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Abstrat

A new publi key enryption sheme, along with several variants, is proposed and analyzed.

The sheme and its variants are quite pratial, and are proved seure against adaptive hosen

iphertext attak under standard intratability assumptions. These appear to be the �rst publi-

key enryption shemes in the literature that are simultaneously pratial and provably seure.

This paper is a signi�antly revised and extended version of the extended abstrat \A pratial publi

key ryptosystem provably seure against adaptive hosen iphertext attak" [R. Cramer and V. Shoup, in

Advanes in Cryptology { Crypto '98℄, and also inludes results originally presented in the extended abstrat

\Using hash funtions as a hedge against hosen iphertext attak" [V. Shoup, in Advanes in Cryptology {

Eurorypt 2000℄.
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1 Introdution

In this paper, we present and analyze a new publi-key enryption sheme, and several variants,

proving that they are seure against adaptive hosen iphertext attak (as de�ned by Rako�

and Simon [RS91℄) under standard intratability assumptions. The shemes are quite pratial,

requiring just a few exponentiations in a group for both enryption and deryption. Moreover, the

proofs of seurity of these shemes rely only on standard intratability assumptions: one variant

relies only on the hardness of the Deisional DiÆe-Hellman problem, while other, somewhat more

pratial, variants rely on a ouple of other standard intratability assumptions.

The hardness of the Deisional DiÆe-Hellman problem is essentially equivalent to the semanti

seurity of the basi ElGamal enryption sheme [ElG85℄. Thus, with just a bit more omputation,

we get seurity against adaptive hosen iphertext attak, whereas the basi ElGamal sheme is

ompletely inseure against this type of attak.

While there are several provably seure publi-key enryption shemes in the literature, they

are all quite impratial. Also, there are several pratial enryption shemes that have been

proposed, but none of them has been proven seure under standard intratability assumptions.

The signi�ane of our results is that they provide several shemes that are provably seure and

pratial at the same time. There appear to be no other publi-key enryption shemes in the

literature that enjoy both of these properties simultaneously.

This paper is a signi�antly revised and extended version of the extended abstrat [CS98℄, and

also inludes results originally presented in the extended abstrat [Sho00b℄.

1.1 Chosen iphertext seurity

Semanti seurity, de�ned by Goldwasser and Miali [GM84℄, aptures the intuition that an ad-

versary should not be able to obtain any partial information about a message given its enryption.

However, this guarantee of serey is only valid when the adversary is ompletely passive, i.e., an

only eavesdrop. Indeed, semanti seurity o�ers no guarantee of serey at all if an adversary an

mount an ative attak, i.e., injet messages into a network or otherwise inuene the behavior of

parties in the network.

To deal with ative attaks, Rako� and Simon [RS91℄ de�ned the notion of seurity against

an adaptive hosen iphertext attak. If an adversary an injet messages into a network, these

messages may be iphertexts, and the adversary may be able to extrat partial information about

the orresponding leartexts through its interations with the parties in the network. Rako� and

Simon's de�nition models this type of attak by simply allowing an adversary to obtain deryptions

of its hoie, i.e., the adversary has aess to a \deryption orale." Now, given an enryption of

a message | the \target" iphertext | we want to guarantee that the adversary annot obtain

any partial information about the message. To ahieve this, we have to restrit the adversary's

behavior in some way, otherwise the adversary ould simply submit the target iphertext itself to

the deryption orale. The restrition proposed by Rako� and Simon is the weakest possible: the

adversary is not allowed to submit the target iphertext itself to the orale; however, it may submit

any other iphertext, inluding iphertexts that are related to the target iphertext.

A di�erent notion of seurity against ative attaks, alled non-malleability, was proposed by

Dolev, Dwork, and Naor [DDN91, DDN00℄. Here, the adversary also has aess to a deryption

orale, but his goal is not to obtain partial information about the target iphertext, but rather, to

reate another enryption of a di�erent message that is related in some interesting way to the orig-

inal, enrypted message. For example, for a non-malleable enryption sheme, given an enryption
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of n, it should be infeasible to reate an enryption of n+1. It turns out that non-malleability and

seurity against adaptive hosen iphertext attak are equivalent [BDPR98, DDN00℄.

An enryption sheme seure against adaptive hosen iphertext attak is a very powerful

ryptographi primitive. It is essential in designing protools that are seure against ative ad-

versaries. For example, this primitive is used in protools for authentiation and key exhange

[DN96, DDN00, Sho99℄ and in protools for esrow, erti�ed e-mail, and more general fair exhange

[ASW00℄. It is by now generally reognized in the ryptographi researh ommunity that seurity

against adaptive hosen iphertext attak is the \right" notion of seurity for a general-purpose

publi-key enryption sheme. This is exempli�ed by the adoption of Bellare and Rogaway's OAEP

sheme [BR94℄ (a pratial but only heuristially seure sheme) as the internet enryption standard

PKCS#1 version 2, and for use in the SET protool for eletroni ommere.

There are also intermediate notions of seurity, between semanti seurity and adaptive hosen

iphertext seurity. Naor and Yung [NY90℄ propose an attak model where the adversary has aess

to the deryption orale only prior to obtaining the target iphertext, and the goal of the adversary

is to obtain partial information about the enrypted message. Naor and Yung alled this type

of attak a hosen iphertext attak; it has also been alled a \lunh-time" or \midnight" attak,

and also an indi�erent hosen iphertext attak. In this paper, we will use the phrase adaptive

hosen iphertext attak for Rako� and Simon's de�nition, to distinguish it from Naor and Yung's

de�nition. Also, throughout this paper, unless otherwise spei�ed, by \seurity" we will always

mean \seurity against adaptive hosen iphertext attak."

1.2 Previous work

Provably Seure Shemes. Naor and Yung [NY90℄ presented the �rst sheme provably seure against

lunh-time attaks. Subsequently, Dolev, Dwork, and Naor [DDN91℄ presented a sheme that is

provably seure against adaptive hosen iphertext attak.

Rako� and Simon [RS91℄ present and prove the seurity of an enryption sheme, but their

sheme is atually not a publi-key sheme in the traditional sense: in their sheme, all users |

both senders and reeivers | require publi keys, and moreover, a trusted enter is required to

perform ertain funtions. In ontrast, all other shemes mentioned in this paper, inluding our

own, are traditional publi-key systems: enryption is a probabilisti funtion of the message and

the reeiver's publi key, deryption is a funtion of the iphertext and the reeiver's seret key, and

no trusted enter is required. This distintion an be important: adding extra system requirements

as in the Rako� and Simon sheme an greatly restrit the range of appliation of the sheme.

All of the previously known shemes provably seure under standard intratability assump-

tions are ompletely impratial (albeit polynomial time), as they rely on general and expensive

onstrutions for non-interative zero-knowledge proofs. This inludes non-standard shemes like

Rako� and Simon's as well.

Pratial Shemes. Damg�ard [Dam91℄ proposed a pratial sheme that he onjetured to be seure

against lunh-time attaks; however, this sheme is not known to be provably seure in this sense,

and is in fat demonstrably inseure against adaptive hosen iphertext attak.

Zheng and Seberry [ZS92℄ proposed pratial shemes that are onjetured to be seure against

hosen iphertext attak, but again, no proof based on standard intratability assumptions is known.

Lim and Lee [LL93℄ also proposed pratial shemes that were later broken by Frankel and Yung

[FY95℄.

Bellare and Rogaway [BR93, BR94℄ have presented pratial shemes for whih they give heuris-

ti proofs of adaptive hosen iphertext seurity; namely, they prove seurity based on the assump-
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tion of a one-way trapdoor permutation in an idealized model of omputation, the so-alled random

orale model, wherein a hash funtion is represented by a random orale. Atually, it turns out that

the proof of seurity of the OAEP sheme in [BR94℄ is awed: as demonstrated in [Sho01℄, there an

be no standard \blak box" seurity proof based on an arbitrary one-way trapdoor permutation.

However, the negative result in [Sho01℄ does not rule out the possibility that OAEP in onjuntion

with a spei� one-way trapdoor permutation sheme is seure. Indeed, it is shown in [Sho01℄ that

OAEP with exponent-3 RSA is seure, and this result is generalized in [FOPS01℄ to arbitrary-

exponent RSA. A new sheme, OAEP+, is also presented in [Sho01℄, whih an be proven seure

in the random orale model, using an arbitrary one-way trapdoor permutation. Further variations

of OAEP and OAEP+ are disussed in [Bon01℄.

Shoup and Gennaro [SG98℄ also give ElGamal-like shemes that are seure against adaptive

hosen iphertext attak in the random orale model, and that are also amenable to eÆient

threshold deryption.

We stress that although a seurity proof in the random orale model is of some value, it is still

only a heuristi proof. In partiular, these types of proofs do not rule out the possibility of breaking

the sheme without breaking the underlying intratability assumption. Nor do they even rule out

the possibility of breaking the sheme without �nding some kind of weakness in the hash funtion,

as shown by Canetti, Goldreih, and Halevi [CGH98℄.

1.3 Further progress

Subsequent to the publiation of the extended abstrat [CS98℄ on whih the present paper is based,

some further progress in this area has been made. Canetti and Goldwasser [CG99℄ presented a

threshold-deryption variant of our sheme. Also, the authors of the present paper [CS01℄ have

generalized and extended the basi ideas underlying our enryption sheme, obtaining new and

quite pratial enryption shemes that are seure against adaptive hosen iphertext attak under

di�erent assumptions | one sheme relies on Paillier's Deision Composite Residuosity assump-

tion [Pai99℄, while the other (somewhat less pratial) sheme relies on the lassial Quadrati

Residuosity assumption.

1.4 Outline of paper

Our paper onsists of two parts.

Part 1. In the �rst part, we take are of a number of preliminaries, after whih we present a basi

version of our new sheme, along with a few variants. This �rst part is organized as follows:

x2: We introdue some basi notation that will be used throughout the paper.

x3: We state the formal de�nition of a publi-key enryption sheme and the notion of seurity

against adaptive hosen iphertext attak. We also disuss some impliations of the de�nition

of seurity that illustrate its utility.

x4: We state the formal de�nitions of several intratability assumption related to the Disrete

Logarithm problem: the Disrete Logarithm assumption, the Computational DiÆe-Hellman

assumption, and the Deisional DiÆe-Hellman assumption. In doing this, we introdue the

notion of a omputational group sheme, whih is a general framework that allows us to disuss

in an abstrat, yet suÆiently onrete way, the di�erent families of groups that may be used

in ryptographi appliations.
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x5: We de�ne the notion of a target ollision resistant hash funtion, whih is a speial type of a

universal one-way hash funtion. We will use this primitive in the most eÆient variants of

our enryption sheme.

x6: We present and analyze the basi version of our enryption sheme, whih we all CS1, along

with two variants, alled CS1a and CS1b. We prove the seurity of these shemes based on

the Deisional DiÆe-Hellman assumption, and the assumption that a given family of hash

funtions is target ollision resistant. We also present and analyze a somewhat less eÆient

sheme, alled CS2, whih does not require a target ollision resistant hash funtion.

Part 2. The shemes presented in x6 su�er from two drawbaks. First, the shemes require that

plaintexts are, or an be enoded as, group elements, whih may signi�antly restrit the range of

appliation of the enryption sheme and/or the hoie of omputational group sheme; it would be

nie to relax this restrition, allowing plaintexts to be, say, bit strings of arbitrary length. Seond,

if the Deisional DiÆe-Hellman assumption is false, these shemes an be trivially broken; it would

be nie if we ould provide a seond level of defense, so that if Deisional DiÆe-Hellman assumption

turns out to be false, we have a sheme that still o�ers some seurity | even if only heuristially.

It turns out that both of these drawbaks an be dealt with by using a tehnique alled hybrid

enryption. Basially, a hybrid enryption sheme uses publi-key enryption tehniques to derive a

shared key that is then used to enrypt the atual message using standard symmetri-key tehniques.

The seond part of the paper is devoted to developing the formal theory behind this tehnique, and

to designing and analyzing variations on our basi sheme that utilize this tehnique. This part is

organized as follows:

x7: We lay the theoretial foundations for hybrid enryption. Although most of the ideas in this

setion appear to be \folklore," they have not been treated rigorously in the literature. In

x7.1, we introdue the notion of a key enapsulation mehanism, and an appropriate notion

of seurity against adaptive hosen iphertext attak. A key enapsulation mehanism is like

a publi-key enryption sheme, exept that the enryption algorithm an only be used to

generate and enrypt a random bit string of �xed length, whih we shall use as a key for a

symmetri-key enryption sheme. In x7.2, we state the formal properties of a symmetri-key

enryption sheme that we need for use in a hybrid enryption sheme, and disuss some

simple onstrutions based on pseudo-random bit generators and message authentiation

odes. In x7.3, we prove that an appropriately seure key enapsulation mehanism, ombined

with an appropriately seure symmetri-key enryption sheme, yields a publi-key enryption

sheme that is seure against adaptive hosen iphertext attak.

In what follows, we onentrate exlusively on the problem of onstruting seure key enap-

sulation mehanisms, sine the problem of onstruting symmetri-key enryption shemes is

essentially solved.

x8: We disuss the notion of a seure key derivation funtion, whih is a funtion that should

map random group elements to pseudo-random bit strings of given length. A key derivation

funtion is an essential ingredient in our onstrutions of key enapsulation mehanisms.

x9: We present and analyze a key enapsulation mehanism, CS3, along with two variants, CS3a

and CS3b, and prove their seurity under the Deisional DiÆe-Hellman assumption, and also

assuming a target ollision resistant hash funtion and a seure key derivation funtion.
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x10: The hybrid enryption sheme obtained from CS3b is by far the most pratial of the enryp-

tion shemes presented in this paper; moreover, it has other interesting seurity properties.

We show that CS3b is no less seure than a more traditional key enapsulation mehanism

that is a hashed variant of ElGamal enryption, whih we all HEG. Seond, we also show that

CS3b is seure in the random orale model (viewing the key derivation funtion as a random

funtion), under the weaker Computational DiÆe-Hellman assumption, and also assuming a

target ollision resistant hash funtion. The results in this setion show that there is virtually

no risk in using sheme CS3b relative to more traditional enryption shemes, while at the

same time, CS3b provides a seurity guarantee that more traditional shemes do not.

2 Some Preliminaries

2.1 Basi mathematial notation

Z denotes the ring of integers, Z

�0

denotes the set of non-negative integers, and for positive integer

k, Z

k

denotes the ring of integers modulo k, and Z

�

k

denotes the orresponding multipliative group

of units.

2.2 Algorithms and probability spaes

We write �  � to denote the algorithmi ation of assigning the value of � to the variable �.

Let X be a �nite probability spae, i.e., a probability spae on a �nite set S. For � 2 S, we

let Pr

X

[�℄ denote the probability that X assigns to �, and for S

0

� S, we let Pr

X

[S

0

℄ denote the

probability that X assigns to S

0

.

We write �

R

 X to denote the algorithmi ation of sampling an element of S aording to

the distribution X, and assigning the result of this sampling experiment to the variable �. We

sometimes write �

1

; : : : ; �

k

R

 X as a shorthand for �

1

R

 X; : : : ; �

k

R

 X.

For any �nite set S, U(S) denotes the uniform distribution on S. We write �

R

 S as a

shorthand for �

R

 U(S).

For any probability spae X on a �nite set S, we denote by [X℄ the subset of elements of S that

are assigned non-zero probability by X, i.e., the \support" of X.

If X

1

;X

2

; : : : ;X

k

are �nite probability spaes, and � is a k-ary prediate, then we write

Pr[�(�

1

; : : : ; �

k

) : �

1

R

 X

1

; : : : ; �

k

R

 X

k

℄

to denote the probability that �(�

1

; : : : ; �

k

) holds when �

1

is sampled from X

1

, �

2

is sampled from

X

2

, et. More generally, for 1 � i � k, X

i

may be family of �nite probability spaes parameterized

by (�

1

; : : : ; �

i�1

), and we write

Pr[�(�

1

; : : : ; �

k

) : �

1

R

 X

1

; �

2

R

 X

2

(�

1

); : : : ; �

k

R

 X

k

(�

1

; : : : ; �

k�1

)℄

to denote the probability that �(�

1

; : : : ; �

k

) holds when �

1

is sampled from X

1

, after whih �

2

is

sampled from X

2

(�

1

), and so on. In this ase, it is important that �

1

; : : : ; �

k

are sampled in the

order given.

Similarly, if F is a k-ary funtion funtion, then

fF (�

1

; : : : ; �

k

) : �

1

R

 X

1

; �

2

R

 X

2

(�

1

); : : : ; �

k

R

 X

k

(�

1

; : : : ; �

k�1

)g

denotes the probability spae de�ned by sampling �

1

from X

1

, �

2

from X

2

(�

1

), and so on, and then

evaluating the funtion F (�

1

; : : : ; �

k

).
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We shall onsider polynomial-time probabilisti algorithms A. We shall insist that for all � 2

Z

�0

and all inputs of length �, algorithm A always halts in time bounded by a polynomial in �,

regardless of the random hoies that A may make. In partiular, for any input tuple (�

1

; : : : ; �

k

),

the random hoies made by A as well as the output of A on this input are �nite probability spaes.

We denote this output probability spae of A for a given input (�

1

; : : : ; �

k

) by A(�

1

; : : : ; �

k

). We

stress that A(�

1

; : : : ; �

k

) is a probability spae, and not a value. As suh, we may write �

R

 

A(�

1

; : : : ; �

k

) to denote the algorithmi ation of running A on input (�

1

; : : : ; �

k

), and assigning

the output to the variable �. When we speak of the \running time" of A, we mean the worst-ase

running time of A for inputs of a given length.

To exerise the above notation a bit, note that [A(�

1

; : : : ; �

k

)℄ denotes the set of possible outputs

of A on input (�

1

; : : : ; �

k

). For a tertiary prediate �, and polynomial-time probabilisti algorithms

A

1

and A

2

, and a value �

0

,

Pr[�(�

0

; �

1

; �

2

) : �

1

R

 A

1

(�

0

);�

2

R

 A

2

(�

0

; �

1

)℄

denotes the probability that �(�

0

; �

1

; �

2

) holds when A

1

is run on input �

0

, yielding an output �

1

,

and then A

2

is run on input (�

0

; �

1

), yielding an output �

2

.

For � 2 Z

�0

, 1

�

denotes the bit string onsisting of � opies of the bit 1. The string 1

�

will often

be an input to an algorithm: this is a tehnial devie that allows a polynomial-time algorithm to

run in time bounded by a polynomial in �, even if there are no other inputs to the algorithm, or

those inputs happen to be very short.

2.3 Statistial distane and negligible funtions

Let X and Y be probability spaes on a �nite set S. De�ne the statistial distane �(X;Y ) between

X and Y as

�(X;Y ) :=

1

2

X

�2S

jPr

X

[�℄� Pr

Y

[�℄j:

One an easily verify that

�(X;Y ) = max

S

0

�S

jPr

X

[S

0

℄� Pr

Y

[S

0

℄j:

A funtion F mapping non-negative integers to non-negative reals is alled negligible if for

all positive numbers , there exists an integer �

0

() � 0 suh that for all � > �

0

(), we have

F (�) < 1=�



.

3 Seure Publi Key Enryption

In this setion, we state the basi properties of a publi-key enryption sheme, along with the

de�nition of seurity against adaptive hosen iphertext attak. Although the notions here are

relatively standard, we treat a number of details here that are not often dealt with in the literature.

We also disuss some impliations of the de�nition of seurity that illustrate its utility.

3.1 Publi Key Enryption Shemes

A publi-key enryption sheme PKE onsists of the following algorithms:

� A probabilisti, polynomial-time key generation algorithm PKE.KeyGen that on input 1

�

for

� 2 Z

�0

, outputs a publi key/seret key pair (PK;SK). The struture of PK and SK depends

on the partiular sheme.

6



For � 2 Z

�0

, we de�ne the probability spaes

PKE.PKSpae

�

:= fPK : (PK;SK)

R

 PKE.KeyGen(1

�

)g;

and

PKE.SKSpae

�

:= fSK : (PK;SK)

R

 PKE.KeyGen(1

�

)g:

� A probabilisti, polynomial-time enryption algorithm PKE.Enrypt that takes as input 1

�

for

� 2 Z

�0

, a publi key PK 2 [PKE.PKSpae

�

℄, a message m, and outputs a iphertext  .

A iphertext is a bit string. The struture of a message may depend on the partiular sheme;

see below (x3.1.1) for a disussion.

� A deterministi, polynomial-time deryption algorithm PKE.Derypt that takes as input 1

�

for � 2 Z

�0

, a seret key SK 2 [PKE.SKSpae

�

℄, a iphertext  , and outputs either a message

m or the speial symbol rejet.

3.1.1 Message spaes

Di�erent publi-key enryption shemes might speify di�erent message spaes, and these message

spaes might in fat vary with the hoie of publi key. Let us denote by PKE.MSpae

�;PK

the

message spae assoiated with � 2 Z

�0

and PK 2 [PKE.PKSpae

�

℄. Although there may be other

ways of ategorizing message spaes, we shall work with shemes that speify message spaes in

one of two ways:

unrestrited message spae: PKE.MSpae

�;PK

= f0; 1g

�

for all � and PK.

restrited message spae: PKE.MSpae

�;PK

is a �nite set that may depend on � and PK.

