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Abstra
t. We des
ribe fast new algorithms to implement re
ent 
rypto-

systems based on the Tate pairing. In parti
ular, our te
hniques improve

pairing evaluation speed by a fa
tor of about 55 
ompared to previously

known methods in 
hara
teristi
 3, and attain performan
e 
omparable

to that of RSA in larger 
hara
teristi
s. We also propose faster algorithms

for s
alar multipli
ation in 
hara
teristi
 3 and square root extra
tion

over F

p

m

, the latter te
hnique being also useful in 
ontexts other than

that of pairing-based 
ryptography.

1 Introdu
tion

The re
ent dis
overy [11℄ of groups where the De
ision DiÆe-Hellman (DDH)

problem is easy while the Computational DiÆe-Hellman (CDH) problem is hard,

and the subsequent de�nition of a new 
lass of problems variously 
alled the

Gap DiÆe-Hellman [11℄, Bilinear DiÆe-Hellman [2℄, or Tate-DiÆe-Hellman [6℄


lass, has given rise to the development of a new, ever expanding family of


ryptosystems based on pairings, su
h as:

{ Short signatures [3℄.

{ Identity-based en
ryption and es
row ElGamal en
ryption [2℄.

{ Identity-based authenti
ated key agreement [29℄.

{ Identity-based signature s
hemes [8, 22, 24℄.

{ Tripartite DiÆe-Hellman [10℄.

{ Self-blindable 
redentials [33℄.

The growing interest and a
tive resear
h in this bran
h of 
ryptography has

led to new analyses of the asso
iated se
urity properties and to extensions to

more general (e.g. hyperellipti
 and superellipti
) algebrai
 
urves [6, 23℄.



However, a 
entral operation in these systems is 
omputing a bilinear pairing

(e.g. the Weil or the Tate pairing), whi
h are 
omputationally expensive. More-

over, it is often the 
ase that 
urves over �elds of 
hara
teristi
 3 are used to

a
hieve the best possible ratio between se
urity level and spa
e requirements for

supersingular 
urves, but su
h 
urves have re
eived 
onsiderably less attention

than their even or (large) prime 
hara
teristi
 
ounterparts. Our goal is to make

su
h systems entirely pra
ti
al and 
ontribute to �ll the theoreti
al gap in the

study of the underlying family of 
urves, and to this end we propose several

eÆ
ient algorithms for the arithmeti
 operations involved.

The 
ontributions of this paper are:

{ The de�nition of point tripling for supersingular ellipti
 
urves over F

3

m

, that

is, over �elds of 
hara
teristi
 3. A point tripling operation 
an be done in

O(m) steps (or essentially for free in hardware), as opposed to 
onventional

point doubling that takes O(m

2

) steps. Furthermore, a faster point addition

algorithm is proposed for normal basis representation. These operations lead

to a noti
eably faster s
alar multipli
ation algorithm in 
hara
teristi
 3.

{ An algorithm to 
ompute square roots over F

p

m

in O(m

2

logm) steps, where

m is odd and p � 3 (mod 4) or p � 5 (mod 8). The best previously known al-

gorithms for square root extra
tion under these 
onditions take O(m

3

) steps.

This operation is important for the point 
ompression te
hnique, whereby a


urve point P = (x; y) is represented by its x 
oordinate and one bit of its y


oordinate, and its usefulness trans
ends pairing-based 
ryptography.

{ A deterministi
 variant of Miller's algorithm to 
ompute the Tate pairing

that avoids many irrelevant operations present in the 
onventional algorithm

whenever one of the pairing's arguments is restri
ted to a base �eld (as

opposed to having both in an extension �eld). Besides, in 
hara
teristi
s 2

and 3 both the underlying s
alar multipli
ation and the �nal powering in

the Tate pairing experien
e a 
omplexity redu
tion from O(m

3

) to O(m

2

)

steps.

All of these improvements are very pra
ti
al and result in surprisingly faster

implementations. Independent results on this topi
 have been obtained by Gal-

braith, Harrison and Soldera, and are reported in [7℄; in parti
ular, they provide

a very 
lear and ni
e des
ription of the Tate pairing.

This paper is organized as follows. Se
tion 2 summarizes the mathemati
al


on
epts we will use in the remainder of the paper. Se
tion 3 des
ribes point

tripling and derives a fast s
alar multipli
ation algorithm for 
hara
teristi
 3.

Se
tion 4 introdu
es a fast method to 
ompute square roots that works for half

of all �nite �elds, and an extension to half of the remaining 
ases. Se
tion 5

presents our improvements for Tate pairing 
omputation. Se
tion 6 dis
usses

experimental results. We 
on
lude in se
tion 7.

2 Mathemati
al Preliminaries

Let p be a prime number, m a positive integer and F

p

m

the �nite �eld with

p

m

elements; p is said to be the 
hara
teristi
 of F

p

m

, and m is its extension



degree. We simply write F

q

with q = p

m

when the 
hara
teristi
 or the extension

degree are known from the 
ontext or irrelevant for the dis
ussion. We also write

F

�

q

� F

q

�f0g.

An ellipti
 
urve E(F

q

) is the set of solutions (x; y) over F

q

to an equation of

form E : y

2

+a

1

xy+a

3

y = x

3

+a

2

x

2

+a

4

x+a

6

, where a

i

2 F

q

, together with an

additional point at in�nity, denoted O. The same equation de�nes 
urves over

F

q

k for k > 0.

