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Abstract

A new public key encryption scheme, along with several variants, is proposed and analyzed.
The scheme and its variants are quite practical, and are proved secure against adaptive chosen
ciphertext attack under standard intractability assumptions. These appear to be the first public-
key encryption schemes in the literature that are simultaneously practical and provably secure.

This paper is a significantly revised and extended version of the extended abstract “A practical public
key cryptosystem provably secure against adaptive chosen ciphertext attack” [R. Cramer and V. Shoup, in
Advances in Cryptology — Crypto ’98], and also includes results originally presented in the extended abstract
“Using hash functions as a hedge against chosen ciphertext attack” [V. Shoup, in Advances in Cryptology —
Eurocrypt 2000).
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1 Introduction

In this paper, we present and analyze a new public-key encryption scheme, and several variants,
proving that they are secure against adaptive chosen ciphertext attack (as defined by Rackoff
and Simon [RS91]) under standard intractability assumptions. The schemes are quite practical,
requiring just a few exponentiations in a group for both encryption and decryption. Moreover, the
proofs of security of these schemes rely only on standard intractability assumptions: one variant
relies only on the hardness of the Decisional Diffie-Hellman problem, while other, somewhat more
practical, variants rely on a couple of other standard intractability assumptions.

The hardness of the Decisional Diffie-Hellman problem is essentially equivalent to the semantic
security of the basic ElGamal encryption scheme [E1G85]. Thus, with just a bit more computation,
we get security against adaptive chosen ciphertext attack, whereas the basic ElGamal scheme is
completely insecure against this type of attack.

While there are several provably secure public-key encryption schemes in the literature, they
are all quite impractical. Also, there are several practical encryption schemes that have been
proposed, but none of them has been proven secure under standard intractability assumptions.
The significance of our results is that they provide several schemes that are provably secure and
practical at the same time. There appear to be no other public-key encryption schemes in the
literature that enjoy both of these properties simultaneously.

This paper is a significantly revised and extended version of the extended abstract [CS98], and
also includes results originally presented in the extended abstract [ShoOOb].

1.1 Chosen ciphertext security

Semantic security, defined by Goldwasser and Micali [GM84], captures the intuition that an ad-
versary should not be able to obtain any partial information about a message given its encryption.
However, this guarantee of secrecy is only valid when the adversary is completely passive, i.e., can
only eavesdrop. Indeed, semantic security offers no guarantee of secrecy at all if an adversary can
mount an active attack, i.e., inject messages into a network or otherwise influence the behavior of
parties in the network.

To deal with active attacks, Rackoff and Simon [RS91] defined the notion of security against
an adaptive chosen ciphertest attack. If an adversary can inject messages into a network, these
messages may be ciphertexts, and the adversary may be able to extract partial information about
the corresponding cleartexts through its interactions with the parties in the network. Rackoff and
Simon’s definition models this type of attack by simply allowing an adversary to obtain decryptions
of its choice, i.e., the adversary has access to a “decryption oracle.” Now, given an encryption of
a message — the “target” ciphertext — we want to guarantee that the adversary cannot obtain
any partial information about the message. To achieve this, we have to restrict the adversary’s
behavior in some way, otherwise the adversary could simply submit the target ciphertext itself to
the decryption oracle. The restriction proposed by Rackoff and Simon is the weakest possible: the
adversary is not allowed to submit the target ciphertext itself to the oracle; however, it may submit
any other ciphertext, including ciphertexts that are related to the target ciphertext.

A different notion of security against active attacks, called non-malleability, was proposed by
Dolev, Dwork, and Naor [DDN91, DDNO00]. Here, the adversary also has access to a decryption
oracle, but his goal is not to obtain partial information about the target ciphertext, but rather, to
create another encryption of a different message that is related in some interesting way to the orig-
inal, encrypted message. For example, for a non-malleable encryption scheme, given an encryption



of n, it should be infeasible to create an encryption of n+ 1. It turns out that non-malleability and
security against adaptive chosen ciphertext attack are equivalent [BDPR9Y8, DDNOO].

An encryption scheme secure against adaptive chosen ciphertext attack is a very powerful
cryptographic primitive. It is essential in designing protocols that are secure against active ad-
versaries. For example, this primitive is used in protocols for authentication and key exchange
[DN96, DDNO0O, Sho99] and in protocols for escrow, certified e-mail, and more general fair exchange
[ASWO00]. It is by now generally recognized in the cryptographic research community that security
against adaptive chosen ciphertext attack is the “right” notion of security for a general-purpose
public-key encryption scheme. This is exemplified by the adoption of Bellare and Rogaway’s OAEP
scheme [BR94] (a practical but only heuristically secure scheme) as the internet encryption standard
PKCS#1 version 2, and for use in the SET protocol for electronic commerce.

There are also intermediate notions of security, between semantic security and adaptive chosen
ciphertext security. Naor and Yung [NY90] propose an attack model where the adversary has access
to the decryption oracle only prior to obtaining the target ciphertext, and the goal of the adversary
is to obtain partial information about the encrypted message. Naor and Yung called this type
of attack a chosen ciphertext attack; it has also been called a “lunch-time” or “midnight” attack,
and also an indifferent chosen ciphertext attack. In this paper, we will use the phrase adaptive
chosen ciphertext attack for Rackoft and Simon’s definition, to distinguish it from Naor and Yung’s
definition. Also, throughout this paper, unless otherwise specified, by “security” we will always
mean “security against adaptive chosen ciphertext attack.”

1.2 Previous work

Provably Secure Schemes. Naor and Yung [NY90] presented the first scheme provably secure against
lunch-time attacks. Subsequently, Dolev, Dwork, and Naor [DDN91] presented a scheme that is
provably secure against adaptive chosen ciphertext attack.

Rackoff and Simon [RS91] present and prove the security of an encryption scheme, but their
scheme is actually not a public-key scheme in the traditional sense: in their scheme, all users —
both senders and receivers — require public keys, and moreover, a trusted center is required to
perform certain functions. In contrast, all other schemes mentioned in this paper, including our
own, are traditional public-key systems: encryption is a probabilistic function of the message and
the receiver’s public key, decryption is a function of the ciphertext and the receiver’s secret key, and
no trusted center is required. This distinction can be important: adding extra system requirements
as in the Rackoff and Simon scheme can greatly restrict the range of application of the scheme.

All of the previously known schemes provably secure under standard intractability assump-
tions are completely impractical (albeit polynomial time), as they rely on general and expensive
constructions for non-interactive zero-knowledge proofs. This includes non-standard schemes like
Rackoff and Simon’s as well.

Practical Schemes. Damgard [Dam91] proposed a practical scheme that he conjectured to be secure
against lunch-time attacks; however, this scheme is not known to be provably secure in this sense,
and is in fact demonstrably insecure against adaptive chosen ciphertext attack.

Zheng and Seberry [ZS92] proposed practical schemes that are conjectured to be secure against
chosen ciphertext attack, but again, no proof based on standard intractability assumptions is known.
Lim and Lee [LL93] also proposed practical schemes that were later broken by Frankel and Yung
[FY95].

Bellare and Rogaway [BR93, BR94] have presented practical schemes for which they give heuris-
tic proofs of adaptive chosen ciphertext security; namely, they prove security based on the assump-



tion of a one-way trapdoor permutation in an idealized model of computation, the so-called random
oracle model, wherein a hash function is represented by a random oracle. Actually, it turns out that
the proof of security of the OAEP scheme in [BR94] is flawed: as demonstrated in [Sho01], there can
be no standard “black box” security proof based on an arbitrary one-way trapdoor permutation.
However, the negative result in [Sho01] does not rule out the possibility that OAEP in conjunction
with a specific one-way trapdoor permutation scheme is secure. Indeed, it is shown in [Sho01] that
OAEP with exponent-3 RSA is secure, and this result is generalized in [FOPS01] to arbitrary-
exponent RSA. A new scheme, OAEP+, is also presented in [Sho01], which can be proven secure
in the random oracle model, using an arbitrary one-way trapdoor permutation. Further variations
of OAEP and OAEP+ are discussed in [Bon01].

Shoup and Gennaro [SGY8] also give ElGamal-like schemes that are secure against adaptive
chosen ciphertext attack in the random oracle model, and that are also amenable to efficient
threshold decryption.

We stress that although a security proof in the random oracle model is of some value, it is still
only a heuristic proof. In particular, these types of proofs do not rule out the possibility of breaking
the scheme without breaking the underlying intractability assumption. Nor do they even rule out
the possibility of breaking the scheme without finding some kind of weakness in the hash function,
as shown by Canetti, Goldreich, and Halevi [CGH98|.

1.3 Further progress

Subsequent to the publication of the extended abstract [CS98] on which the present paper is based,
some further progress in this area has been made. Canetti and Goldwasser [CG99] presented a
threshold-decryption variant of our scheme. Also, the authors of the present paper [CS01] have
generalized and extended the basic ideas underlying our encryption scheme, obtaining new and
quite practical encryption schemes that are secure against adaptive chosen ciphertext attack under
different assumptions — one scheme relies on Paillier’s Decision Composite Residuosity assump-
tion [Pai99], while the other (somewhat less practical) scheme relies on the classical Quadratic
Residuosity assumption.

1.4 Outline of paper
Our paper consists of two parts.

Part 1. In the first part, we take care of a number of preliminaries, after which we present a basic
version of our new scheme, along with a few variants. This first part is organized as follows:

§2: We introduce some basic notation that will be used throughout the paper.

§3: We state the formal definition of a public-key encryption scheme and the notion of security
against adaptive chosen ciphertext attack. We also discuss some implications of the definition
of security that illustrate its utility.

§4: We state the formal definitions of several intractability assumption related to the Discrete
Logarithm problem: the Discrete Logarithm assumption, the Computational Diffie-Hellman
assumption, and the Decisional Diffie-Hellman assumption. In doing this, we introduce the
notion of a computational group scheme, which is a general framework that allows us to discuss
in an abstract, yet sufficiently concrete way, the different families of groups that may be used
in cryptographic applications.



§5: We define the notion of a target collision resistant hash function, which is a special type of a
universal one-way hash function. We will use this primitive in the most efficient variants of
our encryption scheme.

§6: We present and analyze the basic version of our encryption scheme, which we call CS1, along
with two variants, called CSla and CS1lb. We prove the security of these schemes based on
the Decisional Diffie-Hellman assumption, and the assumption that a given family of hash
functions is target collision resistant. We also present and analyze a somewhat less efficient
scheme, called CS2, which does not require a target collision resistant hash function.

Part 2. The schemes presented in §6 suffer from two drawbacks. First, the schemes require that
plaintexts are, or can be encoded as, group elements, which may significantly restrict the range of
application of the encryption scheme and/or the choice of computational group scheme; it would be
nice to relax this restriction, allowing plaintexts to be, say, bit strings of arbitrary length. Second,
if the Decisional Diffie-Hellman assumption is false, these schemes can be trivially broken; it would
be nice if we could provide a second level of defense, so that if Decisional Diffie-Hellman assumption
turns out to be false, we have a scheme that still offers some security — even if only heuristically.

It turns out that both of these drawbacks can be dealt with by using a technique called hybrid
encryption. Basically, a hybrid encryption scheme uses public-key encryption techniques to derive a
shared key that is then used to encrypt the actual message using standard symmetric-key techniques.
The second part of the paper is devoted to developing the formal theory behind this technique, and
to designing and analyzing variations on our basic scheme that utilize this technique. This part is
organized as follows:

§7: We lay the theoretical foundations for hybrid encryption. Although most of the ideas in this
section appear to be “folklore,” they have not been treated rigorously in the literature. In
§7.1, we introduce the notion of a key encapsulation mechanism, and an appropriate notion
of security against adaptive chosen ciphertext attack. A key encapsulation mechanism is like
a public-key encryption scheme, except that the encryption algorithm can only be used to
generate and encrypt a random bit string of fixed length, which we shall use as a key for a
symmetric-key encryption scheme. In §7.2, we state the formal properties of a symmetric-key
encryption scheme that we need for use in a hybrid encryption scheme, and discuss some
simple constructions based on pseudo-random bit generators and message authentication
codes. In §7.3, we prove that an appropriately secure key encapsulation mechanism, combined
with an appropriately secure symmetric-key encryption scheme, yields a public-key encryption
scheme that is secure against adaptive chosen ciphertext attack.

In what follows, we concentrate exclusively on the problem of constructing secure key encap-
sulation mechanisms, since the problem of constructing symmetric-key encryption schemes is
essentially solved.

§8: We discuss the notion of a secure key derivation function, which is a function that should
map random group elements to pseudo-random bit strings of given length. A key derivation
function is an essential ingredient in our constructions of key encapsulation mechanisms.

§9: We present and analyze a key encapsulation mechanism, CS3, along with two variants, CS3a
and CS3b, and prove their security under the Decisional Diffie-Hellman assumption, and also
assuming a target collision resistant hash function and a secure key derivation function.



§10: The hybrid encryption scheme obtained from CS3b is by far the most practical of the encryp-
tion schemes presented in this paper; moreover, it has other interesting security properties.
We show that CS3b is no less secure than a more traditional key encapsulation mechanism
that is a hashed variant of ElGamal encryption, which we call HEG. Second, we also show that
CS3b is secure in the random oracle model (viewing the key derivation function as a random
function), under the weaker Computational Diffie-Hellman assumption, and also assuming a
target collision resistant hash function. The results in this section show that there is virtually
no risk in using scheme CS3b relative to more traditional encryption schemes, while at the
same time, CS3b provides a security guarantee that more traditional schemes do not.

2 Some Preliminaries

2.1 Basic mathematical notation

Z denotes the ring of integers, Z>o denotes the set of non-negative integers, and for positive integer
k, Zj, denotes the ring of integers modulo k, and Z}, denotes the corresponding multiplicative group
of units.

2.2 Algorithms and probability spaces

We write v < « to denote the algorithmic action of assigning the value of « to the variable v.

Let X be a finite probability space, i.e., a probability space on a finite set S. For @ € S, we
let Prx[a] denote the probability that X assigns to «, and for S’ C S, we let Prx[S’] denote the
probability that X assigns to S’.

We write v & X to denote the algorithmic action of sampling an element of S according to
the distribution X, and assigning the result of this sampling experiment to the variable v. We
sometimes write vq, ..., ¢ X as a shorthand for 1, & X;... v, & X.

For any finite set S, U(S) denotes the uniform distribution on S. We write v & S as a
shorthand for v & U(S).

For any probability space X on a finite set S, we denote by [X] the subset of elements of S that
are assigned non-zero probability by X, i.e., the “support” of X.

If X1, Xo,..., Xy are finite probability spaces, and ¢ is a k-ary predicate, then we write

Pr[¢(V1,...,Vk)lelﬁXl;...;Vk&Xk]

to denote the probability that ¢(v1,...,v,) holds when 1 is sampled from X, vy is sampled from
Xo, etc. More generally, for 1 <14 <k, X; may be family of finite probability spaces parameterized
by (v1,...,vi—1), and we write

Pr(g(vr,...,vk) 111 & X112 & Xo(vi);-. v & Xi(v1, ..oy v-1)]

to denote the probability that ¢(v4,...,1;) holds when v; is sampled from X, after which v is
sampled from Xs(r1), and so on. In this case, it is important that vq,..., v, are sampled in the
order given.

Similarly, if F' is a k-ary function function, then

{F(vi,...,v) 1 11 £ X151 Vil Xo(vy);. .o 5vp il Xk, oy vp—1)}

denotes the probability space defined by sampling v from X, v, from X, (v;), and so on, and then
evaluating the function F'(vq,..., ).



We shall consider polynomial-time probabilistic algorithms A. We shall insist that for all A €
Z>( and all inputs of length A, algorithm A always halts in time bounded by a polynomial in A,
regardless of the random choices that A may make. In particular, for any input tuple (a1, ..., o),
the random choices made by A as well as the output of A on this input are finite probability spaces.
We denote this output probability space of A for a given input (aq,...,ax) by A(ay,...,ar). We
stress that A(aq,...,ax) is a probability space, and not a value. As such, we may write v &
A(ay,...,ax) to denote the algorithmic action of running A on input (aq,...,ax), and assigning
the output to the variable v. When we speak of the “running time” of A, we mean the worst-case
running time of A for inputs of a given length.

To exercise the above notation a bit, note that [A(a, ..., ax)] denotes the set of possible outputs
of A on input (a4, ..., a). For a tertiary predicate ¢, and polynomial-time probabilistic algorithms
A1 and As, and a value «yp,

Pr[¢(a0,a1,a2) sl <i Al(ao);ag <£ AQ(Oéo,Oél)]

denotes the probability that ¢(ap, a1, az) holds when A; is run on input ay, yielding an output «;,
and then Ay is run on input (ay, aq), yielding an output as.

For A € Z>, 1* denotes the bit string consisting of A copies of the bit 1. The string 1* will often
be an input to an algorithm: this is a technical device that allows a polynomial-time algorithm to
run in time bounded by a polynomial in A, even if there are no other inputs to the algorithm, or
those inputs happen to be very short.

2.3 Statistical distance and negligible functions

Let X and Y be probability spaces on a finite set S. Define the statistical distance A(X,Y’) between
X and Y as )
A(X,Y):= ) Z |Prx[a] — Pryla]|.
acs

One can easily verify that
AX,)Y) = max |Prx[S'] — Pry[S]].
'C

A function F' mapping non-negative integers to non-negative reals is called negligible if for
all positive numbers ¢, there exists an integer Ag(c) > 0 such that for all A > Ay(c), we have
F(X\) <1/X°.

3 Secure Public Key Encryption

In this section, we state the basic properties of a public-key encryption scheme, along with the
definition of security against adaptive chosen ciphertext attack. Although the notions here are
relatively standard, we treat a number of details here that are not often dealt with in the literature.
We also discuss some implications of the definition of security that illustrate its utility.

3.1 Public Key Encryption Schemes

A public-key encryption scheme PKE consists of the following algorithms:

e A probabilistic, polynomial-time key generation algorithm PKE.KeyGen that on input 1* for
A € Z>p, outputs a public key/secret key pair (PK, SK). The structure of PK and SK depends
on the particular scheme.



For A € Z>(, we define the probability spaces
PKE.PKSpace, := {PK : (PK, SK) & PKE.KeyGen(1%)},

and
PKE.SKSpace, := {SK : (PK,SK) & PKE.KeyGen(1*)}.

e A probabilistic, polynomial-time encryption algorithm PKE.Encrypt that takes as input 1* for
A € Z>, a public key PK € [PKE.PKSpace, ], a message m, and outputs a ciphertext ).

A ciphertext is a bit string. The structure of a message may depend on the particular scheme;
see below (§3.1.1) for a discussion.

o A deterministic, polynomial-time decryption algorithm PKE.Decrypt that takes as input 1*
for A € Z>o, a secret key SK € [PKE.SKSpace, |, a ciphertext 1, and outputs either a message
m or the special symbol reject.

