+b,−ad+b) and −ax+b = (−ad+b, ad+b), we find that (z1, z2) = (z2, z1).
3. Define the sets A = {(1 + p)i | i = 1, . . . , pm−1} and B = {(1 + px)i | i =

1, . . . , pm−1}. It is easy to verify that A ∩ B = {1}, and each of A and B
are cyclic subgroups of R(n, c)∗ of order pm−1. Define the homomorphism h :
R(pm, c)∗ 7→ R(p, c)∗ by h(z) = z mod p. Clearly h is surjective, and hence
R(p, c)∗ is isomorphic to a subgroup of R(pm, c)∗. It suffices to prove that the
kernel of h is A×B. Clearly, A×B ⊆ h−1(1), and since also |A×B| = p2(m−1) =
|h−1(1)|, the proof is complete.

4. By Chinese remaindering.

Lemma 9 Let n be an odd number, and let c satisfy that (c/n) = −1. Then
U(n, c) is a subgroup of R(n, c)∗, and

|U(n, c)| ≥ 1

2
|R(n, c)∗|

Proof. The map h : z 7→ (N(z)/n) is a multiplicative homomorphism from
R(n, c)∗ to {−1, 1}. Hence, U(n, c) = h−1(1) must be a subgroup of R(n, c)∗ of
index 2 or 1.

Lemma 10 Let n be an odd number, let c be a unit modulo n.

1. If prime p divides n then G(n, p, c) is a cyclic subgroup of R(p, c)∗ of size

|G(n, p, c)| =

{

gcd(n/p− 1, (p2 − 1)/2), if (c/p) = −1
gcd((n2/p2 − 1)/2, p− 1), if (c/p) = 1

2. If prime power pm divides n then G(n, pm, c) ≃ G(n, p, c)

3. If n has prime power factorisation n =
∏ω

i=1 pmi

i then

G(n, c) = G(n, p1, c) × · · · × G(n, pω , c).

Proof. For 1, let z ∈ G(n, c), and define z0 ∈ R(p, c) by z ≡ z0 mod p. Since

z ∈ G(n, c), we know that zn
0 = z0 and z

(n2−1)/2
0 = 1. The argument is divided

in cases:
Consider first the case (c/p) = −1. By lemma 8, z0 = zp

0 implying that the
order of z0 divides gcd(n − p, (n2 − 1)/2) = gcd(n/p − 1, (p2 − 1)/2). Since the
multiplicative subgroup of R(p, c) ≃ GF (p2) is cyclic, the stated bound on the
size of |G(n, p, c)| follows.

Consider next the case (c/p) = 1. By lemma 8, z0 = zp
0 , i.e. the order of

z0 in R(p, c) divides gcd((n2 − 1)/2, p − 1) = gcd((n2/p2 − 1)/2, p − 1). Since
R(p, c) ≃ GF (p)×GF (p), one may represent z0 by (w1, w2) ∈ GF (p)×GF (p),
implying that w1 is in the unique multiplicative subgroup of GF (p) of order

13

gcd((n2/p2 − 1)/2, p − 1). In addition w2 is uniquely determined by w1, since
by lemma 8, (w2, w1) = (w1, w2) = (w1, w2)

n = (wn
1 , wn

2). Part 1 of the lemma
follows.

For 2, it is enough to argue that p does not divide the order of any element
z ∈ G(n, pm, c), since, by lemma 8, G(n, pm, c) is a subgroup of R(pm, c)∗ ≃
Zpm−1 ×Zpm−1 ×R(p, c)∗. By definition, z ∈ G(n, pm, c) satisfy that zn2−1 = 1,
and since p|n it follows that p 6 | n2 − 1.

For 3, we use 2. In addition we need to argue that G(n, c) is the entire Carte-
sian product and not just a subgroup. Let A ≃ G(n, p1, c)× · · ·×G(n, pω, c). It
suffices to prove that A ⊆ U(n, c). Assume to the contrary that z ∈ A \U(n, c),
i.e. (N(z)/n) = −1. Since (N(z)/n) =

∏ω
i=1(N(z)/pi)

mi , it must be the case
that (N(z)/p) = −1 for some p|n. Computing modulo p, and using that z = zp,
we get −1 = (N(z)/p) = z(p+1)(p−1)/2 in contradiction with 1.

Lemma 11 Let n be an odd number with prime power factorisation n =
∏ω

i=1 pmi

i ,
let Ω =

∑ω
i=0 mi, and let c satisfy that (c/n) = −1. The probability that n is

not found to be composite in line 5 of algorithm 3 is

|G(n, c)|
|U(n, c)|

≤ 2 ·
ω

∏

i=1

p
2(1−mi)
i sel[(c/pi),

(n/pi − 1, (p2
i − 1)/2)

p2
i − 1

,
((n2/p2

i − 1)/2, pi − 1)

(pi − 1)2
]

≤ 21−ω
ω

∏

i=1

p
2(1−mi)
i sel[(c/pi),

(n/pi − 1, (p2
i − 1)/2)

(p2
i − 1)/2

,
2

pi − 1
]

≤ 21−Ω

where, we have adopted the notation sel[±1, E1, E2] for a conditional expression
with the semantics sel[−1, E1, E2] = E1 and sel[1, E1, E2] = E2.

Proof. The first upper bound for |G(n, c)|/|U(n, c)| follows from combining
lemmas 8, 9 and 10. The last two inequalities are trivial simplifications.

3.2 4’th-root-of-1 and 3’rd-root-of-1 tests

In this subsection, we estimate the probability that n passes the 4’th-root-of-1
and 3’rd-root-of-1 tests (lines 6-7f and 8-9f), given that it passes the Frobenius
part of the test (line 5), i.e., given that z ∈ G(n, c). These probabilities can be
bounded assuming that the auxiliary inputs r3, r4 are “well chosen”. We define
below exactly which values of r3, r4 are good. We let β(n, c) be the probability
that the entire second part of the test (lines 5-9f) is passed assuming that r3, r4

are good. Also, under the same assumption, we let

Pr4(n, c) = Pr(4’th-root-of-1-test passed | z ∈ G(n, c))

Pr3(n, c) = Pr(3’rd-root-of-1-test passed | z ∈ G(n, c))

Let p1, ..., pω be the distinct prime factors in n, and let Ci, respectively Di be
the Sylow-2, respectively the Sylow-3 subgroup of G(n, pi, c). Then we have

G(n, c) ≃ C1 × ... × Cω × D1 × ... × Dω × H

14

where |H | is prime to 2,3. Recall that in the test, we write n2 − 1 = q2u3v. If
z is uniformly chosen in G(n, c) and we write elements in G(n, c) according to
the above decomposition as 2ω + 1-tuples, we have

zq3v

= (c1, ..., cω, 1, ..., 1, 1) zq2u

= (1, ..., 1, d1, ..., dω , 1)

where ci is uniform in Ci and di is uniform in Di, and so these two group
elements are independently distributed. Since furthermore the result of the
4’th-root-of-1-test depends only on zq3v

, r4 and the 3’rd-root-of-1-test depends
only on zq2u

, r3, we have

β(n, c) =
|G(n, c)|
|U(n, c)|Pr4(n, c)Pr3(n, c)

We let T4(n, c) be the set of elements of form (c1, ..., cω, 1, ..., 1, 1) such that
ord(c1) = ord(c2) = ... = ord(cω), and T3(n, c) is the set of elements of form
(1, ..., 1, d1, ..., dω, 1) such that ord(d1) = ord(d2) = ... = ord(dω).

r3, r4 are said to be good if r4 ∈ T4(n, c) and is a non-trivial 4’th root of 1
(different from ±1), and if r3 ∈ T3(n, c) and is a non-trivial 3’rd root of 1 (differ-
ent from 1), provided that such non-trivial roots exist in T4(n, c), T3(n, c). If not
r3 = r4 = 1 is defined to be good. We now derive bounds for Pr4(n, c), P r3(n, c)
(assuming we are given good values of r3, r4).