There should be a deterministi, polynomial-time algorithm that on input 1

�

, PK, and �,

determines if � 2 PKE.MSpae

�;PK

.

Clearly, a publi-key enryption sheme with an unrestrited message spae will be most suitable

in a setting where a very general-purpose enryption sheme is required. However, enryption

shemes with restrited message spaes an be useful in some settings as well.

3.1.2 Soundness

A publi-key enryption sheme should be sound in the sense that derypting an enryption of a

message should yield the original message.

Requiring that this always holds is a very strong ondition whih will not be satis�ed by many

otherwise quite aeptable enryption shemes.

A de�nition of soundness that is adequate for our purposes runs as follows. Let us say a publi

key/seret key pair (PK;SK) 2 [PKE.KeyGen(1

�

)℄ is bad if for some m 2 PKE.MSpae

�;PK

and some

 2 [PKE.Enrypt(1

�

;PK;m)℄, we have PKE.Derypt(1

�

;SK;  ) 6= m. Then our requirement is that

the probability that the key generation algorithm outputs a bad key pair grows negligibly in �.

One ould formulate even weaker notions of soundness that would still be adequate for many

appliations, but we shall not pursue this here.
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3.2 Seurity against adaptive hosen iphertext attak

An adversary A in an adaptive hosen iphertext attak (CCA) is a probabilisti, polynomial-time

orale query mahine.

The attak game is de�ned in terms of an interative omputation between the adversary and its

environment. The adversary's environment responds to the orale queries made by the adversary:

eah orale query response is sampled from a probability spae that is a funtion of the adversary's

input and all the previous orale queries made by the adversary. We require that A runs in time

stritly bounded by a polynomial in the length of its input, regardless of its probabilisti hoies,

and regardless of the responses to its orale queries from its environment.

We now desribe the attak game used to de�ne seurity against adaptive hosen iphertext

attak; that is, we de�ne (operationally) the environment in whih A runs. We assume that the

input to A is 1

�

for some � 2 Z

�0

.

Stage 1: The adversary queries a key generation orale. The key generation orale omputes

(PK;SK)

R

 PKE.KeyGen(1

�

) and responds with PK.

Stage 2: The adversary makes a sequene of alls to a deryption orale.

For eah deryption orale query, the adversary submits a iphertext  , and the deryption

orale responds with PKE.Derypt(1

�

;SK;  ).

We emphasize that  may be an arbitrary bit string, onoted by A in an arbitrary fashion

| it ertainly need not be an output of the enryption algorithm.

Stage 3: The adversary submits two messages m

0

;m

1

2 PKE.MSpae

�;PK

to an enryption orale.

In the ase of an unrestrited message spae, we require that jm

0

j = jm

1

j.

On input m

0

;m

1

, the enryption orale omputes:

�

R

 f0; 1g;  

�

R

 PKE.Enrypt(1

�

;PK;m

�

);

and responds with the \target" iphertext  

�

.

Stage 4: The adversary ontinues to make alls to the deryption orale, subjet only to the

restrition that a submitted iphertext  is not idential to  

�

.

Again, we emphasize that  is arbitrary, and may even be omputed by A as a funtion of

 

�

.

Stage 5: The adversary outputs �̂ 2 f0; 1g.

We de�ne the CCA advantage of A against PKE at �, denoted AdvCCA

PKE;A

(�), to be

jPr[� = �̂℄� 1=2j in the above attak game.

We say that PKE is seure against adaptive hosen iphertext attak if

for all probabilisti, polynomial-time orale query mahines A, the funtion

AdvCCA

PKE;A

(�) grows negligibly in �.
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3.3 Appliation of the de�nition of seurity

In applying the above de�nition of seurity, one typially works diretly with the quantity

AdvCCA

0

PKE;A

(�) := jPr[�̂ = 1 j � = 0℄� Pr[�̂ = 1 j � = 1℄j :

If we view A as a statistial test, then the quantity AdvCCA

0

PKE;A

(�) measures A's advantage in

distinguishing a game in whihm

0

is always enrypted from a game in whihm

1

is always enrypted.

It is easy to verify that

AdvCCA

0

PKE;A

(�) = 2 � AdvCCA

PKE;A

(�):

We present here a sketh of another haraterization of this notion of seurity that illustrates

more fully its utility in reasoning about the seurity of higher-level protools. This alternative

haraterization is a natural, high level, simulation-based de�nition that in some ways provides a

justi�ation for the rather low level, tehnial de�nition given above. Our treatment here will be

somewhat less formal than elsewhere in this paper.

We start by de�ning the notion of a hannel, whih is an objet that implements the following

operations:

� KeyGen | outputs a publi key PK.

� Enrypt | takes as input a message m, and outputs a iphertext  .

� Derypt | takes as input a iphertext  , and outputs a message m (possibly a speial rejet

symbol).

Additionally, a hannel is parameterized by a seurity parameter �.

To initialize a hannel, the KeyGen operation is invoked, after whih, an arbitrary number of

Enrypt and Derypt operations may be invoked. We shall assume that messages are arbitrary bit

strings.

A hannel may be implemented in several ways. One way, of ourse, is to simply \plug in" a

publi-key enryption sheme. We all suh an implementation of a hannel a real hannel. We

wish to desribe another implementation, whih we all an ideal hannel.

Loosely speaking, an ideal hannel ats essentially like a private storage and retrieval servie:

when an Enrypt operation is invoked with a messagem, the ideal hannel generates a orresponding

iphertext  without even \looking" at m, and stores the pair (m; ) in a table; when a Derypt

operation is invoked with a iphertext  suh that (m; ) is in the table for somem, the ideal hannel

returns the message m. Thus, the \enryption"  of a message m is ompletely independent of m,

and essentially plays the role of a \reeipt," presentation of whih to the Derypt operation yields

the message m. As suh, the Enrypt operation might be better named Store, and the Derypt

operation Retrieve.

We now desribe the operation of an ideal hannel in a bit more detail.

An ideal hannel is built using a hannel simulator. A hannel simulator is an objet that

implements an interfae that is idential to that of a hannel, exept that the Enrypt operation

does not take as input a message, but rather just the length of a message.

An ideal hannel uses a hannel simulator as follows. The KeyGen operation of the ideal hannel

is implemented diretly in terms of the KeyGen operation of the hannel simulator. The ideal

hannel maintains a set S of message/iphertext pairs (m; ) and a set T of iphertexts, both

initially empty.

When the Enrypt operation of the ideal hannel is invoked with input m, the ideal hannel

invokes the hannel simulator with input jmj, obtaining a iphertext  . If  2 T or (m

0

;  ) 2 S
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for some m

0

, the ideal hannel beomes \broken," and this and all subsequent invoations of either

Enrypt or Derypt return a speial symbol indiating this; otherwise, the ideal hannel adds the

pair (m; ) to S and returns  as the result of the Enrypt operation.

When the Derypt operation of the ideal hannel is invoked with input  , the ideal hannel �rst

heks if (m; ) 2 S for some m; if so, it simply returns the message m; otherwise, it adds  to T ,

invokes the Derypt operation of the hannel simulator to obtain m, and returns m.

That ompletes the desription of how an ideal hannel is implemented using a hannel simu-

lator.

Now we de�ne a notion of seurity based on the indistinguishability of real and ideal hannels

for a publi-key enryption sheme PKE with an unrestrited message spae. Consider a game in

whih a polynomial-time probabilisti adversary A interats with an arbitrary number of hannels,

and at the end of the game, outputs a 0 or 1. We say that PKE is seure in the sense of hannel

indistinguishability if there exists an eÆient hannel simulator suh that for the resulting ideal

hannel, A annot e�etively distinguish between a game played with all real hannels and a game

played with all ideal hannels; i.e., the absolute di�erene between the probabilities that A outputs

a 1 in the two games grows negligibly in the seurity parameter.

Note that sine real hannels never beome broken, this de�nition of seurity implies that ideal

hannels beome broken with only negligible probability.

It straightforward to show that if PKE is seure against adaptive hosen iphertext attak, then

it is also seure in the sense of hannel indistinguishability. To prove this, the hannel simulator is

implemented using the KeyGen and Derypt algorithms of PKE, and the Enrypt operation of the

hannel simulator on input ` simply runs the Enrypt algorithm of PKE on input 1

`

. We leave it

to the reader to verify that the resulting ideal hannel is indistinguishable from the real hannel.

This is essentially just a standard \hybrid" argument.

In analyzing a higher-level protool, one may substitute all real hannels by ideal hannels.

Presumably, it is muh more straightforward to then analyze the resulting idealized protool, sine

in the idealized protool, iphertexts are just \reeipts" that are ompletely independent of the

orresponding messages. Seurity implies that any (polynomial-time reognizable) event in the

original protool ours with essentially the same probability in the idealized protool.

3.4 Further disussion

The de�nition of seurity we have presented here is from [RS91℄. It is alled IND-CCA2 in

[BDPR98℄. It is known to be equivalent to other notions, suh as non-malleability [DDN91,

BDPR98, DDN00℄, whih is alled NM-CCA2 in [BDPR98℄.

There are other, weaker notions of seurity for a publi-key enryption sheme. For example,

[NY90℄ de�ne a notion that is sometimes alled seurity against indi�erent hosen iphertext attak,

or seurity against lunhtime attak. This de�nition of seurity is exatly the same as the one above

in x3.2, exept that Stage 4 of the attak is omitted | that is, the adversary does not have aess

to the deryption orale after it obtains the target iphertext. While this notion of seurity may

seem natural, it is atually not suÆient in many appliations. This notion is alled IND-CCA1 in

[BDPR98℄.

An even weaker notion of seurity for a publi-key enryption sheme is that of seurity against

a passive attak, also known as semanti seurity. This de�nition of seurity is exatly the same

as the one above in x3.2, exept that both Stages 2 and 4 of the attak are omitted | that is,

the adversary does not have aess to the deryption orale at all. This notion was introdued in

[GM84℄ and is alled IND-CPA in [BDPR98℄. This notion of seurity is quite limited: it is only
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adequate in situations where the adversary only has the power to eavesdrop network traÆ, but

annot modify network traÆ or otherwise atively partiipate in a protool using the enryption

sheme.

For a similar, but slightly di�erent, approah to modeling enryption as an \idealized" proess,

see [Can00℄. See also [BBM00℄ for another generalization of the de�nition of adaptive hosen

iphertext attak to a setting involving many users and messages.

4 Intratability Assumptions Related to the Disrete Logarithm

Problem

In this setion, we reall the Disrete Logarithm (DL) assumption, the Computational DiÆe-

Hellman (CDH) assumption, and the Deisional DiÆe-Hellman (DDH) assumption. All of these

assumptions are formulated with respet to a suitable group G of large prime order q generated by

a given element g.

Informally, the DL assumption is this:

given g

x

and g

y

for random x; y 2 Z

q

, it is hard to ompute g

xy

.

Informally, the CDH assumption is this:

given g

x

and g

y

for random x; y 2 Z

q

, it is hard to ompute g

xy

.

Informally, the DDH assumption is this:

it is hard to distinguish triples of the form (g

x

; g

y

; g

z

) for random x; y; z 2 Z

q

from

triples of the form (g

x

; g

y

; g

xy

) for random x; y 2 Z

q

.

The rest of this setion is devoted to desribing these assumptions more formally, disussing

appropriate groups, and disussing some variations and onsequenes of these assumptions.

4.1 Computational group shemes

To state these intratability assumptions in a general but preise way, and in an appropriate

asymptoti setting, we introdue the notion of a omputational group sheme.

A omputational group sheme G spei�es a sequene (S

�

)

�2Z

�0

of group distributions. For

every value of a seurity parameter � 2 Z

�0

, S

�

is a probability distribution of group desriptions.

A group desription � spei�es a �nite abelian group

^

G, along with a prime-order subgroup G, a

generator g of G, and the order q of G. We use multipliative notation for the group operation in

^

G, and we denote the identity element of

^

G by 1

G

.

We will write �[

^

G;G; g; q℄ to indiate that � spei�es

^

G, G, g, and q as above. As a simple

example of this notation: \for all � 2 Z

�0

, for all �[

^

G;G; g; q℄ 2 [S

�

℄, we have g

q

= 1

G

."

As usual, mathematial objets like a group desription � and elements of a group

^

G are

represented for omputational purposes as bit strings bounded in length by a polynomial in �. The

interpretation of these bit strings is up to the algorithms omprising the group sheme (see below).

However, we require that the enoding sheme used to represent group elements as bit strings be

anonial; that is, every element of a group

^

G has a unique binary enoding.

The group sheme should also provide several algorithms:

� a deterministi, polynomial-time algorithm for omputing the group operation that takes as

input 1

�

for � 2 Z

�0

, �[

^

G;G; g; q℄ 2 [S

�

℄, along with h

1

; h

2

2

^

G, and outputs the group

element h

1

� h

2

2

^

G;
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� a deterministi, polynomial-time algorithm for omputing the group inversion operation that

takes as input 1

�

for � 2 Z

�0

, �[

^

G;G; g; q℄ 2 [S

�

℄, and h 2

^

G, and outputs h

�1

2

^

G;

� a deterministi, polynomial-time algorithm that takes as input 1

�

for � 2 Z

�0

, �[

^

G;G; g; q℄ 2

[S

�

℄, and � 2 f0; 1g

�

, and determines if � is a valid binary enoding of an element of

^

G;

� a deterministi, polynomial-time algorithm that takes as input 1

�

for � 2 Z

�0

, �[

^

G;G; g; q℄ 2

[S

�

℄, and h 2

^

G, and determines if h 2 G;

� a deterministi, polynomial-time algorithm that takes as input 1

�

for � 2 Z

�0

, �[

^

G;G; g; q℄ 2

[S

�

℄, and outputs g and q.

� a probabilisti, polynomial-time approximate sampling algorithm

^

S that on input 1

�

approx-

imately samples S

�

. The distributions S

�

and

^

S(1

�

) should be statistially lose; that is, the

statistial distane �(S

�

;

^

S(1

�

)) should be a negligible funtion in �.

Notie that we do not require that the output distribution

^

S(1

�

) of the sampling algorithm is

idential to S

�

, but only that the distributions have a negligible statistial distane. In partiular,

not all elements of [

^

S(1

�

)℄ are neessarily valid group desriptions. It would be impratial to

require that these two distributions are idential.

Note that the requirement that the group order be easily omputable from the group desription

is not a trivial requirement: it is easy to exhibit groups whose orders are not easy to ompute, e.g.,

subgroups of Z

�

n

for omposite n.

The requirement that group elements have unique enodings is also an important, non-trivial

requirement. It is easy to exhibit quotient groups in whih the problem of omputing anonial

representatives of residue lasses is non-trivial. An example of this is the group underlying Paillier's

enryption sheme [Pai99℄.

Let �[

^

G;G; g; q℄ 2 [S

�

℄. The value 1

G

may be diretly enoded in �, but if not, we an always

ompute it as g � g

�1

.

Although we will not require it, typial group shemes will have the property that for all

�[

^

G;G; g; q℄ 2 [S

�

℄, the only elements of

^

G of order q lie in G. When this is the ase, testing

whether a given h 2

^

G lies in the subgroup G an be implemented by testing if h

q

= 1

G

. However,

a group sheme may provide a more eÆient subgroup test.

Let �[

^

G;G; g; q℄ 2 [S

�

℄. For a 2 G n f1

G

g and b 2 G, we denote by log

a

b the disrete logarithm

of b to the base a; that is, log

a

b is the unique element x 2 Z

q

suh that b = a

x

.

As a notational onvention, throughout this paper, the letters a{h (and deorated versions

thereof) will denote elements of

^

G, and the letters r{z (and deorated versions thereof) will denote

elements of Z

q

.

4.2 Examples of appropriate omputational group shemes

There are several examples of omputational group shemes that are appropriate for ryptographi

appliations.

Example 1. Let `

1

(�) and `

2

(�) be polynomially bounded integer-valued funtions in �, suh that

1 < `

1

(�) < `

2

(�) for all � 2 Z

�0

. It should be the ase that the funtion 2

�`

1

(�)

is negligible. For

a given � 2 Z

�0

, the distribution S

�

is de�ned as the distribution of triples (q; p; g), where

� q is a random `

1

(�)-bit prime,
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� p is a random `

2

(�)-bit prime with p � 1 (mod q), and

� g is a random generator of G, the unique subgroup of order q of the yli group

^

G = Z

�

p

.

Elements in Z

�

p

an be enoded anonially as bit strings of length `

2

(�). Group operations

in Z

�

p

are eÆiently implemented using arithmeti modulo p, and group inversion is implemented

using the extended Eulidean algorithm. To test if an element (� mod p) 2 Z

�

p

lies in G, we an

test if �

q

� 1 (mod p).

A random generator g of G may be obtained by generating a random element in Z

�

p

and raising

it to the power (p� 1)=q (repeating if neessary if this yields (1 mod p)).

The sampling algorithm

^

S may use standard, pratial algorithms for primality testing that

may err with a small probability that grows negligibly in �. See, e.g., [BS96℄ for more information

on primality testing. Not all elements of [

^

S(1

�

)℄ are valid group desriptions. Moreover, depending

on other aspets of the implementation, the distribution on the valid group desriptions may also

be slightly skewed away from S

�

. In our formulation of various intratability assumptions, it is

muh more onvenient to work with the natural distribution S

�

than the more awkward distribution

^

S(1

�

).

We should omment the density of primes p suh that p � 1 (mod q) has never been proven

to be suÆiently large to ensure fast termination of the group generation algorithm. Dirihlet's

Theorem on primes in arithmeti progressions only applies to the ase where q is �xed relative to

p. However, provided `

2

(�) � (2 + Æ)`

1

(�) for some �xed Æ > 0, for any `

1

(�)-bit prime q, the

probability that a random `

2

(�)-bit number of the form qk + 1 is prime is 
(1=`

2

(�)), assuming

the Extended Riemann Hypothesis (ERH). This follows from Theorem 8.8.18 in [BS96℄.

If the density of primes p suh that p � 1 (mod q) annot be proven to be suÆiently large to

ensure fast termination of the group generation algorithm, even assuming the ERH, it may not be

unreasonable to anyway onjeture that this is the ase.

Example 2. This is the same as Example 1, exept that p = 2q + 1, where q is a random `

1

(�)-bit

prime. Suh a prime q is known as a Sophie Germain prime. It is unknown if there exist in�nitely

many Sophie Germain primes. However, it is onjetured that there are, and spei� onjetures

on their density have been made [BH62, BH65℄ that empirially seem to be valid. In partiular, it

is onjetured that the probability that a random `

1

(�)-bit number is a Sophie Germain prime is


(1=`

1

(�)

2

). If suh a density estimate were true, then a simple trial and error method for �nding

Sophie Germain primes would terminate quikly. See [CS00℄ for more information on eÆiently

generating suh primes.

Sine the subgroup G of Z

�

p

of order q is just the subgroup of quadrati residues, testing if

a given element (� mod p) 2 Z

�

p

lies in G an be performed by omputing the Legendre symbol

(� j p), whih is generally muh more eÆient than omputing �

q

mod p.

A nie property of this onstrution is that the numbers f1; : : : ; qg are easily enoded as elements

of G. Given � 2 f1; : : : ; qg, we test if (� j p) = 1, if so, then we enode � as (� mod p) 2 G,

and otherwise, we enode � as (�� mod p). Given a group element h = (� mod p) 2 G with

1 � � � p� 1, we deode h as � if � � q, and otherwise, we deode h as p� �.

This enoding sheme learly allows us to also easily enode arbitrary bit strings of length

`

1

(�)� 1 as elements of G.

Example 3. One an also onstrut G as a prime order subgroup of an ellipti urve over a �nite

�eld. Ellipti urves and their appliation to ryptography is a very rih �eld, and we refer the

reader to [BSS99℄ for an introdution and further referenes. We only note here that some of the

same minor tehnial problems that arose above in Example 1 also arise here; namely, that (1) the
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known proedures for generating ellipti urves whose orders have a suitably large prime fator are

somewhat heuristi, simply beause not enough has been proven about how the order of a randomly

generated ellipti urve fators into primes, and (2) it is in general not easy to enode arbitrary

bit strings of a given length as points on an ellipti urve. We also note that it is fairly easy to

generate ellipti urves of prime order so that we do not have to work in a sub-group, i.e., we an

take G =

^

G. This is useful, as then the sub-group test beomes trivial.

4.3 Intratability assumptions

4.3.1 The DL assumption

Let G be a omputational group sheme, speifying a sequene (S

�

)

�2Z

�0

of group distributions.

For all probabilisti, polynomial-time algorithms A, and for all � 2 Z

�0

, we de�ne the DL

advantage of A against G at � as

AdvDL

G;A

(�) := Pr[ y = x : �[

^

G;G; g; q℄

R

 S

�

; x

R

 Z

q

; y

R

 A(1

�

;�; g

x

) ℄:

The DL assumption for G is this:

For every probabilisti, polynomial-time algorithm A, the funtion AdvDL

G;A

(�) is neg-

ligible in �.

4.3.2 The CDH assumption

Let G be a omputational group sheme, speifying a sequene (S

�

)

�2Z

�0

of group distributions.

