
Design and Analysis of Pra
ti
al Publi
-Key En
ryption S
hemes

Se
ure against Adaptive Chosen Ciphertext Atta
k

Ronald Cramer

Dept. of Computer S
ien
e, Aarhus University

ramer�bri
s.dk

Vi
tor Shoup

IBM Zuri
h Resear
h Laboratory

sho�zuri
h.ibm.
om

De
ember 17, 2001

Abstra
t

A new publi
 key en
ryption s
heme, along with several variants, is proposed and analyzed.

The s
heme and its variants are quite pra
ti
al, and are proved se
ure against adaptive
hosen

iphertext atta
k under standard intra
tability assumptions. These appear to be the �rst publi
-

key en
ryption s
hemes in the literature that are simultaneously pra
ti
al and provably se
ure.

This paper is a signi�
antly revised and extended version of the extended abstra
t \A pra
ti
al publi

key
ryptosystem provably se
ure against adaptive
hosen
iphertext atta
k" [R. Cramer and V. Shoup, in

Advan
es in Cryptology { Crypto '98℄, and also in
ludes results originally presented in the extended abstra
t

\Using hash fun
tions as a hedge against
hosen
iphertext atta
k" [V. Shoup, in Advan
es in Cryptology {

Euro
rypt 2000℄.

Contents

1 Introdu
tion 1

1.1 Chosen
iphertext se
urity . 1

1.2 Previous work . 2

1.3 Further progress . 3

1.4 Outline of paper . 3

2 Some Preliminaries 5

2.1 Basi
 mathemati
al notation . 5

2.2 Algorithms and probability spa
es . 5

2.3 Statisti
al distan
e and negligible fun
tions . 6

3 Se
ure Publi
 Key En
ryption 6

3.1 Publi
 Key En
ryption S
hemes . 6

3.2 Se
urity against adaptive
hosen
iphertext atta
k 8

3.3 Appli
ation of the de�nition of se
urity . 9

3.4 Further dis
ussion . 10

4 Intra
tability Assumptions Related to the Dis
rete Logarithm Problem 11

4.1 Computational group s
hemes . 11

4.2 Examples of appropriate
omputational group s
hemes 12

4.3 Intra
tability assumptions . 14

4.4 Further dis
ussion . 17

5 Target Collision Resistant Hash Fun
tions 17

5.1 Further dis
ussion . 18

6 The New En
ryption S
heme: Basi
 Version 19

6.1 Des
ription of the s
heme . 19

6.2 Se
urity analysis of the s
heme . 21

6.3 Two variations . 28

6.4 A hash-free variant . 31

7 Hybrid En
ryption 35

7.1 Key en
apsulation . 36

7.2 One-time symmetri
-key en
ryption . 37

7.3 A hybrid
onstru
tion . 41

8 Key Derivation Fun
tions 42

8.1 Constru
tions . 43

9 The New En
ryption S
heme: Hybrid Version 44

9.1 Des
ription of the S
heme . 44

9.2 Se
urity analysis of the s
heme . 46

9.3 Two variations . 50

i

10 Further Se
urity Considerations of S
heme CS3b 50

10.1 Hashed ElGamal key en
apsulation . 51

10.2 The random ora
le model . 51

10.3 CS3b is at least as se
ure as HEG . 51

10.4 The se
urity of HEG in the random ora
le model . 53

10.5 The se
urity of CS3b in the random ora
le model . 56

10.6 Random ora
les and pair-wise independent key derivation fun
tions: getting the best

of both . 57

10.7 Further dis
ussion . 57

ii

1 Introdu
tion

In this paper, we present and analyze a new publi
-key en
ryption s
heme, and several variants,

proving that they are se
ure against adaptive
hosen
iphertext atta
k (as de�ned by Ra
ko�

and Simon [RS91℄) under standard intra
tability assumptions. The s
hemes are quite pra
ti
al,

requiring just a few exponentiations in a group for both en
ryption and de
ryption. Moreover, the

proofs of se
urity of these s
hemes rely only on standard intra
tability assumptions: one variant

relies only on the hardness of the De
isional DiÆe-Hellman problem, while other, somewhat more

pra
ti
al, variants rely on a
ouple of other standard intra
tability assumptions.

The hardness of the De
isional DiÆe-Hellman problem is essentially equivalent to the semanti

se
urity of the basi
 ElGamal en
ryption s
heme [ElG85℄. Thus, with just a bit more
omputation,

we get se
urity against adaptive
hosen
iphertext atta
k, whereas the basi
 ElGamal s
heme is

ompletely inse
ure against this type of atta
k.

While there are several provably se
ure publi
-key en
ryption s
hemes in the literature, they

are all quite impra
ti
al. Also, there are several pra
ti
al en
ryption s
hemes that have been

proposed, but none of them has been proven se
ure under standard intra
tability assumptions.

The signi�
an
e of our results is that they provide several s
hemes that are provably se
ure and

pra
ti
al at the same time. There appear to be no other publi
-key en
ryption s
hemes in the

literature that enjoy both of these properties simultaneously.

This paper is a signi�
antly revised and extended version of the extended abstra
t [CS98℄, and

also in
ludes results originally presented in the extended abstra
t [Sho00b℄.

1.1 Chosen
iphertext se
urity

Semanti
 se
urity, de�ned by Goldwasser and Mi
ali [GM84℄,
aptures the intuition that an ad-

versary should not be able to obtain any partial information about a message given its en
ryption.

However, this guarantee of se
re
y is only valid when the adversary is
ompletely passive, i.e.,
an

only eavesdrop. Indeed, semanti
 se
urity o�ers no guarantee of se
re
y at all if an adversary
an

mount an a
tive atta
k, i.e., inje
t messages into a network or otherwise in
uen
e the behavior of

parties in the network.

To deal with a
tive atta
ks, Ra
ko� and Simon [RS91℄ de�ned the notion of se
urity against

an adaptive
hosen
iphertext atta
k. If an adversary
an inje
t messages into a network, these

messages may be
iphertexts, and the adversary may be able to extra
t partial information about

the
orresponding
leartexts through its intera
tions with the parties in the network. Ra
ko� and

Simon's de�nition models this type of atta
k by simply allowing an adversary to obtain de
ryptions

of its
hoi
e, i.e., the adversary has a

ess to a \de
ryption ora
le." Now, given an en
ryption of

a message | the \target"
iphertext | we want to guarantee that the adversary
annot obtain

any partial information about the message. To a
hieve this, we have to restri
t the adversary's

behavior in some way, otherwise the adversary
ould simply submit the target
iphertext itself to

the de
ryption ora
le. The restri
tion proposed by Ra
ko� and Simon is the weakest possible: the

adversary is not allowed to submit the target
iphertext itself to the ora
le; however, it may submit

any other
iphertext, in
luding
iphertexts that are related to the target
iphertext.

A di�erent notion of se
urity against a
tive atta
ks,
alled non-malleability, was proposed by

Dolev, Dwork, and Naor [DDN91, DDN00℄. Here, the adversary also has a

ess to a de
ryption

ora
le, but his goal is not to obtain partial information about the target
iphertext, but rather, to

reate another en
ryption of a di�erent message that is related in some interesting way to the orig-

inal, en
rypted message. For example, for a non-malleable en
ryption s
heme, given an en
ryption

1

of n, it should be infeasible to
reate an en
ryption of n+1. It turns out that non-malleability and

se
urity against adaptive
hosen
iphertext atta
k are equivalent [BDPR98, DDN00℄.

An en
ryption s
heme se
ure against adaptive
hosen
iphertext atta
k is a very powerful

ryptographi
 primitive. It is essential in designing proto
ols that are se
ure against a
tive ad-

versaries. For example, this primitive is used in proto
ols for authenti
ation and key ex
hange

[DN96, DDN00, Sho99℄ and in proto
ols for es
row,
erti�ed e-mail, and more general fair ex
hange

[ASW00℄. It is by now generally re
ognized in the
ryptographi
 resear
h
ommunity that se
urity

against adaptive
hosen
iphertext atta
k is the \right" notion of se
urity for a general-purpose

publi
-key en
ryption s
heme. This is exempli�ed by the adoption of Bellare and Rogaway's OAEP

s
heme [BR94℄ (a pra
ti
al but only heuristi
ally se
ure s
heme) as the internet en
ryption standard

PKCS#1 version 2, and for use in the SET proto
ol for ele
troni

ommer
e.

There are also intermediate notions of se
urity, between semanti
 se
urity and adaptive
hosen

iphertext se
urity. Naor and Yung [NY90℄ propose an atta
k model where the adversary has a

ess

to the de
ryption ora
le only prior to obtaining the target
iphertext, and the goal of the adversary

is to obtain partial information about the en
rypted message. Naor and Yung
alled this type

of atta
k a
hosen
iphertext atta
k; it has also been
alled a \lun
h-time" or \midnight" atta
k,

and also an indi�erent
hosen
iphertext atta
k. In this paper, we will use the phrase adaptive

hosen
iphertext atta
k for Ra
ko� and Simon's de�nition, to distinguish it from Naor and Yung's

de�nition. Also, throughout this paper, unless otherwise spe
i�ed, by \se
urity" we will always

mean \se
urity against adaptive
hosen
iphertext atta
k."

1.2 Previous work

Provably Se
ure S
hemes. Naor and Yung [NY90℄ presented the �rst s
heme provably se
ure against

lun
h-time atta
ks. Subsequently, Dolev, Dwork, and Naor [DDN91℄ presented a s
heme that is

provably se
ure against adaptive
hosen
iphertext atta
k.

Ra
ko� and Simon [RS91℄ present and prove the se
urity of an en
ryption s
heme, but their

s
heme is a
tually not a publi
-key s
heme in the traditional sense: in their s
heme, all users |

both senders and re
eivers | require publi
 keys, and moreover, a trusted
enter is required to

perform
ertain fun
tions. In
ontrast, all other s
hemes mentioned in this paper, in
luding our

own, are traditional publi
-key systems: en
ryption is a probabilisti
 fun
tion of the message and

the re
eiver's publi
 key, de
ryption is a fun
tion of the
iphertext and the re
eiver's se
ret key, and

no trusted
enter is required. This distin
tion
an be important: adding extra system requirements

as in the Ra
ko� and Simon s
heme
an greatly restri
t the range of appli
ation of the s
heme.

All of the previously known s
hemes provably se
ure under standard intra
tability assump-

tions are
ompletely impra
ti
al (albeit polynomial time), as they rely on general and expensive

onstru
tions for non-intera
tive zero-knowledge proofs. This in
ludes non-standard s
hemes like

Ra
ko� and Simon's as well.

Pra
ti
al S
hemes. Damg�ard [Dam91℄ proposed a pra
ti
al s
heme that he
onje
tured to be se
ure

against lun
h-time atta
ks; however, this s
heme is not known to be provably se
ure in this sense,

and is in fa
t demonstrably inse
ure against adaptive
hosen
iphertext atta
k.

Zheng and Seberry [ZS92℄ proposed pra
ti
al s
hemes that are
onje
tured to be se
ure against

hosen
iphertext atta
k, but again, no proof based on standard intra
tability assumptions is known.

Lim and Lee [LL93℄ also proposed pra
ti
al s
hemes that were later broken by Frankel and Yung

[FY95℄.

Bellare and Rogaway [BR93, BR94℄ have presented pra
ti
al s
hemes for whi
h they give heuris-

ti
 proofs of adaptive
hosen
iphertext se
urity; namely, they prove se
urity based on the assump-

2

tion of a one-way trapdoor permutation in an idealized model of
omputation, the so-
alled random

ora
le model, wherein a hash fun
tion is represented by a random ora
le. A
tually, it turns out that

the proof of se
urity of the OAEP s
heme in [BR94℄ is
awed: as demonstrated in [Sho01℄, there
an

be no standard \bla
k box" se
urity proof based on an arbitrary one-way trapdoor permutation.

However, the negative result in [Sho01℄ does not rule out the possibility that OAEP in
onjun
tion

with a spe
i�
 one-way trapdoor permutation s
heme is se
ure. Indeed, it is shown in [Sho01℄ that

OAEP with exponent-3 RSA is se
ure, and this result is generalized in [FOPS01℄ to arbitrary-

exponent RSA. A new s
heme, OAEP+, is also presented in [Sho01℄, whi
h
an be proven se
ure

in the random ora
le model, using an arbitrary one-way trapdoor permutation. Further variations

of OAEP and OAEP+ are dis
ussed in [Bon01℄.

Shoup and Gennaro [SG98℄ also give ElGamal-like s
hemes that are se
ure against adaptive

hosen
iphertext atta
k in the random ora
le model, and that are also amenable to eÆ
ient

threshold de
ryption.

We stress that although a se
urity proof in the random ora
le model is of some value, it is still

only a heuristi
 proof. In parti
ular, these types of proofs do not rule out the possibility of breaking

the s
heme without breaking the underlying intra
tability assumption. Nor do they even rule out

the possibility of breaking the s
heme without �nding some kind of weakness in the hash fun
tion,

as shown by Canetti, Goldrei
h, and Halevi [CGH98℄.

1.3 Further progress

Subsequent to the publi
ation of the extended abstra
t [CS98℄ on whi
h the present paper is based,

some further progress in this area has been made. Canetti and Goldwasser [CG99℄ presented a

threshold-de
ryption variant of our s
heme. Also, the authors of the present paper [CS01℄ have

generalized and extended the basi
 ideas underlying our en
ryption s
heme, obtaining new and

quite pra
ti
al en
ryption s
hemes that are se
ure against adaptive
hosen
iphertext atta
k under

di�erent assumptions | one s
heme relies on Paillier's De
ision Composite Residuosity assump-

tion [Pai99℄, while the other (somewhat less pra
ti
al) s
heme relies on the
lassi
al Quadrati

Residuosity assumption.

1.4 Outline of paper

Our paper
onsists of two parts.

Part 1. In the �rst part, we take
are of a number of preliminaries, after whi
h we present a basi

version of our new s
heme, along with a few variants. This �rst part is organized as follows:

x2: We introdu
e some basi
 notation that will be used throughout the paper.

x3: We state the formal de�nition of a publi
-key en
ryption s
heme and the notion of se
urity

against adaptive
hosen
iphertext atta
k. We also dis
uss some impli
ations of the de�nition

of se
urity that illustrate its utility.

x4: We state the formal de�nitions of several intra
tability assumption related to the Dis
rete

Logarithm problem: the Dis
rete Logarithm assumption, the Computational DiÆe-Hellman

assumption, and the De
isional DiÆe-Hellman assumption. In doing this, we introdu
e the

notion of a
omputational group s
heme, whi
h is a general framework that allows us to dis
uss

in an abstra
t, yet suÆ
iently
on
rete way, the di�erent families of groups that may be used

in
ryptographi
 appli
ations.

3

x5: We de�ne the notion of a target
ollision resistant hash fun
tion, whi
h is a spe
ial type of a

universal one-way hash fun
tion. We will use this primitive in the most eÆ
ient variants of

our en
ryption s
heme.

x6: We present and analyze the basi
 version of our en
ryption s
heme, whi
h we
all CS1, along

with two variants,
alled CS1a and CS1b. We prove the se
urity of these s
hemes based on

the De
isional DiÆe-Hellman assumption, and the assumption that a given family of hash

fun
tions is target
ollision resistant. We also present and analyze a somewhat less eÆ
ient

s
heme,
alled CS2, whi
h does not require a target
ollision resistant hash fun
tion.

Part 2. The s
hemes presented in x6 su�er from two drawba
ks. First, the s
hemes require that

plaintexts are, or
an be en
oded as, group elements, whi
h may signi�
antly restri
t the range of

appli
ation of the en
ryption s
heme and/or the
hoi
e of
omputational group s
heme; it would be

ni
e to relax this restri
tion, allowing plaintexts to be, say, bit strings of arbitrary length. Se
ond,

if the De
isional DiÆe-Hellman assumption is false, these s
hemes
an be trivially broken; it would

be ni
e if we
ould provide a se
ond level of defense, so that if De
isional DiÆe-Hellman assumption

turns out to be false, we have a s
heme that still o�ers some se
urity | even if only heuristi
ally.

It turns out that both of these drawba
ks
an be dealt with by using a te
hnique
alled hybrid

en
ryption. Basi
ally, a hybrid en
ryption s
heme uses publi
-key en
ryption te
hniques to derive a

shared key that is then used to en
rypt the a
tual message using standard symmetri
-key te
hniques.

The se
ond part of the paper is devoted to developing the formal theory behind this te
hnique, and

to designing and analyzing variations on our basi
 s
heme that utilize this te
hnique. This part is

organized as follows:

x7: We lay the theoreti
al foundations for hybrid en
ryption. Although most of the ideas in this

se
tion appear to be \folklore," they have not been treated rigorously in the literature. In

x7.1, we introdu
e the notion of a key en
apsulation me
hanism, and an appropriate notion

of se
urity against adaptive
hosen
iphertext atta
k. A key en
apsulation me
hanism is like

a publi
-key en
ryption s
heme, ex
ept that the en
ryption algorithm
an only be used to

generate and en
rypt a random bit string of �xed length, whi
h we shall use as a key for a

symmetri
-key en
ryption s
heme. In x7.2, we state the formal properties of a symmetri
-key

en
ryption s
heme that we need for use in a hybrid en
ryption s
heme, and dis
uss some

simple
onstru
tions based on pseudo-random bit generators and message authenti
ation

odes. In x7.3, we prove that an appropriately se
ure key en
apsulation me
hanism,
ombined

with an appropriately se
ure symmetri
-key en
ryption s
heme, yields a publi
-key en
ryption

s
heme that is se
ure against adaptive
hosen
iphertext atta
k.

In what follows, we
on
entrate ex
lusively on the problem of
onstru
ting se
ure key en
ap-

sulation me
hanisms, sin
e the problem of
onstru
ting symmetri
-key en
ryption s
hemes is

essentially solved.

x8: We dis
uss the notion of a se
ure key derivation fun
tion, whi
h is a fun
tion that should

map random group elements to pseudo-random bit strings of given length. A key derivation

fun
tion is an essential ingredient in our
onstru
tions of key en
apsulation me
hanisms.

x9: We present and analyze a key en
apsulation me
hanism, CS3, along with two variants, CS3a

and CS3b, and prove their se
urity under the De
isional DiÆe-Hellman assumption, and also

assuming a target
ollision resistant hash fun
tion and a se
ure key derivation fun
tion.

4

x10: The hybrid en
ryption s
heme obtained from CS3b is by far the most pra
ti
al of the en
ryp-

tion s
hemes presented in this paper; moreover, it has other interesting se
urity properties.

We show that CS3b is no less se
ure than a more traditional key en
apsulation me
hanism

that is a hashed variant of ElGamal en
ryption, whi
h we
all HEG. Se
ond, we also show that

CS3b is se
ure in the random ora
le model (viewing the key derivation fun
tion as a random

fun
tion), under the weaker Computational DiÆe-Hellman assumption, and also assuming a

target
ollision resistant hash fun
tion. The results in this se
tion show that there is virtually

no risk in using s
heme CS3b relative to more traditional en
ryption s
hemes, while at the

same time, CS3b provides a se
urity guarantee that more traditional s
hemes do not.

2 Some Preliminaries

2.1 Basi
 mathemati
al notation

Z denotes the ring of integers, Z

�0

denotes the set of non-negative integers, and for positive integer

k, Z

k

denotes the ring of integers modulo k, and Z

�

k

denotes the
orresponding multipli
ative group

of units.

2.2 Algorithms and probability spa
es

We write � � to denote the algorithmi
 a
tion of assigning the value of � to the variable �.

Let X be a �nite probability spa
e, i.e., a probability spa
e on a �nite set S. For � 2 S, we

let Pr

X

[�℄ denote the probability that X assigns to �, and for S

0

� S, we let Pr

X

[S

0

℄ denote the

probability that X assigns to S

0

.

We write �

R

 X to denote the algorithmi
 a
tion of sampling an element of S a

ording to

the distribution X, and assigning the result of this sampling experiment to the variable �. We

sometimes write �

1

; : : : ; �

k

R

 X as a shorthand for �

1

R

 X; : : : ; �

k

R

 X.

For any �nite set S, U(S) denotes the uniform distribution on S. We write �

R

 S as a

shorthand for �

R

 U(S).

For any probability spa
e X on a �nite set S, we denote by [X℄ the subset of elements of S that

are assigned non-zero probability by X, i.e., the \support" of X.

If X

1

;X

2

; : : : ;X

k

are �nite probability spa
es, and � is a k-ary predi
ate, then we write

Pr[�(�

1

; : : : ; �

k

) : �

1

R

 X

1

; : : : ; �

k

R

 X

k

℄

to denote the probability that �(�

1

; : : : ; �

k

) holds when �

1

is sampled from X

1

, �

2

is sampled from

X

2

, et
. More generally, for 1 � i � k, X

i

may be family of �nite probability spa
es parameterized

by (�

1

; : : : ; �

i�1

), and we write

Pr[�(�

1

; : : : ; �

k

) : �

1

R

 X

1

; �

2

R

 X

2

(�

1

); : : : ; �

k

R

 X

k

(�

1

; : : : ; �

k�1

)℄

to denote the probability that �(�

1

; : : : ; �

k

) holds when �

1

is sampled from X

1

, after whi
h �

2

is

sampled from X

2

(�

1

), and so on. In this
ase, it is important that �

1

; : : : ; �

k

are sampled in the

order given.

Similarly, if F is a k-ary fun
tion fun
tion, then

fF (�

1

; : : : ; �

k

) : �

1

R

 X

1

; �

2

R

 X

2

(�

1

); : : : ; �

k

R

 X

k

(�

1

; : : : ; �

k�1

)g

denotes the probability spa
e de�ned by sampling �

1

from X

1

, �

2

from X

2

(�

1

), and so on, and then

evaluating the fun
tion F (�

1

; : : : ; �

k

).

5

We shall
onsider polynomial-time probabilisti
 algorithms A. We shall insist that for all � 2

Z

�0

and all inputs of length �, algorithm A always halts in time bounded by a polynomial in �,

regardless of the random
hoi
es that A may make. In parti
ular, for any input tuple (�

1

; : : : ; �

k

),

the random
hoi
es made by A as well as the output of A on this input are �nite probability spa
es.

We denote this output probability spa
e of A for a given input (�

1

; : : : ; �

k

) by A(�

1

; : : : ; �

k

). We

stress that A(�

1

; : : : ; �

k

) is a probability spa
e, and not a value. As su
h, we may write �

R

A(�

1

; : : : ; �

k

) to denote the algorithmi
 a
tion of running A on input (�

1

; : : : ; �

k

), and assigning

the output to the variable �. When we speak of the \running time" of A, we mean the worst-
ase

running time of A for inputs of a given length.

To exer
ise the above notation a bit, note that [A(�

1

; : : : ; �

k

)℄ denotes the set of possible outputs

of A on input (�

1

; : : : ; �

k

). For a tertiary predi
ate �, and polynomial-time probabilisti
 algorithms

A

1

and A

2

, and a value �

0

,

Pr[�(�

0

; �

1

; �

2

) : �

1

R

 A

1

(�

0

);�

2

R

 A

2

(�

0

; �

1

)℄

denotes the probability that �(�

0

; �

1

; �

2

) holds when A

1

is run on input �

0

, yielding an output �

1

,

and then A

2

is run on input (�

0

; �

1

), yielding an output �

2

.

For � 2 Z

�0

, 1

�

denotes the bit string
onsisting of �
opies of the bit 1. The string 1

�

will often

be an input to an algorithm: this is a te
hni
al devi
e that allows a polynomial-time algorithm to

run in time bounded by a polynomial in �, even if there are no other inputs to the algorithm, or

those inputs happen to be very short.

2.3 Statisti
al distan
e and negligible fun
tions

Let X and Y be probability spa
es on a �nite set S. De�ne the statisti
al distan
e �(X;Y) between

X and Y as

�(X;Y) :=

1

2

X

�2S

jPr

X

[�℄� Pr

Y

[�℄j:

One
an easily verify that

�(X;Y) = max

S

0

�S

jPr

X

[S

0

℄� Pr

Y

[S

0

℄j:

A fun
tion F mapping non-negative integers to non-negative reals is
alled negligible if for

all positive numbers
, there exists an integer �

0

(
) � 0 su
h that for all � > �

0

(
), we have

F (�) < 1=�

.

3 Se
ure Publi
 Key En
ryption

In this se
tion, we state the basi
 properties of a publi
-key en
ryption s
heme, along with the

de�nition of se
urity against adaptive
hosen
iphertext atta
k. Although the notions here are

relatively standard, we treat a number of details here that are not often dealt with in the literature.

We also dis
uss some impli
ations of the de�nition of se
urity that illustrate its utility.

3.1 Publi
 Key En
ryption S
hemes

A publi
-key en
ryption s
heme PKE
onsists of the following algorithms:

� A probabilisti
, polynomial-time key generation algorithm PKE.KeyGen that on input 1

�

for

� 2 Z

�0

, outputs a publi
 key/se
ret key pair (PK;SK). The stru
ture of PK and SK depends

on the parti
ular s
heme.

