Cryptanalysis of Stream Cipher COS (2, 128)
Mode I

Hongjun Wu and Feng Bao

Kent Ridge Digital Labs
21 Heng Mui Keng Terrace, Singapore 119613
{hongjun,baofeng}@krdl.org.sg

Abstract. Filiol and Fontaine recently proposed a family of stream ci-
phers named COS. COS is based on nonlinear feedback shift registers and
was claimed to be with high cryptographic strength. Babbage showed
that COS (2,128) Mode II is extremely weak. But Babbage’s attack
is too expensive to break the COS (2,128) Mode I (the complexity is
around 25%). In this paper, we show that the COS (2, 128) Mode I is too
weak. With about 2'®-bit known plaintext, the secret information could
be recovered with small amount of memory and computation time (less
than one second on a Pentium IV Processor).

1 Introduction

Filiol and Fontaine recently designed a family of stream ciphers called COS
[3-5]. The COS (2,128) is with two 128-bit internal registers. Two versions of
COS (2,128) are available: Mode II and the more secure Mode I. In [1], Babbage
showed that the COS (2,128) Mode II is too weak and the secret information
could be recovered easily from a short piece of key stream. Babbage’s attack
also reduced the complexity of the COS (2, 128) Mode I to 2%4. In [2], Babbage’s
improved attack reduced the complexity of the COS (2, 128) Mode I to 2°2.

In this paper, we show that the COS (2,128) Mode I could be broken with
small amount of plaintext and computation time. In average, only about 2!6-
bit known plaintext is required. The time required is less than one second on a
Pentium IV porcessor.

This paper is organized as follows. Section 2 introduces the COS (2,128)
stream cipher. The attack against the COS (2,128) Mode I is given in Section
3. Section 4 concludes this paper.

2 COS Stream Cipher

We will only give a brief introduction to the COS (2,128). This version of COS
cipher is with two 128-bit registers, L; and L, as the initial states. We will
ignore the key setup of COS (the key setup has no effect on our attack) and only
introduce the key stream generation process.

Let Ly = Lio || Li1 || La2 || L1z, La = Lo || Loa1 || Loz || Las, where
|| indicates concatenation and each L;; is a 32-bit word. At the ith step, the
output key stream is generated as:

1. Compute clocking value d.

(a) Compute m = 2 x (L23&1) + (L13&1) where & is the binary AND oper-
ator.

(b) d= Om, where CO = 64, Ol = 65, 02 = 66, 03 = 64.

2. If i is even, clock Ly d times; otherwise, clock Ly d times.

3. Let H; = Hy || Ha || Hiz || Hi3, then Hyg = Log & L1z, Hjy = Loy @ L3,
His = L3> ® L1o, Hiz = L23 ® L11.

4. For Mode II, the output for the ith step is given as H;.

5. For Mode I, compute j = (L13 ® L23)&3, k = (L10 @ Lao) > 30. If j = k,
then let £ = j & 1. The output for the ith step is given as H;; || Hi.

Two feedback boolean functions are used, f9a for Ly and f9b for L. They use
bits 2,5,8,15,26,38,44,47,57 of L; and L. These two functions are available
at [3].

3 Cryptanalysis of COS

In this section, we show that the COS (2,128) Mode I is very weak. Subsection
3.1 gives a brief introduction to our attack while the detailed attack is given in
Subsection 3.2. The experiment result is given in Subsection 3.3.

3.1 The basic idea of our attack

Let us take a look at any four consequent steps starting with an odd step. L; is
clocked at the second and forth steps; Ls is clocked at the first and third steps.

Step 1 Step 2 Step 3 Step 4
Ly [bla] [c[¥] [c]b] [d]c]

Ly [z]w] [a]w] [y]a'] [y]o]

Fig. 1 Four Steps (starting with an odd step) of COS (2,128)

In Fig. 1, a, b, V', ¢, ¢’ and d are 64-bit words of L; at the end of a step; w, =,
x', y are 64-bit words of Ly at the end of a step. According to the key stream
generation process, b’ may be the same as b; b’ may be obtained by right shifting
b one (or two) bit position and with the most significant one (or two) bit of b
being filled with unknown value. The same applies to ¢’ and c.

