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Abstrat. We desribe fast new algorithms to implement reent rypto-

systems based on the Tate pairing. In partiular, our tehniques improve

pairing evaluation speed by a fator of about 55 ompared to previously

known methods in harateristi 3, and attain performane omparable

to that of RSA in larger harateristis. We also propose faster algorithms

for salar multipliation in harateristi 3 and square root extration

over F

p

m

, the latter tehnique being also useful in ontexts other than

that of pairing-based ryptography.

1 Introdution

The reent disovery [11℄ of groups where the Deision DiÆe-Hellman (DDH)

problem is easy while the Computational DiÆe-Hellman (CDH) problem is hard,

and the subsequent de�nition of a new lass of problems variously alled the

Gap DiÆe-Hellman [11℄, Bilinear DiÆe-Hellman [2℄, or Tate-DiÆe-Hellman [6℄

lass, has given rise to the development of a new, ever expanding family of

ryptosystems based on pairings, suh as:

{ Short signatures [3℄.

{ Identity-based enryption and esrow ElGamal enryption [2℄.

{ Identity-based authentiated key agreement [29℄.

{ Identity-based signature shemes [8, 22, 24℄.

{ Tripartite DiÆe-Hellman [10℄.

{ Self-blindable redentials [33℄.

The growing interest and ative researh in this branh of ryptography has

led to new analyses of the assoiated seurity properties and to extensions to

more general (e.g. hyperellipti and superellipti) algebrai urves [6, 23℄.



However, a entral operation in these systems is omputing a bilinear pairing

(e.g. the Weil or the Tate pairing), whih are omputationally expensive. More-

over, it is often the ase that urves over �elds of harateristi 3 are used to

ahieve the best possible ratio between seurity level and spae requirements for

supersingular urves, but suh urves have reeived onsiderably less attention

than their even or (large) prime harateristi ounterparts. Our goal is to make

suh systems entirely pratial and ontribute to �ll the theoretial gap in the

study of the underlying family of urves, and to this end we propose several

eÆient algorithms for the arithmeti operations involved.

The ontributions of this paper are:

{ The de�nition of point tripling for supersingular ellipti urves over F

3

m

, that

is, over �elds of harateristi 3. A point tripling operation an be done in

O(m) steps (or essentially for free in hardware), as opposed to onventional

point doubling that takes O(m

2

) steps. Furthermore, a faster point addition

algorithm is proposed for normal basis representation. These operations lead

to a notieably faster salar multipliation algorithm in harateristi 3.

{ An algorithm to ompute square roots over F

p

m

in O(m

2

logm) steps, where

m is odd and p � 3 (mod 4) or p � 5 (mod 8). The best previously known al-

gorithms for square root extration under these onditions take O(m

3

) steps.

This operation is important for the point ompression tehnique, whereby a

urve point P = (x; y) is represented by its x oordinate and one bit of its y

oordinate, and its usefulness transends pairing-based ryptography.

{ A deterministi variant of Miller's algorithm to ompute the Tate pairing

that avoids many irrelevant operations present in the onventional algorithm

whenever one of the pairing's arguments is restrited to a base �eld (as

opposed to having both in an extension �eld). Besides, in harateristis 2

and 3 both the underlying salar multipliation and the �nal powering in

the Tate pairing experiene a omplexity redution from O(m

3

) to O(m

2

)

steps.

All of these improvements are very pratial and result in surprisingly faster

implementations. Independent results on this topi have been obtained by Gal-

braith, Harrison and Soldera, and are reported in [7℄; in partiular, they provide

a very lear and nie desription of the Tate pairing.

This paper is organized as follows. Setion 2 summarizes the mathematial

onepts we will use in the remainder of the paper. Setion 3 desribes point

tripling and derives a fast salar multipliation algorithm for harateristi 3.

Setion 4 introdues a fast method to ompute square roots that works for half

of all �nite �elds, and an extension to half of the remaining ases. Setion 5

presents our improvements for Tate pairing omputation. Setion 6 disusses

experimental results. We onlude in setion 7.

2 Mathematial Preliminaries

Let p be a prime number, m a positive integer and F

p

m

the �nite �eld with

p

m

elements; p is said to be the harateristi of F

p

m

, and m is its extension



degree. We simply write F

q

with q = p

m

when the harateristi or the extension

degree are known from the ontext or irrelevant for the disussion. We also write

F

�

q

� F

q

�f0g.

An ellipti urve E(F

q

) is the set of solutions (x; y) over F

q

to an equation of

form E : y

2

+a

1

xy+a

3

y = x

3

+a

2

x

2

+a

4

x+a

6

, where a

i

2 F

q

, together with an

additional point at in�nity, denoted O. The same equation de�nes urves over

F

q

k for k > 0.

There exists an abelian group law on E. Expliit formulas for omputing the

oordinates of a point P

3

= P

1

+P

2

from the oordinates of P

1

and P

2

are given

in [27, algorithm 2.3℄; we shall present in setion 3 a subset of those formulas.

The number of points of an ellipti urveE(F

q

), denoted #E(F

q

), is alled the

order of the urve over the �eld F

q

. The Hasse bound states that #E(F

q

) = q+

1�t, where jtj 6 2

p

q. The quantity t is alled the trae of Frobenius (for brevity,

we will all it simply `trae'). Of partiular interest to us are supersingular urves,

whih are urves whose trae t is a multiple of the harateristi p.

Let n = #E(F

q

). The order of a point P 2 E is the least nonzero integer

r suh that rP = O. The set of all points of order r in E is denoted E[r℄, or

E(K)[r℄ to stress the partiular subgroup E(K) for a �eld K. The order of a

point always divides the urve order. It follows that hP i is a subgroup of E[r℄,

whih in turn is a subgroup of E[n℄.