Consider first Pr4(n, c). The first part of the 4’th-root-of-1-test (line 6)
starts from zq3v

, performs some squarings and tests for occurrence of −1. It
is easy to see that this first part is passed if and only if zq3v ∈ T4(n, c). Let
|Ci| = 2ai and define amin = min{ai| i = 1..ω}. Note that amin ≥ 1. Of
course, the probability that this first part of the 4’th-root-of-1-test is passed is

|T4(n, c)|/2
∑

i
ai . Clearly, if amin = 1, |T4(n, c)| = 2.

Now assume that amin > 1 and that zq3v ∈ T4(n, c). We want to count the
number of possible values of zq3v ∈ T4(n, c) for which the second part of the
4’th-root-of-1-test (line 7) is passed, i.e., for which R4(z) is one of 1,−1, r4,−r4.
This happens if zq3v

is ±1 or is mapped to ±r4 by 0 or more squarings. Since
squaring in the group C1 × · · · × Cω is a 2ω to 1 mapping, and elements in
T4(n, c) have maximal order 2amin , the number of such elements is 2 + 2 · 20·ω +
2 · 21·ω + ... + 2 · 2(amin−2)ω. It follows that if amin > 1, we have

Pr4(n, c) =
|T4(n, c)|
2
∑

i
ai

· 2 + 2 · 20·ω + 2 · 21·ω + ... + 2 · 2(amin−2)ω

|T4(n, c)| ≤ 41−ω

Summarizing, we have

Lemma 12 If amin = 1, we have Pr4(n, c) ≤ 21−
∑

i
ai . If amin > 1, we have

Pr4(n, c) ≤ 41−ω.

We now consider Pr3(n, c). The first part of the 3’rd-root-of-1-test (line
8) starts from zq2u

, performs some cubings and tests for occurrences of roots
in the third cyclotomic polynomial. This first part is passed if and only if
zq2u ∈ T3(n, c). Let |Di| = 3bi , and set bmin = min{bi| i = 1..ω}. Note that

bmin ≥ 0. The probability of passing the first part is |T3(n, c)|/3
∑

i
bi . This is

3−
∑

i
bi if bmin = 0.

Now assume that bmin > 0 and that zq2u ∈ T3(n, c). Similar to what we
did in the 4’th-root-of-1-test, we count the number of possible values for zq2u ∈

15

T3(n, c), such that R3(z) is one of 1, r3, r
−1
3 . This number is 1 + 2 · 30·ω + 2 ·

31·ω + ... + 2 · 3(bmin−1)ω. We therefore have:

Pr3(n, c) =
|T3(n, c)|
3
∑

i
bi

· 1 + 2 · 30·ω + 2 · 31·ω + ... + 2 · 3(bmin−1)ω

|T3(n, c)| ≤ 31−ω

This leads to

Lemma 13 If bmin = 0, we have Pr3(n, c) ≤ 3−
∑

i
bi . If bmin > 0, we have

Pr3(n, c) ≤ 31−ω.

Clearly, these estimates for Pr4(n, c), P r3(n, c) combined with the formula above
for β(n, c) can be used to obtain general estimates. However, we need to split
the analysis into some cases, since amin = 1 and bmin = 0 require arguments
different from the other cases. As a first step, we have

Lemma 14 If amin = 1, we have

|G(n, c)|
|U(n, c)|Pr4(n, c) ≤ 4 ·8−ω

ω
∏

i=1

p
2(1−mi)
i sel[(c/pi),

(n/pi − 1, (p2
i − 1)/8)

(p2
i − 1)/8

,
4

pi − 1
]

If bmin = 0, we have

|G(n, c)|
|U(n, c)|Pr3(n, c) ≤ 2 ·6−ω

ω
∏

i=1

p
2(1−mi)
i sel[(c/pi),

(n/pi − 1, (p2
i − 1)/6)

(p2
i − 1)/6

,
6

pi − 1
]

If amin = 1 and bmin = 0, we have

|G(n, c)|
|U(n, c)|Pr4(n, c)Pr3(n, c) ≤ 4·24−ω

ω
∏

i=1

p
2(1−mi)
i sel[(c/pi),

(n/pi − 1, (p2
i − 1)/24)

(p2
i − 1)/24

,
12

pi − 1
]

Proof. For the first claim, we have by Lemma 12 that

|G(n, c)|
|U(n, c)|Pr4(n, c) ≤ |G(n, c)|

|R(n, c)∗|
4

2a1 · · · 2aω
= 4

ω
∏

i=1

p
2(1−mi)
i

|G(n, pi, c)|
2ai |R(pi, c)∗|

Note that by definition of ai, |G(n, pi, c)|/2ai is odd. Therefore we have that if
the Jacobi symbol of c modulo pi is −1,

|G(n, pi, c)|
2ai |R(pi, c)∗|

=
(n/pi − 1, (p2

i − 1)/2)

2ai(p2
i − 1)

≤ 1

8

(n/pi − 1, (p2
i − 1)/8)

(p2
i − 1)/8

and if the Jacobi symbol of c modulo pi is 1,

|G(n, pi, c)|
2ai |R(pi, c)∗|

=
((n2/p2

i − 1)/2, pi − 1)

2ai(pi − 1)2
≤ 1

8

4

pi − 1

This proves the first claim. The other two can be argued in similar ways, details
are left to the reader.

This lemma, combined with the conclusions of Lemmas 12, 13 for amin >
1, bmin > 0 immediately implies:

16

Theorem 15 Let n be an odd composite number with prime power factorisation
n =

∏ω
i=1 pmi

i , let Ω =
∑ω

i=0 mi, and let c satisfy that (c/n) = −1.
Given good values of the inputs r3, r4, the error probability of a single itera-

tion of the second part of the EQFT (algorithm 3) is bounded by

β(n, c) ≤ |G(n, c)|
|U(n, c)|Pr4(n, c)Pr3(n, c)

≤ 241−ω
ω

∏

i=1

p
2(1−mi)
i sel[(c/pi),

(n/pi − 1, (p2
i − 1)/24)

(p2
i − 1)/24

,
12

pi − 1
]

≤ 241−Ω

The assumption on r3, r4 in the above theorem means that r3 ∈ T3(n, c), r4 ∈
T4(n, c), and furthermore that both are non-trivial roots of 1, if such roots exist
in T3(n, c), T4(n, c). However, when EQFT is executed as described earlier,
these auxiliary inputs are produced such that r3 is either 1 or is R3(z) for
some base z that leads to accept, and similarly for r4. This does ensure that
r3 ∈ T3(n, c), r4 ∈ T4(n, c), but of course not that they are non-trivial roots.
Fortunately, the probability that they are non-trivial is sufficiently large that
the theorem can still be used to bound the actual error probability:

Theorem 16 Let n be an odd composite number with ω distinct prime factors.
For any t ≥ 1, the error probability βt(n) of t iterations of EQFT (algorithm