6

For � 2 Z

�0

, we de�ne the probability spa
es

PKE.PKSpa
e

�

:= fPK : (PK;SK)

R

 PKE.KeyGen(1

�

)g;

and

PKE.SKSpa
e

�

:= fSK : (PK;SK)

R

 PKE.KeyGen(1

�

)g:

� A probabilisti
, polynomial-time en
ryption algorithm PKE.En
rypt that takes as input 1

�

for

� 2 Z

�0

, a publi
 key PK 2 [PKE.PKSpa
e

�

℄, a message m, and outputs a
iphertext .

A
iphertext is a bit string. The stru
ture of a message may depend on the parti
ular s
heme;

see below (x3.1.1) for a dis
ussion.

� A deterministi
, polynomial-time de
ryption algorithm PKE.De
rypt that takes as input 1

�

for � 2 Z

�0

, a se
ret key SK 2 [PKE.SKSpa
e

�

℄, a
iphertext , and outputs either a message

m or the spe
ial symbol reje
t.

3.1.1 Message spa
es

Di�erent publi
-key en
ryption s
hemes might spe
ify di�erent message spa
es, and these message

spa
es might in fa
t vary with the
hoi
e of publi
 key. Let us denote by PKE.MSpa
e

�;PK

the

message spa
e asso
iated with � 2 Z

�0

and PK 2 [PKE.PKSpa
e

�

℄. Although there may be other

ways of
ategorizing message spa
es, we shall work with s
hemes that spe
ify message spa
es in

one of two ways:

unrestri
ted message spa
e: PKE.MSpa
e

�;PK

= f0; 1g

�

for all � and PK.

restri
ted message spa
e: PKE.MSpa
e

�;PK

is a �nite set that may depend on � and PK.

There should be a deterministi
, polynomial-time algorithm that on input 1

�

, PK, and �,

determines if � 2 PKE.MSpa
e

�;PK

.

Clearly, a publi
-key en
ryption s
heme with an unrestri
ted message spa
e will be most suitable

in a setting where a very general-purpose en
ryption s
heme is required. However, en
ryption

s
hemes with restri
ted message spa
es
an be useful in some settings as well.

3.1.2 Soundness

A publi
-key en
ryption s
heme should be sound in the sense that de
rypting an en
ryption of a

message should yield the original message.

Requiring that this always holds is a very strong
ondition whi
h will not be satis�ed by many

otherwise quite a

eptable en
ryption s
hemes.

A de�nition of soundness that is adequate for our purposes runs as follows. Let us say a publi

key/se
ret key pair (PK;SK) 2 [PKE.KeyGen(1

�

)℄ is bad if for some m 2 PKE.MSpa
e

�;PK

and some

 2 [PKE.En
rypt(1

�

;PK;m)℄, we have PKE.De
rypt(1

�

;SK;) 6= m. Then our requirement is that

the probability that the key generation algorithm outputs a bad key pair grows negligibly in �.

One
ould formulate even weaker notions of soundness that would still be adequate for many

appli
ations, but we shall not pursue this here.

7

3.2 Se
urity against adaptive
hosen
iphertext atta
k

An adversary A in an adaptive
hosen
iphertext atta
k (CCA) is a probabilisti
, polynomial-time

ora
le query ma
hine.

The atta
k game is de�ned in terms of an intera
tive
omputation between the adversary and its

environment. The adversary's environment responds to the ora
le queries made by the adversary:

ea
h ora
le query response is sampled from a probability spa
e that is a fun
tion of the adversary's

input and all the previous ora
le queries made by the adversary. We require that A runs in time

stri
tly bounded by a polynomial in the length of its input, regardless of its probabilisti

hoi
es,

and regardless of the responses to its ora
le queries from its environment.

We now des
ribe the atta
k game used to de�ne se
urity against adaptive
hosen
iphertext

atta
k; that is, we de�ne (operationally) the environment in whi
h A runs. We assume that the

input to A is 1

�

for some � 2 Z

�0

.

Stage 1: The adversary queries a key generation ora
le. The key generation ora
le
omputes

(PK;SK)

R

 PKE.KeyGen(1

�

) and responds with PK.

Stage 2: The adversary makes a sequen
e of
alls to a de
ryption ora
le.

For ea
h de
ryption ora
le query, the adversary submits a
iphertext , and the de
ryption

ora
le responds with PKE.De
rypt(1

�

;SK;).

We emphasize that may be an arbitrary bit string,
on
o
ted by A in an arbitrary fashion

| it
ertainly need not be an output of the en
ryption algorithm.

Stage 3: The adversary submits two messages m

0

;m

1

2 PKE.MSpa
e

�;PK

to an en
ryption ora
le.

In the
ase of an unrestri
ted message spa
e, we require that jm

0

j = jm

1

j.

On input m

0

;m

1

, the en
ryption ora
le
omputes:

�

R

 f0; 1g;

�

R

 PKE.En
rypt(1

�

;PK;m

�

);

and responds with the \target"
iphertext

�

.

Stage 4: The adversary
ontinues to make
alls to the de
ryption ora
le, subje
t only to the

restri
tion that a submitted
iphertext is not identi
al to

�

.

Again, we emphasize that is arbitrary, and may even be
omputed by A as a fun
tion of

�

.

Stage 5: The adversary outputs �̂ 2 f0; 1g.

We de�ne the CCA advantage of A against PKE at �, denoted AdvCCA

PKE;A

(�), to be

jPr[� = �̂℄� 1=2j in the above atta
k game.

We say that PKE is se
ure against adaptive
hosen
iphertext atta
k if

for all probabilisti
, polynomial-time ora
le query ma
hines A, the fun
tion

AdvCCA

PKE;A

(�) grows negligibly in �.

8

3.3 Appli
ation of the de�nition of se
urity

In applying the above de�nition of se
urity, one typi
ally works dire
tly with the quantity

AdvCCA

0

PKE;A

(�) := jPr[�̂ = 1 j � = 0℄� Pr[�̂ = 1 j � = 1℄j :

If we view A as a statisti
al test, then the quantity AdvCCA

0

PKE;A

(�) measures A's advantage in

distinguishing a game in whi
hm

0

is always en
rypted from a game in whi
hm

1

is always en
rypted.

It is easy to verify that

AdvCCA

0

PKE;A

(�) = 2 � AdvCCA

PKE;A

(�):

We present here a sket
h of another
hara
terization of this notion of se
urity that illustrates

more fully its utility in reasoning about the se
urity of higher-level proto
ols. This alternative

hara
terization is a natural, high level, simulation-based de�nition that in some ways provides a

justi�
ation for the rather low level, te
hni
al de�nition given above. Our treatment here will be

somewhat less formal than elsewhere in this paper.

We start by de�ning the notion of a
hannel, whi
h is an obje
t that implements the following

operations:

� KeyGen | outputs a publi
 key PK.

� En
rypt | takes as input a message m, and outputs a
iphertext .

� De
rypt | takes as input a
iphertext , and outputs a message m (possibly a spe
ial reje
t

symbol).

Additionally, a
hannel is parameterized by a se
urity parameter �.

To initialize a
hannel, the KeyGen operation is invoked, after whi
h, an arbitrary number of

En
rypt and De
rypt operations may be invoked. We shall assume that messages are arbitrary bit

strings.

A
hannel may be implemented in several ways. One way, of
ourse, is to simply \plug in" a

publi
-key en
ryption s
heme. We
all su
h an implementation of a
hannel a real
hannel. We

wish to des
ribe another implementation, whi
h we
all an ideal
hannel.

Loosely speaking, an ideal
hannel a
ts essentially like a private storage and retrieval servi
e:

when an En
rypt operation is invoked with a messagem, the ideal
hannel generates a
orresponding

iphertext without even \looking" at m, and stores the pair (m;) in a table; when a De
rypt

operation is invoked with a
iphertext su
h that (m;) is in the table for somem, the ideal
hannel

returns the message m. Thus, the \en
ryption" of a message m is
ompletely independent of m,

and essentially plays the role of a \re
eipt," presentation of whi
h to the De
rypt operation yields

the message m. As su
h, the En
rypt operation might be better named Store, and the De
rypt

operation Retrieve.

We now des
ribe the operation of an ideal
hannel in a bit more detail.

An ideal
hannel is built using a
hannel simulator. A
hannel simulator is an obje
t that

implements an interfa
e that is identi
al to that of a
hannel, ex
ept that the En
rypt operation

does not take as input a message, but rather just the length of a message.

An ideal
hannel uses a
hannel simulator as follows. The KeyGen operation of the ideal
hannel

is implemented dire
tly in terms of the KeyGen operation of the
hannel simulator. The ideal

hannel maintains a set S of message/
iphertext pairs (m;) and a set T of
iphertexts, both

initially empty.

When the En
rypt operation of the ideal
hannel is invoked with input m, the ideal
hannel

invokes the
hannel simulator with input jmj, obtaining a
iphertext . If 2 T or (m

0

;) 2 S

9

for some m

0

, the ideal
hannel be
omes \broken," and this and all subsequent invo
ations of either

En
rypt or De
rypt return a spe
ial symbol indi
ating this; otherwise, the ideal
hannel adds the

pair (m;) to S and returns as the result of the En
rypt operation.

When the De
rypt operation of the ideal
hannel is invoked with input , the ideal
hannel �rst

he
ks if (m;) 2 S for some m; if so, it simply returns the message m; otherwise, it adds to T ,

invokes the De
rypt operation of the
hannel simulator to obtain m, and returns m.

That
ompletes the des
ription of how an ideal
hannel is implemented using a
hannel simu-

lator.

Now we de�ne a notion of se
urity based on the indistinguishability of real and ideal
hannels

for a publi
-key en
ryption s
heme PKE with an unrestri
ted message spa
e. Consider a game in

whi
h a polynomial-time probabilisti
 adversary A intera
ts with an arbitrary number of
hannels,

and at the end of the game, outputs a 0 or 1. We say that PKE is se
ure in the sense of
hannel

indistinguishability if there exists an eÆ
ient
hannel simulator su
h that for the resulting ideal

hannel, A
annot e�e
tively distinguish between a game played with all real
hannels and a game

played with all ideal
hannels; i.e., the absolute di�eren
e between the probabilities that A outputs

a 1 in the two games grows negligibly in the se
urity parameter.

Note that sin
e real
hannels never be
ome broken, this de�nition of se
urity implies that ideal

hannels be
ome broken with only negligible probability.

It straightforward to show that if PKE is se
ure against adaptive
hosen
iphertext atta
k, then

it is also se
ure in the sense of
hannel indistinguishability. To prove this, the
hannel simulator is

implemented using the KeyGen and De
rypt algorithms of PKE, and the En
rypt operation of the

hannel simulator on input ` simply runs the En
rypt algorithm of PKE on input 1

`

. We leave it

to the reader to verify that the resulting ideal
hannel is indistinguishable from the real
hannel.

This is essentially just a standard \hybrid" argument.

In analyzing a higher-level proto
ol, one may substitute all real
hannels by ideal
hannels.

Presumably, it is mu
h more straightforward to then analyze the resulting idealized proto
ol, sin
e

in the idealized proto
ol,
iphertexts are just \re
eipts" that are
ompletely independent of the

orresponding messages. Se
urity implies that any (polynomial-time re
ognizable) event in the

original proto
ol o

urs with essentially the same probability in the idealized proto
ol.

3.4 Further dis
ussion

The de�nition of se
urity we have presented here is from [RS91℄. It is
alled IND-CCA2 in

[BDPR98℄. It is known to be equivalent to other notions, su
h as non-malleability [DDN91,

BDPR98, DDN00℄, whi
h is
alled NM-CCA2 in [BDPR98℄.

There are other, weaker notions of se
urity for a publi
-key en
ryption s
heme. For example,

[NY90℄ de�ne a notion that is sometimes
alled se
urity against indi�erent
hosen
iphertext atta
k,

or se
urity against lun
htime atta
k. This de�nition of se
urity is exa
tly the same as the one above

in x3.2, ex
ept that Stage 4 of the atta
k is omitted | that is, the adversary does not have a

ess

to the de
ryption ora
le after it obtains the target
iphertext. While this notion of se
urity may

seem natural, it is a
tually not suÆ
ient in many appli
ations. This notion is
alled IND-CCA1 in

[BDPR98℄.

An even weaker notion of se
urity for a publi
-key en
ryption s
heme is that of se
urity against

a passive atta
k, also known as semanti
 se
urity. This de�nition of se
urity is exa
tly the same

as the one above in x3.2, ex
ept that both Stages 2 and 4 of the atta
k are omitted | that is,

the adversary does not have a

ess to the de
ryption ora
le at all. This notion was introdu
ed in

[GM84℄ and is
alled IND-CPA in [BDPR98℄. This notion of se
urity is quite limited: it is only

10

adequate in situations where the adversary only has the power to eavesdrop network traÆ
, but

annot modify network traÆ
 or otherwise a
tively parti
ipate in a proto
ol using the en
ryption

s
heme.

For a similar, but slightly di�erent, approa
h to modeling en
ryption as an \idealized" pro
ess,

see [Can00℄. See also [BBM00℄ for another generalization of the de�nition of adaptive
hosen

iphertext atta
k to a setting involving many users and messages.

4 Intra
tability Assumptions Related to the Dis
rete Logarithm

Problem

In this se
tion, we re
all the Dis
rete Logarithm (DL) assumption, the Computational DiÆe-

Hellman (CDH) assumption, and the De
isional DiÆe-Hellman (DDH) assumption. All of these

assumptions are formulated with respe
t to a suitable group G of large prime order q generated by

a given element g.

Informally, the DL assumption is this:

given g

x

and g

y

for random x; y 2 Z

q

, it is hard to
ompute g

xy

.

Informally, the CDH assumption is this:

given g

x

and g

y

for random x; y 2 Z

q

, it is hard to
ompute g

xy

.

Informally, the DDH assumption is this:

it is hard to distinguish triples of the form (g

x

; g

y

; g

z

) for random x; y; z 2 Z

q

from

triples of the form (g

x

; g

y

; g

xy

) for random x; y 2 Z

q

.

The rest of this se
tion is devoted to des
ribing these assumptions more formally, dis
ussing

appropriate groups, and dis
ussing some variations and
onsequen
es of these assumptions.

4.1 Computational group s
hemes

To state these intra
tability assumptions in a general but pre
ise way, and in an appropriate

asymptoti
 setting, we introdu
e the notion of a
omputational group s
heme.

A
omputational group s
heme G spe
i�es a sequen
e (S

�

)

�2Z

�0

of group distributions. For

every value of a se
urity parameter � 2 Z

�0

, S

�

is a probability distribution of group des
riptions.

A group des
ription � spe
i�es a �nite abelian group

^

G, along with a prime-order subgroup G, a

generator g of G, and the order q of G. We use multipli
ative notation for the group operation in

^

G, and we denote the identity element of

^

G by 1

G

.

We will write �[

^

G;G; g; q℄ to indi
ate that � spe
i�es

^

G, G, g, and q as above. As a simple

example of this notation: \for all � 2 Z

�0

, for all �[

^

G;G; g; q℄ 2 [S

�

℄, we have g

q

= 1

G

."

As usual, mathemati
al obje
ts like a group des
ription � and elements of a group

^

G are

represented for
omputational purposes as bit strings bounded in length by a polynomial in �. The

interpretation of these bit strings is up to the algorithms
omprising the group s
heme (see below).

However, we require that the en
oding s
heme used to represent group elements as bit strings be

anoni
al; that is, every element of a group

^

G has a unique binary en
oding.

The group s
heme should also provide several algorithms:

� a deterministi
, polynomial-time algorithm for
omputing the group operation that takes as

input 1

�

for � 2 Z

�0

, �[

^

G;G; g; q℄ 2 [S

�

℄, along with h

1

; h

2

2

^

G, and outputs the group

element h

1

� h

2

2

^

G;

11

� a deterministi
, polynomial-time algorithm for
omputing the group inversion operation that

takes as input 1

�

for � 2 Z

�0

, �[

^

G;G; g; q℄ 2 [S

�

℄, and h 2

^

G, and outputs h

�1

2

^

G;

� a deterministi
, polynomial-time algorithm that takes as input 1

�

for � 2 Z

�0

, �[

^

G;G; g; q℄ 2

[S

�

℄, and � 2 f0; 1g

�

, and determines if � is a valid binary en
oding of an element of

^

G;

� a deterministi
, polynomial-time algorithm that takes as input 1

�

for � 2 Z

�0

, �[

^

G;G; g; q℄ 2

[S

�

℄, and h 2

^

G, and determines if h 2 G;

� a deterministi
, polynomial-time algorithm that takes as input 1

�

for � 2 Z

�0

, �[

^

G;G; g; q℄ 2

[S

�

℄, and outputs g and q.

� a probabilisti
, polynomial-time approximate sampling algorithm

^

S that on input 1

�

approx-

imately samples S

�

. The distributions S

�

and

^

S(1

�

) should be statisti
ally
lose; that is, the

statisti
al distan
e �(S

�

;

^

S(1

�

)) should be a negligible fun
tion in �.

Noti
e that we do not require that the output distribution

^

S(1

�

) of the sampling algorithm is

identi
al to S

�

, but only that the distributions have a negligible statisti
al distan
e. In parti
ular,

not all elements of [

^

S(1

�

)℄ are ne
essarily valid group des
riptions. It would be impra
ti
al to

require that these two distributions are identi
al.

Note that the requirement that the group order be easily
omputable from the group des
ription

is not a trivial requirement: it is easy to exhibit groups whose orders are not easy to
ompute, e.g.,

subgroups of Z

�

n

for
omposite n.

The requirement that group elements have unique en
odings is also an important, non-trivial

requirement. It is easy to exhibit quotient groups in whi
h the problem of
omputing
anoni
al

representatives of residue
lasses is non-trivial. An example of this is the group underlying Paillier's

en
ryption s
heme [Pai99℄.

Let �[

^

G;G; g; q℄ 2 [S

�

℄. The value 1

G

may be dire
tly en
oded in �, but if not, we
an always

ompute it as g � g

�1

.

Although we will not require it, typi
al group s
hemes will have the property that for all

�[

^

G;G; g; q℄ 2 [S

�

℄, the only elements of

^

G of order q lie in G. When this is the
ase, testing

whether a given h 2

^

G lies in the subgroup G
an be implemented by testing if h

q

= 1

G

. However,

a group s
heme may provide a more eÆ
ient subgroup test.

Let �[

^

G;G; g; q℄ 2 [S

�

℄. For a 2 G n f1

G

g and b 2 G, we denote by log

a

b the dis
rete logarithm

of b to the base a; that is, log

a

b is the unique element x 2 Z

q

su
h that b = a

x

.

As a notational
onvention, throughout this paper, the letters a{h (and de
orated versions

thereof) will denote elements of

^

G, and the letters r{z (and de
orated versions thereof) will denote

elements of Z

q

.

4.2 Examples of appropriate
omputational group s
hemes

There are several examples of
omputational group s
hemes that are appropriate for
ryptographi

appli
ations.

Example 1. Let `

1

(�) and `

2

(�) be polynomially bounded integer-valued fun
tions in �, su
h that

1 < `

1

(�) < `

2

(�) for all � 2 Z

�0

. It should be the
ase that the fun
tion 2

�`

1

(�)

is negligible. For

a given � 2 Z

�0

, the distribution S

�

is de�ned as the distribution of triples (q; p; g), where

� q is a random `

1

(�)-bit prime,

12

� p is a random `

2

(�)-bit prime with p � 1 (mod q), and

� g is a random generator of G, the unique subgroup of order q of the
y
li
 group

^

G = Z

�

p

.

Elements in Z

�

p

an be en
oded
anoni
ally as bit strings of length `

2

(�). Group operations

in Z

�

p

are eÆ
iently implemented using arithmeti
 modulo p, and group inversion is implemented

using the extended Eu
lidean algorithm. To test if an element (� mod p) 2 Z

�

p

lies in G, we
an

test if �

q

� 1 (mod p).

A random generator g of G may be obtained by generating a random element in Z

�

p

and raising

it to the power (p� 1)=q (repeating if ne
essary if this yields (1 mod p)).

The sampling algorithm

^

S may use standard, pra
ti
al algorithms for primality testing that

may err with a small probability that grows negligibly in �. See, e.g., [BS96℄ for more information

on primality testing. Not all elements of [

^

S(1

�

)℄ are valid group des
riptions. Moreover, depending

on other aspe
ts of the implementation, the distribution on the valid group des
riptions may also

be slightly skewed away from S

�

. In our formulation of various intra
tability assumptions, it is

mu
h more
onvenient to work with the natural distribution S

�

than the more awkward distribution

^

S(1

�

).

We should
omment the density of primes p su
h that p � 1 (mod q) has never been proven

to be suÆ
iently large to ensure fast termination of the group generation algorithm. Diri
hlet's

Theorem on primes in arithmeti
 progressions only applies to the
ase where q is �xed relative to

p. However, provided `

2

(�) � (2 + Æ)`

1

(�) for some �xed Æ > 0, for any `

1

(�)-bit prime q, the

probability that a random `

2

(�)-bit number of the form qk + 1 is prime is
(1=`

2

(�)), assuming

the Extended Riemann Hypothesis (ERH). This follows from Theorem 8.8.18 in [BS96℄.

If the density of primes p su
h that p � 1 (mod q)
annot be proven to be suÆ
iently large to

ensure fast termination of the group generation algorithm, even assuming the ERH, it may not be

unreasonable to anyway
onje
ture that this is the
ase.

Example 2. This is the same as Example 1, ex
ept that p = 2q + 1, where q is a random `

1

(�)-bit

prime. Su
h a prime q is known as a Sophie Germain prime. It is unknown if there exist in�nitely

many Sophie Germain primes. However, it is
onje
tured that there are, and spe
i�

onje
tures

on their density have been made [BH62, BH65℄ that empiri
ally seem to be valid. In parti
ular, it

is
onje
tured that the probability that a random `

1

(�)-bit number is a Sophie Germain prime is

(1=`

1

(�)

2

). If su
h a density estimate were true, then a simple trial and error method for �nding

Sophie Germain primes would terminate qui
kly. See [CS00℄ for more information on eÆ
iently

generating su
h primes.

Sin
e the subgroup G of Z

�

p

of order q is just the subgroup of quadrati
 residues, testing if

a given element (� mod p) 2 Z

�

p

lies in G
an be performed by
omputing the Legendre symbol

(� j p), whi
h is generally mu
h more eÆ
ient than
omputing �

q

mod p.

A ni
e property of this
onstru
tion is that the numbers f1; : : : ; qg are easily en
oded as elements

of G. Given � 2 f1; : : : ; qg, we test if (� j p) = 1, if so, then we en
ode � as (� mod p) 2 G,

and otherwise, we en
ode � as (�� mod p). Given a group element h = (� mod p) 2 G with

1 � � � p� 1, we de
ode h as � if � � q, and otherwise, we de
ode h as p� �.

This en
oding s
heme
learly allows us to also easily en
ode arbitrary bit strings of length

`

1

(�)� 1 as elements of G.

Example 3. One
an also
onstru
t G as a prime order subgroup of an ellipti

urve over a �nite

�eld. Ellipti

urves and their appli
ation to
ryptography is a very ri
h �eld, and we refer the

reader to [BSS99℄ for an introdu
tion and further referen
es. We only note here that some of the

same minor te
hni
al problems that arose above in Example 1 also arise here; namely, that (1) the

13

known pro
edures for generating ellipti

urves whose orders have a suitably large prime fa
tor are

somewhat heuristi
, simply be
ause not enough has been proven about how the order of a randomly

generated ellipti

urve fa
tors into primes, and (2) it is in general not easy to en
ode arbitrary

bit strings of a given length as points on an ellipti

urve. We also note that it is fairly easy to

generate ellipti

urves of prime order so that we do not have to work in a sub-group, i.e., we
an

take G =

^

G. This is useful, as then the sub-group test be
omes trivial.

4.3 Intra
tability assumptions

4.3.1 The DL assumption

Let G be a
omputational group s
heme, spe
ifying a sequen
e (S

�

)

�2Z

�0

of group distributions.

For all probabilisti
, polynomial-time algorithms A, and for all � 2 Z

�0

, we de�ne the DL

advantage of A against G at � as

AdvDL

G;A

(�) := Pr[y = x : �[

^

G;G; g; q℄

R

 S

�

; x

R

 Z

q

; y

R

 A(1

�

;�; g

x

) ℄:

The DL assumption for G is this:

For every probabilisti
, polynomial-time algorithm A, the fun
tion AdvDL

G;A

(�) is neg-

ligible in �.

4.3.2 The CDH assumption

Let G be a
omputational group s
heme, spe
ifying a sequen
e (S

�

)

�2Z

�0

of group distributions.