For all probabilisti, polynomial-time algorithms A, and for all � 2 Z

�0

, we de�ne the CDH

advantage of A against G at � as

AdvCDH

G;A

(�) := Pr[  = g

xy

: �[

^

G;G; g; q℄

R

 S

�

; x; y

R

 Z

q

; 

R

 A(1

�

;�; g

x

; g

y

) ℄:

The CDH assumption for G is this:

For every probabilisti, polynomial-time algorithm A, the funtion AdvCDH

G;A

(�) is

negligible in �.

For all probabilisti, polynomial-time algorithms A, for all � 2 Z

�0

, and for all �[

^

G;G; g; q℄ 2

[S

�

℄, we de�ne the CDH advantage of A against G at � given � as

AdvCDH

G;A

(� j �) := Pr[  = g

xy

: x

R

 Z

q

; y

R

 Z

q

; 

R

 A(1

�

;�; g

x

; g

y

) ℄:

4.3.3 The DDH assumption

Let G be a omputational group sheme, speifying a sequene (S

�

)

�2Z

�0

of group distributions.

For all � 2 Z

�0

, and for all �[

^

G;G; g; q℄ 2 [S

�

℄, we de�ne the sets D

�;�

and T

�;�

as follows:

D

�;�

:= f(g

x

; g

y

; g

xy

) 2 G

3

: x; y 2 Z

q

g;

T

�;�

:= G

3

:

The set D

�;�

is the set of \DiÆe-Hellman triples." Also, for � 2 G

3

, de�ne DHP

�;�

(�) = 1 if

� 2 D

�;�

, and otherwise, de�ne DHP

�;�

(�) = 0.
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For all 0/1-valued, probabilisti, polynomial-time algorithms A, and for all � 2 Z

�0

, we de�ne

the DDH advantage of A against G at � as

AdvDDH

G;A

(�) :=

�

�

�

Pr[ � = 1 : �

R

 S

�

; �

R

 D

�;�

; �

R

 A(1

�

;�; �) ℄�

Pr[ � = 1 : �

R

 S

�

; �

R

 T

�;�

; �

R

 A(1

�

;�; �) ℄

�

�

�

The DDH assumption for G is this:

For every probabilisti, polynomial-time, 0/1-valued algorithm A, the funtion

AdvDDH

G;A

(�) is negligible in �.

For all 0/1-valued, probabilisti, polynomial-time algorithms A, for all � 2 Z

�0

, and all

�[

^

G;G; g; q℄ 2 [S

�

℄, we de�ne the DDH advantage of A against G at � given � as

AdvDDH

G;A

(� j �) :=

�

�

�

Pr[ � = 1 : �

R

 D

�;�

; �

R

 A(1

�

;�; �) ℄�

Pr[ � = 1 : �

R

 T

�;�

; �

R

 A(1

�

;�; �) ℄

�

�

�

A minor variation

We will need the following variation on the DDH assumption.

For all � 2 Z

�0

, for all �[

^

G;G; g; q℄ 2 [S

�

℄, and we de�ne the sets D

0

�;�

and T

0

�;�

as follows:

D

0

�;�

:= fg

x

; g

y

; g

xy

: x; y 2 Z

q

; x 6= 0g;

T

0

�;�

:= fg

x

; g

y

; g

z

: x; y; z 2 Z

q

; x 6= 0; z 6= xyg:

That is, D

0

�;�

is the set of triples (ĝ; a; â) 2 G

3

, suh that ĝ 6= 1

G

and log

g

a = log

ĝ

â, and T

0

�;�

is

the set of triples (ĝ; a; â) 2 G

3

, suh that ĝ 6= 1

G

and log

g

a 6= log

ĝ

â.

It is easy to verify the following:

�(U(D

�;�

);U(D

0

�;�

)) � 1=q; (1)

�(U(T

�;�

);U(T

0

�;�

)) � 2=q: (2)

For all 0/1-valued, probabilisti, polynomial-time algorithms A, and for all � 2 Z

�0

, we de�ne

AdvDDH

0

G;A

(�) :=

�

�

�

Pr[ � = 1 : �

R

 S

�

; �

R

 D

0

�;�

; �

R

 A(1

�

;�; �) ℄�

Pr[ � = 1 : �

R

 S

�

; �

R

 T

0

�;�

; �

R

 A(1

�

;�; �) ℄

�

�

�

For all 0/1-valued, probabilisti, polynomial-time algorithms A, for all � 2 Z

�0

, and for all � 2 [S

�

℄,

we de�ne

AdvDDH

0

G;A

(� j �) :=

�

�

�

Pr[ � = 1 : �

R

 D

0

�;�

; �

R

 A(1

�

;�; �) ℄�

Pr[ � = 1 : �

R

 T

0

�;�

; �

R

 A(1

�

;�; �) ℄

�

�

�

The inequalities (1) and (2) imply the following:
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Lemma 1 For all 0/1-valued, probabilisti, polynomial-time algorithms A, for all � 2 Z

�0

, and

for all �[

^

G;G; g; q℄ 2 [S

�

℄,

�

�

�

AdvDDH

G;A

(� j �)� AdvDDH

0

G;A

(� j �)

�

�

�

� 3=q:

In partiular, the DDH assumption holds for G if and only if for every probabilisti, polynomial-time

0/1-valued algorithm A, the funtion AdvDDH

0

G;A

(�) is negligible in �.

Random self-reduibility

In this setion, we disuss the random self-reduibility property of the DDH problem, and its

impliations.

The following lemma states the random self-reduibility property for the DDH problem.

Lemma 2 There exists a probabilisti, polynomial-time algorithm RSR suh that for all � 2 Z

�0

,

for all � 2 [S

�

℄, and for all � 2 T

�;�

, the distribution RSR(1

�

;�; �) is U(D

�;�

) if � 2 D

�;�

, and is

U(T

�;�

) if � =2 D

�;�

.

This was �rst observed by Stadler [Sta96℄, who needed the result to prove the seurity of a

partiular protool, and later by Naor and Reingold [NR97℄, who also pointed out some of its

broader impliations.

The algorithm RSR is very simple. Given 1

�

, the group desription �[

^

G;G; g; q℄, and � =

(a; b; ) 2 G

3

, the algorithm omputes (a

0

; b

0

; 

0

) 2 G

3

as follows:

r

R

 Z

q

; s

R

 Z

q

; t

R

 Z

q

; a

0

 a

r

g

s

; b

0

 bg

t

; 

0

 

r

a

rt

b

s

g

st

:

The impliation of this random self-redution is that if DiÆe-Hellman tuples an be eÆiently

distinguished from random tuples with a non-negligible advantage, then DiÆe-Hellman tuples an

be eÆiently reognized with negligible error probability. More formally, we have the following:

Lemma 3 For every be a 0/1-valued, probabilisti, polynomial-time algorithm A, and every poly-

nomial P (with integer oeÆients, taking positive values on Z

�0

), there exists a 0/1-valued, prob-

abilisti, polynomial-time algorithm A

1

suh that for all � 2 Z

�0

, for all � 2 [S

�

℄, for all � 2 T

�;�

,

and for all � 2 Z

�0

,

if AdvDDH

G;A

(� j �) � 1=P (�), then Pr[A

1

(1

�

;�; �; 1

�

) 6= DHP

�;�

(�)℄ � 2

��

:

Lemma 3 follows from Lemma 2 using standard \ampli�ation" tehniques, making use of

standard results on tail inequalities for the binomial distribution. Given 1

�

, �, �, and 1

�

, algorithm

A

1

invokes algorithm A as a subroutineO(P (�)

2

�) times with inputs (1

�

;�; �

0

), where eah �

0

2 T

�;�

is independently sampled from RSR(1

�

;�; �); additionally, algorithm A

1

has to run algorithm A as

a subroutine O(P (�)

2

�) times to \alibrate" A, alulating an estimate of

Pr[ � = 1 : �

0

R

 T

�;�

; �

R

 A(1

�

;�; �

0

) ℄:
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4.4 Further disussion

It is lear that the DDH assumption is at least as strong as the CDH assumption, whih in turn is

at least as strong as the DL assumption.

The CDH assumption was introdued informally by [DH76℄. Sine then, there have been many

papers that deal with the DL and CDH assumptions, and ryptoraphi appliations based on them.

The DDH assumption appears to have �rst surfaed in the ryptographi literature in [Bra93℄,

although as that paper notes, the DDH assumption is atually needed to prove the seurity of a

number of previously proposed protools. Indeed, the famous DiÆe-Hellman key exhange annot

be proved seure in any reasonable and standard way just based on the CDH assumption: the DDH

assumption (or some variant thereof) is required.

The DDH assumption underpins a number of ryptographi appliations. See, for example,

the work of Stadler [Sta96℄ on publily veri�able seret sharing, and the onstrution by Naor and

Reingold [NR97℄ of pseudo-random funtions. Also, the well-known enryption sheme of ElGamal

[ElG85℄ relies on the DDH for its seurity against passive attaks (i.e., semanti seurity).

One variant of the ElGamal sheme is as follows. Let G be a group of prime order q generated

by an element g. The publi key onsists of a group element h = g

z

, where z 2 Z

q

is hosen at

random; the seret key is z. To enrypt a message m, where we assume that m 2 G, we ompute

u

R

 Z

q

; a g

u

; b h

u

;  b �m;

to form a iphertext  = (a; ). To derypt suh a iphertext using the seret key, one omputes

b a

z

; m  � b

�1

;

to obtain the message m.

It is a trivial exerise to show that the seurity of this enryption sheme against passive attak

is equivalent to the DDH assumption. It is also easy to see that this sheme is ompletely inseure

against adaptive hosen iphertext attak: if (a; ) is an enryption of m 2 G, then for any m

0

2 G,

(a;  � m

0

) is an enryption of m � m

0

; thus, one an submit (a;  � m

0

) to the deryption orale,

obtaining m �m

0

, from whih one then omputes m.

There are some very speial families of ellipti urves for whih the DDH assumption does not

hold, but for whih the CDH assumption still appears to stand [JN01℄. How these results are to

be interpreted is a bit unlear. One the one hand, perhaps they ast some doubt on the DDH

assumption in general. On the other hand, perhaps they only illustrate that very speially rafted

families of ellipti urves may exhibit some surprising seurity weaknesses, whih would seem to

ounsel against using suh speial families of ellipti urves for ryptographi appliations, and

instead, to use generi, randomly generated ellipti urves; indeed, for another speial lass of

ellipti urves, the DL assumption is false [Sma99℄.

We refer the reader to two exellent surveys [MW00℄ and [Bon98℄. The latter fouses exlusively

on the DDH assumption, while the former disusses both the CDH and DDH assumptions.

5 Target Collision Resistant Hash Funtions

In this setion, we de�ne the notion of a target ollision resistant hash funtion, whih is a speial

kind of universal one-way hash funtion, tailored somewhat for our partiular appliation.

We informally summarize this setion as follows. We shall be working with a group G of order

q, and we want to hash tuples of group elements to elements of Z

q

. For this purpose, we will use
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a family of keyed hash funtions, suh that given a randomly hosen tuple of group elements and

randomly hosen hash funtion key, it is omputationally infeasible to �nd a di�erent tuple of group

elements that hashes to the same value using the given hash key.

Now the details.

Let k be a �xed positive integer, and let G be a omputational group sheme, speifying a

sequene (S

�

)

�2Z

�0

of group distributions.

A k-ary group hashing sheme HF assoiated with G spei�es two items:

� A family of key spaes indexed by � 2 Z

�0

and � 2 [S

�

℄. Eah suh key spae is a probability

spae on bit strings denoted by HF.KeySpae

�;�

.

There must exist a probabilisti, polynomial-time algorithm whose output distribution on

input 1

�

and � is equal to HF.KeySpae

�;�

.

� A family of hash funtions indexed by � 2 Z

�0

, �[

^

G;G; g; q℄ 2 [S

�

℄, and hk 2

[HF.KeySpae

�;�

℄, where eah suh funtion HF

�;�

hk

maps a k-tuple � 2 G

k

of group elements

to an element of Z

q

.

There must exist a deterministi, polynomial-time algorithm that on input 1

�

, �[

^

G;G; g; q℄ 2

[S

�

℄, hk 2 [HF.KeySpae

�;�

℄, and � 2 G

k

, outputs HF

�;�

hk

(�).

Let A be a probabilisti, polynomial-time algorithm. For � 2 Z

�0

, we de�ne

AdvTCR

HF;A

(�) :=

Pr[ � 2 G

k

^ � 6= �

�

^ HF

�;�

hk

(�

�

) = HF

�;�

hk

(�) :

�[

^

G;G; g; q℄

R

 S

�

; �

�

R

 G

k

; hk

R

 HF.KeySpae

�;�

; �

R

 A(1

�

;�; �

�

; hk) ℄:

The target ollision resistane (TCR) assumption for HF is this:

For every probabilisti, polynomial-time algorithm A, the funtion AdvTCR

HF;A

(�) is

negligible in �.

It will also be onvenient to de�ne the following. Let A be a probabilisti, polynomial-time

algorithm. For � 2 Z

�0

and �[

^

G;G; g; q℄ 2 [S

�

℄, we de�ne

AdvTCR

HF;A

(� j �) :=

Pr[ � 2 G

k

^ � 6= �

�

^ HF

�;�

hk

(�

�

) = HF

�;�

hk

(�) :

�

�

R

 G; hk

R

 HF.KeySpae

�;�

; �

R

 A(1

�

;�; �

�

; hk) ℄:

5.1 Further disussion

As already mentioned, our notion of a target ollision resistant hash funtion is a speial ase of the

more general notion of a universal one-way hash funtion, introdued by Naor and Yung [NY89℄.

In their presentation, the hash funtions mapped bit strings to bit strings, but of ourse, using

appropriate formatting, we an easily make suh a funtion a map from tuples of elements of the

group G to elements of Z

q

. The notion of seurity presented in [NY89℄ was also slightly stronger

than ours: in their paper, the �rst input to the hash funtion (i.e. the \target" input) is hosen

adversarially, but independent of the key of the hash funtion, whereas in our appliation, the

target input is a random tuple of group elements.
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As was shown in [NY89℄, universal one-way hash funtions an be built from arbitrary one-way

permutations. This result was extended by [Rom90℄, who showed that universal one-way hash

funtions an be built (albeit less eÆiently) from arbitrary one-way funtions.

In pratie, to build a universal one-way hash funtion, one an use a dediated ryptographi

hash funtion, like SHA-1 [SHA95℄. Construtions in [BR97℄ and [Sho00a℄ show how to build

a general-purpose universal one-way hash funtion using the underlying ompression funtion of

SHA-1, assuming the latter is seond pre-image ollision resistant. Atually, in our appliation,

sine the target input is just a random tuple of group elements, it is not too unreasonable to simply

use SHA-1 diretly, without a key at all.

Note that the notion of target ollision resistane is both qualitatively and quantitatively weaker

than the notion of (full) ollision resistane, whih is why we prefer to rely on the former rather

than the latter. A ollision resistant hash funtion is one where it is hard for an adversary to �nd

two di�erent inputs that hash to the same value; the di�erene between target ollision resistane

and ollision resistane is that in the former, one of the two inputs is not under the ontrol of the

adversary, while in the latter, both inputs are under the ontrol of the adversary.

6 The New Enryption Sheme: Basi Version

6.1 Desription of the sheme

In this setion, we present the basi version, CS1, of our new sheme.

The sheme makes use of a omputational group sheme G as desribed in x4.1, de�ning a

sequene (S

�

)

�2Z

�0

of distributions of group desriptions, and providing a sampling algorithm

^

S,

where the output distribution

^

S(1

�

) losely approximates S

�

.

The sheme also makes use of a tertiary group hashing sheme HF assoiated with G, as desribed

in x5.

The sheme is desribed in detail in Figure 1.

Remark 1 Note that this enryption sheme has a restrited message spae: messages are elements

of the group G. This limits to some degree the appliability of the sheme and the hoie of group

sheme; indeed, if one wants to enrypt arbitrary bit strings of some bounded length, then among

the examples of group shemes disussed in x4.2, only Example 2, based on Sophie Germain primes,

is suitable.

Remark 2 Note that in step D2 of the deryption algorithm, we test if a, â, and  belong to the

subgroup G. This test is essential to the seurity of the sheme. Although some group shemes

may provide a more eÆient method for performing these tests, in a typial implementation, one

may have to ompute a

q

, â

q

, and 

q

, testing that eah of these is 1

G

.

Remark 3 Note that the key generation algorithm samples a group desription � from

^

S(1

�

).

However, in desribing the enryption sheme, we assume that � is a valid group desription. With

negligible probability (in �), � may not be a valid group desription, in whih ase the behavior of

the key generation, enryption, and deryption algorithms is implementation dependent.

Remark 4 It is straightforward to verify that this enryption sheme satis�es the basi require-

ments that any publi key enryption sheme should satisfy, as desribed in x3.1. In partiular, the

soundness property will always hold when � is a valid group desription.
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Key Generation: On input 1

�

for � 2 Z

�0

, ompute

�[

^

G;G; g; q℄

R

 

^

S(1

�

); hk

R

 HF.KeySpae

�;�

;

w

R

 Z

�

q

; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

R

 Z

q

;

ĝ  g

w

; e g

x

1

ĝ

x

2

; f  g

y

1

ĝ

y

2

; h g

z

1

ĝ

z

2

;

and output the publi key PK = (�; hk; ĝ; e; f; h) and the seret key SK = (�; hk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

).

Enryption: Given 1

�

for � 2 Z

�0

, a publi key

PK = (�[

^

G;G; g; q℄; hk; ĝ; e; f; h) 2 [S

�

℄� [HF.KeySpae

�;�

℄�G

4

;

along with a message m 2 G, ompute

E1: u

R

 Z

q

;

E2: a g

u

;

E3: â ĝ

u

;

E4: b h

u

;

E5:  b �m;

E6: v  HF

�;�

hk

(a; â; );

E7: d e

u

f

uv

;

and output the iphertext  = (a; â; ; d).

Deryption: Given 1

�

for � 2 Z

�0

, a seret key

SK = (�[

^

G;G; g; q℄; hk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

) 2 [S

�

℄� [HF.KeySpae

�;�

℄� Z

6

q

;

along with a iphertext  , do the following.

D1: Parse  as a 4-tuple (a; â; ; d) 2

^

G

4

; output rejet and halt if  is not of this form.

D2: Test if a, â, and  belong to G; output rejet and halt if this is not the ase.

D3: Compute v  HF

�;�

hk

(a; â; ).

D4: Test if d = a

x

1

+y

1

v

� â

x

2

+y

2

v

; output rejet and halt if this is not the ase.

D5: Compute b a

z

1

â

z

2

.

D6: Compute m  � b

�1

, and output m.

Figure 1: The publi-key enryption sheme CS1
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Remark 5 Tehnially speaking, the output  of the enryption algorithm is atually a anonial

binary enoding of the 4-tuple (a; â; ; d) 2 G

4

. In partiular, it is ritial that for any two ipher-

texts  

0

6=  , the parsing algorithm in step D1 of the deryption algorithm should not output the

same 4-tuple of group elements.

6.2 Seurity analysis of the sheme

We shall prove that CS1 is seure against adaptive hosen iphertext attak if the DDH assumption

holds for G and the TCR assumption holds for HF. However, we wish to state and prove a onrete

seurity redution. To this end, we need some auxiliary de�nitions.

Suppose PKE is a publi-key enryption sheme that uses a group sheme in the following

natural way: on input 1

�

, the key generation algorithm runs the sampling algorithm of the group

sheme on input 1

�

, yielding a group desription �. For a given probabilisti, polynomial-time

orale query mahine A, � 2 Z

�0

, and group desription �, let us de�ne AdvCCA

PKE;A

(� j �) to be

A's advantage in an adaptive hosen iphertext attak where the key generation algorithm uses the

given value of �, instead of running the sampling algorithm of the group sheme.

For all probabilisti, polynomial-time orale query mahines A, for all � 2 Z

�0

, let Q

A

(�) be

an upper bound on the number of deryption orale queries made by A on input 1

�

. We assume

that Q

A

(�) is a strit bound in the sense that it holds regardless of the probabilisti hoies of A,

and regardless of the responses to its orale queries from its environment.

Theorem 1 If the DDH assumption holds for G and the TCR assumption holds for HF, then CS1

is seure against adaptive hosen iphertext attak.

In partiular, for all probabilisti, polynomial-time orale query mahines A, there exist proba-

bilisti algorithms A

1

and A

2

, whose running times are essentially the same as that of A, suh that

the following holds. For all � 2 Z

�0

, and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

AdvCCA

CS1;A

(� j �) � AdvDDH

G;A

1

(� j �) + AdvTCR

HF;A

2

(� j �) + (Q

A

(�) + 4)=q: (3)

The preise running times of algorithms A

1

and A

2

depend a good deal on details of the model

of omputation and on implementation details, and so we make no attempt to be more preise on

this matter.

Before ontinuing, we state the following simple but useful lemma, whih we leave to the reader

to verify.

Lemma 4 Let U

1

, U

2

, and F be events de�ned on some probability spae. Suppose that the event

U

1

^ :F ours if and only if U

2

^ :F ours. Then jPr[U

1

℄� Pr[U

2

℄j � Pr[F ℄:

To prove Theorem 1, let us �x a probabilisti, polynomial-time orale query mahine A, the

value of the seurity parameter � 2 Z

�0

, and the group desription �[

^

G;G; g; q℄ 2 [S

�

℄.