The value of (¢,b') could be recovered if the following two conditions are
satisfied:

Condition 1. The outputs at the first, second, third and forth steps are given
as b@w, chw, b’ ®y and ¢’ dy, respectively, i.e., (§,k) is (2,3) or (3,2) at Step

1 and Step 2 and (1,0) or (0,1) at Step 3 and 4.

Condition 2. One of b’ and ¢’ is not the same as b and ¢, respectively, and
b" and ¢’ are not obtained by right shifting b and ¢ (respectively) by the same
position.

From Condition 1, we could obtain the values of b®c and b’ ® ¢’ from the output
key streams of these four steps. Once Condition 1 and Condition 2 are satisfied,
it is trivial to compute (c,b’).

In the next subsection, we will illustrate the idea above in detail and give the
estimated results.

3.2 The detailed attack

Before introducing the attack in detail, we give the following two observations:

Observation 1. For the COS (2,128) Mode I, at each step, the probability that
(4,k) is (2,3) is 2712, The same applies to (3,2), (1,0), (0,1).

Observation 2. At the ith step, if j is 2 or 0, then the clocking value at the
next step is 64. If j is 1 or 3, the clocking value at the next step is 65 or 66.

These two observations are trivial according to the specifications of the COS
cipher.

We now list in Table 1 those 16 cases that satisfy Condition 1. According to
Observation 1, each case appears with probability 27'2.

Step 1 | Step 2 | Step 3 | Step 4
Case 1 (2,3) | (2,3) | (0,1) | (0,1)
Case 2 (2,3) | (2,3) | (0,1) | (1,0)
Case 3 (2,3) | (2,3) | (1,0) | (0,1)
Case 4 (2,3) | (2,3) | (1,0) | (1,0)
Case 5 (2,3) | (3,2) | (0,1) | (0,1)
Case 6 (2,3) | (3,2) | (0,1) | (1,0)
Case 7 (2,3) | (3,2) | (1,0) | (0,1)
Case 8 (2,3) | (3,2) | (1,0) | (1,0)
Case 9 (3,2) | (2,3) | (0,1) | (0,1)
Case 10 (3,2) | (2,3) | (0,1) | (1,0)
Case 11| (3,2) | (23) | (1,0) | (0,1
Case 12 (3,2) | (2,3) | (1,0) | (1,0)
Case 13 | (32 | (3,2) | (0,1) | (0,1)
Case 14 3,2) | (3,2) | (0,1) | (1,0)
Case 15 (3,2) | (3,2) | (1,0) | (0,1)
Case 16 3,2) | (3,2) | (1,00 | (1,0)

Table 1. The 16 cases that satisfy Condition 1

However, not all those 16 cases satisfy Condition 2. According to Observation 2,
Cases 1, 2, 5, 6 do not satisfy Condition 2 since b’ = b and ¢’ = ¢; Cases 11, 12,
15, 16 satisfy Condition 2 with probability 0.5; the other eight cases all satisfy
Condition 2. Thus for every four steps starting with an odd step, Conditions 1
and 2 are satisfied with probability 10 x 272 &~ 2787, To determine the value
of Ly, this attack requires the output of about 820 steps in average.

Now we estimate how many values of (¢,b’) are produced in each case, and
show how to filter the wrong values of (¢, b’). We illustrate Case 4 as an example:
at Step 2 L, is clocked 64 times (b = b'); at Step4 L, is clocked 65 or 66 steps.
So 6 values of (c,b') are generated for every four steps starting with an odd step.
For each pair of (¢,b'), the values of w and y of Lo could be obtained. Since Lo
is clocked only 64 times at Step 3, the 7 least significant bits of y are generated
from w. So the wrong (¢,b") could pass this filtering process with probability
277,