3.1.1 Message spaces

Different public-key encryption schemes might specify different message spaces, and these message
spaces might in fact vary with the choice of public key. Let us denote by PKE.MSpace) px the
message space associated with A € Z>y and PK € [PKE.PKSpace,]. Although there may be other
ways of categorizing message spaces, we shall work with schemes that specify message spaces in
one of two ways:

unrestricted message space: PKE.MSpace) px = {0,1}* for all A and PK.

restricted message space: PKE.MSpace), pi is a finite set that may depend on A and PK.

There should be a deterministic, polynomial-time algorithm that on input 1%, PK, and «,
determines if « € PKE.MSpace, pk-

Clearly, a public-key encryption scheme with an unrestricted message space will be most suitable
in a setting where a very general-purpose encryption scheme is required. However, encryption
schemes with restricted message spaces can be useful in some settings as well.

3.1.2 Soundness

A public-key encryption scheme should be sound in the sense that decrypting an encryption of a
message should yield the original message.

Requiring that this always holds is a very strong condition which will not be satisfied by many
otherwise quite acceptable encryption schemes.

A definition of soundness that is adequate for our purposes runs as follows. Let us say a public
key /secret key pair (PK,SK) € [PKE.KeyGen(1*)] is bad if for some m € PKE.MSpace) pk and some
t € [PKE.Encrypt(1*, PK,m)], we have PKE.Decrypt(1*, SK, ) # m. Then our requirement is that
the probability that the key generation algorithm outputs a bad key pair grows negligibly in .

One could formulate even weaker notions of soundness that would still be adequate for many
applications, but we shall not pursue this here.



3.2 Security against adaptive chosen ciphertext attack

An adversary A in an adaptive chosen ciphertext attack (CCA) is a probabilistic, polynomial-time
oracle query machine.

The attack game is defined in terms of an interactive computation between the adversary and its
environment. The adversary’s environment responds to the oracle queries made by the adversary:
each oracle query response is sampled from a probability space that is a function of the adversary’s
input and all the previous oracle queries made by the adversary. We require that A runs in time
strictly bounded by a polynomial in the length of its input, regardless of its probabilistic choices,
and regardless of the respouses to its oracle queries from its environment.

We now describe the attack game used to define security against adaptive chosen ciphertext
attack; that is, we define (operationally) the environment in which A runs. We assume that the
input to A is 1* for some \ € Z>.

Stage 1: The adversary queries a key generation oracle. The key generation oracle computes
(PK,SK) & PKE.KeyGen(1%) and responds with PK.
Stage 2: The adversary makes a sequence of calls to a decryption oracle.

For each decryption oracle query, the adversary submits a ciphertext 1, and the decryption
oracle responds with PKE.Decrypt(1*, SK, ).

We emphasize that ¢ may be an arbitrary bit string, concocted by A in an arbitrary fashion
— it certainly need not be an output of the encryption algorithm.

Stage 3: The adversary submits two messages mg, m; € PKE.MSpace, py to an encryption oracle.
In the case of an unrestricted message space, we require that |mg| = |my].

On input mg, m1, the encryption oracle computes:
R x R A
o < {0,1}; 9" < PKE.Encrypt(1*, PK, m,);
and responds with the “target” ciphertext ™.

Stage 4: The adversary continues to make calls to the decryption oracle, subject only to the
restriction that a submitted ciphertext 1 is not identical to ¥*.

Again, we emphasize that v is arbitrary, and may even be computed by A as a function of
P
Stage 5: The adversary outputs & € {0,1}.

We define the CCA advantage of A against PKE at A, denoted AdvCCApkga(A), to be
|Pr[oc = 6] — 1/2] in the above attack game.
We say that PKE is secure against adaptive chosen ciphertext attack if

for all probabilistic, polynomial-time oracle query machines A, the function
AdvCCApke A(X) grows negligibly in X.



3.3 Application of the definition of security

In applying the above definition of security, one typically works directly with the quantity
AdvCCApke A(A):=|Pr[6 =1|0=0]-Pr[6 =1|0 =1]|.

If we view A as a statistical test, then the quantity AdeCA'PKE,A()\) measures A’s advantage in
distinguishing a game in which my is always encrypted from a game in which m; is always encrypted.
It is easy to verify that

AdVCCAi:KE,A()\) =2- AdVCCApKE’A()\).

We present here a sketch of another characterization of this notion of security that illustrates
more fully its utility in reasoning about the security of higher-level protocols. This alternative
characterization is a natural, high level, simulation-based definition that in some ways provides a
justification for the rather low level, technical definition given above. Our treatment here will be
somewhat less formal than elsewhere in this paper.

We start by defining the notion of a channel, which is an object that implements the following
operations:

e KeyGen — outputs a public key PK.
e Encrypt — takes as input a message m, and outputs a ciphertext 1.

e Decrypt — takes as input a ciphertext v, and outputs a message m (possibly a special reject
symbol).

Additionally, a channel is parameterized by a security parameter A.

To initialize a channel, the KeyGen operation is invoked, after which, an arbitrary number of
Encrypt and Decrypt operations may be invoked. We shall assume that messages are arbitrary bit
strings.

A channel may be implemented in several ways. One way, of course, is to simply “plug in” a
public-key encryption scheme. We call such an implementation of a channel a real channel. We
wish to describe another implementation, which we call an ideal channel.

Loosely speaking, an ideal channel acts essentially like a private storage and retrieval service:
when an Encrypt operation is invoked with a message m, the ideal channel generates a corresponding
ciphertext 1 without even “looking” at m, and stores the pair (m, ) in a table; when a Decrypt
operation is invoked with a ciphertext ¢ such that (m, ) is in the table for some m, the ideal channel
returns the message m. Thus, the “encryption” 1 of a message m is completely independent of m,
and essentially plays the role of a “receipt,” presentation of which to the Decrypt operation yields
the message m. As such, the Encrypt operation might be better named Store, and the Decrypt
operation Retrieve.

We now describe the operation of an ideal channel in a bit more detail.

An ideal channel is built using a channel simulator. A channel simulator is an object that
implements an interface that is identical to that of a channel, except that the Encrypt operation
does not take as input a message, but rather just the length of a message.

An ideal channel uses a channel simulator as follows. The KeyGen operation of the ideal channel
is implemented directly in terms of the KeyGen operation of the channel simulator. The ideal
channel maintains a set S of message/ciphertext pairs (m,) and a set T' of ciphertexts, both
initially empty.

When the Encrypt operation of the ideal channel is invoked with input m, the ideal channel
invokes the channel simulator with input |m|, obtaining a ciphertext ¢. If ¢ € T or (m/,¢) € S



for some m’', the ideal channel becomes “broken,” and this and all subsequent invocations of either
Encrypt or Decrypt return a special symbol indicating this; otherwise, the ideal channel adds the
pair (m, ) to S and returns v as the result of the Encrypt operation.

When the Decrypt operation of the ideal channel is invoked with input 1, the ideal channel first
checks if (m, 1) € S for some m; if so, it simply returns the message m; otherwise, it adds % to T,
invokes the Decrypt operation of the channel simulator to obtain m, and returns m.

That completes the description of how an ideal channel is implemented using a channel simu-
lator.

Now we define a notion of security based on the indistinguishability of real and ideal channels
for a public-key encryption scheme PKE with an unrestricted message space. Consider a game in
which a polynomial-time probabilistic adversary A interacts with an arbitrary number of channels,
and at the end of the game, outputs a 0 or 1. We say that PKE is secure in the sense of channel
indistinguishability if there exists an efficient channel simulator such that for the resulting ideal
channel, A cannot effectively distinguish between a game played with all real channels and a game
played with all ideal channels; i.e., the absolute difference between the probabilities that A outputs
a 1 in the two games grows negligibly in the security parameter.

Note that since real channels never become broken, this definition of security implies that ideal
channels become broken with only negligible probability.

It straightforward to show that if PKE is secure against adaptive chosen ciphertext attack, then
it is also secure in the sense of channel indistinguishability. To prove this, the channel simulator is
implemented using the KeyGen and Decrypt algorithms of PKE, and the Encrypt operation of the
channel simulator on input ¢ simply runs the Encrypt algorithm of PKE on input 1¢. We leave it
to the reader to verify that the resulting ideal channel is indistinguishable from the real channel.
This is essentially just a standard “hybrid” argument.

In analyzing a higher-level protocol, one may substitute all real channels by ideal channels.
Presumably, it is much more straightforward to then analyze the resulting idealized protocol, since
in the idealized protocol, ciphertexts are just “receipts” that are completely independent of the
corresponding messages. Security implies that any (polynomial-time recognizable) event in the
original protocol occurs with essentially the same probability in the idealized protocol.

3.4 Further discussion

The definition of security we have presented here is from [RS91]. It is called IND-CCAZ2 in
[BDPR98]. It is known to be equivalent to other notions, such as non-malleability [DDN91,
BDPR98, DDNO00], which is called NM-CCA2 in [BDPRYS].

There are other, weaker notions of security for a public-key encryption scheme. For example,
[NY90] define a notion that is sometimes called security against indifferent chosen ciphertext attack,
or security against lunchtime attack. This definition of security is exactly the same as the one above
in §3.2, except that Stage 4 of the attack is omitted — that is, the adversary does not have access
to the decryption oracle after it obtains the target ciphertext. While this notion of security may
seem natural, it is actually not sufficient in many applications. This notion is called IND-CCA1 in
[BDPRYS].

An even weaker notion of security for a public-key encryption scheme is that of security against
a passive attack, also known as semantic security. This definition of security is exactly the same
as the one above in §3.2, except that both Stages 2 and 4 of the attack are omitted — that is,
the adversary does not have access to the decryption oracle at all. This notion was introduced in
[GM84] and is called IND-CPA in [BDPR98]. This notion of security is quite limited: it is only
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adequate in situations where the adversary only has the power to eavesdrop network traffic, but
cannot modify network traffic or otherwise actively participate in a protocol using the encryption
scheme.

For a similar, but slightly different, approach to modeling encryption as an “idealized” process,
see [Can00]. See also [BBMO0O] for another generalization of the definition of adaptive chosen
ciphertext attack to a setting involving many users and messages.

4 Intractability Assumptions Related to the Discrete Logarithm
Problem

In this section, we recall the Discrete Logarithm (DL) assumption, the Computational Diffie-
Hellman (CDH) assumption, and the Decisional Diffie-Hellman (DDH) assumption. All of these
assumptions are formulated with respect to a suitable group G of large prime order ¢ generated by
a given element g.

Informally, the DL assumption is this:

given g* and g¥ for random x,y € Zg, it is hard to compute g*¥
Informally, the CDH assumption is this:

given g* and g¥ for random x,y € Zg, it is hard to compute g*¥
Informally, the DDH assumption is this:

it is hard to distinguish triples of the form (g%, ¢Y,9°%) for random x,y,z € Z, from
triples of the form (g%, g¢Y,g"Y) for random z,y € Z,.

The rest of this section is devoted to describing these assumptions more formally, discussing
appropriate groups, and discussing some variations and consequences of these assumptions.

4.1 Computational group schemes

To state these intractability assumptions in a general but precise way, and in an appropriate
asymptotic setting, we introduce the notion of a computational group scheme.

A computational group scheme G specifies a sequence (SA))\GZ>0 of group distributions. For
every value of a security parameter A € Z>o, S is a probablhty distribution of group descriptions.
A group description I' specifies a finite abelian group G along with a prime-order subgroup G, a
generator g of G, and the order g of G. We use multiplicative notation for the group operation in
G and we denote the identity element of G by 14.

We will write F[G, G,g,q| to indicate that I' specifies G, G, g, and ¢ as above. As a simple
example of this notation: “for all A € Z>, for all F[G, G,g,q] € [Sa], we have g7 = 15.”

As usual, mathematical objects like a group description I' and elements of a group G are
represented for computational purposes as bit strings bounded in length by a polynomial in X\. The
interpretation of these bit strings is up to the algorithms comprising the group scheme (see below).
However, we require that the encoding scheme used to represent group elements as bit strings be
canonical; that is, every element of a group G has a unique binary encoding.

The group scheme should also provide several algorithms:

e a deterministic, polynomlal time algorithm for computing the group operation that takes as
input 1* for A € Z>, I'[G,G,g,q] € [Sy], along with hy,hy € G, and outputs the group
element hy - hy € G
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a deterministic, polynomial-time algorithm for computing the group inversion operation that
takes as input 1 for A € Z>y, I'[G,G,g,q] € [S)], and h € G, and outputs k™! € G

a deterministic, polynomial-time algorithm that takes as input 1* for A € Z>, I‘[C;Y ,G,g,q] €
[Sa], and « € {0,1}*, and determines if « is a valid binary encoding of an element of G;

a deterministic, polynomial-time algorithm that takes as input 1* for A € Z>, I‘[C;Y ,G,g,q] €
[Sa], and h € G, and determines if h € G;

a deterministic, polynomial-time algorithm that takes as input 1* for A € Z>, F[G ,G,9,q] €
[Sa], and outputs g and q.

a probabilistic, polynomial-time approximate sampling algorithm S that on input 1* approx-
imately samples Sy. The distributions S, and S(1%) should be statistically close; that is, the
statistical distance A(Sy,S(1*)) should be a negligible function in .

Notice that we do not require that the output distribution S(1*) of the sampling algorithm is
identical to Sy, but only that the distributions have a negligible statistical distance. In particular,
not all elements of [5’ (1*)] are necessarily valid group descriptions. It would be impractical to
require that these two distributions are identical.

Note that the requirement that the group order be easily computable from the group description
is not a trivial requirement: it is easy to exhibit groups whose orders are not easy to compute, e.g.,
subgroups of Z; for composite n.

The requirement that group elements have unique encodings is also an important, non-trivial
requirement. It is easy to exhibit quotient groups in which the problem of computing canonical
representatives of residue classes is non-trivial. An example of this is the group underlying Paillier’s
encryption scheme [Pai99].

Let I'[G, G, g,q] € [S,]. The value 1¢ may be directly encoded in ', but if not, we can always
compute it as g - g~ L.

Although we will not require it, typical group schemes will have the property that for all
I‘[G’,G,g,q] € [S,], the only elements of G of order ¢ lie in G. When this is the case, testing
whether a given h € G lies in the subgroup G can be implemented by testing if h? = 1. However,
a group scheme may provide a more efficient subgroup test.

Let I'[G, G, g,q] € [Sy]. For a € G\ {l¢} and b € G, we denote by log, b the discrete logarithm
of b to the base a; that is, log, b is the unique element = € Z, such that b = a”.

As a notational convention, throughout this paper, the letters a—h (and decorated versions
thereof) will denote elements of G, and the letters r—z (and decorated versions thereof) will denote
elements of Z,.

4.2 Examples of appropriate computational group schemes

There are several examples of computational group schemes that are appropriate for cryptographic
applications.

Ezample 1. Let £1(\) and ¢2(\) be polynomially bounded integer-valued functions in A, such that
1 < £1(\) < £y()) for all A € Zsg. It should be the case that the function 274V is negligible. For
a given A € Z>, the distribution Sy is defined as the distribution of triples (¢,p, g), where

e ¢ is a random ¢;(\)-bit prime,
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e p is a random /9(A)-bit prime with p =1 (mod ¢), and
e ¢ is a random generator of GG, the unique subgroup of order ¢ of the cyclic group G= Z,.

Elements in Z; can be encoded canonically as bit strings of length ¢2(\). Group operations
in Z; are efficiently implemented using arithmetic modulo p, and group inversion is implemented
using the extended Euclidean algorithm. To test if an element (o mod p) € Z, lies in G, we can
test if @ =1 (mod p).

A random generator g of G may be obtained by generating a random element in Z;, and raising
it to the power (p — 1)/q (repeating if necessary if this yields (1 mod p)).

The sampling algorithm S may use standard, practical algorithms for primality testing that
may err with a small probability that grows negligibly in A. See, e.g., [BS96] for more information
on primality testing. Not all elements of [S(1*)] are valid group descriptions. Moreover, depending
on other aspects of the implementation, the distribution on the valid group descriptions may also
be slightly skewed away from Sy. In our formulation of various intractability assumptions, it is
much more convenient to work with the natural distribution S) than the more awkward distribution
S(1%).

We should comment the density of primes p such that p = 1 (mod ¢) has never been proven
to be sufficiently large to ensure fast termination of the group generation algorithm. Dirichlet’s
Theorem on primes in arithmetic progressions only applies to the case where ¢ is fixed relative to
p. However, provided l2(X) > (2 + §)¢1(X) for some fixed § > 0, for any ¢,())-bit prime g, the
probability that a random ¢2(X)-bit number of the form gk + 1 is prime is Q(1/42()\)), assuming
the Extended Riemann Hypothesis (ERH). This follows from Theorem 8.8.18 in [BS96].

If the density of primes p such that p =1 (mod ¢) cannot be proven to be sufficiently large to
ensure fast termination of the group generation algorithm, even assuming the ERH, it may not be
unreasonable to anyway conjecture that this is the case.

Ezample 2. This is the same as Example 1, except that p = 2¢ + 1, where ¢ is a random £;()\)-bit
prime. Such a prime ¢ is known as a Sophie Germain prime. It is unknown if there exist infinitely
many Sophie Germain primes. However, it is conjectured that there are, and specific conjectures
on their density have been made [BH62, BH65] that empirically seem to be valid. In particular, it
is conjectured that the probability that a random ¢; ()\)-bit number is a Sophie Germain prime is
Q(1/£1(\)?). If such a density estimate were true, then a simple trial and error method for finding
Sophie Germain primes would terminate quickly. See [CS00] for more information on efficiently
generating such primes.

Since the subgroup G of Zj of order g is just the subgroup of quadratic residues, testing if
a given element (o mod p) € Zj lies in G' can be performed by computing the Legendre symbol
(a | p), which is generally much more efficient than computing a¢ mod p.

A nice property of this construction is that the numbers {1,. .., g} are easily encoded as elements
of G. Given a € {1,...,q}, we test if (o | p) = 1, if so, then we encode « as (a mod p) € G,
and otherwise, we encode a as (—a mod p). Given a group element h = (a modp) € G with
1<a<p-—1, we decode h as « if a < ¢, and otherwise, we decode h as p — «.

This encoding scheme clearly allows us to also easily encode arbitrary bit strings of length
¢1(X\) — 1 as elements of G.

Ezample 3. One can also construct G as a prime order subgroup of an elliptic curve over a finite
field. Elliptic curves and their application to cryptography is a very rich field, and we refer the
reader to [BSS99] for an introduction and further references. We only note here that some of the
same minor technical problems that arose above in Example 1 also arise here; namely, that (1) the
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known procedures for generating elliptic curves whose orders have a suitably large prime factor are
somewhat heuristic, simply because not enough has been proven about how the order of a randomly
generated elliptic curve factors into primes, and (2) it is in general not easy to encode arbitrary
bit strings of a given length as points on an elliptic curve. We also note that it is fairly easy to
generate elliptic curves of prime order so that we do not have to work in a sub-group, i.e., we can
take G = (. This is useful, as then the sub-group test becomes trivial.