3) is bounded by

βt(n) ≤ max
(c/n)=−1

4ω−1β(n, c)t

Proof. Let βt(n, c) denote the probability that a composite n passes t iterations
of the second part of algorithm 3 with r3 = r4 = 1 on the first iteration.
Clearly, βt(n) ≤ max(c/n)=−1 βt(n, c), and it suffices to prove that βt(n, c) ≤
4ω−1β(n, c)t

Fix any c with (c/n) = −1. Then the proof splits in cases, according to the
values of amin, bmin. Assume first that amin > 1, bmin > 0. Then non-trivial
3’rd and 4’th roots exist in T3(n, c), T4(n, c). Let EQFT t(R) denote t iterations
of EQFT using random input R (used in choosing z-values, for instance). Let
EQFT t

O(R) denote t iterations, where the algorithm is given two non-trivial
roots r3, r4 from an oracle O. By construction of the algorithm, this means that
all iterations will use r3, r4 as auxiliary input. From Theorem 15 it is immediate
that EQFT t

O(R) accepts n with probability β(n, c)t.
There are 2ω possible non-trivial values of r3 in T3(n, c). For each such r3,

using r−1
3 as auxiliary input instead leads to the same behavior of the test, so

there are 2ω−1 essentially different choices of r3. Similar reasoning shows that
there are 2ω−1 essentially different choices of r4. Hence we can make in a natu-
ral way 4ω−1 essentially different pairs (r3, r4), and define oracles O1, ..., O4ω−1

where each oracle outputs its own pair of values.
Consider now the following experiment: on input n, we run EQFT t(R)

and also EQFT T
Oi

(R) for i = 1, ..., 4ω−1. The probability that for some i,
EQFT t

Oi
(R) accepts, is at most 4ω−1β(n, c)t. So it is enough to show that if

EQFT t(R) accepts, then for some i, EQFT t
Oi

(R) accepts. To see this, consider
some R for which all z-values chosen in EQFT t(R) lead to trivial values of aux-
iliary input, i.e., R3(z) = R4(z) = 1 in all iterations. In this case, if EQFT t(R)

17

accepts, so does every EQFT t
Oi

(R) because no comparisons with the values
from the oracle take place. On the other hand, if R is such that some iterations
in EQFT t(R) produce non-trivial roots, then the first such values found, say
r3, r4, will be used for comparison in all following iterations. Furthermore, there
exists some i for which Oi outputs (r±1

3 ,±r4), and if EQFT t(R) accepts, then
EQFT t

Oi
(R) will also accept. A similar argument shows that if a non-trivial

value of only r3 or only r4 is produced, then EQFT t
Oi

(R) will accept for 2ω−1

values of i.
This finishes the case amin > 1, bmin > 0. For amin = 1, bmin > 0, observe

that there are then no non-trivial 4’th roots of 1 in T4(n, c). We can then run
the same argument, but this time with 2ω−1 oracles ranging over essentially
different values of non-trivial 3’rd roots of 1. In this case, we get that βt(n, c) ≤
2ω−1β(n, c)t, and the same results follows if amin > 1, bmin = 0. Finally, for
amin = 1, bmin = 0, there is nothing to prove since there are no non-trivial
roots, and we have βt(n, c) = β(n, c)t.

4 Average Case Behaviour

This section analyses what happens when EQFT is applied to generate random
probable prime numbers.

4.1 Uniform Choice of Candidates

Let Mk be the set of odd k-bit integers (2k−1 < n < 2k). Consider the algorithm
that repeatedly chooses random numbers in Mk, until one is found that passes
t iterations of EQFT, and outputs this number.

The expected time to find a “probable prime” with this method is at most
tTk/pk, where Tk is the expected time for running the test on a random number
from Mk, and pk is the probability that a such a number is prime. Suppose we
choose n at random and let n2 − 1 = 2u3vq, where q is prime to 2 and 3. It is
easy to see that the expected values of u and v are constant, and so it follows
from Theorem 6 that Tk is 2k + o(k) multiplications modulo a k bit number.
This gives approximately the same time needed to generate a probable prime,
as if we had used 2t iterations of the Miller-Rabin test in place of t iterations
of EQFT . But, as we shall see, the error probability is much smaller than with
2t MR tests.

Let qk,t be the probability that the algorithm above outputs a composite
number. The rest of this section is aimed at finding estimates for qk,t. We recall
that the EQFT algorithm tests if primes less than 13 divide n, so numbers with
such small prime factors are always rejected, this will be useful below.

When running t iterations of our test on input n, it follows from Theorem 16
and Theorem 15 that the probability βt(n) of accepting n satisfies

βt(n) ≤ 4ω−124t(1−Ω) max{ (n/p − 1, (p2 − 1)/24)

(p2 − 1)/24
,

12

p − 1
}t

where p is the largest prime factor in n and Ω is the number of prime factors
in n, counted with multiplicity (and where of course βt(n) = 0 if n is divisible

18

by primes less than 13). Let σt = log2 24 − 2/t. Using this and ω ≤ Ω, we can
rewrite the estimate to

βt(n) ≤ (2σt)t(1−Ω) max{ (n/p− 1, (p2 − 1)/24)

(p2 − 1)/24
,

12

p − 1
}t

Define βσ(n), for any positive σ, by: βσ(n) = 0 if n is divisible by a prime less
than 13, and otherwise

βσ(n) = 2σ(1−Ω) max{ (n/p − 1, (p2 − 1)/24)

(p2 − 1)/24
,

12

p − 1
} (12)

For any t and any composite n, the above estimate of βt(n) shows that t itera-
tions of EQFT accept n with probability no larger than βσt(n)t.

Now assume we have a (hypothetical) primality test that always accepts a
prime and accepts a composite n with probability βσ(n). Suppose we used this
test in place of EQFT when generating a probable prime, and let qσ,k,t be the
resulting error probability. It is then clear that qk,t ≤ qσt,k,t. So to estimate qk,t,
it is enough to estimate qσ,k,t for all t ≥ 1 and all σ with log2 24−2 ≤ σ ≤ log2 24.

We define Cσ,m to be the class of odd composite integers with βσ(n) > 2−m.
Since βσ(n) ≤ 2σ(1−Ω) we have for n ∈ Cσ,m that Ω < m/σ + 1. Let N(m, k, j)
be the set of integers in Cσ,m ∩ Mk with Ω = j. Then trivially,

|Cσ,m ∩ Mk| =
∑

2≤j<m/σ+1

|N(m, k, j)| (13)

The goal in the following will be to estimate |N(m, k, j)| and use the above to
estimate |Cσ,m ∩ Mk|.

For an n ∈ N(m, k, j) we have n > 2k−1 and Ω = j. This implies for
the largest prime factor p in n that p > 2(k−1)/j , and so, for p > 3, we have
1/(p − 1) ≤ 2−(k−1)/j · 4/3.

Now, let us assume that m + σ + 4 ≤
√

4σ(k − 1). In general, it holds for

any positive j that
√

4σ(k − 1) ≤ σj +(k−1)/j. This, together with the above
estimate on 1/(p− 1), gives us 12/(p− 1) ≤ 2−m−σ(1−j).