The further filtering is carried out at Step 5 and Step 6. Let d = dy || di,
c=cy|lc,e=eolle,d =dy|dy, z=2 | 21,y =y, || y; where dy, d, ¢,
cl, eo, €1, dy, di, zo, 21, y4 and yi are 32-bit words. In Fig. 2, for each (c,?’),
there are 6 values for (d,c',e,d’) (L; is clocked 65 or 66 times at Step 4 and is
clocked 64 or 65 or 66 times at Step 6). The L, is clocked 65 or 66 times at Step
5, so there are 6 possible values for 3'. Now if any one of j or k is equal to 2 or 3
in Sep 4 or 5, then for the right (¢, '), at least one of do ®yy, d1 Dy, eo Dy} and
e1 @y} appears in the output. Otherwise, j and k could only be 0 or 1 at Step 4
and Step 5, the output of Step 5 is (¢f ® 20) || (¢} ® 21) or (¢} ® 21) || (¢ ® 20),
that of Step 6 is (d ® 2z0) || (d] ® z1) or (d} ® z1) || (dfy ® 2p). By xoring the
outputs of Step 5 and 6 (taking into the considering whether (7, k) is (1,0) or
(0,1)), the right (e,b") should generate ¢ @ djy and ¢} ® d}. The wrong (c,b’)
could pass this filtering process with probability 6 x 6 x 8 x 2732 a5 27238,

Stepl Step2 Step3 Step4 Stepd Step6
Li[bla] [e[V'] [c[V] [d]c] [dolldi[collci] [eoller[dyldi]

Ly[zw] [a]w] [y]o] [yla'] [20llz o llyi] [2002 w5 lli]

Fig. 2 The 6 Steps (starting with an odd step) of COS (2,128)

In Case 4, for every 4 steps starting with an odd step, a correct (¢, b') is generated
with probability 2712 and a wrong (¢, b') is generated with probability 6 x 277 x
9—23.8 o, 9—28.2

We list in Table 2 (in the next page) the probabilities that a right and wrong
(c,b') is generated for any 4 steps starting with an odd step.

So for any 4 steps starting with an odd step, a correct (c,b’) is generated
with probability 2787 and a wrong one is generated with probability 27236, It
is obvious that only the correct (¢,b") could pass the filtering process. Once (¢, b')
is determined, it is easy to recover Ly from the values of w and y.

3.3 Experiment Result

We implemented an attack that uses only the Case 4. In average, our program
recovers Ly in less than one second on a PC (Pentium IV processor) with the
outputs of about 2'* steps. The computer programs are given in Appendix A
and B. The COS programs provided by the COS designers [3,4] are used in our
program.

4

Right L; Prob.|Wrong L Prob.

Case 1 0 -

Case 2 0 -

Case 3 212 2308
Case 4 2-12 2282
Case 5 0 -

Case 6 0 -

Case 7 212 2282
Case 8 2-12 2256
Case 9 212 2318
Case 10 2-12 2292
Case 11 2-13 2-304
Case 12 213 2268
Case 13 2-12 27292
Case 14 212 27266
Case 15 2-13 2278
Case 16 213 27252

Table 2. The probabilities that each case generates correct and wrong L

Conclusions

In this paper, we showed that the stream cipher COS (2, 128) Mode I is extremely
weak and should not be used.

References

1.

2.

3.

S.H. Babbage, “The COS Stream Ciphers are Extremely Weak”,
http://eprint.iacr.org/2001/078/

S.H. Babbage, “Cryptanalysis of the COS (2,128) Stream Ciphers”,
http://eprint.iacr.org/2001/106/

E. Filiol and C. Fontaine, “A New Ultrafast Stream Cipher Design: COS Ciphers”,
http://www—rocq.inria.fr/codes/Eric. Filiol/English/COS/COS.html

E. Filiol and C. Fontaine, “A New Ultrafast Stream Cipher Design: COS Ciphers”,
in Proceedings of the 8th IMA Conference on Cryptography and Coding, LNCS
2260, pp. 85-98.