There exists an abelian group law on E. Expli
it formulas for 
omputing the


oordinates of a point P

3

= P

1

+P

2

from the 
oordinates of P

1

and P

2

are given

in [27, algorithm 2.3℄; we shall present in se
tion 3 a subset of those formulas.

The number of points of an ellipti
 
urveE(F

q

), denoted #E(F

q

), is 
alled the

order of the 
urve over the �eld F

q

. The Hasse bound states that #E(F

q

) = q+

1�t, where jtj 6 2

p

q. The quantity t is 
alled the tra
e of Frobenius (for brevity,

we will 
all it simply `tra
e'). Of parti
ular interest to us are supersingular 
urves,

whi
h are 
urves whose tra
e t is a multiple of the 
hara
teristi
 p.

Let n = #E(F

q

). The order of a point P 2 E is the least nonzero integer

r su
h that rP = O. The set of all points of order r in E is denoted E[r℄, or

E(K)[r℄ to stress the parti
ular subgroup E(K) for a �eld K. The order of a

point always divides the 
urve order. It follows that hP i is a subgroup of E[r℄,

whi
h in turn is a subgroup of E[n℄.

Let P be a point on E of prime order r where r

2

- n. The subgroup hP i is

said to have se
urity multiplier k for some k > 0 if r j q

k

� 1 and r - q

s

� 1 for

any 0 < s < k. If E is supersingular, the value of k is bounded by k 6 6 [16℄.

This bound is attained in 
hara
teristi
 3 but not in 
hara
teristi
 2, where the

maximum a
hievable value is k = 4 [15, se
tion 5.2.2℄.

The group E(F

q

) is (isomorphi
 to) a subgroup of E(F

q

k ). Let P 2 E(F

q

) be

a point of order r su
h that hP i has se
urity multiplier k. Then E(F

q

k ) 
ontains

a point Q of the same order r but linearly independent of P .

We will 
onsider in detail the 
urves listed in table 1, where k is the se
urity

multiplier, both m and p are prime numbers, and either p � 2 (mod 3) or p � 3

(mod 4). The 
urve orders are expli
itly 
omputed in [15, se
tion 5.2.2℄.

Table 1. Some 
ryptographi
ally interesting supersingular ellipti
 
urves


urve equation underlying �eld 
urve order k

E

1;b

: y

2

= x

3

+ (1� b)x+ b, b 2 f0; 1g F

p

p+ 1 2

E

2;b

: y

2

+ y = x

3

+ x+ b, b 2 f0; 1g F

2

m

2

m

+ 1� 2

(m+1)=2

4

E

3;b

: y

2

= x

3

� x+ b, b 2 f�1; 1g F

3

m

3

m

+ 1� 3

(m+1)=2

6

For our purposes, a divisor is a formal sum of points on the 
urve E(F

q

m

),

m > 0. The degree of a divisor A =

P

P

a

P

(P ) is the sum

P

P

a

P

. An abelian

group stru
ture is imposed on the set of divisors by the addition of 
orresponding


oeÆ
ients in their formal sums; in parti
ular, nA =

P

P

(na

P

)(P ).



Let f : E(F

q

k
)! F

q

k
be a fun
tion on the 
urve and let A =

P

P

a

P

(P ) be a

divisor of degree 0. We de�ne f(A) �

Q

P

f(P )

a

P

. Note that, sin
e

P

P

a

P

= 0,

f(A) = (
f)(A) for any fa
tor 
 2 F

�

q

k

. The divisor of a fun
tion f is (f) �

P

P

ord

P

(f)(P ) where ord

P

(f) is the order of the zero or pole of f at P (if f

has no zero or pole at P , then ord

P

(f) = 0). A divisor A is 
alled prin
ipal if

A = (f) for some fun
tion (f). It is known [15, theorem 2.25℄ that a divisor A =

P

P

a

P

(P ) is prin
ipal if and only if the degree of A is zero and

P

P

a

P

P = O.

Two divisors A and B are equivalent, and we write A � B, if their di�eren
e

A�B is a prin
ipal divisor. Let P 2 E[n℄ where n is 
oprime to q, and let A

P

be

a divisor equivalent to (P )� (O); under these 
ir
umstan
es the divisor nA

P

is

prin
ipal, and hen
e there is a fun
tion f

P

su
h that (f

P

) = nA

P

= n(P )�n(O).

Let ` be a natural number 
oprime to q. The Tate pairing of order ` is the

map e

`

: E(F

q

)[`℄ � E(F

q

k
)[`℄ ! F

�

q

k

de�ned

4

as e

`

(P;Q) = f

P

(A

Q

)

(q

k

�1)=`

. It

satis�es the following properties:

{ (Bilinearity) e

`

(P

1

+ P

2

; Q) = e

`

(P

1

; Q) � e

`

(P

2

; Q) and e

`

(P;Q

1

+ Q

2

) =

e

`

(P;Q

1

)�e

`

(P;Q

2

) for all P; P

1

; P

2

2 E(F

q

)[`℄ and all Q;Q

1

; Q

2

2 E(F

q

k )[`℄.

It follows that e

`

(aP;Q) = e

`

(P; aQ) = e

`

(P;Q)

a

for all a 2

Z

.

{ (Non-degenera
y) If e

`

(P;Q) = 1 for all Q 2 E(F

q

k )[`℄, then P = O. Alter-

natively, for ea
h P 6= O there exists Q 2 E(F

q

k )[`℄ su
h that e

`

(P;Q) 6= 1.