4.3 Intractability assumptions

4.3.1 The DL assumption

Let G be a computational group scheme, specifying a sequence (Sy)xez., of group distributions.
For all probabilistic, polynomial-time algorithms A, and for all A € Z>(, we define the DL
advantage of A against G at \ as

AdvDLg A(A):=Prly = F[é, G,g,q] £ Sx; x Vil Zyy via A(1/\,F,gw) ]
The DL assumption for G is this:

For every probabilistic, polynomial-time algorithm A, the function AdvDLg A(X) is neg-
ligible in .

4.3.2 The CDH assumption

Let G be a computational group scheme, specifying a sequence (Sy)xez., of group distributions.
For all probabilistic, polynomial-time algorithms A, and for all A € Z>(, we define the CDH
advantage of A against G at \ as

AdvCDHg a(A) := Pr[ ¢ = ¢*¥ : F[é, G,9,4| Vil Sx; z,y Vil Zy; c via A(1>‘,F,g“3,gy) ]
The CDH assumption for G is this:

For every probabilistic, polynomial-time algorithm A, the function AdvCDHga(X) is
negligible in .

For all probabilistic, polynomial-time algorithms A, for all A € Z>¢, and for all F[G", G,g,q] €
[SA], we define the CDH advantage of A against G at A given I" as

AdvCDHg a(A | ') :=Prlc=g¢g" : z £ Zy y £ Zy; c Vil A(l)‘,F,gx,gy) ]

4.3.3 The DDH assumption

Let G be a computational group scheme, specifying a sequence (S,) AeZs, Of group distributions.
For all A\ € Z>g, and for all F[G‘, G,9,q] € [S)], we define the sets Dy and Ty as follows:

Dar = {(¢%.9",9%) € G° 1 u,y € Zy};
7?\,I‘ = G3.

The set Dy is the set of “Diffie-Hellman triples.” Also, for p € G2, define DHP, (p) = 1 if
p € Dy r, and otherwise, define DHP) 1-(p) = 0.
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For all 0/1-valued, probabilistic, polynomial-time algorithms A, and for all A € Z>(, we define
the DDH advantage of A against G at \ as

AdvDDHg a(X) :=
‘Pr[ r=1:T& Sy p Vil Dyr; T Vil A(l)‘,F,p) -
Prfr=1:T Vil Sa; p<£7')\7p; TﬁA(lA,F,p) ]‘
The DDH assumption for G is this:

For every probabilistic, polynomial-time, 0/1-valued algorithm A, the function
AdvDDHg a(X) is negligible in A.

For all 0/1-valued, probabilistic, polynomial-time algorithms A, for all A € Z>(, and all
I'[G,G,g,q] € [S)], we define the DDH advantage of A against G at A given I" as

AdvDDHg (A | T) :=
‘Pr[ r=1:p& Dar; T E AT, p) -

Pr[7=1:p¢& Tap; 74 ALY T, p) ]‘

A minor variation

We will need the following variation on the DDH assumption.
For all A € Zx, for all I'[G, G, g,q] € [S)], and we define the sets D) 1. and Ty . as follows:

DI)\,F = {gw,gy’gz’y L2,y € Zy, T ” 0};
7-)(,1“ = {¢",¢,¢°:z,y,z € Zy,x #0,2 # Ty}

That is, D’Mﬂ is the set of triples (§,a,a) € G®, such that § # 1¢ and log, a = log; d, and 'T/\',F is
the set of triples (§,a,a) € G®, such that § # 1¢ and log, a # log; a.
It is easy to verify the following;:

A(U(DAr),UDir) < 1/g; (1)
A(U(Tar), U(Tir) < 2/q. (2)

For all 0/1-valued, probabilistic, polynomial-time algorithms A, and for all A € Z>(, we define
AdvDDHEJ,A()\) =
‘Pr[ r=1:T&Sy; P & Df\,F; r& A(l)‘,I‘,p) -
Pr[r=1:T £sy: pﬁ 7')\';; r& A(1>‘,F,p) ]‘

For all 0/1-valued, probabilistic, polynomial-time algorithms A, for all A € Z>¢, and for all I" € [S,],
we define

AdvDDHG A(X | T) :=
‘Pr[ r=1:p& Dir; T E AQNT,p) ]-
Prjr=1: p<£7')\'7r; T ﬁA(lA,F,p) ]‘

The inequalities (1) and (2) imply the following:
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Lemma 1 For all 0/1-valued, probabilistic, polynomial-time algorithms A, for all X € Z>y, and
for all T'[G,G,g,q] € [S)],

‘AdvDDHg,A(A | T') — AdvDDH{ A (A | r)‘ < 3/q.

In particular, the DDH assumption holds for G if and only if for every probabilistic, polynomial-time
0/1-valued algorithm A, the function AdvDDHg a(X) is negligible in .

Random self-reducibility

In this section, we discuss the random self-reducibility property of the DDH problem, and its
implications.
The following lemma states the random self-reducibility property for the DDH problem.

Lemma 2 There exists a probabilistic, polynomial-time algorithm RSR such that for all X € Z>,
for all ' € [Sy], and for all p € Ty, the distribution RSR(1, T, p) is U(Dyr) if p € Dyr, and is
U(T\r) if p € Dar-

This was first observed by Stadler [Sta96], who needed the result to prove the security of a
particular protocol, and later by Naor and Reingold [NR97], who also pointed out some of its
broader implications.

The algorithm RSR is very simple. Given 1%, the group description F[G,G,g,q], and p =
(a,b,c) € G?, the algorithm computes (a’,b',c’) € G? as follows:

R R R
ré&Zy; s Lyt Zg; o —a'g’ b+ bg'; ¢ « c"a"'bPgct.

The implication of this random self-reduction is that if Diffie-Hellman tuples can be efficiently
distinguished from random tuples with a non-negligible advantage, then Diffie-Hellman tuples can
be efficiently recognized with negligible error probability. More formally, we have the following;:

Lemma 3 For every be a 0/1-valued, probabilistic, polynomial-time algorithm A, and every poly-
nomial P (with integer coefficients, taking positive values on Zxq), there exists a 0/1-valued, prob-
abilistic, polynomial-time algorithm Ay such that for all X € Z>o, for all I' € [Sy], for all p € Ty r,
and for all k € Z>o,

if AdvVDDHg a(A | T') > 1/P()), then Pr[A; (1,1, p,1%) # DHP) 1(p)] < 27"

Lemma 3 follows from Lemma 2 using standard “amplification” techniques, making use of
standard results on tail inequalities for the binomial distribution. Given 1}, T, p, and 1%, algorithm
A1 invokes algorithm A as a subroutine O(P()\)%k) times with inputs (1}, T, p'), where each p’ € T,
is independently sampled from RSR(1*,T', p); additionally, algorithm A; has to run algorithm A as
a subroutine O(P(\)%k) times to “calibrate” A, calculating an estimate of

Pr[r=1:p & Tars T EAQNT, ) ]
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4.4 Further discussion

It is clear that the DDH assumption is at least as strong as the CDH assumption, which in turn is
at least as strong as the DL assumption.

The CDH assumption was introduced informally by [DH76]. Since then, there have been many
papers that deal with the DL and CDH assumptions, and cryptocraphic applications based on them.
The DDH assumption appears to have first surfaced in the cryptographic literature in [Bra93],
although as that paper notes, the DDH assumption is actually needed to prove the security of a
number of previously proposed protocols. Indeed, the famous Diffie-Hellman key exchange cannot
be proved secure in any reasonable and standard way just based on the CDH assumption: the DDH
assumption (or some variant thereof) is required.

The DDH assumption underpins a number of cryptographic applications. See, for example,
the work of Stadler [Sta96] on publicly verifiable secret sharing, and the construction by Naor and
Reingold [NR97] of pseudo-random functions. Also, the well-known encryption scheme of ElGamal
[E1G85] relies on the DDH for its security against passive attacks (i.e., semantic security).

One variant of the ElGamal scheme is as follows. Let G be a group of prime order ¢ generated
by an element g. The public key consists of a group element h = g*, where z € Z, is chosen at
random; the secret key is z. To encrypt a message m, where we assume that m € G, we compute

u(izq; a<+ g¥; b« h" c< b-m;
to form a ciphertext ¢ = (a,c). To decrypt such a ciphertext using the secret key, one computes
b a® mc-bl;

to obtain the message m.

It is a trivial exercise to show that the security of this encryption scheme against passive attack
is equivalent to the DDH assumption. It is also easy to see that this scheme is completely insecure
against adaptive chosen ciphertext attack: if (a,c) is an encryption of m € G, then for any m' € G,
(a,c - m') is an encryption of m - m'; thus, one can submit (a,c - m') to the decryption oracle,
obtaining m - m/, from which one then computes m.

There are some very special families of elliptic curves for which the DDH assumption does not
hold, but for which the CDH assumption still appears to stand [JNO1]. How these results are to
be interpreted is a bit unclear. One the one hand, perhaps they cast some doubt on the DDH
assumption in general. On the other hand, perhaps they only illustrate that very specially crafted
families of elliptic curves may exhibit some surprising security weaknesses, which would seem to
counsel against using such special families of elliptic curves for cryptographic applications, and
instead, to use generic, randomly generated elliptic curves; indeed, for another special class of
elliptic curves, the DL assumption is false [Sma99].

We refer the reader to two excellent surveys [MWO00] and [Bon98]. The latter focuses exclusively
on the DDH assumption, while the former discusses both the CDH and DDH assumptions.

5 Target Collision Resistant Hash Functions

In this section, we define the notion of a target collision resistant hash function, which is a special
kind of universal one-way hash function, tailored somewhat for our particular application.

We informally summarize this section as follows. We shall be working with a group G of order
g, and we want to hash tuples of group elements to elements of Z,. For this purpose, we will use
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a family of keyed hash functions, such that given a randomly chosen tuple of group elements and
randomly chosen hash function key, it is computationally infeasible to find a different tuple of group
elements that hashes to the same value using the given hash key.

Now the details.

Let k be a fixed positive integer, and let G be a computational group scheme, specifying a
sequence (Sy)aez., of group distributions.

A k-ary group hashing scheme HF associated with G specifies two items:

o A family of key spaces indexed by A € Z>p and I' € [S,]. Each such key space is a probability
space on bit strings denoted by HF.KeySpace,, 1.
There must exist a probabilistic, polynomial-time algorithm whose output distribution on

input 1* and I is equal to HF .KeySpace, -

o A family of hash functions indexed by A € Zxo, I‘[G’,G,g,q] € [S)], and hk €

[HF.KeySpace, ], where each such function HFﬁ‘l’(F maps a k-tuple p € G¥ of group elements
to an element of Z,.

There must exist a deterministic, polynomial-time algorithm that on input 1*, F[G ,G,9,q] €
[Sxl, hk € [HF.KeySpace, ], and p € G*, outputs HFﬁ‘l’(F(p).
Let A be a probabilistic, polynomial-time algorithm. For A\ € Z>o, we define

AdVTCRHF’A()\) =
Pr[pe GF A p#p* AHFN (0°) = HFN (p)
LG, G,g,q] < Sx; p* ¢ G*; hk & HF KeySpacey 1; p ¢~ ALY, T, p", hk) |.

The target collision resistance (TCR) assumption for HF is this:

For every probabilistic, polynomial-time algorithm A, the function AdvTCR{FA(N) is
negligible in .

It will also be convenient to define the following. Let A be a probabilistic, polynomial-time
algorithm. For A € Z>g and I'[G, G, g,q] € [S)], we define

AdvTCRHFA(N | T) :=
Pr[pe GF A p#p* AHFN (0°) = HFN ()
p* < G; hk ¢ HF.KeySpacey 1; p ¢~ A(1},T, p*, hk) |.

5.1 Further discussion

As already mentioned, our notion of a target collision resistant hash function is a special case of the
more general notion of a universal one-way hash function, introduced by Naor and Yung [NY89].
In their presentation, the hash functions mapped bit strings to bit strings, but of course, using
appropriate formatting, we can easily make such a function a map from tuples of elements of the
group G to elements of Z,. The notion of security presented in [NY89] was also slightly stronger
than ours: in their paper, the first input to the hash function (i.e. the “target” input) is chosen
adversarially, but independent of the key of the hash function, whereas in our application, the
target input is a random tuple of group elements.
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As was shown in [NY89], universal one-way hash functions can be built from arbitrary one-way
permutations. This result was extended by [Rom90], who showed that universal one-way hash
functions can be built (albeit less efficiently) from arbitrary one-way functions.

In practice, to build a universal one-way hash function, one can use a dedicated cryptographic
hash function, like SHA-1 [SHA95]. Constructions in [BR97] and [Sho0Oa] show how to build
a general-purpose universal one-way hash function using the underlying compression function of
SHA-1, assuming the latter is second pre-image collision resistant. Actually, in our application,
since the target input is just a random tuple of group elements, it is not too unreasonable to simply
use SHA-1 directly, without a key at all.

Note that the notion of target collision resistance is both qualitatively and quantitatively weaker
than the notion of (full) collision resistance, which is why we prefer to rely on the former rather
than the latter. A collision resistant hash function is one where it is hard for an adversary to find
two different inputs that hash to the same value; the difference between target collision resistance
and collision resistance is that in the former, one of the two inputs is not under the control of the
adversary, while in the latter, both inputs are under the control of the adversary.

6 The New Encryption Scheme: Basic Version

6.1 Description of the scheme

In this section, we present the basic version, CS1, of our new scheme.
The scheme makes use of a computational group scheme G as described in §4.1, defining a
sequence (Sy)aez., of distributions of group descriptions, and providing a sampling algorithm S,

where the output distribution S (1*) closely approximates S).

The scheme also makes use of a tertiary group hashing scheme HF associated with G, as described
in §5.

The scheme is described in detail in Figure 1.

Remark 1 Note that this encryption scheme has a restricted message space: messages are elements
of the group G. This limits to some degree the applicability of the scheme and the choice of group
scheme; indeed, if one wants to encrypt arbitrary bit strings of some bounded length, then among
the examples of group schemes discussed in §4.2, only Example 2, based on Sophie Germain primes,
is suitable.

Remark 2 Note that in step D2 of the decryption algorithm, we test if a, @, and ¢ belong to the
subgroup G. This test is essential to the security of the scheme. Although some group schemes
may provide a more efficient method for performing these tests, in a typical implementation, one
may have to compute a?, a?, and c?, testing that each of these is 1¢.

Remark 3 Note that the key generation algorithm samples a group description I' from S (1%).
However, in describing the encryption scheme, we assume that ' is a valid group description. With
negligible probability (in A), ' may not be a valid group description, in which case the behavior of
the key generation, encryption, and decryption algorithms is implementation dependent.

Remark 4 It is straightforward to verify that this encryption scheme satisfies the basic require-

ments that any public key encryption scheme should satisfy, as described in §3.1. In particular, the
soundness property will always hold when I' is a valid group description.
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Key Generation: On input 1* for A € Z>(, compute

I'G,G,g,q) & S(11); hk ¢ HF KeySpace, ;
w L5 w2, Y1, Y2, 21, 22 - Ly
g g¥s e g g f < 9" v ho— g7 g
and output the public key PK = (T, hk, g, e, f, h) and the secret key SK = (T, hk, z1, z2, Y1, Y2, 21, 22)-
Encryption: Given 1* for \ € Z>o, a public key
PK = (F[G7 G;Q; q]; hkaga €, f7 h) € [S)\] X [HF'KeySpace)\,F] X G4;
along with a message m € GG, compute
El: u & Zy;
E2: a + g%
E3: a+ g%
E4: b+ h%
E5: c+ b-m;
AND, A
E6: v < HF} (a,a,c);
E7: d+ e fu,
and output the ciphertext ¢ = (a, a, ¢, d).

Decryption: Given 1* for A € Z>o, a secret key

SK = (F[éa G: g, q]7 hk: T1,T2,Y1,Y2,21, 22) € [SA] X [HF'KeySpace)\J‘] X Zg:
along with a ciphertext ¢, do the following.

D1: Parse ¢ as a 4-tuple (a,a,c,d) € C§’4; output reject and halt if ¢ is not of this form.
D2: Test if a, a, and ¢ belong to G; output reject and halt if this is not the case.

D3: Compute v + HF?&F((L, a,c).

D4: Test if d = a®1¥1v . ¢21T92?; qutput reject and halt if this is not the case.

D5: Compute b + a**a*2.

D6: Compute m « c¢-b~!, and output m.

Figure 1: The public-key encryption scheme CS1
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Remark 5 Technically speaking, the output 1 of the encryption algorithm is actually a canonical
binary encoding of the 4-tuple (a, @, c,d) € G*. In particular, it is critical that for any two cipher-
texts 9’ # 1), the parsing algorithm in step D1 of the decryption algorithm should not output the
same 4-tuple of group elements.

6.2 Security analysis of the scheme

We shall prove that CS1 is secure against adaptive chosen ciphertext attack if the DDH assumption
holds for G and the TCR assumption holds for HF. However, we wish to state and prove a concrete
security reduction. To this end, we need some auxiliary definitions.

Suppose PKE is a public-key encryption scheme that uses a group scheme in the following
natural way: on input 1%, the key generation algorithm runs the sampling algorithm of the group
scheme on input 1%, yielding a group description I'. For a given probabilistic, polynomial-time
oracle query machine A, A\ € Z>, and group description I', let us define AdvCCApkg A(A | T') to be
A’s advantage in an adaptive chosen ciphertext attack where the key generation algorithm uses the
given value of I', instead of running the sampling algorithm of the group scheme.

For all probabilistic, polynomial-time oracle query machines A, for all X\ € Zxg, let Qa()) be
an upper bound on the number of decryption oracle queries made by A on input 1*. We assume
that Qa(\) is a strict bound in the sense that it holds regardless of the probabilistic choices of A,
and regardless of the respouses to its oracle queries from its environment.

Theorem 1 If the DDH assumption holds for G and the TCR assumption holds for HF, then CS1
1s secure against adaptive chosen ciphertext attack.
In particular, for all probabilistic, polynomial-time oracle query machines A, there exist proba-

bilistic algorithms A1 and Ag, whose running times are essentially the same as that of A, such that
the following holds. For all X\ € Z>q, and all I'|G, G, g,q| € [S,)], we have

AdVCCACSlyA()\ | F) < AdVDDHg,A1 ()\ | F) + AdVTCRHF7A2(>\ | F) + (QA(A) + 4)/q. (3)

The precise running times of algorithms A; and Ay depend a good deal on details of the model
of computation and on implementation details, and so we make no attempt to be more precise on
this matter.