E. Filiol, “COS Ciphers are not “extremely weak”! — the Design Rationale of COS
Ciphers”, hitp://eprint.iacr.org/2001/080/

A The Program File “cos.c”

/*This program breaks the stream cipher C0S (2,128) Mode I
using only the Case 4

(The complete attack requires 1/10 amount of plaintext
of this attack, and about the same amount of computation
time as this attack).

With $2719% bit of plaintext, L1 could be recovered with
probability 63%
*/

#include "cos.h"

#define steps 0x8000L

/*the key stream of those steps required to retrieve L1.
For this program, if steps = 0x8000L, then L1 could be
recovered with probability 0.98 in less than one second
on a Pentium IV processor

*/

void main ()

{

UINT32 i;

UINT32 L1[4],L2[4];

UINT32 block[2];

UINT32 R[steps][2];

UINT32 BO,B1,C0,C1,WO0,W1,Y0,Y1;
UINT32 MO,M1,NO,N1,PO,P1;

setkey(L1,L2);
//generate a key stream and stored it in R

for (i = 0; i < steps; i++) {
coscipher (L1, L2, block, (1+i)%2,1i);
R[i]1[0] = block[0];

R[i][1] = block[1];

}

//begin to recover L1 from the key stream R
for (i = 1; i < steps - 8; i =1 + 2) {

MO = R[iJ[0] ~ R[i+1]1[0];
M1 = R[i1[1] =~ R[i+11[1];
NO = R[i+2]1[1] ~ R[i+3][1];

N1 = R[i+2][0] ~ R[i+3][0];
PO = MO "~ NO;
P1 = M1 "~ Ni;

//assume the cipher clocked 65 times at i+3
recovershiftone (&P0,&P1,&C0,&C1) ;

BO = MO = CO;
Bl =M1 © C1;
YO = R[i+2][1] ~ BO;
Y1 = R[i+2][0] ~ B1;
W0 = R[i+1]1[0] ~ CO;
Wi = R[i+1]1[1] - C1;

//the ’verify’ checks whether the estimated values correct or not.

//1f correct, it prints the value of L1 and the step number

verify(BO,B1,C0,C1,W0,W1,Y0,Y1,i,R[i+4]1[0],R[i+4]1[1],R[i+5][0],
R[i+5] [11);

verify(BO"Oxffffffff,B1 Oxffffffff,CO"Oxffffffff,C1 OxfLfFEfFf 1T,
WO~ Oxffffffff , W1 Oxffffffff, YO Oxfff£f£ff, Y1 Oxf£EFE££EF,
i,R[i+4][0],R[i+4][1],R[i+6]1[0],R[i+5]1[1]);

//assume the cipher clocked 66 times at i+3
recovershifttwo (&P0,&P1,&C0,&C1);

BO = MO = CO;
Bl =M1 ~ C1;
YO0 = R[i+2][1] "~ BO;
Y1 = R[i+2][0] "~ B1;
Wo = R[i+1]1[0] = CO;
Wi = R[i+1]1[1] = C1;

verify(BO,B1,C0,C1,W0,W1,Y0,Y1,i,R[i+4][0],R[i+4][1],R[i+5][0],
R[i+5]1[1]);

verify(BO“Oxffffffff ,B1 Oxffffffff,COOxffffffff,C1 OxfffFfEff e,
WO~ Oxffffffff W1 Oxffffffff,YO " Oxffffffff, Y1 Oxffffffff,
i,R[i+4]1[0],R[i+4]1[1],R[i+5]1[0]1,R[i+5][1]);

verify(BO"Oxaaaaaaaa,Bl~0xaaaaaaaa,C0”Oxaaaaaaaa,Cl~0xaaaaaaaa,
W0~0xaaaaaaaa,W1~0xaaaaaaaa,Y0 " Oxaaaaaaaa,Y1 0xaaaaaaaa,
i,R[i+4]1[0],R[i+4]1[1],R[i+5][0],R[i+5][1]);

verify(B0"0x55555555,B1"0x55555555,C0~0x55555555,C1~0x55555555,
W0~ 0x55555555,W1~0x55555555,Y0"0x55555555,Y1"0x55555555,
i,R[i+4]1[0],R[i+4]1[1],R[i+5]1[0]1,R[i+5][1]);

