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Abstract

Following Dwork, Naor, and Sahai (30th STOC, 1998), we consider concurrent execution of

protocols in a semi-synchronized network. Speci�cally, we assume that each party holds a local

clock such that a constant bound on the relative rates of these clocks is a-priori known, and

consider protocols that employ time-driven operations (i.e., time-out in-coming messages and

delay out-going messages).

We show that the constant-round zero-knowledge proof for NP of Goldreich and Kahan

(Jour. of Crypto., 1996) preserves its security when polynomially-many independent copies are

executed concurrently under the above timing model.

We stress that our main result establishes zero-knowledge of interactive proofs, whereas

the results of Dwork et. al. are either for zero-knowledge arguments or for a weak notion of

zero-knowledge (called �-knowledge) proofs.

Our analysis identi�es two extreme schedulings of concurrent executions under the above

timing model: the �rst is the case of parallel execution of polynomially-many copies, and the

second is of concurrent execution of polynomially-many copies such the number of copies that are

simultaneously active at any time is bounded by a constant (i.e., bounded simultaneity). Dealing

with each of these extreme cases is of independent interest, and the general result (regarding

concurrent executions under the timing model) is obtained by combining the two treatments.

Keywords: Zero-Knowledge, Parallel Composition, Concurrent Composition, Timing Assump-

tions, proofs versus arguments, Black-box simulation,

�
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1 Introduction

Zero-Knowledge proofs, introduced by Goldwasser, Micali and Racko� [20, 21], are fascinating

and extremely useful constructs. Their fascinating nature is due to their seemingly contradictory

de�nition: they are both convincing and yet yield nothing beyond the validity of the assertion

being proven. Their applicability in the domain of cryptography is vast: they are typically used

to force malicious parties to behave according to a predetermined protocol (which requires parties

to provide proofs of the correctness of their secret-based actions without revealing these secrets).

Such applications are based on the fact, proven by Goldreich, Micali and Wigderson [17], that any

language in NP has a zero-knowledge proof system, provided that commitment schemes exist.

1

The related notion of a zero-knowledge argument was suggested (and implemented) by Brassard,

Chaum and Cr�epeau [5], where the di�erence between proofs and arguments is that in the latter

the soundness condition refers only to computationally-bounded cheating provers.

1.1 Composition of zero-knowledge protocols

A natural question regarding zero-knowledge proofs (and arguments) is whether the zero-knowledge

condition is preserved under a variety of composition operations. Three types of composition

operation were considered in the literature, and we brie
y summarize what is known about them:

1. Sequential composition: Here the protocol is invoked (polynomially) many times, where each

invocation follows the termination of the previous one. At the very least, security (e.g., zero-

knowledge) should be preserved under sequential composition, or else the applicability of the

protocol is highly limited (because one cannot safely use it more than once).

Although the basic de�nition of zero-knowledge (as in the preliminary version of Goldwasser

et. al. [20]) is not closed under sequential composition (cf. [16]), a minor augmentation of it (by

auxiliary inputs) is closed under sequential composition (cf. [18]). Indeed, this augmentation

was adopted in all subsequent works (as well as in the �nal version of Goldwasser et. al. [21]).

2. Parallel composition: Here (polynomially) many instances of the protocol are invoked at

the same time and proceed at the same pace. That is, we assume a synchronous model of

communication, and consider (polynomially) many executions that are totally synchronized

so that the ith round message in all instances is sent exactly (or approximately) at the same

time.

Goldreich and Krawczyk presented a simple protocol that is zero-knowledge (in a strong

sense), but is not closed under parallel composition (even in a very weak sense) [16]. At

the time, their result was interpreted mainly in the context of round-e�cient error reduction;

that is, the construction of full-
edge zero-knowledge proofs (of negligible soundness error) by

composing (in parallel) a basic zero-knowledge protocol of high (but bounded away from 1)

soundness error. Since alternative ways of constructing constant-round zero-knowledge proofs

(and arguments) were found (cf. [15, 13, 6]), interest in parallel composition (of zero-knowledge

protocols) has died. In retrospect, as we argue below, this was a conceptual mistake.

We comment that parallel composition is problematic also in the context of reducing the

soundness error of arguments (cf. [3]), but our focus here is on the zero-knowledge aspect of

protocols regardless if they are proofs, arguments or neither.

1

Or, equivalently [25, 22], that one-way functions exist.
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3. Concurrent composition: This notion generalizes both the previous ones. Here (polynomially)

many instances of the protocol are invoked at arbitrary times and proceed at arbitrary pace.

That is, we assume an asynchronous (rather than synchronous) model of communication.

In the 1990's, when extensive two-party (and multi-party) computations became a reality

(rather than a vision), it became clear that it is (at least) desirable that cryptographic pro-

tocols maintain their security under concurrent composition (cf. [10]). In the context of

zero-knowledge, concurrent composition was �rst considered by Dwork, Naor, and Sahai [11].

Their actual suggestions refer to a model of naturally-limited asynchronousness (which cer-

tainly covers the case of parallel composition). Essentially, they assume that each party holds

a local clock such that the relative clock rates are bounded by an a-priori known constant,

and consider protocols that employ time-driven operations (i.e., time-out in-coming mes-

sages and delay out-going messages). This timing model is the main focus of the current

paper.

2

The previously known main results for this model were (cf. [11]):

� Assuming the existence of one-way functions, every language inNP has a constant-round

concurrent zero-knowledge argument.

� Assuming the existence of two-round perfectly-hiding commitment schemes (which in

turn imply one-way functions), every language in NP has a constant-round concur-

rent �-knowledge proof, where �-knowledge means that (for every noticeable function

� : N ! (0; 1]) a simulator working in time poly(n=�(n)) can produce output that is

�-indistinguishable from the one of a real interaction.

3

Thus, no constant-round proofs forNP were previously known to be concurrent zero-knowledge

(under the timing model).

1.2 Our results

Our main result closes the gap mentioned above, by showing that a known constant-round zero-

knowledge proof for NP is actually concurrent zero-knowledge under the timing model. That is,

we prove that

Theorem 1.1 The (�ve-round) zero-knowledge proof system for NP of Goldreich and Kahan [15]

is concurrent zero-knowledge under the timing model.

Thus, the zero-knowledge property of the proof system (of [15]) is preserved under any concurrent

composition that satis�es the timing model. In particular, the zero-knowledge property is preserved

under parallel composition, a result we consider of independent interest.

Recall that the proof system of [15] relies on the existence of two-round perfectly-hiding com-

mitment schemes (which is implied by the existence of claw-free pairs of functions and implies the

existence of one-way functions). Thus, we get:

Theorem 1.2 Assuming the existence of two-round perfectly-hiding commitment schemes, there

exists a (constant-round) proof system for NP that is concurrent zero-knowledge under the timing

model.

2

We shortly discuss the pure asynchronous model below.

3

For further discussion of �-knowledge, see Section 1.5.
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Using the same techniques, we can show that several other known (constant-round) zero-

knowledge protocols remain secure under the concurrent timing-model. Examples include the

(constant-round) zero-knowledge arguments of Fiege and Shamir [13] and of Bellare, Jakobsson

and Yung [4]. The latter protocol (referred to as the BJY-protocol) is of special interest since it is

a four-round argument for NP that relies only on the existence of one-way functions. The above

protocols are simpler (and use fewer rounds) than the argument systems previously shown (in [11])

to be concurrent zero-knowledge (under the timing-model), alas their security (under this model)

is established by a more complex simulator. (See further details in the appendix.)

1.3 Discussion of some issues

We stress that when we talk of composition of protocols (or proof systems) we mean that the honest

users are supposed to follow the prescribed program (speci�ed in the protocol description) that refers

to a single execution. That is, the actions of honest parties in each execution are independent of the

messages they received in other executions. The adversary, however, may coordinate the actions it

takes in the various executions, and in particular its actions in one execution may depend also on

messages it received in other executions.

Let us motivate the asymmetry between the independence of executions assumed of honest

parties but not of the adversary. Coordinating actions in di�erent executions is typically di�cult

but not impossible. Thus, it is desirable to use composition (as de�ned above) rather than to use

protocols that include inter-execution coordination-actions, which require users to keep track of

all executions that they perform. Actually, trying to coordinate honest executions is even more

problematic, because one may need to coordinate executions of di�erent honest parties (e.g., all

employees of a big cooperation or an agency under attack), which in many cases is highly unrealistic.

On the other hand, the adversary attacking the system may be willing to go into the extra trouble

of coordinating its attack on the various executions of the protocol.

Auxiliary inputs and non-uniformity: As mentioned above, almost all work on zero-knowledge

actually refer to zero-knowledge with respect to (non-uniform) auxiliary inputs. This work is no

exception, but (as in most other work) the reference to auxiliary inputs is typically omitted. We

comment that zero-knowledge with respect to auxiliary inputs \comes for free" whenever zero-

knowledge is demonstrated (like in this work) via a black-box simulator (see below). The only

thing to bear in mind is that allowing the adversary (non-uniform) auxiliary inputs means that

the computational assumption that are used need to be non-uniform ones. For example, when we

talk of computational-binding (resp., computational-hiding) commitment schemes we mean that

the binding (resp., hiding) property holds with respect to any family of polynomial-size circuits

(rather than with respect to any probabilistic polynomial-time algorithm).

Expected polynomial-time simulators: With the exception of the recent (constant-round)

zero-knowledge argument of Barak [1], all previous constant-round arguments (or proofs) utilize

an expected polynomial-time simulator (rather than a strict polynomial-time simulator). (Indeed

our work inherits this \feature" of [15].) As recently shown by Barak and Lindell [2], this is no

coincidence, because all the above (with the exception of [1]) utilize black-box simulators, whereas

no strict polynomial-time black-box simulator can demonstrate the zero-knowledge property of a

constant-round argument system for a language out of BPP .
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Black-box simulation: The de�nition of zero-knowledge (only) requires that the interaction of

the prover with any cheating (probabilistic polynomial-time) veri�er be simulateable by an ordinary

probabilistic polynomial-time machine (which interacts with no one). A black-box simulator is one

that can simulate the interaction of the prover with any such veri�er when given oracle access to

the strategy of that veri�er. All previous zero-knowledge arguments (or proofs), with the exception

of the recent (constant-round) zero-knowledge argument of Barak [1], are established using a black-

box simulator, and our work is no exception (i.e., we also use a black-box simulator). Indeed, Barak

demonstrated that (contrary to previous beliefs) non-black-box simulators may exist in cases where

black-box ones do not exist [1]. However, black-box simulators, whenever they exist, are preferable

to non-black-box ones, because the former o�ers greater security: Firstly, as mentioned above,

black-box simulators imply zero-knowledge with respect to auxiliary inputs.

4

Secondly, black-box

simulators imply polynomial bounds on the knowledge tightness, where knowledge tightness is the

(inverse) ratio of the running-time of any cheating veri�er and the running-time of the corresponding

simulation [14, Sec. 4.4.4.2].

5

Perspective: the pure asynchronous model. Regarding the pure asynchronous model, the

current state of the art is as follows:

� Black-box simulator cannot demonstrated the concurrent zero-knowledge property of non-

trivial proofs (or arguments) having signi�cantly less than logarithmically many rounds (cf.

Canetti et. al. [8]).

6

� Every language in NP has a concurrent zero-knowledge proof with poly-logarithmically many

rounds, and this can be demonstrated using a black-box simulator (cf. Kilian and Petrank [23]

building upon [26]).

� Recently, Barak [1] demonstrated that the \black-box simulation barrier" can be bypassed.

With respect to concurrent zero-knowledge he only obtains partial results: constant-round

zero-knowledge arguments (rather than proofs) for NP that maintain security as long as an

a-priori bounded (polynomial) number of executions take place concurrently. (The length of

the messages in his protocol grows linearly with this a-priori bound.)

7

Thus, it is currently unknown whether constant-round arguments for NP may be concurrent zero-

knowledge (in the pure asynchronous model).

On the timing model: The timing model consists of the assumption that talking about the

actual timing of events is meaningful (at least in a weak sense) and of the introduction of time-

driven operations. The timing assumption amounts to postulating that each party holds a local clock

4

In contrast, whether or not a non-black-box simulator implies zero-knowledge with respect to auxiliary inputs,

depends on the speci�c simulator: In fact, in [1], Barak �rst presents (as a warm-up) a protocol with a non-black-box

simulator that cannot handle auxiliary inputs, and next uses a more sophisticated construction to handle auxiliary

inputs.

5

That is, a protocol is said to have knowledge tightness k :N!R if for some polynomial p and every probabilistic

polynomial-time veri�er V

�

the interaction of V

�

with the prover can be simulated within time k(n) � T

V

�

(n) + p(n),

where T

V

�

denotes the time complexity of V

�

. In fact, the running-time of the simulator constructed by Barak [1] is

polynomial in T

V

�

, and so the knowledge tightness of his protocol is not bounded by any polynomial.

6

By non-trivial proof systems we mean ones for languages outside BPP, whereas by signi�cantly less than loga-

rithmic we mean any function f :N!N satisfying f(n) = o(log n= log log n).

7

We are quite sure that Barak's arguments remain zero-knowledge under concurrent executions that satisfy the

timing model. But since these are arguments (rather than proofs) such a result will not improve upon the previously

known result of [11] (which uses black-box simulations).
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and knows a global bound, denoted � � 1, on the relative rates of the local clocks.