For all probabilisti
, polynomial-time algorithms A, and for all � 2 Z

�0

, we de�ne the CDH

advantage of A against G at � as

AdvCDH

G;A

(�) := Pr[
 = g

xy

: �[

^

G;G; g; q℄

R

 S

�

; x; y

R

 Z

q

;

R

 A(1

�

;�; g

x

; g

y

) ℄:

The CDH assumption for G is this:

For every probabilisti
, polynomial-time algorithm A, the fun
tion AdvCDH

G;A

(�) is

negligible in �.

For all probabilisti
, polynomial-time algorithms A, for all � 2 Z

�0

, and for all �[

^

G;G; g; q℄ 2

[S

�

℄, we de�ne the CDH advantage of A against G at � given � as

AdvCDH

G;A

(� j �) := Pr[
 = g

xy

: x

R

 Z

q

; y

R

 Z

q

;

R

 A(1

�

;�; g

x

; g

y

) ℄:

4.3.3 The DDH assumption

Let G be a
omputational group s
heme, spe
ifying a sequen
e (S

�

)

�2Z

�0

of group distributions.

For all � 2 Z

�0

, and for all �[

^

G;G; g; q℄ 2 [S

�

℄, we de�ne the sets D

�;�

and T

�;�

as follows:

D

�;�

:= f(g

x

; g

y

; g

xy

) 2 G

3

: x; y 2 Z

q

g;

T

�;�

:= G

3

:

The set D

�;�

is the set of \DiÆe-Hellman triples." Also, for � 2 G

3

, de�ne DHP

�;�

(�) = 1 if

� 2 D

�;�

, and otherwise, de�ne DHP

�;�

(�) = 0.

14

For all 0/1-valued, probabilisti
, polynomial-time algorithms A, and for all � 2 Z

�0

, we de�ne

the DDH advantage of A against G at � as

AdvDDH

G;A

(�) :=

�

�

�

Pr[� = 1 : �

R

 S

�

; �

R

 D

�;�

; �

R

 A(1

�

;�; �) ℄�

Pr[� = 1 : �

R

 S

�

; �

R

 T

�;�

; �

R

 A(1

�

;�; �) ℄

�

�

�

The DDH assumption for G is this:

For every probabilisti
, polynomial-time, 0/1-valued algorithm A, the fun
tion

AdvDDH

G;A

(�) is negligible in �.

For all 0/1-valued, probabilisti
, polynomial-time algorithms A, for all � 2 Z

�0

, and all

�[

^

G;G; g; q℄ 2 [S

�

℄, we de�ne the DDH advantage of A against G at � given � as

AdvDDH

G;A

(� j �) :=

�

�

�

Pr[� = 1 : �

R

 D

�;�

; �

R

 A(1

�

;�; �) ℄�

Pr[� = 1 : �

R

 T

�;�

; �

R

 A(1

�

;�; �) ℄

�

�

�

A minor variation

We will need the following variation on the DDH assumption.

For all � 2 Z

�0

, for all �[

^

G;G; g; q℄ 2 [S

�

℄, and we de�ne the sets D

0

�;�

and T

0

�;�

as follows:

D

0

�;�

:= fg

x

; g

y

; g

xy

: x; y 2 Z

q

; x 6= 0g;

T

0

�;�

:= fg

x

; g

y

; g

z

: x; y; z 2 Z

q

; x 6= 0; z 6= xyg:

That is, D

0

�;�

is the set of triples (ĝ; a; â) 2 G

3

, su
h that ĝ 6= 1

G

and log

g

a = log

ĝ

â, and T

0

�;�

is

the set of triples (ĝ; a; â) 2 G

3

, su
h that ĝ 6= 1

G

and log

g

a 6= log

ĝ

â.

It is easy to verify the following:

�(U(D

�;�

);U(D

0

�;�

)) � 1=q; (1)

�(U(T

�;�

);U(T

0

�;�

)) � 2=q: (2)

For all 0/1-valued, probabilisti
, polynomial-time algorithms A, and for all � 2 Z

�0

, we de�ne

AdvDDH

0

G;A

(�) :=

�

�

�

Pr[� = 1 : �

R

 S

�

; �

R

 D

0

�;�

; �

R

 A(1

�

;�; �) ℄�

Pr[� = 1 : �

R

 S

�

; �

R

 T

0

�;�

; �

R

 A(1

�

;�; �) ℄

�

�

�

For all 0/1-valued, probabilisti
, polynomial-time algorithms A, for all � 2 Z

�0

, and for all � 2 [S

�

℄,

we de�ne

AdvDDH

0

G;A

(� j �) :=

�

�

�

Pr[� = 1 : �

R

 D

0

�;�

; �

R

 A(1

�

;�; �) ℄�

Pr[� = 1 : �

R

 T

0

�;�

; �

R

 A(1

�

;�; �) ℄

�

�

�

The inequalities (1) and (2) imply the following:

15

Lemma 1 For all 0/1-valued, probabilisti
, polynomial-time algorithms A, for all � 2 Z

�0

, and

for all �[

^

G;G; g; q℄ 2 [S

�

℄,

�

�

�

AdvDDH

G;A

(� j �)� AdvDDH

0

G;A

(� j �)

�

�

�

� 3=q:

In parti
ular, the DDH assumption holds for G if and only if for every probabilisti
, polynomial-time

0/1-valued algorithm A, the fun
tion AdvDDH

0

G;A

(�) is negligible in �.

Random self-redu
ibility

In this se
tion, we dis
uss the random self-redu
ibility property of the DDH problem, and its

impli
ations.

The following lemma states the random self-redu
ibility property for the DDH problem.

Lemma 2 There exists a probabilisti
, polynomial-time algorithm RSR su
h that for all � 2 Z

�0

,

for all � 2 [S

�

℄, and for all � 2 T

�;�

, the distribution RSR(1

�

;�; �) is U(D

�;�

) if � 2 D

�;�

, and is

U(T

�;�

) if � =2 D

�;�

.

This was �rst observed by Stadler [Sta96℄, who needed the result to prove the se
urity of a

parti
ular proto
ol, and later by Naor and Reingold [NR97℄, who also pointed out some of its

broader impli
ations.

The algorithm RSR is very simple. Given 1

�

, the group des
ription �[

^

G;G; g; q℄, and � =

(a; b;
) 2 G

3

, the algorithm
omputes (a

0

; b

0

;

0

) 2 G

3

as follows:

r

R

 Z

q

; s

R

 Z

q

; t

R

 Z

q

; a

0

 a

r

g

s

; b

0

 bg

t

;

0

r

a

rt

b

s

g

st

:

The impli
ation of this random self-redu
tion is that if DiÆe-Hellman tuples
an be eÆ
iently

distinguished from random tuples with a non-negligible advantage, then DiÆe-Hellman tuples
an

be eÆ
iently re
ognized with negligible error probability. More formally, we have the following:

Lemma 3 For every be a 0/1-valued, probabilisti
, polynomial-time algorithm A, and every poly-

nomial P (with integer
oeÆ
ients, taking positive values on Z

�0

), there exists a 0/1-valued, prob-

abilisti
, polynomial-time algorithm A

1

su
h that for all � 2 Z

�0

, for all � 2 [S

�

℄, for all � 2 T

�;�

,

and for all � 2 Z

�0

,

if AdvDDH

G;A

(� j �) � 1=P (�), then Pr[A

1

(1

�

;�; �; 1

�

) 6= DHP

�;�

(�)℄ � 2

��

:

Lemma 3 follows from Lemma 2 using standard \ampli�
ation" te
hniques, making use of

standard results on tail inequalities for the binomial distribution. Given 1

�

, �, �, and 1

�

, algorithm

A

1

invokes algorithm A as a subroutineO(P (�)

2

�) times with inputs (1

�

;�; �

0

), where ea
h �

0

2 T

�;�

is independently sampled from RSR(1

�

;�; �); additionally, algorithm A

1

has to run algorithm A as

a subroutine O(P (�)

2

�) times to \
alibrate" A,
al
ulating an estimate of

Pr[� = 1 : �

0

R

 T

�;�

; �

R

 A(1

�

;�; �

0

) ℄:

16

4.4 Further dis
ussion

It is
lear that the DDH assumption is at least as strong as the CDH assumption, whi
h in turn is

at least as strong as the DL assumption.

The CDH assumption was introdu
ed informally by [DH76℄. Sin
e then, there have been many

papers that deal with the DL and CDH assumptions, and
rypto
raphi
 appli
ations based on them.

The DDH assumption appears to have �rst surfa
ed in the
ryptographi
 literature in [Bra93℄,

although as that paper notes, the DDH assumption is a
tually needed to prove the se
urity of a

number of previously proposed proto
ols. Indeed, the famous DiÆe-Hellman key ex
hange
annot

be proved se
ure in any reasonable and standard way just based on the CDH assumption: the DDH

assumption (or some variant thereof) is required.

The DDH assumption underpins a number of
ryptographi
 appli
ations. See, for example,

the work of Stadler [Sta96℄ on publi
ly veri�able se
ret sharing, and the
onstru
tion by Naor and

Reingold [NR97℄ of pseudo-random fun
tions. Also, the well-known en
ryption s
heme of ElGamal

[ElG85℄ relies on the DDH for its se
urity against passive atta
ks (i.e., semanti
 se
urity).

One variant of the ElGamal s
heme is as follows. Let G be a group of prime order q generated

by an element g. The publi
 key
onsists of a group element h = g

z

, where z 2 Z

q

is
hosen at

random; the se
ret key is z. To en
rypt a message m, where we assume that m 2 G, we
ompute

u

R

 Z

q

; a g

u

; b h

u

;
 b �m;

to form a
iphertext = (a;
). To de
rypt su
h a
iphertext using the se
ret key, one
omputes

b a

z

; m
 � b

�1

;

to obtain the message m.

It is a trivial exer
ise to show that the se
urity of this en
ryption s
heme against passive atta
k

is equivalent to the DDH assumption. It is also easy to see that this s
heme is
ompletely inse
ure

against adaptive
hosen
iphertext atta
k: if (a;
) is an en
ryption of m 2 G, then for any m

0

2 G,

(a;
 � m

0

) is an en
ryption of m � m

0

; thus, one
an submit (a;
 � m

0

) to the de
ryption ora
le,

obtaining m �m

0

, from whi
h one then
omputes m.

There are some very spe
ial families of ellipti

urves for whi
h the DDH assumption does not

hold, but for whi
h the CDH assumption still appears to stand [JN01℄. How these results are to

be interpreted is a bit un
lear. One the one hand, perhaps they
ast some doubt on the DDH

assumption in general. On the other hand, perhaps they only illustrate that very spe
ially
rafted

families of ellipti

urves may exhibit some surprising se
urity weaknesses, whi
h would seem to

ounsel against using su
h spe
ial families of ellipti

urves for
ryptographi
 appli
ations, and

instead, to use generi
, randomly generated ellipti

urves; indeed, for another spe
ial
lass of

ellipti

urves, the DL assumption is false [Sma99℄.

We refer the reader to two ex
ellent surveys [MW00℄ and [Bon98℄. The latter fo
uses ex
lusively

on the DDH assumption, while the former dis
usses both the CDH and DDH assumptions.

5 Target Collision Resistant Hash Fun
tions

In this se
tion, we de�ne the notion of a target
ollision resistant hash fun
tion, whi
h is a spe
ial

kind of universal one-way hash fun
tion, tailored somewhat for our parti
ular appli
ation.

We informally summarize this se
tion as follows. We shall be working with a group G of order

q, and we want to hash tuples of group elements to elements of Z

q

. For this purpose, we will use

17

a family of keyed hash fun
tions, su
h that given a randomly
hosen tuple of group elements and

randomly
hosen hash fun
tion key, it is
omputationally infeasible to �nd a di�erent tuple of group

elements that hashes to the same value using the given hash key.

Now the details.

Let k be a �xed positive integer, and let G be a
omputational group s
heme, spe
ifying a

sequen
e (S

�

)

�2Z

�0

of group distributions.

A k-ary group hashing s
heme HF asso
iated with G spe
i�es two items:

� A family of key spa
es indexed by � 2 Z

�0

and � 2 [S

�

℄. Ea
h su
h key spa
e is a probability

spa
e on bit strings denoted by HF.KeySpa
e

�;�

.

There must exist a probabilisti
, polynomial-time algorithm whose output distribution on

input 1

�

and � is equal to HF.KeySpa
e

�;�

.

� A family of hash fun
tions indexed by � 2 Z

�0

, �[

^

G;G; g; q℄ 2 [S

�

℄, and hk 2

[HF.KeySpa
e

�;�

℄, where ea
h su
h fun
tion HF

�;�

hk

maps a k-tuple � 2 G

k

of group elements

to an element of Z

q

.

There must exist a deterministi
, polynomial-time algorithm that on input 1

�

, �[

^

G;G; g; q℄ 2

[S

�

℄, hk 2 [HF.KeySpa
e

�;�

℄, and � 2 G

k

, outputs HF

�;�

hk

(�).

Let A be a probabilisti
, polynomial-time algorithm. For � 2 Z

�0

, we de�ne

AdvTCR

HF;A

(�) :=

Pr[� 2 G

k

^ � 6= �

�

^ HF

�;�

hk

(�

�

) = HF

�;�

hk

(�) :

�[

^

G;G; g; q℄

R

 S

�

; �

�

R

 G

k

; hk

R

 HF.KeySpa
e

�;�

; �

R

 A(1

�

;�; �

�

; hk) ℄:

The target
ollision resistan
e (TCR) assumption for HF is this:

For every probabilisti
, polynomial-time algorithm A, the fun
tion AdvTCR

HF;A

(�) is

negligible in �.

It will also be
onvenient to de�ne the following. Let A be a probabilisti
, polynomial-time

algorithm. For � 2 Z

�0

and �[

^

G;G; g; q℄ 2 [S

�

℄, we de�ne

AdvTCR

HF;A

(� j �) :=

Pr[� 2 G

k

^ � 6= �

�

^ HF

�;�

hk

(�

�

) = HF

�;�

hk

(�) :

�

�

R

 G; hk

R

 HF.KeySpa
e

�;�

; �

R

 A(1

�

;�; �

�

; hk) ℄:

5.1 Further dis
ussion

As already mentioned, our notion of a target
ollision resistant hash fun
tion is a spe
ial
ase of the

more general notion of a universal one-way hash fun
tion, introdu
ed by Naor and Yung [NY89℄.

In their presentation, the hash fun
tions mapped bit strings to bit strings, but of
ourse, using

appropriate formatting, we
an easily make su
h a fun
tion a map from tuples of elements of the

group G to elements of Z

q

. The notion of se
urity presented in [NY89℄ was also slightly stronger

than ours: in their paper, the �rst input to the hash fun
tion (i.e. the \target" input) is
hosen

adversarially, but independent of the key of the hash fun
tion, whereas in our appli
ation, the

target input is a random tuple of group elements.

18

As was shown in [NY89℄, universal one-way hash fun
tions
an be built from arbitrary one-way

permutations. This result was extended by [Rom90℄, who showed that universal one-way hash

fun
tions
an be built (albeit less eÆ
iently) from arbitrary one-way fun
tions.

In pra
ti
e, to build a universal one-way hash fun
tion, one
an use a dedi
ated
ryptographi

hash fun
tion, like SHA-1 [SHA95℄. Constru
tions in [BR97℄ and [Sho00a℄ show how to build

a general-purpose universal one-way hash fun
tion using the underlying
ompression fun
tion of

SHA-1, assuming the latter is se
ond pre-image
ollision resistant. A
tually, in our appli
ation,

sin
e the target input is just a random tuple of group elements, it is not too unreasonable to simply

use SHA-1 dire
tly, without a key at all.

Note that the notion of target
ollision resistan
e is both qualitatively and quantitatively weaker

than the notion of (full)
ollision resistan
e, whi
h is why we prefer to rely on the former rather

than the latter. A
ollision resistant hash fun
tion is one where it is hard for an adversary to �nd

two di�erent inputs that hash to the same value; the di�eren
e between target
ollision resistan
e

and
ollision resistan
e is that in the former, one of the two inputs is not under the
ontrol of the

adversary, while in the latter, both inputs are under the
ontrol of the adversary.

6 The New En
ryption S
heme: Basi
 Version

6.1 Des
ription of the s
heme

In this se
tion, we present the basi
 version, CS1, of our new s
heme.

The s
heme makes use of a
omputational group s
heme G as des
ribed in x4.1, de�ning a

sequen
e (S

�

)

�2Z

�0

of distributions of group des
riptions, and providing a sampling algorithm

^

S,

where the output distribution

^

S(1

�

)
losely approximates S

�

.

The s
heme also makes use of a tertiary group hashing s
heme HF asso
iated with G, as des
ribed

in x5.

The s
heme is des
ribed in detail in Figure 1.

Remark 1 Note that this en
ryption s
heme has a restri
ted message spa
e: messages are elements

of the group G. This limits to some degree the appli
ability of the s
heme and the
hoi
e of group

s
heme; indeed, if one wants to en
rypt arbitrary bit strings of some bounded length, then among

the examples of group s
hemes dis
ussed in x4.2, only Example 2, based on Sophie Germain primes,

is suitable.

Remark 2 Note that in step D2 of the de
ryption algorithm, we test if a, â, and
 belong to the

subgroup G. This test is essential to the se
urity of the s
heme. Although some group s
hemes

may provide a more eÆ
ient method for performing these tests, in a typi
al implementation, one

may have to
ompute a

q

, â

q

, and

q

, testing that ea
h of these is 1

G

.

Remark 3 Note that the key generation algorithm samples a group des
ription � from

^

S(1

�

).

However, in des
ribing the en
ryption s
heme, we assume that � is a valid group des
ription. With

negligible probability (in �), � may not be a valid group des
ription, in whi
h
ase the behavior of

the key generation, en
ryption, and de
ryption algorithms is implementation dependent.

Remark 4 It is straightforward to verify that this en
ryption s
heme satis�es the basi
 require-

ments that any publi
 key en
ryption s
heme should satisfy, as des
ribed in x3.1. In parti
ular, the

soundness property will always hold when � is a valid group des
ription.

19

Key Generation: On input 1

�

for � 2 Z

�0

,
ompute

�[

^

G;G; g; q℄

R

^

S(1

�

); hk

R

 HF.KeySpa
e

�;�

;

w

R

 Z

�

q

; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

R

 Z

q

;

ĝ g

w

; e g

x

1

ĝ

x

2

; f g

y

1

ĝ

y

2

; h g

z

1

ĝ

z

2

;

and output the publi
 key PK = (�; hk; ĝ; e; f; h) and the se
ret key SK = (�; hk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

).

En
ryption: Given 1

�

for � 2 Z

�0

, a publi
 key

PK = (�[

^

G;G; g; q℄; hk; ĝ; e; f; h) 2 [S

�

℄� [HF.KeySpa
e

�;�

℄�G

4

;

along with a message m 2 G,
ompute

E1: u

R

 Z

q

;

E2: a g

u

;

E3: â ĝ

u

;

E4: b h

u

;

E5:
 b �m;

E6: v HF

�;�

hk

(a; â;
);

E7: d e

u

f

uv

;

and output the
iphertext = (a; â;
; d).

De
ryption: Given 1

�

for � 2 Z

�0

, a se
ret key

SK = (�[

^

G;G; g; q℄; hk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

) 2 [S

�

℄� [HF.KeySpa
e

�;�

℄� Z

6

q

;

along with a
iphertext , do the following.

D1: Parse as a 4-tuple (a; â;
; d) 2

^

G

4

; output reje
t and halt if is not of this form.

D2: Test if a, â, and
 belong to G; output reje
t and halt if this is not the
ase.

D3: Compute v HF

�;�

hk

(a; â;
).

D4: Test if d = a

x

1

+y

1

v

� â

x

2

+y

2

v

; output reje
t and halt if this is not the
ase.

D5: Compute b a

z

1

â

z

2

.

D6: Compute m
 � b

�1

, and output m.

Figure 1: The publi
-key en
ryption s
heme CS1

20

Remark 5 Te
hni
ally speaking, the output of the en
ryption algorithm is a
tually a
anoni
al

binary en
oding of the 4-tuple (a; â;
; d) 2 G

4

. In parti
ular, it is
riti
al that for any two
ipher-

texts

0

6= , the parsing algorithm in step D1 of the de
ryption algorithm should not output the

same 4-tuple of group elements.

6.2 Se
urity analysis of the s
heme

We shall prove that CS1 is se
ure against adaptive
hosen
iphertext atta
k if the DDH assumption

holds for G and the TCR assumption holds for HF. However, we wish to state and prove a
on
rete

se
urity redu
tion. To this end, we need some auxiliary de�nitions.

Suppose PKE is a publi
-key en
ryption s
heme that uses a group s
heme in the following

natural way: on input 1

�

, the key generation algorithm runs the sampling algorithm of the group

s
heme on input 1

�

, yielding a group des
ription �. For a given probabilisti
, polynomial-time

ora
le query ma
hine A, � 2 Z

�0

, and group des
ription �, let us de�ne AdvCCA

PKE;A

(� j �) to be

A's advantage in an adaptive
hosen
iphertext atta
k where the key generation algorithm uses the

given value of �, instead of running the sampling algorithm of the group s
heme.

For all probabilisti
, polynomial-time ora
le query ma
hines A, for all � 2 Z

�0

, let Q

A

(�) be

an upper bound on the number of de
ryption ora
le queries made by A on input 1

�

. We assume

that Q

A

(�) is a stri
t bound in the sense that it holds regardless of the probabilisti

hoi
es of A,

and regardless of the responses to its ora
le queries from its environment.

Theorem 1 If the DDH assumption holds for G and the TCR assumption holds for HF, then CS1

is se
ure against adaptive
hosen
iphertext atta
k.

In parti
ular, for all probabilisti
, polynomial-time ora
le query ma
hines A, there exist proba-

bilisti
 algorithms A

1

and A

2

, whose running times are essentially the same as that of A, su
h that

the following holds. For all � 2 Z

�0

, and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

AdvCCA

CS1;A

(� j �) � AdvDDH

G;A

1

(� j �) + AdvTCR

HF;A

2

(� j �) + (Q

A

(�) + 4)=q: (3)

The pre
ise running times of algorithms A

1

and A

2

depend a good deal on details of the model

of
omputation and on implementation details, and so we make no attempt to be more pre
ise on

this matter.

Before
ontinuing, we state the following simple but useful lemma, whi
h we leave to the reader

to verify.

Lemma 4 Let U

1

, U

2

, and F be events de�ned on some probability spa
e. Suppose that the event

U

1

^ :F o

urs if and only if U

2

^ :F o

urs. Then jPr[U

1

℄� Pr[U

2

℄j � Pr[F ℄:

To prove Theorem 1, let us �x a probabilisti
, polynomial-time ora
le query ma
hine A, the

value of the se
urity parameter � 2 Z

�0

, and the group des
ription �[

^

G;G; g; q℄ 2 [S

�

℄.

The atta
k game is as des
ribed in x3.2. We now des
ribe the relevant random variables to be

onsidered in analyzing the adversary's atta
k.

Suppose that the publi
 key is (�; hk; ĝ; e; f; h) and that the se
ret key is

(�; hk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

). Let w := log

g

ĝ, and de�ne x; y; z 2 Z

q

as follows:

x :=x

1

+ x

2

w; y := y

1

+ y

2

w; z := z

1

+ z

2

w:

That is, x = log

g

e, y = log

g

f , and z = log

g

h.

As a notational
onvention, whenever a parti
ular
iphertext is under
onsideration in some

ontext, the following values are also impli
itly de�ned in that
ontext:

21

� a; â; b;
; d 2 G, where = (a; â;
; d) and b :=a

z

1

â

z

2

;

� u; û; v; r; s; t 2 Z

q

, where

u := log

g

a; û := log

ĝ

â; v :=HF

�;�

hk

(a; â;
); r := log

g

; s := log

g

d;

and

t :=x

1

u+ y

1

uv + x

2

ûw + y

2

ûvw:

For the target
iphertext

�

, we also denote by a

�

; â

�

; b

�

;

�

; d

�

2 G and u

�

; û

�

; v

�

; r

�

; s

�

; t

�

2 Z

q

the
orresponding values.

The probability spa
e de�ning the atta
k game is then determined by the following, mutually

independent, random variables:

� the
oin tosses Coins of A;

� the values hk; w; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

generated by the key generation algorithm;

� the values � 2 f0; 1g and u

�

2 Z

q

generated by the en
ryption ora
le.

Let G

0

be the original atta
k game, let �̂ 2 f0; 1g denote the output of A, and let T

0

be the

event that � = �̂ in G

0

, so that AdvCCA

CS1;A

(� j �) = jPr[T

0

℄� 1=2j.