B The Program File “cos.h”

/*
Remarks:
This file cos.h contains:

1. the key set up table T (T, f11, f9a, f9b are not included in
2. function f11 (this appendix, they are available at
3. function f9a ([31.
4. function f9b
5. recovershiftone and recovershifttwo (recover one value of A from
A~ (A>>j) for j=1 and j=2)
6. verify procedures (verify whether the recovered L1 is correct or not)
7. key set up
8. key stream generation (one clock cycle)
*/

#include <conio.h>
#include <time.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <conio.h>
#include <ctype.h>
#include <io.h>
#include <sys/timeb.h>

typedef unsigned long int UINT32;

/*The key valuex*/

#define K1 0x10101010L
#define K2 0x20202020L
#define K3 0x30303030L
#define K4 0x40404040L
#define K5 0x00000000L
#define K6 0x00000000L
#define K7 0x00000000L
#define K8 0x00000000L

/*The key sizex/
#define KEYSIZE 128

/* Message key stored in a 32-bit word */
#define MK 0x12345678L

/*key setup table T
static unsigned char T[256] =

static UINT32 £11[2048] =

static UINT32 f9a[512]

static UINT32 f9b[512]

These four tables are not included here. they available at
http://www-rocq.inria.fr/codes/Eric.Filiol/English/C0S/C0S.html

*/

/* knows (CO||[C1)~((CO|IC1)>>j) = PO||P1, determine the value

of CO and Cix/

void recovershiftone (UINT32 *PQ,UINT32 *P1,UINT32 *CO,UINT32 *C1)

{

int k;

*CO = 1 << 31; //assume that the most significant bit of *CO is 1
for (k = 30; k >=0; k--){

*¥CO = *CO | ((*¥PO ~ (*CO >>1)) & (1 << k));

}

*C1 = ((*CO << 31) =~ *xP1) & (1 << 31);

for (k = 30; k >=0; k--) {

*C1 = *C1 | ((xP1 =~ (xC1 >>1)) & (1 << k));

3

}

void recovershifttwo(UINT32 *P0,UINT32 *P1,UINT32 *CO,UINT32 *C1)
{

int k,h;

/*assume that the two most significant bits of *CO are 11
*CO = 3 << 30;

for (k = 14; k >=0; k--) {

h = 3 << (kgk1);

*CO = *CO | ((xPO ~ (*CO >>2)) & h);

3

*C1 = ((*CO << 30) =~ *xP1) & (3 << 30);

for (k = 14; k >=0; k--) {

h = 3 << (k<k1);

=x*C1 | ((*P1 ~ (xC1 >>2)) & h);

}

/* Verify whether the L1 recovered is the correct one */

void verify(UINT32 BO,UINT32 B1,UINT32 CO,UINT32 C1,UINT32 WO,UINT32 Wi,
UINT32 YO,UINT32 Y1,UINT32 t, UINT32 R40, UINT32 R41, UINT32 R50, UINT32 R51)
{

int 1i,j,k;

UINT32 L1[4],12[4];

UINT32 test,feed,G[5],COP,C1P,DO,D1,DOP,D1P,E0,E1,YOP,Y1P;

int r1,r2,r3,r4,r5,r6;

test = 0;

L1[0] = CoO;
L1[1] = C1;
L1[2] = BO;
L1[3] = Bi;
L2[0] = 0x0;
L2[1] = 0x0;
L2[2] = WO;
L2[3] = wi;

/*1) use the information of L2 (w and y) to filter L1, only $2°{-73}%
wrong L1 would pass*/

for(i = 0; i <= 6; i++) {

feed = ((L2[3] & 0x4) >> 2);

feed |= ((L2[3] 0x20L) >> 4);

feed |= ((L2[3] 0x100L) >> 6);

feed |= ((L2[3] 0x8000L) >> 12);

feed |= ((L2[3] 0x4000000L) >> 22);

feed |= ((L2[2] 0x40L) >> 1);

feed |= ((L2[2] 0x1000L) >> 6);

feed |= ((L2[2] 0x8000L) >> 8);

feed |= ((L2[2] 0x2000000L) >> 17);