Now, (12) gives us that any n ∈ N(m, k, j) must satisfy

max{ (n/p− 1, (p2 − 1)/24)

(p2 − 1)/24
,

12

p − 1
} > 2−m−σ(1−j)

Inserting the estimate on 12/(p− 1), we get

(n/p − 1, (p2 − 1)/24)

(p2 − 1)/24
> 2−m−σ(1−j)

If we define

d(p, n) =
(p2 − 1)/24

(n/p − 1, (p2 − 1)/24)
,

we have d(p, n) < 2m+σ(1−j).
This means that for any prime p > 2(k−1)/j and integer d|(p2 − 1)/24 with

d < 2m+σ(1−j), we can count the number of n ∈ Mk with the property that p|n,

19

d = d(p, n) and n is composite. This is at most the number of solutions to the
system

n = 0 mod p, n = p mod
p2 − 1

24d
, p < n < 2k

By the Chinese remainder theorem, the number of solutions is at most

2k 24d

p(p2 − 1)

We therefore have

|N(m, k, j)| ≤
∑

p>2(k−1)/j

∑

d<2m+σ(1−j), (24d)|(p2−1)

2k 24d

p(p2 − 1)

= 2k
∑

d<2m+σ(1−j)

∑

p>2(k−1)/j , (24d)|(p2−1)

24d

p(p2 − 1)

Taking only the inner sum in this, and define T (24d) to be the number of
solutions x ∈ {1, 2, . . . , 24d} to the congruence x2 = 1 mod 24d, we get

∑

p>2(k−1)/j , (24d)|p2−1

24d

p(p2 − 1)
≤ 9

8

∑

p>2(k−1)/j , p2≡1 mod 24d

24d

p3

≤ 9

8
T (24d)

∞
∑

u=0

24d

(24du + 2(k−1)/j)3

≤ 9

8

T (24d)

(24d)2

∞
∑

u=0

(u +
2(k−1)/j

24d
)−3

To bound the latter, we use the assumptions d < 2m+σ(1−j) and σj+(k−1)/j ≥
√

4σ(k − 1) ≥ m + σ + 4:

2(k−1)/j

24d
> 24−1 · 2−m+σ(j−1)+(k−1)/j ≥ 24

24
=

2

3

For c > 2/3, it holds that
∑∞

u=0(u + c)−3 < c−3 +
∫ ∞

c x−3dx = c−2(1/c +
1/2) ≤ 2c−2. Using this, our inner sum above can be estimated as

∑

p>2(k−1)/j ,(24d)|p2−1

24d

p(p2 − 1)
≤ T (24d) 32 2−2(k−1)/j−2

Inserting into the expression for |N(m, k, j)|, we get

|N(m, k, j)| ≤ 2k 32 2−2(k−1)/j−2
∑

d<2m+σ(1−j)

T (24d)

≤ 2k 32 23σ/2+1+3m/2−3σj/2−2(k−1)/j

Here, we have used that T (24d) = 21+ω(24d) ≤ 23+log5 d < 8
√

d. Inserting the
estimate for |N(m, k, j)| in (13), we get:

20

k \ t 1 2 3 4

300 42 105 139 165
400 49 125 165 195
500 57 143 187 221
600 64 159 208 245

1000 86 212 276 325

Table 1: Lower bounds on − log2 qk,t

Theorem 17 Let m, k be positive integers with m+σ+4 ≤
√

4σ(k − 1). Then
we have

|Cσ,m ∩ Mk| ≤ 2k+3σ/2+1 32 23m/2
∑

2≤j≤m/σ+1

2−3σj/2−2(k−1)/j

Let us now choose some M with 3 ≤ M ≤
√

4σ(k − 1) − σ − 4 (this is
possible if k ≥ 10). Using exactly the same arguments as in Prop. 1 of [5], we
get that

qσ,k,t ≤
2−Mt|Mk \ Cσ,M | + ∑M

m=3 2−(m−1)t|Mk ∩ Cσ,m|)
π(2k) − π(2k−1)

Prop. 2 of [5] says that π(2k) − π(2k−1) ≥ 0.71867 · 2k/k. Let f(k) = 0.71867 ·
2k/k. Then inserting the result of the theorem and changing summation order,
we have

f(k)qσ,k,t ≤ 2−Mt+k−2 +

2k+3σ/2+1 32

M/σ+1
∑

j=2

M
∑

m=σ(j−1)

2−(m−1)t+3m/2−3σj/2−2(k−1)/j

= 2−Mt+k−2 +

2t+k+3σ/2+1 32

M/σ+1
∑

j=2

2−3σj/2−2(k−1)/j
M
∑

m=σ(j−1)

2m(3/2−t)

Numerical estimates for qk,t ≤ qσt,k,t can obtained from this by choosing an
optimal value of M within the range given. Some sample results are shown
in the table 1, which contains − log2 of the estimates, so we assert that, e.g.,
q500,2 ≤ 2−143.

To get an explicit expression, we can use the general inequality that for
t ≥ 2,

∑M
m=x 2m(3/2−t) ≤ 2x(3/2−t)/(1− 23/2−t). We use this with x = σ(j − 1).

Moreover, we want to use the estimate for qσ,k,t we derived above with M =
√

8σ(k − 1)/t. Up to an additive constant, we can do this for all 2 ≤ t ≤ k − 1.
Inserting this and substituting σt for σ, one easily obtains

Theorem 18 For 2 ≤ t ≤ k−1, we have that qk,t is O(k3/22(σt+1)tt−1/24−
√

2σttk)

In comparison, results in [5] for the corresponding probability pk,t for the

Miller-Rabin test say, for instance, that pk,t is O(k3/22tt−1/24−
√

tk) for 2 ≤ t ≤

21

k/9. In our case, σt is at least log2 24− 2 and approaches log2 24 as t increases.
Since 2 log2 24 ≃ 9.2, this analysis indicates that if several iteration of EQFT are
performed, then roughly speaking each iteration has the effect of 9 Miller-Rabin
tests, while only taking time equivalent to about 2 MR tests.

Note that [5] contains sharper numeric estimates for the MR test than what
the above type of analysis implies, and also more work has been done in this
direction after [5], for instance [2]. However, such methods for better estimates
on the MR test could also be applied to our test so that the relative strengths
of the tests is likely to remain the same.

4.2 Incremental Search

The algorithm we have just analysed is in fact seldom used in practice. Most
real implementations will not want to choose candidates for primes uniformly
at random. Instead one will choose a random starting point n0 in Mk and
then test n0, n0 + 2, n0 + 4, .. for primality until one is found that passes t
iterations of the test. Many variations on this theme are possible, such as
other step sizes, various types of sieving, but the basic principle remains the
same. The reason for applying such an algorithm is that test division by small
primes can be implemented much more efficiently because one can exploit the
fact that different candidates are related (see for instance [4]). On the other
hand, the analysis we did above depends on the assumption that candidates are
independent. In [3], a way to get around this problem for the Miller-Rabin test
was suggested. We apply an extension of that technique here.

We will analyse the following example algorithm which depends on param-
eters t and s:

1. Choose n0 uniformly in Mk, set n = n0, and execute the following loop
until it stops:

(a) Run up to t iterations of EQFT on n, if n passes all iterations, output
n and exit loop.

(b) Otherwise, set n = n + 2. If n ≥ n0 + 2s, exit loop, else go to step
1a.

2. If the loop in the previous step produced a number n, output n and stop.
Otherwise, go to step 1.

So this algorithm tries incremental search from a random starting point until s
candidates have been examined. If no probable prime was found, it tries again
with a new starting point.