{ (Compatibility) Let ` = h`

0

. If P 2 E(F

q

)[`℄ and Q 2 E(F

q

k )[`

0

℄, then

e

`

0

(hP;Q) = e

`

(P;Q)

h

.

Noti
e that, be
ause P 2 E(F

q

), f

P

is a rational fun
tion with 
oeÆ
ients in F

q

.

3 S
alar Multipli
ation in Chara
teristi
 3

Arithmeti
 on the 
urve E

3;b

is performed a

ording to the following rules. Let

P

1

= (x

1

; y

1

), P

2

= (x

2

; y

2

), P

3

= P

1

+ P

2

= (x

3

; y

3

). By de�nition, �O = O,

�P

1

= (x

1

;�y

1

), P

1

+O = O + P

1

= P

1

. Furthermore,

P

1

= �P

2

) P

3

= O:

P

1

= P

2

) � � 1=y

1

; x

3

= x

1

+ �

2

; y

3

= �(y

1

+ �

3

):

P

1

6= �P

2

; P

2

) � �

y

2

� y

1

x

2

� x

1

; x

3

= �

2

� (x

1

+ x

2

); y

3

= y

1

+ y

2

� �

3

:

These rules in turn give rise to the double-and-add method to 
ompute s
alar

multiples V = kP , k 2

Z

. Let the binary representation of k > 0 be k =

(k

t

: : : k

1

k

0

)

2

where k

i

2 f0; 1g and k

t

6= 0. Computation of V = kP � P + P +

� � �+ P (with k terms) pro
eeds as follows.

4

This de�nition di�ers from those given in [5, 6℄ in that we restri
t the �rst argument

of e

`

to E(F

q

)[`℄ and the se
ond argument to E(F

q

k

)[`℄ instead of E(F

q

k

)[`℄ and

E(F

q

k

)=`E(F

q

k

) respe
tively, and we raise f

P

(A

Q

) to the power (q

k

� 1)=`, so that

e

`

maps to 
ertain uniquely determined 
oset representatives. However, our de�nition

keeps the properties listed above un
hanged, and 
aptures the essential properties

needed in pra
ti
e for 
ryptographi
al purposes.



Double-and-add s
alar multipli
ation:

set V  P

for i t� 1; t� 2; : : : ; 1; 0 do f

set V  2V

if k

i

= 1 then set V  V + P

g

return V

By extension, one de�nes 0P = O and (�k)P = k(�P ) = �(kP ).

Several improvements to this basi
 algorithm are well known [1, 17℄. However,

one 
an do mu
h better than this, as we will now see.

3.1 Point Tripling

In 
hara
teristi
 3, point tripling for the supersingular 
urve E

3;b


an be done in

time O(m) in polynomial basis, or simply O(1) in hardware using normal basis.

Indeed, sin
e the 
ubing operation is linear in 
hara
teristi
 3, given P = (x; y)

one 
omputes 3P = (x

3

; y

3

) with the formulas:

x

3

= (x

3

)

3

� b

y

3

= �(y

3

)

3

These formulas are derived from the basi
 arithmeti
 formulas above in a

straightforward way.

The linearity of point tripling 
orresponds to that of point doubling for super-

singular 
urves in 
hara
teristi
 2, as dis
overed by Menezes and Vanstone [18℄,

and it leads to a triple-and-add s
alar multipli
ation algorithm mu
h faster

than the double-and-add method. Let the signed ternary representation of k

be k = (k

t

: : : k

1

k

0

)

2

where k

i

2 f�1; 0; 1g and k

t

6= 0. Computation of V = kP

pro
eeds as follows.

Triple-and-add s
alar multipli
ation:

set V  P if k

t

= 1, or V  �P if k

t

= �1

for i t� 1; t� 2; : : : ; 1; 0 do f

set V  3V

if k

i

= 1 then set V  V + P

if k

i

= �1 then set V  V � P

g

return V

Obviously, the same advan
ed te
hniques used for the double-and-add

method 
an be easily applied to triple-and-add.



3.2 Proje
tive Coordinates

Koblitz [12℄ des
ribes a method to add 
urve points in 
hara
teristi
 3 in pro-

je
tive 
oordinates with 10 multipli
ations. A
tually, point addition 
an be done

with only 9 multipli
ations. Let P

1

= (x

1

; y

1

; z

1

), P

2

= (x

2

; y

2

; 1); one 
omputes

P

3

= P

1

+ P

2

= (x

3

; y

3

; z

3

) as:

A x

2

z

1

� x

1

; B  y

2

z

1

� y

1

; C  A

3

; D  C � z

1

B

2

;

x

3

 x

1

C �AD; y

3

 BD � y

1

C; z

3

 z

1

C:

To re
over P

3

in aÆne 
oordinates one just sets P

3

= (x

3

=z

3

; y

3

=z

3

). This

involves one single inversion, whi
h is usually only performed at the end of a

s
alar multipli
ation.

4 Square Root Extra
tion

One 
an use the ellipti
 
urve equation E : y

2

= f(x) over F

q

, where f(x) is a


ubi
 polynomial, to obtain a 
ompa
t representation of 
urve points. The idea

is to use a single bit from the ordinate y as a sele
tor

5

between the two solutions

of the equation y

2

= f(x) for a given x.

In a �nite �eld F

p

m

where p � 3 (mod 4) and odd m, the best algorithm

known [4, 17℄ to 
ompute a square root exe
utes O(m

3

), or more pre
isely

O(m

3

log p), F

p

operations. By that method, a solution of x

2

= a is given by

x = a

(p

m

+1)=4

, assuming a is a quadrati
 residue.