L2[3] = (L2[3] >> 1) | ((L2[2] & 1) << 31);
L2[2] = (L2[2] >> 1) | ((L2[1] & 1) << 31);
L2[1] = (L2[1] >> 1) | ((L2[0] & 1) << 31);
L2[0] (L2[0] >> 1) | (f9b[feed] << 31);

}

Frerrereereeee

if (L2[0] == (Y1 << 25)) {

/*2) use the information in the next two steps to filter L1
the wrong L1 can pass this procedure with probability
less than $2°{-21.2}$x*/

for(j = 0;j < 5; j++) {
for(i = 0;i < 32;i++) {
feed = ((L1[3] & 0x4) >> 2);

feed |= ((L1[3] & 0x20L) >> 4);

feed |= ((L1[3] & 0x100L) >> 6);

feed |= ((L1[3] & 0x8000L) >> 12);

feed |= ((L1[3] & 0x4000000L) >> 22);

feed |= ((L1[2] & 0x40L) >> 1);

feed |= ((L1[2] & 0x1000L) >> 6);

feed |= ((L1[2] & 0x8000L) >> 8);

feed |= ((L1[2] & 0x2000000L) >> 17);

L1[3] = (L1[3] >> 1) | ((L1[2] & 1) << 31);
L1[2] = (L1[2] >> 1) | ((L1[1] & 1) << 31);
L1[1] = (L1[1] >> 1) | ((L1[0] & 1) << 31);
L1[0] = (L1[0] >> 1) | (f9alfeed] << 31);

}

G[j]1 = L1[0];

}

//d,c’: 65,66 e,d’:64,65,66 y’:65,66

for (i = 65; i <= 66; i++) {

for (j = 64; j <= 66; j++) {

for (k = 64; k <= 66; k++) {

rl =i - 64;

r2 = 32 - ri;

r3 =j +1i- 128;

r4d = 32 - r4;

r5 = k - 64;

r6 = 32 - rb;

C1P (CL>>r1) " (CO<<r2);

COP = (CO > r1) ~ (G[O] << r2);
D1 = (G[0] >> r1) ~ (G[1] << r2);

DO = (G[1] >> r1) =~ (G[2] << r2);
D1P = (G[0] >> r3) ~ (G[1] << r4);
DOP = (G[1] >> r3) ~ (G[2] << r4d);
E1 = (G[2] >> r3) =~ (G[3] << r4);

EO = (G[3] >> r3) =~ (G[4] << r4);
Y1P = (Y1 >> r5) ~ (YO << 16);

YOP YO >> rb;

if ((D1 ~ Y1P) == R40 || ((DO ~ YOP ~ R41) << 2) == 0 ||
(D1 ~ Y1P) == R41 || ((DO =~ YOP ~ R40) << 2) == 0)
test = 1;

if ((E1 ~ Y1P) == R40 || ((EO ~ YOP ~ R41) << 2) == 0 ||
(E1 ~ Y1P) == R41 || ((EO ~ YOP ~ R40) << 2) == 0)
test = 1;

if ((COP -~ DOP) == (R40 ~ R50) || (COP ~ DOP) == (R41 ~ R50) ||
(COP ~ DOP) == (R40 ~ R51) || (COP -~ DOP) == (R41 ~ R51) ||

(C1P ~ D1P) == (R40 ~ R50) || (CiP ~ D1P) == (R41 ~ R50) ||

(C1P ~ D1P) == (R40 "~ R51) || (C1P "~ D1P) == (R41 ~ R51))

test = 1;

}
}
}
}

if (test !'= 0) {

printf ("\nThe L1 at step %8x is %8x,%8x,%8x,%8x",t+2,C0,C1,B0,B1);
}

}

/*key setup*/

void setkey(UINT32 *L1, UINT32 *L2)