8

Furthermore,

it is postulated that the parties know a (pessimistic) bound, denoted �, on the message-delivery

time (which also includes the local computation and handling times). In our opinion, these timing

assumptions are most reasonable, and are unlikely to restrict the scope of applications for which

concurrent zero-knowledge is relevant. We are more concerned about the e�ect of the time-driven

operations introduced in the timing model. Recall that these operations are the time-out of in-

coming messages and the delay of out-going messages. Furthermore, typically (and in fact also

in our work), the delay period is at least as long as the time-out period, which in turn is at least

� (i.e., the time-out period must be at least as long as the pessimistic bound on message-delivery

time so not to disrupt the proper operation of the protocol). This means that the use of these time-

driven operations yields slowing down the execution of the protocol (i.e., running it at the rate of

the pessimistic message-delivery time rather than at the rate of the actual message-delivery time,

which is typically much faster). Still, in absence of more appealing alternatives (i.e., a constant-

round concurrent zero-knowledge protocol for the pure asynchronous model), the use of the timing

model may be considered reasonable. (We comment than other alternatives to the timing-model

include various set-up assumptions; cf. [7, 9].)

On parallel composition: Given our opinion about the timing model, it is not surprising that

we consider the problem of parallel composition almost as important as the problem of concurrent

composition in the timing model. Firstly, it is quite reasonable to assume that the parties' local

clocks have approximately the same rate, and that drifting is corrected by occasional clock synchro-

nization. Thus, it is reasonable to assume that the parties have approximately-good estimate of

some global time. Furthermore, the global time may be partitioned into phases, each consisting of

a constant (e.g., 5) number of rounds, so that each party wishing to execute the protocol just delays

its invocation to the beginning of the next phase. Thus, concurrent execution of (constant-round)

protocols in this setting amounts to a sequence of (time-disjoint) almost-parallel executions of the

protocol. Consequently proving that the protocol is parallel zero-knowledge su�ces for concurrent

composition in this setting.

1.4 Techniques

To discuss our techniques, let us �x a timing assumption (i.e., a-priori bound on local clock rates)

and consider a c-round protocol that utilizes appropriately selected time-out and delay mecha-

nisms (which depend on the above bound as well as on a bound on normal message-delivery time).

The reader may think of the bound on local clock rates as being close to 1 (or even just 1; i.e.,

equal rates), and of c as being a constant (in fact, we will use c = 5). Furthermore, suppose that

all prover's actions in the protocol are time-driven (by the time-out and delay mechanisms).

A key observation underlying our work is that a concurrent scheduling (of such protocol in-

stances) under the timing model can be decomposed into a sequence of parallel executions (or

blocks) such that the number of simultaneously active parallel blocks is bounded by O(c), where

the constant in the O-notation depends on the a-priori known bound on the relative clock rates.

(Indeed, it is instructive to consider a �xed scheduling, but the observation extends to schedulings

that are dynamically-chosen by the adversary.) This (simple) observation applies whenever the

timing model is used (and is not restricted to the context of zero-knowledge), and it may be useful

towards the analysis of the concurrent execution of any set of protocols under the timing model.

8

The rate should be computed with respect to reasonable intervals of time; for example, for � as de�ned below, one

may assume that a time period of � units is measured as �

0

units of time on the local clock, where �=� � �

0

� ��.
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Let us restate the above observation in concrete terms, assuming (for sake of simplicity) that

the clock rates are all equal, that the prover utilizes equal delays between its messages, and that

these delays are four times the length of the time-out period: Then, any scheduling of executions

(of protocol instances) that respect this timing model can be decomposed into sub-schedules such

that the following hold:

9

1. Each sub-schedule consists of an almost-parallel execution of instances of the protocol. That

is, each sub-schedule can be partitioned into c disjoint time intervals such that round i in each

instance take place within the i

th

time-interval. (Here we allow to arbitrary delay messages

sent by the veri�er (as long as the time-out condition is not violated), since this only increases

the adversary's power.)

2. The number of sub-schedules that are active (i.e., have some active protocol instance) at any

given time is at most 8c.

In view of the above, it is quite natural to conclude that in order to handle the concurrent timing

model it su�ces to deal with two extreme schedulings: the parallel scheduling and the bounded-

simultaneity scheduling. Indeed, this conclusion is essentially correct in our case.

Handling parallel composition. At �rst glance, one may be tempted to say that the techniques

used for proving that the Goldreich{Kahan (GK) protocol is zero-knowledge [15] extend to showing

that it remains zero-knowledge under parallel composition. This would have been true if we were

handling coordinated parallel executions of the GK-protocol (where the prover would abort all

copies if the veri�er decommits improperly in any of them). However, this is not what we are

handling here (i.e., parallel composition refers to uncoordinated parallel execution of many copies

of the protocol). Consequently, a couple of new techniques are introduced in order to deal with

the parallel composition of the GK-protocol. We consider these simulation techniques to be of

independent interest.

Handling bounded-simultaneity concurrent composition. Experts in the area may not �nd

it surprising that the GK-protocol remains zero-knowledge under bounded-simultaneity concurrent

composition. In fact, previous work (e.g., [11]) suggest that the di�culty in simulating concurrent

executions of the GK-protocol arises from the case in which a large number of instances is executed

in a \nested" (and in particular simultaneous) manner.

10

Furthermore, the work of Richardson

9

For example, we can place protocol instances in sub-schedules according to their invocation time. Speci�cally,

let us consider the length of the time-out period as one time unit (and so the delays have length 4). Next, consider

(consecutive and non-overlapping) time-intervals having unit length, and place an instance in the i

th

sub-schedule if

it is invoked during the i

th

time-interval. Clearly, the i

th

and j

th

sub-schedules are simultaneously active (at some

time) only if ji�jj < 4c, and so Condition 2 holds. Observe that the i

th

sub-schedule can be partitioned to c intervals

such that Condition 1 holds: Suppose (as is the case in our protocol) that the prover sends the �rst message and that

c = 2d+ 1. Observe that, for any instance placed in the i

th

sub-schedule and k = 1; :::; d, the k + 1

st

prover message

(coming after k delays) is sent at time t+ 4k, where t 2 [i; i + 1) is the invocation time of the instance, and so it is

sent within the time interval [i + 4k; i + 4k + 1). By virtue of the time-out mechanism, the k + 1

th

veri�er message

is received during the time interval [t+ 4k; t+ 4k + 1) � [i+ 4k; i+ 4k+ 2), and by some delaying we may assume it

occurs within the time interval [i + 4k + 2; i + 4k + 3). Thus, a partition as in Condition 1 is obtained. Notice that

the above analysis extends to the case that the clock rates are within a factor of 1 + (1=2c) of one another, because

the clock drift accumulated during the execution of one protocol instance is less than one time unit.

10

In fact, even if each level of nesting only multiplies the simulation time by a factor of 2, we get an exponential

blow-up.
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and Kilian [26] suggests that certain (related) protocols may be zero-knowledge under bounded-

simultaneity concurrent composition. Still, to the best of own knowledge, such a technically-

appealing result has not been proven before. We prove the result by using a rather straightforward

approach, which nevertheless requires careful implementation. We stress that not every zero-

knowledge protocol remains zero-knowledge under bounded-simultaneity concurrent composition:

Goldreich and Krawczyk presented a simple (constant-round) protocol that is zero-knowledge, but

parallel execution of two instances of it is not zero-knowledge [16].

Combining the two techniques, we show that the GK-protocol is concurrent zero-knowledge

under the timing model. This is shown by using the abovementioned decomposition, and ap-

plying the bounded-simultaneity simulator to the sub-schedules while incorporating the parallel-

composition simulator inside of it. Note that the bounded-simultaneity simulator handles the

special case in which each sub-schedule contains a single copy, and does so by employing the single-

copy simulator. Capitalizing on the high-level similarity of the parallel-composition simulator and

the single-copy simulator, we just need to extend the bounded-simultaneity simulator by incorpo-

rating the former simulator in it. (Our presentation of the bounded-simultaneity simulator uses

terminology that makes this extension quite easy.)

1.5 Zero-knowledge versus �-knowledge

Recall that �-knowledge means that for every noticeable function (i.e., a reciprocal of a positive

polynomial) � : N ! (0; 1] there exists a simulator working in time poly(n=�(n)) that produces

output that is �-indistinguishable from the one of a real interaction, where �-indistinguishability of

the ensembles fX

�

g and fY

�

g, means that for every e�cient procedure (e.g., a polynomial-time

algorithm) D,

jPr[D(�;X

�

)=1]� Pr[D(�; Y

�

)=1]j < �(j�j) + �(j�j)

where � is a negligible function.

11

Indeed, as mentioned in [11], �-knowledge does provide some level of security. However, this

level of security is lower than the one o�ered by the standard notion of zero-knowledge, and more

so when compared to simulators with bounded knowledge tightness (as discussed above; cf. [14,

Sec. 4.4.4.2]). Furthermore, unlike zero-knowledge, the notion of �-knowledge is not closed under

sequential composition (i.e., t sequential executions of a �-knowledge protocol yield a t ��-knowledge

(rather than �-knowledge) protocol).

Expected polynomial-time simulators versus �-knowledge. The above discussion applies

also to the comparison of �-knowledge and zero-knowledge via expected polynomial-time simula-

tors (rather than via strict polynomial-time simulators). Furthermore, simulation by an expected

polynomial-time simulator implies �-knowledge simulator (running in strict time inversely pro-

portional to �).

12

The converse does not hold (e.g., consider a prover that, for i = 1; 2:::, with

probability 2

�i

sends the result of a BPTime(2

2i

)-complete computation).

11

Indeed, the standard notion of computational indistinguishability [19, 27] is a special case obtained by setting

� � 0.

12

This can be seen by truncating all runs of the original simulator that exceed its expected running-time by a factor

of 1=� (or so).
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1.6 Organization

In Section 2, we recall some basic notions as well as review the GK-protocol (i.e., the �ve-round zero-

knowledge proof system of Goldreich and Kahan [15]). In Section 3 we prove that the GK-protocol

remains zero-knowledge under parallel composition. In Section 4 we prove that the GK-protocol

remains zero-knowledge under bounded-simultaneity concurrent composition. In Section 5, we

augment the GK-protocol with adequate time-out and delay mechanisms, and prove that the

resulting protocol is concurrent zero-knowledge under the timing model.

2 Background

Recall that an interactive proof system for a language L is a (randomized) protocol for two par-

ties, called veri�er and prover, allowing the prover to convince the veri�er to accept any common

input in L (completeness), while guaranteeing that no prover strategy may fool the veri�er to

accept inputs not in L (soundness), except than with negligible probability. The prescribed ver-

i�er strategy is always required to be probabilistic polynomial-time. Furthermore, like in other

application-oriented works, we focus on prescribed prover strategies that can be implemented in

probabilistic polynomial-time given adequate auxiliary input (e.g., an NP-witness in case of NP-

languages). Recall that the latter refers to the prover prescribed for the completeness condition,

whereas (unlike in argument systems [5]) soundness must hold no matter how powerful the cheat-

ing prover is. Zero-knowledge is a property of some prover-strategies. Loosely speaking, it means

that anything that is feasibly computable by (possibly improperly) interacting with the prover, can

be feasibly computable without interacting with the prover. That is, the most basic de�nition of

zero-knowledge (of a prover P w.r.t L) requires that, for every feasible veri�er strategy V

�

, there

exists a feasible simulator M

�

so that the following two probability ensembles are computationally

indistinguishable:

1. fhP; V

�

i(x)g

x2L

def

= the output of V

�

when interacting with P on common input x 2 L; and

2. fM

�

(x)g

x2L

def

= the output of M

�

on input x 2 L.

2.1 Expected polynomial-time simulation and black-box simulation

As discussed in the introduction, we allow the simulator to run in expected probabilistic polynomial-

time (rather than strict probabilistic polynomial-time), but require it to be implemented by a

universal machine that get oracle access to the strategy V

�

. See [14, Sec. 4.3.1.6] (resp., [14,

Sec. 4.5.4.2] and [1]) for further discussion of the �rst (resp., second) issue.

De�nition 2.1 (black-box zero-knowledge):

� Next message function: Let B be an interactive Turing machine, and x; z; r be strings rep-

resenting a common-input, auxiliary-input, and random-input, respectively. Consider the

function B

x;z;r

(�) describing the messages sent by machine B so that B

x;z;r

(m) denotes the

message sent by B on common-input x, auxiliary-input z, random-input r, and sequence of

incoming messages m. For simplicity, we assume that the output of B appears as its last

message.

� Black-box simulator: We say that an expected probabilistic polynomial-time oracle machine

M is a black-box simulator for the prover P and the language L if for every polynomial-

time interactive machine B, every probabilistic polynomial-time oracle machine D, every

9



polynomial p(�), all su�ciently large x 2 L, and every z; r 2 f0; 1g

�

:

�

�

�

Pr

h

D

B

x;z;r

(hP;B

r

(z)i(x))=1

i

� Pr

h

D

B

x;z;r

(M

B

x;z;r

(x))=1

i

�

�

�

<

1

p(jxj)

where B

r

(z) denotes the interaction of machine B with auxiliary-input z and random-input r.

� We say that P is black-box zero knowledge if it has a black-box simulator.

As discussed by Canetti et. al. [8], the above de�nition is too restrictive for de�nition of (unbounded)

composition, where the adversary B may invoke a (polynomial) number of sessions with P but this

polynomial is not a-priori known. One solution is to consider for each polynomial a di�erent

universal simulator that can handle all adversaries that invoke at most a number of sessions (with

B) that is bounded by that polynomial. For simplicity, we adopt this solution here.

2.2 Parallel and concurrent zero-knowledge and the timing model

The de�nition of parallel and concurrent zero-knowledge are derived from De�nition 2.1 by con-

sidering appropriate adversaries (i.e., adversarial veri�ers). In case of parallel zero-knowledge, we

consider adversaries that simultaneously initiate a polynomial number of copies of P and inter-

act with this multitude of copies in a synchronized way (i.e., send their i

th

message to all copies

at the same time). In case of concurrent zero-knowledge, we consider adversaries that initiate a

polynomial number of copies of P and interleave their interaction with this multitude of copies in

an arbitrary way. In case of concurrent zero-knowledge under the timing model, the interleaving

of executions by the adversary must satisfying the timing model. (Without loss of generality we

may assume that the adversary never violates the time-out condition; it may instead send an illegal

message at the latest possible adequate time.) Furthermore, without loss of generality, we may

assume that all the adversary's messages are delivered at the latest possible adequate time.