The attak game is as desribed in x3.2. We now desribe the relevant random variables to be

onsidered in analyzing the adversary's attak.

Suppose that the publi key is (�; hk; ĝ; e; f; h) and that the seret key is

(�; hk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

). Let w := log

g

ĝ, and de�ne x; y; z 2 Z

q

as follows:

x :=x

1

+ x

2

w; y := y

1

+ y

2

w; z := z

1

+ z

2

w:

That is, x = log

g

e, y = log

g

f , and z = log

g

h.

As a notational onvention, whenever a partiular iphertext  is under onsideration in some

ontext, the following values are also impliitly de�ned in that ontext:
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� a; â; b; ; d 2 G, where  = (a; â; ; d) and b :=a

z

1

â

z

2

;

� u; û; v; r; s; t 2 Z

q

, where

u := log

g

a; û := log

ĝ

â; v :=HF

�;�

hk

(a; â; ); r := log

g

; s := log

g

d;

and

t :=x

1

u+ y

1

uv + x

2

ûw + y

2

ûvw:

For the target iphertext  

�

, we also denote by a

�

; â

�

; b

�

; 

�

; d

�

2 G and u

�

; û

�

; v

�

; r

�

; s

�

; t

�

2 Z

q

the orresponding values.

The probability spae de�ning the attak game is then determined by the following, mutually

independent, random variables:

� the oin tosses Coins of A;

� the values hk; w; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

generated by the key generation algorithm;

� the values � 2 f0; 1g and u

�

2 Z

q

generated by the enryption orale.

Let G

0

be the original attak game, let �̂ 2 f0; 1g denote the output of A, and let T

0

be the

event that � = �̂ in G

0

, so that AdvCCA

CS1;A

(� j �) = jPr[T

0

℄� 1=2j.

Our overall strategy for the proof is as follows. We shall de�ne a sequene G

1

;G

2

; : : : ;G

`

of modi�ed attak games. Eah of the games G

0

;G

1

; : : : ;G

`

operates on the same underlying

probability spae. In partiular, the publi key and seret key of the ryptosystem, the oin tosses

Coins of A, and the hidden bit � take on idential values aross all games. Only some of the

rules de�ning how the environment responds to orale queries di�er from game to game. For any

1 � i � `, we let T

i

be the event that � = �̂ in game G

i

. Our strategy is to show that for 1 � i � `,

the quantity jPr[T

i�1

℄ � Pr[T

i

℄j is negligible. Also, it will be evident from the de�nition of game

G

`

that Pr[T

`

℄ = 1=2, whih will imply that jPr[T

0

℄� 1=2j is negligible.

So that the overall struture of the proof is more transparent, we shall defer the proofs of all

lemmas to the end of the proof of the theorem.

Game G

1

. We now modify game G

0

to obtain a new game G

1

. These two games are idential,

exept for a small modi�ation to the enryption orale. Instead of using the enryption algorithm

as given to ompute the target iphertext  

�

, we use a modi�ed enryption algorithm, in whih

steps E4 and E7 are replaed by:

E4

0

: b a

z

1

â

z

2

;

E7

0

: d a

x

1

+y

1

v

� â

x

2

+y

2

v

:

The hange we have made is purely oneptual: the values of b

�

and d

�

are exatly the same in

game G

1

as they were in G

0

. Therefore,

Pr[T

1

℄ = Pr[T

0

℄: (4)

Note that the enryption orale now makes use of some omponents of the seret key, whih is

something the original enryption orale does not do.
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Game G

2

. We now modify game G

1

to obtain a new game G

2

. We again modify the enryption

orale, replaing step E3 of the enryption algorithm by

E3

0

: û

R

 Z

q

n fug; â ĝ

û

:

Note that whereas in games G

0

and G

1

we had u

�

= û

�

, in game G

2

, u

�

and û

�

are nearly

independent, being subjet only to u

�

6= û

�

. However, observe that games G

1

and G

2

are the

same, exept that in game G

1

, the triple (ĝ; a

�

; â

�

) is uniformly distributed in D

0

�;�

, and in game

G

2

, the triple (ĝ; a

�

; â

�

) is uniformly distributed in T

0

�;�

. Thus, any di�erene in behavior between

these two games immediately yields a statistial test for the distinguishing DiÆe-Hellman triple

from non-DiÆe-Hellman triples. More preisely, we have:

Lemma 5 There exists a probabilisti algorithm A

1

, whose running time is essentially the same as

that of A, suh that

jPr[T

2

℄� Pr[T

1

℄j � AdvDDH

G;A

1

(� j �) + 3=q: (5)

Game G

3

. In this game, we modify the deryption orale in game G

2

to obtain a new game G

3

.

Instead of using the original deryption algorithm, we modify the deryption algorithm, replaing

steps D4 and D5 with:

D4

0

: Test if â = a

w

and d = a

x+yv

; output rejet and halt if this is not the ase.

D5

0

: b a

z

.

Note that the deryption orale now make use of w, but does not make use of x

1

; y

2

; y

1

; y

2

; z

1

; z

2

,

exept indiretly through the values x; y; z.

Now, let R

3

be the event that in game G

3

, some iphertext  is submitted to the deryption

orale that is rejeted in step D4

0

but that would have passed the test in step D4.

Note that if a iphertext passes the test in D4

0

, it would also have passed the test in D4.

It is lear that games G

2

and G

3

proeed identially until the event R

3

ours. In partiular,

the event T

2

^ :R

3

and T

3

^ :R

3

are idential. So by Lemma 4, we have

jPr[T

3

℄� Pr[T

2

℄j � Pr[R

3

℄; (6)

and so it suÆes to bound Pr[R

3

℄. We introdue auxiliary games G

4

and G

5

below to do this.

Game G

4

. This game is idential to game G

3

, exept for a small modi�ation to the enryption

orale. We again modify the algorithm used by the enryption orale, replaing step E5 by

E5

0

: r

R

 Z

q

;  g

r

:

It is lear by onstrution that

Pr[T

4

℄ = 1=2; (7)

sine in game G

4

, the variable � is never used at all, and so the adversary's output is independent

of �.

De�ne the event R

4

to be the event in game G

4

analogous to the event R

3

in game G

3

; that is,

R

4

is the event that in game G

4

, some iphertext  is submitted to the deryption orale that is

rejeted in step D4

0

but that would have passed the test in step D4.

We show that this modi�ation has no e�et; more preisely:
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Lemma 6 We have

Pr[T

4

℄ = Pr[T

3

℄; (8)

Pr[R

4

℄ = Pr[R

3

℄: (9)

Game G

5

. This game is the same as game G

4

, exept for the following modi�ation.

We modify the deryption orale so that it applies the following speial rejetion rule: if the

adversary submits a iphertext  for deryption at a point in time after the enryption orale has

been invoked, suh that (a; â; ) 6= (a

�

; â

�

; 

�

) but v = v

�

, then the deryption orale immediately

outputs rejet and halts (before exeuting step D4

0

).

To analyze this game, we de�ne two events.

First, we de�ne the event C

5

to be the event that the deryption orale in game G

5

rejets a

iphertext using the speial rejetion rule.

Seond, we de�ne the event R

5

to be the event in game G

5

that some iphertext  is submitted

to the deryption orale that is rejeted in step D4

0

but that would have passed the test in step

D4. Note that suh a iphertext is not rejeted by the speial rejetion rule, sine that rule is

applied before step D4

0

is exeuted.

Now, it is lear that games G

4

and G

5

proeed identially until event C

5

ours. In partiular,

the events R

4

^ :C

5

and R

5

^ :C

5

are idential. So by Lemma 4, we have

jPr[R

5

℄� Pr[R

4

℄j � Pr[C

5

℄: (10)

Now, if event C

5

ours with non-negligible probability, we immediately get an algorithm that

ontradits the target ollision resistane assumption; more preisely:

Lemma 7 There exists a probabilisti algorithm A

2

, whose running time is essentially the same as

that of A, suh that

Pr[C

5

℄ � AdvTCR

HF;A

2

(� j �) + 1=q: (11)

Finally, we show that event R

5

ours with negligible probability, based on purely information-

theoreti onsiderations:

Lemma 8 We have

Pr[R

5

℄ � Q

A

(�)=q: (12)

The detailed proof of this lemma is presented below. However, the basi idea of the proof runs

as follows. For a deryption query  , the only information the adversary has about (x

1

; x

2

; y

1

; y

2

)

are the values of x, y, and possibly s

�

, whih are linear ombinations of (x

1

; x

2

; y

1

; y

2

). As we will

prove, the value of t, whih the adversary must suessfully guess in order to make the event R

5

happen, is an independent linear ombination of (x

1

; x

2

; y

1

; y

2

), and is therefore unpreditable.

Inequality (3) now follows immediately from (4)-(12).

Proofs of Lemmas

To omplete the proof of Theorem 1, we now present the proofs of Lemmas 5, 6, 7, and 8.
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Proof of Lemma 5. We desribe the algorithm A

1

in detail. For a given value of � 2 Z

�0

, it

takes as input 1

�

, �[

^

G;G; g; q℄ 2 [S

�

℄, and � = (ĝ; a

�

; â

�

) 2 G

3

.

Algorithm A

1

provides an environment for A, interating with A as follows.

First, A

1

omputes

hk

R

 HF.KeySpae

�;�

; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

R

 Z

q

; e g

x

1

ĝ

x

2

; f  g

y

1

ĝ

y

2

; h g

z

1

ĝ

z

2

;

to generate a publi key PK = (�; hk; ĝ; e; f; h) and a seret key SK = (�; hk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

). It

then gives PK to A.

Whenever A submits a iphertext  = (a; â; ; d) to the deryption orale, A

1

simply runs the

deryption algorithm, using the seret key SK.

When A submits (m

0

;m

1

) to the enryption orale, A

1

omputes

�

R

 f0; 1g; b

�

 (a

�

)

z

1

(â

�

)

z

2

; 

�

 b

�

�m

�

; v

�

 HF

�;�

hk

(a

�

; â

�

; 

�

); d

�

 (a

�

)

x

1

+y

1

v

�

(â

�

)

x

2

+y

2

v

�

;

and responds with the \iphertext"  

�

= (a

�

; â

�

; 

�

; d

�

).

When A outputs �̂ and halts, A

1

outputs 1 if � = �̂ and 0 if � 6= �̂.

That ompletes the desription of A

1

. By onstrution, it is lear that for �xed � and � 2 [S

�

℄,

Pr[T

1

℄ = Pr[ � = 1 : �

R

 D

0

�;�

; �

R

 A

1

(1

�

;�; �) ℄;

Pr[T

2

℄ = Pr[ � = 1 : �

R

 T

0

�;�

; �

R

 A

1

(1

�

;�; �) ℄:

Thus,

jPr[T

2

℄� Pr[T

1

℄j = AdvDDH

0

G;A

1

(� j �);

and so (5) now follows diretly from this and Lemma 1. 2

Before ontinuing, we state and prove a simple but useful lemma.

Lemma 9 Let k; n be integers with 1 � k � n, and let K be a �nite �eld. Consider a probability

spae with random variables ~� 2 K

n�1

,

~

� = (�

1

; : : : ; �

k

)

T

2 K

k�1

, ~ 2 K

k�1

, and M 2 K

k�n

,

suh that ~� is uniformly distributed over K

n�1

,

~

� =M~�+~, and for 1 � i � k, the ith rows of M

and ~ are determined by �

1

; : : : ; �

i�1

.

Then onditioning on any �xed values of �

1

; : : : ; �

k�1

suh that the resulting matrix M has rank

k, the value of �

k

is uniformly distributed over K in the resulting onditional probability spae.

Proof. Consider �xed values of �

1

; : : : ; �

k�1

2 K, whih determine M and ~, and assume that the

matrix M has rank k. For any �

k

2 K, onsider the orresponding vetor

~

� = (�

1

; : : : ; �

k

)

T

; there

are exatly jKj

n�k

vetors ~� suh that

~

� = M~� + ~. Therefore, eah possible value �

k

2 K is

equally likely. 2

Proof of Lemma 6. Consider the quantity

X := (Coins; hk; w; x

1

; x

2

; y

1

; y

2

; �; u

�

; û

�

)

and the quantity z. Note that X and z take on the same values in games G

3

and G

4

.

Consider also the quantity r

�

. This quantity takes on di�erent values in games G

3

and G

4

. For

larity, let us denote these values as [r

�

℄

3

and [r

�

℄

4

, respetively.

It is lear by inspetion that the events R

3

and T

3

are determined as funtions of X, z, and [r

�

℄

3

.

Also, the events R

4

and T

4

have preisely the same funtional dependene on on X, z, and [r

�

℄

4

.
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So to prove the lemma, it suÆes to show that the distributions of (X; z; [r

�

℄

3

) and (X; z; [r

�

℄

4

)

are idential. Observe that by onstrution, onditioning on any �xed values of X and z, the

distribution of [r

�

℄

4

is uniform over Z

q

. So it will suÆe to show that onditioning on any �xed

values of X and z, the distribution of [r

�

℄

3

is also uniform over Z

q

.

We have

 

z

[r

�

℄

3

!

=

 

1 w

u

�

wû

�

!

| {z }

=:M

�

 

z

1

z

2

!

+

 

0

log

g

m

�

!

:

Conditioning only on a �xed value of X, the matrix M is �xed, but the values z

1

and z

2

are still

uniformly and independently distributed over Z

q

. Observe that det(M) = w(û

�

� u

�

) 6= 0. If we

further ondition on a �xed value of z, the value of m

�

is �xed, and by Lemma 9, the distribution

of [r

�

℄

3

is uniform over Z

q

. 2

Proof of Lemma 7. Algorithm A

2

provides an environment for A, interating with A as follows.

Algorithm A

2

takes as input 1

�

, �[

^

G;G; g; q℄ 2 [S

�

℄, �

�

= (a

�

; â

�

; 

�

) 2 G

3

, and hk 2

[HF.KeySpae

�;�

℄. It �rst onstruts a publi key PK and seret key SK for the enryption sheme

using the standard key generation algorithm, exept that the given values of � and hk are used. It

also onstruts the target iphertext  

�

= (a

�

; â

�

; 

�

; d

�

), where a

�

; â

�

; 

�

are the given inputs as

above, and where d

�

is omputed as

v

�

 HF

�;�

hk

(a

�

; â

�

; 

�

); d

�

 (a

�

)

x

1

+y

1

v

�

(â

�

)

x

2

+y

2

v

�

:

Here, hk is the given input as above, and x

1

; y

1

; x

2

; y

2

are the values taken from the seret key SK

as omputed above.

Now A

2

interats with A using the rules of game G

5

for the deryption orale, and giving A the

target iphertext  

�

when A invokes the enryption orale. However, if the deryption orale ever

invokes the speial rejetion rule in game G

5

for a given iphertext  , algorithm A

2

immediately

outputs (a; â; ) orresponding to  and halts. Also, if the attak terminates without the speial

rejetion rule ever having been invoked, then A

2

also halts (without produing any output).

That ompletes the desription of A

2

. If the input (a

�

; â

�

; 

�

) to A

2

is sampled uniformly over

all triples of group elements, subjet to log

g

a

�

6= log

ĝ

â

�

, then algorithm A

2

sueeds in �nding

a ollision with probability exatly Pr[C

5

℄. However, in the de�nition of AdvTCR, the input is

sampled from the uniform distribution over all triples, not subjet to the above restrition. The

bound (11) follows from the fat that the statistial distane between these two input distributions

is 1=q. 2

Proof of Lemma 8. To prove (12), for 1 � i � Q

A

(�), let us de�ne R

(i)

5

to be the event that

there is an ith iphertext submitted to the deryption orale in game G

5

, and that the submitted

iphertext is rejeted in step D4

0

but would have passed the test in step D4. For 1 � i � Q

A

(�), let

us de�ne B

(i)

5

to be the event that the ith deryption orale query ours before the enryption orale

query, and that the submitted iphertext passes the test in steps D1 and D2 of the deryption

orale. For 1 � i � Q

A

(�), let us de�ne

^

B

(i)

5

to be the event that the ith deryption orale query

ours after the enryption orale query, and that the submitted iphertext passes the tests in steps

D1 and D2 of the deryption orale.

The bound (12) will follow immediately from Lemmas 10 and 11 below. 2

Lemma 10 Notation as in the proof of Lemma 8. For all 1 � i � Q

A

(�), we have Pr[R

(i)

5

jB

(i)

5

℄ �

1=q.

26



Proof. Fix 1 � i � Q

A

(�). Consider the quantities

X := (Coins; hk; w; z)

and

X

0

:= (x; y):

The values of X and X

0

ompletely determine the behavior of the adversary up until the point

when the enryption orale is invoked, and in partiular, they ompletely determine the event B

(i)

5

.

Let us all X and X

0

relevant if the event B

(i)

5

ours.

It will suÆe prove that onditioned on any �xed, relevant values of X and X

0

, the probability

that R

(i)

5

ours is bounded by 1=q.

One relevant values of X and X

0

are �xed, the value  of the ith deryption query is also �xed,

along with the orresponding values a; â; b; ; d; u; û; v; r, and s.

The test in D4

0

fails if and only if one of the two mutually exlusive onditions (â 6= a

w

) or

(â = a

w

and d 6= a

x+yv

) holds. It is easy to verify that if the seond ondition holds, then in fat

the test in D4 fails. Thus, if the test in D4

0

fails but that in D4 passes, it must be the ase that

â 6= a

w

and d = a

x

1

+y

1

v

â

x

2

+y

2

v

. So we only need to onsider values of X and X

0

suh that â 6= a

w

.

The ondition â 6= a

w

is equivalent to the ondition u 6= û, and the ondition d = a

x

1

+y

1

v

â

x

2

+y

2

v

is

equivalent to the ondition s = t.

We have

0

B

�

x

y

t

1

C

A

=

0

B

�

1 w 0 0

0 0 1 w

u ûw uv ûvw

1

C

A

| {z }

=:M

�

0

B

B

B

�

x

1

x

2

y

1

y

2

1

C

C

C

A

:

Let us �rst ondition only on a �xed value of X, whih �xes the �rst two rows of M , but leaves

the values x

1

, x

2

, y

1

, and y

2

still uniformly distributed over Z

q

and mutually independent. Let us

further ondition on a �xed value of X

0

suh that X and X

0

are relevant, and that u 6= û. The

third row of M is also �xed, along with the values x, y, and s. It is easy to see by inspetion that

the rows of M are linearly independent, sine û 6= u and w 6= 0. From this, it follows by Lemma 9

that t is still uniformly distributed over Z

q

, but sine s is �xed, we have Pr[s = t℄ = 1=q. 2

Lemma 11 Notation as in the proof of Lemma 8. For all 1 � i � Q

A

(�), we have Pr[R

(i)

5

j

^

B

(i)

5

℄ �

1=q.

Proof. Fix 1 � i � Q

A

(�). Consider the quantities

X := (Coins; hk; w; z; u

�

; û

�

; r

�

)

and

X

0

:= (x; y; s

�

):

The values of X and X

0

ompletely determine the adversary's entire behavior in game G

5

, and in

partiular, they ompletely determine the event

^

B

(i)

5

. Let us all X and X

0

relevant if the event

^

B

(i)

5

ours.

It will suÆe prove that onditioned on any �xed, relevant values of X and X

0

, the probability

that R

(i)

5

ours is bounded by 1=q.
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One X and X

0

are �xed, the value  of the ith deryption query is also �xed, along with the

orresponding values a; â; b; ; d; u; û; v; r, and s. As in the proof of Lemma 10, it suÆes to onsider

values of X and X

0

for whih u 6= û, and then to show that Pr[s = t℄ � q. Notie that the value

of X determines the value of v

�

, and we may also assume that v 6= v

�

. To see why we may do so,

if v = v

�

, then either (a; â; ) = (a

�

; â

�

; 

�

), or  is rejeted by the speial rejetion rule. In the

�rst ase, sine  6=  

�

, we must have d 6= d

�

, but this implies that  fails the test in D4. In the

seond ase, step D4

0

is not even exeuted.

We have

0

B

B

B

�

x

y

s

�

t

1

C

C

C

A

=

0

B

B

B

�

1 w 0 0

0 0 1 w

u

�

û

�

w u

�

v

�

û

�

v

�

w

u ûw uv ûvw

1

C

C

C

A

| {z }

=:M

�

0

B

B

B

�

x

1

x

2

y

1

y

2

1

C

C

C

A

:

Let us �rst ondition only on a �xed value of X, whih �xes the �rst three rows of M , but leaves

the values x

1

, x

2

, y

1

, and y

2

still uniformly distributed over Z

q

and mutually independent. Let

us further ondition on a �xed value of X

0

suh that X and X

0

are relevant, and that u 6= û and

v 6= v

�

. The fourth row of M is also �xed, along with the values x, y, s

�

, and s. It is easy to see

that the rows of M are linearly independent, sine

det(M) = w

2

(û� u)(û

�

� u

�

)(v

�

� v) 6= 0:

From this, it follows by Lemma 9 that t is still uniformly distributed over Z

q

, but sine s is �xed,

we have Pr[s = t℄ = 1=q. 2

6.3 Two variations

Sheme CS1 was presented beause it is in a form that is partiularly easy to analyze. We now

desribe and analyze two variations of the sheme CS1, whih we all CS1a and CS1b, that are a

bit simpler than CS1, but that require a bit more work to analyze. For both of these shemes, the

publi key has the same format and indeed, the same probability distribution, as in CS1, and the

enryption algorithm is the same as in CS1. The key generation and deryption algorithms are

slightly di�erent, however, and are desribed in detail in Figures 2 and 3.