To estimate the expected running time of this method, let Tk(n0, s) be the
maximal running time of EQFT on any of the inputs n0, n0 +2, ..., n0 +2(s−1).
We shall see below that under the prime r-tuple conjecture, if we choose s to be
θ(k), then the expected number of starting points we need to try is constant, in
fact very close to 1 for the value we recommend below, namely s = 10 ln(2k).
For such a choice of s, the expected run time is at most O(stE[Tk(n0, s)]), where
E[·] refers to the expectation over the choice of n0, and in practice an upper
bound is stE[Tk(n0, s)] if we choose s = 10 ln(2k).

To estimate E[Tk(n0, s)], we need to look at a random set of numbers n0, n0+
2, ..., n0+2(s−1) and estimate the maximal powers of 2 and 3 that divide n2−1

22

where n is any of the numbers in our set. For any 2-power 2u where u > 2, it
holds that 2u|n2 − 1 = (n + 1)(n − 1) only if n is 1 or −1 modulo 2u−1. So
this always happens for some n in the set if 2u−1 ≤ 2s (since then the values
n + 1, n− 1 cover all even residues modulo 2u−1), whereas for larger values the
probability drops exponentially with u. It follows that the expected value for
the maximal u such that 2u divides one of our numbers n2 − 1, is O(log s). A
similar argument holds for 3-powers. We conclude from this and Theorem 6 that
E[Tk(n0, s)] is O(k) multiplications, and so the expected time to find a probable
prime by the above algorithm is at most O(tk2) multiplications modulo k bit
numbers, if s is θ(k). As mentioned, practice shows that for s = 10 ln 2k, we
need almost all the time only one value of n0, and so st(2k+o(k)) multiplications
is an upper bound. Of course, this refers to the run time when only the EQFT
is used. In practice, one would use test division and other tricks to eliminate
some of the non primes faster than EQFT can do it. This may reduce the run
time significantly. Any such method can be used without affecting the error
estimates, as long as no primes are rejected.

Let qk,t,s be the probability that one execution of the loop (steps 1a-1b)
outputs a composite number. To do this, we consider again the hypothetical
test from the previous subsection, that accepts composites with probability
βσ(n), and analyse what happens if we use this test in place of EQFT in the
algorithm. We let qσ,k,t,s be the probability that one execution of the loop
outputs a composite in this case. Then, in the same way as before, it follows
that qk,t,s ≤ qσt,k,t,s.

Recall that we defined Cσ,m to be the set of odd composites with βσ(n) >
2−m. From this, we define: Dσ,m,k,s = {n ∈ Mk| [n..n + 2s[∩Cσ,m 6= ∅}, for
m ≥ 3. Of course Dσ,2,k,s = ∅ by the worst-case error bound.

Since a number in Cσ,m can be in at most s different intervals of form
[n..n + 2s[, we clearly have

Lemma 19 Dσ,m−1,k,s ⊂ Dσ,m,k,s and |Dσ,m,k,s| ≤ s · |Mk ∩ Cσ,m|

The idea with defining the sets Dσ,m,k,s is that if we are lucky enough to choose
a starting point n0 for the inner loop which is not in Dσ,m,k,s, then we know
that all composites we will test before the loop exits will pass with probability
at most 2−m. This translates into a bound on qσ,k,t,s as follows:

Lemma 20 Let s = c · ln(2k) for some constant c. Then for any M ≥ 3, we
have

qσ,k,t,s ≤ 0.5(ck)2
M
∑

m=3

|Cσ,m ∩ Mk|
|Mk|

2−t(m−1) + 0.7ck2−tM

Proof. Let E be the event that we output a composite, and identify Dσ,m,k,s

with the event that the starting point n0 is in Dσ,m,k,s. Then we have

qσ,k,t,s =
M
∑

m=3

P (E ∩ (Dσ,m,k,s \ Dσ,m−1,k,s)) + P (E ∩ ¬Dσ,M,k,s)

≤
M
∑

m=3

P (Dσ,m,k,s)P (E|(Dσ,m,k,s \ Dσ,m−1,k,s)) + P (E ∩ ¬Dσ,M,k,s)

23

Consider the case where some fixed n0 6∈ Dσ,m,k,s was chosen as starting point.
Then no candidate n we test will be in Mk ∩ Cσ,m, and so will pass all tests
with probability at most 2−mt. The probability of outputting a composite in
such a case is clearly maximal when all numbers in the interval we consider are
composite. In this case, we accept one of the candidates with probability at
most s · 2−mt. From this and Lemma 19, we get

qσ,k,t,s ≤ s2
M
∑

m=3

|Cσ,m ∩ Mk|
|Mk|

2−t(m−1) + s · 2−tM

≤ 0.5(ck)2
M
∑

m=3

|Cσ,m ∩ Mk|
|Mk|

2−t(m−1) + 0.7ck2−tM

From this lemma and Theorem 17, we can directly get numeric estimates of
qk,t,s ≤ qσt,k,t,s for any value of s, by choosing an optimal value of M .

To analyse the overall error probability of the algorithm, observe that the
inner loop always terminates when the starting point is a prime. This happens
with probability (π(2k)−π(2k−1))/|Mk| ≥ 2.8/k, by the estimates we gave ear-
lier. Moreover, the error probability of our algorithm cannot be worse than that
of a procedure that runs the inner loop up to k2 times and outputs a composite
if all executions of the loop output ”fail”. Clearly, the error probability of this
modified algorithm is at most

Qk,t,s = k2qk,t,s + (1 − 2.8/k)k2

,

and so we have an estimate of the overall error, for any value of s.
What remains is to consider the choice of s. Based on Hardy and Little-

woods prime r-tuple conjecture, it is shown in [3] that when s = c · ln(2k), the
probability of failure is less than 2 exp(−2c) for all large enough k (and is in
fact essentially exp(−2c)). Overwhelming heuristic evidence shows that this is
an accurate estimate for realistic values of k 4. So for instance, for c = 10,
we fail with probability about 2−28, or once in 256 million times. In other
words, with such a choice of c, the algorithm will almost always terminate after
one execution of the inner loop, so this gives us all the efficiency advantages of
the incremental search method. Table 2 shows sample numerical results of the
analysis, with c = 10.

5 Worst case analysis

The basic Fermat test is known to have a very bad worst case performance
because of the existence of Carmichael numbers. Such numbers have at least
Ω = 3 factors. Combined with the Miller-Rabin error bound, 21−Ω, this gives
the wellknown worst case error bound 2−2.

For the Frobenius test, one can define a similar concept of generalised Carmichael
numbers. Much less is known about them, but Grantham [6] essentially proved

4even though this was shown in [3] in connection with the MR test, the result applies to
any algorithm of the form we consider here, as long as the test used always accepts a prime
number

24

k \ t 1 2 3 4

300 18 74 107 133
400 26 93 132 162
500 34 109 153 186
600 40 125 174 210

1000 62 176 239 288

Table 2: Estimates of the overall error probability with incremental search,
lower bounds on − log2 Qk,t,s using s = c · ln(2k) and c = 10.

time in MR-units 6 12 18 . . . large t

MR 4−6 4−12 4−18 . . . 4−t

Grantham 19.8−6 19.8−12 19.8−18 . . . 19.8−t

Müller 50.8−6 50.8−12 50.8−18 . . . 50.8−t

EQFT w/o 3
√

1-part 40.3−6 50.7−12 54.8−18 . . . (≈ 64)−t

Table 3: Worst case error bounds per time spent on the test

that only generalised Carmichael numbers with at least Ω = 5 factors will be
bad for the Frobenius test (if they exist). In this section we give a different and
slightly stronger formulation of this result. Combined with theorems 15 and
16 this implies that t iterations of the EQFT has a worst case error bound of
4424−4t = 256/331776t, except for an explicit finite set of small numbers.