13

2.3 The Goldreich{Kahan (GK) protocol [15]

Loosely speaking, the Goldreich{Kahan (GK) proof system for Graph 3-Colorability (G3C) pro-

ceeds in four steps:

1. The veri�er commits to a challenge (i.e., sequence of edges).

2. The prover commits to a sequence of values (i.e., the colors of each vertex under several

random relabelings of a 3-coloring of the graph).

3. The veri�er decommits (to the edge-sequence).

4. If the veri�er has properly decommits then the prover decommits to a subset of the values as

indicated by the decommitted challenge. Otherwise the prover sends nothing.

(Speci�cally, the query is a sequence of edges each associated with an independently selected

3-coloring of the graph, and the prover decommits to the values corresponding to the end-

points of the i

th

edge with respect to the i

th

committed coloring.)

13

In general, the prover may be modi�ed so that a time-out condition applied to the veri�er's message is always

followed by at least an similar delay of the next prover message. (Indeed, this may slow down some executions in

which the veri�er is honest, but never slows them down by more than can be caused by a cheating veri�er.) We

comment that this modi�cation is unnecessary in our protocol (of Section 5), since it already satis�es the above

convention.
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The speci�c details of each of these steps are not important to our analysis. Still, for sake of clarity,

we reproduced these details in Construction 2.2 (below). We highlight a couple of points that are

relevant to the analysis: Firstly, the prover's commitment is via a commitment scheme that is

(only) computationally-hiding, and so commitments to di�erent values are (only) computationally-

indistinguishable (which considerably complicates the analysis; cf. [15]). Secondly, the veri�er's

commitment is via a commitment scheme that is (only) computationally-binding, and so it is

(only) infeasible for it to properly decommits in two di�erent way (which slightly complicates the

analysis).

Implementation Details: The Goldreich{Kahan protocol [15] utilizes two \dual" commitment

scheme (see terminology in [14, Sec. 4.8.2]). The �rst commitment scheme, denoted C, is used

by the prover and has a perfect-binding property. For simplicity, we assume that this scheme is

non-interactive, and denote by C(v) a random variable representing the output of C on input v

(i.e., a commitment to value v).

14

The second commitment scheme, denoted C, is used by the

veri�er and has a perfect-hiding property. Such a scheme must be interactive, and we assume

that it consists of the receiver sending a random index, denoted �, and the committer responds

by applying the randomized process C

�

to the value it wishes to commit to (i.e., C

�

(v) = C(�; v)

represents a commitment to v relative to the receiver's message �). Consequently, Step 1 in the

high-level description is implemented by Steps P0 and V1 below.

Construction 2.2 (The GK zero-knowledge proof for G3C):

Common Input: A simple (3-colorable) graph G=(V;E).

Let n

def

= jV j, V = f1; :::; ng, and t

def

= 2n � jEj.

Auxiliary Input to the Prover: A 3-coloring of G, denoted  .

Prover's preliminary step (P0): The prover invokes the commit phase of the perfectly-hiding com-

mitment scheme, which results in sending to the veri�er a message �.

Veri�er's commitment to a challenge (V1): The veri�er uniformly and independently selects a se-

quence of t edges, e

def

= ((u

1

; v

1

); :::; (u

t

; v

t

)) 2 E

t

, and sends to the prover a random com-

mitment to these edges. Namely, the veri�er uniformly selects s 2 f0; 1g

poly(n)

, and sends

c

def

= C

�

(e; s) to the prover.

Motivating Remark: At this point the veri�er is committed to a sequence of t edges. (This

commitment is of perfect secrecy.)

Prover's commitment step (P1): The prover uniformly and independently selects a sequence of t

random relabeling of the 3-coloring  , and sends the veri�er commitments to the color of

each vertex under each of these colorings. That is, the prover uniformly and independently

selects t permutations, �

1

; :::; �

t

, over f1; 2; 3g, and sets �

j

(v)

def

= �

j

( (v)), for each v 2 V

and 1 � j � t. It uses the perfectly-binding commitment scheme to commit itself to the

colors of each of the vertices according to each 3-coloring. Namely, the prover uniformly and

independently selects r

1;1

; :::; r

n;t

2 f0; 1g

n

, computes c

i;j

= C(�

j

(i); r

i;j

), for each i 2 V and

1�j� t, and sends c

1;1

; :::; c

n;t

to the veri�er.

14

Non-interactive perfectly-binding commitment schemes can be constructed using any one-way permutation. In

case one wishes to rely here only on the existence of one-way functions, one may need to use Naor's two-round

perfectly-binding commitment scheme [25]. This calls for minor modi�cation of the description below.
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Veri�er's decommitment step (V2): The veri�er decommits the sequence e = ((u

1

; v

1

); :::; (u

t

; v

t

))

to the prover. Namely, the veri�er send (s; e) to the prover.

Motivating Remark: At this point the entire commitment of the veri�er is revealed. The

veri�er now expects to receive, for each j, the colors assigned by the j

th

coloring to vertices

u

j

and v

j

(the endpoints of the j

th

edge in e).

Prover's partial decommitment step (P2): The prover checks that the message just received from

the veri�er is indeed a valid revealing of the commitment c made by the veri�er at Step (V1)

(i.e., it checks that c = C

�

(e; s) indeed holds). Otherwise the prover halts immediately. Let

us denote the sequence of t edges, just revealed, by (u

1

; v

1

); :::; (u

t

; v

t

). The prover reveals

(to the veri�er), for each j, the j

th

coloring of vertices u

j

and v

j

, along with appropriate

decommitment information. Namely, the prover sends to the veri�er the sequence of four-

tuples

(r

u

1

;1

; �

1

(u

1

); r

v

1

;1

; �

1

(v

1

)); :::; (r

u

t

;t

; �

t

(u

t

); r

v

t

;t

; �

t

(v

t

))

Veri�er's local decision step (V3): The veri�er checks whether, for each j, the values in the j

th

four-tuple constitute a correct revealing of the commitments c

u

j

;j

and c

v

j

;j

, and whether the

corresponding values are di�erent. Namely, upon receiving (r

1

; �

1

; r

0

1

; �

1

) through (r

t

; �

t

; r

0

t

; �

t

),

the veri�er checks whether for each j, it holds that c

u

j

;j

= C(�

j

; r

j

), c

v

j

;j

= C(�

j

; r

0

j

), and

�

j

6= �

j

(and both are in f1; 2; 3g). If all conditions hold then the veri�er accepts. Otherwise

it rejects.

Goldreich and Kahan proved that Construction 2.2 constitute a (constant-round) zero-knowledge

interactive proof for Graph 3-Colorability [15]. (We brie
y review their simulator below.) Our

�rst goal is to show that the zero-knowledge property (of Construction 2.2) is preserved under

parallel composition. We later extend the result to yield concurrent zero-knowledge under the

timing-model.

High level description of the simulator used in [15]. The simulator (using oracle access to

the veri�er's strategy) proceeds in three main steps:

The Scan Step: The simulator emulates Steps (P0){(V2), by using commitments to dummy values

in Step (P1), and obtained the veri�er's decommitment for Step (V2), which may be either

proper or not. In case of improper decommitment the simulator outputs the partial transcript

just generated and halts.

The Approximation Step: For technical reasons (discussed in [15]), the simulator next approxi-

mates the probability that the �rst scan ended with a proper decommitment. (This is done

by repeated trials, each as in the �rst scan, until some polynomial number of proper decom-

mitments is found.)

The Generation Step: Using the (proper) decommitment information, obtained in the �rst scan,

the simulator repeatedly tries to generate a full transcript by emulating Steps (P0){(P2), using

commitments to \pseudo-colorings" that do not \violate the coloring conditions imposed by

the decommitted edges". The number of trials is inversely proportional to the probability

estimated in the approximation step.
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3 Simulator for the Parallel Case

Recall that the GK-protocol proceeds in four (abstract) steps:

1. The veri�er commits to a challenge.

(The actual implementation is by two rounds/messages.)

2. The prover commits to a sequence of values.

(The challenge speci�es a subset of these values.)

3. The veri�er decommits (either properly or not).

4. Pending on the veri�er's proper decommitment, the prover decommits to the corresponding

values.

The basic approach towards simulating this protocol (without being able to answer a random

challenge) is to �rst run the �rst three steps with prover-commitments to arbitrary (dummy) values,

obtaining the challenge, and then rewind to Step 2 and make a prover-commitment that passes this

speci�c challenge (alas no other challenge). In case the veri�er always decommits properly, this

allows to easily simulate a full run of the protocol. In case the veri�er always decommits improperly,

things are even easier since in this case we only need to simulate Steps 1{3. The general case is

when the veri�er decommits with some probability. Intuitively, this can be handled by outputting

the initial transcript of Steps 1{3 in case it contains an improper decommitment, and repeatedly

trying to produce a full passing transcript (as in the �rst case) otherwise. Di�culties arise in case

the probability of proper veri�er decommitment is small but not negligible and furthermore when

it depends (in a negligible way) on whether the prover commits to dummy or to \passing" values.

Indeed, the focus of [15] is on resolving this problem (and their basic approach is to approximate

the probability of proper decommitment in case of dummy values, and keep trying to produce a

full passing transcript for at most a number of times that is inversely proportional to the latter

probability).

The problem we face here is more di�cult: several (say n) copies of the protocol are executed

in parallel and the veri�er may properly decommit in some of them but not in others. Thus,

there are 2

n

possible con�gurations of proper/improper decommitment in these n copies, and we

certainly cannot insist on rewinding until we obtain again the same con�guration (e.g., they may

be all equally likely). Instead, referring to the n probabilities corresponding to each of the n

copies performing proper decommitment, we add additional rewinding in which we try to obtain

a proper decommit from all copies that have at least as high a probability as the copies that

actually performed proper-decommitment in the initial simulated run. Once this is obtained, we

try to generate a parallel run in which only copies having at least as high a probability (but not

necessarily all of them!) properly decommit. Furthermore, in order not to skew the distribution

(towards high proper-decommitment probabilities), we insist on having at least one copy with a

corresponding probability as low as some copy in the initial run. As one may expect, the problem

is to pick thresholds such that the above discussion may be e�ciently implemented. We start by

clarifying the above discussion.

3.1 A high level description

As is clear from the above discussion, the following basic notions are central to our analysis:

An execution of a copy is said to properly decommit if the veri�er message in Step 3 is a valid

decommitment to its (i.e., the veri�er's) commitment in Step 1. In the �rst part of the simulation, we

use prover's commitments to arbitrary values, which are referred to as commitment to dummy values.

13



Later we use commitments to values that will pass for a certain challenge (which is understood

from the context). These are called commitment to passing values.

15

In addition, we also refer to

the following more complex notions and notations:

� Let p

i

denote the probability that the veri�er properly decommits in the i

th

copy of the

parallel run, when Step 2 is played with commitment to dummy values. (When using other

commitments (e.g., passing commitments) the probability of proper decommitment may be

p

0

i

such that jp

0

i

� p

i

j is negligible.)

� We use a sequence of thresholds, denoted t

1

; :::; t

n

, that will be determined (probabilistically)

on the 
y such that

1. t

j

2 (2

�(j+1)

; 2

�j

),

2. no p

i

lies in the interval [t

j

� (1=9n) � 2

�j

].

Such t

j

's exist and t

j

can be found when given approximations of all p

i

's up-to (1=9n) � 2

�j

(or so). We also de�ne t

0

def

= 1, and so p

i

� t

0

for all i. (We assume for simplicity that every

p

i

is greater than 2

�n

, and so every p

i

lies in one of the intervals (t

j

; t

j�1

].)

� For such t

j

's, de�ne T

j

= fi : p

i

> t

j

g. (Indeed, T

0

= ; and T

n

= f1; :::; ng.)

Membership in T

j

can be determined in time poly(n)�2

j

, since t

j

was selected to be su�ciently

far-away from all the p

i

's (i.e., jt

j

� p

i

j = 
(2

�j

=n)).

� Let E

j

denote the event that the veri�er properly decommits to some copy in T

j

n T

j�1

but

to no copy outside T

j

, and let q

j

= Pr[E

j

]. Note that q

j

� n � t

j�1

(since E

j

mandates one

of jT

j

n T

j�1

j � n events, each occuring with probability at most t

j�1

). However, q

j

may be

much smaller than t

j

< t

j�1

.

Since f1; :::; ng = T

n

� T

n�1

� � � � � � � T

1

� T

0

= ;, whenever the veri�er properly decommits

in some copy, one of the events E

j

(for j � 1) must hold. Otherwise (i.e., whenever the

veri�er decommits improperly in all copies), we say that event E

0

holds.

We now turn to the simulator, which generalizes the one in [15]. All approximations referred

to below are quite good w.v.h.p. (i.e., with 1 � 2

�n

each approximation is within a factor of

(1 + (1=poly(n)) of the corresponding value). Loosely speaking, after �xing the veri�er's coins (at

random), the simulator proceeds as follows (while using the residual veri�er strategy as a black-box):

Step S0: Obtain the veri�er's commitments (of Step 1) in the n parallel copies.

Step S1: The purpose of this step is to generate an index j 2 f0; 1; :::; ng with distribution corre-

sponding the probability that event E

j

holds for a random parallel execution of the protocol,

as well as to determine the sets T

j

and T

j�1

. This will allow to determine (in subsequent

steps) whether or not event E

j

holds.