Before continuing, we state the following simple but useful lemma, which we leave to the reader
to verify.

Lemma 4 Let Uy, Uy, and F be events defined on some probability space. Suppose that the event
Ui A =F occurs if and only if Uy A =F occurs. Then |Pr[U;] — Pr[Us]| < Pr[F].

To prove Theorem 1, let us fix a probabilistic, polynomial-time oracle query machine A, the
value of the security parameter A\ € Z>, and the group description F[G‘, G,g,q] € [S)]-

The attack game is as described in §3.2. We now describe the relevant random variables to be
considered in analyzing the adversary’s attack.

Suppose that the public key is ([',hk,g,e,f,h) and that the secret key is
(T, hk, 21, T2, Y1, Y2, 21, 22). Let w:= log, g, and define z,y, 2 € Z, as follows:

=21+ Tow, Y:=Y1 + Yow, 2:=21 + 2owW.

That is, z = logg e, y = log, f, and z = log, h.
As a notational convention, whenever a particular ciphertext v is under consideration in some
context, the following values are also implicitly defined in that context:
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® a,da,b,c,d € G, where ¢ = (a,a,c,d) and b:=a*1a*?;
® u,i,v,r,s,t € Zy, where

u:=log,a, 4:=log;a, v:= HFﬁ‘l’(F(a,d,c), r:=log,c, s:=log,d,
and
t:=z1u + yruv + xotw + yatvw.

For the target ciphertext ¢*, we also denote by a*,a*,b*,c*,d* € G and v*,d*,v*,r*,s*,t* € Z,
the corresponding values.

The probability space defining the attack game is then determined by the following, mutually
independent, random variables:

e the coin tosses Coins of A;
e the values hk, w,z1,z2,y1, Y2, 21, 22 generated by the key generation algorithimn;
e the values o € {0,1} and u* € Z, generated by the encryption oracle.

Let Gy be the original attack game, let 6 € {0,1} denote the output of A, and let Ty be the
event that o = ¢ in Gy, so that AdvCCAcs1 a(A | ') = | Pr[Tp] — 1/2].

Our overall strategy for the proof is as follows. We shall define a sequence Gy, Ga,...,Gy
of modified attack games. Each of the games Gg, Gi,..., Gy operates on the same underlying
probability space. In particular, the public key and secret key of the cryptosystem, the coin tosses
Coins of A, and the hidden bit o take on identical values across all games. Only some of the
rules defining how the environment responds to oracle queries differ from game to game. For any
1 <1 <4, we let T; be the event that o = ¢ in game G;. Our strategy is to show that for 1 <14 </,
the quantity | Pr[T;_1] — Pr[T;]| is negligible. Also, it will be evident from the definition of game
G/ that Pr[Ty] = 1/2, which will imply that | Pr[Tp] — 1/2] is negligible.

So that the overall structure of the proof is more transparent, we shall defer the proofs of all
lemmas to the end of the proof of the theorem.

Game G;. We now modify game Gy to obtain a new game G;. These two games are identical,
except for a small modification to the encryption oracle. Instead of using the encryption algorithm
as given to compute the target ciphertext 1*, we use a modified encryption algorithm, in which
steps E4 and E7 are replaced by:

E4': b+ a*1a*?;

E7': d « a® Vv . goatvey,

The change we have made is purely conceptual: the values of b* and d* are exactly the same in
game G as they were in Gy. Therefore,

Pr[T1] = Pr[Tp]. (4)

Note that the encryption oracle now makes use of some components of the secret key, which is
something the original encryption oracle does not do.
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Game Gjy. We now modify game G to obtain a new game Go. We again modify the encryption
oracle, replacing step E3 of the encryption algorithm by

B3 0 & Z,\ {u}; @« g%

Note that whereas in games Gy and G; we had v* = 4%, in game Gg, u* and 4* are nearly
independent, being subject only to u* # 4*. However, observe that games G; and Go are the
same, except that in game Gy, the triple (¢,a*,a*) is uniformly distributed in D) ., and in game
Gy, the triple (§,a*,a*) is uniformly distributed in 7} . Thus, any difference in behavior between
these two games immediately yields a statistical test for the distinguishing Diffie-Hellman triple
from non-Diffie-Hellman triples. More precisely, we have:

Lemma 5 There exists a probabilistic algorithm A1, whose running time is essentially the same as
that of A, such that
| Pa{Ty] — Pr[Ti]| < AdvDDHg o, (A | T) + 3/q. (5)

Game G3. In this game, we modify the decryption oracle in game Gg to obtain a new game Gs.
Instead of using the original decryption algorithm, we modify the decryption algorithm, replacing
steps D4 and D5 with:

D4': Test if @ = a® and d = a®*Y"; output reject and halt if this is not the case.

D5': b+ a®.

Note that the decryption oracle now make use of w, but does not make use of x1,y2, y1, y2, 21, 22,
except indirectly through the values z,y, z.

Now, let R3 be the event that in game Gj, some ciphertext 1 is submitted to the decryption
oracle that is rejected in step D4’ but that would have passed the test in step D4.

Note that if a ciphertext passes the test in D4’, it would also have passed the test in D4.

It is clear that games Gy and G3 proceed identically until the event R3 occurs. In particular,
the event T5 A =R3 and T3 A —Rj3 are identical. So by Lemma 4, we have

| Pr[T3] — Pr{Ty]| < Pr{Rg], (6)

and so it suffices to bound Pr[R3]. We introduce auxiliary games G4 and G5 below to do this.

Game G4. This game is identical to game Gs, except for a small modification to the encryption
oracle. We again modify the algorithm used by the encryption oracle, replacing step E5 by

E5: r & Zy c g

It is clear by construction that
Pr[T,] =1/2, (7)

since in game Gy, the variable o is never used at all, and so the adversary’s output is independent
of 0.

Define the event R4 to be the event in game G4 analogous to the event R3 in game G3; that is,
Ry is the event that in game Gy, some ciphertext 1 is submitted to the decryption oracle that is
rejected in step D4’ but that would have passed the test in step D4.

We show that this modification has no effect; more precisely:
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Lemma 6 We have

PI‘[T4] = PI‘[T3], (8)
Pr[Ry] = Pr[R3]. (9)

Game Gj;. This game is the same as game Gy, except for the following modification.

We modify the decryption oracle so that it applies the following special rejection rule: if the
adversary submits a ciphertext 1 for decryption at a point in time after the encryption oracle has
been invoked, such that (a,a,c) # (a*,a*,c¢*) but v = v*, then the decryption oracle immediately
outputs reject and halts (before executing step D4’).

To analyze this game, we define two events.

First, we define the event Cs to be the event that the decryption oracle in game Gy rejects a
ciphertext using the special rejection rule.

Second, we define the event Rs to be the event in game Gy that some ciphertext v is submitted
to the decryption oracle that is rejected in step D4’ but that would have passed the test in step
D4. Note that such a ciphertext is not rejected by the special rejection rule, since that rule is
applied before step D4’ is executed.

Now, it is clear that games G4 and Gy proceed identically until event C5 occurs. In particular,
the events R4 A ~C5 and Rs A —C5 are identical. So by Lemma 4, we have

| Pr[Rs] — Pr[R4]| < Pr[Cs]. (10)

Now, if event Cs occurs with non-negligible probability, we immediately get an algorithm that
contradicts the target collision resistance assumption; more precisely:

Lemma 7 There exists a probabilistic algorithm As, whose running time is essentially the same as
that of A, such that
Pr[C5] < AdvTCRuF A, (A |T) +1/g. (11)

Finally, we show that event Rs5 occurs with negligible probability, based on purely information-
theoretic considerations:

Lemma 8 We have
Pr[Rs] < Qa(MN)/q. (12)

The detailed proof of this lemma is presented below. However, the basic idea of the proof runs
as follows. For a decryption query 1, the only information the adversary has about (z1,z2,y1,y2)
are the values of z, y, and possibly s*, which are linear combinations of (z1,z2,y1,y2). As we will
prove, the value of ¢, which the adversary must successfully guess in order to make the event Rj
happen, is an independent linear combination of (x1,x2,y1,¥2), and is therefore unpredictable.

Inequality (3) now follows immediately from (4)-(12).

Proofs of Lemmas

To complete the proof of Theorem 1, we now present the proofs of Lemmas 5, 6, 7, and 8.
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Proof of Lemma 5. We describe the algorithm A; in detail. For a given value of A € Z>, it
takes as input 1%, I‘[G‘, G,g,q] € [S,], and p = (§,a*,a*) € G3.

Algorithm A; provides an environment for A, interacting with A as follows.

First, A; computes

hk < HF.KeySpace, 5 @1, %2, Y1, Y2, 21, 22 & Zg; € < g™ "5 |+ gV'§"*; b« g7 §™;

to generate a public key PK = (I', hk, g, e, f, h) and a secret key SK = (I', hk, 21, z2, y1, Y2, 21, 22). 1t
then gives PK to A.

Whenever A submits a ciphertext 9 = (a,a,c,d) to the decryption oracle, A; simply runs the
decryption algorithm, using the secret key SK.

When A submits (mg,m;) to the encryption oracle, A; computes

o & {0,1}; b (a%)7(6)2; ¢ b me; v° — HFN (0%, 6%, %)y dF  (a%) 5y (gF)metoer

and responds with the “ciphertext” ¢* = (a*,a*,c*,d").
When A outputs & and halts, Ay outputs 1 if c =6 and 0 if o # &.
That completes the description of A;. By construction, it is clear that for fixed A and I' € [S,],

Pr[ly] = Pr[r=1:p& Dir; T EAANT, p) ;
Pr[Ty] = Prfr=1:p& Tar: T E AN, p) ]

Thus,
| Pr[Ty] — Pr[T1]| = AdvDDHg 5 (A | T),

and so (5) now follows directly from this and Lemma 1. O

Before continuing, we state and prove a simple but useful lemma.

Lemma 9 Let k,n be integers with 1 < k < n, and let K be a finite field. Consider a probability
space with random variables & € K™, 5 = (B1,...,B)t € KF<1, 5 ¢ KF*1 and M € KK,
such that & is uniformly distributed over K™*1, ﬁz Mda+7, and for 1 < i <k, the ith rows of M
and ¥ are determined by B1,. .., Bi—1.

Then conditioning on any fized values of B1, ..., Br_1 such that the resulting matriz M has rank
k, the value of By is uniformly distributed over K in the resulting conditional probability space.

Proof. Consider fixed values of f1,...,8r_1 € K, which determine M and ¥, and assume that the
matrix M has rank k. For any 8, € K, consider the corresponding vector E = (B1,...,Bk)7T; there
are exactly |K|"~* vectors @ such that ﬁ = Mda + 4. Therefore, each possible value f; € K is
equally likely. O

Proof of Lemma 6. Counsider the quantity
X:= (Coins, hka W,T1,T2,Y1,Y2,0, U*a ﬁ*)

and the quantity z. Note that X and z take on the same values in games G3 and Gy.

Counsider also the quantity r*. This quantity takes on different values in games Gz and Gy4. For
clarity, let us denote these values as [r*]3 and [r*]4, respectively.

It is clear by inspection that the events R3 and T3 are determined as functions of X, z, and [r*]s.
Also, the events R4 and Ty have precisely the same functional dependence on on X, z, and [r*]s.
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So to prove the lemma, it suffices to show that the distributions of (X, z,[r*]3) and (X, z, [r*]4)
are identical. Observe that by construction, conditioning on any fixed values of X and z, the
distribution of [r*]4 is uniform over Z,. So it will suffice to show that conditioning on any fixed
values of X and z, the distribution of [r*]3 is also uniform over Z,.

We have
z 1 w 21 0
* = * ~ % ) + .
[r*]3 u*  wi 29 log, m,
S

=M
Conditioning only on a fixed value of X, the matrix M is fixed, but the values z; and zy are still
uniformly and independently distributed over Z,. Observe that det(M) = w(a* — u*) # 0. If we
further condition on a fixed value of z, the value of m, is fixed, and by Lemma 9, the distribution
of [r*]3 is uniform over Z,. O

Proof of Lemma 7. Algorithm A, provides an environment for A, interacting with A as follows.

Algorithm A, takes as input 17, F[G‘, G,g,q] € [S)], p* = (a*,a*,¢*) € G3, and hk €
[HF .KeySpace, ]. It first constructs a public key PK and secret key SK for the encryption scheme
using the standard key generation algorithm, except that the given values of I' and hk are used. It
also constructs the target ciphertext ¢¥* = (a*,a*, c*,d*), where a*,a*,c¢* are the given inputs as
above, and where d* is computed as

vt — HRNT (a%, %, ¢%); dF = (a®)™Hone” (ar)metvey”

Here, hk is the given input as above, and z1,y1, T2, y2 are the values taken from the secret key SK
as computed above.

Now Aj interacts with A using the rules of game Gy for the decryption oracle, and giving A the
target ciphertext ¢* when A invokes the encryption oracle. However, if the decryption oracle ever
invokes the special rejection rule in game Gy for a given ciphertext v, algorithm As immediately
outputs (a,a,c) corresponding to 1 and halts. Also, if the attack terminates without the special
rejection rule ever having been invoked, then As also halts (without producing any output).

That completes the description of Ay. If the input (a*,a*,c*) to Ag is sampled uniformly over
all triples of group elements, subject to log, a* # log; a*, then algorithm A succeeds in finding
a collision with probability exactly Pr[Cs]. However, in the definition of AdvTCR, the input is
sampled from the uniform distribution over all triples, not subject to the above restriction. The
bound (11) follows from the fact that the statistical distance between these two input distributions
is1/g. O

Proof of Lemma 8. To prove (12), for 1 < i < Qa(A), let us define Réz) to be the event that
there is an ith ciphertext submitted to the decryption oracle in game Gs, and that the submitted
ciphertext is rejected in step D4’ but would have passed the test in step D4. For 1 <i < Qa()), let
us define Bél) to be the event that the ith decryption oracle query occurs before the encryption oracle
query, and that the submitted ciphertext passes the test in steps D1 and D2 of the decryption
oracle. For 1 <i < Qa(A), let us define Béz) to be the event that the ith decryption oracle query
occurs after the encryption oracle query, and that the submitted ciphertext passes the tests in steps
D1 and D2 of the decryption oracle.
The bound (12) will follow immediately from Lemmas 10 and 11 below. O

Lemma 10 Notation as in the proof of Lemma 8. For all 1 <1 < Qa(X), we have Pr[Réi)|BE()i)] <
1/q.
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Proof. Fix 1 <i < Qa(A). Consider the quantities
X :=(Coins, hk, w, z)

and
X' = (z,y).

The values of X and X' completely determine the behavior of the adversary up until the point

when the encryption oracle is invoked, and in particular, they completely determine the event Béi).

Let us call X and X' relevant if the event Bél) occurs.

It will suffice prove that conditioned on any fixed, relevant values of X and X', the probability
that Réz) occurs is bounded by 1/q.

Once relevant values of X and X' are fixed, the value 1) of the ith decryption query is also fixed,
along with the corresponding values a, a, b, c,d,u, G, v,r, and s.

The test in D4’ fails if and only if one of the two mutually exclusive conditions (@ # a") or
(@ = a™ and d # a®t¥?) holds. It is easy to verify that if the second condition holds, then in fact
the test in D4 fails. Thus, if the test in D4’ fails but that in D4 passes, it must be the case that
a # a¥ and d = a®1T¥1Yq¥21Y2Y So we only need to consider values of X and X’ such that a # a%.
The condition @ # a¥ is equivalent to the condition u # 4, and the condition d = a®1TY1Yq%27¥2? jg
equivalent to the condition s = t.

We have
T 1 w 0 O il
y =00 1 w 2
t U UW Uuv  Uow y1
Y2

Let us first condition only on a fixed value of X, which fixes the first two rows of M, but leaves
the values 1, @2, y1, and yo still uniformly distributed over Z, and mutually independent. Let us
further condition on a fixed value of X’ such that X and X' are relevant, and that u # 4. The
third row of M is also fixed, along with the values z, y, and s. It is easy to see by inspection that
the rows of M are linearly independent, since 4 # w and w # 0. From this, it follows by Lemma 9
that ¢ is still uniformly distributed over Z,, but since s is fixed, we have Pr[s =¢] =1/¢q. O

Lemma 11 Notation as in the proof of Lemma 8. For all 1 <1 < Qa(X), we have Pr[Réi)|f35()i)] <
1/q.

Proof. Fix 1 <i < Qa(A). Consider the quantities
X :=(Coins, hk, w, z,u*,a*,r")

and
X':=(z,y,s%).
The values of X and X' completely determine the adversary’s entire behavior in game Gs, and in
particular, they completely determine the event Bél) Let us call X and X' relevant if the event
Béi) occurs.
It will suffice prove that conditioned on any fixed, relevant values of X and X', the probability
that Réi) occurs is bounded by 1/q.
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Once X and X' are fixed, the value 1 of the ith decryption query is also fixed, along with the
corresponding values a, @, b, ¢, d, u, G, v,r, and s. As in the proof of Lemma, 10, it suffices to consider
values of X and X' for which u # 4, and then to show that Pr[s = ¢] < ¢. Notice that the value
of X determines the value of v*, and we may also assume that v # v*. To see why we may do so,
if v = v*, then either (a,d,c) = (a*,a*,c*), or ¥ is rejected by the special rejection rule. In the
first case, since 9 # ¥*, we must have d # d*, but this implies that 1 fails the test in D4. In the
second case, step D4’ is not even executed.

We have
T 1 w 0 0 T
y 10 0 1 w T
s | 7| v arw wvr atow || o
t u W uv VW i
=M

Let us first condition only on a fixed value of X, which fixes the first three rows of M, but leaves
the values z1, z2, y1, and yo still uniformly distributed over Z, and mutually independent. Let
us further condition on a fixed value of X’ such that X and X' are relevant, and that v # 4 and
v # v*. The fourth row of M is also fixed, along with the values z, y, s*, and s. It is easy to see
that the rows of M are linearly independent, since

det(M) = w? (4 — u) (4" —u*)(v* —v) £0.

From this, it follows by Lemma 9 that ¢ is still uniformly distributed over Z,, but since s is fixed,
we have Pr[s =¢] =1/q. O

6.3 Two variations

Scheme CS1 was presented because it is in a form that is particularly easy to analyze. We now
describe and analyze two variations of the scheme CS1, which we call CSla and CS1b, that are a
bit simpler than CS1, but that require a bit more work to analyze. For both of these schemes, the
public key has the same format and indeed, the same probability distribution, as in CS1, and the
encryption algorithm is the same as in CS1. The key generation and decryption algorithms are
slightly different, however, and are described in detail in Figures 2 and 3.

Remark 6 Scheme CSla is essentially the same scheme that was originally presented as the “main
scheme” in [CS98]. Scheme CS1b is a minor variation of a scheme originally presented in [ShoOOb].