However, this error bound is not impressive considering that the test can be
quite slow in the worst case, when large powers of 2 and 3 divides n2 − 1 (cfr.
theorem 6).

By omitting the 3’rd-root-of-1-test from algorithm 3, it is possible to give a
much better worst case bound on the runtime combined with a slightly weakened
bound on the error probability. In fact, a test omitting the 3’rd-root-of-1-test
takes time 2 logn + o(log n) per iteration for a worst case n (with high proba-
bility and assuming the ERH) and t iterations err with probability bounded by
248−4t = 16/4096t. In an actual implementation, one may then first compute
the powers of 2 and 3 that divide n2 − 1 (this takes negligible time compared
to EQFT itself) and based on this decide whether the full EQFT or the version
without 3’rd-root-of-1-test is best on this n.

For comparison of our test with the earlier tests of Grantham, Müller and
Miller-Rabin, assume that we are willing to spend the same fixed amount of time
testing an input number. Table 3 shows that our test (the EQFT without the
3’rd-root-of-1-test) gives asymptotically a better bound on the error probability:
using time approximately corresponding to t Miller-Rabin test, we get a bound
of 1/7710t/3 ≈ 1/19.8t using Granthams test and a bound of 4/64t using our
test.

25

5.1 improved implementation without the 3’rd-root-of-1-
test

It is convenient to describe the implementation using an extra multiplicative
homomorphism in addition to the norm N(·):

Definition 21 Define the multiplicative homomorphism

P (·) : R(n, c) 7→ R(n, c), P (z) = z/z = z2/N(z) (14)

The homomorphisms N(·) and P (·) allow some short cut in the implemen-
tation:

Lemma 22 Let n be an odd number, let c be a unit modulo n, and let z ∈
R(n, c)∗. Let n + 1 = 2vr for r odd, and let n − 1 = 2us for s odd (i.e.
n2 − 1 = 2v+urs for rs odd). Define

w0 =

{

N(z(s−1)/2)z(n+1)/2 , for n ≡ 1 mod 4
P (z(r−1)/2)z(n−1)/2 , for n ≡ 3 mod 4

wi =

{

N(zs2i−1

) , for n ≡ 1 mod 4, and i = 1, 2, . . . , u − 1

P (zr2i−1

) , for n ≡ 3 mod 4, and i = 1, 2, . . . , v − 1

If zn = z then wi = z2irs for i = 0, 1, 2, . . .

Proof. The essential observation is that exponentiation regarded as a map
commute with the maps N(·) and P (·), since these are multiplicative homomor-
phisms. The rest is trivial computation, which we divide in 2 cases. Assume first
that n ≡ 1 mod 4, in which case N(z) = zn+1 = z2r. One may compute w0 =

N(z(s−1)/2)zr = N(z)(s−1)/2zr = zrs, and wi = N(zs2i−1

) = N(z)s2i−1

= zrs2i

for i ≥ 1. Similarly, if n ≡ 3 mod 4, it is the case that P (z) = zn−1 = z2s. One

may compute w0 = P (z(r−1)/2)zs = P (z)(r−1)/2zs = zrs and wi = P (zr2i−1

) =

P (z)r2i−1

= zrs2i

for i ≥ 1.

High powers of elements in R(n, c) may be computed efficiently (for c small)
by lemma 4 when representing z ∈ R(n, c) in the natural way by (Az , Bz) ∈
Zn × Zn, i.e. z = Azx + Bz. In addition, we need the following results for the
homomorphisms:

Lemma 23 Let z, w ∈ R(n, c):

1. N(z) may be computed from z and z2 using 1 multiplication in Zn

2. it may be decided whether P (z) = 1 or P (z) = −1 without using arithmetic
in Zn.

Proof. For (1) we use that N(z) = 2B2
z − Bz2 .

For (2) assume that z 6= 0, then P (z) = 1 if and only if z = z, i.e. Az = 0.
Similarly, P (z) = −1 if and only if z = −z, i.e. Bz = 0.

26

Theorem 24 There is an implementation of algorithm 3 (omitting the 3’rd-
root-of-1-test of lines 8-9f) that with very high probability uses 2 logn + o(log n)
multiplications in Zn, when assuming the ERH.

Proof. We need only argue why the O(u + v) term in the complexity bound
of theorem 6 can be omitted. It suffices to explain how it is possible to simulta-
neously verify that z = zn, and do a 4’th-root-of-1-test without using too many
multiplications.

By lemma 22 this is equivalent to testing zn = z and looking for a minimal
i with wi = 1 and 2i+1 | n2 − 1. If such i ≥ 1 exists, we must, in addition
check that wi−1 = −1 and (possibly if i ≥ 2) wi−2 = ±ξ4 for some given ξ4.
By the representation of lemma 4 and lemma 23 this may all be done using
(2 + o(1)) log n multiplications in Zn, when taking a bit of care:

First consider the case of n ≡ 1 mod 4, and let n − 1 = 2us for s odd. The
algorithm need only calculate the following powers of z

z(s−1)/2, zs, z2s, . . . , zn−1, zn (15)

To avoid potentially many costly N(·) computations, we can make a binary
search for a minimal i with wi = 1, i.e. in total O(log log n) additional multi-
plications.

Next consider the case of n ≡ 3 mod 4, and let n + 1 = 2vr, for r odd. The
algorithm need only calculate the following powers of z

z(r−1)/2, zr, z2r, . . . , zn+1 (16)

To avoid any additional divisions, one may note that (N(z)/n) = 1 implies z
being invertible in R(n, c). Hence, the test zn = z is equivalent to zn+1 = N(z),
and the test P (z(r−1)/2)z(n−1)/2 = α is equivalent to N(z(r−1)/2)z(n+1)/2 =
α · zr.

5.2 Error probability without the 3’rd-root-of-1-test

The error analysis of section 3 is simplified when omitting the 3’rd-root-of-1-test.
We omit the details and state only an analogue of theorems 15 and 16:

Theorem 25 Let n be an odd number with prime power factorisation n =
∏ω

i=1 pmi

i , let Ω =
∑ω

i=0 mi, and let c satisfy that (c/n) = −1.

1. Given a good value of the input r4, the error probability γ(n, c) of a single
iteration of the second part of algorithm 3 (omitting the 3’rd-root-of-1-test
of line 8-9f) is bounded by

γ(n, c) ≤ |G(n, c)|
|U(n, c)|Pr4(n, c)

≤ 81−ω
ω

∏

i=1

p
2(1−mi)
i sel[(c/pi),

(n/pi − 1, (p2
i − 1)/8)

(p2
i − 1)/8

,
4

pi − 1
]

≤ 81−Ω

27

2. the error probability γt(n) of t iterations of algorithm 3 (omitting the 3’rd-
root-of-1-test of line 8-9f) is bounded by

γt(n) ≤ max
(c/n)=−1

2ω−1γ(n, c)t

Proof. Omitted.

Theorem 26 Let n be an odd composite number. The probability that t iter-
ations of the test of algorithm 3 (omitting the 3’rd-root-of-1-test of line 8-9f)
result in the output “probable prime” when input n is bounded by

γt(n) ≤ 24−12t

if either n has no prime factor ≤ 27 or n ≥ 267.5.