The above goal is achieved by �rst simulating Steps 2{3 of the (parallel execution of the)

protocol, while using (in Step 2) commitments to dummy values. Based on the veri�er's

decommitments in Step 3 (of the parallel execution), we determine the set I � [n] of copies

15

Recall that in the actual implementation, challenges correspond to sequences of t edges (over the vertex-set

f1; 2:::; ng), and the prover commits to a sequence of t � n values in f1; 2; 3g (i.e., a block of n values per each edge).

For a given edge sequence (i.e., a challenge), a passing sequence of values is one in which (for every i) the values

assigned to the i

th

block are such that the endpoints of the i

th

edge (in the challenge) are assigned a random pair of

distinct elements.
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in which the veri�er has properly decommitted. Next, we determine an appropriate sequence

t

1

; :::; t

j

of thresholds such that event E

j

holds. Finally, using t

j�1

and t

j

, we determine for

each i whether or not p

i

> t

j

(i.e., i 2 T

j

) and whether or not p

i

> t

j�1

(i.e., i 2 T

j�1

).

Indeed, the above description (especially of the second part) is way too laconic. We need

(and will) describe (below) how to implement it within time poly(n) � 2

j

.

Step S2: For each copy i 2 T

j

, we wish to obtain the challenge committed to in Step 1, while

working within time poly(n) � 2

j

. This is done by rewinding and re-simulating Steps 2{3 for

at most poly(n) � 2

j

times, while again using (in Step 2) commitments to dummy values.

Step S3: For technical reasons, analogously to [15], we next obtain a good (i.e., constant factor)

approximation of q

j

= Pr[E

j

]. This approximation, denoted ~q

j

, will be obtained within

expected time poly(n)=q

j

by repeated rewinding and re-simulating Steps 2{3. (Speci�cally,

we continue till we see some �xed polynomial number (say n

5

) of occurrences of the event

E

j

.)

Step S4: We now try to generate a simulation of Steps 2{3 in which event E

j

occurs. However,

unlike in previous simulations, here we use (in Step 2) commitments to values that pass the

challenges that we have obtained. This will allow us to simulate also Step 4, and complete

the entire simulation.

Speci�cally, we make at most poly(n)=~q

j

tries to rewind and re-simulate Steps 2{3, while

using (in Step 2 of each copy in T

j

) commitments to values that pass the corresponding

challenge (which we obtained in Step S2). If the veri�er answers (for Step 3) �t event E

j

then

we proceed to simulate Step 4 in the obvious manner. Otherwise, we rewind and try again

(but never try more than poly(n)=~q

j

times).

Pending on the ability to properly implement Step S1, we observe that:

1. The (overall) expected running time is polynomial, because each attempt (in Steps S2, S3,

and S4) is repeated for a number of times that is inversely proportional to the probability

of entering this repeated-attempts step. Speci�cally, each of these steps is repeated at most

(poly(n)=~q

j

) � (poly(n)=q

j

) times (use q

j

= O(n � 2

�j

) for Step S2), whereas j is selected

with probability q

j

.

2. The computational-binding property of C implies that we rarely get into trouble in Step S4;

that is, only with negligible probability will it happen that in Step S4 the veri�er properly

decommit to a value di�erent from the one to which it has properly decommitted in Step S2.

3. Since the probabilities of veri�er's proper-decommitment (in Step 3) are almost una�ected by

the prover's commitments (of Step 2) and since passing commitments look like commitments

to truly valid values, the simulated interaction is computationally indistinguishable (cf. [19,

27]) from the real one.

3.2 Setting the thresholds and implementing Step S1

One naive approach is to try to use �xed thresholds such as t

j

= 2

�j

. However, this may not allow

to determine (for a given i) with high probability and within time poly(n) � 2

j

whether or not p

i

is

smaller than t

j

. (The reason being that p

i

may be very close to 2

�j

; e.g., jp

i

� 2

�j

j = 2

�2n

.)

Instead, the t

j

's will be selected in a more sophisticated way so that they are approximately as

above (i.e., t

j

� 2

�j

) but also far enough (i.e., at distance at least 2

�j

=9n) from each p

i

. This will
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allow to determine (with high probability) and within time poly(n) � 2

j

whether or not p

i

is smaller

than t

j

. The question is how to set the t

j

's so that they are appropriately far from all p

i

's. Since

the p

i

's are unknown probabilities (which we can only approximate), it seems infeasible to come-up

with a deterministic setting of the t

j

's. Indeed, we will settle for a probabilistic setting of the t

j

's

(provided that this setting is independent of other events).

Recall that Step S1 calls for the setting of t

1

; :::; t

j

such that event E

j

holds, where whether

or not event E

j

holds depends on t

j

and t

j�1

. Furthermore, it is important that the setting of

t

j�1

in case event E

j

holds be the same as the setting of t

j�1

in case event E

j�1

holds. Moreover,

recalling that the setting of t

j

must be performed in time poly(n) � 2

j

, we cannot a�ord to set all

t

k

's whenever we set a speci�c t

j

. Still, we provide below an adequate threshold-setting process.

We start with the following key procedure.

Procedure T (j; n), returns t

j

2 ((3=4) � (1=4)) � 2

�j

� (2

�(j+1)

; 2

�j

):

1. Approximate each p

i

up-to (1=9n) � 2

�j

(with error probability at most 2

�n

=n). Actually, for

large p

i

's (e.g., p

i

> 2

�j+2

) we only approximate p

i

up-to a factor of 2 of its true value. This

is done by poly(n) � 2

j

rewindings and re-simulations of Steps 2{3 of the protocol.
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Call the

resulting approximations, a

i

's.

2. Determine K  fk 2 f�n=2; :::;+n=2g : (8i) a

i

=2 ((3=4) + (k=2n) � (1=4n)) � 2

�j

g. Note

that K is not empty, because each a

i

can rule out at most one element of K (whereas

jf�n=2; :::;+n=2gj = n+ 1 and they are only n values of i).

3. Select an arbitrary (say at random or the �rst) k 2 K. Output t

j

= ((3=4) + (k=2n)) � 2

�j

.

By construction, jt

j

� a

i

j � (1=4n) � 2

�j

, for all i's. For each i, if p

i

> 2

�j+1

then (using t

j

< 2

�j

)

de�nitely p

i

> t

j

+ 2

�j

holds, and so jp

i

� t

j

j > 2

�j

follows. Otherwise (i.e., p

i

� 2

�j+1

for this i),

with probability at least 1� 2

�n�log

2

n

, we have ja

i

� p

i

j � (1=9n) � 2

�j

. In this (high probability)

case, p

i

does not fall in the interval t

j

� (1=9n) � 2

�j

, because jp

i

� t

j

j � ja

i

� t

j

j � ja

i

� p

i

j �

((1=4n) � (1=9n)) � 2

�j

> (1=9n) � 2

�j

. We conclude that, with probability at least 1� 2

�n

, no p

i

falls in the interval t

j

� (1=9n) � 2

�j

.

Implementation of Step S1: Recall that the purpose of Step S1 is to generate an index j 2

f0; 1; :::; ng with distribution corresponding the probability that event E

j

holds (for a random

parallel run of the protocol), as well to determine the thresholds t

1

; :::; t

j

, and using these to

determine for every i = 1; :::; n, whether or not i 2 T

j

and whether or not i 2 T

j�1

. We thus start

by generating a random run, and next determine all necessary objects with respect to it.

1. Generating a reference run: Simulate Steps 2{3 of the (parallel execution of the) protocol,

while using (in Step 2) commitments to dummy values. Based on the veri�er's decommitments

in Step 3 (of the parallel execution), determine the set I � [n] of copies in which the veri�er

has properly decommitted.

2. Determining the event E

j

occuring in the reference run, as well as the sets T

j

and T

j�1

:

Case of empty I: Set j = 0 and T

j

= T

j�1

= ;.
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Note that in such a number of attempts, we can �rst distinguish w.v.h.p between the case p

i

> 2

�j+2

and the

case p

i

< 2

�j+1

. In the former case we approximate p

i

up-to a factor of 2, in the latter case we approximate it up-to

an additive deviation of (1=9n) � 2

�j

, and in the intermediate case any of these will do. Recall that approximating a

probability p to within factor 2 can be done in a number of trials proportional to 1=p (which for p = 
(2

�j

) means

O(2

j

) trials). Similarly, approximating a probability p up-to an additive deviation of q can be done in a number of

trials proportional to p=q

2

(which for p = O(2

�j

) and q = 
(2

�j

=n) means O(2

j

n

2

) trials).
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Case of non-empty I: Set t

0

= 1 and T

0

= ;. For j = 1; :::; n do

(a) t

j

 T (j; n). (We stress that the value of t

j

is set obliviously of I.)

(b) Determine the set T

j

by determining, for each i, whether or not p

i

> t

j

. We use

approximations to each p

i

(as in procedure T (j; n) above), and rely on jp

i

� t

j

j >

(1=9n) � 2

�j

.

(c) Decide whether or not event E

j

holds for the reference run, by using T

j�1

(of the

previous iteration) and T

j

(just computed). Recall that event E

j

holds if I � T

j

but I 6� T

j�1

.

(d) If event E

j

holds then exit the loop with the current value of j as well as with the

values of T

j

and T

j�1

. Otherwise, proceed to the next iteration.

Since we have assumed that (8i) p

i

> 2

�n

, some event E

j

must hold.
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A key point in the analysis is that the values of the T

k

's, as determined by Step S1 (i.e., T

0

; :::; T

j

),

are independent of the value of j. Of course, which of the T

k

's were determined does depend on

the value of j. Thus, we may think of Step S1 as of an e�cient implementation of the mental

experiment in which all T

k

's are determined, next j is determined accordingly (analogously to the

above), and �nally one outputs T

j

and T

j�1

for subsequent use.

3.3 A detailed description of the simulator

For sake of clarity we present a detailed description of the simulator, before turning to its analysis.

Recall that we start by selecting and �xing the veri�er's coins at random.

Step S0: We simulate the parallel execution of Step 1 (i.e., Steps P0 and V1 of Construction 2.2) as

follows. First, acting as the real prover in Step P0, we randomly generate messages �

1

; :::; �

n

(one per each copy). Invoking the veri�er (as per Step V1), while feeding it with �

1

; :::; �

n

,

we obtain its n commitments, c

1

; :::; c

n

, for the n copies.

Step S1: As explained in Section 3.2, we determine (for a random reference run) the index j

for which E

j

holds, as well as the sets T

j

and T

j�1

. Recall that this (and speci�cally pro-

cedure T (�; �)) involves poly(n) � 2

j

rewindings and re-simulations of Steps 2{3, while using

commitments to dummy values. Each rewinding is performed as in Step S2 below.

In case j = 0, we may skip all subsequent steps, and just output the reference run produced

in the current step.

Step S2: For each copy i 2 T

j

, we wish to obtain the challenge (edge-sequence) committed to in

Step 1, while working within time poly(n) � 2

j

. This is done by rewinding and re-simulating

Steps 2{3 (i.e., Steps P1 and V2 of Construction 2.2) for poly(n) � 2

j

times, while using

commitments to dummy values. (Actually, we may as well do the same for all i's (regardless

whether i 2 T

j

or not), but we are guaranteed to succeed only for i's in T

j

. Furthermore, we

may work on all i's concurrently.)

Speci�cally, each rewinding attempt proceeds as follows:

1. Generate n sequences of random commitments to the dummy value 0. That is, for

every (copy) i = 1; :::; n, select uniformly r

i

1;1

; :::; r

i

n;t

2 f0; 1g

n

, and compute c

i

def

=

(c

i

1;1

; :::; c

i

n;t

), where c

i

k;`

= C(0; r

i

k;`

).
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Removing this assumption enables the situation that no event E

j

occurs. This may happen only if p

i

� t

n

< 2

�n

,

for every i2I. But the probability that the reference run corresponds to such a set I is at most

P

i:p

i

<2

�n

p

i

< n�2

�n

.
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2. Feeding the veri�er with (the n prover commitments) c

1

; :::; c

n

, obtain the veri�er's n

(Step 3) responses, denoted (s

1

; e

1

); :::; (s

n

; e

n

).

3. For every properly decommitted copy (i.e., i such that c

i

= C

�

i

(s

i

; e

i

)), store the corre-

sponding challenge (i.e., the edge sequence e

i

).

(Note that it is unlikely that we will obtain two con
icting proper decommitments to the

same veri�er commitment c

i

.)

Step S3: For technical reasons, analogously to [15], we next obtain a good approximation of q

j

=

Pr[E

j

]. This approximation, denoted ~q

j

, will be obtained within expected time poly(n)=~q

j

by

repeated rewinding and re-simulating Steps 2{3 (i.e., Steps P1 and V2 of Construction 2.2).

Speci�cally, we repeat the following steps until we obtain n

5

occurrences of event E

j

.

1. Perform Items 1 and 2 as in Step S2.

2. Let I

0

= fi : C

�

i

(s

i

; e

i

) = c

i

g. If I

0

�ts event E

j

(i.e., I

0

� T

j

and I

0

6� T

j�1

) then

increment the \success counter" by one unit. (We proceed to the next iteration only if

the \success counter" is still smaller than n

5

.)

Suppose we have obtained n

5

successes while making � trials. Then we set ~q

j

= n

5

=� .