Our overall strategy for the proof is as follows. We shall de�ne a sequen
e G

1

;G

2

; : : : ;G

`

of modi�ed atta
k games. Ea
h of the games G

0

;G

1

; : : : ;G

`

operates on the same underlying

probability spa
e. In parti
ular, the publi
 key and se
ret key of the
ryptosystem, the
oin tosses

Coins of A, and the hidden bit � take on identi
al values a
ross all games. Only some of the

rules de�ning how the environment responds to ora
le queries di�er from game to game. For any

1 � i � `, we let T

i

be the event that � = �̂ in game G

i

. Our strategy is to show that for 1 � i � `,

the quantity jPr[T

i�1

℄ � Pr[T

i

℄j is negligible. Also, it will be evident from the de�nition of game

G

`

that Pr[T

`

℄ = 1=2, whi
h will imply that jPr[T

0

℄� 1=2j is negligible.

So that the overall stru
ture of the proof is more transparent, we shall defer the proofs of all

lemmas to the end of the proof of the theorem.

Game G

1

. We now modify game G

0

to obtain a new game G

1

. These two games are identi
al,

ex
ept for a small modi�
ation to the en
ryption ora
le. Instead of using the en
ryption algorithm

as given to
ompute the target
iphertext

�

, we use a modi�ed en
ryption algorithm, in whi
h

steps E4 and E7 are repla
ed by:

E4

0

: b a

z

1

â

z

2

;

E7

0

: d a

x

1

+y

1

v

� â

x

2

+y

2

v

:

The
hange we have made is purely
on
eptual: the values of b

�

and d

�

are exa
tly the same in

game G

1

as they were in G

0

. Therefore,

Pr[T

1

℄ = Pr[T

0

℄: (4)

Note that the en
ryption ora
le now makes use of some
omponents of the se
ret key, whi
h is

something the original en
ryption ora
le does not do.

22

Game G

2

. We now modify game G

1

to obtain a new game G

2

. We again modify the en
ryption

ora
le, repla
ing step E3 of the en
ryption algorithm by

E3

0

: û

R

 Z

q

n fug; â ĝ

û

:

Note that whereas in games G

0

and G

1

we had u

�

= û

�

, in game G

2

, u

�

and û

�

are nearly

independent, being subje
t only to u

�

6= û

�

. However, observe that games G

1

and G

2

are the

same, ex
ept that in game G

1

, the triple (ĝ; a

�

; â

�

) is uniformly distributed in D

0

�;�

, and in game

G

2

, the triple (ĝ; a

�

; â

�

) is uniformly distributed in T

0

�;�

. Thus, any di�eren
e in behavior between

these two games immediately yields a statisti
al test for the distinguishing DiÆe-Hellman triple

from non-DiÆe-Hellman triples. More pre
isely, we have:

Lemma 5 There exists a probabilisti
 algorithm A

1

, whose running time is essentially the same as

that of A, su
h that

jPr[T

2

℄� Pr[T

1

℄j � AdvDDH

G;A

1

(� j �) + 3=q: (5)

Game G

3

. In this game, we modify the de
ryption ora
le in game G

2

to obtain a new game G

3

.

Instead of using the original de
ryption algorithm, we modify the de
ryption algorithm, repla
ing

steps D4 and D5 with:

D4

0

: Test if â = a

w

and d = a

x+yv

; output reje
t and halt if this is not the
ase.

D5

0

: b a

z

.

Note that the de
ryption ora
le now make use of w, but does not make use of x

1

; y

2

; y

1

; y

2

; z

1

; z

2

,

ex
ept indire
tly through the values x; y; z.

Now, let R

3

be the event that in game G

3

, some
iphertext is submitted to the de
ryption

ora
le that is reje
ted in step D4

0

but that would have passed the test in step D4.

Note that if a
iphertext passes the test in D4

0

, it would also have passed the test in D4.

It is
lear that games G

2

and G

3

pro
eed identi
ally until the event R

3

o

urs. In parti
ular,

the event T

2

^ :R

3

and T

3

^ :R

3

are identi
al. So by Lemma 4, we have

jPr[T

3

℄� Pr[T

2

℄j � Pr[R

3

℄; (6)

and so it suÆ
es to bound Pr[R

3

℄. We introdu
e auxiliary games G

4

and G

5

below to do this.

Game G

4

. This game is identi
al to game G

3

, ex
ept for a small modi�
ation to the en
ryption

ora
le. We again modify the algorithm used by the en
ryption ora
le, repla
ing step E5 by

E5

0

: r

R

 Z

q

;
 g

r

:

It is
lear by
onstru
tion that

Pr[T

4

℄ = 1=2; (7)

sin
e in game G

4

, the variable � is never used at all, and so the adversary's output is independent

of �.

De�ne the event R

4

to be the event in game G

4

analogous to the event R

3

in game G

3

; that is,

R

4

is the event that in game G

4

, some
iphertext is submitted to the de
ryption ora
le that is

reje
ted in step D4

0

but that would have passed the test in step D4.

We show that this modi�
ation has no e�e
t; more pre
isely:

23

Lemma 6 We have

Pr[T

4

℄ = Pr[T

3

℄; (8)

Pr[R

4

℄ = Pr[R

3

℄: (9)

Game G

5

. This game is the same as game G

4

, ex
ept for the following modi�
ation.

We modify the de
ryption ora
le so that it applies the following spe
ial reje
tion rule: if the

adversary submits a
iphertext for de
ryption at a point in time after the en
ryption ora
le has

been invoked, su
h that (a; â;
) 6= (a

�

; â

�

;

�

) but v = v

�

, then the de
ryption ora
le immediately

outputs reje
t and halts (before exe
uting step D4

0

).

To analyze this game, we de�ne two events.

First, we de�ne the event C

5

to be the event that the de
ryption ora
le in game G

5

reje
ts a

iphertext using the spe
ial reje
tion rule.

Se
ond, we de�ne the event R

5

to be the event in game G

5

that some
iphertext is submitted

to the de
ryption ora
le that is reje
ted in step D4

0

but that would have passed the test in step

D4. Note that su
h a
iphertext is not reje
ted by the spe
ial reje
tion rule, sin
e that rule is

applied before step D4

0

is exe
uted.

Now, it is
lear that games G

4

and G

5

pro
eed identi
ally until event C

5

o

urs. In parti
ular,

the events R

4

^ :C

5

and R

5

^ :C

5

are identi
al. So by Lemma 4, we have

jPr[R

5

℄� Pr[R

4

℄j � Pr[C

5

℄: (10)

Now, if event C

5

o

urs with non-negligible probability, we immediately get an algorithm that

ontradi
ts the target
ollision resistan
e assumption; more pre
isely:

Lemma 7 There exists a probabilisti
 algorithm A

2

, whose running time is essentially the same as

that of A, su
h that

Pr[C

5

℄ � AdvTCR

HF;A

2

(� j �) + 1=q: (11)

Finally, we show that event R

5

o

urs with negligible probability, based on purely information-

theoreti

onsiderations:

Lemma 8 We have

Pr[R

5

℄ � Q

A

(�)=q: (12)

The detailed proof of this lemma is presented below. However, the basi
 idea of the proof runs

as follows. For a de
ryption query , the only information the adversary has about (x

1

; x

2

; y

1

; y

2

)

are the values of x, y, and possibly s

�

, whi
h are linear
ombinations of (x

1

; x

2

; y

1

; y

2

). As we will

prove, the value of t, whi
h the adversary must su

essfully guess in order to make the event R

5

happen, is an independent linear
ombination of (x

1

; x

2

; y

1

; y

2

), and is therefore unpredi
table.

Inequality (3) now follows immediately from (4)-(12).

Proofs of Lemmas

To
omplete the proof of Theorem 1, we now present the proofs of Lemmas 5, 6, 7, and 8.

24

Proof of Lemma 5. We des
ribe the algorithm A

1

in detail. For a given value of � 2 Z

�0

, it

takes as input 1

�

, �[

^

G;G; g; q℄ 2 [S

�

℄, and � = (ĝ; a

�

; â

�

) 2 G

3

.

Algorithm A

1

provides an environment for A, intera
ting with A as follows.

First, A

1

omputes

hk

R

 HF.KeySpa
e

�;�

; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

R

 Z

q

; e g

x

1

ĝ

x

2

; f g

y

1

ĝ

y

2

; h g

z

1

ĝ

z

2

;

to generate a publi
 key PK = (�; hk; ĝ; e; f; h) and a se
ret key SK = (�; hk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

). It

then gives PK to A.

Whenever A submits a
iphertext = (a; â;
; d) to the de
ryption ora
le, A

1

simply runs the

de
ryption algorithm, using the se
ret key SK.

When A submits (m

0

;m

1

) to the en
ryption ora
le, A

1

omputes

�

R

 f0; 1g; b

�

 (a

�

)

z

1

(â

�

)

z

2

;

�

 b

�

�m

�

; v

�

 HF

�;�

hk

(a

�

; â

�

;

�

); d

�

 (a

�

)

x

1

+y

1

v

�

(â

�

)

x

2

+y

2

v

�

;

and responds with the \
iphertext"

�

= (a

�

; â

�

;

�

; d

�

).

When A outputs �̂ and halts, A

1

outputs 1 if � = �̂ and 0 if � 6= �̂.

That
ompletes the des
ription of A

1

. By
onstru
tion, it is
lear that for �xed � and � 2 [S

�

℄,

Pr[T

1

℄ = Pr[� = 1 : �

R

 D

0

�;�

; �

R

 A

1

(1

�

;�; �) ℄;

Pr[T

2

℄ = Pr[� = 1 : �

R

 T

0

�;�

; �

R

 A

1

(1

�

;�; �) ℄:

Thus,

jPr[T

2

℄� Pr[T

1

℄j = AdvDDH

0

G;A

1

(� j �);

and so (5) now follows dire
tly from this and Lemma 1. 2

Before
ontinuing, we state and prove a simple but useful lemma.

Lemma 9 Let k; n be integers with 1 � k � n, and let K be a �nite �eld. Consider a probability

spa
e with random variables ~� 2 K

n�1

,

~

� = (�

1

; : : : ; �

k

)

T

2 K

k�1

, ~
 2 K

k�1

, and M 2 K

k�n

,

su
h that ~� is uniformly distributed over K

n�1

,

~

� =M~�+~
, and for 1 � i � k, the ith rows of M

and ~
 are determined by �

1

; : : : ; �

i�1

.

Then
onditioning on any �xed values of �

1

; : : : ; �

k�1

su
h that the resulting matrix M has rank

k, the value of �

k

is uniformly distributed over K in the resulting
onditional probability spa
e.

Proof. Consider �xed values of �

1

; : : : ; �

k�1

2 K, whi
h determine M and ~
, and assume that the

matrix M has rank k. For any �

k

2 K,
onsider the
orresponding ve
tor

~

� = (�

1

; : : : ; �

k

)

T

; there

are exa
tly jKj

n�k

ve
tors ~� su
h that

~

� = M~� + ~
. Therefore, ea
h possible value �

k

2 K is

equally likely. 2

Proof of Lemma 6. Consider the quantity

X := (Coins; hk; w; x

1

; x

2

; y

1

; y

2

; �; u

�

; û

�

)

and the quantity z. Note that X and z take on the same values in games G

3

and G

4

.

Consider also the quantity r

�

. This quantity takes on di�erent values in games G

3

and G

4

. For

larity, let us denote these values as [r

�

℄

3

and [r

�

℄

4

, respe
tively.

It is
lear by inspe
tion that the events R

3

and T

3

are determined as fun
tions of X, z, and [r

�

℄

3

.

Also, the events R

4

and T

4

have pre
isely the same fun
tional dependen
e on on X, z, and [r

�

℄

4

.

25

So to prove the lemma, it suÆ
es to show that the distributions of (X; z; [r

�

℄

3

) and (X; z; [r

�

℄

4

)

are identi
al. Observe that by
onstru
tion,
onditioning on any �xed values of X and z, the

distribution of [r

�

℄

4

is uniform over Z

q

. So it will suÆ
e to show that
onditioning on any �xed

values of X and z, the distribution of [r

�

℄

3

is also uniform over Z

q

.

We have

z

[r

�

℄

3

!

=

1 w

u

�

wû

�

!

| {z }

=:M

�

z

1

z

2

!

+

0

log

g

m

�

!

:

Conditioning only on a �xed value of X, the matrix M is �xed, but the values z

1

and z

2

are still

uniformly and independently distributed over Z

q

. Observe that det(M) = w(û

�

� u

�

) 6= 0. If we

further
ondition on a �xed value of z, the value of m

�

is �xed, and by Lemma 9, the distribution

of [r

�

℄

3

is uniform over Z

q

. 2

Proof of Lemma 7. Algorithm A

2

provides an environment for A, intera
ting with A as follows.

Algorithm A

2

takes as input 1

�

, �[

^

G;G; g; q℄ 2 [S

�

℄, �

�

= (a

�

; â

�

;

�

) 2 G

3

, and hk 2

[HF.KeySpa
e

�;�

℄. It �rst
onstru
ts a publi
 key PK and se
ret key SK for the en
ryption s
heme

using the standard key generation algorithm, ex
ept that the given values of � and hk are used. It

also
onstru
ts the target
iphertext

�

= (a

�

; â

�

;

�

; d

�

), where a

�

; â

�

;

�

are the given inputs as

above, and where d

�

is
omputed as

v

�

 HF

�;�

hk

(a

�

; â

�

;

�

); d

�

 (a

�

)

x

1

+y

1

v

�

(â

�

)

x

2

+y

2

v

�

:

Here, hk is the given input as above, and x

1

; y

1

; x

2

; y

2

are the values taken from the se
ret key SK

as
omputed above.

Now A

2

intera
ts with A using the rules of game G

5

for the de
ryption ora
le, and giving A the

target
iphertext

�

when A invokes the en
ryption ora
le. However, if the de
ryption ora
le ever

invokes the spe
ial reje
tion rule in game G

5

for a given
iphertext , algorithm A

2

immediately

outputs (a; â;
)
orresponding to and halts. Also, if the atta
k terminates without the spe
ial

reje
tion rule ever having been invoked, then A

2

also halts (without produ
ing any output).

That
ompletes the des
ription of A

2

. If the input (a

�

; â

�

;

�

) to A

2

is sampled uniformly over

all triples of group elements, subje
t to log

g

a

�

6= log

ĝ

â

�

, then algorithm A

2

su

eeds in �nding

a
ollision with probability exa
tly Pr[C

5

℄. However, in the de�nition of AdvTCR, the input is

sampled from the uniform distribution over all triples, not subje
t to the above restri
tion. The

bound (11) follows from the fa
t that the statisti
al distan
e between these two input distributions

is 1=q. 2

Proof of Lemma 8. To prove (12), for 1 � i � Q

A

(�), let us de�ne R

(i)

5

to be the event that

there is an ith
iphertext submitted to the de
ryption ora
le in game G

5

, and that the submitted

iphertext is reje
ted in step D4

0

but would have passed the test in step D4. For 1 � i � Q

A

(�), let

us de�ne B

(i)

5

to be the event that the ith de
ryption ora
le query o

urs before the en
ryption ora
le

query, and that the submitted
iphertext passes the test in steps D1 and D2 of the de
ryption

ora
le. For 1 � i � Q

A

(�), let us de�ne

^

B

(i)

5

to be the event that the ith de
ryption ora
le query

o

urs after the en
ryption ora
le query, and that the submitted
iphertext passes the tests in steps

D1 and D2 of the de
ryption ora
le.

The bound (12) will follow immediately from Lemmas 10 and 11 below. 2

Lemma 10 Notation as in the proof of Lemma 8. For all 1 � i � Q

A

(�), we have Pr[R

(i)

5

jB

(i)

5

℄ �

1=q.

26

Proof. Fix 1 � i � Q

A

(�). Consider the quantities

X := (Coins; hk; w; z)

and

X

0

:= (x; y):

The values of X and X

0

ompletely determine the behavior of the adversary up until the point

when the en
ryption ora
le is invoked, and in parti
ular, they
ompletely determine the event B

(i)

5

.

Let us
all X and X

0

relevant if the event B

(i)

5

o

urs.

It will suÆ
e prove that
onditioned on any �xed, relevant values of X and X

0

, the probability

that R

(i)

5

o

urs is bounded by 1=q.

On
e relevant values of X and X

0

are �xed, the value of the ith de
ryption query is also �xed,

along with the
orresponding values a; â; b;
; d; u; û; v; r, and s.

The test in D4

0

fails if and only if one of the two mutually ex
lusive
onditions (â 6= a

w

) or

(â = a

w

and d 6= a

x+yv

) holds. It is easy to verify that if the se
ond
ondition holds, then in fa
t

the test in D4 fails. Thus, if the test in D4

0

fails but that in D4 passes, it must be the
ase that

â 6= a

w

and d = a

x

1

+y

1

v

â

x

2

+y

2

v

. So we only need to
onsider values of X and X

0

su
h that â 6= a

w

.

The
ondition â 6= a

w

is equivalent to the
ondition u 6= û, and the
ondition d = a

x

1

+y

1

v

â

x

2

+y

2

v

is

equivalent to the
ondition s = t.

We have

0

B

�

x

y

t

1

C

A

=

0

B

�

1 w 0 0

0 0 1 w

u ûw uv ûvw

1

C

A

| {z }

=:M

�

0

B

B

B

�

x

1

x

2

y

1

y

2

1

C

C

C

A

:

Let us �rst
ondition only on a �xed value of X, whi
h �xes the �rst two rows of M , but leaves

the values x

1

, x

2

, y

1

, and y

2

still uniformly distributed over Z

q

and mutually independent. Let us

further
ondition on a �xed value of X

0

su
h that X and X

0

are relevant, and that u 6= û. The

third row of M is also �xed, along with the values x, y, and s. It is easy to see by inspe
tion that

the rows of M are linearly independent, sin
e û 6= u and w 6= 0. From this, it follows by Lemma 9

that t is still uniformly distributed over Z

q

, but sin
e s is �xed, we have Pr[s = t℄ = 1=q. 2

Lemma 11 Notation as in the proof of Lemma 8. For all 1 � i � Q

A

(�), we have Pr[R

(i)

5

j

^

B

(i)

5

℄ �

1=q.

Proof. Fix 1 � i � Q

A

(�). Consider the quantities

X := (Coins; hk; w; z; u

�

; û

�

; r

�

)

and

X

0

:= (x; y; s

�

):

The values of X and X

0

ompletely determine the adversary's entire behavior in game G

5

, and in

parti
ular, they
ompletely determine the event

^

B

(i)

5

. Let us
all X and X

0

relevant if the event

^

B

(i)

5

o

urs.

It will suÆ
e prove that
onditioned on any �xed, relevant values of X and X

0

, the probability

that R

(i)

5

o

urs is bounded by 1=q.

27

On
e X and X

0

are �xed, the value of the ith de
ryption query is also �xed, along with the

orresponding values a; â; b;
; d; u; û; v; r, and s. As in the proof of Lemma 10, it suÆ
es to
onsider

values of X and X

0

for whi
h u 6= û, and then to show that Pr[s = t℄ � q. Noti
e that the value

of X determines the value of v

�

, and we may also assume that v 6= v

�

. To see why we may do so,

if v = v

�

, then either (a; â;
) = (a

�

; â

�

;

�

), or is reje
ted by the spe
ial reje
tion rule. In the

�rst
ase, sin
e 6=

�

, we must have d 6= d

�

, but this implies that fails the test in D4. In the

se
ond
ase, step D4

0

is not even exe
uted.

We have

0

B

B

B

�

x

y

s

�

t

1

C

C

C

A

=

0

B

B

B

�

1 w 0 0

0 0 1 w

u

�

û

�

w u

�

v

�

û

�

v

�

w

u ûw uv ûvw

1

C

C

C

A

| {z }

=:M

�

0

B

B

B

�

x

1

x

2

y

1

y

2

1

C

C

C

A

:

Let us �rst
ondition only on a �xed value of X, whi
h �xes the �rst three rows of M , but leaves

the values x

1

, x

2

, y

1

, and y

2

still uniformly distributed over Z

q

and mutually independent. Let

us further
ondition on a �xed value of X

0

su
h that X and X

0

are relevant, and that u 6= û and

v 6= v

�

. The fourth row of M is also �xed, along with the values x, y, s

�

, and s. It is easy to see

that the rows of M are linearly independent, sin
e

det(M) = w

2

(û� u)(û

�

� u

�

)(v

�

� v) 6= 0:

From this, it follows by Lemma 9 that t is still uniformly distributed over Z

q

, but sin
e s is �xed,

we have Pr[s = t℄ = 1=q. 2

6.3 Two variations

S
heme CS1 was presented be
ause it is in a form that is parti
ularly easy to analyze. We now

des
ribe and analyze two variations of the s
heme CS1, whi
h we
all CS1a and CS1b, that are a

bit simpler than CS1, but that require a bit more work to analyze. For both of these s
hemes, the

publi
 key has the same format and indeed, the same probability distribution, as in CS1, and the

en
ryption algorithm is the same as in CS1. The key generation and de
ryption algorithms are

slightly di�erent, however, and are des
ribed in detail in Figures 2 and 3.

Remark 6 S
heme CS1a is essentially the same s
heme that was originally presented as the \main

s
heme" in [CS98℄. S
heme CS1b is a minor variation of a s
heme originally presented in [Sho00b℄.

Remark 7 Note that in s
heme CS1b, we do not have to separately test if â belongs to the subgroup

G in step D2

0

, sin
e this is already implied by the test in step D4

0

. The test that a and
 belong

to G may in some
ases be implemented by testing if a

q

= 1

G

and

q

= 1

G

.

Remark 8 Note also in s
heme CS1b, the de
ryption algorithm has to
ompute either three or

four (if we test if a

q

= 1

G

) powers of a, and possibly one power of
 (if we test if

q

= 1

G

). Spe
ial

algorithmi
 te
hniques [BGMW92, LL94℄
an be employed to
ompute these several powers of a

signi�
antly faster than
omputing several powers of di�erent group elements.

Remark 9 In an a
tual implementation, it is strongly re
ommended to
ompute both exponentia-

tions in step D4

0

of CS1b before reje
ting the
iphertext, even if the �rst exponentiation performed

already implies that the
iphertext should be reje
ted. The reason is that if the
iphertext is reje
ted

28

Key Generation: On input 1

�

for � 2 Z

�0

,
ompute

�[

^

G;G; g; q℄

R

^

S(1

�

); hk

R

 HF.KeySpa
e

�;�

;

w

R

 Z

�

q

; x

1

; x

2

; y

1

; y

2

; z

R

 Z

q

;

ĝ g

w

; e g

x

1

ĝ

x

2

; f g

y

1

ĝ

y

2

; h g

z

;

and output the publi
 key PK = (�; hk; ĝ; e; f; h) and the se
ret key SK = (�; hk; x

1

; x

2

; y

1

; y

2

; z).

De
ryption: Given 1

�

for � 2 Z

�0

, a se
ret key

SK = (�[

^

G;G; g; q℄; hk; x

1

; x

2

; y

1

; y

2

; z) 2 [S

�

℄� [HF.KeySpa
e

�;�

℄� Z

5

q

;

along with a
iphertext , do the following.

D1: Parse as a 4-tuple (a; â;
; d) 2

^

G

4

; output reje
t and halt if is not of this form.

D2: Test if a, â, and
 belong to G; output reje
t and halt if this is not the
ase.

D3: Compute v HF

�;�

hk

(a; â;
).

D4: Test if d = a

x

1

+y

1

v

â

x

2

+y

2

v

; output reje
t and halt if this is not the
ase.

D5

0

: Compute b a

z

.

D6: Compute m
 � b

�1

, and output m.

Figure 2: Key generation and de
ryption algorithms for CS1a

Key Generation: On input 1

�

for � 2 Z

�0

,
ompute

�[

^

G;G; g; q℄

R

^

S(1

�

); hk

R

 HF.KeySpa
e

�;�

;

w

R

 Z

�

q

; x; y; z

R

 Z

q

;

ĝ g

w

; e g

x

; f g

y

; h g

z

;

and output the publi
 key PK = (�; hk; ĝ; e; f; h) and the se
ret key SK = (�; hk; w; x; y; z).

De
ryption: Given 1

�

for � 2 Z

�0

, a se
ret key

SK = (�[

^

G;G; g; q℄; hk; x; y; z) 2 [S

�

℄� [HF.KeySpa
e

�;�

℄� Z

3

q

;

along with a
iphertext , do the following.

D1: Parse as a 4-tuple (a; â;
; d) 2

^

G

4

; output reje
t and halt if is not of this form.

D2

0

: Test if a and
 belong to G; output reje
t and halt if this is not the
ase.

D3: Compute v HF

�;�

hk

(a; â;
).

D4

0

: Test if â = a

w

and d = a

x+yv

; output reje
t and halt if this is not the
ase.

D5

0

: Compute b a

z

.

D6: Compute m
 � b

�1

, and output m.