Remark 7 Note that in scheme CS1b, we do not have to separately test if & belongs to the subgroup
G in step D2', since this is already implied by the test in step D4’. The test that a and ¢ belong
to G may in some cases be implemented by testing if a? = 15 and ¢? = 1¢.

Remark 8 Note also in scheme CS1b, the decryption algorithm has to compute either three or
four (if we test if a? = 1) powers of a, and possibly one power of ¢ (if we test if ¢? = 15). Special
algorithmic techniques [BGMW92, LL94] can be employed to compute these several powers of a
significantly faster than computing several powers of different group elements.

Remark 9 In an actual implementation, it is strongly recommended to compute both exponentia-
tions in step D4’ of CS1b before rejecting the ciphertext, even if the first exponentiation performed
already implies that the ciphertext should be rejected. The reason is that if the ciphertext is rejected
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Key Generation: On input 1* for A € Z>(, compute

I'[G,G,g,q] & S(11); hk ¢ HF KeySpace, ;
J A R
W Zy; T1,T2,Y1,Y2,2 < Lg;
g 9" e 9" gt f < g¥ g5 h < g%
and output the public key PK = (T, hk, g, e, f, h) and the secret key SK = (T, hk, z1, z2, y1, y2, 2).
Decryption: Given 1* for A € Z>q, a secret key

SK = (F[éa Gaga q]7 hka T1,22,Y1,Y2, Z) € [S)\] X [HF'KeySpace)\,F] X ZZ)
along with a ciphertext 1, do the following.

D1: Parse ¢ as a 4-tuple (a,a,c,d) € G*; output reject and halt if ¢ is not of this form.
D2: Test if a, a, and ¢ belong to G; output reject and halt if this is not the case.

D3: Compute v < HFﬁ‘QF(a, a,c).

D4: Test if d = a® T¥1va%21¥2Y; output reject and halt if this is not the case.

D5': Compute b + a®.

D6: Compute m < c¢-b~!, and output m.

Figure 2: Key generation and decryption algorithms for CSla

Key Generation: On input 1* for A\ € Z>, compute

I'[G,G,g,q] & S(11); hk ¢ HF KeySpace, ;
R rpx R
w2y x,y,2 & Ly
g g¥ e g% [ g% he g5
and output the public key PK = (T, hk, g, ¢, f, h) and the secret key SK = (T, hk, w, z,y, z).
Decryption: Given 1* for A € Z>g, a secret key

SK = (G, G, g,q], hk,z,y, 2) € [SA] x [HF KeySpace, 1] x Z2,
along with a ciphertext ¢, do the following.

D1: Parse ¢ as a 4-tuple (a,a,c,d) € C§’4; output reject and halt if ¢ is not of this form.
D2': Test if a and ¢ belong to G; output reject and halt if this is not the case.

D3: Compute v < HFﬁ‘QF(a, a,c).

D4': Test if @ = a¥ and d = a®T¥Y; output reject and halt if this is not the case.

D5’: Compute b < a®.

D6: Compute m « c¢-b~!, and output m.

Figure 3: Key generation and decryption algorithms for CS1b
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after just one exponentiation, this may reveal some timing information that could be exploited by
an attacker. Indeed, if we reject immediately upon detecting that @ # a”, then based upon timing
information, an attacker could use the decryption box as a kind Diffie-Hellman decision oracle. Our
formal model of security does not model any notion of time at all, so such attacks fall outside of
the model. We should also point out that we know of no actual attack on the scheme even if such
timing information is available.

Remark 10 For the same reasons as discussed in the previous remark, it is important that any
“error code” returned by the decryption algorithm in scheme CS1b not reveal the precise reason
why a ciphertext was rejected.

Theorem 2 If the DDH assumption holds for G and the TCR assumption holds for HF, then CSla
and CS1b are secure against adaptive chosen ciphertext attack.
In particular, for all probabilistic, polynomial-time oracle query machines A, for all X\ € Z>q,

and all F[éa Gagaq] € [S/\]7 we have
|AdVCCAcs13,A(>\ | F) — AdVCCACSl,A(A | F)| S QA()\)/q (13)

and

|AdVCCAcs1b,A()\ | F) - AdVCCACSl,A()\ | F)| < QA()\)/q (14)

To prove this theorem, let us fix A, A, and F[é, G, g,q]. Consider the attack game Gy as defined
in §6.2: this is game that A plays against the scheme CS1 for the given values of A and I'. We adopt
all the notational conventions established at the beginning of §6.2 (i.e., prior to the description of
game Gq).

We begin by defining two modifications of game Gy.

Game G_1,. In this game, we modify the decryption oracle so that in place of step D5, we execute
step D5’ as in the scheme CSla. We emphasize that in game G _1,, we have z = z; + zow, where
w, z1, and z9 are generated by the key generation algorithm of CS1.

Game G_y;. In this game, we modify the decryption oracle so that in place of steps D4 and D5,
we execute steps D4’ and D5’ as in the scheme CS1b. We emphasize that in game G_1;, we have
Tz =z + zow, y = 1 + xow, and z = 21 + zow, where w, x1, x2, Y1, Y2, 21, and z are generated
by the key generation algorithm of CSI.

Let T" 1, be the event that 0 = & in game G_1, and 71, be the event that ¢ = & in game
G_1p.

We remind the reader that games Gy, G_1,, and G_y; all operate on the same underlying
probability space: all of the variables

. *
Coms, hk7w7$17x27y17y27 21,22,0,U

that ultimately determine the events 1y, 1_1,, and 11, have the same values in games Gg, G_1,,
and G_yp; all that changes is the functional behavior of the decryption oracle.
It is straightforward to verify that and that

AdvCCAcsiaa(A | T) = | Pr[Tiq — 1/2]]

and
AdVCCACSlb’A(A | F) == |PF[T,1b — 1/2”
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Let us define the event R_1; to be the event that some ciphertext is rejected in game G_1; in
step D4’ that would have passed the test in D4. It is clear that games Gg, G_14, and G_y; all
proceed identically until event R_, occurs. In particular, we the events To A —R_1p, T 14 A" R_1p,
and T 15, A = R_qp are identical. So by Lemma 4, we have

| Pr[To] — Pr[T_14]| < Pr[R_1p)

and
| Pr[Ty] — Pr[T_1p]| < Pr[R_1].

So it suffices to show that
Pr[R_ip] < Qa(N)/g. (15)

To do this, for 1 < i < Qa(A), let R@lb be the event that there is an ith ciphertext submitted
to the decryption oracle in game G _1p, and that this ciphertext is rejected in step D4’, but would
have passed the test in step D4.

The bound (15) will follow immediately from the following lemma.

Lemma 12 For all 1 <i < Qa(X), we have Pr[Rg)lb] <1/q.

Proof. The proof of this is lemma is almost identical to that of Lemma 10. Note that in game
G_1p, the encryption oracle uses the “real” encryption algorithm, and so itself does not leak any
additional information about (z1,x9,y1,y2). This is in contrast to game Gz, where the encryption
oracle does leak additional information.

Fix 1 <i < Qa(A). Consider the quantities

X :=(Coins, hk, w, z, o, u™).

and
X' = (z,y).

The values of X and X’ completely determine the adversary’s entire behavior in game Gs, and
hence determine if there is an 7th decryption oracle query, and if so, the value of the corresponding
ciphertext. Let us call X and X' relevant if for these values of X and X', there is an ith decryption
oracle query, and the corresponding ciphertext passes steps D1 and D2.

It will suffice prove that conditioned on any fixed, relevant values of X and X', the probability
that R@lb occurs is bounded by 1/gq.

The remainder of the argument is ezactly as in Lemma 10, except using X, X', and the notion
of relevant as defined here. O

6.4 A hash-free variant

Our basic scheme CS1 requires a target collision resistant hash function. Qualitatively, the TCR
assumption is much weaker than the DDH assumption, since one can build a target collision re-
sistant hash function based on an arbitrary one-way function. Indeed, one can build a collision
resistant hash function under the DL assumption; however, the hash functions arising from such
a construction produce an output that is in G, whereas we need a hash function that maps into
Z,. We cannot in general expect to find an easy-to-compute, injective map from G onto Zg; in
Example 2 in §4.2, we in fact do have such a map, but that is an exceptional case.
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For these reasons, we present a variation CS2 of our basic scheme that does not require a hash
function.

This scheme requires a family {Chop, 1} of “chopping” functions associated with the group
scheme G with the following properties. For A € Z>q and F[G’, G, 9,q] € [S], the function Chop,,
injectively maps triples p € G® of group elements to N-tuples (vy,...,vy) € ZfIV. Here, N = N(\,T)
is bounded by a polynomial in A, and the function Chop, - should be computable by a deterministic,
polynomial-time function that takes inputs 1*, T', and p.

In principle, such chopping functions always exist, since we can write down the binary repre-
sentation of p, and chop it into bit strings of length |log, ¢].

We present the details of scheme CS2 in Figure 4.

Theorem 3 If the DDH assumption holds for G, then CS2 is secure against adaptive chosen ci-
phertext attack.

In particular, for all probabilistic, polynomial-time oracle query machines A, there exists a
probabilistic algorithm Ay, whose running time is essentially the same as that of A, such that the
following holds. For all X € Z>q, and all F[G, G,g,q] € [SA], we have

AdvCCAcsa A(A [ T') < AdvDDHg A, (A | T) + (Qa(A) + 3)/q.

The proof of this theorem follows the same lines as the proof of Theorem 1. We present here a
sketch of the proof, appealing in several places to arguments found in the proof of Theorem 1 so
as to avoid repeating arguments that are identical or nearly identical.

Let us fix a probabilistic, polynomial-time oracle query machine A, the value of the security
parameter X\ € Z>g, and the group description I'[G,G,g,q] € [Sy]-

We define z, z € Z, as follows:

=T + Tow, Z2:=21 + 22W.
We also define y(® ¢ Zg, for1<i <N, as
y(z') ::ygz) + yéz),w_

As a notational convention, whenever a particular ciphertext ¢ is under consideration in some
context, the following values are also implicitly defined in that context:

® a,d,c,d € G, where 9 = (a,a,c,d);

® u,i,v,...,UN,T,8 € Zg, where
u:=log,a, i:=logza, (vi,...,vn):=Chop, (a,d,c), r:=log,c, s:=log,d.
For the target ciphertext ¢, we also denote by a*,a*,c*,d* € G and u*,4*,v7,...,vy,r",s* € Z,

the corresponding values.
The probability space defining the attack game is then determined by the following, mutually
independent, random variables:

e the coin tosses of A;
e the values w,:r:l,:rrg,yg), . ,y(N),yél), . ,yéN),Z]_,ZQ generated by the key generation algo-
rithm;
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Key Generation: On input 1* for A € Z>(, compute

[[G,G,g,q] & S(1%);
R oy R
w(_Zq) -T17I2:21>z2(_zq;

fori=1,...,n: ygi),yéi) yad Z,;
g g¥s e g g hggf_l)ﬁ”;
fori=1,...,n: f; egyll gyz' ;

and output the public key PK = (I, g, e, (fi)N,,h) and the secret key
SK = (Fa L1,T2, (y§l)7 yél))ﬁila 21, 22)-

Encryption: Given 1* for \ € Z>o, a public key
PK = (T[G, G, g,4],§, e, (f:)iL1,h) € [Sx] x GV,
along with a message m € (G, compute
El: v & Z,;
E2: a + g%
E3: a+ g%
E4: b+ h%
E5: c+ b-m;
E6: (v1,...,vn) < Chop, r(a,a,c);
E7: d <+ e Hfil i
and output the ciphertext ¥ = (a, a, ¢, d).
Decryption: Given 1* for A € Z>g, a secret key

SK = (F[éa G: g, q]7 Z1,T2, (yil) ) ygz))zlil y %1, 22) S [S/\] X Z(11V+47
along with a ciphertext ¢, do the following.

D1: Parse ¢ as a 4-tuple (a,a,c,d) € CA}’4; output reject and halt if ¢ is not of this form.
D2: Test if a, a, and ¢ belong to G; output reject and halt if this is not the case.
D3: Compute (vy,...,vn) < Chop, r(a,a,c).

NG, NG,
D4: Test if d = ™ FDoima V1V L g2t 2, % Yi: output reject and halt if this is not the case.

D5: Compute b + a**a*2.
D6: Compute m « c¢-b~!, and output m.

Figure 4: The public-key encryption scheme CS2, where N = N(A,I")
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e the values o € {0,1} and u* € Z, generated by the encryption oracle.

Let Gy be the original attack game, let 6 € {0,1} denote the output of A, and let Ty be the
event that o = ¢ in G, so that AdvCCAcso a(A | I') = | Pr[Tp] — 1/2].

As in the proof of Theorem 1, we shall define a sequence of modified games G, for 2 =1,2,...,
and in game G;, the event 7; will be the event corresponding to event 7j, but in game G;. We
remind the reader that all of these games operate on the same underlying probability space, and
except as otherwise specified, random variables have identical values between games.

Game G;. In game G, we modify the algorithm used by the encryption oracle as follows. Steps
E4 and E7 are replaced by:

E4': b+ a*1a*?;
N i N i
E7': d q® i v gt v

By the same reasoning as in the proof of Theorem 1, we have Pr[T}] = Pr[T}].
Game Gj. We again modify the encryption oracle, replacing step E3 by
E3": 4 & Z,\ {u}; 6« g%

By the same reasoning as in the proof of Theorem 1, one sees that there exists a probabilistic
algorithm A, whose running time is essentially the same as that of A, such that

| Pr[Ty] — Pr[T1]| < AdvDDHg a, (A | T) + 3/4.

Game Gj;. In this game, we modify the decryption oracle in game Go, replacing steps D4 and
D5 with:
N i)y . . ..
D4': Test if @ = a and d = a*T2i=1 ¥ )UI; output reject and halt if this is not the case.
D5': b« a”.
Let R3 be the event that in game Gg, some ciphertext v is submitted to the decryption oracle

that is rejected in step D4’ but that would have passed the test in step D4.
As in the proof of Theorem 1, we have

| Pr[T5] — Pr[T3]| < Pr[Rs].

We claim that
Pr[R3] < Qa(MN)/g.

We can prove the analog of Lemma 8 (in game Gg in the proof of Theorem 1) by considering
an (N + 3) x (2N + 2) matrix M over Z, defined as

1 w
1 w
M:Z )
1 w
u* wtw urvy afvijw - ufuy aTvjw
u  dw  uvy  Udnw -+ uUN  UUNW

where w # 0, 4 # u, 0" # u*, and v; # v} for some ¢ € {1,..., N}. It will suffice to show that the
rows of M are linearly independent.
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If we choose ¢ such that v; # v}, and consider the 4 x 4 sub-matrix M’ of M consisting of the
intersection of columns 1, 2, 264+ 1, 20 +2 of M, and rows 1, ¢+ 1, N +2, N + 3 of M, we see that
matrix M’ has the same form as the matrix considered in Lemma 11, and hence is non-singular.
It follows that the rows of M are linearly independent, since any non-trivial linear relation among
the rows of M implies a non-trivial linear relation among the rows of M’.

Game G4. We again modify the algorithm used by the encryption oracle, replacing step E5 by
E5: r & Zy c g
By reasoning analogous to that in game Gy in the proof of Theorem 1, one can show that
Pr[Ty] = Pr[T3].
Moreover, by construction it is evident that
Pr[T,] =1/2.

That completes the proof sketch of Theorem 3. We leave it to the reader to work out the details
of the design and analysis of variants CS2a and CS2b of scheme CS2, corresponding to the variants
CSla and CS1b of scheme CS1, which were discussed in §6.3.

Remark 11 Note that the high-level structure of the proof of Theorem 3 is significantly simpler
than that of Theorem 1. In particular, in the analysis of game Gg3 in the proof of Theorem 3, we
were able to bound the quantity Pr[R3] directly, without deferring the analysis to a later game, as
in the proof of Theorem 1. This simplification comes from the fact that we do not have to deal
with a target collision resistant hash function in Theorem 3, as we did in Theorem 1. Indeed, if
in the scheme CS1 we use a collision resistant hash function, we could prove the security of CS1
using a proof with essentially the same line of reasoning as that of the proof of Theorem 3, with
one extra game between Gy and G to effectively ban hash function collisions.

7 Hybrid Encryption

The encryption schemes presented in the previous section all had restricted message spaces. In
some settings, an encryption scheme with an unrestricted message space is more desirable. A
simple and efficient way to build an encryption scheme that has an unrestricted message is to
build a hybrid encryption scheme. Loosely speaking, such a scheme uses public-key encryption
techniques to encrypt a key K that is then used to encrypt the actual message using symmetric-
key encryption techniques. In this section, we develop the necessary tools for building a hybrid
public-key encryption scheme.

One key ingredient in any hybrid scheme is a key encapsulation mechanism. This is like a public-
key encryption scheme, except that the job of the encryption algorithm is to generate the encryption
of a random key K. Of course, one can always use a general-purpose public-key encryption scheme
to do this, by simply generating K at random, and then encrypting it. However, there are typically
more efficient ways to this.

As a quick example of a key encapsulation mechanism, consider the following variation of the
ElGamal encryption scheme. Let G be a group of prime order g generated by an element g. Let
H be a cryptographic hash function, such as SHA-1. The public key consists of a group element
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h = g*, where z € Z, is chosen at random; the secret key is z. To generate an encryption of a
symmetric key K, we compute

u - Zg; a <+ g% b« h% K+ H(b);
to form a ciphertext 1 = a. To decrypt a ciphertext ¢ = a using the secret key, one computes
b+ a®; K < H(b);

obtaing a symmetric key K.
To build a complete hybrid encryption scheme, we combine a key encapsulation mechanism
with a symmetric-key encryption scheme.

7.1 Key encapsulation

A key encapsulation mechanism KEM consists of the following algorithms:

e A probabilistic, polynomial-time key generation algorithm KEM.KeyGen that on input 1* for
A € Z>p, outputs a public key/secret key pair (PK, SK). The structure of PK and SK depends
on the particular scheme.

For A\ € Z>(, we define the probability spaces
KEM.PKSpace, := {PK : (PK, SK) & KEM.KeyGen(1%)},

and
KEM.SKSpace := {SK : (PK,SK) & KEM.KeyGen(1*)}.

e A probabilistic, polynomial-time encryption algorithm KEM.Encrypt that takes as input 1*
for X € Z>¢, and a public key PK € [KEM.PKSpace, |, and outputs a pair (K,), where K is
a key and 1 is a ciphertext.
A key K is a bit string of length KEM.KeyLen(\), where KEM.KeyLen()\) is another parameter
of the key encapsulation mechanism.

A ciphertext is a bit string.

o A deterministic, polynomial-time decryption algorithm KEM.Decrypt that takes as input 1*
for A € Z>, a secret key SK € [KEM.SKSpace, ], a ciphertext ¢, and outputs either a key K
or the special symbol reject.