Remark 6 Sheme CS1a is essentially the same sheme that was originally presented as the \main

sheme" in [CS98℄. Sheme CS1b is a minor variation of a sheme originally presented in [Sho00b℄.

Remark 7 Note that in sheme CS1b, we do not have to separately test if â belongs to the subgroup

G in step D2

0

, sine this is already implied by the test in step D4

0

. The test that a and  belong

to G may in some ases be implemented by testing if a

q

= 1

G

and 

q

= 1

G

.

Remark 8 Note also in sheme CS1b, the deryption algorithm has to ompute either three or

four (if we test if a

q

= 1

G

) powers of a, and possibly one power of  (if we test if 

q

= 1

G

). Speial

algorithmi tehniques [BGMW92, LL94℄ an be employed to ompute these several powers of a

signi�antly faster than omputing several powers of di�erent group elements.

Remark 9 In an atual implementation, it is strongly reommended to ompute both exponentia-

tions in step D4

0

of CS1b before rejeting the iphertext, even if the �rst exponentiation performed

already implies that the iphertext should be rejeted. The reason is that if the iphertext is rejeted
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Key Generation: On input 1

�

for � 2 Z

�0

, ompute

�[

^

G;G; g; q℄

R

 

^

S(1

�

); hk

R

 HF.KeySpae

�;�

;

w

R

 Z

�

q

; x

1

; x

2

; y

1

; y

2

; z

R

 Z

q

;

ĝ  g

w

; e g

x

1

ĝ

x

2

; f  g

y

1

ĝ

y

2

; h g

z

;

and output the publi key PK = (�; hk; ĝ; e; f; h) and the seret key SK = (�; hk; x

1

; x

2

; y

1

; y

2

; z).

Deryption: Given 1

�

for � 2 Z

�0

, a seret key

SK = (�[

^

G;G; g; q℄; hk; x

1

; x

2

; y

1

; y

2

; z) 2 [S

�

℄� [HF.KeySpae

�;�

℄� Z

5

q

;

along with a iphertext  , do the following.

D1: Parse  as a 4-tuple (a; â; ; d) 2

^

G

4

; output rejet and halt if  is not of this form.

D2: Test if a, â, and  belong to G; output rejet and halt if this is not the ase.

D3: Compute v  HF

�;�

hk

(a; â; ).

D4: Test if d = a

x

1

+y

1

v

â

x

2

+y

2

v

; output rejet and halt if this is not the ase.

D5

0

: Compute b a

z

.

D6: Compute m  � b

�1

, and output m.

Figure 2: Key generation and deryption algorithms for CS1a

Key Generation: On input 1

�

for � 2 Z

�0

, ompute

�[

^

G;G; g; q℄

R

 

^

S(1

�

); hk

R

 HF.KeySpae

�;�

;

w

R

 Z

�

q

; x; y; z

R

 Z

q

;

ĝ  g

w

; e g

x

; f  g

y

; h g

z

;

and output the publi key PK = (�; hk; ĝ; e; f; h) and the seret key SK = (�; hk; w; x; y; z).

Deryption: Given 1

�

for � 2 Z

�0

, a seret key

SK = (�[

^

G;G; g; q℄; hk; x; y; z) 2 [S

�

℄� [HF.KeySpae

�;�

℄� Z

3

q

;

along with a iphertext  , do the following.

D1: Parse  as a 4-tuple (a; â; ; d) 2

^

G

4

; output rejet and halt if  is not of this form.

D2

0

: Test if a and  belong to G; output rejet and halt if this is not the ase.

D3: Compute v  HF

�;�

hk

(a; â; ).

D4

0

: Test if â = a

w

and d = a

x+yv

; output rejet and halt if this is not the ase.

D5

0

: Compute b a

z

.

D6: Compute m  � b

�1

, and output m.

Figure 3: Key generation and deryption algorithms for CS1b
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after just one exponentiation, this may reveal some timing information that ould be exploited by

an attaker. Indeed, if we rejet immediately upon deteting that â 6= a

w

, then based upon timing

information, an attaker ould use the deryption box as a kind DiÆe-Hellman deision orale. Our

formal model of seurity does not model any notion of time at all, so suh attaks fall outside of

the model. We should also point out that we know of no atual attak on the sheme even if suh

timing information is available.

Remark 10 For the same reasons as disussed in the previous remark, it is important that any

\error ode" returned by the deryption algorithm in sheme CS1b not reveal the preise reason

why a iphertext was rejeted.

Theorem 2 If the DDH assumption holds for G and the TCR assumption holds for HF, then CS1a

and CS1b are seure against adaptive hosen iphertext attak.

In partiular, for all probabilisti, polynomial-time orale query mahines A, for all � 2 Z

�0

,

and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

jAdvCCA

CS1a;A

(� j �)� AdvCCA

CS1;A

(� j �)j � Q

A

(�)=q (13)

and

jAdvCCA

CS1b;A

(� j �)� AdvCCA

CS1;A

(� j �)j � Q

A

(�)=q: (14)

To prove this theorem, let us �x A, �, and �[

^

G;G; g; q℄. Consider the attak game G

0

as de�ned

in x6.2: this is game that A plays against the sheme CS1 for the given values of � and �. We adopt

all the notational onventions established at the beginning of x6.2 (i.e., prior to the desription of

game G

1

).

We begin by de�ning two modi�ations of game G

0

.

Game G

�1a

. In this game, we modify the deryption orale so that in plae of stepD5, we exeute

step D5

0

as in the sheme CS1a. We emphasize that in game G

�1a

, we have z = z

1

+ z

2

w, where

w, z

1

, and z

2

are generated by the key generation algorithm of CS1.

Game G

�1b

. In this game, we modify the deryption orale so that in plae of steps D4 and D5,

we exeute steps D4

0

and D5

0

as in the sheme CS1b. We emphasize that in game G

�1b

, we have

x = x

1

+ x

2

w, y = x

1

+ x

2

w, and z = z

1

+ z

2

w, where w, x

1

, x

2

, y

1

, y

2

, z

1

, and z

2

are generated

by the key generation algorithm of CS1.

Let T

�1a

be the event that � = �̂ in game G

�1a

and T

�1b

be the event that � = �̂ in game

G

�1b

.

We remind the reader that games G

0

, G

�1a

, and G

�1b

all operate on the same underlying

probability spae: all of the variables

Coins; hk; w; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

; �; u

�

that ultimately determine the events T

0

, T

�1a

, and T

�1b

have the same values in games G

0

, G

�1a

,

and G

�1b

; all that hanges is the funtional behavior of the deryption orale.

It is straightforward to verify that and that

AdvCCA

CS1a;A

(� j �) = jPr[T

�1a

� 1=2℄j

and

AdvCCA

CS1b;A

(� j �) = jPr[T

�1b

� 1=2℄j:
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Let us de�ne the event R

�1b

to be the event that some iphertext is rejeted in game G

�1b

in

step D4

0

that would have passed the test in D4. It is lear that games G

0

, G

�1a

, and G

�1b

all

proeed identially until event R

�1b

ours. In partiular, we the events T

0

^:R

�1b

, T

�1a

^:R

�1b

,

and T

�1b

^ :R

�1b

are idential. So by Lemma 4, we have

jPr[T

0

℄� Pr[T

�1a

℄j � Pr[R

�1b

℄

and

jPr[T

0

℄� Pr[T

�1b

℄j � Pr[R

�1b

℄:

So it suÆes to show that

Pr[R

�1b

℄ � Q

A

(�)=q: (15)

To do this, for 1 � i � Q

A

(�), let R

(i)

�1b

be the event that there is an ith iphertext submitted

to the deryption orale in game G

�1b

, and that this iphertext is rejeted in step D4

0

, but would

have passed the test in step D4.

The bound (15) will follow immediately from the following lemma.

Lemma 12 For all 1 � i � Q

A

(�), we have Pr[R

(i)

�1b

℄ � 1=q.

Proof. The proof of this is lemma is almost idential to that of Lemma 10. Note that in game

G

�1b

, the enryption orale uses the \real" enryption algorithm, and so itself does not leak any

additional information about (x

1

; x

2

; y

1

; y

2

). This is in ontrast to game G

5

, where the enryption

orale does leak additional information.

Fix 1 � i � Q

A

(�). Consider the quantities

X := (Coins; hk; w; z; �; u

�

):

and

X

0

:= (x; y):

The values of X and X

0

ompletely determine the adversary's entire behavior in game G

5

, and

hene determine if there is an ith deryption orale query, and if so, the value of the orresponding

iphertext. Let us all X and X

0

relevant if for these values of X and X

0

, there is an ith deryption

orale query, and the orresponding iphertext passes steps D1 and D2.

It will suÆe prove that onditioned on any �xed, relevant values of X and X

0

, the probability

that R

(i)

�1b

ours is bounded by 1=q.

The remainder of the argument is exatly as in Lemma 10, exept using X, X

0

, and the notion

of relevant as de�ned here. 2

6.4 A hash-free variant

Our basi sheme CS1 requires a target ollision resistant hash funtion. Qualitatively, the TCR

assumption is muh weaker than the DDH assumption, sine one an build a target ollision re-

sistant hash funtion based on an arbitrary one-way funtion. Indeed, one an build a ollision

resistant hash funtion under the DL assumption; however, the hash funtions arising from suh

a onstrution produe an output that is in G, whereas we need a hash funtion that maps into

Z

q

. We annot in general expet to �nd an easy-to-ompute, injetive map from G onto Z

q

; in

Example 2 in x4.2, we in fat do have suh a map, but that is an exeptional ase.
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For these reasons, we present a variation CS2 of our basi sheme that does not require a hash

funtion.

This sheme requires a family fChop

�;�

g of \hopping" funtions assoiated with the group

sheme G with the following properties. For � 2 Z

�0

and �[

^

G;G; g; q℄ 2 [S

�

℄, the funtion Chop

�;�

injetivelymaps triples � 2 G

3

of group elements to N -tuples (v

1

; : : : ; v

N

) 2 Z

N

q

. Here, N = N(�;�)

is bounded by a polynomial in �, and the funtion Chop

�;�

should be omputable by a deterministi,

polynomial-time funtion that takes inputs 1

�

, �, and �.

In priniple, suh hopping funtions always exist, sine we an write down the binary repre-

sentation of �, and hop it into bit strings of length blog

2

q.

We present the details of sheme CS2 in Figure 4.

Theorem 3 If the DDH assumption holds for G, then CS2 is seure against adaptive hosen i-

phertext attak.

In partiular, for all probabilisti, polynomial-time orale query mahines A, there exists a

probabilisti algorithm A

1

, whose running time is essentially the same as that of A, suh that the

following holds. For all � 2 Z

�0

, and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

AdvCCA

CS2;A

(� j �) � AdvDDH

G;A

1

(� j �) + (Q

A

(�) + 3)=q:

The proof of this theorem follows the same lines as the proof of Theorem 1. We present here a

sketh of the proof, appealing in several plaes to arguments found in the proof of Theorem 1 so

as to avoid repeating arguments that are idential or nearly idential.

Let us �x a probabilisti, polynomial-time orale query mahine A, the value of the seurity

parameter � 2 Z

�0

, and the group desription �[

^

G;G; g; q℄ 2 [S

�

℄.

We de�ne x; z 2 Z

q

as follows:

x :=x

1

+ x

2

w; z := z

1

+ z

2

w:

We also de�ne y

(i)

2 Z

q

, for 1 � i � N , as

y

(i)

:= y

(i)

1

+ y

(i)

2

w:

As a notational onvention, whenever a partiular iphertext  is under onsideration in some

ontext, the following values are also impliitly de�ned in that ontext:

� a; â; ; d 2 G, where  = (a; â; ; d);

� u; û; v

1

; : : : ; v

N

; r; s 2 Z

q

, where

u := log

g

a; û := log

ĝ

â; (v

1

; : : : ; v

N

) :=Chop

�;�

(a; â; ); r := log

g

; s := log

g

d:

For the target iphertext  

�

, we also denote by a

�

; â

�

; 

�

; d

�

2 G and u

�

; û

�

; v

�

1

; : : : ; v

�

N

; r

�

; s

�

2 Z

q

the orresponding values.

The probability spae de�ning the attak game is then determined by the following, mutually

independent, random variables:

� the oin tosses of A;

� the values w; x

1

; x

2

; y

(1)

1

; : : : ; y

(N)

; y

(1)

2

; : : : ; y

(N)

2

; z

1

; z

2

generated by the key generation algo-

rithm;
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Key Generation: On input 1

�

for � 2 Z

�0

, ompute

�[

^

G;G; g; q℄

R

 

^

S(1

�

);

w

R

 Z

�

q

; x

1

; x

2

; z

1

; z

2

R

 Z

q

;

for i = 1; : : : ; n: y

(i)

1

; y

(i)

2

R

 Z

q

;

ĝ  g

w

; e g

x

1

ĝ

x

2

; h g

z

1

ĝ

z

2

;

for i = 1; : : : ; n: f

i

 g

y

(i)

1

ĝ

y

(i)

2

;

and output the publi key PK = (�; ĝ; e; (f

i

)

N

i=1

; h) and the seret key

SK = (�; x

1

; x

2

; (y

(i)

1

; y

(i)

2

)

N

i=1

; z

1

; z

2

).

Enryption: Given 1

�

for � 2 Z

�0

, a publi key

PK = (�[

^

G;G; g; q℄; ĝ; e; (f

i

)

N

i=1

; h) 2 [S

�

℄�G

N+3

;

along with a message m 2 G, ompute

E1: u

R

 Z

q

;

E2: a g

u

;

E3: â ĝ

u

;

E4: b h

u

;

E5:  b �m;

E6: (v

1

; : : : ; v

N

) Chop

�;�

(a; â; );

E7: d e

u

Q

N

i=1

f

uv

i

i

;

and output the iphertext  = (a; â; ; d).

Deryption: Given 1

�

for � 2 Z

�0

, a seret key

SK = (�[

^

G;G; g; q℄; x

1

; x

2

; (y

(i)

1

; y

(i)

2

)

N

i=1

; z

1

; z

2

) 2 [S

�

℄� Z

N+4

q

;

along with a iphertext  , do the following.

D1: Parse  as a 4-tuple (a; â; ; d) 2

^

G

4

; output rejet and halt if  is not of this form.

D2: Test if a, â, and  belong to G; output rejet and halt if this is not the ase.

D3: Compute (v

1

; : : : ; v

N

) Chop

�;�

(a; â; ).

D4: Test if d = a

x

1

+

P

N

i=1

y

(i)

1

v

i

� â

x

2

+

P

N

i=1

y

(i)

2

v

i

; output rejet and halt if this is not the ase.

D5: Compute b a

z

1

â

z

2

.

D6: Compute m  � b

�1

, and output m.

Figure 4: The publi-key enryption sheme CS2, where N = N(�;�)
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� the values � 2 f0; 1g and u

�

2 Z

q

generated by the enryption orale.

Let G

0

be the original attak game, let �̂ 2 f0; 1g denote the output of A, and let T

0

be the

event that � = �̂ in G

0

, so that AdvCCA

CS2;A

(� j �) = jPr[T

0

℄� 1=2j.

As in the proof of Theorem 1, we shall de�ne a sequene of modi�ed games G

i

, for i = 1; 2; : : :,

and in game G

i

, the event T

i

will be the event orresponding to event T

0

, but in game G

i

. We

remind the reader that all of these games operate on the same underlying probability spae, and

exept as otherwise spei�ed, random variables have idential values between games.

Game G

1

. In game G

1

, we modify the algorithm used by the enryption orale as follows. Steps

E4 and E7 are replaed by:

E4

0

: b a

z

1

â

z

2

;

E7

0

: d a

x

1

+

P

N

i=1

y

(i)

1

v

i

� â

x

2

+

P

N

i=1

y

(i)

2

v

i

:

By the same reasoning as in the proof of Theorem 1, we have Pr[T

1

℄ = Pr[T

0

℄:

Game G

2

. We again modify the enryption orale, replaing step E3 by

E3

0

: û

R

 Z

q

n fug; â ĝ

û

:

By the same reasoning as in the proof of Theorem 1, one sees that there exists a probabilisti

algorithm A

1

, whose running time is essentially the same as that of A, suh that

jPr[T

2

℄� Pr[T

1

℄j � AdvDDH

G;A

1

(� j �) + 3=q:

Game G

3

. In this game, we modify the deryption orale in game G

2

, replaing steps D4 and

D5 with:

D4

0

: Test if â = a

w

and d = a

x+

P

N

i=1

y

(i)

v

i

; output rejet and halt if this is not the ase.

D5

0

: b a

z

.

Let R

3

be the event that in game G

3

, some iphertext  is submitted to the deryption orale

that is rejeted in step D4

0

but that would have passed the test in step D4.

As in the proof of Theorem 1, we have

jPr[T

3

℄� Pr[T

2

℄j � Pr[R

3

℄:

We laim that

Pr[R

3

℄ � Q

A

(�)=q:

We an prove the analog of Lemma 8 (in game G

5

in the proof of Theorem 1) by onsidering

an (N + 3)� (2N + 2) matrix M over Z

q

de�ned as

M :=

0

B

B

B

B

B

B

B

B

�

1 w

1 w

.

.

.

1 w

u

�

û

�

w u

�

v

�

1

û

�

v

�

1

w � � � u

�

v

�

N

û

�

v

�

N

w

u ûw uv

1

ûv

1

w � � � uv

N

ûv

N

w

1

C

C

C

C

C

C

C

C

A

;

where w 6= 0, û 6= u, û

�

6= u

�

, and v

i

6= v

�

i

for some i 2 f1; : : : ; Ng. It will suÆe to show that the

rows of M are linearly independent.
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If we hoose i suh that v

i

6= v

�

i

, and onsider the 4� 4 sub-matrix M

0

of M onsisting of the

intersetion of olumns 1, 2, 2i+1, 2i+2 of M , and rows 1, i+1, N +2, N +3 of M , we see that

matrix M

0

has the same form as the matrix onsidered in Lemma 11, and hene is non-singular.

It follows that the rows of M are linearly independent, sine any non-trivial linear relation among

the rows of M implies a non-trivial linear relation among the rows of M

0

.

Game G

4

. We again modify the algorithm used by the enryption orale, replaing step E5 by

E5

0

: r

R

 Z

q

;  g

r

:

By reasoning analogous to that in game G

4

in the proof of Theorem 1, one an show that

Pr[T

4

℄ = Pr[T

3

℄:

Moreover, by onstrution it is evident that

Pr[T

4

℄ = 1=2:

That ompletes the proof sketh of Theorem 3. We leave it to the reader to work out the details

of the design and analysis of variants CS2a and CS2b of sheme CS2, orresponding to the variants

CS1a and CS1b of sheme CS1, whih were disussed in x6.3.

Remark 11 Note that the high-level struture of the proof of Theorem 3 is signi�antly simpler

than that of Theorem 1. In partiular, in the analysis of game G

3

in the proof of Theorem 3, we

were able to bound the quantity Pr[R

3

℄ diretly, without deferring the analysis to a later game, as

in the proof of Theorem 1. This simpli�ation omes from the fat that we do not have to deal

with a target ollision resistant hash funtion in Theorem 3, as we did in Theorem 1. Indeed, if

in the sheme CS1 we use a ollision resistant hash funtion, we ould prove the seurity of CS1

using a proof with essentially the same line of reasoning as that of the proof of Theorem 3, with

one extra game between G

0

and G

1

to e�etively ban hash funtion ollisions.

7 Hybrid Enryption

The enryption shemes presented in the previous setion all had restrited message spaes. In

some settings, an enryption sheme with an unrestrited message spae is more desirable. A

simple and eÆient way to build an enryption sheme that has an unrestrited message is to

build a hybrid enryption sheme. Loosely speaking, suh a sheme uses publi-key enryption

tehniques to enrypt a key K that is then used to enrypt the atual message using symmetri-

key enryption tehniques. In this setion, we develop the neessary tools for building a hybrid

publi-key enryption sheme.

One key ingredient in any hybrid sheme is a key enapsulation mehanism. This is like a publi-

key enryption sheme, exept that the job of the enryption algorithm is to generate the enryption

of a random key K. Of ourse, one an always use a general-purpose publi-key enryption sheme

to do this, by simply generating K at random, and then enrypting it. However, there are typially

more eÆient ways to this.

As a quik example of a key enapsulation mehanism, onsider the following variation of the

ElGamal enryption sheme. Let G be a group of prime order q generated by an element g. Let

H be a ryptographi hash funtion, suh as SHA-1. The publi key onsists of a group element
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h = g

z

, where z 2 Z

q

is hosen at random; the seret key is z. To generate an enryption of a

symmetri key K, we ompute

u

R

 Z

q

; a g

u

; b h

u

; K  H(b);

to form a iphertext  = a. To derypt a iphertext  = a using the seret key, one omputes

b a

z

; K  H(b);

obtaing a symmetri key K.

To build a omplete hybrid enryption sheme, we ombine a key enapsulation mehanism

with a symmetri-key enryption sheme.