Step S4: We now try to generate a simulation of Steps 2{3 (i.e., Steps P1 and V2 of Construc-

tion 2.2) in which event E

j

occurs. However, unlike in previous simulations, here we use (in

Step 2) commitments to values that pass the challenges that we have obtained. This will

allow us to simulate also Step 4, and complete the entire simulation. Speci�cally, we make

at most poly(n)=~q

j

tries to rewind and re-simulate Steps 2{3, while using (in Step 2 of each

copy in T

j

) commitments to values that pass the corresponding challenge (which we obtained

in Step S2). Each attempt proceed as follows:

1. Generate n sequences of random commitments to passing values (for copies in T

j

and

dummy values otherwise). Speci�cally, suppose that i 2 T

j

(or more generally that we

have obtained (in Step S2) a proper decommitment to c

i

), and denote by ((u

i

1

; v

i

1

); :::; (u

i

t

; v

i

t

))

the value of the decommitted challenge (edge sequence). Then, for every ` = 1; :::; t,

select uniformly r

i

1;`

; :::; r

i

n;`

2 f0; 1g

n

and a

i

`

6= b

i

`

2 f1; 2; 3g, and compute c

i

u

i

`

;`

=

C(a

i

`

; r

i

u

i

`

;`

), c

i

v

i

`

;`

= C(b

i

`

; r

i

v

i

`

;`

), and c

i

k;`

= C(0; r

i

k;`

) for k =2 fu

i

`

; v

i

`

g. Let c

i

def

= (c

i

1;1

; :::; c

i

n;t

).

For i =2 T

j

(or for i's for which we failed in Step S2), we produce c

i

def

= (c

i

1;1

; :::; c

i

n;t

) as

in (Item 1 of) Step S2.

2. Feeding the veri�er with (the prover's commitments) c

1

; :::; c

n

, obtain the veri�er's n

(Step 3) responses, denoted (s

1

; e

1

); :::; (s

n

; e

n

). Let I

0

= fi : C

�

i

(s

i

; e

i

) = c

i

g denote the

set of copies that have properly decommitted (in the current attempt). If I

0

does not �t

event E

j

(i.e., I

0

6� T

j

or I

0

� T

j�1

) then we abort this attempt. That is, we proceed

only if I

0

�ts event E

j

.

3. For every properly decommitted copy (i.e., i 2 I

0

), we provide a proper decommitment

(as per Step 4). This complete a full simulation of such a copy, whereas improperly

committed copies are simulated by their transcript so far. Speci�cally, ignoring the rare

case of con
icting proper decommitments, a proper decommitment to copy i 2 I

0

� T

j

must use the same challenge (edge sequence) as (found in Step S2 and) used in Item 1

(of the current attempt). Then, for every i 2 I

0

and ` = 1; :::; t, we merely provide

the 4-tuple (r

i

u

i

`

;`

; a

i

`

; r

i

v

i

`

;`

; b

i

`

), where ((u

i

1

; v

i

1

); :::; (u

i

t

; v

i

t

)) is the corresponding challenge.
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Indeed, this answer (like the prover's answer in Step 4) passes the veri�er's check (since

a

i

`

6= b

i

`

2 f1; 2; 3g, c

i

u

i

`

;`

= C(a

i

`

; r

i

u

i

`

;`

), and c

i

v

i

`

;`

= C(b

i

`

; r

i

v

i

`

;`

)).

In the rare case in which a con
icting proper decommitment is received, we proceed just as

in case event E

j

does not occur.

For technical reasons, we modify the above simulation procedure by never allowing it to run more

than 2

n

steps. (This is easily done by introducing an appropriate step-count (which is implemented

in linear or almost-linear time and so does not a�ect our running-time analysis).)

3.4 A detailed analysis of the simulator

Lemma 3.1 (Simulator's running-time): The simulator runs in expected polynomial-time.

Proof: The key observation is that each repeated attempt to produce something is repeated for a

number of times that is inversely proportional to the probability that we try this attempt at all.

This reasoning is applied with respect to each of the main steps (i.e., Steps S1, S2, S3 and S4).

Speci�cally:

� For Step S1: Recall that event E

j

occurs in the reference run (generated at the onset of

Step S1), with probability q

j

. Letting Q

def

= T

j

n T

j�1

, we have q

j

� jQj � max

i2Q

fp

i

g �

n � t

j�1

< n � 2

�(j�1)

. Also, with probability at least 1� 2

�n

, Step S1 correctly determines j.

Pending on the latter (overwhelmingly high probability) event, the expected number of steps

conducted in Step S1 is

n

X

j=0

q

j

� (poly(n) � 2

j

) <

n

X

j=0

(n � 2

�(j�1)

) � (poly(n) � 2

j

) = poly(n) (1)

Relaying on the fact that the simulator never runs for more than 2

n

steps, we cover also the

highly unlikely case (in which Step S1 determines a wrong j).

The same reasoning applies to Step S2. That is, again assuming that Step S1 correctly

determines j, the expected number of steps made in Step S2 is as in Eq. (1).

� For Step S3: Assuming that ~q

j

= �(q

j

), the expected number of steps made in Step S3

is

P

n

j=0

q

j

� (poly(n)=~q

j

) = poly(n). The above assumption holds with probability at least

1 � 2

�n

, and otherwise we relay on the fact that the simulator never runs for more than 2

n

steps. The same reasoning applies to Step S4.

Thus, the overall expected running-time is polynomial (and this is proven without relying on any

security properties of the commitment schemes).

Lemma 3.2 (Simulator's output distribution): Assuming that the veri�er's commitment scheme

(i.e., C) is computationally-binding and that the prover's commitment scheme (i.e., C) is computationally-

hiding, the output of the simulator is computationally indistinguishable from the real parallel inter-

action.

Recall that the assumption that C is perfect-hiding and C is perfectly-binding is used in establishing

the soundness of the GK-protocol (as a proof system).
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Proof: For sake of clarity of the analysis, one may consider an imaginary simulator that goes on

to determine all t

j

's (rather than determining only part of them as in Item 2 of Step S1). We may

assume that all approximations made by the simulator are su�ciently good; that is, in Step S1

the simulator correctly determines j as well as T

j

and T

j�1

, and in Step S3 it obtains ~q

j

= �(q

j

).

(Indeed, the assumption holds with probability at least 1� 2

�n

.)

Next, we consider three unlikely events in the simulation:

1. In Step S2, the simulator fails to obtain a proper decommitment of some i 2 T

j

. This may

happen only with exponentially vanishing probability, because we keep trying for poly(n) � 2

j

times and each time a proper decommitment (for i) occurs with probability p

i

> t

j

� 2

�(j+1)

.

2. In Step S4, the simulator fails to generate a simulation in which event E

j

holds. This may

happen only with negligible probability, because in order for this to happen event E

j

should

occur in Step S1 and then we should fail to obtain it in Step S4 although we try poly(n)=~q

j

=

O(poly(n)=q

j

) times and each time event E

j

occurs with probability q

0

j

that is negligiblly

close to q

j

(because C is computationally-hiding; cf. [15, Clm. 3]). (Note that q

j

refers to the

probability that event E

j

occurs for a dummy commitment, whereas q

0

j

refers to its probability

for a \passing" commitment.) Thus, the probability of this failure is bounded above by

n

X

j=0

q

j

� (1� q

0

j

)

poly(n)=q

j

(2)

Letting �

j

def

= q

j

� q

0

j

, we consider two cases (cf. [15, Clm. 2]): in case �

j

� q

j

=2, the

corresponding term is exponentially vanishing, whereas in case �

j

� q

j

=2 we simply bound

the corresponding term by q

j

� 2�

j

. Thus, in both cases, we obtain that each term in Eq. (2)

is negligible.
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3. In Step S4, the simulator obtains a proper decommit to some copy that is di�erent from the

proper decommitment obtained for the same copy in Step S2. (In such a case, the simulator's

output will de�nitely look wrong.) However, the hypothesis that C is computationally-binding

implies that this bad event occurs only with negligible probability.

We conclude that, except with negligible probability, the simulator produces an output that looks

syntactically �ne. Finally, the hypothesis that C is computationally-hiding is used to demonstrate

that the simulator's output is computationally indistinguishable from a random transcript of the

real interaction. The details are analogous to the proof of [15, Clm. 4]: First we prove that

the probabilities of each E

j

event is about the same (i.e., di�er by a negligible amount) in the

simulation's output and in the real interaction. Next we focus on each likely E

j

event and prove

that the conditional spaces for it are indistinguishable. We capitalize on the fact that a non-

negligible di�erence in the unconditional space must translates to a non-negligible di�erence on

some likely E

j

, and that for likely E

j

the simulation runs in strict polynomial-time.

19

Combining Lemmas 3.1 and 3.2, we obtain

Theorem 3.3 The (constant-round) GK-protocol is zero-knowledge under parallel composition.
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In the �rst case, we have (1 � q

0

j

)

n=q

j

� (1 � (q

j

=2))

n=q

j

� exp(�n=2). Thus, Eq. (2) is upper-bounded by

P

n

j=0

max(2�

j

; exp(�n=2)), which is a negligible function.
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An alternative approach may be to derive, in the contradiction argument, an expected polynomial-time algorithm

that violates the hiding property of C, and to derive from it (via truncating long runs) a strict polynomial-time

algorithm that violates the hypothesis that C is computationally-hiding.
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Recall that the GK-protocol is a proof system for NP (with exponentially vanishing soundness

error) [15].

3.5 An Extension

We relax the parallel execution condition to concurrent execution of polynomially-many copies that

satisfy the following two conditions:

C1: No copy enters Step 2 before all copies complete Step 1.

C2: No copy enters Step 4 before all copies complete Step 3.

In other words, the concurrent execution proceeds in three phases:

Phase 1: All copies perform Step 1 (in arbitrary order).

Phase 2: All copies perform Steps 2 and 3 (in arbitrary order except for the obvious local timing

condition (i.e., each copy performs Step 3 after it has completed Step 2)).

Phase 3: All copies perform Step 4 (in arbitrary order).

Our treatment of parallel executions extends to the above (concurrent) case. The reason being that

the simulator treats Steps 2{3 as one unit, and so the fact that these steps may be interleaving

among copies is of no importance. Speci�cally, Step S0 of the extended simulator refers to Phase 1

(rather than to Step 1), its Steps S1{S3 refer to Phase 2 (rather than to Steps 2{3), and its Step S4

refers to Phases 2{3 (rather than to Steps 2{4).

4 Simulator for the case of Bounded-Simultaneity

Recall that the GK-protocol proceeds in four steps:

1. The veri�er commits to a challenge.

2. The prover commits to a sequence of values.

3. The veri�er decommits (either properly or not).

4. Pending on the veri�er's proper decommitment, the prover decommits to the corresponding

values.

Here we consider concurrent executions in which up-to w copies of the GK-protocol run simulta-

neously at any given time, where w may be any �xed constant.

4.1 Motivation

The case of w = 1 corresponds to sequential composition, and it is well-known that any zero-

knowledge protocol maintains its security in this case. So let us turn (as a warm-up) to the case

of w = 2. Trying to use the single-session simulator of [15] in this case, we encounter the following

problem: when we try to deal with the simulation of one copy, the veri�er may invoke another

copy. A natural thing to do is to suspend our dealing of the �rst copy, and apply the single-session

simulator to the second copy. The good news are that the veri�er cannot initiate yet another copy

(before it terminates either the �rst or second ones, since this would have violated the bounded-

simultaneity condition (for w = 2)). Instead, one of two things will happen (eventually

20

):
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Actually, in a few steps.
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1. The veri�er may execute Step 3 in the second copy, in which case we make progress on treating

the second copy (and will eventually complete a simulation of it, which would put us back in

the one-session case).

2. The veri�er may execute Step 3 in the �rst copy, in which case we make progress on treating

the �rst copy. For example, if we were trying to get the decommitment value for the �rst

copy and we just got it, we may abandon the treatment of the second copy and proceed by

rewinding the �rst copy.

Thus, in each of these cases, we make progress. Intuitively, the cost of dealing with two simultaneous

copies is that we have to invoke the single-session simulator (for the second copy) per each operation

of the single-session simulator (for the �rst copy). It is not surprising that we can similarly deal

with any constant number of simultaneous copies, and do so within time T (n)

w

, where T (n) is the

time complexity of the single-session simulator and w is the bound on simultaneity.

4.2 The actual simulation

Indeed, although appealing, the above suggestion requires careful implementation.

In correspondence to the three main steps of the single-copy simulator (cf. Section 2.3), we

introduce three recursive procedures: Scan, Approx and Generate. Each of these procedures tries

to handle a single copy (just as done by the corresponding step of the single-copy simulator), while

making recursive calls when encountering a Step 2 message of some other copy.

21

The recursive

call will take place before execution this Step 2, and execution of this Step 2 will be the �rst

thing that the invoked procedure will do. The three procedure maintain (and pass along) the

state of currently handled copies as well as related auxiliary information. In particular, h will

denote a partial transcript of the (concurrent) execution, and a will denote a list of currently active

copies together with auxiliary information regarding each of them (e.g., decommitment information

obtained in previous related runs). For sake of clarity, although the following is implicit in h, we

will also pass explicitly the identity of the copy that is responsible for the current procedure call

(i.e., the copy that encountered Step 2). The (simulator's) main program merely consists of a

special invocation of Generate with empty history (i.e., h = a = �) and a �ctitious copy index.

Throughout the rest of the description we �x the (deterministic) adversarial veri�er (although we

only use black-box access to it).

4.2.1 The speci�cation of the procedures

Let us �rst elaborate on the structure of the auxiliary information a, which consists of records, each

corresponding to some encountered copy of the protocol. Each record consists of three �elds:

1. The veri�er decommitment �eld indicates whether (among related runs) the �rst encounter of

Step 3 (i.e., the veri�er's decommitment) of this copy was proper or improper (i.e., the type of

decommitment), and in the former case the �eld includes also the value of the decommitment.

That is, if non-empty, the �eld stores a pair (X; v), where X 2 fproper; improperg is a

decommitment type and v is a decommitment value (which is meaningful only in case X =

proper). This �eld (of the record of the i

th

copy) is �lled-up according to the answer returned

by some invocation of Scan(h; �; i).