Remark. the bounds ≤ 27 and ≥ 267.5 are not optimal. In their proof in-
dependent bounds on the basic Frobenius test and the 4’th-root-of-1-test are
combined. If a simultaneous bound on the two tests were considered (analo-
gously to lemma 14), better bounds on the exceptional set of small numbers are
possible. The reason for presenting a nonoptimal result is technical simplicity.
We can reuse the analysis of section 3 unchanged.

Proof. By theorem 25, γt(n) ≤ 2(Ω−1)(1−3t). Hence, we need only consider
numbers with at most 4 prime factors. For such numbers it suffices to prove
that γ(n, c) ≤ 2−12. For this we use that γ(n, c) = |G(n, c)|/|U(n, c)| ·Pr4(n, c).
By lemma 12, Pr4(n, c) ≤ 21−ω, and |G(n, c)|/|U(n, c)| is bounded in lemmas
30 and 31 for numbers with few prime factors.

For numbers with no small prime divisors, we consider the table of lemma 30.
By solving an inequality for each entry in the table, we can find a bound on the
smallest prime factor p, that makes all entries ≤ 2−122ω−1. It turns out that
the bottleneck is the case Ω = ω = 4, requiring p > 27.

For large n, we analogously consider the table of lemma 31. Here the bot-
tleneck is also the case Ω = ω = 4, requiring n > 267.5.

5.3 Error probability without the 4’th-root-of-1 and 3’rd-
root-of-1 tests

For composite numbers with at most 4 prime factors, it is possible to get good
bounds on the error probability |G(n, c)|/|U(n, c)| of the basic Frobenius test
(line 5 of algorithm 3) alone, i.e. omitting both the 4’th-root-of-1 and 3’rd-root-
of-1 tests.

The bound can be parametrised either by the smallest prime factor or by
the size of n. This result is a simple consequence of the analysis of section 3
except in the case of n having an odd number of all distinct prime factors. For
3 distinct prime factors, the proof hinges on a technical result by Grantham
[6]. We give a different proof and a slightly sharper result in lemma 28. We
haven’t found a way to parametrise the error bound for numbers with 5 distinct
prime factors, but a result in that direction would allow an improvement of the
absolute worst case bound stated in theorem 26.

28

5.3.1 Technical lemmas

Lemma 27 Let n be an odd number with prime power factorisation n =
∏ω

i=1 pmi

i ,
let Ω =

∑ω
i=0 mi, and let c satisfy that (c/n) = −1.

|G(n, c)|
|U(n, c)| ≤ 2

ω
∏

i=1

p
2(1−mi)
i sel[(c/pi),

gcd(n/pi − 1, (p2
i − 1)/2)

p2
i − 1

,
gcd((n2/p2

i − 1)/2, pi − 1)

(pi − 1)2
]

≤ 2

ω
∏

i=1

p
2(1−mi)
i sel[(c/pi), min{1

2
,
n/pi − 1

p2
i − 1

}, min{ 1

pi − 1
,
n2/p2

i − 1

(pi − 1)2
}]

Proof. This follows from lemma 11.

Lemma 28 Let n be an odd composite number that is the product of 3 distinct
primes n =

∏3
i=1 pi. Assume that p1 < p2 < p3, then the following inequality

holds

1 <

∏3
i=1(n/pi − 1)

∏3
i=1(p

2
i − 1)

< 1 +
1

p2
1 − 1

(17)

and
3

∏

i=1

gcd(n/pi − 1, p2
i − 1)

p2
i − 1

<
1

p2
1 − 1

(18)

Proof. We start by proving (17). Define

f(p1, p2, p3) =
(p1p2 − 1)(p1p3 − 1)(p2p3 − 1)

(p2
1 − 1)(p2

2 − 1)(p2
3 − 1)

When differentiating f with respect to p3, one easily finds that under the as-
sumption 1 < p1 < p2 < p3 then

f(p1, p2, p3) < lim
p3→∞

f(p1, p2, p3) =
(p1p2 − 1)p1p2

(p2
1 − 1)(p2

2 − 1)

and

f(p1, p2, p3) > f(p1, p2, p2) =
(p1p2 − 1)2

(p2
1 − 1)(p2

2 − 1)

When differentiating the simplified expressions with respect to p2 one finds that
(assuming 1 < p1 < p2)

f(p1, p2, p3) < lim
p2→∞

(p1p2 − 1)p1p2

(p2
1 − 1)(p2

2 − 1)
= 1 +

1

p2
1 − 1

and

f(p1, p2, p3) > f(p1, p1, p1) = 1

Finally, we consider the last inequality. Since

1 <

∏3
i=1(n/pi − 1)

∏3
i=1(p

2
i − 1)

=

∏3
i=1(n/pi − 1)/ gcd(n/pi − 1, p2

i − 1)
∏3

i=1(p
2
i − 1)/ gcd(n/pi − 1, p2

i − 1)

29

it follows that

1 +
1

∏3
i=1(p

2
i − 1)/ gcd(n/pi − 1, p2

i − 1)
≤

∏3
i=1(n/pi − 1)

∏3
i=1(p

2
i − 1)

< 1 +
1

p2
1 − 1

which proves the lemma.

Lemma 29 Let n be an odd composite number that is the product of 4 distinct
primes n =

∏4
i=1 pi. Assume that 1 < p1 < p2 < p3 < p4, then the following

inequality holds

p3
1 <

∏4
i=2(n/pi − 1)

∏4
i=2(p

2
i − 1)

< p3
1(1 +

3

p2
2 − 1

) (19)

and
4

∏

i=2

gcd(n/pi − 1, p2
i − 1)

p2
i − 1

<
3p3

1

p2
2 − 1

(20)

Proof. We start by proving the upper bound of (19).

∏4
i=2(n/pi − 1)

∏4
i=2(p

2
i − 1)

<

∏4
i=2 n/pi

∏4
i=2(p

2
i − 1)

=
p3
1

∏4
i=2(p

2
i − 1)/p2

i

= p3
1

4
∏

i=2

(1 +
1

p2
i − 1

)

< p3
1(1 +

3

p2
2 − 1

)

The lower bound is implied by (17):

∏4
i=2(n/pi − 1)

∏4
i=2(p

2
i − 1)

> p3
1

∏4
i=2((n/p1)/pi − 1)
∏4

i=2(p
2
i − 1)

> p3
1

Finally, we consider the last inequality. Since

p3
1 <

∏4
i=2(n/pi − 1)

∏4
i=2(p

2
i − 1)

=

∏4
i=2(n/pi − 1)/ gcd(n/pi − 1, p2

i − 1)
∏4

i=2(p
2
i − 1)/ gcd(n/pi − 1, p2

i − 1)

it follows that

p3
1 +

1
∏4

i=2(p
2
i − 1)/ gcd(n/pi − 1, p2

i − 1)
≤

∏4
i=2(n/pi − 1)

∏4
i=2(p

2
i − 1)

< p3
1 +

3p3
1

p2
1 − 1

which proves the lemma.