{
UINT32 1i,a,M[8],feed;

/* M register common part initialization */
M[0] = K1; M[1] = K2; M[2] = K3; M[3] = K4;

/* M register user’s key dependent part initialization */
if (KEYSIZE == 256) {

M[4] = K5; M[5] = K6; M[6] = K7; M[7]
}

K8;

if (KEYSIZE == 192) {

M[4] = K5; M[5] = K6;

a =K1l ~ K2 ~ K3;

M[6] = T[(a & OxFF)] | (T[((a >> 8) & 0xFF)] << 8);

M[6] |= (T[((a >> 16) & OxFF)] << 16) | (T[a >> 24] << 24);

a=K4 "~ K5 ~ K6;
M[7] = T[(a & OxFF)] | (T[((a >> 8) & 0xFF)] << 8);
M[7] |= (T[((a >> 16) & OxFF)] << 16) | (T[a >> 24] << 24);

}

if (KEYSIZE == 128) {

M[4] = T[(K1 & OxFF)] | (TL((K1 >> 8) & OxFF)]
M[4] |= (TL((K1 >> 16) & OxFF)] << 16) | (T[K1
M[5] = T[(K2 & 0xFF)]1 | (TL((K2 >> 8) & OxFF)]
M[5]1 I= (TL((K2 >> 16) & 0xFF)] << 16) | (TIK2
M[6] = T[(K3 & 0xFF)] | (TL((K3 >> 8) & OxFF)]
M[6] |= (TL((K3 >> 16) & OxFF)] << 16) | (T[K3
M[7] = T[(K4 & OxFF)] | (TL((K4 >> 8) & OxFF)]
ML7]1 |I= (TL((K4 >> 16) & O0xFF)] << 16) | (T[K4

}

/* Message key introduction */
M[0] "= MK;

/* Clock M register 256 times */
for(i = 0;i < 256;i++) {
feed = ((M[0] & 0x80000000L) >> 21);

feed |= ((M[0] & 0x8L) << 8);

feed |= ((M[1] & 0x200L) >> 1);

feed |= ((M[2] & 0x800L) >> 4);

feed |= ((M[2] & 0x8L) << 3);

feed |= ((M[3] & 0x400000L) >> 17);
feed |= ((M[4] & 0x80000L) >> 15);
feed |= ((M[5] & 0x800000L) >> 20);
feed |= ((M[6] & 0x2000000L) >> 23);
feed |= ((M[7] & 0x80000000L) >> 30);
feed |= ((M[7] & 0x4L) >> 2);

M[7]1 = (M[7]1 >> 1) | ((M[6] & 1) << 31);
M[6] = (M[B] >> 1) | ((M[5] & 1) << 31);
M[5] = (M[5] >> 1) | ((M[4] &1) << 31);
M[4] = (M[4] >> 1) | ((M[3] &1) << 31);
M[3] = (M[3] >> 1) | ((M[2] &1) << 31);
M[2] = (M[2] >> 1) | ((M[1] &1) << 31);
M[1] = (M[1] >> 1) | ((M[0] &1) << 31);
M[0] = (M[0] >> 1) | (f11[feed] << 31);
}

/* L1 initialization */
xL1++ = M[4]; *Li1++ = M[5];
xL1++ = M[6]; *L1 = M[7]1;

<<
>>
<<
>>
<<
>>
<<
>>

8);
24]
8);
24]
8);
24]
8);
24]

<< 24);
<< 24);
<< 24);

<< 24);

/* Clock M register 256 times */
for(i = 0;i < 128;i++) {

feed = ((M[0] & 0x80000000L) >> 21);
feed |= ((M[0] & 0x8L) << 6);

feed = ((M[1] & 0x200L) >> 1);

feed |= ((M[2] & 0x800L) >> 4);

feed |= ((M[2] & 0x8L) << 3);

feed |= ((M[3] & 0x400000L) >> 17);
feed |= ((M[4] & 0x80000L) >> 15);
feed |= ((M[5] & 0x800000L) >> 20);
feed |= ((M[6] & 0x2000000L) >> 23);
feed |= ((M[7] & 0x80000000L) >> 30);
feed |= ((M[7] & 0x4L) >> 2);