2. The decommitment probability �eld holds an approximation of the probability that an invo-

cation with parameters as the one that �lled-up the �rst �eld, actually turns out returning
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This is no typo; we do mean Step 2, not Step 1.
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exactly this information. That is, suppose that the �rst �eld of record i (i.e., the record of

the i

th

copy) was �lled-up according to the answer returned by Scan(h; a; i), which resulted

with a decommitment of type X 2 fproper; improperg. Then the second �eld of record i

should hold an approximation of the probability that Scan(h; a; i) returns with an answer that

encodes the same type of decommitment of copy i. (Jumping ahead, we hint that Scan(h; a; i)

may return with a decommitment to some other copy, and so the sum of the two probabilities

corresponding to the two types is not necessarily 1.)

3. The prover decommitment �eld encodes the decommitment information corresponding to the

prover's commitment in Step 2. This �eld (of the record of the i

th

copy) is �lled-up at the

up-front of the execution of Generate(h; a

0

; i), which follows the invocation of Scan(h; a; i),

where a

0

is a augmented by the veri�er decommitment information of copy i and the prover's

commitment is performed so to passed the latter.

As hinted above, the �elds are �lled-up in the order they appear above (i.e., the veri�er decommit-

ment �eld is �lled-up �rst). In reading the following speci�cations, it may be instructive to consider

the special case of a single copy (in which case failure never occurs and j = i always holds).

Speci�cation of Scan(h; a; i): This call produces a pre�x of a \pseudorandom" execution tran-

script that extends the pre�x h, and returns some related information. The transcript is pseu-

dorandom in the sense that it is computationally indistinguishable from a (pre�x of a random)

real continuation of h (by the adversary interacting with copies of the prover).
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The extended

transcript is truncated (i.e., the extended pre�x ends) at the �rst point where one of the following

holds:

1. Progress: This is a case where the (extended) execution reaches Step 3 of some copy j (possibly

but not necessarily j = i) so that the �rst �eld of record j is empty. In this case, the procedure

should return the index j as well as the decommitment information (provided in the current

execution of Step 3 of copy j). That is, the answer is a pair (j; y), where j is a index of a

copy and y is a decommitment information (which may be either proper or improper).

2. Failure: This is a case where the (extended) execution reaches Step 3 of some copy j so that

the �rst �eld of record j encodes a decommitment type di�erent than the one occuring in

the current extension. That is, the �rst �eld of record j encodes decommitment type X 2

fproper; improperg, whereas in the current execution Step 3 of copy j has a decommitment

type di�erent from X (i.e., opposite to X). (In fact j 6= i will always hold.) In this case, the

procedure should return a special failure symbol.

Speci�cation of Approx(h; a;X; i): Always returns an approximation of the probability that

Scan(h; a; i) answers with a pair (i; y) such that y has type X 2 fproper; improperg. The approx-

imation is required to be correct to within a factor of 2 with probability at least 1� 2

�n

.

Speci�cation of Generate(h; a; i): This call produces a pre�x of a pseudorandom execution

transcript that extends the pre�x h, and returns either this extension or related information. The

notion of pseudorandom is the same as in case of Scan, and the extended transcript is truncated

at the �rst point where one of the following holds:
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The reader may wonder as to what will happen in case h itself is not consistent with any pre�x of such a real

interaction. The answer is that the extended execution will always be truncated before this fact becomes evident

(i.e., we never perform Step 4 of a copy unless Step 2 of that copy was performed in a passing manner).
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1. Failure: Exactly as in the speci�cation of Scan, except that here j = i is possible too.

2. Progress: Here there are a few sub-cases:

(a) This is a case where the (extended) execution reaches Step 3 of some copy j so that the

�rst �eld of record j is empty. This sub-case is handled exactly as the Progress Case of

Scan. (Unlike in Scan, here j = i cannot not possibly hold.)

(b) This is a case where the (extended) execution reaches Step 4 of copy i. In this case, the

procedure returns the currently extended transcript (including the execution of Step 4

of copy i), along with a corresponding update to the auxiliary information a.

(We comment that this sub-case is not really necessary; we choose to add it in order to

make the description and the analysis slightly easier.)

(c) The execution reaches its end (i.e., the adversary terminates). In this sub-case, we act

exactly as in the previous one.

Note that we did not specify (above) with what probability Generate (or Scan) should make

progress. In fact, unlike in the presentation of the basic simulator, here Generate does not make

progress almost always (not even in the case of a single copy), but rather makes progress with

probability that is close to the one approximated by the corresponding Approx-call. Thus, Generate

is actually a generation-attempt, and the repetition of this attempt is made by the higher level

invocator (rather than in the procedure itself).

4.2.2 The implementation of the procedures

We refer to the notion of passing, as de�ned and used in Section 3. Recall that a passing commitment

is a sequence of (prover's) commitments to values that pass for the corresponding challenge (encoded

in the �rst �eld of the corresponding copy): see Footnote 15.

We start with the description of Generate (although Generate(�; �; i) is invoked after Scan(�; �; i)).

We note that Generate(h; a; i) is always invoked when the �rst �eld in the i

th

record in a is not

empty (but rather encodes some decommitment, of arbitrary proper/improper type), and the third

�eld is empty (and will be �lled-up at the very beginning of the execution).

Procedure Generate(h; a; i): Initializes h

0

= h and a

0

= a, generates a passing commitment for

(Step 2 of) copy i, and augments h

0

and a

0

accordingly. Speci�cally:

1. The procedure generates a random sequence of values, denoted v, that pass the challenge

described in the �rst �eld of the i

th

record of a. That is, v may be arbitrary if the said �eld

encodes an improper decommitment; but in case of proper decommitment, v must pass with

respect to the challenge value encoded in that �eld.

2. The procedure generates a random sequence of (prover's) commitments, denoted c, to v,

augments h

0

by c, and augments a

0

by placing the corresponding decommitment information

in the third �eld of the i

th

record.

Next, the procedure proceeds in iterations according to the following cases that refer to the next

step taken in the concurrent execution.

Step 1 by some (new) copy: Just augment h

0

accordingly (and proceed to the next iteration).

Step 2 by some copy j (certainly j 6= i): We consider two cases depending on whether or not

a

0

contains the veri�er's decommitment information for copy j (i.e., whether or not the �rst

�eld of the j

th

record is non-empty).
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1. In case a

0

does contain such information, we generate a corresponding passing commit-

ment (i.e., a prover commitment to values that pass w.r.t challenge encoded in the �rst

�eld of the j

th

record), augment h

0

and a

0

accordingly, and proceed to the next iteration.

(Speci�cally, analogously to the up-front activity for (Step 2 of) the i

th

copy, the third

�eld in the j

th

record of a

0

is augmented by the decommitment information corresponding

to this prover commitment, and h

0

is augmented by the commitment itself.)

2. In case a

0

does not contain such information (i.e., the �rst �eld of the j

th

record is

empty), we proceed as follows:

(a) Invoke Scan(h

0

; a

0

; j), and consider its answer, which is either failure or a progress

pair (k; y). In case of progress, determine the type X 2 fproper; improperg of the

decommitment information y (with respect to the corresponding Step 1 commitment

in h

0

).

(b) If either the answer is failure or (it is a progress pair (k; y) with) k 6= j then

return with the very same answer (k; y).

(Here, in case of progress, k 6= i must hold.)

(c) If the above answer is (a progress pair (k; y)) with k = j (and y is a decommitment

of type X), then we let ~q  Approx(h

0

; a

0

;X; j), and update the j

th

record of a

0

placing (X; y) in the �rst �eld and ~q in the second �eld. (Actually, it su�ces to

place (X; v) in the �rst �eld, where v is the decommitment value included in the

decommitment information y.)

(We comment that in case X = improper, we could have skipped all subsequent sub-

steps, and used instead the extended transcript generated by the above invocation of

Scan, provided that Scan were modi�ed to return this information as well. However,

avoiding this natural modi�cation makes the extension in Section 5 more smooth.)

(d) Next, repeatedly invoke Generate(h

0

; a

0

; j) until getting a progress, but not more

than poly(n)=~q times. (We will show that only with negligible probability can it

happen that all calls return failure.) If all attempts have returned failure then

return failure, otherwise act according to the sub-cases of the (�rst) progress

answer:

i. If the \progress answer" provides a pair (k

0

; y

0

) (certainly k

0

6= j as well as

k

0

6= i), then (analogously to sub-step 2b) return with the very same answer

(k

0

; y

0

).

ii. If the \progress answer" provides an updated history h

00

(together with updated

auxiliary information a

00

) such that h

00

is not terminating (i.e., but rather ends

with execution of Step 4 of copy j), then update h

0

and a

0

(i.e., h

0

 h

00

and

a

0

 a

00

), and proceed to the next iteration.

iii. If the \progress answer" provides an updated history h

00

(together with updated

auxiliary information a

00

) such that h

00

is terminating (i.e., h

00

ends with the

veri�er halting), then return with the very same answer.

The handling of this case (i.e., Step 2 for a copy for which the �rst �eld is empty) is the

the most involved part of the procedure.

Step 3 by copy i: Just as the �rst sub-case in the next case (i.e., Step 3 by some copy j 6= i with

a non-empty �rst �eld).
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Step 3 by some copy j 6= i: We consider two cases depending on whether or not a

0

contains the

veri�er's decommitment information for copy j (i.e., the �rst �eld of the j

th

copy is not

empty).

1. In case a

0

does contain such information, we consider sub-cases according to the relation

of the contents of the the �rst �eld of the j

th

copy, denoted (X; �), and the current answer

of the veri�er.

(a) If the decommitment type of the current Step 3 (of the j

th

copy) �ts X then we just

augment h

0

accordingly (and proceed to the next iteration).

(b) Otherwise (i.e., the decommitment type of the current Step 3 does not �tX), return

failure.

2. In case a

0

does not contain such information (i.e., the �rst �eld of the j

th

copy is empty),

obtain the relevant decommitment information from the adversary (it may be either

an improper or proper decommitment), and return (as progress) with this information

only. That is, return with (j; y), where y encodes the decommitment information just

obtained from the adversary.

Step 4 by some copy j (possibly j = i): We will show that this case may happen only in case

the corresponding (Step 2) prover commitment is passing and a

0

contains the corresponding

decommitment (in the third �eld of the j

th

record). Using the latter prover's decommitment

information, we emulate Step 4 in the straightforward manner (and augment h

0

accordingly).

In case j = i, return with the current h

0

and a

0

(otherwise proceed to the next iteration).

Note that Step 2 of copy i is handled up-front. In case of a single copy i, the above procedure

degenerates to the basic handling of Steps 2{4 of copy i. In the �ctitious invocation of Generate

(i.e., with empty h and a �ctitious i), only the handlings of Steps 2{4 for copies j 6= i are activated

(whereas, in handling Step 2, sub-steps 2b and 2(d)i are never activated). We now turn to procedure

Scan, which is similar to Generate, except for its handling of the steps of copy i.

Procedure Scan(h; a; i): Initializes h

0

= h and a

0

= a, generates a dummy commitment for

(Step 2 of) copy i, and augments h

0

accordingly. (Speci�cally, the procedure generates a random

sequence of commitments, c, to dummy values, and augments h

0

by c.) Next, the procedure proceeds

in iterations according to the following cases that refer to the next step taken in the concurrent

execution.

Step 1 by some (new) copy: As in Generate.

Step 2 by some copy j (certainly j 6= i): As in Generate.

(We comment that unlike in sub-step 2b of Generate, here k = i is possible. Also, here

sub-case 2(d)iii cannot occur in sub-step 2d.)

Step 3 by copy i: Obtain the relevant decommitment information from the adversary (it may be

either an improper or proper decommitment), and return (as progress) with this information.

That is, return with (i; y), where y encodes the decommitment information just obtained

from the adversary.

Step 3 by some copy j 6= i: As in Generate.

Step 4 by some copy j 6= i: As in Generate.

Note that we never reach Step 4 of copy i (and that Step 2 of copy i is handled up-front).
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Procedure Approx(h; a;X; i): This procedure merely invokes Scan(h; a; i) until it obtains m =

poly(n) invocations that return a pair that is a decommitment of type X for copy i, and returns

the fraction of m over the number of tries. Speci�cally, the procedure proceeds as follows:

Set cnt

total

= cnt

succ

= 0.

Until cnt

succ

= m do

increment cnt

total

(unconditionally),

(j; y) Scan(h; a; i),

increment cnt

succ

if and only if j = i and y is of type X.

Output: m=cnt

total

.

4.2.3 Comments about the analysis

It is quite straightforward to show that the procedure Approx satis�es its speci�cation. Ignoring the

exponentially vanishing probability that any single approximation (by the procedure Approx) is o�

by more than a factor of 2, we may bound the total expected running-time by using the recursive

structure of the simulation. (We start with bounding the running-time, because we will have to

use this bound in analyzing the output of the simulator.) Towards the running-time analysis,

it is useful to pass among the procedures also the corresponding path in the tree of recursive

calls. For example, instead of saying that Scan(h; a; i) invokes Generate(h

0

; a

0

; j), we may say that

Scan(h; a; i; p) invokes Generate(h

0

; a

0

; j; (p; i)). Bounded-simultaneity implies that the depth of

the recursive tree is at most w, which is the key to the entire analysis of the running-time.

Running-time analysis. Considering oracle calls to the adversary's strategy as atomic steps, the

expected running-time of Scan(h; a; i; p) (resp., Generate(h; a; i; p)) is dominated by the time spent

by the recursive calls invoked by Scan(h; a; i; p) (resp., Generate(h; a; i; p)). Such calls are made

only when handling Step 2 of a copy with no veri�er decommitment information. Each of these

handlings consists of �rst invoking Scan(h

0

; a

0

; j; (p; i)) and, pending on its not returning failure,

invoking Approx and Generate on the same input. Speci�cally, the latter are invoked only if

Scan(h

0

; a

0

; j; (p; i)) = (j; �). In particular, Approx(h

0

; a

0

;X; j; (p; i)) invokes Scan(h

0

; a

0

; j; (p; i)) for

an expected number of times that is inversely proportional to the probability that Scan(h

0

; a

0

; j; (p; i))

answers with a type X decommitment to copy j, and Generate(h

0

; a

0

; j; (p; i)) is invoked for the

same (absolute) number of times. That is, letting Scan

0

(h

0

; a

0

; j)

def

= (k;X) if Scan(h

0

; a

0

; j) answers

with a type X decommitment to copy k, we conclude that the expected number of recursive calls

made by Scan(h; a; i; p) (resp., Generate(h; a; i; p)) when handling a Step 2 message of Copy j is

X

X2fproper;improperg

Pr[Scan

0

(h

0

; a

0

; j) = (j;X)] �

poly(n)

Pr[Scan

0

(h

0

; a

0

; j) = (j;X)]

= poly(n) (3)

The key point is that all these recursive calls (of, say, Scan(h; a; i; p)) have the longer path (p; i).