Figure 3: Key generation and de
ryption algorithms for CS1b

29

after just one exponentiation, this may reveal some timing information that
ould be exploited by

an atta
ker. Indeed, if we reje
t immediately upon dete
ting that â 6= a

w

, then based upon timing

information, an atta
ker
ould use the de
ryption box as a kind DiÆe-Hellman de
ision ora
le. Our

formal model of se
urity does not model any notion of time at all, so su
h atta
ks fall outside of

the model. We should also point out that we know of no a
tual atta
k on the s
heme even if su
h

timing information is available.

Remark 10 For the same reasons as dis
ussed in the previous remark, it is important that any

\error
ode" returned by the de
ryption algorithm in s
heme CS1b not reveal the pre
ise reason

why a
iphertext was reje
ted.

Theorem 2 If the DDH assumption holds for G and the TCR assumption holds for HF, then CS1a

and CS1b are se
ure against adaptive
hosen
iphertext atta
k.

In parti
ular, for all probabilisti
, polynomial-time ora
le query ma
hines A, for all � 2 Z

�0

,

and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

jAdvCCA

CS1a;A

(� j �)� AdvCCA

CS1;A

(� j �)j � Q

A

(�)=q (13)

and

jAdvCCA

CS1b;A

(� j �)� AdvCCA

CS1;A

(� j �)j � Q

A

(�)=q: (14)

To prove this theorem, let us �x A, �, and �[

^

G;G; g; q℄. Consider the atta
k game G

0

as de�ned

in x6.2: this is game that A plays against the s
heme CS1 for the given values of � and �. We adopt

all the notational
onventions established at the beginning of x6.2 (i.e., prior to the des
ription of

game G

1

).

We begin by de�ning two modi�
ations of game G

0

.

Game G

�1a

. In this game, we modify the de
ryption ora
le so that in pla
e of stepD5, we exe
ute

step D5

0

as in the s
heme CS1a. We emphasize that in game G

�1a

, we have z = z

1

+ z

2

w, where

w, z

1

, and z

2

are generated by the key generation algorithm of CS1.

Game G

�1b

. In this game, we modify the de
ryption ora
le so that in pla
e of steps D4 and D5,

we exe
ute steps D4

0

and D5

0

as in the s
heme CS1b. We emphasize that in game G

�1b

, we have

x = x

1

+ x

2

w, y = x

1

+ x

2

w, and z = z

1

+ z

2

w, where w, x

1

, x

2

, y

1

, y

2

, z

1

, and z

2

are generated

by the key generation algorithm of CS1.

Let T

�1a

be the event that � = �̂ in game G

�1a

and T

�1b

be the event that � = �̂ in game

G

�1b

.

We remind the reader that games G

0

, G

�1a

, and G

�1b

all operate on the same underlying

probability spa
e: all of the variables

Coins; hk; w; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

; �; u

�

that ultimately determine the events T

0

, T

�1a

, and T

�1b

have the same values in games G

0

, G

�1a

,

and G

�1b

; all that
hanges is the fun
tional behavior of the de
ryption ora
le.

It is straightforward to verify that and that

AdvCCA

CS1a;A

(� j �) = jPr[T

�1a

� 1=2℄j

and

AdvCCA

CS1b;A

(� j �) = jPr[T

�1b

� 1=2℄j:

30

Let us de�ne the event R

�1b

to be the event that some
iphertext is reje
ted in game G

�1b

in

step D4

0

that would have passed the test in D4. It is
lear that games G

0

, G

�1a

, and G

�1b

all

pro
eed identi
ally until event R

�1b

o

urs. In parti
ular, we the events T

0

^:R

�1b

, T

�1a

^:R

�1b

,

and T

�1b

^ :R

�1b

are identi
al. So by Lemma 4, we have

jPr[T

0

℄� Pr[T

�1a

℄j � Pr[R

�1b

℄

and

jPr[T

0

℄� Pr[T

�1b

℄j � Pr[R

�1b

℄:

So it suÆ
es to show that

Pr[R

�1b

℄ � Q

A

(�)=q: (15)

To do this, for 1 � i � Q

A

(�), let R

(i)

�1b

be the event that there is an ith
iphertext submitted

to the de
ryption ora
le in game G

�1b

, and that this
iphertext is reje
ted in step D4

0

, but would

have passed the test in step D4.

The bound (15) will follow immediately from the following lemma.

Lemma 12 For all 1 � i � Q

A

(�), we have Pr[R

(i)

�1b

℄ � 1=q.

Proof. The proof of this is lemma is almost identi
al to that of Lemma 10. Note that in game

G

�1b

, the en
ryption ora
le uses the \real" en
ryption algorithm, and so itself does not leak any

additional information about (x

1

; x

2

; y

1

; y

2

). This is in
ontrast to game G

5

, where the en
ryption

ora
le does leak additional information.

Fix 1 � i � Q

A

(�). Consider the quantities

X := (Coins; hk; w; z; �; u

�

):

and

X

0

:= (x; y):

The values of X and X

0

ompletely determine the adversary's entire behavior in game G

5

, and

hen
e determine if there is an ith de
ryption ora
le query, and if so, the value of the
orresponding

iphertext. Let us
all X and X

0

relevant if for these values of X and X

0

, there is an ith de
ryption

ora
le query, and the
orresponding
iphertext passes steps D1 and D2.

It will suÆ
e prove that
onditioned on any �xed, relevant values of X and X

0

, the probability

that R

(i)

�1b

o

urs is bounded by 1=q.

The remainder of the argument is exa
tly as in Lemma 10, ex
ept using X, X

0

, and the notion

of relevant as de�ned here. 2

6.4 A hash-free variant

Our basi
 s
heme CS1 requires a target
ollision resistant hash fun
tion. Qualitatively, the TCR

assumption is mu
h weaker than the DDH assumption, sin
e one
an build a target
ollision re-

sistant hash fun
tion based on an arbitrary one-way fun
tion. Indeed, one
an build a
ollision

resistant hash fun
tion under the DL assumption; however, the hash fun
tions arising from su
h

a
onstru
tion produ
e an output that is in G, whereas we need a hash fun
tion that maps into

Z

q

. We
annot in general expe
t to �nd an easy-to-
ompute, inje
tive map from G onto Z

q

; in

Example 2 in x4.2, we in fa
t do have su
h a map, but that is an ex
eptional
ase.

31

For these reasons, we present a variation CS2 of our basi
 s
heme that does not require a hash

fun
tion.

This s
heme requires a family fChop

�;�

g of \
hopping" fun
tions asso
iated with the group

s
heme G with the following properties. For � 2 Z

�0

and �[

^

G;G; g; q℄ 2 [S

�

℄, the fun
tion Chop

�;�

inje
tivelymaps triples � 2 G

3

of group elements to N -tuples (v

1

; : : : ; v

N

) 2 Z

N

q

. Here, N = N(�;�)

is bounded by a polynomial in �, and the fun
tion Chop

�;�

should be
omputable by a deterministi
,

polynomial-time fun
tion that takes inputs 1

�

, �, and �.

In prin
iple, su
h
hopping fun
tions always exist, sin
e we
an write down the binary repre-

sentation of �, and
hop it into bit strings of length blog

2

q
.

We present the details of s
heme CS2 in Figure 4.

Theorem 3 If the DDH assumption holds for G, then CS2 is se
ure against adaptive
hosen
i-

phertext atta
k.

In parti
ular, for all probabilisti
, polynomial-time ora
le query ma
hines A, there exists a

probabilisti
 algorithm A

1

, whose running time is essentially the same as that of A, su
h that the

following holds. For all � 2 Z

�0

, and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

AdvCCA

CS2;A

(� j �) � AdvDDH

G;A

1

(� j �) + (Q

A

(�) + 3)=q:

The proof of this theorem follows the same lines as the proof of Theorem 1. We present here a

sket
h of the proof, appealing in several pla
es to arguments found in the proof of Theorem 1 so

as to avoid repeating arguments that are identi
al or nearly identi
al.

Let us �x a probabilisti
, polynomial-time ora
le query ma
hine A, the value of the se
urity

parameter � 2 Z

�0

, and the group des
ription �[

^

G;G; g; q℄ 2 [S

�

℄.

We de�ne x; z 2 Z

q

as follows:

x :=x

1

+ x

2

w; z := z

1

+ z

2

w:

We also de�ne y

(i)

2 Z

q

, for 1 � i � N , as

y

(i)

:= y

(i)

1

+ y

(i)

2

w:

As a notational
onvention, whenever a parti
ular
iphertext is under
onsideration in some

ontext, the following values are also impli
itly de�ned in that
ontext:

� a; â;
; d 2 G, where = (a; â;
; d);

� u; û; v

1

; : : : ; v

N

; r; s 2 Z

q

, where

u := log

g

a; û := log

ĝ

â; (v

1

; : : : ; v

N

) :=Chop

�;�

(a; â;
); r := log

g

; s := log

g

d:

For the target
iphertext

�

, we also denote by a

�

; â

�

;

�

; d

�

2 G and u

�

; û

�

; v

�

1

; : : : ; v

�

N

; r

�

; s

�

2 Z

q

the
orresponding values.

The probability spa
e de�ning the atta
k game is then determined by the following, mutually

independent, random variables:

� the
oin tosses of A;

� the values w; x

1

; x

2

; y

(1)

1

; : : : ; y

(N)

; y

(1)

2

; : : : ; y

(N)

2

; z

1

; z

2

generated by the key generation algo-

rithm;

32

Key Generation: On input 1

�

for � 2 Z

�0

,
ompute

�[

^

G;G; g; q℄

R

^

S(1

�

);

w

R

 Z

�

q

; x

1

; x

2

; z

1

; z

2

R

 Z

q

;

for i = 1; : : : ; n: y

(i)

1

; y

(i)

2

R

 Z

q

;

ĝ g

w

; e g

x

1

ĝ

x

2

; h g

z

1

ĝ

z

2

;

for i = 1; : : : ; n: f

i

 g

y

(i)

1

ĝ

y

(i)

2

;

and output the publi
 key PK = (�; ĝ; e; (f

i

)

N

i=1

; h) and the se
ret key

SK = (�; x

1

; x

2

; (y

(i)

1

; y

(i)

2

)

N

i=1

; z

1

; z

2

).

En
ryption: Given 1

�

for � 2 Z

�0

, a publi
 key

PK = (�[

^

G;G; g; q℄; ĝ; e; (f

i

)

N

i=1

; h) 2 [S

�

℄�G

N+3

;

along with a message m 2 G,
ompute

E1: u

R

 Z

q

;

E2: a g

u

;

E3: â ĝ

u

;

E4: b h

u

;

E5:
 b �m;

E6: (v

1

; : : : ; v

N

) Chop

�;�

(a; â;
);

E7: d e

u

Q

N

i=1

f

uv

i

i

;

and output the
iphertext = (a; â;
; d).

De
ryption: Given 1

�

for � 2 Z

�0

, a se
ret key

SK = (�[

^

G;G; g; q℄; x

1

; x

2

; (y

(i)

1

; y

(i)

2

)

N

i=1

; z

1

; z

2

) 2 [S

�

℄� Z

N+4

q

;

along with a
iphertext , do the following.

D1: Parse as a 4-tuple (a; â;
; d) 2

^

G

4

; output reje
t and halt if is not of this form.

D2: Test if a, â, and
 belong to G; output reje
t and halt if this is not the
ase.

D3: Compute (v

1

; : : : ; v

N

) Chop

�;�

(a; â;
).

D4: Test if d = a

x

1

+

P

N

i=1

y

(i)

1

v

i

� â

x

2

+

P

N

i=1

y

(i)

2

v

i

; output reje
t and halt if this is not the
ase.

D5: Compute b a

z

1

â

z

2

.

D6: Compute m
 � b

�1

, and output m.

Figure 4: The publi
-key en
ryption s
heme CS2, where N = N(�;�)

33

� the values � 2 f0; 1g and u

�

2 Z

q

generated by the en
ryption ora
le.

Let G

0

be the original atta
k game, let �̂ 2 f0; 1g denote the output of A, and let T

0

be the

event that � = �̂ in G

0

, so that AdvCCA

CS2;A

(� j �) = jPr[T

0

℄� 1=2j.

As in the proof of Theorem 1, we shall de�ne a sequen
e of modi�ed games G

i

, for i = 1; 2; : : :,

and in game G

i

, the event T

i

will be the event
orresponding to event T

0

, but in game G

i

. We

remind the reader that all of these games operate on the same underlying probability spa
e, and

ex
ept as otherwise spe
i�ed, random variables have identi
al values between games.

Game G

1

. In game G

1

, we modify the algorithm used by the en
ryption ora
le as follows. Steps

E4 and E7 are repla
ed by:

E4

0

: b a

z

1

â

z

2

;

E7

0

: d a

x

1

+

P

N

i=1

y

(i)

1

v

i

� â

x

2

+

P

N

i=1

y

(i)

2

v

i

:

By the same reasoning as in the proof of Theorem 1, we have Pr[T

1

℄ = Pr[T

0

℄:

Game G

2

. We again modify the en
ryption ora
le, repla
ing step E3 by

E3

0

: û

R

 Z

q

n fug; â ĝ

û

:

By the same reasoning as in the proof of Theorem 1, one sees that there exists a probabilisti

algorithm A

1

, whose running time is essentially the same as that of A, su
h that

jPr[T

2

℄� Pr[T

1

℄j � AdvDDH

G;A

1

(� j �) + 3=q:

Game G

3

. In this game, we modify the de
ryption ora
le in game G

2

, repla
ing steps D4 and

D5 with:

D4

0

: Test if â = a

w

and d = a

x+

P

N

i=1

y

(i)

v

i

; output reje
t and halt if this is not the
ase.

D5

0

: b a

z

.

Let R

3

be the event that in game G

3

, some
iphertext is submitted to the de
ryption ora
le

that is reje
ted in step D4

0

but that would have passed the test in step D4.

As in the proof of Theorem 1, we have

jPr[T

3

℄� Pr[T

2

℄j � Pr[R

3

℄:

We
laim that

Pr[R

3

℄ � Q

A

(�)=q:

We
an prove the analog of Lemma 8 (in game G

5

in the proof of Theorem 1) by
onsidering

an (N + 3)� (2N + 2) matrix M over Z

q

de�ned as

M :=

0

B

B

B

B

B

B

B

B

�

1 w

1 w

.

.

.

1 w

u

�

û

�

w u

�

v

�

1

û

�

v

�

1

w � � � u

�

v

�

N

û

�

v

�

N

w

u ûw uv

1

ûv

1

w � � � uv

N

ûv

N

w

1

C

C

C

C

C

C

C

C

A

;

where w 6= 0, û 6= u, û

�

6= u

�

, and v

i

6= v

�

i

for some i 2 f1; : : : ; Ng. It will suÆ
e to show that the

rows of M are linearly independent.

34

If we
hoose i su
h that v

i

6= v

�

i

, and
onsider the 4� 4 sub-matrix M

0

of M
onsisting of the

interse
tion of
olumns 1, 2, 2i+1, 2i+2 of M , and rows 1, i+1, N +2, N +3 of M , we see that

matrix M

0

has the same form as the matrix
onsidered in Lemma 11, and hen
e is non-singular.

It follows that the rows of M are linearly independent, sin
e any non-trivial linear relation among

the rows of M implies a non-trivial linear relation among the rows of M

0

.

Game G

4

. We again modify the algorithm used by the en
ryption ora
le, repla
ing step E5 by

E5

0

: r

R

 Z

q

;
 g

r

:

By reasoning analogous to that in game G

4

in the proof of Theorem 1, one
an show that

Pr[T

4

℄ = Pr[T

3

℄:

Moreover, by
onstru
tion it is evident that

Pr[T

4

℄ = 1=2:

That
ompletes the proof sket
h of Theorem 3. We leave it to the reader to work out the details

of the design and analysis of variants CS2a and CS2b of s
heme CS2,
orresponding to the variants

CS1a and CS1b of s
heme CS1, whi
h were dis
ussed in x6.3.

Remark 11 Note that the high-level stru
ture of the proof of Theorem 3 is signi�
antly simpler

than that of Theorem 1. In parti
ular, in the analysis of game G

3

in the proof of Theorem 3, we

were able to bound the quantity Pr[R

3

℄ dire
tly, without deferring the analysis to a later game, as

in the proof of Theorem 1. This simpli�
ation
omes from the fa
t that we do not have to deal

with a target
ollision resistant hash fun
tion in Theorem 3, as we did in Theorem 1. Indeed, if

in the s
heme CS1 we use a
ollision resistant hash fun
tion, we
ould prove the se
urity of CS1

using a proof with essentially the same line of reasoning as that of the proof of Theorem 3, with

one extra game between G

0

and G

1

to e�e
tively ban hash fun
tion
ollisions.

7 Hybrid En
ryption

The en
ryption s
hemes presented in the previous se
tion all had restri
ted message spa
es. In

some settings, an en
ryption s
heme with an unrestri
ted message spa
e is more desirable. A

simple and eÆ
ient way to build an en
ryption s
heme that has an unrestri
ted message is to

build a hybrid en
ryption s
heme. Loosely speaking, su
h a s
heme uses publi
-key en
ryption

te
hniques to en
rypt a key K that is then used to en
rypt the a
tual message using symmetri
-

key en
ryption te
hniques. In this se
tion, we develop the ne
essary tools for building a hybrid

publi
-key en
ryption s
heme.

One key ingredient in any hybrid s
heme is a key en
apsulation me
hanism. This is like a publi
-

key en
ryption s
heme, ex
ept that the job of the en
ryption algorithm is to generate the en
ryption

of a random key K. Of
ourse, one
an always use a general-purpose publi
-key en
ryption s
heme

to do this, by simply generating K at random, and then en
rypting it. However, there are typi
ally

more eÆ
ient ways to this.

As a qui
k example of a key en
apsulation me
hanism,
onsider the following variation of the

ElGamal en
ryption s
heme. Let G be a group of prime order q generated by an element g. Let

H be a
ryptographi
 hash fun
tion, su
h as SHA-1. The publi
 key
onsists of a group element

35

h = g

z

, where z 2 Z

q

is
hosen at random; the se
ret key is z. To generate an en
ryption of a

symmetri
 key K, we
ompute

u

R

 Z

q

; a g

u

; b h

u

; K H(b);

to form a
iphertext = a. To de
rypt a
iphertext = a using the se
ret key, one
omputes

b a

z

; K H(b);

obtaing a symmetri
 key K.

To build a
omplete hybrid en
ryption s
heme, we
ombine a key en
apsulation me
hanism

with a symmetri
-key en
ryption s
heme.

7.1 Key en
apsulation

A key en
apsulation me
hanism KEM
onsists of the following algorithms:

� A probabilisti
, polynomial-time key generation algorithm KEM.KeyGen that on input 1

�

for

� 2 Z

�0

, outputs a publi
 key/se
ret key pair (PK;SK). The stru
ture of PK and SK depends

on the parti
ular s
heme.

For � 2 Z

�0

, we de�ne the probability spa
es

KEM.PKSpa
e

�

:= fPK : (PK;SK)

R

 KEM.KeyGen(1

�

)g;

and

KEM.SKSpa
e

�

:= fSK : (PK;SK)

R

 KEM.KeyGen(1

�

)g:

� A probabilisti
, polynomial-time en
ryption algorithm KEM.En
rypt that takes as input 1

�

for � 2 Z

�0

, and a publi
 key PK 2 [KEM.PKSpa
e

�

℄, and outputs a pair (K;), where K is

a key and is a
iphertext.

A key K is a bit string of length KEM.KeyLen(�), where KEM.KeyLen(�) is another parameter

of the key en
apsulation me
hanism.

A
iphertext is a bit string.

� A deterministi
, polynomial-time de
ryption algorithm KEM.De
rypt that takes as input 1

�

for � 2 Z

�0

, a se
ret key SK 2 [KEM.SKSpa
e

�

℄, a
iphertext , and outputs either a key K

or the spe
ial symbol reje
t.

7.1.1 Soundness

As for publi
 key en
ryption, we need an appropriate notion of soundness. A de�nition of sound-

ness that is adequate for our purposes runs as follows. Let us say a publi
 key/se
ret key

pair (PK;SK) 2 [KEM.KeyGen(1

�

)℄ is bad if for some (K;) 2 [KEM.En
rypt(1

�

;PK)℄, we have

KEM.De
rypt(1

�

;SK;) 6= K. Let BadKeyPair

KEM

(�) denote the probability that the key gener-

ation algorithm generates a bad key pair for a given value of �. Then our requirement is that

BadKeyPair

KEM

(�) grows negligibly in �.

36

7.1.2 Se
urity against adaptive
hosen
iphertext atta
k

As for a publi
 key en
ryption s
heme, an adversary A in an adaptive
hosen
iphertext atta
k is

a probabilisti
, polynomial-time ora
le query ma
hine that takes as input 1

�

, where � 2 Z

�0

is

the se
urity parameter. We now des
ribe the atta
k game used to de�ne se
urity against adaptive

hosen
iphertext se
urity.

Stage 1: The adversary queries a key generation ora
le. The key generation ora
le
omputes

(PK;SK)

R

 KEM.KeyGen(1

�

) and responds with PK.

Stage 2: The adversary makes a sequen
e of
alls to a de
ryption ora
le.

For ea
h de
ryption ora
le query, the adversary submits a
iphertext , and the de
ryption

ora
le responds with KEM.De
rypt(1

�

;SK;).

Stage 3: The adversary queries an en
ryption ora
le.

The en
ryption ora
le
omputes:

(K

�

;

�

)

R

 KEM.En
rypt(1

�

;PK); K

+

R

 f0; 1g

`

; �

R

 f0; 1g;

if � = 0 then K

y

 K

�

else K

y

 K

+

;

where ` :=KEM.KeyLen(�), and responds with the pair (K

y

;

�

).

Stage 4: The adversary
ontinues to make
alls to the de
ryption ora
le, subje
t only to the

restri
tion that a submitted
iphertext is not identi
al to

�

.

Stage 5: The adversary outputs �̂ 2 f0; 1g.

We de�ne AdvCCA

KEM;A

(�) to be jPr[� = �̂ ℄� 1=2j in the above atta
k game.

We say that KEM is se
ure against adaptive
hosen
iphertext atta
k if

for all probabilisti
, polynomial-time ora
le query ma
hines A, the fun
tion

AdvCCA

KEM;A

(�) grows negligibly in �.

In applying the above de�nition of se
urity, one typi
ally works dire
tly with the quantity

AdvCCA

0

KEM;A

(�) := jPr[�̂ = 1 j � = 0℄� Pr[�̂ = 1 j � = 1℄j :

It is easy to verify that

AdvCCA

0

KEM;A

(�) = 2 � AdvCCA

KEM;A

(�):

7.2 One-time symmetri
-key en
ryption

A one-time symmetri
-key en
ryption s
heme SKE
onsists of two algorithms:

� A deterministi
, polynomial-time en
ryption algorithm SKE.En
rypt that takes as input 1

�

for � 2 Z

�0

, a key K, and a message m, and outputs a
iphertext �.

The key K is a bit string of length SKE.KeyLen(�).

Here, SKE.KeyLen(�) is a parameter of the en
ryption s
heme, whi
h we assume
an be

omputed in deterministi
 polynomial time given 1

�

.

The message m is a bit string of arbitrary, unbounded length.

The
iphertext � is a bit string.

We denote by SKE.CTLen(�; `) the maximum length of any en
ryption of a message of length

at most `.

37

� A deterministi
, polynomial-time de
ryption algorithm SKE.De
rypt that takes as input 1

�

for � 2 Z

�0

, a key K, and a
iphertext � and outputs a message m or the spe
ial symbol

reje
t.

The key K is a bit string of length SKE.KeyLen(�).

The
iphertext � is a bit string of arbitrary length.

We require that SKE satisfy the following soundness
ondition: for all � 2 Z

�0

, for all K 2

f0; 1g

SKE.KeyLen(�)

, for all m 2 f0; 1g

�

, we have:

SKE.De
rypt(1

�

;K;SKE.En
rypt(1

�

;K;m)) = m:

7.2.1 Two de�nitions of se
urity

We de�ne two notions of se
urity for a one-time symmetri
-key en
ryption s
heme: se
urity against

passive atta
ks, and se
urity against adaptive
hosen
iphertext atta
ks.

As usual, an adversary A is a probabilisti
, polynomial-time ora
le query ma
hine that takes as

input 1

�

, where � 2 Z

�0

is the se
urity parameter.

A passive atta
k runs as follows. The adversary A
hooses two messages, m

0

and m

1

, of equal

length, and gives these to an en
ryption ora
le. The en
ryption ora
le generates a random key K

of length SKE.KeyLen(�), along with random � 2 f0; 1g, and en
rypts the message m

�

using the

key K. The adversary A is then given the resulting
iphertext �

�

. Finally, the adversary outputs

�̂ 2 f0; 1g.

We de�ne AdvPA

SKE;A

(�) to be jPr[� = �̂℄� 1=2j in the above atta
k game.

We say that SKE is se
ure against passive atta
ks if

for all probabilisti
, polynomial-time ora
le query ma
hines A, the fun
tion

AdvPA

SKE;A

(�) grows negligibly in �.