We �rst noti
e that, if m = 2k + 1 for some k:

p

m

+ 1

4

=

p+ 1

4

"

p(p� 1)

k�1

X

i=0

(p

2

)

i

+ 1

#

;

so that

a

(p

m

+1)=4

= [(a

P

k�1

i=0

(p

2

)

i

)

p(p�1)

� a℄

(p+1)=4

:

These relations 
an be veri�ed by straightforward indu
tion. The quantity

a

P

k�1

i=0

u

i

where u = p

2


an be eÆ
iently 
omputed in an analogous fashion to

Itoh-Tee
hai-Tsujii inversion [9℄, based on the Frobenius map in 
hara
teristi
 p:

a

1+u+���+u

k�1

=

(

(a

1+u+���+u

bk=2
�1

) � (a

1+u+���+u

bk=2
�1

)

u

bk=2


; k even;

((a

1+u+���+u

bk=2
�1

) � (a

1+u+���+u

bk=2
�1

)

u

bk=2


)

u

� a; k odd:

Noti
e that raising to a power of p is a linear operation in 
hara
teristi
 p

(and almost for free in normal basis representation). It 
an be easily veri�ed

5

In 
ertain 
ryptographi
 appli
ations one 
an simply dis
ard y. This happens, for

instan
e, in BLS signatures [3℄, where one only keeps the abs
issa x as signature

representative. Noti
e that one 
ould dis
ard the ordinates of publi
 keys as well

without a�e
ting the se
urity level.



by indu
tion that this method requires blg k
 + !(k) � 1 �eld multipli
ations,

where !(k) is the Hamming weight of the binary representation of k. Additional

O(log p) multipli
ations are needed to 
omplete the square root evaluation due

to the extra multipli
ation by a and to the raisings to p � 1 and (p + 1)=4,

whi
h 
an be done with a 
onventional exponentiation algorithm

6

. The overall


ost is O(m

2

(logm + log p)) F

p

operations to 
ompute a square root. If the


hara
teristi
 p is �xed and small 
ompared to m, the 
omplexity is simply

O(m

2

logm) F

p

operations.

Similar re
urren
e relations hold for a variant of Atkin's algorithm [21, se
-

tion A.2.5℄ for 
omputing square roots in F

p

m

when p � 5 (mod 8) and odd

m, with the same O(m

2

(logm + log p)) 
omplexity. The details are left to the

reader.

The general 
ase is unfortunately not so easy. Neither the Tonelli-Shanks

algorithm [4℄ nor Lehmer's algorithm [21, se
tion A.2.5℄ 
an bene�t entirely

from the above te
hnique, although partial improvements that don't 
hange the

overall 
omplexity are possible.

The above improvements are useful not only for pairing-based 
ryptosystems,

but for more 
onventional s
hemes as well (see e.g. [12, se
tion 6℄).

5 Computing the Tate Pairing

In this se
tion we propose several improvements to Miller's algorithm [19℄ for


omputing the Tate pairing in the 
ases of 
ryptographi
al interest. Let P 2

E(F

q

)[`℄ and Q 2 E(F

q

k )[`℄ be linearly independent points, and let n � #E(F

q

).

As we saw in se
tion 2, the Tate pairing is de�ned as e

`

(P;Q) = f

P

(A

Q

)

(q

k

�1)=`

,

where A

Q

� (Q)�(O) and (f

P

) = `(P )�`(O). Computation of the Tate pairing

is helped by the following observations.

Lemma 1. The value q � 1 is a fa
tor of (q

k

� 1)=r for any fa
tor r of n, for

all 
urves on table 1.

Proof. Sin
e F

�

q

is a multipli
ative subgroup of F

�

q

k

, it follows that # F

�

q

j# F

�

q

k

,

i.e. q� 1 j q

k

� 1. On the other hand, it is known [15, se
tion 5.2.2℄ that #E

1;b

=

q+1, #E

2;b

= q+1�

p

2q, and #E

3;b

= q+1�

p

3q. In all 
ases, g
d(n; q�1) = 1,

and hen
e no fa
tor r of n divides q � 1. Therefore, (q

k

� 1)=r 
ontains a fa
tor

q � 1. ut

Theorem 1. Let r be a fa
tor of n. Then e

r

(P;Q) = f

P

(Q)

(q

k

�1)=r

for Q 6= O

and for all 
urves on table 1.

Proof. Suppose R 62 fO;�Pg is some point on the 
urve. Let f

0

P

be a fun
tion

with divisor (f

0

P

) = r(P + R) � r(R) � (f

P

), so that e

r

(P;Q) = f

0

P

((Q) �

(O))

(q

k

�1)=r

. Sin
e P has 
oordinates in F

p

, and be
ause f

0

P

does not have a zero

6

If p is large, it may be advantageous to 
ompute z

p�1

as z

p

=z, trading O(log p)

multipli
ations by one inversion.



or pole at O, we know that f

0

P

(O) 2 F

�

q

. Thus f

0

P

((Q) � (O)) = f

0

P

(Q)=f

0

P

(O).

By Fermat's Little Theorem for �nite �elds [13, lemma 2.3℄, f

0

P

(O)

q�1

= 1.