Thus, each node in the (depth w) tree of recursive-calls has an expected polynomial number of

children, and so the expected size of the tree is upper-bounded by poly(n)

w

. It follows that, for

probabilistic polynomial-time adversaries and constant w, the simulation terminates in expected

polynomial-time.

Output distribution analysis. We start the analysis (of the output) by justifying the discarding

of the (remote) possibility that during the (polynomial-time) simulation we ever get two con
icting
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proper decommitments to the same veri�er commitment. (In fact, the above functional descrip-

tion suggests this assumption, although formally it is not needed in the functional description.)

Here the polynomial bound on the expected running-time is used to derive a contradiction to the

computational-binding property of the veri�er's commitment.

Next, we establish that in sub-step 2d of the handling of a Step 2 message, it rarely happens that

all invocations of Generate return failure (i.e., this bad event occurs with negligible probability).

Here the polynomial bound on the expected running-time is used to bound the number of bad events

in a union bound, where each event (i.e., failure in sub-step 2d) occurs with negligible probability.

At this point, we get to the straightforward but tedious task of establishing that the main

procedures (i.e, Scan and Generate) satisfy their corresponding speci�cations. This is proven by

induction on the recursive execution. Once this is established, we look at the initial (�ctitious)

invocation of Generate, which cannot possibly return with failure, and conclude that the sim-

ulator's output is computational indistinguishable from a real interaction of the cheating veri�er

with copies of the prover.

5 Simulation under the Timing Model

Recall that the timing assumptions refer to two constants, � and �, such that � is an upper

bound on the message handling-and-delivery time, and � � 1 is a bound on the relative rates of

the local clocks. Speci�cally, each real-time period of � units elapses �

0

units of time on the

local clock, where �=� � �

0

� ��. For simplicity, we may assume without loss of generality that

�=� � �

0

� � (i.e., that all clocks are at least as slow as the real time).
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5.1 The Time-Augmented GK-protocol

Recall that the GK-protocol proceeds in four abstract steps, but the actual implementation of the

�rst step consists of the prover sending a preliminary message that is used as basis of the veri�er

actual commitment. Thus, the GK-protocol is actually a 5-round protocol starting with a prover

message. We augment this protocol with the following time-driven instructions, where all times

are measured according to the prover's clock starting at the time of the invocation of the prover's

program:

1. The prover time-outs Step 1 after �

1

def

= 2� units of time (as measured on its clock).

(By the timing assumption, this does not disrupt honest operation, because 2� real units of

time su�ce for the delivery of a message from the prover to the veri�er and back.)

2. The prover delays its execution of Step 2 to time �

2

def

= � � �

1

+ �. That is, it sends its

message exactly when its clock shows that �

2

units of time have elapsed.

3. The prover time-outs Step 3 after �

3

def

= �

2

+� units of time.

(Note that �

3

= (2�+ 2) ��.)

4. The prover delays its execution of Step 4 to time �

4

def

= � ��

3

+�.

We comment that, compared to Dwork et. al. [11], we are making a slightly more extensive use of

the time-out and delay mechanisms: Speci�cally, they only used the last two items and did so while

setting �

3

= 3� and �

4

= ��

3

. On the other hand, our use of the time-out and delay mechanisms

is less extensive than the one suggested by Section 1.4: We only guarantee that for two copies that
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We comment that although our formulation looks di�erent than the one in [11], it is in fact equivalent to it.
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start at the same time, Step 2 (resp., Step 4) in each copy starts after Step 1 (resp., Step 3) is

completed in the other copy, but we do not guarantee anything about the relative timing of Steps 2

and 3. Relying on special properties of the GK-protocol (as analyzed in Section 3.5), we can a�ord

doing so, whereas the description in Section 1.4 is generic and refers to any c-round protocol.
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5.2 The Simulation

As mentioned in the introduction, the simulation relies on a decomposition of any schedule that

satis�es the timing model into sub-schedules such that each sub-schedule resembles parallel compo-

sition, whereas the relations among the sub-schedules resembles bounded-simultaneity concurrent

composition. In fact, we can prove something stronger:

Claim 5.1 Consider an arbitrary scheduling of concurrent sessions of the time-augmented GK-

protocol that satisfy the timing assumption. Place a session in block i if it is invoked within the

real-time interval ((i� 1) ��; i ��]. Then, for every i:

1. Each session in block i terminates Step 1 by real-time i ��+��

1

, starts Step 2 after real-time

i � � + ��

1

, terminates Step 3 by real-time i � � + ��

3

, and starts Step 4 after real-time

i ��+ ��

3

.

2. The number of blocks that have a session that overlaps with some session in block i is at most

14�

3

. That is, the number of j 6= i such that there exists a time t, a session s in block i, and

a session s

0

in block j such that s and s

0

are both active at time t is at most 14�

3

.

The �rst item corresponds to Conditions C1 and C2 in Section 3.5, and the second item corresponds

to bounded-simultaneity.
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Proof: The latest and slowest possible session in block i is invoked by real-time i ��, and takes ��

units of real-time to measure � local-time units. It follows that such a session terminates Step 1

(resp., Step 3) by real-time i � � + � � �

1

(resp., i � � + � � �

3

). On the other hand, the earliest

and fastest possible session in block i is invoked after real-time (i � 1) � �, and takes � units of

real-time to measure � local-time units. It follows that such a session starts Step 2 (resp., Step 4)

after real-time (i� 1) ��+�

2

= i ��+ ��

1

(resp., (i� 1) ��+�

4

= i ��+ ��

3

). The �rst item

follows.

For the second item, note that the earliest possible session in block i is invoked after real-

time (i � 1) ��, whereas the latest and slowest possible session in block i terminates by real-time

i ��+ ��

4

+� = (i + 1) ��+ � � (2�

2

+ 2� + 1) ��. Thus, each block resides in a time interval

of length (2�

3

+ 2�

2

+ �+ 2) ��, and therefore may overlap at most 2 � (2�

3

+ 2�

2

+ �+ 2) � 14�

3

other blocks.

5.2.1 Combining the simulation techniques { the perfect case

Given the above claim, we extend the simulation of Section 4 by showing how that simulator can

handle blocks of \practically parallel" sessions rather than single copies (which may be viewed as
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However, in the typical case where � � 1, the di�erence between the various time-augmentations of the GK-

protocol is quite small.
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The second item is actually stronger than bounded-simultaneity, because it upper-bounds the total number of

blocks that overlap with a given block (rather than upper-bounding the number of blocks that are (simultaneously)

active at any given time).
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\singleton blocks"). To motivate the �nal construction, we consider �rst the special case in which

each block is a perfect parallel composition of some sessions.

The key to the extension is to realize that all that changes is the types of veri�er decommitment

events (corresponding to Step 3). Recall that in case of a single session, there were two possible

events (i.e., proper and improper decommitment), and these were the two decommitment types

we have considered. Here, for m parallel copies (of some block), we may have 2

m

possible events

corresponding to whether each of the m copies is proper or improper. However, the decommitment

types we consider here are (not these 2

m

events but rather) the n+1 events considered in Section 3:

the events E

0

; E

1

; :::; E

n

, where event E

j

holds if all the properly decommitting sessions (in the

current run) have proper-decommitment probability above the threshold t

j

� 2

�j

but not all these

sessions have proper-decommitment probability above the threshold t

j�1

� 2

�(j�1)

. Indeed, E

0

is

the event that all sessions have improperly decommitted in the current run. (It is important that

the number of decommitment types is bounded by a polynomial; this will be re
ected when trying

to extend the analysis captured in Eq. (3).)

Given the new notion of decommitment types, the three procedures of Section 4 (Scan, Approx

and Generate) are extended by using the corresponding operations in Section 3. We stress that,

in case of progress, Scan (as well as the �rst progress case in Generate) returns the decommitment

information, which includes the indication of whether each session has properly decommitted,

but not the decommitment type. The latter will be determined as in Section 3 (which is far

more complex than the trivial case handled in Section 4, where decommitment type equals the

decommitment indicator bit). The decommitment type (rather than the sequence of decommitment

indicators) is what matters in much of the rest of the activities of the modi�ed procedures.

We focus on the most interesting modi�cations to the main procedures (Scan and Generate),

and ignore straightforward extensions (which apply also to other steps):

1. The handling of Step 2 messages by a block j with a non-empty �rst information �eld is

analogous to the treatment in the original procedure, and we merely wish to clarify what this

means here. The point is that the �rst �eld of block j encodes a decommitment type E

k

as

well as decommitment information for all sessions that properly decommit with probability

at least t

k

� 2

�k

. The prover commitment produced here is designed to pass with respect to

these decommitment values. (The same applies to the initial actions in Generate.)

2. The handling of Step 2 messages by a block j with an empty �rst information �eld (i.e., the

only case that invokes recursive calls). The following sub-steps correspond to the sub-steps

in the original procedures (Scan and Generate):

(a) We invoke Scan with a block index j (rather than with a copy index), and consider its

answer which is either failure or a progress pair (k; y), where k is a block index, and

y is a list of decommitments corresponding to the various copies of block k. We refer

to the above invocation of Scan as to the initial one, and note that many additional

invocations (with the same parameters) will take place in handling the current step.

If (the initial invocation of) Scan returned with a progress pair (k; y) such that k = j,

then we turn to the complex task of determining the decommitment type E

`

(which holds

with respect to y) as well as the corresponding sets T

`

and T

`�1

. This is done analogously

to the main part of Step S1 (of Section 3), which needs to be implemented in the current

context. In particular, the implementation of Step S1 calls for the approximation of

the probabilities (denoted p

i

's in Section 3) each of the sessions properly decommits.

This, in turn, amounts to multiple executions of Steps 2{3 of these sessions, which in
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our case should be handled by multiple invocation of Scan(�; �; j). (If k 6= j then the

following activity will not be conducted here, but rather be conducted by the instance

that invoked Scan(�; �; k).)

Let I � [n] denote the set of sessions in which the veri�er has properly decommitted in

y. (Recall we are in the case where the initial invocation of Scan(h

0

; a

0

; j) has returned

the progress pair (j; y).) Our objective is to determine the corresponding event index `

as well as the sets T

`

and T

`�1

. We consider the following cases (w.r.t I):

Case of empty I: Set ` = 0 and T

`

= T

`�1

= ;.

Case of non-empty I: Set t

0

= 1 and T

0

= ;. We determine ` � 1 (as well as T

`

), by

iteratively considering ` = 1; :::; n (as in Section 3.2). That is, for ` = 1; :::; n do

i. We obtain t

`

by invoking a procedure analogous to T (`; n) (of Section 3.2).

Speci�cally, we approximate each of the p

s

's by poly(n) � 2

`

invocations of

Scan(h

0

; a

0

; j). Recall that each call of Scan(h

0

; a

0

; j) speci�es whether each

session in Block j has properly decommitted, and approximations to the p

s

's,

denoted a

s

's, are determined accordingly. We stress that p

s

is the probability

that Scan(h

0

; a

0

; j) returns a progress pair (j; y

0

) such that Session s properly

decommits in y

0

(e.g., p

s

is upper bounded by the probability that Scan(h

0

; a

0

; j)

returns a progress pair (j; �)). Once all a

s

's are determined, we determine t

`

just

as in the second step of T (`; n).

ii. Determine the set T

`

by determining, for each s, whether or not p

s

> t

`

. We use

the above approximations to each p

s

and rely on jp

s

� t

`

j > (1=9n)2

�`

.

iii. Decide if event E

`

holds for y by using T

`�1

(of the previous iteration) and T

`

(just computed). Recall that event E

`

holds for y if I � T

`

but I 6� T

`�1

.

iv. If event E

`

holds then exit the loop with the current value of ` as well as with

the values of T

`

and T

`�1

. Otherwise, proceed to the next iteration (i.e., the

next value of `).

In both cases (of I), we have determined the commitment type X = E

`

with respect to

y (as obtained in the initial invocation of Scan) as well as the corresponding sets T

`

and

T

`�1

.

(This corresponds to Step S1 of the simulator of Section 3.)

(b) Exactly as in the original sub-step 2b. (That is, if either the initial answer is failure

or (is a progress pair (k; y) with) k 6= j then return with the very same answer (k; y).)

(c) Recall that we reach this sub-step only if the answer of the initial invocation of Scan is

a progress pair (j; y), and that we have already determined the event E

`

that holds (for

y). By poly(n) � 2

`

additional invocations of Scan (with the same parameters as above),

we may obtain progress pairs of the form (j; �) several times. In all cases the second

component consists of a list of proper decommitment values. With overwhelmingly

high probability, for each s 2 T

`

, we will obtain (from at least one of these lists) a

proper decommitment for Session s (because p

s

> 2

`

). Ignoring the question of what

decommitment types hold in these lists,

26

we combine all these lists to a list v of all

proper decommitment values (obtained in any of these lists). This list v together with

T

`

and T

`�1

(as obtained in sub-step 2a) forms a new information string z = (v; T

`

; T

`�1

),

26

In particular, we do not care if the decommitment event happens to be of type E

`

or not. Furthermore, we may

ignore y itself and not use it below (although we may also use y if we please).
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which will be used below (i.e., recorded in a

0

for future use). (This corresponds to Step S2

of the simulator of Section 3.)