An adaptive
hosen
iphertext atta
k is exa
tly the same as a passive atta
k, ex
ept that after

the adversary A obtains the target
iphertext �

�

from the en
ryption ora
le, the adversary may

then query a de
ryption ora
le any number of times. In ea
h de
ryption ora
le query, A submits a

iphertext � 6= �

�

, and obtains the de
ryption of � under the key K. As in the passive atta
k, A

outputs �̂ 2 f0; 1g.

We de�ne AdvCCA

SKE;A

(�) to be jPr[� = �̂℄� 1=2j in the above atta
k game.

We say that SKE is se
ure against adaptive
hosen
iphertext atta
ks if

for all probabilisti
, polynomial-time ora
le query ma
hines A, the fun
tion

AdvCCA

SKE;A

(�) grows negligibly in �.

7.2.2 Constru
tions

Our de�nition of a symmetri
-key en
ryption s
heme and the
orresponding notions of se
urity are

tailored to the appli
ation of building a hybrid publi
-key en
ryption s
heme. These de�nitions

may not be appropriate for other settings. In parti
ular, our de�nitions of se
urity do not imply

prote
tion against
hosen plaintext atta
k; however, this prote
tion is not needed for hybrid publi
-

key en
ryption s
hemes, sin
e a symmetri
 key is only used to en
rypt a single message.

It is easy to build a symmetri
 key en
ryption s
heme that a
hieves se
urity against passive

atta
ks using standard symmetri
-key te
hniques. For example, to en
rypt a message m, one
an

38

expand the key K using a pseudo-random bit generator to obtain a \one time pad" � of length

jmj, and then
ompute � m� �.

A pseudo-random bit generator
an be built from an arbitrary one-way permutation [GL89℄, or

even from an arbitrary one-way fun
tion [ILL89, HILL99℄. These
onstru
tions, however, are not

very pra
ti
al. In a pra
ti
al implementation, it is perfe
tly reasonable to stret
h the keyK by using

it as the key to a dedi
ated blo
k
ipher, and then evaluate the blo
k
ipher at su

essive points

(so-
alled \
ounter mode") to obtain a sequen
e of pseudo-random bits (
.f. [MvOV97, Chapter 7℄).

Note that the above
onstru
tion yields a s
heme that is
ompletely inse
ure against adaptive

hosen
iphertext atta
k. However, it is also easy to build a symmetri
 key en
ryption s
heme

SKE2 that a
hieves se
urity against adaptive
hosen
iphertext atta
k, given an arbitrary s
heme

SKE1 that is only se
ure against passive atta
ks.

One te
hnique is to simply build an SKE2
iphertext by atta
hing a message authenti
ation

ode to the SKE1
iphertext. Although this te
hnique seems to be \folklore," for
ompleteness, we

develop the details here.

A one-time message authenti
ation
ode MAC spe
i�es the following items:

� For � 2 Z

�0

, a key length parameter MAC.KeyLen(�) and an output length parameter

MAC.OutLen(�).

We assume that MAC.KeyLen(�)
an be
omputed in deterministi
 polynomial time given 1

�

.

� A family of fun
tions indexed by � 2 Z

�0

and mk 2 f0; 1g

MAC.KeyLen(�)

, where ea
h fun
tion

MAC

�

mk

maps arbitrary bit strings to bit strings of length exa
tly MAC.OutLen(�).

There must be a deterministi
, polynomial-time algorithm that on input 1

�

, mk 2

f0; 1g

MAC.KeyLen(�)

, and � 2 f0; 1g

�

, outputs MAC

�

mk

(�).

To de�ne se
urity for MAC, we de�ne an atta
k game as follows. As usual, an adversary A is a

probabilisti
, polynomial-time ora
le query ma
hine that takes as input 1

�

, where � 2 Z

�0

is the

se
urity parameter. The adversary A �rst
hooses a bit string �, and submits this to an ora
le.

The ora
le generates a random key mk of length MAC.KeyLen(�),
omputes � MAC

�

mk

(�), and

returns � to the adversary. The adversary A then outputs a list

((�

1

; �

1

); : : : ; (�

k

; �

k

))

of pairs of bit strings. We say that A has produ
ed a forgery if for some 1 � i � k, we have �

i

6= �

and MAC

�

mk

(�

i

) = �

i

.

We say that A is a (L

1

(�); L

2

(�); N(�)) forging adversary if j�j � L

1

(�), k � N(�), and

j�

i

j � L

2

(�) for all 1 � i � k.

De�ne AdvForge

MAC;A

(�) to be the probability that A produ
es a forgery in the above game.

We say that MAC is se
ure if

for all probabilisti
, polynomial-time ora
le query ma
hines A, the fun
tion

AdvForge

MAC;A

(�) grows negligibly in �.

Message authenti
ation
odes have been extensively studied (
.f. [MvOV97, Chapter 9℄). On
e

an easily build se
ure one-time message authenti
ation
odes using an appropriate family of uni-

versal hash fun
tions, without relying on any intra
tability assumptions. There are also other ways

to build message authenti
ation
odes whi
h may be preferable in pra
ti
e, even though the se
urity

of these s
hemes is not fully proven.

39

Now we show how to use SKE1 and MAC to build SKE2. The key length SKE2.KeyLen(�) of

SKE2 will be equal to

SKE1.KeyLen(�) +MAC.KeyLen(�):

We will write su
h a key as (K;mk), where K is a bit string of length SKE1.KeyLen(�), and mk is

a bit string of length MAC.KeyLen(�).

To en
rypt a message m under a key (K;mk) as above, algorithm SKE2.En
rypt
omputes

� SKE1.En
rypt(1

�

;K;m); tag MAC

�

mk

(�); �

0

 � k tag;

and outputs the
iphertext �

0

.

To de
rypt a
iphertext �

0

under a key (K;mk) as above, algorithm SKE2.De
rypt �rst parses

�

0

as �

0

= � k tag, where tag is a bit string of length MAC.OutLen(�). If this parsing step fails

(be
ause �

0

is too short), then the algorithm outputs reje
t; otherwise, it
omputes

tag

0

 MAC

�

mk

(�):

If tag 6= tag

0

, the algorithm outputs reje
t; otherwise, it
omputes

m SKE1.De
rypt(1

�

;K; �);

and outputs m.

To analyze the se
urity of SKE2, we re
all that for all probabilisti
, polynomial-time ora
le query

ma
hines A, for all � 2 Z

�0

, we denote by Q

A

(�) an upper bound on the number of de
ryption

ora
le queries made by A on input 1

�

. Although we introdu
ed this notation in the
ontext of

publi
-key en
ryption, we
an adopt it here in the
ontext of symmetri
-key en
ryption as well. We

remind the reader that Q

A

(�) should be a stri
t bound that holds for any environment.

For all probabilisti
, polynomial-time ora
le query ma
hines A, for all � 2 Z

�0

, we de�ne B

A

(�)

to be an upper bound on the length of the messages submitted by A to the en
ryption ora
le, and

B

0

A

(�) to be an upper bound on the
iphertexts submitted by A to the de
ryption ora
le. As usual,

these upper bounds should hold regardless of the environment of A.

Theorem 4 If SKE1 is se
ure against passive atta
ks, and MAC is a se
ure one-time message

authenti
ation
ode, then SKE2 is se
ure against adaptive
hosen
iphertext atta
ks.

In parti
ular, for every probabilisti
, polynomial-time ora
le query ma
hine A, there exist prob-

abilisti
 ora
le query ma
hine A

1

and A

2

, whose running times are essentially the same as that of

A, su
h that for all � 2 Z

�0

,

AdvCCA

SKE2;A

(�) � AdvPA

SKE1;A

1

(�) + AdvForge

MAC;A

2

(�):

Moreover, A

2

is a

(SKE1.CTLen(�;B(�)); B

0

(�)�MAC.OutLen(�); Q

A

(�))

forging adversary.

Proof. Fix A and �, and let G

0

denote the original
hosen
iphertext atta
k game. Let T

0

be the

event that � = �̂ in game G

0

.

We next de�ne a modi�ed atta
k game G

1

, in whi
h all
iphertexts submitted to the de
ryption

ora
le by A in game G

1

are simply reje
ted.

40

Let T

1

be the event that � = �̂ is game G

1

. Let R

1

be the event in game G

1

that some

iphertext is reje
ted in game G

1

that would not have been reje
ted under the rules of game G

0

.

Sin
e games G

0

and G

1

pro
eed identi
ally until event R

1

o

urs, the events T

0

^ :R

1

and

T

1

^ :R

1

are identi
al, and so by Lemma 4, we have jPr[T

0

℄� Pr[T

1

℄j � Pr[R

1

℄.

It is straightforward to verify that

Pr[R

1

℄ � AdvForge

MAC;A

2

(�) (16)

for an adversary A

2

as des
ribed above.

The theorem now follows by observing that the atta
k by A in game G

1

is now a passive atta
k.

That is, the adversary A

1

in the theorem simply runs the adversary A, and whenever A makes a

de
ryption ora
le query, adversary A

1

simply lets A
ontinue as if the de
ryption ora
le reje
ted

the
iphertext. 2

Remark 12 Although the keys for SKE2 are longer than those for SKE1, this need not be the
ase

if we use a pseudo-random bit generator to stret
h a short key into a suitably long key. Indeed,

the key length of any symmetri
 key en
ryption s
heme need be no longer than the key length of

a se
ure a pseudo-random bit generator.

7.3 A hybrid
onstru
tion

Let KEM be a key en
apsulation me
hanism (as de�ned in x7.1) and let SKE be a one-time sym-

metri
 key en
ryption s
heme (as de�ned in x7.2). Further, let us assume that the two s
hemes are

ompatible in the sense that for all � 2 Z

�0

, we have KEM.KeyLen(�) = SKE.KeyLen(�). We now

des
ribe a hybrid publi
-key en
ryption s
heme HPKE.

The key generation algorithm for HPKE is the same as that of KEM, and the publi
 and se
ret

keys are the same as those of KEM.

To en
rypt a message m in the hybrid s
heme, we run KEM.En
rypt to generate a symmetri

key K and a
iphertext en
rypting K. We then en
rypt m under the key K using SKE.En
rypt,

obtaining a
iphertext �. The output of the en
ryption algorithm is

^

 = (; �), en
oded in a

anoni
al fashion as a bit string.

The de
ryption algorithm for the hybrid s
heme runs as follows. Given a
iphertext

^

 , we �rst

verify that

^

 properly en
odes a pair (; �). If not, we output reje
t and halt. Next, we de
rypt

 using KEM.De
rypt; if this yields reje
t, then we output reje
t and halt. Otherwise, we obtain a

symmetri
 key K and de
rypt � under K using SKE.De
rypt, and output the resulting de
ryption

(whi
h may be reje
t).

Theorem 5 If KEM and SKE are se
ure against adaptive
hosen
iphertext atta
ks, then so is

HPKE.

In parti
ular, if A is a probabilisti
, polynomial-time ora
le query ma
hine, then there exist

probabilisti
 ora
le query ma
hines A

1

and A

2

, whose running times are essentially the same as

that of A, su
h that for all � 2 Z

�0

, we have

AdvCCA

HPKE;A

(�) � BadKeyPair

KEM

(�) + AdvCCA

0

KEM;A

1

(�) + AdvCCA

SKE;A

2

(�):

Proof. Fix A and �, and let G

0

be the original
hosen
iphertext atta
k game played by A against

HPKE. We let

^

�

= (

�

; �

�

) denote the target
iphertext; � is the hidden bit generated by the

en
ryption ora
le and �̂ is the bit output by A. Let T

0

be the event that � = �̂. Also, let K

�

denote

the symmetri
 key output by the algorithm KEM.En
rypt during the en
ryption pro
ess within the

en
ryption ora
le.

41

We now de�ne a modi�ed game G

1

. In this game, whenever a
iphertext (; �) is submitted

to the de
ryption ora
le after the invo
ation of the en
ryption ora
le, if =

�

(but � 6= �

�

of

ourse), then the de
ryption ora
le does not apply algorithm KEM.De
rypt to obtain the symmetri

key, but instead just uses the key K

�

produ
ed by the en
ryption ora
le. Let T

1

be the event that

� = �̂ in game G

1

.

This
hange is slightly more than just
on
eptual, sin
e KEM.KeyGen may generate a bad key

pair with probability BadKeyPair

KEM

(�). However, unless this o

urs, games G

0

and G

1

pro
eed

identi
ally, and so by Lemma 4, we have

jPr[T

1

℄� Pr[T

0

℄j � BadKeyPair

KEM

(�):

Now we de�ne a modi�ed game G

2

. This game behaves just like game G

1

, ex
ept that we

use a
ompletely random symmetri
 key K

+

in pla
e of the key K

�

in both the en
ryption and

de
ryption ora
les. Let T

2

be the event that � = �̂ in game G

2

.

It is straightforward to see that there is an ora
le query ma
hine A

1

, whose running time is

essentially the same as that of A, su
h that

jPr[T

2

℄� Pr[T

1

℄j = AdvCCA

0

KEM;A

1

(�):

The adversary A

1

basi
ally just runs the adversary A. In the atta
k game that A

1

is playing

against KEM, the value K

y

is equal to K

�

in game G

1

, and is equal to K

+

in game G

2

. Note that

in games G

1

and G

2

, the
iphertext

�

is never expli
itly de
rypted, and so A

1

need not submit

this for de
ryption either.

Lastly, we observe that there is an ora
le query ma
hine A

2

, whose running time is essentially

the same as that of A, su
h that

jPr[T

2

℄� 1=2j = AdvCCA

SKE;A

2

(�):

To see this, note that in game G

2

, the
iphertext �

�

is produ
ed using the random symmetri

en
ryption key K

+

, and also that some other
iphertexts � 6= �

�

are de
rypted using K

+

, but that

the key K

+

plays no other role in game G

2

. Thus, in game G

2

, the adversary A is essentially just

arrying out an adaptive
hosen
iphertext atta
k against SKE. 2

Remark 13 We stress that it is essential for both KEM and SKE to be se
ure against adaptive

hosen
iphertext atta
k in order to prove that HPKE is as well. One
annot start with a \weak"

KEM and hope to \repair" it with a hybrid
onstru
tion: doing this may indeed foil some spe
i�

atta
ks, but we know of no way to formally reason about the se
urity of su
h a s
heme. It is also

important not to waste the
hosen
iphertext se
urity of KEM by using a \weak" SKE. Indeed,

some popular methods of
onstru
ting a \digital envelope" use a SKE that may only be se
ure

against passive atta
ks; even if the resulting
omposite
iphertext is digitally signed, this does not

ne
essarily provide se
urity against
hosen
iphertext atta
k.

8 Key Derivation Fun
tions

In the next se
tion, we will present and analyze a key en
apsulation me
hanism. The key will be

derived by hashing a pair of group elements. In order not to
lutter that se
tion, we develop here

the notion of su
h a key derivation fun
tion.

Let G be a
omputational group s
heme, spe
ifying a sequen
e (S

�

)

�2Z

�0

of group distributions.

A key derivation s
heme KDF asso
iated with G spe
i�es two items:

42

� A family of key spa
es indexed by � 2 Z

�0

and � 2 [S

�

℄. Ea
h su
h key spa
e is a probability

spa
e on bit strings denoted by KDF.KeySpa
e

�;�

.

There must exist a probabilisti
, polynomial-time algorithm whose output distribution on

input 1

�

and � is equal to KDF.KeySpa
e

�;�

.

� A family of key derivation fun
tions indexed by � 2 Z

�0

, �[

^

G;G; g; q℄ 2 [S

�

℄, and dk 2

[KDF.KeySpa
e

�;�

℄, where ea
h su
h fun
tion KDF

�;�

dk

maps a pair (a; b) 2 G

2

of group elements

to a key K.

A key K is a bit string of length KDF.OutLen(�). The parameter KDF.OutLen(�) should be

omputable in deterministi
 polynomial time given 1

�

.

There must exist a deterministi
, polynomial-time algorithm that on input 1

�

, �[

^

G;G; g; q℄ 2

[S

�

℄, dk 2 [KDF.KeySpa
e

�;�

℄, and (a; b) 2 G

2

, outputs KDF

�;�

dk

(a; b).

We now de�ne the se
urity property that we shall require of KDF.

For all 0/1-valued, probabilisti
, polynomial-time algorithms A, and for all � 2 Z

�0

, de�ne

AdvDist

KDF;A

(�) :=

�

�

�

Pr[� = 1 : �

R

 S

�

; dk

R

 KDF.KeySpa
e

�;�

; a; b

R

 G;

�

R

 A(1

�

;�; dk; a;KDF

�;�

dk

(a; b)) ℄�

Pr[� = 1 : �

R

 S

�

; dk

R

 KDF.KeySpa
e

�;�

; a

R

 G; K

R

 f0; 1g

KDF.OutLen(�)

;

�

R

 A(1

�

;�; dk; a;K) ℄

�

�

�

That is, AdvDist

KDF;A

(�) measures the advantage that A has in distinguishing two distributions:

in the �rst it is given KDF

�;�

dk

(a; b) and in the se
ond it is given a random keyK; in both distributions

it is given the derivation key dk as well as the auxiliary group element a.

We shall say that KDF is se
ure if this distinguishing advantage is negligible, i.e.,

for all 0/1-valued, probabilisti
, polynomial-time algorithms A, the fun
tion

AdvDist

KDF;A

(�) grows negligibly in �.

It is also
onvenient to de�ne a quantity analogous to AdvDist

KDF;A

(�), but
onditioned on a

�xed group des
ription. For all 0/1-valued, probabilisti
, polynomial-time algorithms A, for all

� 2 Z

�0

, and all �[

^

G;G; g; q℄ 2 [S

�

℄,

AdvDist

KDF;A

(� j �) :=

�

�

�

Pr[� = 1 : dk

R

 KDF.KeySpa
e

�;�

; a; b

R

 G;

�

R

 A(1

�

;�; dk; a;KDF

�;�

dk

(a; b)) ℄�

Pr[� = 1 : dk

R

 KDF.KeySpa
e

�;�

; a

R

 G; K

R

 f0; 1g

KDF.OutLen(�)

;

�

R

 A(1

�

;�; dk; a;K) ℄

�

�

�

8.1 Constru
tions

8.1.1 Un
onditionally se
ure
onstru
tions

One
an build a se
ure KDF for G without any assumptions, provided the groups de�ned by G are

suÆ
iently large, whi
h they
ertainly will be in our appli
ations. Indeed, all we need is that KDF

is pair-wise independent.

43

In our
ontext, we shall say that a KDF is pair-wise independent if for all � 2 Z

�0

, for all

�[

^

G;G; g; q℄ 2 [S

�

℄, for all a; b; b

0

2 G with b 6= b

0

, the distribution

f(KDF

�;�

dk

(a; b);KDF

�;�

dk

(a; b

0

)) : dk

R

 KDF.KeySpa
e

�;�

g

is the uniform distribution over all pairs of bits strings of length KDF.OutLen(�).

By the Leftover Hash Lemma [ILL89, IZ89℄, it follows that if KDF is pair-wise independent,

then for all 0/1-valued, probabilisti
, polynomial-time algorithms A, for all � 2 Z

�0

, and all

�[

^

G;G; g; q℄ 2 [S

�

℄,

AdvDist

KDF;A

(� j �) � 2

�k

;

where

k = b

blog

2

q
 � KDF.OutLen(�)

2

:

We also point out that fairly eÆ
ient pair-wise independent fun
tions
an be
onstru
ted without

relying on any intra
tability assumptions.

8.1.2 Conditionally se
ure
onstru
tions

In pra
ti
e, to build a key derivation fun
tion, one might simply use a dedi
ated
ryptographi

hash fun
tion, like SHA-1.

In this situation, we will simply be for
ed to assume that su
h a KDF is se
ure. However, su
h

an intra
tability assumption is not entirely unreasonable. Moreover, a dedi
ated
ryptographi

hash fun
tion has several potential advantages over a pair-wise independent hash fun
tion:

� it may not use a key, or it may use a very short key, whi
h may lead to a signi�
ant spa
e

savings;

� it
an usually be evaluated more qui
kly than a typi
al pair-wise independent hash fun
tion

an;

� it
an be safely used to derive output keys that are signi�
antly longer than would be safe to

derive with a typi
al pair-wise independent hash fun
tion;

� it may, at least heuristi
ally, provide even more se
urity in appli
ations than a typi
al pair-

wise independent hash fun
tion.

9 The New En
ryption S
heme: Hybrid Version

9.1 Des
ription of the S
heme

In this se
tion, we present a hybrid version of our new en
ryption s
heme. Spe
i�
ally, we present

a key en
apsulation me
hanism CS3, out of whi
h one
an easily
onstru
t a hybrid en
ryption

s
heme, as des
ribed in x7.

The s
heme makes use of a
omputational group s
heme G as des
ribed in x4.1, de�ning a

sequen
e (S

�

)

�2Z

�0

of distributions of group des
riptions, and providing a sampling algorithm

^

S,

where the output distribution

^

S(1

�

)
losely approximates S

�

.

The s
heme also makes use of a binary group hashing s
heme HF asso
iated with G, as des
ribed

in x5.

Finally, the s
heme makes use of a key derivation s
heme KDF, asso
iated with G, as des
ribed

in x8. Note that output key length CS3.KeyLen(�) of the s
heme is equal to KDF.OutLen(�).

The s
heme is des
ribed in detail in Figure 5.

44

Key Generation: On input 1

�

for � 2 Z

�0

,
ompute

�[

^

G;G; g; q℄

R

^

S(1

�

); hk

R

 HF.KeySpa
e

�;�

; dk

R

 KDF.KeySpa
e

�;�

;

w

R

 Z

�

q

; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

R

 Z

q

;

ĝ g

w

; e g

x

1

ĝ

x

2

; f g

y

1

ĝ

y

2

; h g

z

1

ĝ

z

2

;

and output the publi
 key PK = (�; hk; dk; ĝ; e; f; h) and the se
ret key

SK = (�; hk; dk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

).

En
ryption: Given 1

�

for � 2 Z

�0

, a publi
 key

PK = (�[

^

G;G; g; q℄; hk; dk; ĝ; e; f; h) 2 [S

�

℄� [HF.KeySpa
e

�;�

℄� [KDF.KeySpa
e

�;�

℄�G

4

;

ompute

E1: u

R

 Z

q

;

E2: a g

u

;

E3: â ĝ

u

;

E4: b h

u

;

E5: K KDF

�;�

dk

(a; b);

E6: v HF

�;�

hk

(a; â);

E7: d e

u

f

uv

;

and output the symmetri
 key K and the
iphertext = (a; â; d).

De
ryption: Given 1

�

for � 2 Z

�0

, a se
ret key

SK = (�[

^

G;G; g; q℄; hk; dk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

) 2 [S

�

℄� [HF.KeySpa
e

�;�

℄� [KDF.KeySpa
e

�;�

℄� Z

6

q

;

along with a
iphertext , do the following.

D1: Parse as a 3-tuple (a; â; d) 2

^

G

3

; output reje
t and halt if is not of this form.

D2: Test if a and â belong to G; output reje
t and halt if this is not the
ase.

D3: Compute v HF

�;�

hk

(a; â).

D4: Test if d = a

x

1

+y

1

v

â

x

2

+y

2

v

; output reje
t and halt if this is not the
ase.

D5: Compute b a

z

1

â

z

2

.

D6: Compute K KDF

�;�

dk

(a; b), and output the symmetri
 key K.

Figure 5: The key en
apsulation me
hanism CS3

45

9.2 Se
urity analysis of the s
heme

We shall prove that CS3 is se
ure against adaptive
hosen
iphertext atta
k if the DDH assumption

holds for G, and the TCR assumption holds for HF, and assuming that KDF is a se
ure key derivation

s
heme.

As we have done before, for all probabilisti
, polynomial-time ora
le query ma
hines A, and for

all � 2 Z

�0

, we let Q

A

(�) be an upper bound on the number of de
ryption ora
le queries made by

A on input 1

�

. We assume that Q

A

(�) is a stri
t bound in the sense that it holds regardless of the

probabilisti

hoi
es of A, and regardless of the responses to its ora
le queries from its environment.

Theorem 6 If the DDH assumption holds for G and the TCR assumption holds for HF, and

assuming that KDF is a se
ure key derivation s
heme, then CS3 is se
ure against adaptive
hosen

iphertext atta
k

In parti
ular, for all probabilisti
, polynomial-time ora
le query ma
hines A, there exist proba-

bilisti
 algorithms A

1

, A

2

, and A

3

whose running times are essentially the same as that of A, su
h

that the following holds. For all � 2 Z

�0

, and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

AdvCCA

CS3;A

(� j �) � AdvDDH

G;A

1

(� j �) + AdvTCR

HF;A

2

(� j �) +

AdvDist

KDF;A

3

(� j �) + (Q

A

(�) + 3)=q:

(17)

To prove Theorem 6, let us �x a probabilisti
, polynomial-time ora
le query ma
hine A, the

value of the se
urity parameter � 2 Z

�0

, and the group des
ription �[

^

G;G; g; q℄ 2 [S

�

℄.