Lemma 1 then ensures that f

0

P

(O)

(q

k

�1)=r

= 1. Hen
e, f

0

P

(O) is an irrelevant

fa
tor and 
an be omitted from the Tate pairing 
omputation, i.e. e

r

(P;Q) =

f

0

P

(Q)

(q

k

�1)=r

. Now 
onsider P;Q to be �xed and R to be variable. Sin
e the

above statement holds for all R 62 fO;�Pg we have that f

0

P

(Q) is a 
onstant

when viewed as a fun
tion of R, 
oin
iding with the value of f

P

(Q). Therefore,

e

r

(P;Q) = f

P

(Q)

(q

k

�1)=r

. ut

Corollary 1. One 
an freely multiply or divide f

P

(Q) by any nonzero F

q

fa
tor

without a�e
ting the pairing value.

The above 
orollary is not the same property that enables one to repla
e

(f) by (
f); in parti
ular, it does not hold for the Weil pairing. Noti
e that the

spe
ial 
ase Q = O where the theorem does not apply is trivially handled, sin
e

then e

r

(P;Q) = 1.

In the next theorem, for ea
h pair U; V 2 E(F

q

) we de�ne g

U;V

: E(F

q

k ) !

F

q

k to be (the equation of) the line through points U and V (if U = V , then

g

U;V

is the tangent to the 
urve at U , and if either one of U; V is the point at

in�nity O, then g

U;V

is the verti
al line at the other point). The shorthand g

U

stands for g

U;�U

: if U = (u; v) and Q = (x; y), then g

U

(Q) = x� u.

Theorem 2 (Miller's formula). Let P be a point on E(F

q

) and f




be a fun
-

tion with divisor (f




) = 
(P ) � (
P ) � (
 � 1)(O), 
 2

Z

. For all a; b 2

Z

,

f

a+b

(Q) = f

a

(Q) � f

b

(Q) � g

aP;bP

(Q)=g

(a+b)P

(Q).

Proof. The divisors of the line fun
tions satisfy:

(g

aP;bP

) = (aP ) + (bP )� (�(a+ b)P )� 3(O);

(g

(a+b)P

) = ((a+ b)P ) + (�(a+ b)P )� 2(O):

Hen
e, (g

aP;bP

)�(g

(a+b)P

) = (aP )+(bP )�((a+b)P )�(O). From the de�nition

of f




we see that:

(f

a+b

) = (a+ b)(P )� ((a+ b)P )� (a+ b� 1)(O)

= a(P )� (aP )� (a� 1)(O)

+ b(P )� (bP )� (b� 1)(O)

+ (aP ) + (bP )� ((a+ b)P )� (O)

= (f

a

) + (f

b

) + (g

aP;bP

)� (g

(a+b)P

):

Therefore f

a+b

(Q) = f

a

(Q) � f

b

(Q) � g

aP;bP

(Q) = g

(a+b)P

(Q). ut

Noti
e that (f

0

) = (f

1

) = 0, so that f

0

(Q) = f

1

(Q) = 1. Furthermore, f

a+1

(Q) =

f

a

(Q) � g

aP;P

(Q)=g

(a+1)P

(Q) and f

2a

(Q) = f

a

(Q)

2

� g

aP;aP

(Q)=g

2aP

(Q).

Let the binary representation of ` > 0 be ` = (`

t

; : : : ; `

1

; `

0

) where `

i

2 f0; 1g

and `

t

6= 0. Miller's algorithm 
omputes f

P

(Q) = f

`

(Q); Q 6= O by 
oupling the

above formulas with the double-and-add method to 
al
ulate `P :



Miller's algorithm:

set f  1 and V  P

for i t� 1; t� 2; : : : ; 1; 0 do f

set f  f

2

� g

V;V

(Q)=g

2V

(Q) and V  2V

if `

i

= 1 then set f  f � g

V;P

(Q)=g

V+P

(Q) and V  V + P

g

return f

5.1 Irrelevant denominators

We will now show that, when 
omputing e

n

(P; �(Q)) where Q 2 E(F

q

) and

where � is a distortion map [32℄, the g

2V

and g

V+P

denominators in Miller's

algorithm 
an be dis
arded. The 
hoi
e of parameters is important, and is sum-

marized in table 2. Noti
e that there is no entry for E

1;1

.

Table 2. Choi
e of distortion maps


urve (see table 1) underlying �eld distortion map 
onditions

E

1;0

F

p

, p > 3 �

1

(x; y) = (�x; iy) i 2 F

p

2
,

i

2

= �1

E

2;b

, b 2 f0; 1g F

2

m

�

2

(x; y) = (x+ s

2

; y + sx+ t) s; t 2 F

2

4m
,

s

4

+ s = 0,

t

2

+ t+ s

6

+ s

2

= 0

E

3;b

, b 2 f�1; 1g F

3

m

�

3

(x; y) = (�x+ r

b

; iy) r

b

; i 2 F

3

6m

r

3

b

� r

b

� b = 0,

i

2

= �1

Theorem 3. With the settings listed in table 2, the denominators in Miller's

formula 
an be dis
arded altogether without 
hanging the value of e

n

(P;Q).

Proof. We will show that the denominators be
ome unity at the �nal powering

in the Tate pairing.