30

5.3.2 Worst case bound parametrised by smallest prime factor

Lemma 30 Let n be an odd composite number having complete prime factori-
sation n =

∏ω
i=1 pmi

i , let Ω =
∑ω

i=1 mi ≤ 4, and let c satisfy that (c/n) = −1.
If p is the smallest prime factor of n, then |G(n, c)|/|U(n, c)| is bounded by

the entries of the following table

Ω = 2 Ω = 3 Ω = 4

ω = 1 p−4 p−6

ω = 2 2(p2 − 1)−1 2−1p−2 2−1p−4

ω = 3 2(p2 − 1)−1 2−2p−2

ω = 4 2−2(p − 1)−1

Proof. All the entries with Ω > ω are immediate consequences of lemma 27.
For the entry with Ω = ω = 4, we argue that since (c/n) = −1 and 4 is an
even number, we must have (c/pi) = 1 for some prime factor pi of n. Hence,
the bound 2−2(pi − 1)−1 is also implied by lemma 27. For the entry with
Ω = ω = 2, we have n = p1p2, and without loss of generality, we may assume
that (c/p1) = −(c/p2) = −1. By lemma 27, we have

|G(n, c)|
|U(n, c)| ≤ 2

gcd(p2 − 1, (p2
1 − 1)/2)

p2
1 − 1

· gcd((p2
1 − 1)/2, p2 − 1)

(p2 − 1)2
≤ 2

p2
1 − 1

Finally, consider the case of Ω = ω = 3, i.e. n = p1p2p3. The assumption
(c/n) = −1 implies that (c/pi) = −1 either for all i or for precisely one i.
Consider first the latter case, and assume (c/p1) = −1 and (c/p2) = (c/p3) = 1.
By lemma 27,

|G(n, c)|
|U(n, c)| ≤ 1

p2 − 1
· 1

p3 − 1
≤ 1

p2 − 1

In the former case, (c/pi) = −1 for all i, and by the inequality of lemma 28,
we have

|G(n, c)|
|U(n, c)| ≤ 2

p2 − 1

5.3.3 Worst case bound on the form n−const

Lemma 31 Let n be an odd composite number having complete prime factori-
sation n =

∏ω
i=1 pmi

i , let Ω =
∑ω

i=1 mi ≤ 4, and let c satisfy that (c/n) = −1.
|G(n, c)|/|U(n, c)| is bounded by the entries of the following table

Ω = 2 Ω = 3 Ω = 4

ω = 1 n−4/3 n−3/2

ω = 2 2n−2/3 n−2/3 22n−10/9

ω = 3 2n−2/5 n−2/3

ω = 4 n−2/15

31

Proof. The entries for ω = 1 is an immediate consequence of lemma 27, and
each of the remaining entries of the table is proved by separate case analysis in
the following. For all the cases, we will use the inequalities of lemma 27, and
for n = p1p2p3 and n = p1p2p3p4, we need additional technical results (lemma
28 and lemma 29).

Case n = p1p2p3p4:
The assumption (c/n) = −1 implies that (c/pi) = −1 either for precisely

three i or for precisely one i, and in the latter case we may assume that (c/p1) =
−1 without loss of generality,

|G(n, c)|
|U(n, c)| ≤ 2 · min{1

2
,
p2p3p4 − 1

p2
1 − 1

} ·
4

∏

i=2

1

pi − 1
≤ 22n−2/3

In the former case, where (c/pi) = −1 for precisely three i, we assume that
(c/p1) = 1,

|G(n, c)|
|U(n, c)| ≤ 2

1

p1 − 1
· 1

2
· min{1

2
· 1

2
,
p1p2p4 − 1

p2
3 − 1

· p1p2p3 − 1

p2
4 − 1

}

≤ 2 · min{ 1

8(p1 − 1)
,
p2
1p

3
2

n
}

≤ 2−1n−1/6 for p1 > p2

We need the assumption p1 > p2 to make the above estimate. This is always
possible after permutation of indices except when p1 is the smallest prime factor.
In that case, we may assume that p1 < p2 < p3 < p4, and by Lemma 29 and
the part of the previous argument that holds also when p1 < p2, we find

|G(n, c)|
|U(n, c)| < 2 · min{ 1

8(p1 − 1)
,
p2
1p

3
2

n
,

3p3
1

(p1 − 1)(p2
2 − 1)

} ≤ n−2/15

Case n = p1p2p3:
The assumption (c/n) = −1 implies that (c/pi) = −1 either for all i or for

precisely one i, and in the latter case, we may assume without loss of generality
that (c/p1) = −1:

|G(n, c)|
|U(n, c)| ≤ 2 · min{1

2
,
p2p3 − 1

p2
1 − 1

} · 1

p2 − 1
· 1

p3 − 1
≤ 22n−2/3

In the former case, (c/pi) = −1 for all i. Without loss of generality, we may
assume that p1 < p2 < p3, and by lemma 28,

|G(n, c)|
|U(n, c)| ≤ 2 ·

3
∏

i=1

gcd(n/pi − 1, (p2
i − 1)/2)

p2
i − 1

≤ 2 · min{ 1

p2
1 − 1

,
1

2
· p1p3 − 1

p2
2 − 1

· p1p2 − 1

p2
3 − 1

}

≤ 2n−2/5

Case n = p2
1p2p3:

Without loss of generality, (c/p2) = 1 and (c/p3) = −1,

|G(n, c)|
|U(n, c)| ≤ 2 · p−2

1 · 1

2
· 1

p2 − 1
· min{p2

1p2 − 1

p2
3 − 1

,
1

2
} ≤ n−2/3

32

Case n = p1p2:
Since (c/n) = −1, it must be the case that (c/p1) = −(c/p2) = −1 (if

necessary permute p1 and p2).

|G(n, c)|
|U(n, c)| ≤ 2 · min{1

2
,
p2 − 1

p2
1 − 1

} · 1

p2 − 1
≤ 2n−2/3

Case n = p2
1p2:

It must be the case that (c/p2) = −1 and therefore

|G(n, c)|
|U(n, c)| ≤ 2 · p−2

1 · 1

2
· min{1

2
,
p2
1 − 1

p2
2 − 1

} ≤ n−2/3

Case n = p3
1p2:

There are two possibilities, either (c/p1) = −(c/p2) = −1 or (c/p1) =
−(c/p2) = 1. Consider the latter possibility first,

|G(n, c)|
|U(n, c)| ≤ 2 · p−4

1 · 1

p1 − 1
· min{1

2
,
p3
1 − 1

p2
2 − 1

} ≤ 22n−10/9

We need also consider the situation when (c/p1) = −(c/p2) = −1,

|G(n, c)|
|U(n, c)| ≤ 2 · p−4

1 · 1

2
· min{ p6

1 − 1

(p2 − 1)2
,

1

p2 − 1
} ≤ 22n−10/9

References

[1] Eric Bach and Jeffrey Shallit. Algorithmic Number Theory. Volume I: Effi-
cient algorithms. MIT Press, 1996.

[2] Ronald Burthe: Further investigations with the strong probable prime test,
Math. Comp. 65, pp.373-381, 1996.

[3] J.Brandt and I.Damg̊ard: On Generation of Probable Primes by Incremental
Search, Proc. of Crypto 92, Springer Verlag LNCS series.

[4] J.Brandt, I.Damg̊ard and P.Landrock: Speeding up Prime Number Genera-
tion, Proc. of AsiaCrypt 91, Springer Verlag LNCS series.

[5] Damg̊ard, Landrock and Pomerance: Average Case Error Estimates for the
Strong Probable Prime Test, Math. Comp., vol. 61, 1993, pp.177-194.

[6] Jon Grantham: A Probable prime test with high confidence, J.Number The-
ory 72, pp.32-47, 1998.

[7] Siguna Müller: A probable prime test with very high confidence for n ≡
1 mod 4, Proceeedings of Asiacrypt 2001, Springer Verlag LNCS.

33