7.1 Key enapsulation

A key enapsulation mehanism KEM onsists of the following algorithms:

� A probabilisti, polynomial-time key generation algorithm KEM.KeyGen that on input 1

�

for

� 2 Z

�0

, outputs a publi key/seret key pair (PK;SK). The struture of PK and SK depends

on the partiular sheme.

For � 2 Z

�0

, we de�ne the probability spaes

KEM.PKSpae

�

:= fPK : (PK;SK)

R

 KEM.KeyGen(1

�

)g;

and

KEM.SKSpae

�

:= fSK : (PK;SK)

R

 KEM.KeyGen(1

�

)g:

� A probabilisti, polynomial-time enryption algorithm KEM.Enrypt that takes as input 1

�

for � 2 Z

�0

, and a publi key PK 2 [KEM.PKSpae

�

℄, and outputs a pair (K; ), where K is

a key and  is a iphertext.

A key K is a bit string of length KEM.KeyLen(�), where KEM.KeyLen(�) is another parameter

of the key enapsulation mehanism.

A iphertext is a bit string.

� A deterministi, polynomial-time deryption algorithm KEM.Derypt that takes as input 1

�

for � 2 Z

�0

, a seret key SK 2 [KEM.SKSpae

�

℄, a iphertext  , and outputs either a key K

or the speial symbol rejet.

7.1.1 Soundness

As for publi key enryption, we need an appropriate notion of soundness. A de�nition of sound-

ness that is adequate for our purposes runs as follows. Let us say a publi key/seret key

pair (PK;SK) 2 [KEM.KeyGen(1

�

)℄ is bad if for some (K; ) 2 [KEM.Enrypt(1

�

;PK)℄, we have

KEM.Derypt(1

�

;SK;  ) 6= K. Let BadKeyPair

KEM

(�) denote the probability that the key gener-

ation algorithm generates a bad key pair for a given value of �. Then our requirement is that

BadKeyPair

KEM

(�) grows negligibly in �.
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7.1.2 Seurity against adaptive hosen iphertext attak

As for a publi key enryption sheme, an adversary A in an adaptive hosen iphertext attak is

a probabilisti, polynomial-time orale query mahine that takes as input 1

�

, where � 2 Z

�0

is

the seurity parameter. We now desribe the attak game used to de�ne seurity against adaptive

hosen iphertext seurity.

Stage 1: The adversary queries a key generation orale. The key generation orale omputes

(PK;SK)

R

 KEM.KeyGen(1

�

) and responds with PK.

Stage 2: The adversary makes a sequene of alls to a deryption orale.

For eah deryption orale query, the adversary submits a iphertext  , and the deryption

orale responds with KEM.Derypt(1

�

;SK;  ).

Stage 3: The adversary queries an enryption orale.

The enryption orale omputes:

(K

�

;  

�

)

R

 KEM.Enrypt(1

�

;PK); K

+

R

 f0; 1g

`

; �

R

 f0; 1g;

if � = 0 then K

y

 K

�

else K

y

 K

+

;

where ` :=KEM.KeyLen(�), and responds with the pair (K

y

;  

�

).

Stage 4: The adversary ontinues to make alls to the deryption orale, subjet only to the

restrition that a submitted iphertext  is not idential to  

�

.

Stage 5: The adversary outputs �̂ 2 f0; 1g.

We de�ne AdvCCA

KEM;A

(�) to be jPr[� = �̂ ℄� 1=2j in the above attak game.

We say that KEM is seure against adaptive hosen iphertext attak if

for all probabilisti, polynomial-time orale query mahines A, the funtion

AdvCCA

KEM;A

(�) grows negligibly in �.

In applying the above de�nition of seurity, one typially works diretly with the quantity

AdvCCA

0

KEM;A

(�) := jPr[�̂ = 1 j � = 0℄� Pr[�̂ = 1 j � = 1℄j :

It is easy to verify that

AdvCCA

0

KEM;A

(�) = 2 � AdvCCA

KEM;A

(�):

7.2 One-time symmetri-key enryption

A one-time symmetri-key enryption sheme SKE onsists of two algorithms:

� A deterministi, polynomial-time enryption algorithm SKE.Enrypt that takes as input 1

�

for � 2 Z

�0

, a key K, and a message m, and outputs a iphertext �.

The key K is a bit string of length SKE.KeyLen(�).

Here, SKE.KeyLen(�) is a parameter of the enryption sheme, whih we assume an be

omputed in deterministi polynomial time given 1

�

.

The message m is a bit string of arbitrary, unbounded length.

The iphertext � is a bit string.

We denote by SKE.CTLen(�; `) the maximum length of any enryption of a message of length

at most `.
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� A deterministi, polynomial-time deryption algorithm SKE.Derypt that takes as input 1

�

for � 2 Z

�0

, a key K, and a iphertext � and outputs a message m or the speial symbol

rejet.

The key K is a bit string of length SKE.KeyLen(�).

The iphertext � is a bit string of arbitrary length.

We require that SKE satisfy the following soundness ondition: for all � 2 Z

�0

, for all K 2

f0; 1g

SKE.KeyLen(�)

, for all m 2 f0; 1g

�

, we have:

SKE.Derypt(1

�

;K;SKE.Enrypt(1

�

;K;m)) = m:

7.2.1 Two de�nitions of seurity

We de�ne two notions of seurity for a one-time symmetri-key enryption sheme: seurity against

passive attaks, and seurity against adaptive hosen iphertext attaks.

As usual, an adversary A is a probabilisti, polynomial-time orale query mahine that takes as

input 1

�

, where � 2 Z

�0

is the seurity parameter.

A passive attak runs as follows. The adversary A hooses two messages, m

0

and m

1

, of equal

length, and gives these to an enryption orale. The enryption orale generates a random key K

of length SKE.KeyLen(�), along with random � 2 f0; 1g, and enrypts the message m

�

using the

key K. The adversary A is then given the resulting iphertext �

�

. Finally, the adversary outputs

�̂ 2 f0; 1g.

We de�ne AdvPA

SKE;A

(�) to be jPr[� = �̂℄� 1=2j in the above attak game.

We say that SKE is seure against passive attaks if

for all probabilisti, polynomial-time orale query mahines A, the funtion

AdvPA

SKE;A

(�) grows negligibly in �.

An adaptive hosen iphertext attak is exatly the same as a passive attak, exept that after

the adversary A obtains the target iphertext �

�

from the enryption orale, the adversary may

then query a deryption orale any number of times. In eah deryption orale query, A submits a

iphertext � 6= �

�

, and obtains the deryption of � under the key K. As in the passive attak, A

outputs �̂ 2 f0; 1g.

We de�ne AdvCCA

SKE;A

(�) to be jPr[� = �̂℄� 1=2j in the above attak game.

We say that SKE is seure against adaptive hosen iphertext attaks if

for all probabilisti, polynomial-time orale query mahines A, the funtion

AdvCCA

SKE;A

(�) grows negligibly in �.

7.2.2 Construtions

Our de�nition of a symmetri-key enryption sheme and the orresponding notions of seurity are

tailored to the appliation of building a hybrid publi-key enryption sheme. These de�nitions

may not be appropriate for other settings. In partiular, our de�nitions of seurity do not imply

protetion against hosen plaintext attak; however, this protetion is not needed for hybrid publi-

key enryption shemes, sine a symmetri key is only used to enrypt a single message.

It is easy to build a symmetri key enryption sheme that ahieves seurity against passive

attaks using standard symmetri-key tehniques. For example, to enrypt a message m, one an
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expand the key K using a pseudo-random bit generator to obtain a \one time pad" � of length

jmj, and then ompute � m� �.

A pseudo-random bit generator an be built from an arbitrary one-way permutation [GL89℄, or

even from an arbitrary one-way funtion [ILL89, HILL99℄. These onstrutions, however, are not

very pratial. In a pratial implementation, it is perfetly reasonable to streth the keyK by using

it as the key to a dediated blok ipher, and then evaluate the blok ipher at suessive points

(so-alled \ounter mode") to obtain a sequene of pseudo-random bits (.f. [MvOV97, Chapter 7℄).

Note that the above onstrution yields a sheme that is ompletely inseure against adaptive

hosen iphertext attak. However, it is also easy to build a symmetri key enryption sheme

SKE2 that ahieves seurity against adaptive hosen iphertext attak, given an arbitrary sheme

SKE1 that is only seure against passive attaks.

One tehnique is to simply build an SKE2 iphertext by attahing a message authentiation

ode to the SKE1 iphertext. Although this tehnique seems to be \folklore," for ompleteness, we

develop the details here.

A one-time message authentiation ode MAC spei�es the following items:

� For � 2 Z

�0

, a key length parameter MAC.KeyLen(�) and an output length parameter

MAC.OutLen(�).

We assume that MAC.KeyLen(�) an be omputed in deterministi polynomial time given 1

�

.

� A family of funtions indexed by � 2 Z

�0

and mk 2 f0; 1g

MAC.KeyLen(�)

, where eah funtion

MAC

�

mk

maps arbitrary bit strings to bit strings of length exatly MAC.OutLen(�).

There must be a deterministi, polynomial-time algorithm that on input 1

�

, mk 2

f0; 1g

MAC.KeyLen(�)

, and � 2 f0; 1g

�

, outputs MAC

�

mk

(�).

To de�ne seurity for MAC, we de�ne an attak game as follows. As usual, an adversary A is a

probabilisti, polynomial-time orale query mahine that takes as input 1

�

, where � 2 Z

�0

is the

seurity parameter. The adversary A �rst hooses a bit string �, and submits this to an orale.

The orale generates a random key mk of length MAC.KeyLen(�), omputes �  MAC

�

mk

(�), and

returns � to the adversary. The adversary A then outputs a list

((�

1

; �

1

); : : : ; (�

k

; �

k

))

of pairs of bit strings. We say that A has produed a forgery if for some 1 � i � k, we have �

i

6= �

and MAC

�

mk

(�

i

) = �

i

.

We say that A is a (L

1

(�); L

2

(�); N(�)) forging adversary if j�j � L

1

(�), k � N(�), and

j�

i

j � L

2

(�) for all 1 � i � k.

De�ne AdvForge

MAC;A

(�) to be the probability that A produes a forgery in the above game.

We say that MAC is seure if

for all probabilisti, polynomial-time orale query mahines A, the funtion

AdvForge

MAC;A

(�) grows negligibly in �.

Message authentiation odes have been extensively studied (.f. [MvOV97, Chapter 9℄). One

an easily build seure one-time message authentiation odes using an appropriate family of uni-

versal hash funtions, without relying on any intratability assumptions. There are also other ways

to build message authentiation odes whih may be preferable in pratie, even though the seurity

of these shemes is not fully proven.
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Now we show how to use SKE1 and MAC to build SKE2. The key length SKE2.KeyLen(�) of

SKE2 will be equal to

SKE1.KeyLen(�) +MAC.KeyLen(�):

We will write suh a key as (K;mk), where K is a bit string of length SKE1.KeyLen(�), and mk is

a bit string of length MAC.KeyLen(�).

To enrypt a message m under a key (K;mk) as above, algorithm SKE2.Enrypt omputes

� SKE1.Enrypt(1

�

;K;m); tag MAC

�

mk

(�); �

0

 � k tag;

and outputs the iphertext �

0

.

To derypt a iphertext �

0

under a key (K;mk) as above, algorithm SKE2.Derypt �rst parses

�

0

as �

0

= � k tag, where tag is a bit string of length MAC.OutLen(�). If this parsing step fails

(beause �

0

is too short), then the algorithm outputs rejet; otherwise, it omputes

tag

0

 MAC

�

mk

(�):

If tag 6= tag

0

, the algorithm outputs rejet; otherwise, it omputes

m SKE1.Derypt(1

�

;K; �);

and outputs m.

To analyze the seurity of SKE2, we reall that for all probabilisti, polynomial-time orale query

mahines A, for all � 2 Z

�0

, we denote by Q

A

(�) an upper bound on the number of deryption

orale queries made by A on input 1

�

. Although we introdued this notation in the ontext of

publi-key enryption, we an adopt it here in the ontext of symmetri-key enryption as well. We

remind the reader that Q

A

(�) should be a strit bound that holds for any environment.

For all probabilisti, polynomial-time orale query mahines A, for all � 2 Z

�0

, we de�ne B

A

(�)

to be an upper bound on the length of the messages submitted by A to the enryption orale, and

B

0

A

(�) to be an upper bound on the iphertexts submitted by A to the deryption orale. As usual,

these upper bounds should hold regardless of the environment of A.

Theorem 4 If SKE1 is seure against passive attaks, and MAC is a seure one-time message

authentiation ode, then SKE2 is seure against adaptive hosen iphertext attaks.

In partiular, for every probabilisti, polynomial-time orale query mahine A, there exist prob-

abilisti orale query mahine A

1

and A

2

, whose running times are essentially the same as that of

A, suh that for all � 2 Z

�0

,

AdvCCA

SKE2;A

(�) � AdvPA

SKE1;A

1

(�) + AdvForge

MAC;A

2

(�):

Moreover, A

2

is a

(SKE1.CTLen(�;B(�)); B

0

(�)�MAC.OutLen(�); Q

A

(�))

forging adversary.

Proof. Fix A and �, and let G

0

denote the original hosen iphertext attak game. Let T

0

be the

event that � = �̂ in game G

0

.

We next de�ne a modi�ed attak game G

1

, in whih all iphertexts submitted to the deryption

orale by A in game G

1

are simply rejeted.
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Let T

1

be the event that � = �̂ is game G

1

. Let R

1

be the event in game G

1

that some

iphertext is rejeted in game G

1

that would not have been rejeted under the rules of game G

0

.

Sine games G

0

and G

1

proeed identially until event R

1

ours, the events T

0

^ :R

1

and

T

1

^ :R

1

are idential, and so by Lemma 4, we have jPr[T

0

℄� Pr[T

1

℄j � Pr[R

1

℄.

It is straightforward to verify that

Pr[R

1

℄ � AdvForge

MAC;A

2

(�) (16)

for an adversary A

2

as desribed above.

The theorem now follows by observing that the attak by A in game G

1

is now a passive attak.

That is, the adversary A

1

in the theorem simply runs the adversary A, and whenever A makes a

deryption orale query, adversary A

1

simply lets A ontinue as if the deryption orale rejeted

the iphertext. 2

Remark 12 Although the keys for SKE2 are longer than those for SKE1, this need not be the ase

if we use a pseudo-random bit generator to streth a short key into a suitably long key. Indeed,

the key length of any symmetri key enryption sheme need be no longer than the key length of

a seure a pseudo-random bit generator.

7.3 A hybrid onstrution

Let KEM be a key enapsulation mehanism (as de�ned in x7.1) and let SKE be a one-time sym-

metri key enryption sheme (as de�ned in x7.2). Further, let us assume that the two shemes are

ompatible in the sense that for all � 2 Z

�0

, we have KEM.KeyLen(�) = SKE.KeyLen(�). We now

desribe a hybrid publi-key enryption sheme HPKE.

The key generation algorithm for HPKE is the same as that of KEM, and the publi and seret

keys are the same as those of KEM.

To enrypt a message m in the hybrid sheme, we run KEM.Enrypt to generate a symmetri

key K and a iphertext  enrypting K. We then enrypt m under the key K using SKE.Enrypt,

obtaining a iphertext �. The output of the enryption algorithm is

^

 = ( ; �), enoded in a

anonial fashion as a bit string.

The deryption algorithm for the hybrid sheme runs as follows. Given a iphertext

^

 , we �rst

verify that

^

 properly enodes a pair ( ; �). If not, we output rejet and halt. Next, we derypt

 using KEM.Derypt; if this yields rejet, then we output rejet and halt. Otherwise, we obtain a

symmetri key K and derypt � under K using SKE.Derypt, and output the resulting deryption

(whih may be rejet).

Theorem 5 If KEM and SKE are seure against adaptive hosen iphertext attaks, then so is

HPKE.

In partiular, if A is a probabilisti, polynomial-time orale query mahine, then there exist

probabilisti orale query mahines A

1

and A

2

, whose running times are essentially the same as

that of A, suh that for all � 2 Z

�0

, we have

AdvCCA

HPKE;A

(�) � BadKeyPair

KEM

(�) + AdvCCA

0

KEM;A

1

(�) + AdvCCA

SKE;A

2

(�):

Proof. Fix A and �, and let G

0

be the original hosen iphertext attak game played by A against

HPKE. We let

^

 

�

= ( 

�

; �

�

) denote the target iphertext; � is the hidden bit generated by the

enryption orale and �̂ is the bit output by A. Let T

0

be the event that � = �̂. Also, let K

�

denote

the symmetri key output by the algorithm KEM.Enrypt during the enryption proess within the

enryption orale.
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We now de�ne a modi�ed game G

1

. In this game, whenever a iphertext ( ; �) is submitted

to the deryption orale after the invoation of the enryption orale, if  =  

�

(but � 6= �

�

of

ourse), then the deryption orale does not apply algorithm KEM.Derypt to obtain the symmetri

key, but instead just uses the key K

�

produed by the enryption orale. Let T

1

be the event that

� = �̂ in game G

1

.

This hange is slightly more than just oneptual, sine KEM.KeyGen may generate a bad key

pair with probability BadKeyPair

KEM

(�). However, unless this ours, games G

0

and G

1

proeed

identially, and so by Lemma 4, we have

jPr[T

1

℄� Pr[T

0

℄j � BadKeyPair

KEM

(�):

Now we de�ne a modi�ed game G

2

. This game behaves just like game G

1

, exept that we

use a ompletely random symmetri key K

+

in plae of the key K

�

in both the enryption and

deryption orales. Let T

2

be the event that � = �̂ in game G

2

.

It is straightforward to see that there is an orale query mahine A

1

, whose running time is

essentially the same as that of A, suh that

jPr[T

2

℄� Pr[T

1

℄j = AdvCCA

0

KEM;A

1

(�):

The adversary A

1

basially just runs the adversary A. In the attak game that A

1

is playing

against KEM, the value K

y

is equal to K

�

in game G

1

, and is equal to K

+

in game G

2

. Note that

in games G

1

and G

2

, the iphertext  

�

is never expliitly derypted, and so A

1

need not submit

this for deryption either.

Lastly, we observe that there is an orale query mahine A

2

, whose running time is essentially

the same as that of A, suh that

jPr[T

2

℄� 1=2j = AdvCCA

SKE;A

2

(�):

To see this, note that in game G

2

, the iphertext �

�

is produed using the random symmetri

enryption key K

+

, and also that some other iphertexts � 6= �

�

are derypted using K

+

, but that

the key K

+

plays no other role in game G

2

. Thus, in game G

2

, the adversary A is essentially just

arrying out an adaptive hosen iphertext attak against SKE. 2

Remark 13 We stress that it is essential for both KEM and SKE to be seure against adaptive

hosen iphertext attak in order to prove that HPKE is as well. One annot start with a \weak"

KEM and hope to \repair" it with a hybrid onstrution: doing this may indeed foil some spei�

attaks, but we know of no way to formally reason about the seurity of suh a sheme. It is also

important not to waste the hosen iphertext seurity of KEM by using a \weak" SKE. Indeed,

some popular methods of onstruting a \digital envelope" use a SKE that may only be seure

against passive attaks; even if the resulting omposite iphertext is digitally signed, this does not

neessarily provide seurity against hosen iphertext attak.

8 Key Derivation Funtions

In the next setion, we will present and analyze a key enapsulation mehanism. The key will be

derived by hashing a pair of group elements. In order not to lutter that setion, we develop here

the notion of suh a key derivation funtion.

Let G be a omputational group sheme, speifying a sequene (S

�

)

�2Z

�0

of group distributions.

A key derivation sheme KDF assoiated with G spei�es two items:
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� A family of key spaes indexed by � 2 Z

�0

and � 2 [S

�

℄. Eah suh key spae is a probability

spae on bit strings denoted by KDF.KeySpae

�;�

.

There must exist a probabilisti, polynomial-time algorithm whose output distribution on

input 1

�

and � is equal to KDF.KeySpae

�;�

.

� A family of key derivation funtions indexed by � 2 Z

�0

, �[

^

G;G; g; q℄ 2 [S

�

℄, and dk 2

[KDF.KeySpae

�;�

℄, where eah suh funtion KDF

�;�

dk

maps a pair (a; b) 2 G

2

of group elements

to a key K.

A key K is a bit string of length KDF.OutLen(�). The parameter KDF.OutLen(�) should be

omputable in deterministi polynomial time given 1

�

.

There must exist a deterministi, polynomial-time algorithm that on input 1

�

, �[

^

G;G; g; q℄ 2

[S

�

℄, dk 2 [KDF.KeySpae

�;�

℄, and (a; b) 2 G

2

, outputs KDF

�;�

dk

(a; b).

We now de�ne the seurity property that we shall require of KDF.

For all 0/1-valued, probabilisti, polynomial-time algorithms A, and for all � 2 Z

�0

, de�ne

AdvDist

KDF;A

(�) :=

�

�

�

Pr[ � = 1 : �

R

 S

�

; dk

R

 KDF.KeySpae

�;�

; a; b

R

 G;

�

R

 A(1

�

;�; dk; a;KDF

�;�

dk

(a; b)) ℄�

Pr[ � = 1 : �

R

 S

�

; dk

R

 KDF.KeySpae

�;�

; a

R

 G; K

R

 f0; 1g

KDF.OutLen(�)

;

�

R

 A(1

�

;�; dk; a;K) ℄

�

�

�

That is, AdvDist

KDF;A

(�) measures the advantage that A has in distinguishing two distributions:

in the �rst it is given KDF

�;�

dk

(a; b) and in the seond it is given a random keyK; in both distributions

it is given the derivation key dk as well as the auxiliary group element a.