7.1.1 Soundness

As for public key encryption, we need an appropriate notion of soundness. A definition of sound-
ness that is adequate for our purposes runs as follows. Let us say a public key/secret key
pair (PK,SK) € [KEM.KeyGen(1*)] is bad if for some (K,v) € [KEM.Encrypt(1*, PK)], we have
KEM.Decrypt(1*,SK, 1) # K. Let BadKeyPaircgy()\) denote the probability that the key gener-
ation algorithm generates a bad key pair for a given value of A. Then our requirement is that
BadKeyPairkgy (A) grows negligibly in A.
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7.1.2 Security against adaptive chosen ciphertext attack

As for a public key encryption scheme, an adversary A in an adaptive chosen ciphertext attack is
a probabilistic, polynomial-time oracle query machine that takes as input 1*, where \ € Z> is
the security parameter. We now describe the attack game used to define security against adaptive
chosen ciphertext security.

Stage 1: The adversary queries a key generation oracle. The key generation oracle computes
(PK, SK) & KEM.KeyGen(1*) and responds with PK.

Stage 2: The adversary makes a sequence of calls to a decryption oracle.
For each decryption oracle query, the adversary submits a ciphertext 1, and the decryption
oracle responds with KEM.Decrypt(1?*, SK, ).

Stage 3: The adversary queries an encryption oracle.
The encryption oracle computes:

(K*,9*) & KEM.Encrypt(1, PK); KT & {0,1}¢; 7 & {0,1};
if 7 =0 then KT« K* else KT « K+,

where £:= KEM.KeylLen()), and responds with the pair (KT, 1*).

Stage 4: The adversary continues to make calls to the decryption oracle, subject only to the
restriction that a submitted ciphertext v is not identical to 9*.

Stage 5: The adversary outputs 7 € {0,1}.

We define AdvCCAkgma(A) to be |Pr[r = 7] — 1/2| in the above attack game.
We say that KEM is secure against adaptive chosen ciphertext attack if

for all probabilistic, polynomial-time oracle query machines A, the function
AdvCCAkemA(A) grows negligibly in X.

In applying the above definition of security, one typically works directly with the quantity
AdeCAkEM’A()\) =|Pr[f=1|7=0]-Pr[7=1|7=1]|.

It is easy to verify that
AdvCCAKEm a(A) = 2 - AdvCCAKEMA(A).

7.2 One-time symmetric-key encryption

A one-time symmetric-key encryption scheme SKE consists of two algorithms:

e A deterministic, polynomial-time encryption algorithm SKE.Encrypt that takes as input 1*
for A € Z>p, a key K, and a message m, and outputs a ciphertext x.

The key K is a bit string of length SKE.KeyLen ().

Here, SKE.KeyLen(A) is a parameter of the encryption scheme, which we assume can be
computed in deterministic polynomial time given 17

The message m is a bit string of arbitrary, unbounded length.
The ciphertext x is a bit string.

We denote by SKE.CTLen(A, ¢) the maximum length of any encryption of a message of length
at most 4.
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o A deterministic, polynomial-time decryption algorithm SKE.Decrypt that takes as input 1*
for X € Z>¢, a key K, and a ciphertext x and outputs a message m or the special symbol
reject.

The key K is a bit string of length SKE.KeyLen ().
The ciphertext x is a bit string of arbitrary length.

We require that SKE satisfy the following soundness condition: for all A € Zx, for all K €
{0, 1}SKEKeyLen(X) “for all m € {0,1}*, we have:

SKE.Decrypt(1*, K, SKE.Encrypt(1*, K, m)) = m.

7.2.1 Two definitions of security

We define two notions of security for a one-time symmetric-key encryption scheme: security against
passive attacks, and security against adaptive chosen ciphertext attacks.

As usual, an adversary A is a probabilistic, polynomial-time oracle query machine that takes as
input 1%, where \ € Z> is the security parameter.

A passive attack runs as follows. The adversary A chooses two messages, mg and m1, of equal
length, and gives these to an encryption oracle. The encryption oracle generates a random key K
of length SKE.KeyLen(A), along with random o € {0,1}, and encrypts the message m, using the
key K. The adversary A is then given the resulting ciphertext x*. Finally, the adversary outputs
€ {0,1}.

We define AdvPAske a(A) to be |Prlo = 6] — 1/2| in the above attack game.

We say that SKE is secure against passive attacks if

for all probabilistic, polynomial-time oracle query machines A, the function
AdvPAske A(A) grows negligibly in A.

An adaptive chosen ciphertext attack is exactly the same as a passive attack, except that after
the adversary A obtains the target ciphertext x* from the encryption oracle, the adversary may
then query a decryption oracle any number of times. In each decryption oracle query, A submits a
ciphertext x # x*, and obtains the decryption of x under the key K. As in the passive attack, A
outputs ¢ € {0,1}.

We define AdvCCAske a(A) to be |Pr[o = 6] — 1/2] in the above attack game.

We say that SKE is secure against adaptive chosen ciphertest attacks if

for all probabilistic, polynomial-time oracle query machines A, the function
AdvCCAske a(A) grows negligibly in .

7.2.2 Constructions

Our definition of a symmetric-key encryption scheme and the corresponding notions of security are
tailored to the application of building a hybrid public-key encryption scheme. These definitions
may not be appropriate for other settings. In particular, our definitions of security do not imply
protection against chosen plaintext attack; however, this protection is not needed for hybrid public-
key encryption schemes, since a symmetric key is only used to encrypt a single message.

It is easy to build a symmetric key encryption scheme that achieves security against passive
attacks using standard symmetric-key techniques. For example, to encrypt a message m, one can
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expand the key K using a pseudo-random bit generator to obtain a “one time pad” « of length
|m|, and then compute x < m & «a.

A pseudo-random bit generator can be built from an arbitrary one-way permutation [GL89], or
even from an arbitrary one-way function [ILL89, HILL99]. These constructions, however, are not
very practical. In a practical implementation, it is perfectly reasonable to stretch the key K by using
it as the key to a dedicated block cipher, and then evaluate the block cipher at successive points
(so-called “counter mode”) to obtain a sequence of pseudo-random bits (c.f. [MvOV97, Chapter 7]).

Note that the above construction yields a scheme that is completely insecure against adaptive
chosen ciphertext attack. However, it is also easy to build a symmetric key encryption scheme
SKE2 that achieves security against adaptive chosen ciphertext attack, given an arbitrary scheme
SKE1 that is only secure against passive attacks.

One technique is to simply build an SKE2 ciphertext by attaching a message authentication
code to the SKEL ciphertext. Although this technique seems to be “folklore,” for completeness, we
develop the details here.

A one-time message authentication code MAC specifies the following items:

e For A\ € Z>g, a key length parameter MAC.KeyLen()\) and an output length parameter
MAC.OutLen(X).

We assume that MAC.KeylLen()) can be computed in deterministic polynomial time given 1*.

e A family of functions indexed by A € Z>¢ and mk € {0, 1}MAC'KeyLe"()‘), where each function
MAC),, maps arbitrary bit strings to bit strings of length exactly MAC.OutLen()).

There must be a deterministic, polynomial-time algorithm that on input 1%, mk €
{0, 1}MACKeyLen(N) "and « € {0,1}*, outputs MAC), (a).

To define security for MAC, we define an attack game as follows. As usual, an adversary A is a
probabilistic, polynomial-time oracle query machine that takes as input 1*, where A € Z> is the
security parameter. The adversary A first chooses a bit string «, and submits this to an oracle.
The oracle generates a random key mk of length MAC.KeyLen()), computes 3 « MAC), (), and
returns S to the adversary. The adversary A then outputs a list

((a1,81),- .-, (o, Bk))

of pairs of bit strings. We say that A has produced a forgery if for some 1 < i < k, we have o; # «
and MAC), («;) = 6.

We say that A is a (Li1(A\),L2(X), N(N)) forging adversary if || < Li(A\), & < N(\), and
|| < Lo(A) for all 1 <i < k.

Define AdvForgeyac a()) to be the probability that A produces a forgery in the above game.
We say that MAC is secure if

for all probabilistic, polynomial-time oracle query machines A, the function
AdvForgeyac a(A) grows negligibly in .

Message authentication codes have been extensively studied (c.f. [MvOV97, Chapter 9]). Once
can easily build secure one-time message authentication codes using an appropriate family of uni-
versal hash functions, without relying on any intractability assumptions. There are also other ways
to build message authentication codes which may be preferable in practice, even though the security
of these schemes is not fully proven.
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Now we show how to use SKE1 and MAC to build SKE2. The key length SKE2.KeyLen(\) of
SKE2 will be equal to
SKE1.KeyLen(\) + MAC.KeyLen(X).

We will write such a key as (K, mk), where K is a bit string of length SKE1.KeyLen(\), and mk is
a bit string of length MAC.KeyLen(A).
To encrypt a message m under a key (K, mk) as above, algorithm SKE2.Encrypt computes

x + SKE1.Encrypt(1*, K, m); tag < MAC), (x); X' < x| tag;

and outputs the ciphertext x'.

To decrypt a ciphertext x’ under a key (K, mk) as above, algorithm SKE2.Decrypt first parses
X' as x' = x| tag, where tag is a bit string of length MAC.OutLen()). If this parsing step fails
(because x’ is too short), then the algorithm outputs reject; otherwise, it computes

tag’ < MAC), (x)-
If tag # tag’, the algorithm outputs reject; otherwise, it computes
m  SKE1.Decrypt(1*, K, x);
and outputs m.

To analyze the security of SKE2, we recall that for all probabilistic, polynomial-time oracle query
machines A, for all A € Z>(, we denote by Qa(A) an upper bound on the number of decryption
oracle queries made by A on input 1*. Although we introduced this notation in the context of
public-key encryption, we can adopt it here in the context of symmetric-key encryption as well. We
remind the reader that Qa(\) should be a strict bound that holds for any environment.

For all probabilistic, polynomial-time oracle query machines A, for all A € Z>(, we define Ba(\)
to be an upper bound on the length of the messages submitted by A to the encryption oracle, and
B ()) to be an upper bound on the ciphertexts submitted by A to the decryption oracle. As usual,
these upper bounds should hold regardless of the environment of A.

Theorem 4 If SKEL is secure against passive attacks, and MAC is a secure one-time message
authentication code, then SKE2 is secure against adaptive chosen ciphertext attacks.

In particular, for every probabilistic, polynomial-time oracle query machine A, there exist prob-
abilistic oracle query machine Ay and As, whose running times are essentially the same as that of
A, such that for all X € Z>y,

AdvCCAske2 A(A) < AdvPAsker A, (A) + AdvForgeyac a, (A)-
Moreover, As is a

(SKEL.CTLen(A, B()\)), B'(\) — MAC.OutLen()), Qa()\))
forging adversary.

Proof. Fix A and A, and let G¢ denote the original chosen ciphertext attack game. Let Ty be the
event that o = 6 in game Gy.

We next define a modified attack game Gy, in which all ciphertexts submitted to the decryption
oracle by A in game G, are simply rejected.
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Let 7171 be the event that 0 = & is game G;. Let R; be the event in game G; that some
ciphertext is rejected in game Gi that would not have been rejected under the rules of game Gy.

Since games Gy and G; proceed identically until event R; occurs, the events Ty A =R; and
T1 A =Ry are identical, and so by Lemma 4, we have | Pr[Tp] — Pr[T1]| < Pr[R;].

It is straightforward to verify that

Pr[R;] < AdvForgeyac a, (M) (16)

for an adversary As as described above.

The theorem now follows by observing that the attack by A in game G is now a passive attack.
That is, the adversary A; in the theorem simply runs the adversary A, and whenever A makes a
decryption oracle query, adversary A; simply lets A continue as if the decryption oracle rejected
the ciphertext. O

Remark 12 Although the keys for SKE2 are longer than those for SKEL, this need not be the case
if we use a pseudo-random bit generator to stretch a short key into a suitably long key. Indeed,
the key length of any symmetric key encryption scheme need be no longer than the key length of
a secure a pseudo-random bit generator.

7.3 A hybrid construction

Let KEM be a key encapsulation mechanism (as defined in §7.1) and let SKE be a one-time sym-
metric key encryption scheme (as defined in §7.2). Further, let us assume that the two schemes are
compatible in the sense that for all A\ € Z>g, we have KEM.KeyLen()\) = SKE.KeyLen()). We now
describe a hybrid public-key encryption scheme HPKE.

The key generation algorithm for HPKE is the same as that of KEM, and the public and secret
keys are the same as those of KEM.

To encrypt a message m in the hybrid scheme, we run KEM.Encrypt to generate a symmetric
key K and a ciphertext ¢ encrypting K. We then encrypt m under the key K using SKE.Encrypt,
obtaining a ciphertext x. The output of the encryption algorithm is ¢/ = (1, x), encoded in a
canonical fashion as a bit string.

The decryption algorithm for the hybrid scheme runs as follows. Given a ciphertext 1/3, we first
verify that 1/3 properly encodes a pair (¢, x). If not, we output reject and halt. Next, we decrypt
1) using KEM.Decrypt; if this yields reject, then we output reject and halt. Otherwise, we obtain a
symmetric key K and decrypt x under K using SKE.Decrypt, and output the resulting decryption
(which may be reject).

Theorem 5 If KEM and SKE are secure against adaptive chosen ciphertest attacks, then so is
HPKE.

In particular, if A is a probabilistic, polynomial-time oracle query machine, then there exist
probabilistic oracle query machines Ay and Az, whose running times are essentially the same as
that of A, such that for all X € Z>q, we have

AdvCCAppke,a(N) < BadKeyPairggy (A) + AdvCCAKey o, (A) + AdvCCAske a, (V).

Proof. Fix A and A, and let Gy be the original chosen ciphertext attack game played by A against
HPKE. We let ¢* = (1", x*) denote the target ciphertext; o is the hidden bit generated by the
encryption oracle and & is the bit output by A. Let Ty be the event that 0 = 6. Also, let K* denote
the symmetric key output by the algorithm KEM.Encrypt during the encryption process within the
encryption oracle.
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We now define a modified game Gj. In this game, whenever a ciphertext (¢, x) is submitted
to the decryption oracle after the invocation of the encryption oracle, if ¢ = ¢* (but x # x* of
course), then the decryption oracle does not apply algorithm KEM.Decrypt to obtain the symmetric
key, but instead just uses the key K* produced by the encryption oracle. Let 17 be the event that
o = 6 in game Gj.

This change is slightly more than just conceptual, since KEM.KeyGen may generate a bad key
pair with probability BadKeyPairggy(A). However, unless this occurs, games Gy and G; proceed
identically, and so by Lemma 4, we have

| Pr[T1] — Pr[T}]| < BadKeyPairggm(A).

Now we define a modified game Go. This game behaves just like game Gq, except that we
use a completely random symmetric key K in place of the key K* in both the encryption and
decryption oracles. Let 13 be the event that 0 = & in game Go.

It is straightforward to see that there is an oracle query machine A;, whose running time is
essentially the same as that of A, such that

| Pr[T}] — Pr{Th]| = AdvCCAKep A, (A)-

The adversary A; basically just runs the adversary A. In the attack game that A; is playing
against KEM, the value K1 is equal to K* in game G1, and is equal to Kt in game Gs. Note that
in games G; and Gy, the ciphertext 1* is never explicitly decrypted, and so A; need not submit
this for decryption either.

Lastly, we observe that there is an oracle query machine A;, whose running time is essentially
the same as that of A, such that

|PI‘[T2] - 1/2| == AdVCCASKE’AZ ()\)

To see this, note that in game Gg, the ciphertext x* is produced using the random symmetric
encryption key KT, and also that some other ciphertexts y # x* are decrypted using K+, but that
the key KT plays no other role in game G,. Thus, in game Go, the adversary A is essentially just
carrying out an adaptive chosen ciphertext attack against SKE. O

Remark 13 We stress that it is essential for both KEM and SKE to be secure against adaptive
chosen ciphertext attack in order to prove that HPKE is as well. One cannot start with a “weak”
KEM and hope to “repair” it with a hybrid construction: doing this may indeed foil some specific
attacks, but we know of no way to formally reason about the security of such a scheme. It is also
important not to waste the chosen ciphertext security of KEM by using a “weak” SKE. Indeed,
some popular methods of constructing a “digital envelope” use a SKE that may only be secure
against passive attacks; even if the resulting composite ciphertext is digitally signed, this does not
necessarily provide security against chosen ciphertext attack.

8 Key Derivation Functions

In the next section, we will present and analyze a key encapsulation mechanism. The key will be
derived by hashing a pair of group elements. In order not to clutter that section, we develop here
the notion of such a key derivation function.
Let G be a computational group scheme, specifying a sequence (Sy)ez., of group distributions.
A key derivation scheme KDF associated with G specifies two items: -
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o A family of key spaces indexed by X\ € Z>p and I' € [S,]. Each such key space is a probability
space on bit strings denoted by KDF.KeySpace, .

There must exist a probabilistic, polynomial-time algorithm whose output distribution on
input 1* and I is equal to KDF.KeySpace, -

o A family of key derivation functions indexed by X\ € Zxo, I'[G,G,g,q] € [Sa], and dk €

KDF.KeySpace, ], where each such function KDF)F maps a pair (a, b) € G? of group elements
AL dk g
to a key K.

A key K is a bit string of length KDF.OutLen()). The parameter KDF.OutLen(\) should be
computable in deterministic polynomial time given 17,

There must exist a deterministic, polynomial-time algorithm that on input 1*, '@, G, ¢,q| €
[S,], dk € [KDF.KeySpace,, ], and (a,b) € G2, outputs KDFy,' (a, b).

We now define the security property that we shall require of KDF.
For all 0/1-valued, probabilistic, polynomial-time algorithms A, and for all A € Z>, define

AdvDistypr a(A) :=
[Pr{ 7 =1:T & 8,5 dk & KDF KeySpace, 1 a,b & G;
7 & AL, T, dk, a, KDF (a,0)) ] —
Pr[7=1:T ¢ 8S); dk & KDF.KeySpace, ; a ¢~ G; K & {0, 1}KPF-Outten(%),
r & AT, dk, a, K) ]‘

That is, AdvDistkpr a(A) measures the advantage that A has in distinguishing two distributions:

in the first it is given KDF;‘I’(F(a, b) and in the second it is given a random key K; in both distributions
it is given the derivation key dk as well as the auxiliary group element a.
We shall say that KDF is secure if this distinguishing advantage is negligible, i.e.,

for all 0/1-valued, probabilistic, polynomial-time algorithms A, the function
AdvDistkpr a(A) grows negligibly in X.