{ (Chara
teristi
 2) Let q � 2

m

. From the de�ning 
ondition s

4

= s it follows

by indu
tion that s

4

t

= s for all t > 0; in parti
ular, s

q

2

= s

2

2m

= s,

and hen
e (s

2

)

q

2

= s

2

. The denominators in Miller's formula have the form

g

U

(�(Q)) � x + s

2

+ 
, where x 2 F

q

is the abs
issa of Q and 
 2 F

q

,

so that x

q

2

= x and 


q

2

= 
. Hen
e, g

U

(�(Q))

q

2

= x

q

2

+ (s

2

)

q

2

+ 


q

2

=

x+ s

2

+ 
 = g

U

(�(Q)), using the linearity of raising to powers of q in F

q

. It

follows that g

U

(�(Q))

q

2

�1

= 1. Now the exponent of the �nal powering in

the Tate pairing has the form z = (q

4

� 1)=n = (q + 1 �

p

2q)(q

2

� 1), i.e.

q

2

� 1 j z. Therefore, g

U

(�(Q))

z

= 1.



{ (Chara
teristi
 3) Let q � 3

m

. From the de�ning 
ondition r

3

b

� r

b

� b = 0

it follows by indu
tion that r

3

t

b

= r

b

+ b(t mod 3) for all t > 0; in parti
u-

lar, r

q

3

b

= r

3

3m

b

= r

b

. The denominators in Miller's formula have the form

g

U

(�(Q)) � r

b

�x� 
, where x 2 F

q

is the abs
issa of Q and 
 2 F

q

, so that

x

q

t

= x and 


q

t

= 
 for all t > 0. Hen
e, g

U

(�(Q))

q

3

= r

q

3

b

� x

q

3

� 


q

3

=

r

b

� x� 
 = g

U

(�(Q)), using the linearity of raising to powers of q in F

q

. It

follows that g

U

(�(Q))

q

3

�1

= 1. Now the exponent of the �nal powering in

the Tate pairing has the form z = (q

6

� 1)=n = (q+1�

p

3q)(q

3

� 1)(q+1),

i.e. q

3

� 1 j z. Therefore, g

U

(�(Q))

z

= 1.

{ (Chara
teristi
 p > 3) The denominators in Miller's formula have the form

g

U

(�(Q)) � �x � 
, where x 2 F

p

is the abs
issa of Q and 
 2 F

p

. Hen
e,

g

U

(�(Q))

p

= �x

p

� 


p

= �x � 
 = g

U

(�(Q)), using the linearity of raising

to p in F

p

. It follows that g

U

(�(Q))

p�1

= 1. Now the exponent of �nal

powering in the Tate pairing is pre
isely z = (p

2

� 1)=n = p� 1. Therefore,

g

U

(�(Q))

z

= 1.

ut

One 
an alternatively 
ouple the evaluation of f

n

with the more eÆ
ient

triple-and-add method in 
hara
teristi
 3. To this end one needs a re
ursive

formula for f

3a

(Q), whi
h is easy to obtain from Miller's formula: the divisor of

f

3a

is (f

3a

) = 3(f

a

) + (g

aP;aP

) + (g

2aP;aP

) � (g

2aP

) � (g

3aP

), hen
e dis
arding

the irrelevant denominators one obtains:

f

3b

(Q) = f

3

b

(Q) � g

aP;aP

(Q) � g

2aP;aP

(Q):

Noti
e that it is not ne
essary to a
tually 
ompute 2aP , be
ause the 
oeÆ-


ients of g

2aP;aP


an be obtained from aP and 3aP .

In 
hara
teristi
 3, the tripling formula is by itself more eÆ
ient than the

doubling formula, sin
e the squaring operation, whi
h takes O(m

2

) time, is re-

pla
ed by 
ubing, whi
h has only linear 
omplexity at most; besides, it is invoked

only a fra
tion log

3

2 times 
ompared to the doubling 
ase. Furthermore, for the

Tate pairing of order n = (3

(m�1)=2

� 1)3

(m+1)=2

+ 1 the 
ontribution of the

underlying s
alar multipli
ation to the 
omplexity of Miller's algorithm is only

O(m

2

) instead of O(m

3

), as it involves only two additions or one addition and

one subtra
tion. An analogous observation holds for supersingular ellipti
 
urves

in 
hara
teristi
 2.

An interesting observation is that, even if Miller's algorithm 
omputes f

r

(Q)

for r jn, it is often the 
ase that a te
hnique similar to that used for square root

extra
tion 
an be applied, redu
ing the number of point additions or subtra
tions

from O(m) down to O(logm). However, we won't elaborate on this possibility,

as the above 
hoi
e is 
learly faster.

5.2 Choi
e of the Subgroup Order

Pairing evaluation over �elds F

p

2

of general 
hara
teristi
 (as used, for instan
e,

in the Boneh-Franklin identity-based 
ryptosystem [2℄) with Miller's algorithm




an bene�t from the above observations with a 
areful 
hoi
e of parameters,

parti
ularly the size q of the sub�eld where 
al
ulations are performed. Instead of


hoosing a random sub�eld prime, use a Solinas prime [30℄ of form q = 2

�

�2

�

�1

(it is always possible to �nd su
h primes for pra
ti
al subgroup sizes), sin
e

qP = (2

�

(2

���

� 1) � 1)P involves only two additions or subtra
tions plus �

doublings.

5.3 Speeding up the Final Powering

Evaluation of the Tate pairing e

n

(P;Q), where n � #E(F

p

m

), in
ludes a �nal

raising to the power of (p

km

�1)=n. The powering is usually 
omputed in O(m

3

)

steps. However, this exponent shows a rather periodi
al stru
ture in base p. One


an exploit this property in a fashion similar to the square root algorithm of

se
tion 4, redu
ing the 
omputational e�ort to O(m

2

logm) steps. As it turns

out, it is a
tually possible to 
ompute the power in only O(m

2

) steps, by 
arefully

exploiting the stru
ture of the exponent. Details of this pro
ess are given in

appendix A.2.