The proof follows the same line of argument as the proof of Theorem 1, and we will at several

pla
es appeal to argument in that proof, so as to avoid unne
essary repetition.

The atta
k game is as des
ribed in x7.1.2. We now dis
uss the relevant random variables in this

game.

Suppose that the publi
 key is (�; hk; dk; ĝ; e; f; h) and that the se
ret key is

(�; hk; dk; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

). Let w := log

g

ĝ, and de�ne x; y; z 2 Z

q

as follows:

x :=x

1

+ x

2

w; y := y

1

+ y

2

w; z := z

1

+ z

2

w:

As a notational
onvention, whenever a parti
ular
iphertext is under
onsideration in some

ontext, the following values are also impli
itly de�ned in that
ontext:

� a; â; d 2 G, where = (a; â; d);

� u; û; v; s 2 Z

q

, where

u := log

g

a; û := log

ĝ

â; v :=HF

�;�

hk

(a; â); s := log

g

d:

For the target
iphertext

�

, we also denote by a

�

; â

�

; d

�

2 G, and u

�

; û

�

; v

�

; s

�

2 Z

q

the
orre-

sponding values.

The probability spa
e de�ning the atta
k game is then determined by the following, mutually

independent, random variables:

� the
oin tosses of A;

� the values hk; dk; w; x

1

; x

2

; y

1

; y

2

; z

1

; z

2

generated by the key generation algorithm;

� the values � 2 f0; 1g, K

+

2 f0; 1g

KDF.OutLen(�)

, and u

�

2 Z

q

generated by the en
ryption

ora
le in the atta
k game.

46

Let G

0

be the original atta
k game, let �̂ 2 f0; 1g denote the output of A, and let T

0

be the

event that � = �̂ in G

0

, so that AdvCCA

CS3;A

(� j �) = jPr[T

0

℄� 1=2j.

As in the proof of Theorem 1, we shall de�ne a sequen
e of modi�ed games G

i

, for i = 1; 2; : : :,

where in game G

i

, the event T

i

will be the event
orresponding to event T

0

, but in game G

i

.

The overall stru
ture of the proof will di�er a bit from that of Theorem 1, even though many of

the low level details will be very similar. Indeed, the proof of this theorem is
on
eptually a bit

simpler (even though there are more steps) than that of Theorem 1, sin
e the inputs to HF

�;�

hk

in

the en
ryption ora
le are independent of any quantities
omputed by the adversary; we also save a

term of 1=q in (17) be
ause of this.

Game G

1

. We now modify game G

0

to obtain a new game G

1

. These two games are identi
al,

ex
ept that instead of using the en
ryption algorithm as given to
ompute the target
iphertext

�

, we use a modi�ed en
ryption algorithm, in whi
h steps E4 and E7 are repla
ed by:

E4

0

: b a

z

1

â

z

2

;

E7

0

: d a

x

1

+y

1

v

â

x

2

+y

2

v

:

By the same reasoning as in the proof of Theorem 1, we have

Pr[T

1

℄ = Pr[T

0

℄:

Game G

2

. We again modify the en
ryption ora
le, repla
ing step E3 by

E3

0

: û

R

 Z

q

; â ĝ

û

:

By the same reasoning as in the proof of Theorem 1, one sees that there exists a probabilisti

algorithm A

1

, whose running time is essentially the same as that of A, su
h that

jPr[T

2

℄� Pr[T

1

℄j � AdvDDH

G;A

1

(� j �) + 2=q:

Note that unlike game G

2

in the proof of Theorem 1, we do not impose the restri
tion u

�

6= û

�

just yet; it is te
hni
ally
onvenient to defer this until later. This is why the term 2=q appears in

the above bound, rather than 3=q.

Game G

3

. This game is the same as game G

2

, ex
ept for the following modi�
ation.

We modify the de
ryption ora
le so that it applies the following spe
ial reje
tion rule: if the

adversary submits a
iphertext for de
ryption at a point in time after the en
ryption ora
le

has been invoked, su
h that (a; â) 6= (a

�

; â

�

) but v = v

�

, then the de
ryption ora
le immediately

outputs reje
t and halts (before exe
uting step D4

0

).

We
laim that there exists a probabilisti
 algorithm A

2

, whose running time is essentially the

same as that of A, su
h that

jPr[T

3

℄� Pr[T

2

℄j � AdvTCR

HF;A

2

(� j �):

This follows from reasoning very similar to the proof of Lemma 7 in the analysis of game G

5

in the

proof of Theorem 1. Observe that we
an impose the spe
ial reje
tion rule already in this game,

rather than deferring to to a later game as in the proof of Theorem 1, be
ause, as we mentioned

above, the inputs to HF

�;�

hk

in the en
ryption ora
le are independent of any quantities
omputed by

the adversary.

47

Game G

4

. We again modify the en
ryption ora
le, repla
ing step E3

0

by

E3

00

: û

R

 Z

q

n fug; â ĝ

û

:

It is easy to verify that

jPr[T

4

℄� Pr[T

3

℄j � 1=q:

Game G

5

. In this game, we modify the de
ryption ora
le in game G

4

, repla
ing steps D4 and

D5 with:

D4

0

: Test if â = a

w

and d = a

x+yv

; output reje
t and halt if this is not the
ase.

D5

0

: b a

z

.

Let R

5

be the event that in game G

5

, some
iphertext is submitted to the de
ryption ora
le

that is reje
ted in step D4

0

but that would have passed the test in step D4.

It is
lear that

jPr[T

5

℄� Pr[T

4

℄j � Pr[R

5

℄:

We also
laim that

Pr[R

5

℄ � Q

A

(�)=q:

This follows from reasoning analogous to that in Lemma 8 (in game G

5

in the proof of Theorem 1).

Game G

6

. We again modify the algorithm used by the en
ryption ora
le, repla
ing step E4

0

by

E4

00

: r

R

 Z

q

; b g

r

:

By reasoning analogous to that in the analysis of game G

4

in the proof of Theorem 1, one
an

easily show that

Pr[T

6

℄ = Pr[T

5

℄:

Game G

7

. In this game, we modify the en
ryption ora
le, repla
ing step E5 of the en
ryption

algorithm by

E5

0

: K

R

 f0; 1g

KDF.OutLen(�)

:

It is straightforward to see that there exists a probabilisti
 algorithm A

3

, whose running time

is essentially the same as that of A, su
h that

jPr[T

7

℄� Pr[T

6

℄j � AdvDist

KDF;A

3

(� j �):

Furthermore, it is
lear that by
onstru
tion that

Pr[T

7

℄ = 1=2:

That
ompletes the proof of Theorem 6.

48

Key Generation: On input 1

�

for � 2 Z

�0

,
ompute

�[

^

G;G; g; q℄

R

^

S(1

�

); hk

R

 HF.KeySpa
e

�;�

; dk

R

 KDF.KeySpa
e

�;�

;

w

R

 Z

�

q

; x

1

; x

2

; y

1

; y

2

; z

R

 Z

q

;

ĝ g

w

; e g

x

1

ĝ

x

2

; f g

y

1

ĝ

y

2

; h g

z

;

and output the publi
 key PK = (�; hk; dk; ĝ; e; f; h) and the se
ret key SK = (�; hk; dk; x

1

; x

2

; y

1

; y

2

; z).

De
ryption: Given 1

�

for � 2 Z

�0

, a se
ret key

SK = (�[

^

G;G; g; q℄; hk; dk; x

1

; x

2

; y

1

; y

2

; z) 2 [S

�

℄� [HF.KeySpa
e

�;�

℄� [KDF.KeySpa
e

�;�

℄� Z

5

q

;

along with a
iphertext , do the following.

D1: Parse as a 3-tuple (a; â; d) 2

^

G

3

; output reje
t and halt if is not of this form.

D2: Test if a and â belong to G; output reje
t and halt if this is not the
ase.

D3: Compute v HF

�;�

hk

(a; â).

D4: Test if d = a

x

1

+y

1

v

â

x

2

+y

2

v

; output reje
t and halt if this is not the
ase.

D5

0

: Compute b a

z

.

D6: Compute K KDF

�;�

dk

(a; b), and output the symmetri
 key K.

Figure 6: Key generation and de
ryption algorithms for CS3a

Key Generation: On input 1

�

for � 2 Z

�0

,
ompute

�[

^

G;G; g; q℄

R

^

S(1

�

); hk

R

 HF.KeySpa
e

�;�

; dk

R

 KDF.KeySpa
e

�;�

;

w

R

 Z

�

q

; x; y; z

R

 Z

q

;

ĝ g

w

; e g

x

; f g

y

; h g

z

;

and output the publi
 key PK = (�; hk; dk; ĝ; e; f; h) and the se
ret key SK = (�; hk; dk; x; y; z).

De
ryption: Given 1

�

for � 2 Z

�0

, a se
ret key

SK = (�[

^

G;G; g; q℄; hk; dk; x; y; z) 2 [S

�

℄� [HF.KeySpa
e

�;�

℄� [KDF.KeySpa
e

�;�

℄� Z

3

q

;

along with a
iphertext , do the following.

D1: Parse as a 3-tuple (a; â; d) 2

^

G

3

; output reje
t and halt if is not of this form.

D2

0

: Test if a belongs to G; output reje
t and halt if this is not the
ase.

D3: Compute v HF

�;�

hk

(a; â).

D4

0

: Test if â = a

w

and d = a

x+yv

; output reje
t and halt if this is not the
ase.

D5

0

: Compute b a

z

.

D6: Compute K KDF

�;�

dk

(a; b), and output the symmetri
 key K.

Figure 7: Key generation and de
ryption algorithms for CS3b

49

9.3 Two variations

One
an easily modify s
heme CS3 to obtain two variants, whi
h we
all CS3a and CS3b, that are

analogous to the variations CS1a and CS1b of CS1, dis
ussed in x6.3. Only the key generation and

de
ryption algorithms di�er. The details are are presented in Figures 6 and 7.

Remark 14 S
heme CS3b is essentially the same s
heme that was originally presented in [Sho00b℄.

This s
heme is the most eÆ
ient s
heme among all those presented in this paper. It is also attra
tive

in that it yields a publi
-key en
ryption s
heme with an unrestri
ted message spa
e. Moreover, this

s
heme has some other attra
tive se
urity properties that will be examined in x10.

Remark 15 Analogous to Remark 7, we do not have to separately test if â belongs to the subgroup

G in step D2

0

of the de
ryption algorithm of CS3b, and we may test if a belongs to G in some
ases

by testing if a

q

= 1

G

.

Remark 16 Analogous to Remark 8, in s
heme CS3b, the de
ryption algorithm has to
ompute

either three or four (if we test if a

q

= 1

G

) powers of a, and spe
ial algorithmi
 te
hniques
an be

exploited to do this.

Remark 17 Analogous to Remarks 9 and 10, it is strongly re
ommended to always
ompute both

exponentiations in step D4

0

of CS3b before reje
ting the
iphertext, and to not reveal the pre
ise

reason why any
iphertext was reje
ted.

The following theorem
an proved using an argument almost identi
al to the argument that

was used to prove Theorem 2. We leave it to the reader to verify this.

Theorem 7 If the DDH assumption holds for G and the TCR assumption holds for HF, and

assuming that KDF is a se
ure key derivation s
heme, then CS3a and CS3b are se
ure against

adaptive
hosen
iphertext atta
k.

In parti
ular, for all probabilisti
, polynomial-time ora
le query ma
hines A, for all � 2 Z

�0

,

and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

jAdvCCA

CS3a;A

(� j �)� AdvCCA

CS3;A

(� j �)j � Q

A

(�)=q

and

jAdvCCA

CS3b;A

(� j �)� AdvCCA

CS3;A

(� j �)j � Q

A

(�)=q

10 Further Se
urity Considerations of S
heme CS3b

The key en
apsulation me
hanism CS3b, whi
h was des
ribed and analyzed in x9.3, has some other

interesting se
urity properties, whi
h we dis
uss in this se
tion.

The main results we present here are the following. First, we show that CS3b is no less se
ure

than a more traditional key en
apsulation me
hanism that is a hashed variant of ElGamal en
ryp-

tion, whi
h we
all HEG. Se
ond, we also show that CS3b is se
ure in the random ora
le model

(viewing KDF as a random ora
le) if the CDH and TCR assumptions hold. Along the way, we

also give a se
urity analysis of HEG in the random ora
le model, based on a rather non-standard

intra
tability assumption.

50

10.1 Hashed ElGamal key en
apsulation

We begin by presenting a fairly traditional version of ElGamal key en
apsulation, whi
h we
all

HEG.

The s
heme makes use of a
omputational group s
heme G as des
ribed in x4.1, de�ning a

sequen
e (S

�

)

�2Z

�0

of distributions of group des
riptions, and providing a sampling algorithm

^

S,

where the output distribution

^

S(1

�

)
losely approximates S

�

.

Also, the s
heme makes use of a key derivation s
heme KDF, asso
iated with G, as des
ribed in

x8. Note that output key length EG.KeyLen(�) of the s
heme is equal to KDF.OutLen(�).

The s
heme is des
ribed in detail in Figure 8.

10.2 The random ora
le model

We will analyze the se
urity of both s
hemes HEG and CS3b in the random ora
le model. In this

approa
h, a
ryptographi
 hash fun
tion | in this
ase KDF | is modeled for the purposes of

analysis as a \bla
k box"
ontaining a random fun
tion to whi
h the adversary and the algorithms

implementing the
ryptosystem have \ora
le a

ess." This approa
h has been used impli
itly and

informally for some time; however, it was formalized by Bellare and Rogaway [BR93℄, and has

subsequently been used quite a bit in the
ryptographi
 resear
h
ommunity.

More pre
isely, we shall analyze the se
urity the s
heme HEG and later CS3b in an idealized

model of
omputation where for all � 2 Z

�0

, all �[

^

G;G; g; q℄ 2 [S

�

℄, all dk 2 [KDF.KeySpa
e

�;�

℄,

and all a; b 2 G, we treat the values KDF

�;�

dk

(a; b) as mutually independent, random bit strings of

length KDF.OutLen(�); moreover, the only way to obtain the value of KDF

�;�

dk

(a; b) to to expli
itly

query an ora
le with input (�;�; dk; a; b). A
tually, to be
omplete, we allow �, dk, a, and b to range

over arbitrary bit strings, regardless of whether these are valid en
odings of appropriate obje
ts.

Sin
e in any of our appli
ations, only a �nite number of the values KDF

�;�

dk

(a; b) will be relevant,

experiments based on these values
an be modeled using �nite probability spa
es.

When
onsidering an adversary A that is
arrying out an adaptive
hosen
iphertext atta
k

in the random ora
le model, in addition to the usual types of ora
le queries that A makes, the

adversary A is also allowed to query the random ora
le representing KDF. We shall denote by

Q

0

A

(�) a stri
t upper bound on the number of random ora
le queries that A makes for a given

value of the se
urity parameter �; as usual, this bound should hold regardless of the environment

in whi
h A a
tually runs.

10.3 CS3b is at least as se
ure as HEG

We now show that the s
heme CS3b is at least as se
ure as HEG.

Theorem 8 If s
heme HEG is se
ure against adaptive
hosen
iphertext atta
k, then so is CS3b;

moreover, this impli
ation holds in either the standard or random ora
le models.

In parti
ular, for all probabilisti
, polynomial-time ora
le query ma
hines A, there exists another

ora
le query ma
hine A

1

, whose running time is essentially the same as that of A, su
h that for all

� 2 Z

�0

, and all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

AdvCCA

CS3b;A

(� j �) � AdvCCA

HEG;A

1

(� j �);

moreover, Q

A

1

(�) � Q

A

(�) and (in the random ora
le model) Q

0

A

1

(�) � Q

0

A

(�).

51

Key Generation: On input 1

�

for � 2 Z

�0

,
ompute

�[

^

G;G; g; q℄

R

^

S(1

�

); dk

R

 KDF.KeySpa
e

�;�

; z

R

 Z

q

; h g

z

;

and output the publi
 key PK = (�; dk; h) and the se
ret key SK = (�; dk; z).

En
ryption: Given 1

�

for � 2 Z

�0

, a publi
 key

PK = (�[

^

G;G; g; q℄; dk; h) 2 [S

�

℄� [KDF.KeySpa
e

�;�

℄�G;

ompute

E1: u

R

 Z

q

;

E2: a g

u

;

E3: b h

u

;

E4: K KDF

�;�

dk

(a; b);

and output the symmetri
 key K and the
iphertext = a.

De
ryption: Given 1

�

for � 2 Z

�0

, a se
ret key

SK = (�[

^

G;G; g; q℄; dk; z) 2 [S

�

℄� [KDF.KeySpa
e

�;�

℄� Z

q

;

along with a
iphertext , do the following.

D1: Parse as a group element a 2

^

G; output reje
t and halt if is not of this form.

D2: Test if a belongs to G; output reje
t and halt if this is not the
ase.

D3: Compute b a

z

.

D4: Compute K KDF

�;�

dk

(a; b), and output the symmetri
 key K.

Figure 8: The key en
apsulation me
hanism HEG

52

Proof. Fix A, �, and �[

^

G;G; g; q℄ as above. We
onstru
t an adversary A

1

that atta
ks HEG. The

adversary A

1

makes use of A by providing an environment for A, as follows.

First, suppose that A

1

is given a publi
 key (�; dk; h) for s
heme HEG, where � is �xed as above.

Adversary A

1

then \dresses up" the HEG publi
 key to look like a CS3b publi
 key; namely, A

1

omputes

hk

R

 HF.KeySpa
e

�;�

; w

R

 Z

�

q

; x; y

R

 Z

q

; ĝ g

w

; e g

x

; f g

y

;

and presents A with the CS3b publi
 key

(�; hk; dk; ĝ; e; f; h):

Se
ond, whenever A submits a CS3b
iphertext (a; â; d) 2

^

G

3

to the de
ryption ora
le, adversary

A

1

�rst performs the validity tests of the de
ryption algorithm of CS3b, making use of the values

hk; w; x; y generated above; if these tests pass, then A

1

invokes the de
ryption ora
le of HEG with

input a.

Third, when A invokes the en
ryption ora
le of CS3b, adversary A

1

does the following. It invokes

the en
ryption ora
le of HEG, obtaining a
iphertext a

�

2 G and a key K

y

. It then \dresses up"

a

�

to look like a CS3b
iphertext; namely, it
omputes

â

�

 (a

�

)

w

; v

�

 HF

�;�

hk

(a

�

; â

�

); d

�

 (a

�

)

x+yv

�

;

and presents A with the CS3b
iphertext (a

�

; â

�

; d

�

) along with the key K

y

.

Fourth, when A terminates and outputs a value, A

1

also terminates and outputs the same value.

That
ompletes the des
ription of the adversary A

1

.

One has to
he
k that A

1

arries out a legal adaptive
hosen
iphertext atta
k, in the sense that

it should not attempt to submit the target
iphertext itself to the de
ryption ora
le, subsequent to

the invo
ation of the en
ryption ora
le. Consider a
iphertext a submitted by A

1

to the de
ryption

ora
le. This was derived from a valid CS3b
iphertext (a; â; d) submitted by A to the de
ryption

ora
le. By the
onstru
tion, it is easy to see that if a = a

�

, then in fa
t, (a; â; d) = (a

�

; â

�

; d

�

),

whi
h
annot happen if A itself
arries out a legal atta
k.

Sin
e the simulation by A

1

above is perfe
t, it is
lear that whatever advantage A has in guessing

the hidden bit, adversary A

1

has pre
isely the same advantage. It is also
lear by
onstru
tion that

Q

A

1

(�) � Q

A

(�), and in the random ora
le model that Q

0

A

1

(�) � Q

0

A

(�). 2

10.4 The se
urity of HEG in the random ora
le model

As for the se
urity of HEG, even in the random ora
le model, we do not know how to prove a very

strong result. We
ontent ourselves with a proof that the s
heme HEG is se
ure against adaptive

hosen
iphertext atta
k in the random ora
le model, provided the CDH assumption holds relative

to an ora
le for the DDH problem.

More pre
isely, for all probabilisti
, polynomial-time ora
le query ma
hines A, and for all � 2

Z

�0

, we de�ne

AdvCDH

�

G;A

(�) := Pr[
 = g

xy

: �[

^

G;G; g; q℄

R

 S

�

; x

R

 Z

q

; y

R

 Z

q

;

R

 A

DHP

�;�

(1

�

;�; g

x

; g

y

) ℄;

where the notation A

DHP

�;�

(� � �) signi�es that A runs with a

ess to an ora
le for the DiÆe-Hellman

predi
ate DHP

�;�

de�ned in x4.3.3.

We say that the CDH assumption for G holds relative to an ora
le for the DDH problem if:

53

for all probabilisti
, polynomial-time ora
le query ma
hines A, the fun
tion

AdvCDH

�

G;A

(�) is negligible in �.

For all probabilisti
, polynomial-time ora
le query ma
hines A, for all � 2 Z

�0

, and for all

�[

^

G;G; g; q℄ 2 [S

�

℄, we also de�ne

AdvCDH

�

G;A

(� j �) := Pr[
 = g

xy

: x

R

 Z

q

; y

R

 Z

q

;

R

 A

DHP

�;�

(1

�

;�; g

x

; g

y

) ℄:

Theorem 9 The s
heme HEG is se
ure in the random ora
le model if the CDH assumption for G

holds relative to an ora
le for the DDH problem.

In parti
ular, for all probabilisti
, polynomial-time ora
le query ma
hines A, there exists an

ora
le query ma
hine A

1

, whose running time is essentially the same as that of A, su
h that for all

� 2 Z

�0

, and for all �[

^

G;G; g; q℄ 2 [S

�

℄, we have

AdvCCA

HEG;A

(� j �) � AdvCDH

�

G;A

1

(� j �) +Q

A

(�)=q;

moreover, the number or DDH-ora
le queries made by A

1

is bounded by Q

0

A

(�).

To prove Theorem 9, let us �x A, �, and �[

^

G;G; g; q℄. The atta
k game is as des
ribed in x7.1.2.

We begin by des
ribing the relevant random variables in the atta
k game. The publi
 key is

(�; dk; h) and the se
ret key is (�; dk; z).

For a given
iphertext , we let a 2 G denote the
orresponding group element, we let b := a

z

,

u := log

g

a, and K :=KDF

�;�

dk

(a; b). Note also that b = a

u

. For the target
iphertext

�

, we let a

�

,

b

�

, u

�

, and K

�

denote the
orresponding values.

The en
ryption ora
le also generates values � 2 f0; 1g and K

+

2 f0; 1g

KDF.OutLen(�)

.

Let G

0

be the original atta
k game, let �̂ denote the output of A, and let T

0

be the event that

� = �̂ , so that AdvCCA

HEG;A

(� j �) = jPr[T

0

℄� 1=2j.

As usual, we de�ne a sequen
e of game G

1

, G

2

, et
., and in game G

i

for i � 1 we de�ne T

i

to

be the event in game G

i

orresponding to event T

0

in game G

0

.

Game G

1

. We modify game G

0

as follows. First, we run the en
ryption ora
le at the beginning

of the atta
k game, but we give the results of this to the adversary only when it a
tually invokes

the en
ryption ora
le. This is a purely
on
eptual
hange, sin
e the adversary provides no input to

the en
ryption ora
le. Se
ond, if the adversary ever submits a
iphertext =

�

to the de
ryption

ora
le before the en
ryption algorithm is invoked, we abort the game immediately, before responding

to this de
ryption ora
le invo
ation (the environment, say, goes silent at this point).

Let F

1

be the event that game G

1

is aborted as above. It is
lear that Pr[F

1

℄ � Q

A

(�)=q. It

is also
lear that games G

0

and G

1

pro
eed identi
ally until event F

1

o

urs, and so by Lemma 4,

we have jPr[T

1

℄� Pr[T

0

℄j � Pr[F

1

℄.

Game G

2

. We next modify game G

1

as follows. If the adversary every queries the random ora
le

to obtain the value of KDF

�;�

dk

(a

�

; b

�

), we immediately abort the game, before responding to this

random ora
le invo
ation.

It is easy to see that Pr[T

2

℄ = 1=2. This follows dire
tly from the fa
t that in game G

2

, the value

of KDF

�;�

dk

(a

�

; b

�

) is obtained from the random ora
le only by the en
ryption ora
le: the adversary

never queries the random ora
le dire
tly at this point, nor does the de
ryption ora
le.

Let F

2

be the event that gameG

2

is aborted as above. It is
lear that jPr[T

2

℄�Pr[T

1

℄j � Pr[F

2

℄,

so it suÆ
es to bound Pr[F

2

℄.

We
laim that Pr[F

2

℄ = AdvCDH

�

G;A

1

(� j �) for an ora
le query ma
hine A

1

whose running time

and number of ora
le queries are bounded as in the statement of the theorem.