It is also convenient to define a quantity analogous to AdvDistkpr a()), but conditioned on a
fixed group description. For all 0/1-valued, probabilistic, polynomial-time algorithms A, for all
A€ Z>p, and all I'[G, G, g,q] € [S)],

AdvDistkpr a(X | T) 1=
[Pr[ 7= 1: dk & KDF KeySpace, s a,b & G;
T & AL, T, dk, a, KDFY (a,b)) ] —
Pr[7=1:dk & KDF.KeySpace) ; a & G; K & {0, 1}KDF-Outlen(d),
7 & AT, dk, a, K) ]‘

8.1 Constructions
8.1.1 Unconditionally secure constructions

One can build a secure KDF for G without any assumptions, provided the groups defined by G are
sufficiently large, which they certainly will be in our applications. Indeed, all we need is that KDF
is pair-wise independent.

43



In our context, we shall say that a KDF is pair-wise independent if for all A € Z>q, for all
I'G, G,g,q] € [S)], for all a,b,b’ € G with b # V/, the distribution

{(KDF};" (a,b), KDF3' (a,1')) : dk & KDF.KeySpace, -}

is the uniform distribution over all pairs of bits strings of length KDF.OutLen(\).

By the Leftover Hash Lemma [ILL89, 1Z89], it follows that if KDF is pair-wise independent,
then for all 0/1-valued, probabilistic, polynomial-time algorithms A, for all A € Z>(, and all
F[G7 G,g, q] € [S)\]J

AdvDistkpra(X | T) <27,
where
|logy q| — KDF.OutLen()\)J
5 .

We also point out that fairly efficient pair-wise independent functions can be constructed without

relying on any intractability assumptions.

k=1

8.1.2 Conditionally secure constructions

In practice, to build a key derivation function, one might simply use a dedicated cryptographic
hash function, like SHA-1.

In this situation, we will simply be forced to assume that such a KDF is secure. However, such
an intractability assumption is not entirely unreasonable. Moreover, a dedicated cryptographic
hash function has several potential advantages over a pair-wise independent hash function:

e it may not use a key, or it may use a very short key, which may lead to a significant space
savings;

e it can usually be evaluated more quickly than a typical pair-wise independent hash function
can;

e it can be safely used to derive output keys that are significantly longer than would be safe to
derive with a typical pair-wise independent hash function;

e it may, at least heuristically, provide even more security in applications than a typical pair-
wise independent hash function.

9 The New Encryption Scheme: Hybrid Version

9.1 Description of the Scheme

In this section, we present a hybrid version of our new encryption scheme. Specifically, we present
a key encapsulation mechanism CS3, out of which one can easily construct a hybrid encryption
scheme, as described in §7.

The scheme makes use of a computational group scheme G as described in §4.1, defining a
sequence (Sy)aez., of distributions of group descriptions, and providing a sampling algorithm S ,
where the output distribution § (1*) closely approximates S.

The scheme also makes use of a binary group hashing scheme HF associated with G, as described
in §5.

Finally, the scheme makes use of a key derivation scheme KDF, associated with G, as described
in §8. Note that output key length CS3.KeyLen(\) of the scheme is equal to KDF.OutLen()).

The scheme is described in detail in Figure 5.
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Key Generation: On input 1* for A\ € Z>, compute

IG,G,g,q] & S(1*); hk & HF KeySpace, 1; dk ¢~ KDF.KeySpace, ;
w & Z; x1,%2,Y1,Y2, 21,22 & Zy;
g9 e g™ g™ [ g g% h g7 g7

and output the public key PK = (T, hk,dk, g, e, f, h) and the secret key

SK = (Fa hkadkamlal’%ylay% ZlaZZ)-

Encryption: Given 1* for A € Z>y, a public key

PK = (I‘[G,G,g,q], hk,dk, g, e, f, h) € [Sa] x [HF .KeySpace, ] x [KDF.KeySpace, r] x G4,
compute

El: v & Z,;

E2: a + g%

E3: a « g%

E4: b+ b

E5: K «+ KDFS‘QF(a,b);
E6: v « HF\ (a,d);
E7: d+ e fu,

and output the symmetric key K and the ciphertext ¢ = (a, a, d).

Decryption: Given 1* for \ € Z>q, a secret key

SK = (I[G, G, g, 4], hk, dk, 21, T2, Y1, Y2, 21, 22) € [Sa] x [HF.KeySpace, ] x [KDF.KeySpace, ] x Z°,
along with a ciphertext ¢, do the following.

D1: Parse ¢ as a 3-tuple (a,a,d) € (;'3; output reject and halt if ¢ is not of this form.
D2: Test if a and a belong to G; output reject and halt if this is not the case.

D3: Compute v ¢ HFﬁ‘QF(a, a).

D4: Test if d = a®T¥1v4%21¥2Y; output reject and halt if this is not the case.

D5: Compute b + a**a*2.

D6: Compute K <+ KDF;‘;F(a, b), and output the symmetric key K.

Figure 5: The key encapsulation mechanism CS3

45




9.2 Security analysis of the scheme

We shall prove that CS3 is secure against adaptive chosen ciphertext attack if the DDH assumption
holds for G, and the TCR assumption holds for HF, and assuming that KDF is a secure key derivation
scheme.

As we have done before, for all probabilistic, polynomial-time oracle query machines A, and for
all A € Z>, we let Qa()) be an upper bound on the number of decryption oracle queries made by
A on input 1*. We assume that Qa()) is a strict bound in the sense that it holds regardless of the
probabilistic choices of A, and regardless of the responses to its oracle queries from its environment.

Theorem 6 If the DDH assumption holds for G and the TCR assumption holds for HF, and
assuming that KDF is a secure key derivation scheme, then CS3 is secure against adaptive chosen
ciphertext attack

In particular, for all probabilistic, polynomial-time oracle query machines A, there exist proba-
bilistic algorithms A1, Ao, and Az whose running times are essentially the same as that of A, such

that the following holds. For all A\ € Z>q, and all F[G‘, G,g,q] € [S)], we have

AdVCCAcs:),,A()\ | F) < AdVDDHg,A1 ()\ | F) + AdVTCRHF7A2(>\ | F) +

AdvDistkpr a; (A | T) + (Qa(A) + 3)/q. (17)

To prove Theorem 6, let us fix a probabilistic, polynomial-time oracle query machine A, the
value of the security parameter A\ € Z>, and the group description F[G‘, G,g,q] € [S)]-

The proof follows the same line of argument as the proof of Theorem 1, and we will at several
places appeal to argument in that proof, so as to avoid unnecessary repetition.

The attack game is as described in §7.1.2. We now discuss the relevant random variables in this
game.

Suppose that the public key is (T',hk,dk,g,e, f,h) and that the secret key is
(L', hk, dk, 21, 72, Y1, Y2, 21, 22). Let w:= log, g, and define z,y, 2z € Z, as follows:

T:=x1 +Tow, Y:=yY1 + Yow, Z2:=21 + 2owW.

As a notational convention, whenever a particular ciphertext ¢ is under consideration in some
context, the following values are also implicitly defined in that context:

e a,d,d € G, where ¢ = (a,a,d);
® u,i,v,s € Zy, where

~

u:= log, a, i:= log;a, v::HFﬁ‘l’(F(a,a), s:= log, d.

For the target ciphertext ¢*, we also denote by a*,a*,d* € G, and u*,4*,v*,s" € Z, the corre-
sponding values.

The probability space defining the attack game is then determined by the following, mutually
independent, random variables:

e the coin tosses of A;
e the values hk,dk, w,z1,z2,y1,yo, 21, 22 generated by the key generation algorithm;
o the values 7 € {0,1}, Kt € {0,1}KPFOutten(N) " and u* € Z, generated by the encryption

oracle in the attack game.
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Let Gy be the original attack game, let 7 € {0,1} denote the output of A, and let Ty be the
event that 7 = 7 in Gy, so that AdvCCAcs3 a(A | T') = | Pr[Tp] — 1/2].

As in the proof of Theorem 1, we shall define a sequence of modified games G;, forz =1,2,...,
where in game Gj;, the event 7; will be the event corresponding to event 1j, but in game G;.
The overall structure of the proof will differ a bit from that of Theorem 1, even though many of
the low level details will be very similar. Indeed, the proof of this theorem is conceptually a bit
simpler (even though there are more steps) than that of Theorem 1, since the inputs to HFa‘I’(F in
the encryption oracle are independent of any quantities computed by the adversary; we also save a
term of 1/¢ in (17) because of this.

Game G;. We now modify game Gy to obtain a new game G;. These two games are identical,
except that instead of using the encryption algorithm as given to compute the target ciphertext
1*, we use a modified encryption algorithm, in which steps E4 and E7 are replaced by:

E4': b+ a*1a*?;

E7': d + a®tty1vq¥2tyzv,
By the same reasoning as in the proof of Theorem 1, we have
Pr[Ty] = Pr[Ty].
Game Gj. We again modify the encryption oracle, replacing step E3 by
E3": 4 & Zy; a <+ gv

By the same reasoning as in the proof of Theorem 1, one sees that there exists a probabilistic
algorithm A;, whose running time is essentially the same as that of A, such that

| Pr[T3] — Pr[Ti]| < AdvDDHg a, (A | T') +2/g.

Note that unlike game Go in the proof of Theorem 1, we do not impose the restriction u* # 4*
just yet; it is technically convenient to defer this until later. This is why the term 2/q appears in
the above bound, rather than 3/q.

Game Ggj. This game is the same as game Go, except for the following modification.

We modify the decryption oracle so that it applies the following special rejection rule: if the
adversary submits a ciphertext ¢ for decryption at a point in time after the encryption oracle
has been invoked, such that (a,a) # (a*,a*) but v = v*, then the decryption oracle immediately
outputs reject and halts (before executing step D4’).

We claim that there exists a probabilistic algorithm A,, whose running time is essentially the
same as that of A, such that

|PI‘[T3] - PI‘[TQ” S AdVTCRHF’AQ()\ | F)

This follows from reasoning very similar to the proof of Lemma 7 in the analysis of game Gy in the
proof of Theorem 1. Observe that we can impose the special rejection rule already in this game,
rather than deferring to to a later game as in the proof of Theorem 1, because, as we mentioned
above, the inputs to HF,/}I’(F in the encryption oracle are independent of any quantities computed by
the adversary.
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Game G4. We again modify the encryption oracle, replacing step E3' by
E3": 0 & Z,\ {u}; a + g%

It is easy to verify that
| Pr{Ty] — Pr{Ty]| < 1/q.

Game Gjs. In this game, we modify the decryption oracle in game Gy, replacing steps D4 and
D5 with:

D4': Test if @ = a® and d = a®*TY?; output reject and halt if this is not the case.
D5': b« a®.

Let Rs be the event that in game Gg, some ciphertext ¢ is submitted to the decryption oracle
that is rejected in step D4’ but that would have passed the test in step D4.
It is clear that
| Pr[T5] — Pr[T4]| < Pr[Rs].

We also claim that
Pr[Rs] < Qa(N)/g.

This follows from reasoning analogous to that in Lemma 8 (in game Gj in the proof of Theorem 1).

Game Gg. We again modify the algorithm used by the encryption oracle, replacing step E4’ by
E4": 1 & Zg; b g

By reasoning analogous to that in the analysis of game G4 in the proof of Theorem 1, one can
easily show that
PI‘[TG] == PI‘[T5].

Game G7. In this game, we modify the encryption oracle, replacing step E5 of the encryption
algorithm by

E5: K <£ {0 1}KDF.OutLen()\)'

It is straightforward to see that there exists a probabilistic algorithm As, whose running time
is essentially the same as that of A, such that

|PI‘[T7] — PF[TGH < AdVDiStKDF’A3 ()\ | F)
Furthermore, it is clear that by construction that
Pr[T7] = 1/2.

That completes the proof of Theorem 6.
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Key Generation: On input 1* for A € Z>(, compute

I'[G,G,g,q] & S(1%); hk & HF KeySpace, 1; dk ¢~ KDF.KeySpace, ;
w & ZZ; T1,T2,Y1,Y2,2 & Z;
g 9" e gt f < g¥ g% h g7
and output the public key PK = (T, hk,dk, g, e, f, h) and the secret key SK = (T, hk, dk, z1, z2,y1, Y2, 2)-
Decryption: Given 1* for A € Z>q, a secret key

SK = (F[G’Gagaq]a hkadkamlal’%ylay% Z) € [S)\] X [HF'KeySpace)\,F] X [KDF'KeySpace)\I] X Zga
along with a ciphertext ¢, do the following.

D1: Parse ¢ as a 3-tuple (a,a,d) € (;'3; output reject and halt if ¢ is not of this form.
D2: Test if a and a belong to G; output reject and halt if this is not the case.

D3: Compute v HFﬁ‘QF(a, a).

D4: Test if d = a®T¥1v4%21¥2Y; output reject and halt if this is not the case.

D5’: Compute b < a®.

D6: Compute K <+ KDFg‘&F(a, b), and output the symmetric key K.

Figure 6: Key generation and decryption algorithms for CS3a

Key Generation: On input 1* for A\ € Z>, compute

IG,G,g,q] & S(1*); hk & HF KeySpace, 1; dk ¢~ KDF.KeySpace, ;
w & Z;; x,y,2 & Zy;
g 9¥s esg% [ gY% he g7
and output the public key PK = (T, hk,dk, g, e, f, h) and the secret key SK = (T, hk, dk, z,y, z).
Decryption: Given 1* for A € Z>g, a secret key

SK = (F[G,G,g,q],hk,dk,x,y,z) € [Sa] x [HF .KeySpace, 1] x [KDF.KeySpace, ] x Zg,
along with a ciphertext ¢, do the following.

D1: Parse ¢ as a 3-tuple (a,a,d) € (;'3; output reject and halt if ¢ is not of this form.
D2': Test if a belongs to G; output reject and halt if this is not the case.

D3: Compute v + HFQ&F((L, a).

D4': Test if a = a¥ and d = a®T¥?; output reject and halt if this is not the case.

D5’: Compute b < a®.

D6: Compute K <+ KDFS‘QF(a, b), and output the symmetric key K.

Figure 7: Key generation and decryption algorithms for CS3b
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9.3 Two variations

One can easily modify scheme CS3 to obtain two variants, which we call CS3a and CS3b, that are
analogous to the variations CSla and CS1b of CS1, discussed in §6.3. Only the key generation and
decryption algorithms differ. The details are are presented in Figures 6 and 7.

Remark 14 Scheme CS3b is essentially the same scheme that was originally presented in [ShoOOb].
This scheme is the most efficient scheme among all those presented in this paper. It is also attractive
in that it yields a public-key encryption scheme with an unrestricted message space. Moreover, this
scheme has some other attractive security properties that will be examined in §10.

Remark 15 Analogous to Remark 7, we do not have to separately test if & belongs to the subgroup
G in step D2’ of the decryption algorithm of CS3b, and we may test if a belongs to G in some cases
by testing if a? = 1.

Remark 16 Analogous to Remark 8, in scheme CS3b, the decryption algorithm has to compute
either three or four (if we test if a? = 1) powers of a, and special algorithmic techniques can be
exploited to do this.

Remark 17 Analogous to Remarks 9 and 10, it is strongly recommended to always compute both
exponentiations in step D4’ of CS3b before rejecting the ciphertext, and to not reveal the precise
reason why any ciphertext was rejected.

The following theorem can proved using an argument almost identical to the argument that
was used to prove Theorem 2. We leave it to the reader to verify this.

Theorem 7 If the DDH assumption holds for G and the TCR assumption holds for HF, and
assuming that KDF is a secure key derivation scheme, then CS3a and CS3b are secure against
adaptive chosen ciphertext attack.

In particular, for all probabilistic, polynomial-time oracle query machines A, for all X € Zx,
and ol |G, G, g,q] € [S\], we have

|AdvCCAcs3a,A(A [ T') = AdvCCAcs3 a(A [ )] < Qa(A) /g

and

|AdVCCAcs3b7A(>\ | F) — AdVCCAcs37A(>\ | F)| S QA()\)/q

10 Further Security Considerations of Scheme CS3b

The key encapsulation mechanism CS3b, which was described and analyzed in §9.3, has some other
interesting security properties, which we discuss in this section.

The main results we present here are the following. First, we show that CS3b is no less secure
than a more traditional key encapsulation mechanism that is a hashed variant of ElGamal encryp-
tion, which we call HEG. Second, we also show that CS3b is secure in the random oracle model
(viewing KDF as a random oracle) if the CDH and TCR assumptions hold. Along the way, we
also give a security analysis of HEG in the random oracle model, based on a rather non-standard
intractability assumption.
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10.1 Hashed ElGamal key encapsulation

We begin by presenting a fairly traditional version of ElGamal key encapsulation, which we call
HEG.

The scheme makes use of a computational group scheme G as described in §4.1, defining a
sequence (Sy)aez., of distributions of group descriptions, and providing a sampling algorithm S ,
where the output distribution $ (1*) closely approximates S.

Also, the scheme makes use of a key derivation scheme KDF, associated with G, as described in
§8. Note that output key length EG.KeyLen(\) of the scheme is equal to KDF.OutLen()).

The scheme is described in detail in Figure 8.

10.2 The random oracle model

We will analyze the security of both schemes HEG and CS3b in the random oracle model. In this
approach, a cryptographic hash function — in this case KDF — is modeled for the purposes of
analysis as a “black box” containing a random function to which the adversary and the algorithms
implementing the cryptosystem have “oracle access.” This approach has been used implicitly and
informally for some time; however, it was formalized by Bellare and Rogaway [BR93], and has
subsequently been used quite a bit in the cryptographic research community.

More precisely, we shall analyze the security the scheme HEG and later CS3b in an idealized
model of computation where for all A € Z>, all I'[G, G, g,q] € [S,], all dk € [KDF.KeySpace, r],
and all a,b € G, we treat the values KDF;‘l’(F(a, b) as mutually independent, random bit strings of
length KDF.OutLen(\); moreover, the only way to obtain the value of KDFS‘I’(F(a, b) to to explicitly
query an oracle with input (A, T, dk, a, b). Actually, to be complete, we allow I, dk, a, and b to range
over arbitrary bit strings, regardless of whether these are valid encodings of appropriate objects.
Since in any of our applications, only a finite number of the values KDFj‘l’(F(a, b) will be relevant,
experiments based on these values can be modeled using finite probability spaces.

When considering an adversary A that is carrying out an adaptive chosen ciphertext attack
in the random oracle model, in addition to the usual types of oracle queries that A makes, the
adversary A is also allowed to query the random oracle representing KDF. We shall denote by
QA(N) a strict upper bound on the number of random oracle queries that A makes for a given
value of the security parameter A; as usual, this bound should hold regardless of the environment
in which A actually runs.

10.3 (CS3b is at least as secure as HEG
We now show that the scheme CS3b is at least as secure as HEG.

Theorem 8 If scheme HEG is secure against adaptive chosen ciphertext attack, then so is CS3b;
moreover, this implication holds in either the standard or random oracle models.