Next, analogously to the original sub-step 2c, we obtain an approximation to the prob-

ability that Scan(h

0

; a

0

; j) = (j; y) such that E

`

holds in y. Speci�cally, we let ~q  

Approx(h

0

; a

0

; (E

`

; T

`

; T

`�1

); j), where procedure Approx uses T

`

and T

`�1

in order to de-

termine whether the event E

`

holds in each of invocations of Scan(h

0

; a

0

; j). We update

the j

th

record of a

0

by placing (E

`

; z) in the �rst �eld and ~q in the second �eld. (This

corresponds to Step S3 of the simulator of Section 3.)

(d) Finally, analogously to the original sub-step 2d, we invoke Generate(h

0

; a

0

; j) up-to

poly(n)=~q times and deal with the outcomes as in the original sub-step 2d. (This corre-

sponds to Step S4 of the simulator of Section 3.)

3. The handling of Step 3 messages by a block j (possibly j = i) is analogous to the treatment

in the original procedure, and we merely wish to spell out what this means: We consider two

cases depending on whether or not a

0

contains the veri�er's decommitment information for

block j (i.e., the �rst �eld of the j

th

block is not empty).

(a) In case a

0

does contain such information, we consider sub-cases according to the relation

of the contents of the the �rst �eld of the j

th

block, denoted (E

`

; z), and the current

answer of the veri�er. Speci�cally, we check whether the veri�er's current answer is of

type E

`

. We note that the type of the current veri�er decommitment is determined

using the sets T

`

and T

`�1

provided in z (i.e., z = (v; T

`

; T

`�1

), where v is a sequence of

decommitment values not used here). The sub-cases (�t versus non-�t) are handled as

in the original procedure.

(b) In case a

0

does not contain such information (i.e., the �rst �eld of the j

th

block is empty),

we obtain the relevant decommitment information (i.e, a sequence of decommitments)

from the adversary, and return (as progress) with this information only.

This completes the description of the modi�cation to the main procedures for the current setting (of

bounded-simultaneity of blocks of parallel sessions). We stress that here (unlike in Section 3) the

events E

`

regarding the decommitment to block j are not the only things that may happen when

we invoke Scan with block index j (which corresponds to Step S1 in Section 3). As in Section 4, the

answer may be failure or progress with respect to a di�erent block. Indeed, the latter may not

occur in case there is only one block, in which case the above treatment reduces to the treatment

in Section 3. It is also instructive to note that when each block consists of a single copy, the above

modi�ed procedures degenerate to the original one (as in Section 4).

To analyze the current setting (of bounded-simultaneity of blocks of parallel sessions), we plug

the analysis of Section 3 into the analysis of Section 4. The only point of concern is that we have

introduced additional recursive calls (i.e., in the handling of Step 2, speci�cally in the handling

sub-step 2a). However, as shown in Section 3, the expected number of these calls is bounded above

by a polynomial (i.e., it is

P

n

`=0

Pr[E

`

] � 2

`

poly(n), whereas Pr[E

`

] = O(n � 2

�`

)). Thus, again, the

tree of recursive calls has expected poly(n) branching and depth at most w. Consequently, again,

the expected running-time is bounded by poly(n)

w

.

5.2.2 Combining the simulation techniques { the real case

In the real case the execution decomposes into blocks of almost parallel sessions (rather than

perfectly parallel ones) such that (again) bounded-simultaneity holds with respect to the blocks.
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In view of the extension in Section 3.5, the non-perfect parallelism within each block does not raise

any problems (as far as a single block is concerned). What becomes problematic is the relation

between the (non-perfectly parallel) blocks, and in particular our references to the ordering of steps

taken by the di�erent blocks. That is, our treatment of the perfect-parallelism case treats the

parallel steps of each block as an atom. Consequently we have related to an ordering of these steps

such that if one \block step" comes before another then all sessions in the the �rst block take

the said step before any session of the other block takes the other step. However, in general, we

cannot treat the parallel steps of each block as an atom, and the following problem arises: what

if one session of block i takes Step A, next one session of block j 6= i takes Step B, and then a

di�erent session of block i takes Step A. This problem seems particularly annoying if handling the

relevant steps requires passing control between recursive calls. In general, the problem is resolved

by treating di�erently the �rst (resp., last) session and other sessions of each block that reach

a certain step. Loosely speaking, the �rst (or last) such session will be handled similarly to the

atomic case, whereas in some cases other sessions (of the block) will be handled di�erently (in a

much simpler manner). In particular, recursive calls are made only by the �rst session, and control

is returned only by either the �rst or last such sessions. For sake of clarity, we present below

the modi�cation to the procedure Generate(h; a; i). Note that this procedure is invoked when the

immediate extension of h calls for execution of Step 2 by the �rst session in block i (i.e., h contains

no Step 2 by any session that belongs to block i).

Initialization (upon invocation) step: Initializes h

0

= h and a

0

= a, generates a passing com-

mitment for (Step 2 of) the current (i.e., �rst) session of block i, and augments h

0

and a

0

accordingly. Speci�cally, the commitment is generated so that it passes the challenge cor-

responding to the current session (as recorded in the �rst �eld of record i), and only the

corresponding part of the third �eld of the i

th

record (in a

0

) is updated.

In all the following cases, h

0

and a

0

denote the current history pre�x and auxiliary information,

respectively. (The following cases refer to the next message to be handled by the procedure,

which handles such messages until it returns.)

Step 1 by some (new) session: Exactly as in the atomic case (i.e., augment h

0

and proceed to

the next iteration).

Step 2 by the �rst session in block j (certainly j 6= i): Analogous to the atomic case (see Sec-

tion 5.2.1). Speci�cally, the handling depends on whether or not a

0

contains the veri�er's

decommitment information for copy j (i.e., whether or not the �rst �eld of the j

th

record is

non-empty).

1. In case a

0

does contain such information, we just generate a corresponding passing com-

mitment (i.e., passing w.r.t the �rst �eld of the j

th

record), augment h

0

and a

0

accordingly,

and proceed to the next iteration.

2. In case a

0

does not contain such information (i.e., the �rst �eld of the j

th

record is

empty), we try to obtain such information. This is done analogously to the atomic case

(see Section 5.2.1). We stress that this activity will yield the necessary information for

all sessions in the j

th

block, and not merely for the current (�rst) session in the block.

Recall that the handling of this sub-case involves making recursive calls to the three

procedures (with parameters (h

0

; a

0

; j)).
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Step 2 by a non-�rst session in block j (here j = i may hold): We consider two cases depend-

ing on whether or not a

0

contains the veri�er's decommitment information for copy j (i.e.,

whether or not the �rst �eld of the j

th

record is non-empty).

1. In case a

0

does contain such information, we just generate a corresponding passing com-

mitment, augment h

0

and a

0

accordingly, and proceed to the next iteration.

(This is exactly as in the corresponding treatment of the �rst session of block j to reach

Step 2.)

2. In case a

0

does not contain such information (i.e., the �rst �eld of the j

th

record is

empty), we generate a dummy commitment, augment h

0

accordingly, and proceed to the

next iteration. (Recall that we count on the �rst session in the j

th

block to �nd out the

necessary information (for all sessions in the block).)

(This is very di�erent from the treatment of the �rst session of block j to reach Step 2.)

Step 3 by a non-last session of block j (possibly j = i): Just augment h

0

accordingly (and pro-

ceed to the next iteration).

(This is very di�erent from the treatment of the last session of block j to reach Step 3.)

Step 3 by the last session of block j (possibly j = i): Analogous to the atomic case. We con-

sider two cases depending on whether or not a

0

contains the veri�er's decommitment infor-

mation for block j (i.e., the �rst �eld of the j

th

block is not empty).

1. In case a

0

does contain such information, we consider sub-cases according to the relation

of the contents of the the �rst �eld of the j

th

block, denoted (E

`

; z), and the Step 3 answer

of the veri�er (for all sessions in the j

th

block). Speci�cally, we should consider the

answers to previous sessions in the j

th

block as recorded in h

0

and the answer to the last

session in the block as just obtained. Recall that the type of the veri�er decommitments

(for the sessions in the j

th

block) is determined using the sets T

`

and T

`�1

provided in

the �rst �eld of the j

th

block. The sub-cases (�t versus non-�t) are handled as in the

original procedure. That is:

(a) If the decommitment type of the Step 3 answers (of the j

th

block) �ts E

`

then we

just augment h

0

accordingly (and proceed to the next iteration).

(b) Otherwise (i.e., the decommitment type of the current Step 3 does not �t E

`

),

return failure.

(As in the atomic setting this case must hold if j = i.)

2. In case a

0

does not contain such information (i.e., the �rst �eld of the j

th

block is empty),

we obtain the relevant decommitment information as in the previous case, and return

(as progress) with this information only. Speci�cally, the decommitment information for

the previous sessions of the j

th

block is recorded in h

0

, whereas the the decommitment

information for the last session has just been obtained (from the adversary).

Step 4 by a session of block j (possibly j = i): Using the prover's decommitment information

(as recorded in the third �eld of the j

th

record), we emulate Step 4 in the straightforward

manner (and augment h

0

accordingly). If this is the last session of block j and j = i, then

return with the current h

0

and a

0

(otherwise proceed to the next iteration).
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The modi�cations to procedure Scan are analogous. We stress that although the above description

treats the schedule as if it is �xed, the treatment actually extends to a dynamic schedule where the

membership of sessions in blocks is determined on-the-
y (i.e., upon their execution of Step 1).

27

The analysis of the perfect case can now be applied to the real case, and Theorem 1.1 follows.
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Recall that by our assumption that the veri�er never violates the time-out condition (cf. Sec. 2.2), the \last

session in a block to reach a certain step" can be determined as well.
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Appendix: Application to the BJY-protocol

We start by brie
y recalling the BJY-protocol (due to Bellare, Jakobsson and Yung [4], which in

turn builds upon the work of Feige and Shamir [13]). Their protocol uses an adequate three-round

witness indistinguishable proof system (e.g., parallel repetition of the basic zero-knowledge proof

of [17].). Speci�cally, we consider a three-round witness indistinguishable proof systems (e.g., for

G3C) of the form:

Step WI1: The prover commits to a sequence of values (e.g., the colors of each vertex under

several 3-colorings of the graph).

Step WI2: The veri�er send a random challenge (e.g., a random sequence of edges).

Step WI3: The prover decommits to the corresponding values.

(The implementation details are as in Construction 2.2.)

28

For technical reasons, it is actually

preferable to use protocols for which demonstrating a \proof of knowledge" property is easier (e.g.,

parallel execution of Blum's basic protocol; cf. [14, Sec. 4.7.6.3] and [14, Chap. 4, Exer. 28]). The

commitment scheme used above is perfectly-binding (and non-interactive; see Footnote 14). Given

the above, the (four-round) BJY-protocol (for any language L 2 NP) proceeds as follows:

1. The veri�er sends many hard \puzzles", which are unrelated to the common input x. These

puzzles are random images of a one-way function f , and their solutions are corresponding

preimages. In fact, the veri�er selects these puzzles by uniformly selecting preimages of f ,

and applying f to obtain the corresponding images. Thus, the veri�er knows solutions to all

puzzles he has sent.

In the rest of the protocol, the prover will prove (in a witness indistinguishable manner) that

either it knows a solution to one of (a random subset of) these puzzles or x 2 L. The latter

proof is by reduction to some instance of an NP-complete language.

2. The prover performs Step WI1 in parallel to asking to see a random subset of the solutions to

the above puzzles. Speci�cally, the puzzles are paired, and the prover asks to see a solution

to one (randomly selected) puzzle in each pair. Furthermore, in executing Step WI1, the

prover refers to a statement derived from the reduction of the assertion x 2 L or some of the

non-selected puzzles has a solution.

3. The veri�er performs Step WI2 in parallel to sending the required solutions (to the selected

puzzles).

4. The prover veri�es the correctness of the solutions provided by the veri�er, and in case all

solutions are correct it performs Step WI3.

As shown in [4], the BJY-protocol is a four-round zero-knowledge argument system for L. The

simulator is similar to the one presented for the GK-protocol. Speci�cally, it starts by executing

Steps 1{3, while using dummy commitments (in Step 2). Such a partial execution is called proper

if the adversary has revealed all solutions to the selected puzzles (and is called improper otherwise).

In case the partial execution is improper, the simulator halts while outputting it. Otherwise, the

simulator moves to generating a full execution transcript by repeatedly rewinding to Step 2 and

trying to emulate Steps 2{4 using the fact that (unless it selects the same set of puzzles again

(which is highly unlikely)) it already knows a solution to one of the puzzles not selected (by it) in

28

Speci�cally, the prover commits to the colors of each vertex under t random relabelings of a 3-colorings of the

graph, the challenge is a sequence of t edges, and the prover decommits to the values corresponding to the end-points

of the i

th

edge with respect to the i

th

committed coloring.
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the current execution (but rather selected in the initial execution of Steps 1{3). As in the simulation

of the GK-protocol (cf. [15]), the number of repetitions must be bounded by the reciprocal of the

probability of a proper (initial) execution (as approximated by an auxiliary intermediate step).

29

Given the similarity of the two simulators (i.e., the one here and the one for the GK-protocol),

it is evident that our treatment of concurrent composition of the GK-protocol applies also to the

BJY-protocol.

29

Unfortunately, this technical issue is avoided by Bellare et. al. [4], but it arises here (i.e., in [4]) similarly to the

way it arises in [15], and it can be resolved in exactly the same manner. (The issue is that the prover commitments

in the initial scan are distributed di�erently (but computational-indistinguishablly) than its commitments in the

generation process.)
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