54

We now des
ribe A

1

. It takes as input 1

�

, �[

^

G;G; g; q℄, along with group elements a

�

; h 2 G,

and attempts to
ompute b

�

2 G su
h that DHP

�;�

(h; a

�

; b

�

) = 1. The ma
hine A

1

has a

ess to

an ora
le for the fun
tion DHP

�;�

.

Ma
hine A

1

simulates the environment of game G

2

for A as follows. It �rst
omputes dk

R

KDF.KeySpa
e

�;�

and gives A the publi
 key (�; dk; h). For the target
iphertext, it of
ourse sets

�

:= a

�

. For the other output K

y

of the en
ryption ora
le, A

1

simply generates this as a random

bit string of length KDF.OutLen(�).

Ma
hine A

1

also needs to simulate the responses to the random ora
le and de
ryption ora
le

queries. For the random ora
le queries, the only values that are relevant are those
orresponding

to the given values of �, �, and dk.

For the irrelevant random ora
le queries, A

1

simply maintains a set of input/output pairs,

generating outputs at random as ne
essary.

Ma
hine A

1

pro
esses relevant random ora
le queries using the following data stru
tures:

� a set V

1

of triples (a; b;K), with a; b 2 G and K 2 f0; 1g

KDF.OutLen(�)

, initially empty; this

will
ontain those triples (a; b;K) for whi
h A

1

has assigned the value K to KDF

�;�

dk

(a; b);

� a set V

2

of pairs (a; b), with a; b 2 G, initially empty; this will
ontain pre
isely those pairs

(a; b) su
h that (a; b;K) 2 V

1

for some K, and DHP

�;�

(h; a; b) = 1;

� a set V

3

of pairs (a;K), with a 2 G and K 2 f0; 1g

KDF.OutLen(�)

, initially empty; this will

ontain pairs (a;K) for whi
h A

1

has assigned the value K to KDF

�;�

dk

(a; b) for b 2 G with

DHP

�;�

(h; a; b) = 1, even though A

1

does not a
tually know the value of b.

Given a request for the value KDF

�;�

dk

(a; b), ma
hine A

1

does the following:

� It tests if (a; b;K) 2 V

1

for some K. If so (whi
h means that A has queried the value

KDF

�;�

dk

(a; b) before), it returns K as the value of KDF

�;�

dk

(a; b); otherwise, it
ontinues.

� It invokes its own DDH-ora
le to determine if DHP

�;�

(h; a; b) = 1.

� If DHP

�;�

(h; a; b) = 1, then:

{ If a = a

�

, it halts and outputs the solution b

�

:= b to the given problem instan
e (this

orresponds to the early-abort rule introdu
ed in game G

2

); otherwise, it
ontinues.

{ It adds the pair (a; b) to the set V

2

.

{ If (a;K) 2 V

3

for some K, then it adds the triple (a; b;K) to V

1

, and returns K as the

value of KDF

�;�

dk

(a; b); otherwise, it
ontinues.

� It generates K as a random bit string of length KDF.OutLen(�), adds the triple (a; b;K) to

V

1

, and returns K as the value of KDF

�;�

dk

(a; b).

Ma
hine A

1

pro
esses de
ryption ora
le queries as follows. Suppose it is given a
iphertext ,

with a 2 G the
orresponding group element. Then it does the following:

� If =

�

(whi
h
an only happen if the en
ryption ora
le has not yet been invoked), then

it simply halts (this
orresponds to the early-abort rule introdu
ed in game G

1

); otherwise,

ontinues.

� It tests if (a; b) 2 V

2

for some b 2 G.

55

� If this is so, then it �nds the (unique) triple in V

1

of the form (a; b;K) for some K, and returns

this value of K as the result of the de
ryption ora
le invo
ation; otherwise, it
ontinues.

� It tests if (a;K) 2 V

3

for some K.

� If this is so, then it returns this value of K as the result of the de
ryption ora
le; otherwise,

it generates a random bit string K of length KDF.OutLen(�), adds the pair (a;K) to V

3

, and

returns this value of K as the result of the de
ryption ora
le invo
ation.

It is straightforward to verify by inspe
tion that A

1

as above does the job.

That
ompletes the proof of Theorem 9.

10.5 The se
urity of CS3b in the random ora
le model

We
an now prove the following se
urity theorem for CS3b in the random ora
le model.

Theorem 10 The s
heme CS3b is se
ure in the random ora
le model if the CDH assumption holds

for G, and the TCR assumption holds for HF.

Proof. To prove this, let us assume by way of
ontradi
tion that the CDH assumption holds for G

and the TCR assumption holds for HF, but CS3b is not se
ure in the random ora
le model.

Now, the CDH assumption implies that for any polynomials P

1

and P

2

(with integer
oeÆ
ients,

taking positive values on Z

�0

), there exists a �

0

2 Z

�0

, su
h that for all � � �

0

,

Pr[q � P

1

(�) : �[

^

G;G; g; q℄

R

 S

�

℄ � 1=P

2

(�);

sin
e otherwise, a trivial, brute-for
e algorithm would have a CDH advantage that was not negligi-

ble. This implies in parti
ular that when we model KDF as a random ora
le, it a
ts as a se
ure key

derivation s
heme. From this it follows from Theorems 6 and 7 that CS3b is se
ure in the random

ora
le model if the DDH assumption holds; a
tually, sin
e these two theorems do not deal with the

random ora
le model, one must make a
ursory inspe
tion of the proofs of these theorems to draw

this
on
lusion, but this is very straightforward.

Let A be a polynomial-time adversary that breaks the se
urity of CS3b in the random ora
le

model. This means that there exist polynomials P

1

, P

2

(with integer
oeÆ
ients, taking positive

values on Z

�0

), an in�nite set � � Z

�0

, and sets Z

�

� [S

�

℄ for ea
h � 2 �, su
h that

� for all � 2 � and � 2 Z

�

, AdvCCA

CS3b;A

(� j �) � 1=P

1

(�),

� for all � 2 �, Pr

S

�

[Z

�

℄ � 1=P

2

(�).

Theorems 6 and 7 (adapted to the random ora
le model), together with our TCR assumption,

imply that there exists a polynomial-time algorithm A

1

, su
h that for all suÆ
iently large � 2 �,

and for all but a negligible fra
tion of � in Z

�

, we have

AdvDDH

G;A

1

(� j �) � 1=(2P

1

(�)):

We now apply Lemma 3 using the above algorithm A

1

, and
hoosing the value of � in that lemma

so that 2

��

� Q

0

A

(�) � 1=2, yielding a polynomial-time algorithm A

2

, su
h that for all suÆ
iently

large � 2 �, and for all but a negligible fra
tion of � 2 Z

�

, and for all � 2 T

�;�

,

Pr[A

2

(1

�

;�; �) 6= DHP

�;�

(�)℄ � 1=(2Q

0

A

(�)):

56

Applying Theorem 8 with the adversary A yields a polynomial-time adversary A

3

su
h that for

all � 2 � and � 2 Z

�

, AdvCCA

HEG;A

3

(� j �) � 1=P

1

(�). Applying Theorem 9 with the adversary

A

3

yields a polynomial-time ora
le ma
hine A

4

su
h that

AdvCDH

�

G;A

4

(� j �) � 1=(2P

1

(�))

for all suÆ
iently large � 2 �, and for all but a negligible fra
tion of � 2 Z

�

. Sin
e for a given value

of �, algorithm A

4

makes no more than Q

0

A

(�) DDH-ora
le queries, if we repla
e the DDH-ora
le

used by A

4

with algorithm A

2

above, we obtain a polynomial-time algorithm A

5

su
h that for all

suÆ
iently large � 2 �, and for all but a negligible fra
tion of � in Z

�

, we have AdvCDH

G;A

5

(� j

�) � 1=(4P

1

(�)). But this
ontradi
ts the CDH assumption. 2

10.6 Random ora
les and pair-wise independent key derivation fun
tions: get-

ting the best of both

If we want to prove the se
urity of CS3b in the standard model without making any intra
tability

assumptions about KDF, then we may
hoose KDF to be pair-wise independent. On the one hand,

standard
onstru
tions for pair-wise independent hash fun
tions typi
ally exhibit a lot of algebrai

stru
ture, and it is not very reasonable to assume that su
h a KDF
an be safely modeled as a

random ora
le. On the other hand, typi
al dedi
ated
ryptographi
 hash fun
tions, like SHA-1,

may be modeled as random ora
les, but they are
ertainly not pair-wise independent.

We shall sket
h here how to get the best of both worlds, i.e., how to implement the KDF so that

we get a proof of se
urity of CS3b in the standard model just under the DDH and TCR assumptions,

and in the random ora
le model under the CDH and TCR assumptions.

The idea is this:
ompute KDF as the XOR of a pair-wise independent hash KDF1 and a

ryptographi
 hash KDF2.

It is
lear that if KDF1 is pair-wise independent, then so is KDF, and so the se
urity of CS3b in

the standard model under the DDH and TCR assumptions now follows dire
tly from Theorem 7.

Now suppose we model the
ryptographi
 hash KDF2 as a random ora
le. It is easy to see

that for any adversary A atta
king CS3b given ora
le a

ess to KDF2, there is an adversary A

1

,

whose running time is roughly the same as that of A, that atta
ks CS3b given ora
le a

ess to KDF:

the adversary A

1

just does whatever A does, ex
ept that whenever A queries the ora
le for KDF2,

adversary A

1

queries its ora
le for KDF and
omputes the value of KDF2 as the XOR of the value

of KDF and the value of KDF1. Note, however, that the output distribution of the ora
le KDF is

the same as that of a random ora
le, and so the se
urity of CS3b in the random ora
le model under

the CDH and TCR assumptions now follows dire
tly from Theorem 10.

We do not ne
essarily advo
ate this approa
h to building a KDF in pra
ti
al implementations:

simply assuming that a KDF implemented dire
tly using a dedi
ated
ryptographi
 hash is se
ure

is quite reasonable, and the resulting KDF is mu
h simpler and more eÆ
ient than any approa
h

that makes use of a pair-wise independent hash fun
tion.

10.7 Further dis
ussion

The s
heme HEG is intended to represent a fairly traditional version of ElGamal key en
apsulation.

The only thing slightly non-traditional about it is the fa
t that the symmetri
 key K is derived by

hashing both a (the ephemeral DiÆe-Hellman publi
 key) and b (the shared DiÆe-Hellman key),

rather than just b alone.

57

Hashing both the ephemeral and shared keys together has some quantitative se
urity advan-

tages. Noti
e that in Theorem 9, the implied CDH algorithm makes no more than Q

0

A

(�) queries

to the DDH-ora
le. If we were to hash only the shared DiÆe-Hellman key, we
ould still prove the

se
urity of HEG, but the redu
tion would be less eÆ
ient; in parti
ular, the implied CDH algorithm

might require up to Q

0

A

(�) �Q

A

(�) queries to the DDH-ora
le. A similar quantitative se
urity ad-

vantage arises in the multi-user/multi-message model (see [BBM00℄). In this model, we
an exploit

the well-know random self-redu
ibility of the CDH problem to get a more eÆ
ient redu
tion if we

hash both keys instead of just one. Of
ourse, these improved se
urity redu
tions for HEG
arry

over to the se
urity redu
tion for CS3b in the random ora
le model.

The DHAES en
ryption s
heme [ABR99℄, whi
h is a hybrid ElGamal en
ryption s
heme that

has been proposed for standardization, also hashes both the ephemeral and shared DiÆe-Hellman

keys to derive a symmetri
 key. Indeed, the DHAES s
heme
an be
onstru
ted from the key en
ap-

sulation me
hanism HEG using the hybrid
onstru
tions presented in x7, and it is straightforward

to verify that analogues of Theorems 8 and 9 hold for the DHAES s
heme as well. The DHAES

s
heme needs to hash both group elements be
ause it allows the possibility of a group G whose

order is a
omposite number. In a revised version of DHAES,
alled DHIES [ABR01℄, the group

G is required to have prime order, and only the shared DiÆe-Hellman key is hashed. However, as

we have seen, there are still some se
urity bene�ts to be gained from hashing both group elements,

even if the group is of prime order, as we are assuming in this paper.

Theorem 10 originally appeared in the paper [Sho00b℄. The proof in that paper basi
ally rolled

all of the arguments used in the proofs of Theorems 8, 9, 10, along with the arguments in x10.6, into

a single proof, whi
h we have unraveled to some extent here. Our presentation here was somewhat

in
uen
ed by the paper [OP01℄, whi
h formally introdu
es the notion of the CDH assumption

relative to an ora
le for the DDH problem.

The se
urity redu
tion in Theorem 10 is quite ineÆ
ient: we have to perform many simulations

using the given adversary A just to solve one instan
e of the DDH problem, and then in a di�erent

simulation involving A, we have to solve many instan
es of the DDH problem in order to solve one

instan
e of the CDH problem. Of
ourse, if the DDH problem for a given group s
heme turns out

not to be a hard problem, then it may very well be the
ase that there is a mu
h more eÆ
ient DDH

algorithm than the one built using our se
urity redu
tion involving A. In this
ase, the redu
tion

in Theorem 10 be
omes quite reasonable.

A
knowledgments

Some of this work was done while the �rst author was at the Institute for Theoreti
al Computer

S
ien
e, ETH, Zuri
h, and while the se
ond author was visiting the Computer S
ien
e Department

at Stanford University. Thanks to Ilia Mironov for
omments on an early draft of this paper.

Thanks also to Moni Naor for his
omments on an early draft of the Crypto '98 paper on whi
h

this paper is based, and in parti
ular, for his suggestion of using a universal one-way hash fun
tion

instead of a
ollision resistant hash fun
tion in the design of s
heme CS1, and for his suggestion of

a hash-free variant, upon whi
h s
heme CS2 is loosely based.

Referen
es

[ABR99℄ M. Abdalla, M. Bellare, and P. Rogaway. DHAES: an en
ryption s
heme based on

the DiÆe-Hellma problem. Cryptology ePrint Ar
hive, Report 1999/007, 1999. http:

58

//eprint.ia
r.org.

[ABR01℄ M. Abdalla, M. Bellare, and P. Rogaway. The ora
le DiÆe-Hellman assumptions and

an analysis of DHIES. In Topi
s in Cryptology { CT-RSA 2001, pages 143{158, 2001.

Springer LNCS 2045.

[ASW00℄ N. Asokan, V. Shoup, and M. Waidner. Optimisti
 fair ex
hange of digital signatures.

IEEE Journal on Sele
ted Areas in Communi
ations, 18(4):593{610, 2000. Extended

abstra
t in Advan
es in Cryptology{Euro
rypt '98.

[BBM00℄ M. Bellare, A. Boldyreva, and S. Mi
ali. Publi
-key en
ryption in a multi-user setting:

se
urity proofs and improvements. In Advan
es in Cryptology{Euro
rypt 2000, 2000.

[BDPR98℄ M. Bellare, A. Desai, D. Point
heval, and P. Rogaway. Relations among notions of

se
urity for publi
-key en
ryption s
hemes. In Advan
es in Cryptology{Crypto '98,

pages 26{45, 1998.

[BGMW92℄ E. F. Bri
kell, D. M. Gordon, K. S. M
Curley, and D. B. Wilson. Fast exponentiation

with pre
omputation. In Advan
es in Cryptology{Euro
rypt '92, pages 200{207, 1992.

[BH62℄ P. Bateman and R. Horn. A heuristi
 asymptoti
 formula
on
erning the distribution

of prime numbers. Math. Comp., 16:363{367, 1962.

[BH65℄ P. Bateman and R. Horn. Primes represented by irredu
ible polynomials in one vari-

able. Pro
. Sympos. Pure Math., 8:119{135, 1965.

[Bon98℄ D. Boneh. The De
ision DiÆe-Hellman Problem. In Ants-III, pages 48{63, 1998.

Springer LNCS 1423.

[Bon01℄ D. Boneh. Simpli�ed OAEP for the RSA and Rabin fun
tions. In Advan
es in

Cryptology{Crypto 2001, 2001.

[BR93℄ M. Bellare and P. Rogaway. Random ora
les are pra
ti
al: a paradigm for design-

ing eÆ
ient proto
ols. In First ACM Conferen
e on Computer and Communi
ations

Se
urity, pages 62{73, 1993.

[BR94℄ M. Bellare and P. Rogaway. Optimal asymmetri
 en
ryption. In Advan
es in

Cryptology|Euro
rypt '94, pages 92{111, 1994.

[BR97℄ M. Bellare and P. Rogaway. Collision-resistant hashing: towards making UOWHFs

pra
ti
al. In Advan
es in Cryptology{Crypto '97, 1997.

[Bra93℄ S. Brands. An eÆ
ient o�-line ele
troni

ash system based on the representation

problem, 1993. CWI Te
hni
al Report, CS-R9323.

[BS96℄ E. Ba
h and J. Shallit. Algorithmi
 Number Theory, volume 1. MIT Press, 1996.

[BSS99℄ I. Blake, G. Seroussi, and N. Smart. Ellipti
 Curves in Cryptography. Cambridge

University Press, 1999.

[Can00℄ R. Canetti. Universally
omposable se
urity: a new paradigm for
ryptographi
 proto-

ols. Cryptology ePrint Ar
hive, Report 2000/067, 2000. http://eprint.ia
r.org.

59

[CG99℄ R. Canetti and S. Goldwasser. An eÆ
ient threshold publi
 key
ryptosystem se
ure

against adaptive
hosen
iphertext atta
k. In Advan
es in Cryptology{Euro
rypt '99,

pages 90{106, 1999.

[CGH98℄ R. Canetti, O. Goldrei
h, and S. Halevi. The random ora
le model, revisited. In 30th

Annual ACM Symposium on Theory of Computing, 1998.

[CS98℄ R. Cramer and V. Shoup. A pra
ti
al publi
 key
ryptosystem provably se
ure against

adaptive
hosen
iphertext atta
k. In Advan
es in Cryptology{Crypto '98, pages 13{25,

1998.

[CS00℄ R. Cramer and V. Shoup. Signature s
hemes based on the strong RSA assumption.

ACM Transa
tions on Information and Systems Se
urity, 3(3):161{185, 2000.

[CS01℄ R. Cramer and V. Shoup. Universal hash proofs and a paradigm for adaptive
hosen

iphertext se
ure publi
 key en
ryption. Cryptology ePrint Ar
hive, Report 2001/085,

2001. http://eprint.ia
r.org.

[Dam91℄ I. Damg�ard. Towards pra
ti
al publi
 key
ryptosystems se
ure against
hosen
ipher-

text atta
ks. In Advan
es in Cryptology{Crypto '91, pages 445{456, 1991.

[DDN91℄ D. Dolev, C. Dwork, and M. Naor. Non-malleable
ryptography. In 23rd Annual ACM

Symposium on Theory of Computing, pages 542{552, 1991.

[DDN00℄ D. Dolev, C. Dwork, and M. Naor. Non-malleable
ryptography. SIAM J. Comput.,

30(2):391{437, 2000.

[DH76℄ W. DiÆe and M. E. Hellman. New dire
tions in
ryptography. IEEE Trans. Info.

Theory, 22:644{654, 1976.

[DN96℄ C. Dwork and M. Naor. Method for message authenti
ation from non-malleable
ryp-

tosystems, 1996. U. S. Patent No. 05539826.

[ElG85℄ T. ElGamal. A publi
 key
ryptosystem and signature s
heme based on dis
rete loga-

rithms. IEEE Trans. Inform. Theory, 31:469{472, 1985.

[FOPS01℄ E. Fujisaki, T. Okamoto, D. Point
heval, and J. Stern. RSA-OAEP is se
ure under

the RSA assumption. In Advan
es in Cryptology{Crypto 2001, 2001.

[FY95℄ Y. Frankel and M. Yung. Cryptanalysis of immunized LL publi
 key systems. In

Advan
es in Cryptology{Crypto '95, pages 287{296, 1995.

[GL89℄ O. Goldrei
h and L. A. Levin. A hard-
ore predi
ate for all one-way fun
tions. In 21st

Annual ACM Symposium on Theory of Computing, pages 25{32, 1989.

[GM84℄ S. Goldwasser and S. Mi
ali. Probabilisti
 en
ryption. Journal of Computer and

System S
ien
es, 28:270{299, 1984.

[HILL99℄ J. H�astad, R. Impagliazzo, L. Levin, and M. Luby. A pseudo-random generator from

any one-way fun
tion. SIAM J. Comput., 28(4):1364{1396, 1999.

[ILL89℄ R. Impagliazzo, L. Levin, and M. Luby. Pseudo-random number generation from any

one-way fun
tion. In 21st Annual ACM Symposium on Theory of Computing, pages

12{24, 1989.

60

[IZ89℄ R. Impagliazzo and D. Zu
kermann. How to re
y
le random bits. In 30th Annual

Symposium on Foundations of Computer S
ien
e, pages 248{253, 1989.

[JN01℄ A. Joux and K. Nguyen. Separating De
ision DiÆe-Hellman from DiÆe-Hellman in

ryptographi
 groups. Cryptology ePrint Ar
hive, Report 2001/003, 2001. http:

//eprint.ia
r.org.

[LL93℄ C. H. Lim and P. J. Lee. Another method for attaining se
urity against adaptively

hosen
iphertext atta
ks. In Advan
es in Cryptology{Crypto '93, pages 420{434, 1993.

[LL94℄ C. H. Lim and P. J. Lee. More
exible exponentiation with pre
omputation. In

Advan
es in Cryptology{Crypto '94, pages 95{107, 1994.

[MvOV97℄ A. Menesez, P. van Oors
hot, and S. Vanstone. Handbook of Applied Cryptography.

CRC Press, 1997.

[MW00℄ U. Maurer and S. Wolf. The DiÆe-Hellman proto
ol. Designs, Codes, and Cryptogra-

phy, 19:147{171, 2000.

[NR97℄ M. Naor and O. Reingold. Number-theoreti

onstru
tions of eÆ
ient pseudo-random

fun
tions. In 38th Annual Symposium on Foundations of Computer S
ien
e, 1997.

[NY89℄ M. Naor and M. Yung. Universal one-way hash fun
tions and their
ryptographi

appli
ations. In 21st Annual ACM Symposium on Theory of Computing, 1989.

[NY90℄ M. Naor and M. Yung. Publi
-key
ryptosystems provably se
ure against
hosen
i-

phertext atta
ks. In 22nd Annual ACM Symposium on Theory of Computing, pages

427{437, 1990.

[OP01℄ T. Okamoto and D. Point
heval. The gap-problems: a new
lass of problems for the

se
urity of
ryptographi
 s
hemes. In Pro
. 2001 International Workshop on Pra
ti
e

and Theory in Publi
 Key Cryptography (PKC 2001), 2001.

[Pai99℄ P. Paillier. Publi
-key
ryptosystems based on
omposite degree residuosity
lasses.

In Advan
es in Cryptology{Euro
rypt '99, pages 223{238, 1999.

[Rom90℄ J. Rompel. One-way fun
tions are ne
essary and suÆ
ient for digital signatures. In

21st Annual ACM Symposium on Theory of Computing, 1990.

[RS91℄ C. Ra
ko� and D. Simon. Nonintera
tive zero-knowledge proof of knowledge and

hosen
iphertext atta
k. In Advan
es in Cryptology{Crypto '91, pages 433{444, 1991.

[SG98℄ V. Shoup and R. Gennaro. Se
uring threshold
ryptosystems against
hosen
iphertext

atta
k. In Advan
es in Cryptology{Euro
rypt '98, 1998. To appear, J. Cryptology.

[SHA95℄ Se
ure hash standard, National Institute of Standards and Te
hnology (NIST), FIPS

Publi
ation 180-1, April 1995.

[Sho99℄ V. Shoup. On formal models for se
ure key ex
hange. Cryptology ePrint Ar
hive,

Report 1999/012, 1999. http://eprint.ia
r.org.

[Sho00a℄ V. Shoup. A
omposition theorem for universal one-way hash fun
tions. In Advan
es

in Cryptology{Euro
rypt 2000, 2000.

61

[Sho00b℄ V. Shoup. Using hash fun
tions as a hedge against
hosen
iphertext atta
k. In

Advan
es in Cryptology{Euro
rypt 2000, 2000.

[Sho01℄ V. Shoup. OAEP re
onsidered. In Advan
es in Cryptology{Crypto 2001, 2001.

[Sma99℄ N. Smart. The dis
rete logarithm problem on ellipti

urves of tra
e one. J. Cryptology,

12(3):193{196, 1999.

[Sta96℄ M. Stadler. Publi
ly veri�able se
ret sharing. In Advan
es in Cryptology{Euro
rypt

'96, pages 190{199, 1996.

[ZS92℄ Y. Zheng and J. Seberry. Pra
ti
al approa
hes to attaining se
urity against adaptively

hosen
iphertext atta
ks. In Advan
es in Cryptology{Crypto '92, pages 292{304, 1992.

62