We shall say that KDF is seure if this distinguishing advantage is negligible, i.e.,

for all 0/1-valued, probabilisti, polynomial-time algorithms A, the funtion

AdvDist

KDF;A

(�) grows negligibly in �.

It is also onvenient to de�ne a quantity analogous to AdvDist

KDF;A

(�), but onditioned on a

�xed group desription. For all 0/1-valued, probabilisti, polynomial-time algorithms A, for all

� 2 Z

�0

, and all �[

^

G;G; g; q℄ 2 [S

�

℄,

AdvDist

KDF;A

(� j �) :=

�

�

�

Pr[ � = 1 : dk

R

 KDF.KeySpae

�;�

; a; b

R

 G;

�

R

 A(1

�

;�; dk; a;KDF

�;�

dk

(a; b)) ℄�

Pr[ � = 1 : dk

R

 KDF.KeySpae

�;�

; a

R

 G; K

R

 f0; 1g

KDF.OutLen(�)

;

�

R

 A(1

�

;�; dk; a;K) ℄

�

�

�

8.1 Construtions

8.1.1 Unonditionally seure onstrutions

One an build a seure KDF for G without any assumptions, provided the groups de�ned by G are

suÆiently large, whih they ertainly will be in our appliations. Indeed, all we need is that KDF

is pair-wise independent.
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In our ontext, we shall say that a KDF is pair-wise independent if for all � 2 Z

�0

, for all

�[

^

G;G; g; q℄ 2 [S

�

℄, for all a; b; b

0

2 G with b 6= b

0

, the distribution

f(KDF

�;�

dk

(a; b);KDF

�;�

dk

(a; b

0

)) : dk

R

 KDF.KeySpae

�;�

g

is the uniform distribution over all pairs of bits strings of length KDF.OutLen(�).

By the Leftover Hash Lemma [ILL89, IZ89℄, it follows that if KDF is pair-wise independent,

then for all 0/1-valued, probabilisti, polynomial-time algorithms A, for all � 2 Z

�0

, and all

�[

^

G;G; g; q℄ 2 [S

�

℄,

AdvDist

KDF;A

(� j �) � 2

�k

;

where

k = b

blog

2

q � KDF.OutLen(�)

2

:

We also point out that fairly eÆient pair-wise independent funtions an be onstruted without

relying on any intratability assumptions.

8.1.2 Conditionally seure onstrutions

In pratie, to build a key derivation funtion, one might simply use a dediated ryptographi

hash funtion, like SHA-1.

In this situation, we will simply be fored to assume that suh a KDF is seure. However, suh

an intratability assumption is not entirely unreasonable. Moreover, a dediated ryptographi

hash funtion has several potential advantages over a pair-wise independent hash funtion:

� it may not use a key, or it may use a very short key, whih may lead to a signi�ant spae

savings;

� it an usually be evaluated more quikly than a typial pair-wise independent hash funtion

an;

� it an be safely used to derive output keys that are signi�antly longer than would be safe to

derive with a typial pair-wise independent hash funtion;

� it may, at least heuristially, provide even more seurity in appliations than a typial pair-

wise independent hash funtion.

9 The New Enryption Sheme: Hybrid Version

9.1 Desription of the Sheme

In this setion, we present a hybrid version of our new enryption sheme. Spei�ally, we present

a key enapsulation mehanism CS3, out of whih one an easily onstrut a hybrid enryption

sheme, as desribed in x7.

The sheme makes use of a omputational group sheme G as desribed in x4.1, de�ning a

sequene (S

�

)

�2Z

�0

of distributions of group desriptions, and providing a sampling algorithm

^

S,

where the output distribution

^

S(1

�

) losely approximates S

�

.

The sheme also makes use of a binary group hashing sheme HF assoiated with G, as desribed

in x5.

Finally, the sheme makes use of a key derivation sheme KDF, assoiated with G, as desribed

in x8. Note that output key length CS3.KeyLen(�) of the sheme is equal to KDF.OutLen(�).

The sheme is desribed in detail in Figure 5.
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Key Generation: On input 1

�

for � 2 Z

�0

, ompute

�[

^

G;G; g; q℄

R

 

^

S(1

�

); hk

R

 HF.KeySpae

�;�

; dk

R

 KDF.KeySpae

�;�

;

w

R

 Z

�

q

; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

R

 Z

q

;

ĝ  g

w

; e g

x

1

ĝ

x

2

; f  g

y

1

ĝ

y

2

; h g

z

1

ĝ

z

2

;

and output the publi key PK = (�; hk; dk; ĝ; e; f; h) and the seret key

SK = (�; hk; dk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

).

Enryption: Given 1

�

for � 2 Z

�0

, a publi key

PK = (�[

^

G;G; g; q℄; hk; dk; ĝ; e; f; h) 2 [S

�

℄� [HF.KeySpae

�;�

℄� [KDF.KeySpae

�;�

℄�G

4

;

ompute

E1: u

R

 Z

q

;

E2: a g

u

;

E3: â ĝ

u

;

E4: b h

u

;

E5: K  KDF

�;�

dk

(a; b);

E6: v  HF

�;�

hk

(a; â);

E7: d e

u

f

uv

;

and output the symmetri key K and the iphertext  = (a; â; d).

Deryption: Given 1

�

for � 2 Z

�0

, a seret key

SK = (�[

^

G;G; g; q℄; hk; dk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

) 2 [S

�

℄� [HF.KeySpae

�;�

℄� [KDF.KeySpae

�;�

℄� Z

6

q

;

along with a iphertext  , do the following.

D1: Parse  as a 3-tuple (a; â; d) 2

^

G

3

; output rejet and halt if  is not of this form.

D2: Test if a and â belong to G; output rejet and halt if this is not the ase.

D3: Compute v  HF

�;�

hk

(a; â).

D4: Test if d = a

x

1

+y

1

v

â

x

2

+y

2

v

; output rejet and halt if this is not the ase.

D5: Compute b a

z

1

â

z

2

.

D6: Compute K  KDF

�;�

dk

(a; b), and output the symmetri key K.

Figure 5: The key enapsulation mehanism CS3
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9.2 Seurity analysis of the sheme

We shall prove that CS3 is seure against adaptive hosen iphertext attak if the DDH assumption

holds for G, and the TCR assumption holds for HF, and assuming that KDF is a seure key derivation

sheme.

As we have done before, for all probabilisti, polynomial-time orale query mahines A, and for

all � 2 Z

�0

, we let Q

A

(�) be an upper bound on the number of deryption orale queries made by

A on input 1

�

. We assume that Q

A

(�) is a strit bound in the sense that it holds regardless of the

probabilisti hoies of A, and regardless of the responses to its orale queries from its environment.

Theorem 6 If the DDH assumption holds for G and the TCR assumption holds for HF, and

assuming that KDF is a seure key derivation sheme, then CS3 is seure against adaptive hosen

iphertext attak

In partiular, for all probabilisti, polynomial-time orale query mahines A, there exist proba-

bilisti algorithms A

1

, A

2

, and A

3

whose running times are essentially the same as that of A, suh

that the following holds. For all � 2 Z

�0

, and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

AdvCCA

CS3;A

(� j �) � AdvDDH

G;A

1

(� j �) + AdvTCR

HF;A

2

(� j �) +

AdvDist

KDF;A

3

(� j �) + (Q

A

(�) + 3)=q:

(17)

To prove Theorem 6, let us �x a probabilisti, polynomial-time orale query mahine A, the

value of the seurity parameter � 2 Z

�0

, and the group desription �[

^

G;G; g; q℄ 2 [S

�

℄.

The proof follows the same line of argument as the proof of Theorem 1, and we will at several

plaes appeal to argument in that proof, so as to avoid unneessary repetition.

The attak game is as desribed in x7.1.2. We now disuss the relevant random variables in this

game.

Suppose that the publi key is (�; hk; dk; ĝ; e; f; h) and that the seret key is

(�; hk; dk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

). Let w := log

g

ĝ, and de�ne x; y; z 2 Z

q

as follows:

x :=x

1

+ x

2

w; y := y

1

+ y

2

w; z := z

1

+ z

2

w:

As a notational onvention, whenever a partiular iphertext  is under onsideration in some

ontext, the following values are also impliitly de�ned in that ontext:

� a; â; d 2 G, where  = (a; â; d);

� u; û; v; s 2 Z

q

, where

u := log

g

a; û := log

ĝ

â; v :=HF

�;�

hk

(a; â); s := log

g

d:

For the target iphertext  

�

, we also denote by a

�

; â

�

; d

�

2 G, and u

�

; û

�

; v

�

; s

�

2 Z

q

the orre-

sponding values.

The probability spae de�ning the attak game is then determined by the following, mutually

independent, random variables:

� the oin tosses of A;

� the values hk; dk; w; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

generated by the key generation algorithm;

� the values � 2 f0; 1g, K

+

2 f0; 1g

KDF.OutLen(�)

, and u

�

2 Z

q

generated by the enryption

orale in the attak game.
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Let G

0

be the original attak game, let �̂ 2 f0; 1g denote the output of A, and let T

0

be the

event that � = �̂ in G

0

, so that AdvCCA

CS3;A

(� j �) = jPr[T

0

℄� 1=2j.

As in the proof of Theorem 1, we shall de�ne a sequene of modi�ed games G

i

, for i = 1; 2; : : :,

where in game G

i

, the event T

i

will be the event orresponding to event T

0

, but in game G

i

.

The overall struture of the proof will di�er a bit from that of Theorem 1, even though many of

the low level details will be very similar. Indeed, the proof of this theorem is oneptually a bit

simpler (even though there are more steps) than that of Theorem 1, sine the inputs to HF

�;�

hk

in

the enryption orale are independent of any quantities omputed by the adversary; we also save a

term of 1=q in (17) beause of this.

Game G

1

. We now modify game G

0

to obtain a new game G

1

. These two games are idential,

exept that instead of using the enryption algorithm as given to ompute the target iphertext

 

�

, we use a modi�ed enryption algorithm, in whih steps E4 and E7 are replaed by:

E4

0

: b a

z

1

â

z

2

;

E7

0

: d a

x

1

+y

1

v

â

x

2

+y

2

v

:

By the same reasoning as in the proof of Theorem 1, we have

Pr[T

1

℄ = Pr[T

0

℄:

Game G

2

. We again modify the enryption orale, replaing step E3 by

E3

0

: û

R

 Z

q

; â ĝ

û

:

By the same reasoning as in the proof of Theorem 1, one sees that there exists a probabilisti

algorithm A

1

, whose running time is essentially the same as that of A, suh that

jPr[T

2

℄� Pr[T

1

℄j � AdvDDH

G;A

1

(� j �) + 2=q:

Note that unlike game G

2

in the proof of Theorem 1, we do not impose the restrition u

�

6= û

�

just yet; it is tehnially onvenient to defer this until later. This is why the term 2=q appears in

the above bound, rather than 3=q.

Game G

3

. This game is the same as game G

2

, exept for the following modi�ation.

We modify the deryption orale so that it applies the following speial rejetion rule: if the

adversary submits a iphertext  for deryption at a point in time after the enryption orale

has been invoked, suh that (a; â) 6= (a

�

; â

�

) but v = v

�

, then the deryption orale immediately

outputs rejet and halts (before exeuting step D4

0

).

We laim that there exists a probabilisti algorithm A

2

, whose running time is essentially the

same as that of A, suh that

jPr[T

3

℄� Pr[T

2

℄j � AdvTCR

HF;A

2

(� j �):

This follows from reasoning very similar to the proof of Lemma 7 in the analysis of game G

5

in the

proof of Theorem 1. Observe that we an impose the speial rejetion rule already in this game,

rather than deferring to to a later game as in the proof of Theorem 1, beause, as we mentioned

above, the inputs to HF

�;�

hk

in the enryption orale are independent of any quantities omputed by

the adversary.
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Game G

4

. We again modify the enryption orale, replaing step E3

0

by

E3

00

: û

R

 Z

q

n fug; â ĝ

û

:

It is easy to verify that

jPr[T

4

℄� Pr[T

3

℄j � 1=q:

Game G

5

. In this game, we modify the deryption orale in game G

4

, replaing steps D4 and

D5 with:

D4

0

: Test if â = a

w

and d = a

x+yv

; output rejet and halt if this is not the ase.

D5

0

: b a

z

.

Let R

5

be the event that in game G

5

, some iphertext  is submitted to the deryption orale

that is rejeted in step D4

0

but that would have passed the test in step D4.

It is lear that

jPr[T

5

℄� Pr[T

4

℄j � Pr[R

5

℄:

We also laim that

Pr[R

5

℄ � Q

A

(�)=q:

This follows from reasoning analogous to that in Lemma 8 (in game G

5

in the proof of Theorem 1).

Game G

6

. We again modify the algorithm used by the enryption orale, replaing step E4

0

by

E4

00

: r

R

 Z

q

; b g

r

:

By reasoning analogous to that in the analysis of game G

4

in the proof of Theorem 1, one an

easily show that

Pr[T

6

℄ = Pr[T

5

℄:

Game G

7

. In this game, we modify the enryption orale, replaing step E5 of the enryption

algorithm by

E5

0

: K

R

 f0; 1g

KDF.OutLen(�)

:

It is straightforward to see that there exists a probabilisti algorithm A

3

, whose running time

is essentially the same as that of A, suh that

jPr[T

7

℄� Pr[T

6

℄j � AdvDist

KDF;A

3

(� j �):

Furthermore, it is lear that by onstrution that

Pr[T

7

℄ = 1=2:

That ompletes the proof of Theorem 6.
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Key Generation: On input 1

�

for � 2 Z

�0

, ompute

�[

^

G;G; g; q℄

R

 

^

S(1

�

); hk

R

 HF.KeySpae

�;�

; dk

R

 KDF.KeySpae

�;�

;

w

R

 Z

�

q

; x

1

; x

2

; y

1

; y

2

; z

R

 Z

q

;

ĝ  g

w

; e g

x

1

ĝ

x

2

; f  g

y

1

ĝ

y

2

; h g

z

;

and output the publi key PK = (�; hk; dk; ĝ; e; f; h) and the seret key SK = (�; hk; dk; x

1

; x

2

; y

1

; y

2

; z).

Deryption: Given 1

�

for � 2 Z

�0

, a seret key

SK = (�[

^

G;G; g; q℄; hk; dk; x

1

; x

2

; y

1

; y

2

; z) 2 [S

�

℄� [HF.KeySpae

�;�

℄� [KDF.KeySpae

�;�

℄� Z

5

q

;

along with a iphertext  , do the following.

D1: Parse  as a 3-tuple (a; â; d) 2

^

G

3

; output rejet and halt if  is not of this form.

D2: Test if a and â belong to G; output rejet and halt if this is not the ase.

D3: Compute v  HF

�;�

hk

(a; â).

D4: Test if d = a

x

1

+y

1

v

â

x

2

+y

2

v

; output rejet and halt if this is not the ase.

D5

0

: Compute b a

z

.

D6: Compute K  KDF

�;�

dk

(a; b), and output the symmetri key K.

Figure 6: Key generation and deryption algorithms for CS3a

Key Generation: On input 1

�

for � 2 Z

�0

, ompute

�[

^

G;G; g; q℄

R

 

^

S(1

�

); hk

R

 HF.KeySpae

�;�

; dk

R

 KDF.KeySpae

�;�

;

w

R

 Z

�

q

; x; y; z

R

 Z

q

;

ĝ  g

w

; e g

x

; f  g

y

; h g

z

;

and output the publi key PK = (�; hk; dk; ĝ; e; f; h) and the seret key SK = (�; hk; dk; x; y; z).

Deryption: Given 1

�

for � 2 Z

�0

, a seret key

SK = (�[

^

G;G; g; q℄; hk; dk; x; y; z) 2 [S

�

℄� [HF.KeySpae

�;�

℄� [KDF.KeySpae

�;�

℄� Z

3

q

;

along with a iphertext  , do the following.

D1: Parse  as a 3-tuple (a; â; d) 2

^

G

3

; output rejet and halt if  is not of this form.

D2

0

: Test if a belongs to G; output rejet and halt if this is not the ase.

D3: Compute v  HF

�;�

hk

(a; â).

D4

0

: Test if â = a

w

and d = a

x+yv

; output rejet and halt if this is not the ase.

D5

0

: Compute b a

z

.

D6: Compute K  KDF

�;�

dk

(a; b), and output the symmetri key K.

Figure 7: Key generation and deryption algorithms for CS3b

49



9.3 Two variations

One an easily modify sheme CS3 to obtain two variants, whih we all CS3a and CS3b, that are

analogous to the variations CS1a and CS1b of CS1, disussed in x6.3. Only the key generation and

deryption algorithms di�er. The details are are presented in Figures 6 and 7.

Remark 14 Sheme CS3b is essentially the same sheme that was originally presented in [Sho00b℄.

This sheme is the most eÆient sheme among all those presented in this paper. It is also attrative

in that it yields a publi-key enryption sheme with an unrestrited message spae. Moreover, this

sheme has some other attrative seurity properties that will be examined in x10.

Remark 15 Analogous to Remark 7, we do not have to separately test if â belongs to the subgroup

G in step D2

0

of the deryption algorithm of CS3b, and we may test if a belongs to G in some ases

by testing if a

q

= 1

G

.

Remark 16 Analogous to Remark 8, in sheme CS3b, the deryption algorithm has to ompute

either three or four (if we test if a

q

= 1

G

) powers of a, and speial algorithmi tehniques an be

exploited to do this.

Remark 17 Analogous to Remarks 9 and 10, it is strongly reommended to always ompute both

exponentiations in step D4

0

of CS3b before rejeting the iphertext, and to not reveal the preise

reason why any iphertext was rejeted.

The following theorem an proved using an argument almost idential to the argument that

was used to prove Theorem 2. We leave it to the reader to verify this.

Theorem 7 If the DDH assumption holds for G and the TCR assumption holds for HF, and

assuming that KDF is a seure key derivation sheme, then CS3a and CS3b are seure against

adaptive hosen iphertext attak.

In partiular, for all probabilisti, polynomial-time orale query mahines A, for all � 2 Z

�0

,

and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

jAdvCCA

CS3a;A

(� j �)� AdvCCA

CS3;A

(� j �)j � Q

A

(�)=q

and

jAdvCCA

CS3b;A

(� j �)� AdvCCA

CS3;A

(� j �)j � Q

A

(�)=q

10 Further Seurity Considerations of Sheme CS3b

The key enapsulation mehanism CS3b, whih was desribed and analyzed in x9.3, has some other

interesting seurity properties, whih we disuss in this setion.

The main results we present here are the following. First, we show that CS3b is no less seure

than a more traditional key enapsulation mehanism that is a hashed variant of ElGamal enryp-

tion, whih we all HEG. Seond, we also show that CS3b is seure in the random orale model

(viewing KDF as a random orale) if the CDH and TCR assumptions hold. Along the way, we

also give a seurity analysis of HEG in the random orale model, based on a rather non-standard

intratability assumption.
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10.1 Hashed ElGamal key enapsulation

We begin by presenting a fairly traditional version of ElGamal key enapsulation, whih we all

HEG.

The sheme makes use of a omputational group sheme G as desribed in x4.1, de�ning a

sequene (S

�

)

�2Z

�0

of distributions of group desriptions, and providing a sampling algorithm

^

S,

where the output distribution

^

S(1

�

) losely approximates S

�

.

Also, the sheme makes use of a key derivation sheme KDF, assoiated with G, as desribed in

x8. Note that output key length EG.KeyLen(�) of the sheme is equal to KDF.OutLen(�).

The sheme is desribed in detail in Figure 8.

10.2 The random orale model

We will analyze the seurity of both shemes HEG and CS3b in the random orale model. In this

approah, a ryptographi hash funtion | in this ase KDF | is modeled for the purposes of

analysis as a \blak box" ontaining a random funtion to whih the adversary and the algorithms

implementing the ryptosystem have \orale aess." This approah has been used impliitly and

informally for some time; however, it was formalized by Bellare and Rogaway [BR93℄, and has

subsequently been used quite a bit in the ryptographi researh ommunity.

More preisely, we shall analyze the seurity the sheme HEG and later CS3b in an idealized

model of omputation where for all � 2 Z

�0

, all �[

^

G;G; g; q℄ 2 [S

�

℄, all dk 2 [KDF.KeySpae

�;�

℄,

and all a; b 2 G, we treat the values KDF

�;�

dk

(a; b) as mutually independent, random bit strings of

length KDF.OutLen(�); moreover, the only way to obtain the value of KDF

�;�

dk

(a; b) to to expliitly

query an orale with input (�;�; dk; a; b). Atually, to be omplete, we allow �, dk, a, and b to range

over arbitrary bit strings, regardless of whether these are valid enodings of appropriate objets.

Sine in any of our appliations, only a �nite number of the values KDF

�;�

dk

(a; b) will be relevant,

experiments based on these values an be modeled using �nite probability spaes.