In particular, for all probabilistic, polynomial-time oracle query machines A, there exists another
oracle query machine Ay, whose running time is essentially the same as that of A, such that for all
A€ Zx, and all F[G‘, G,g,q] € [S)\], we have

AdVCCAcs3b7A(>\ | F) < ACIVCCAHEG’A1 (>\ | F);

moreover, Qa, () < Qa(A) and (in the random oracle model) Q) () < Qp(N).
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Key Generation: On input 1* for A € Z>(, compute

I[G,G,g,q] & §(1%); dk & KDF .KeySpace, r; z ¢ Zg; h < g%;

and output the public key PK = (T, dk, h) and the secret key SK = (T, dk, z).

Encryption: Given 1* for A € Z>o, a public key

compu

El:
E2:

E3
E4

PK = (I'[G,G, g,q,dk, h) € [Sx] x [KDF.KeySpace, ] x G,
te
u & Zy;
a < g¥;
: b« hY;
: K + KDF}," (a,b);

and output the symmetric key K and the ciphertext ¢ = a.

Decrypti

on: Given 1* for A € Z>, a secret key

SK = (I'[G, G, g,q],dk, z) € [Sy] x [KDF.KeySpace, 1| x Z,

along with a ciphertext ¢, do the following.

Di1:
D2:
D3:
D4:

Parse ¢ as a group element a € G’; output reject and halt if ¢ is not of this form.
Test if a belongs to G; output reject and halt if this is not the case.

Compute b < a*.

Compute K <+ KDFS‘QF(a, b), and output the symmetric key K.

Figure 8: The key encapsulation mechanism HEG
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Proof. Fix A, A, and F[é, G, g,q| as above. We construct an adversary A; that attacks HEG. The
adversary A; makes use of A by providing an environment for A, as follows.

First, suppose that A; is given a public key (I, dk, k) for scheme HEG, where I' is fixed as above.
Adversary A; then “dresses up” the HEG public key to look like a CS3b public key; namely, A;
computes

hk & HF.KeySpace, ; w & Zy T,y & Zy; G g“5 e g% < gY;

and presents A with the CS3b public key
(I', hk, dk, g, e, f, h).

Second, whenever A submits a CS3b ciphertext (a,a,d) € (3 to the decryption oracle, adversary
A, first performs the validity tests of the decryption algorithm of CS3b, making use of the values
hk,w, x,y generated above; if these tests pass, then A; invokes the decryption oracle of HEG with
input a.

Third, when A invokes the encryption oracle of CS3b, adversary A; does the following. It invokes
the encryption oracle of HEG, obtaining a ciphertext a* € G and a key K. Tt then “dresses up”
a* to look like a CS3b ciphertext; namely, it computes

a* <« (a*); v* HFa‘I’(F(a*,d*); d* (a*)$+y”*;

and presents A with the CS3b ciphertext (a*,a*,d*) along with the key KT,

Fourth, when A terminates and outputs a value, A also terminates and outputs the same value.

That completes the description of the adversary A;.

One has to check that A; carries out a legal adaptive chosen ciphertext attack, in the sense that
it should not attempt to submit the target ciphertext itself to the decryption oracle, subsequent to
the invocation of the encryption oracle. Consider a ciphertext a submitted by A; to the decryption
oracle. This was derived from a valid CS3b ciphertext (a,a,d) submitted by A to the decryption
oracle. By the construction, it is easy to see that if @ = a*, then in fact, (a,a,d) = (a*,a*,d*),
which cannot happen if A itself carries out a legal attack.

Since the simulation by A; above is perfect, it is clear that whatever advantage A has in guessing
the hidden bit, adversary A; has precisely the same advantage. It is also clear by construction that
Qa,(A) < Qa(X), and in the random oracle model that Q) (A) < Qx(A). O

10.4 The security of HEG in the random oracle model

As for the security of HEG, even in the random oracle model, we do not know how to prove a very
strong result. We content ourselves with a proof that the scheme HEG is secure against adaptive
chosen ciphertext attack in the random oracle model, provided the CDH assumption holds relative
to an oracle for the DDH problem.

More precisely, for all probabilistic, polynomial-time oracle query machines A, and for all A €
Z>(, we define

AdvCDHG A(A) := Pr[ ¢ = ¢g* : F[é, G,g,q] &£ Sy; o & Zgy & Zy c E APHPAr (1A T g% g¥) |,
where the notation APHPAT(...) signifies that A runs with access to an oracle for the Diffie-Hellman

predicate DHP r defined in §4.3.3.
We say that the CDH assumption for G holds relative to an oracle for the DDH problem if:
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for all probabilistic, polynomial-time oracle query machines A, the function
AdvCDHG A(A) is negligible in A.

For all probabilistic, polynomial-time oracle query machines A, for all A\ € Z>g, and for all
I'[G,G,g,q] € [S\], we also define

AdvCDHG A(A | T):=Pr[ c = g™ : & & Zg; y & Zg; ¢ & APHPAT (1A T g% g¥) ],

Theorem 9 The scheme HEG s secure in the random oracle model if the CDH assumption for G
holds relative to an oracle for the DDH problem.

In particular, for all probabilistic, polynomial-time oracle query machines A, there exists an
oracle query machine A1, whose running time is essentially the same as that of A, such that for all
A € Z>g, and for all I'[G, G, g,q] € [Sy], we have

AdvCCApEGA(A | T) < AdvCDHg A (A | T) + Qa(N) /g5
moreover, the number or DDH-oracle queries made by A is bounded by Q) (X).

To prove Theorem 9, let us fix A, A\, and F[G’, G,g,q|. The attack game is as described in §7.1.2.

We begin by describing the relevant random variables in the attack game. The public key is
(T, dk, h) and the secret key is (T, dk, z).

For a given ciphertext ¢/, we let « € G denote the corresponding group element, we let b:=a?,
u:=log, a, and K := KDFg‘l’(F(a, b). Note also that b = a“. For the target ciphertext ¢*, we let a*,
b*, u*, and K* denote the corresponding values.

The encryption oracle also generates values 7 € {0,1} and K+ € {0, 1}KDPF-Outlen(3),

Let Gy be the original attack game, let 7 denote the output of A, and let Tj be the event that
T = 7A', so that AdVCCAHEG’A(A | F) = |PI‘[T0] - 1/2|

As usual, we define a sequence of game Gi, Go, etc., and in game G; for ¢ > 1 we define T; to
be the event in game G; corresponding to event 7j in game Gy.

Game G;. We modify game Gy as follows. First, we run the encryption oracle at the beginning
of the attack game, but we give the results of this to the adversary only when it actually invokes
the encryption oracle. This is a purely conceptual change, since the adversary provides no input to
the encryption oracle. Second, if the adversary ever submits a ciphertext ¢ = 9* to the decryption
oracle before the encryption algorithm is invoked, we abort the game immediately, before responding
to this decryption oracle invocation (the environment, say, goes silent at this point).

Let F) be the event that game G is aborted as above. It is clear that Pr[F;] < Qa(A)/gq. It
is also clear that games Gg and G proceed identically until event F} occurs, and so by Lemma 4,
we have | Pr[T1] — Pr[Tp]| < Pr[F].

Game Gg. We next modify game G, as follows. If the adversary every queries the random oracle
to obtain the value of KDFg‘l’(F(a*, b*), we immediately abort the game, before responding to this
random oracle invocation.

It is easy to see that Pr[T3] = 1/2. This follows directly from the fact that in game Gg, the value
of KDFg‘l’(F(a*, b*) is obtained from the random oracle only by the encryption oracle: the adversary
never queries the random oracle directly at this point, nor does the decryption oracle.

Let F, be the event that game Gy is aborted as above. It is clear that | Pr[Ty] —Pr[T1]| < Pr[Fy],
so it suffices to bound Pr[F3].

We claim that Pr[F] = AdvCDHg A, (A | I) for an oracle query machine A; whose running time
and number of oracle queries are bounded as in the statement of the theorem.
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We now describe A;. It takes as input 1*, F[G, G,g,q], along with group elements a*,h € G,
and attempts to compute b* € G such that DHP, p(h,a*,b*) = 1. The machine A; has access to
an oracle for the function DHP) .

Machine A; simulates the environment of game Ggo for A as follows. It first computes dk &
KDF.KeySpace) - and gives A the public key (T',dk, h). For the target ciphertext, it of course sets
¢* :=a*. For the other output KT of the encryption oracle, A; simply generates this as a random
bit string of length KDF.OutLen(\).

Machine A; also needs to simulate the responses to the random oracle and decryption oracle
queries. For the random oracle queries, the only values that are relevant are those corresponding
to the given values of A, I, and dk.

For the irrelevant random oracle queries, A; simply maintains a set of input/output pairs,
generating outputs at random as necessary.

Machine A; processes relevant random oracle queries using the following data structures:

e aset V) of triples (a,b, K), with a,b € G and K € {0, 1}XPF-Outlen(}) "initially empty; this
will contain those triples (a,b, K) for which A; has assigned the value K to KDF;‘{(F(a, b);

e a set Vs of pairs (a,b), with a,b € G, initially empty; this will contain precisely those pairs
(a,b) such that (a,b, K) € V; for some K, and DHP, p(h,a,b) = 1;

e a set V3 of pairs (a,K), with a € G and K € {0,1}KPF-Outlen(d) "initially empty; this will
contain pairs (a, K) for which A; has assigned the value K to KDFd/\l’(F(a, b) for b € G with
DHP, r(h,a,b) =1, even though A; does not actually know the value of b.

Given a request for the value KDFg‘l’(F(a, b), machine A; does the following:

o It tests if (a,b,K) € V) for some K. If so (which means that A has queried the value
KDFS‘I’(F(a, b) before), it returns K as the value of KDF;‘I’(F(a, b); otherwise, it continues.

e It invokes its own DDH-oracle to determine if DHPy p(h,a,b) = 1.
e If DHP) r(h,a,b) =1, then:

— If @ = a*, it halts and outputs the solution b* :=b to the given problem instance (this
corresponds to the early-abort rule introduced in game Gs); otherwise, it continues.

— It adds the pair (a,b) to the set Vs.

— If (a, K) € V5 for some K, then it adds the triple (a,b, K) to V;, and returns K as the

value of KDFj‘l’(F(a, b); otherwise, it continues.

e It generates K as a random bit string of length KDF.OutLen()\), adds the triple (a,b, K) to
Vi, and returns K as the value of KDFS‘I’(F(a, b).

Machine A; processes decryption oracle queries as follows. Suppose it is given a ciphertext 1,
with a € G the corresponding group element. Then it does the following:

e If ¢y = ¢* (which can only happen if the encryption oracle has not yet been invoked), then
it simply halts (this corresponds to the early-abort rule introduced in game Gy); otherwise,
continues.

o It tests if (a,b) € V, for some b € G.
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e If this is so, then it finds the (unique) triple in V) of the form (a, b, K) for some K, and returns
this value of K as the result of the decryption oracle invocation; otherwise, it continues.

e It tests if (a, K) € V3 for some K.

e If this is so, then it returns this value of K as the result of the decryption oracle; otherwise,
it generates a random bit string K of length KDF.OutLen(\), adds the pair (a, K) to V3, and
returns this value of K as the result of the decryption oracle invocation.

It is straightforward to verify by inspection that A; as above does the job.
That completes the proof of Theorem 9.

10.5 The security of CS3b in the random oracle model

We can now prove the following security theorem for CS3b in the random oracle model.

Theorem 10 The scheme CS3b is secure in the random oracle model if the CDH assumption holds
for G, and the TCR assumption holds for HF.

Proof. To prove this, let us assume by way of contradiction that the CDH assumption holds for G
and the TCR assumption holds for HF, but CS3b is not secure in the random oracle model.

Now, the CDH assumption implies that for any polynomials P; and P, (with integer coefficients,
taking positive values on ZZO)v there exists a Ao € Z>g, such that for all A > Ao,

Prig < Pi(A) : T[G, G, g,q] < S)] < 1/Pa(N),

since otherwise, a trivial, brute-force algorithm would have a CDH advantage that was not negligi-
ble. This implies in particular that when we model KDF as a random oracle, it acts as a secure key
derivation scheme. From this it follows from Theorems 6 and 7 that CS3b is secure in the random
oracle model if the DDH assumption holds; actually, since these two theorems do not deal with the
random oracle model, one must make a cursory inspection of the proofs of these theorems to draw
this conclusion, but this is very straightforward.

Let A be a polynomial-time adversary that breaks the security of CS3b in the random oracle
model. This means that there exist polynomials Py, P, (with integer coefficients, taking positive
values on Z>g), an infinite set A C Z>, and sets Z) C [S,] for each A € A, such that

o forall A € A and I' € Z), AdvCCAcs3p a(A | T) > 1/Pi(N),
o for all A € A, Prg, [2)] > 1/Pa(N).

Theorems 6 and 7 (adapted to the random oracle model), together with our TCR assumption,
imply that there exists a polynomial-time algorithm A;, such that for all sufficiently large A € A,
and for all but a negligible fraction of I' in Z), we have

AdvDDHg a, (A | T) = 1/(2P; (N)).

We now apply Lemma 3 using the above algorithm A;, and choosing the value of  in that lemma
so that 277 - Q (\) < 1/2, yielding a polynomial-time algorithm Ay, such that for all sufficiently
large A € A, and for all but a negligible fraction of I' € Z, and for all p € Ty r,

Pr{Ay(1*, T, p) # DHP, r(p)] < 1/(2Qa(N)).
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Applying Theorem 8 with the adversary A yields a polynomial-time adversary Az such that for
all x € Aand I' € Z), AdvCCA{gg A, (A | ') > 1/Pi (). Applying Theorem 9 with the adversary
Aj3 yields a polynomial-time oracle machine A4 such that

AdvCDHg A, (A | T) > 1/(2P,()))

for all sufficiently large A € A, and for all but a negligible fraction of I' € Z. Since for a given value
of A, algorithm A4 makes no more than @ (A\) DDH-oracle queries, if we replace the DDH-oracle
used by A4 with algorithm A, above, we obtain a polynomial-time algorithm As such that for all
sufficiently large A € A, and for all but a negligible fraction of I' in Z,, we have AdvCDHg a, (X |
I') > 1/(4P1(N)). But this contradicts the CDH assumption. O

10.6 Random oracles and pair-wise independent key derivation functions: get-
ting the best of both

If we want to prove the security of CS3b in the standard model without making any intractability
assumptions about KDF, then we may choose KDF to be pair-wise independent. On the one hand,
standard constructions for pair-wise independent hash functions typically exhibit a lot of algebraic
structure, and it is not very reasonable to assume that such a KDF can be safely modeled as a
random oracle. On the other hand, typical dedicated cryptographic hash functions, like SHA-1,
may be modeled as random oracles, but they are certainly not pair-wise independent.

We shall sketch here how to get the best of both worlds, i.e., how to implement the KDF so that
we get a proof of security of CS3b in the standard model just under the DDH and TCR assumptions,
and in the random oracle model under the CDH and T'CR assumptions.

The idea is this: compute KDF as the XOR of a pair-wise independent hash KDF1 and a
cryptographic hash KDF2.

It is clear that if KDF1 is pair-wise independent, then so is KDF, and so the security of CS3b in
the standard model under the DDH and TCR assumptions now follows directly from Theorem 7.

Now suppose we model the cryptographic hash KDF2 as a random oracle. It is easy to see
that for any adversary A attacking CS3b given oracle access to KDF2, there is an adversary Aj,
whose running time is roughly the same as that of A, that attacks CS3b given oracle access to KDF:
the adversary A; just does whatever A does, except that whenever A queries the oracle for KDF2,
adversary A; queries its oracle for KDF and computes the value of KDF2 as the XOR of the value
of KDF and the value of KDF1. Note, however, that the output distribution of the oracle KDF is
the same as that of a random oracle, and so the security of CS3b in the random oracle model under
the CDH and TCR assumptions now follows directly from Theorem 10.

We do not necessarily advocate this approach to building a KDF in practical implementations:
simply assuming that a KDF implemented directly using a dedicated cryptographic hash is secure
is quite reasonable, and the resulting KDF is much simpler and more efficient than any approach
that makes use of a pair-wise independent hash function.

10.7 Further discussion

The scheme HEG is intended to represent a fairly traditional version of ElGamal key encapsulation.
The only thing slightly non-traditional about it is the fact that the symmetric key K is derived by
hashing both a (the ephemeral Diffie-Hellman public key) and b (the shared Diffie-Hellman key),
rather than just b alone.
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Hashing both the ephemeral and shared keys together has some quantitative security advan-
tages. Notice that in Theorem 9, the implied CDH algorithm makes no more than Qy (\) queries
to the DDH-oracle. If we were to hash only the shared Diffie-Hellman key, we could still prove the
security of HEG, but the reduction would be less efficient; in particular, the implied CDH algorithm
might require up to Qs () - Qa(A) queries to the DDH-oracle. A similar quantitative security ad-
vantage arises in the multi-user/multi-message model (see [BBMO00]). In this model, we can exploit
the well-know random self-reducibility of the CDH problem to get a more efficient reduction if we
hash both keys instead of just one. Of course, these improved security reductions for HEG carry
over to the security reduction for CS3b in the random oracle model.

The DHAES encryption scheme [ABR99], which is a hybrid ElGamal encryption scheme that
has been proposed for standardization, also hashes both the ephemeral and shared Diffie-Hellman
keys to derive a symmetric key. Indeed, the DHAES scheme can be constructed from the key encap-
sulation mechanism HEG using the hybrid constructions presented in §7, and it is straightforward
to verify that analogues of Theorems 8 and 9 hold for the DHAES scheme as well. The DHAES
scheme needs to hash both group elements because it allows the possibility of a group G whose
order is a composite number. In a revised version of DHAES, called DHIES [ABRO1], the group
G is required to have prime order, and only the shared Diffie-Hellman key is hashed. However, as
we have seen, there are still some security benefits to be gained from hashing both group elements,
even if the group is of prime order, as we are assuming in this paper.

Theorem 10 originally appeared in the paper [ShoOOb]. The proof in that paper basically rolled
all of the arguments used in the proofs of Theorems 8, 9, 10, along with the arguments in §10.6, into
a single proof, which we have unraveled to some extent here. Our presentation here was somewhat
influenced by the paper [OPO01], which formally introduces the notion of the CDH assumption
relative to an oracle for the DDH problem.

The security reduction in Theorem 10 is quite inefficient: we have to perform many simulations
using the given adversary A just to solve one instance of the DDH problem, and then in a different
simulation involving A, we have to solve many instances of the DDH problem in order to solve one
instance of the CDH problem. Of course, if the DDH problem for a given group scheme turns out
not to be a hard problem, then it may very well be the case that there is a much more efficient DDH
algorithm than the one built using our security reduction involving A. In this case, the reduction
in Theorem 10 becomes quite reasonable.
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