ML7] = (M[7]1 >> 1) | ((M[6] & 1) << 31);

M[8] = (M[6] >> 1) | ((M[B] & 1) << 31);
M[5] = (M[5] >> 1) | ((M[4] &1) << 31);
M[4] = (M[4] >> 1) | ((M[3] &1) << 31);
M[3] = (M[3] >> 1) | ((M[2] &1) << 31);
M[2] = (M[2] >> 1) | ((M[1] &1) << 31);
M[1] = (M[1] >> 1) | ((M[0] &1) << 31);
M[0] = (M[0] >> 1) | (f11[feed] << 31);

}

/* L2 initialization */
*L2++ = M[0]; *L2++ = M[1];
*L2++ = M[2]; *L2 = M[3];
return;

}

/* encryption/decryption procedure */

/* block contains the output blocks, flag alternatively
clock either L1 (flag = 1) or L2 (flag = 0)
the index of one of the block to choose is returned */

void coscipher(UINT32 *L1, UINT32 *L2,UINT32 *block, UINT32 flag,UINT32 cont)
{

UINT32 feed,tem[4];

unsigned char clk,i,j,k;

unsigned char av[4];

av[0] = 64;
av[1] = 65;
av[2] = 66;
av[3] = 64;

clk = (L1[3] & 1) | ((L2[3] & 1) << 1);

if (flag) {
for(i = OL;i < avlclk];i++) {
feed = ((L1[3] & 0x4) >> 2);

feed |= ((L1[3] & 0x20L) >> 4);

feed |= ((L1[3] & 0x100L) >> 6);

feed |= ((L1[3] & 0x8000L) >> 12);

feed |= ((L1[3] & 0x4000000L) >> 22);

feed |= ((L1[2] & 0x40L) >> 1);

feed |= ((L1[2] & 0x1000L) >> 6);

feed |= ((L1[2] & 0x8000L) >> 8);

feed |= ((L1[2] & 0x2000000L) >> 17);

L1[3] = (L1[3] >> 1) | ((L1[2] & 1) << 31);
L1[2] = (L1[2] >> 1) | ((L1[1] & 1) << 31);
L1i[1] = (L1[1] >> 1) | ((L1[0] & 1) << 31);
L1[0] = (L1[0] >> 1) | (f9a[feed] << 31);

}

}

else {

for(i = OL;i < av[clk];i++) {
feed = ((L2[3] & 0x4) >> 2);

feed |= ((L2[3] & 0x20L) >> 4);

feed |= ((L2[3] & 0x100L) >> 6);

feed |= ((L2[3] & 0x8000L) >> 12);

feed |= ((L2[3] & 0x4000000L) >> 22);

feed |= ((L2[2] & 0x40L) >> 1);

feed |= ((L2[2] & 0x1000L) >> 6);

feed |= ((L2[2] & 0x8000L) >> 8);

feed |= ((L2[2] & 0x2000000L) >> 17);

L2[3] = (L2[3] > 1) | ((L2[2] & 1) << 31);
L2[2] = (L2[2] >> 1) | ((L2[1] & 1) << 31);
L2[1] = (L2[1] >> 1) | ((L2[0] & 1) << 31);
L2[0] = (L2[0] >> 1) | (f9b[feed] << 31);

}

}

//if (cont == 0x1125L)
//printf ("\n’8x,%8x,%8x,%8x",L1[0],L1[1],L1[2],L1[3]);

tem[0] = (L2[0] ~ L1[2]);
tem[1] = (L2[1] ~ L1[3]);
tem[2] = (L2[2] ~ L1[0]);
tem[3] = (L2[3] ~ L1[1]);

j = (L1[3]1°L2[3]) & 3;
k = (L1[0]"L2[0]) >> 30;
if (j ==k) { k=k "~ 1;}

*block++
*block
}

tem[j];
tem[k];