When onsidering an adversary A that is arrying out an adaptive hosen iphertext attak

in the random orale model, in addition to the usual types of orale queries that A makes, the

adversary A is also allowed to query the random orale representing KDF. We shall denote by

Q

0

A

(�) a strit upper bound on the number of random orale queries that A makes for a given

value of the seurity parameter �; as usual, this bound should hold regardless of the environment

in whih A atually runs.

10.3 CS3b is at least as seure as HEG

We now show that the sheme CS3b is at least as seure as HEG.

Theorem 8 If sheme HEG is seure against adaptive hosen iphertext attak, then so is CS3b;

moreover, this impliation holds in either the standard or random orale models.

In partiular, for all probabilisti, polynomial-time orale query mahines A, there exists another

orale query mahine A

1

, whose running time is essentially the same as that of A, suh that for all

� 2 Z

�0

, and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

AdvCCA

CS3b;A

(� j �) � AdvCCA

HEG;A

1

(� j �);

moreover, Q

A

1

(�) � Q

A

(�) and (in the random orale model) Q

0

A

1

(�) � Q

0

A

(�).
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Key Generation: On input 1

�

for � 2 Z

�0

, ompute

�[

^

G;G; g; q℄

R

 

^

S(1

�

); dk

R

 KDF.KeySpae

�;�

; z

R

 Z

q

; h g

z

;

and output the publi key PK = (�; dk; h) and the seret key SK = (�; dk; z).

Enryption: Given 1

�

for � 2 Z

�0

, a publi key

PK = (�[

^

G;G; g; q℄; dk; h) 2 [S

�

℄� [KDF.KeySpae

�;�

℄�G;

ompute

E1: u

R

 Z

q

;

E2: a g

u

;

E3: b h

u

;

E4: K  KDF

�;�

dk

(a; b);

and output the symmetri key K and the iphertext  = a.

Deryption: Given 1

�

for � 2 Z

�0

, a seret key

SK = (�[

^

G;G; g; q℄; dk; z) 2 [S

�

℄� [KDF.KeySpae

�;�

℄� Z

q

;

along with a iphertext  , do the following.

D1: Parse  as a group element a 2

^

G; output rejet and halt if  is not of this form.

D2: Test if a belongs to G; output rejet and halt if this is not the ase.

D3: Compute b a

z

.

D4: Compute K  KDF

�;�

dk

(a; b), and output the symmetri key K.

Figure 8: The key enapsulation mehanism HEG
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Proof. Fix A, �, and �[

^

G;G; g; q℄ as above. We onstrut an adversary A

1

that attaks HEG. The

adversary A

1

makes use of A by providing an environment for A, as follows.

First, suppose that A

1

is given a publi key (�; dk; h) for sheme HEG, where � is �xed as above.

Adversary A

1

then \dresses up" the HEG publi key to look like a CS3b publi key; namely, A

1

omputes

hk

R

 HF.KeySpae

�;�

; w

R

 Z

�

q

; x; y

R

 Z

q

; ĝ  g

w

; e g

x

; f  g

y

;

and presents A with the CS3b publi key

(�; hk; dk; ĝ; e; f; h):

Seond, whenever A submits a CS3b iphertext (a; â; d) 2

^

G

3

to the deryption orale, adversary

A

1

�rst performs the validity tests of the deryption algorithm of CS3b, making use of the values

hk; w; x; y generated above; if these tests pass, then A

1

invokes the deryption orale of HEG with

input a.

Third, when A invokes the enryption orale of CS3b, adversary A

1

does the following. It invokes

the enryption orale of HEG, obtaining a iphertext a

�

2 G and a key K

y

. It then \dresses up"

a

�

to look like a CS3b iphertext; namely, it omputes

â

�

 (a

�

)

w

; v

�

 HF

�;�

hk

(a

�

; â

�

); d

�

 (a

�

)

x+yv

�

;

and presents A with the CS3b iphertext (a

�

; â

�

; d

�

) along with the key K

y

.

Fourth, when A terminates and outputs a value, A

1

also terminates and outputs the same value.

That ompletes the desription of the adversary A

1

.

One has to hek that A

1

arries out a legal adaptive hosen iphertext attak, in the sense that

it should not attempt to submit the target iphertext itself to the deryption orale, subsequent to

the invoation of the enryption orale. Consider a iphertext a submitted by A

1

to the deryption

orale. This was derived from a valid CS3b iphertext (a; â; d) submitted by A to the deryption

orale. By the onstrution, it is easy to see that if a = a

�

, then in fat, (a; â; d) = (a

�

; â

�

; d

�

),

whih annot happen if A itself arries out a legal attak.

Sine the simulation by A

1

above is perfet, it is lear that whatever advantage A has in guessing

the hidden bit, adversary A

1

has preisely the same advantage. It is also lear by onstrution that

Q

A

1

(�) � Q

A

(�), and in the random orale model that Q

0

A

1

(�) � Q

0

A

(�). 2

10.4 The seurity of HEG in the random orale model

As for the seurity of HEG, even in the random orale model, we do not know how to prove a very

strong result. We ontent ourselves with a proof that the sheme HEG is seure against adaptive

hosen iphertext attak in the random orale model, provided the CDH assumption holds relative

to an orale for the DDH problem.

More preisely, for all probabilisti, polynomial-time orale query mahines A, and for all � 2

Z

�0

, we de�ne

AdvCDH

�

G;A

(�) := Pr[  = g

xy

: �[

^

G;G; g; q℄

R

 S

�

; x

R

 Z

q

; y

R

 Z

q

; 

R

 A

DHP

�;�

(1

�

;�; g

x

; g

y

) ℄;

where the notation A

DHP

�;�

(� � �) signi�es that A runs with aess to an orale for the DiÆe-Hellman

prediate DHP

�;�

de�ned in x4.3.3.

We say that the CDH assumption for G holds relative to an orale for the DDH problem if:
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for all probabilisti, polynomial-time orale query mahines A, the funtion

AdvCDH

�

G;A

(�) is negligible in �.

For all probabilisti, polynomial-time orale query mahines A, for all � 2 Z

�0

, and for all

�[

^

G;G; g; q℄ 2 [S

�

℄, we also de�ne

AdvCDH

�

G;A

(� j �) := Pr[  = g

xy

: x

R

 Z

q

; y

R

 Z

q

; 

R

 A

DHP

�;�

(1

�

;�; g

x

; g

y

) ℄:

Theorem 9 The sheme HEG is seure in the random orale model if the CDH assumption for G

holds relative to an orale for the DDH problem.

In partiular, for all probabilisti, polynomial-time orale query mahines A, there exists an

orale query mahine A

1

, whose running time is essentially the same as that of A, suh that for all

� 2 Z

�0

, and for all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

AdvCCA

HEG;A

(� j �) � AdvCDH

�

G;A

1

(� j �) +Q

A

(�)=q;

moreover, the number or DDH-orale queries made by A

1

is bounded by Q

0

A

(�).

To prove Theorem 9, let us �x A, �, and �[

^

G;G; g; q℄. The attak game is as desribed in x7.1.2.

We begin by desribing the relevant random variables in the attak game. The publi key is

(�; dk; h) and the seret key is (�; dk; z).

For a given iphertext  , we let a 2 G denote the orresponding group element, we let b := a

z

,

u := log

g

a, and K :=KDF

�;�

dk

(a; b). Note also that b = a

u

. For the target iphertext  

�

, we let a

�

,

b

�

, u

�

, and K

�

denote the orresponding values.

The enryption orale also generates values � 2 f0; 1g and K

+

2 f0; 1g

KDF.OutLen(�)

.

Let G

0

be the original attak game, let �̂ denote the output of A, and let T

0

be the event that

� = �̂ , so that AdvCCA

HEG;A

(� j �) = jPr[T

0

℄� 1=2j.

As usual, we de�ne a sequene of game G

1

, G

2

, et., and in game G

i

for i � 1 we de�ne T

i

to

be the event in game G

i

orresponding to event T

0

in game G

0

.

Game G

1

. We modify game G

0

as follows. First, we run the enryption orale at the beginning

of the attak game, but we give the results of this to the adversary only when it atually invokes

the enryption orale. This is a purely oneptual hange, sine the adversary provides no input to

the enryption orale. Seond, if the adversary ever submits a iphertext  =  

�

to the deryption

orale before the enryption algorithm is invoked, we abort the game immediately, before responding

to this deryption orale invoation (the environment, say, goes silent at this point).

Let F

1

be the event that game G

1

is aborted as above. It is lear that Pr[F

1

℄ � Q

A

(�)=q. It

is also lear that games G

0

and G

1

proeed identially until event F

1

ours, and so by Lemma 4,

we have jPr[T

1

℄� Pr[T

0

℄j � Pr[F

1

℄.

Game G

2

. We next modify game G

1

as follows. If the adversary every queries the random orale

to obtain the value of KDF

�;�

dk

(a

�

; b

�

), we immediately abort the game, before responding to this

random orale invoation.

It is easy to see that Pr[T

2

℄ = 1=2. This follows diretly from the fat that in game G

2

, the value

of KDF

�;�

dk

(a

�

; b

�

) is obtained from the random orale only by the enryption orale: the adversary

never queries the random orale diretly at this point, nor does the deryption orale.

Let F

2

be the event that gameG

2

is aborted as above. It is lear that jPr[T

2

℄�Pr[T

1

℄j � Pr[F

2

℄,

so it suÆes to bound Pr[F

2

℄.

We laim that Pr[F

2

℄ = AdvCDH

�

G;A

1

(� j �) for an orale query mahine A

1

whose running time

and number of orale queries are bounded as in the statement of the theorem.
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We now desribe A

1

. It takes as input 1

�

, �[

^

G;G; g; q℄, along with group elements a

�

; h 2 G,

and attempts to ompute b

�

2 G suh that DHP

�;�

(h; a

�

; b

�

) = 1. The mahine A

1

has aess to

an orale for the funtion DHP

�;�

.

Mahine A

1

simulates the environment of game G

2

for A as follows. It �rst omputes dk

R

 

KDF.KeySpae

�;�

and gives A the publi key (�; dk; h). For the target iphertext, it of ourse sets

 

�

:= a

�

. For the other output K

y

of the enryption orale, A

1

simply generates this as a random

bit string of length KDF.OutLen(�).

Mahine A

1

also needs to simulate the responses to the random orale and deryption orale

queries. For the random orale queries, the only values that are relevant are those orresponding

to the given values of �, �, and dk.

For the irrelevant random orale queries, A

1

simply maintains a set of input/output pairs,

generating outputs at random as neessary.

Mahine A

1

proesses relevant random orale queries using the following data strutures:

� a set V

1

of triples (a; b;K), with a; b 2 G and K 2 f0; 1g

KDF.OutLen(�)

, initially empty; this

will ontain those triples (a; b;K) for whih A

1

has assigned the value K to KDF

�;�

dk

(a; b);

� a set V

2

of pairs (a; b), with a; b 2 G, initially empty; this will ontain preisely those pairs

(a; b) suh that (a; b;K) 2 V

1

for some K, and DHP

�;�

(h; a; b) = 1;

� a set V

3

of pairs (a;K), with a 2 G and K 2 f0; 1g

KDF.OutLen(�)

, initially empty; this will

ontain pairs (a;K) for whih A

1

has assigned the value K to KDF

�;�

dk

(a; b) for b 2 G with

DHP

�;�

(h; a; b) = 1, even though A

1

does not atually know the value of b.

Given a request for the value KDF

�;�

dk

(a; b), mahine A

1

does the following:

� It tests if (a; b;K) 2 V

1

for some K. If so (whih means that A has queried the value

KDF

�;�

dk

(a; b) before), it returns K as the value of KDF

�;�

dk

(a; b); otherwise, it ontinues.

� It invokes its own DDH-orale to determine if DHP

�;�

(h; a; b) = 1.

� If DHP

�;�

(h; a; b) = 1, then:

{ If a = a

�

, it halts and outputs the solution b

�

:= b to the given problem instane (this

orresponds to the early-abort rule introdued in game G

2

); otherwise, it ontinues.

{ It adds the pair (a; b) to the set V

2

.

{ If (a;K) 2 V

3

for some K, then it adds the triple (a; b;K) to V

1

, and returns K as the

value of KDF

�;�

dk

(a; b); otherwise, it ontinues.

� It generates K as a random bit string of length KDF.OutLen(�), adds the triple (a; b;K) to

V

1

, and returns K as the value of KDF

�;�

dk

(a; b).

Mahine A

1

proesses deryption orale queries as follows. Suppose it is given a iphertext  ,

with a 2 G the orresponding group element. Then it does the following:

� If  =  

�

(whih an only happen if the enryption orale has not yet been invoked), then

it simply halts (this orresponds to the early-abort rule introdued in game G

1

); otherwise,

ontinues.

� It tests if (a; b) 2 V

2

for some b 2 G.
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� If this is so, then it �nds the (unique) triple in V

1

of the form (a; b;K) for some K, and returns

this value of K as the result of the deryption orale invoation; otherwise, it ontinues.

� It tests if (a;K) 2 V

3

for some K.

� If this is so, then it returns this value of K as the result of the deryption orale; otherwise,

it generates a random bit string K of length KDF.OutLen(�), adds the pair (a;K) to V

3

, and

returns this value of K as the result of the deryption orale invoation.

It is straightforward to verify by inspetion that A

1

as above does the job.

That ompletes the proof of Theorem 9.

10.5 The seurity of CS3b in the random orale model

We an now prove the following seurity theorem for CS3b in the random orale model.

Theorem 10 The sheme CS3b is seure in the random orale model if the CDH assumption holds

for G, and the TCR assumption holds for HF.

Proof. To prove this, let us assume by way of ontradition that the CDH assumption holds for G

and the TCR assumption holds for HF, but CS3b is not seure in the random orale model.

Now, the CDH assumption implies that for any polynomials P

1

and P

2

(with integer oeÆients,

taking positive values on Z

�0

), there exists a �

0

2 Z

�0

, suh that for all � � �

0

,

Pr[q � P

1

(�) : �[

^

G;G; g; q℄

R

 S

�

℄ � 1=P

2

(�);

sine otherwise, a trivial, brute-fore algorithm would have a CDH advantage that was not negligi-

ble. This implies in partiular that when we model KDF as a random orale, it ats as a seure key

derivation sheme. From this it follows from Theorems 6 and 7 that CS3b is seure in the random

orale model if the DDH assumption holds; atually, sine these two theorems do not deal with the

random orale model, one must make a ursory inspetion of the proofs of these theorems to draw

this onlusion, but this is very straightforward.

Let A be a polynomial-time adversary that breaks the seurity of CS3b in the random orale

model. This means that there exist polynomials P

1

, P

2

(with integer oeÆients, taking positive

values on Z

�0

), an in�nite set � � Z

�0

, and sets Z

�

� [S

�

℄ for eah � 2 �, suh that

� for all � 2 � and � 2 Z

�

, AdvCCA

CS3b;A

(� j �) � 1=P

1

(�),

� for all � 2 �, Pr

S

�

[Z

�

℄ � 1=P

2

(�).

Theorems 6 and 7 (adapted to the random orale model), together with our TCR assumption,

imply that there exists a polynomial-time algorithm A

1

, suh that for all suÆiently large � 2 �,

and for all but a negligible fration of � in Z

�

, we have

AdvDDH

G;A

1

(� j �) � 1=(2P

1

(�)):

We now apply Lemma 3 using the above algorithm A

1

, and hoosing the value of � in that lemma

so that 2

��

� Q

0

A

(�) � 1=2, yielding a polynomial-time algorithm A

2

, suh that for all suÆiently

large � 2 �, and for all but a negligible fration of � 2 Z

�

, and for all � 2 T

�;�

,

Pr[A

2

(1

�

;�; �) 6= DHP

�;�

(�)℄ � 1=(2Q

0

A

(�)):
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Applying Theorem 8 with the adversary A yields a polynomial-time adversary A

3

suh that for

all � 2 � and � 2 Z

�

, AdvCCA

HEG;A

3

(� j �) � 1=P

1

(�). Applying Theorem 9 with the adversary

A

3

yields a polynomial-time orale mahine A

4

suh that

AdvCDH

�

G;A

4

(� j �) � 1=(2P

1

(�))

for all suÆiently large � 2 �, and for all but a negligible fration of � 2 Z

�

. Sine for a given value

of �, algorithm A

4

makes no more than Q

0

A

(�) DDH-orale queries, if we replae the DDH-orale

used by A

4

with algorithm A

2

above, we obtain a polynomial-time algorithm A

5

suh that for all

suÆiently large � 2 �, and for all but a negligible fration of � in Z

�

, we have AdvCDH

G;A

5

(� j

�) � 1=(4P

1

(�)). But this ontradits the CDH assumption. 2

10.6 Random orales and pair-wise independent key derivation funtions: get-

ting the best of both

If we want to prove the seurity of CS3b in the standard model without making any intratability

assumptions about KDF, then we may hoose KDF to be pair-wise independent. On the one hand,

standard onstrutions for pair-wise independent hash funtions typially exhibit a lot of algebrai

struture, and it is not very reasonable to assume that suh a KDF an be safely modeled as a

random orale. On the other hand, typial dediated ryptographi hash funtions, like SHA-1,

may be modeled as random orales, but they are ertainly not pair-wise independent.

We shall sketh here how to get the best of both worlds, i.e., how to implement the KDF so that

we get a proof of seurity of CS3b in the standard model just under the DDH and TCR assumptions,

and in the random orale model under the CDH and TCR assumptions.

The idea is this: ompute KDF as the XOR of a pair-wise independent hash KDF1 and a

ryptographi hash KDF2.

It is lear that if KDF1 is pair-wise independent, then so is KDF, and so the seurity of CS3b in

the standard model under the DDH and TCR assumptions now follows diretly from Theorem 7.

Now suppose we model the ryptographi hash KDF2 as a random orale. It is easy to see

that for any adversary A attaking CS3b given orale aess to KDF2, there is an adversary A

1

,

whose running time is roughly the same as that of A, that attaks CS3b given orale aess to KDF:

the adversary A

1

just does whatever A does, exept that whenever A queries the orale for KDF2,

adversary A

1

queries its orale for KDF and omputes the value of KDF2 as the XOR of the value

of KDF and the value of KDF1. Note, however, that the output distribution of the orale KDF is

the same as that of a random orale, and so the seurity of CS3b in the random orale model under

the CDH and TCR assumptions now follows diretly from Theorem 10.

We do not neessarily advoate this approah to building a KDF in pratial implementations:

simply assuming that a KDF implemented diretly using a dediated ryptographi hash is seure

is quite reasonable, and the resulting KDF is muh simpler and more eÆient than any approah

that makes use of a pair-wise independent hash funtion.

10.7 Further disussion

The sheme HEG is intended to represent a fairly traditional version of ElGamal key enapsulation.

The only thing slightly non-traditional about it is the fat that the symmetri key K is derived by

hashing both a (the ephemeral DiÆe-Hellman publi key) and b (the shared DiÆe-Hellman key),

rather than just b alone.
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Hashing both the ephemeral and shared keys together has some quantitative seurity advan-

tages. Notie that in Theorem 9, the implied CDH algorithm makes no more than Q

0

A

(�) queries

to the DDH-orale. If we were to hash only the shared DiÆe-Hellman key, we ould still prove the

seurity of HEG, but the redution would be less eÆient; in partiular, the implied CDH algorithm

might require up to Q

0

A

(�) �Q

A

(�) queries to the DDH-orale. A similar quantitative seurity ad-

vantage arises in the multi-user/multi-message model (see [BBM00℄). In this model, we an exploit

the well-know random self-reduibility of the CDH problem to get a more eÆient redution if we

hash both keys instead of just one. Of ourse, these improved seurity redutions for HEG arry

over to the seurity redution for CS3b in the random orale model.

The DHAES enryption sheme [ABR99℄, whih is a hybrid ElGamal enryption sheme that

has been proposed for standardization, also hashes both the ephemeral and shared DiÆe-Hellman

keys to derive a symmetri key. Indeed, the DHAES sheme an be onstruted from the key enap-

sulation mehanism HEG using the hybrid onstrutions presented in x7, and it is straightforward

to verify that analogues of Theorems 8 and 9 hold for the DHAES sheme as well. The DHAES

sheme needs to hash both group elements beause it allows the possibility of a group G whose

order is a omposite number. In a revised version of DHAES, alled DHIES [ABR01℄, the group

G is required to have prime order, and only the shared DiÆe-Hellman key is hashed. However, as

we have seen, there are still some seurity bene�ts to be gained from hashing both group elements,

even if the group is of prime order, as we are assuming in this paper.

Theorem 10 originally appeared in the paper [Sho00b℄. The proof in that paper basially rolled

all of the arguments used in the proofs of Theorems 8, 9, 10, along with the arguments in x10.6, into

a single proof, whih we have unraveled to some extent here. Our presentation here was somewhat

inuened by the paper [OP01℄, whih formally introdues the notion of the CDH assumption

relative to an orale for the DDH problem.

The seurity redution in Theorem 10 is quite ineÆient: we have to perform many simulations

using the given adversary A just to solve one instane of the DDH problem, and then in a di�erent

simulation involving A, we have to solve many instanes of the DDH problem in order to solve one

instane of the CDH problem. Of ourse, if the DDH problem for a given group sheme turns out

not to be a hard problem, then it may very well be the ase that there is a muh more eÆient DDH

algorithm than the one built using our seurity redution involving A. In this ase, the redution

in Theorem 10 beomes quite reasonable.
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