5.4 Fixed-base Pairing Pre
omputation

A
tual pairing-based 
ryptosystems often need to 
ompute pairings e

n

(P;Q)

where P is either �xed (e.g. the base point on the 
urve) or used repeatedly (e.g.

a publi
 key). In these 
ases, the underlying s
alar multipli
ation in Miller's

algorithm 
an be exe
uted only on
e to pre
ompute the 
oeÆ
ients of the line

fun
tions g

U

(Q). The speedup resulting from this te
hnique is more prominent

for 
hara
teristi
 p > 3.

5.5 MNT 
urves

Until re
ently, the only ellipti
 
urves known to have embedding degree k 6 6

were supersingular like E

2;b

and E

3;b

. As it turns out, it is possible to 
onstru
t

ordinary (non-supersingular) 
urves with k 2 f3; 4; 6g. Su
h 
urves were �rst

des
ribed by Miyaji, Nakabayashi and Takano in [20℄; we 
all them MNT 
urves.

Brie
y, MNT 
urves are built with the 
omplex multipli
ation (CM)

method [1, 
hapter VIII℄. The idea is to impose 
ertain 
onstraints on the form

of the underlying �nite �eld F

q

, the 
urve order n, and the tra
e of Frobenius t,

whi
h are linked to ea
h other by the relation n = q + 1� t. These in turn lead

to further 
onstraints on the form of the CM equation DV

2

= 4q� t

2

, whi
h for

k 2 f3; 4; 6g redu
es to a Pell equation

7

, whose solution is well known [28℄.

MNT 
urves address 
on
erns that supersingular 
urves may not be as se
ure

as ordinary 
urves. They are suitable for variants of pairing-based 
ryptosystems

that do not involve distortion maps, like the BLS variant of [3, se
tion 3.5℄ or

7

There is reason to believe that one 
an e�e
tively 
onstru
t MNT-like 
urves with

k 2 f5; 8; 10; 12g, for whi
h the CM equation redu
es to a quarti
 ellipti
 Diophantine

equation [31℄. However, we refrain from further investigating this possibility here.



the general IBE variants of [2, se
tion 4℄ and [6, se
tion 3℄. In su
h systems, the

pairings have the form e

`

(P;Q) where P 2 E(F

q

) and Q 2 E(F

q

k ), and both are


hosen so that e

`

(P;Q) 6= 1.

An important property of the MNT 
riteria is that n j �

k

(q) but n - (q

k

�

1)=�

k

(q), where �

k

is the k-th 
y
lotomi
 polynomial. Due to this property,

lemma 1 holds for MNT 
urves as well, and 
onsequently, so do theorem 1 and


orollary 1. Therefore, the deterministi
 version of Miller's algorithm presented

in se
tion 5 is equally valid for the MNT 
ase. Furthermore, for even k it often

happens that the point Q = (x; y) in the variant 
ryptosystems 
an be 
hosen

so that x 2 F

q

k=2

but y 62 F

q

k=2

; with this setting

8

, denominator elimination as

suggested in se
tion 5.1 is also appli
able.

6 Experimental Results

The heaviest operation in any pairing-based 
ryptosystem is the pairing 
ompu-

tation. We give our timings for these operations in table 3.

Table 3. Tate pairing 
omputation times (in ms) on a PIII 1 GHz.

underlying base �eld timing

F

3

97
26.2

F

2

271
23.0

F

p

, jpj = 512 bits 20.0

F

p

with prepro
essing 8.6

Boneh-Lynn-Sha
ham (BLS) signature generation is 
omparable to RSA or

DSA signing at the same se
urity level. Table 4 
ompares the signing times for

the RSA, DSA (without pre
omputation), ECDSA (without pre
omputation),

and BLS signature s
hemes. We 
onsider two BLS implementations, namely, one

using the 
urve E

3;b

and one using an MNT 
urve.

Timings for BLS veri�
ation and Boneh-Franklin identity-based en
ryption

(IBE) are listed in table 5. BLS signature veri�
ation speed for F

3

97

shows an

improvement by a fa
tor of about 55 over published timings. The performan
e

of IBE is also 
omparable to other 
ryptosystems; the data refers to a 
urve over

F

p

where jpj = 512 bits, using a subgroup of order q where q is a Solinas prime

and jqj = 160 bits.

The implementations in this se
tion were written in C/C++ and based on

the MIRACL [26℄ library.

8

Representing F

q

k

in polynomial basis as F

q

[t℄=R

k

(t) and 
arefully 
hoosing R

k

(t), it

is quite easy to �nd a point Q satisfying these 
onstraints. For instan
e, if R

k

(t) =

t

k

+ t

2

+ 
 for some 
 2 F

q

, one 
an show that a suitable Q 
an be found by

restri
ting the 
oordinates to the form x = a

k�2

t

k�2

+ a

k�4

t

k�4

+ � � � + a

2

t

2

+ a

0

and y = b

k�1

t

k�1

+ b

k�3

t

k�3

+ � � �+ b

3

t

3

+ b

1

t.



Table 4. Comparison of signing and veri�
ation times (in ms) on a PIII 1 GHz.

algorithm signing veri�
ation

RSA, jnj = 1024 bits, jdj = 1007 bits 7.90 0.40

DSA, jpj = 1024 bits, jqj = 160 bits 4.09 4.87

F

p

ECDSA, jpj = 160 bits 4.00 5.17

F

2

160

ECDSA 5.77 7.15

F

3

97
BLS (supersingular) 3.57 53.0

F

p

BLS (MNT), jpj = 157 bits 2.75 81.0

Table 5. BLS and IBE times (in ms) on a PIII 1 GHz.

operation original [3, 14℄ ours

BLS veri�
ation 2900 53

IBE en
ryption 170 48 (prepro
essed: 36)

IBE de
ryption 140 30 (prepro
essed: 19)

7 Con
lusions and A
knowledgements

We have proposed several new algorithms to implement pairing-based 
ryptosys-

tems. Our algorithms are all pra
ti
al and lead to signi�
ant improvements, not

only for the pairing evaluation pro
ess but to other operations as well, su
h as

ellipti
 
urve s
alar multipli
ation and square root extra
tion.

An interesting line of further resear
h is the appli
ation of these te
hniques

to more general algebrai
 
urves; for instan
e, a fast n-th root algorithm in the

lines of the square root algorithm presented here would be useful for super-

ellipti
 
urves. Investigating the 
onditions leading to 
omposition operations


omputable in linear time in abelian varieties would also be of great interest.

We are very grateful to Dan Boneh, Steven Galbraith, Antoine Joux, Frederik

Ver
auteren, and the anonymous referees for their valuable 
omments and/or

feedba
k regarding this work.
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A Implementation Issues

A.1 Field Representation

The authors of the BLS s
heme suggest representing F

3

6m

as F

3

6

[x℄=�

m

(x) for a

suitable irredu
ible polynomial �

m

(x) [3, se
tion 5.1℄. It is our experien
e that the

alternative representation as F

3

m

[x℄=�

6

(x) using an irredu
ible trinomial �

6

(x)

(for instan
e, �

6

(x) = x

6

+ x � 1) leads to better performan
e for pra
ti
al

values of m; moreover, both signing and veri�
ation bene�t at on
e from any

improvement made to the implementation of F

3

m

. Karatsuba multipli
ation 
an

also be used to great e�e
t, as one F

3

6m
multipli
ation 
an be implemented with

only 18 F

3

m

multipli
ations. Similar observations apply to 
hara
teristi
 2, where

one F

2

4m

multipli
ation takes 9 F

2

m

multipli
ations.

As it turns out, however, Karatsuba is not the fastest multipli
ation te
h-

nique in all 
ir
umstan
es. As seen in se
tion 5.1, it is often the 
ase that the

a
tual pairing to be 
omputed is e

n

(P; �(Q)) where both P and Q are on the


urve over F

q

(rather than the 
urve over the extension �eld F

q

k ), and the pair-

ing algorithm 
an expli
itly use the form of the � distortion map to redu
e the

number of F

q

produ
ts involved in Miller's formula down to only two per line

equation evaluation.

A.2 Speeding up the Final Powering in the Tate Pairing

The exponentiation needed by the Tate pairing e

n

(P;Q) = f

P

(Q)

z

where z =

(q

k

� 1)=n 
an be eÆ
iently 
omputed with the following observations:



1. (Chara
teristi
 p > 3) Assume that p � 2 (mod 3) and p � 3 (mod 4). The

order of a 
urve E

1;b

is n = p + 1. Let the order of the 
urve subgroup of

interest be r, and noti
e that r j p + 1. Consider the s
enario where the

representation of a point t 2 F

p

2

is t = u+ iv where u; v 2 F

p

and i satis�es

i

2

+ 1 = 0. The Tate exponent is z = (p

2

� 1)=r = ((p + 1)=r) � (p � 1).

To 
al
ulate s = w

z

mod p, 
ompute t = w

(p+1)=r

� u + iv and set s =

(u + iv)

p�1

= (u + v)

p

=(u + iv) = (u � v)=(u + iv), using the linearity of

raising to p and the fa
t that i

p

= �i for p � 3 (mod 4). We 
an further

simplify to obtain s = (u

2

� v

2

)=(u

2

+ v

2

)� 2uvi=(u

2

+ v

2

).

2. (Chara
teristi
 2) Let q = 2

m

. As we saw in the proof of theorem 3, the

Tate exponent is of form z = (q + 1�

p

2q)(q

2

� 1). Therefore, to 
al
ulate

s = w

z

one 
omputes t = w

q

� w � w

�

p

2q

and s = t

q

2

=t. Raising to the

exponents q,

p

2q and q

2


an be done in O(m) steps using normal basis, or

in O(m

2

) steps using polynomial basis with a 
areful 
hoi
e of the redu
tion

polynomial (see [25℄, for instan
e), while the small (and 
onstant) number

of multipli
ations and inversions 
an be done in O(m

2

) steps. Therefore, the


omplete operation takes time O(m

2

).

3. (Chara
teristi
 3) Let q = 3

m

. As we saw in the proof of theorem 3, the

Tate exponent is of form z = (q + 1 �

p

3q)(q

3

� 1)(q + 1). Therefore, to


al
ulate s = w

z

one 
omputes u = w

q

�w �w

�

p

3q

, t = u

q

3

=u, and s = t

q

� t.

Raising to the exponents q,

p

3q and q

3


an be done in O(m) steps using

normal basis, or in O(m

2

) steps using polynomial basis with a 
areful 
hoi
e

of the redu
tion polynomial (see [25℄, for instan
e), while the small (and


onstant) number of multipli
ations and inversions 
an be done in O(m

2

)

steps. Therefore, the 
omplete operation takes time O(m

2

).