Let P be a point on E of prime order r where r

2

- n. The subgroup hP i is

said to have seurity multiplier k for some k > 0 if r j q

k

� 1 and r - q

s

� 1 for

any 0 < s < k. If E is supersingular, the value of k is bounded by k 6 6 [16℄.

This bound is attained in harateristi 3 but not in harateristi 2, where the

maximum ahievable value is k = 4 [15, setion 5.2.2℄.

The group E(F

q

) is (isomorphi to) a subgroup of E(F

q

k ). Let P 2 E(F

q

) be

a point of order r suh that hP i has seurity multiplier k. Then E(F

q

k ) ontains

a point Q of the same order r but linearly independent of P .

We will onsider in detail the urves listed in table 1, where k is the seurity

multiplier, both m and p are prime numbers, and either p � 2 (mod 3) or p � 3

(mod 4). The urve orders are expliitly omputed in [15, setion 5.2.2℄.

Table 1. Some ryptographially interesting supersingular ellipti urves

urve equation underlying �eld urve order k

E

1;b

: y

2

= x

3

+ (1� b)x+ b, b 2 f0; 1g F

p

p+ 1 2

E

2;b

: y

2

+ y = x

3

+ x+ b, b 2 f0; 1g F

2

m

2

m

+ 1� 2

(m+1)=2

4

E

3;b

: y

2

= x

3

� x+ b, b 2 f�1; 1g F

3

m

3

m

+ 1� 3

(m+1)=2

6

For our purposes, a divisor is a formal sum of points on the urve E(F

q

m

),

m > 0. The degree of a divisor A =

P

P

a

P

(P ) is the sum

P

P

a

P

. An abelian

group struture is imposed on the set of divisors by the addition of orresponding

oeÆients in their formal sums; in partiular, nA =

P

P

(na

P

)(P ).



Let f : E(F

q

k
)! F

q

k
be a funtion on the urve and let A =

P

P

a

P

(P ) be a

divisor of degree 0. We de�ne f(A) �

Q

P

f(P )

a

P

. Note that, sine

P

P

a

P

= 0,

f(A) = (f)(A) for any fator  2 F

�

q

k

. The divisor of a funtion f is (f) �

P

P

ord

P

(f)(P ) where ord

P

(f) is the order of the zero or pole of f at P (if f

has no zero or pole at P , then ord

P

(f) = 0). A divisor A is alled prinipal if

A = (f) for some funtion (f). It is known [15, theorem 2.25℄ that a divisor A =

P

P

a

P

(P ) is prinipal if and only if the degree of A is zero and

P

P

a

P

P = O.

Two divisors A and B are equivalent, and we write A � B, if their di�erene

A�B is a prinipal divisor. Let P 2 E[n℄ where n is oprime to q, and let A

P

be

a divisor equivalent to (P )� (O); under these irumstanes the divisor nA

P

is

prinipal, and hene there is a funtion f

P

suh that (f

P

) = nA

P

= n(P )�n(O).

Let ` be a natural number oprime to q. The Tate pairing of order ` is the

map e

`

: E(F

q

)[`℄ � E(F

q

k
)[`℄ ! F

�

q

k

de�ned

4

as e

`

(P;Q) = f

P

(A

Q

)

(q

k

�1)=`

. It

satis�es the following properties:

{ (Bilinearity) e

`

(P

1

+ P

2

; Q) = e

`

(P

1

; Q) � e

`

(P

2

; Q) and e

`

(P;Q

1

+ Q

2

) =

e

`

(P;Q

1

)�e

`

(P;Q

2

) for all P; P

1

; P

2

2 E(F

q

)[`℄ and all Q;Q

1

; Q

2

2 E(F

q

k )[`℄.

It follows that e

`

(aP;Q) = e

`

(P; aQ) = e

`

(P;Q)

a

for all a 2

Z

.

{ (Non-degeneray) If e

`

(P;Q) = 1 for all Q 2 E(F

q

k )[`℄, then P = O. Alter-

natively, for eah P 6= O there exists Q 2 E(F

q

k )[`℄ suh that e

`

(P;Q) 6= 1.

{ (Compatibility) Let ` = h`

0

. If P 2 E(F

q

)[`℄ and Q 2 E(F

q

k )[`

0

℄, then

e

`

0

(hP;Q) = e

`

(P;Q)

h

.

Notie that, beause P 2 E(F

q

), f

P

is a rational funtion with oeÆients in F

q

.

3 Salar Multipliation in Charateristi 3

Arithmeti on the urve E

3;b

is performed aording to the following rules. Let

P

1

= (x

1

; y

1

), P

2

= (x

2

; y

2

), P

3

= P

1

+ P

2

= (x

3

; y

3

). By de�nition, �O = O,

�P

1

= (x

1

;�y

1

), P

1

+O = O + P

1

= P

1

. Furthermore,

P

1

= �P

2

) P

3

= O:

P

1

= P

2

) � � 1=y

1

; x

3

= x

1

+ �

2

; y

3

= �(y

1

+ �

3

):

P

1

6= �P

2

; P

2

) � �

y

2

� y

1

x

2

� x

1

; x

3

= �

2

� (x

1

+ x

2

); y

3

= y

1

+ y

2

� �

3

:

These rules in turn give rise to the double-and-add method to ompute salar

multiples V = kP , k 2

Z

. Let the binary representation of k > 0 be k =

(k

t

: : : k

1

k

0

)

2

where k

i

2 f0; 1g and k

t

6= 0. Computation of V = kP � P + P +

� � �+ P (with k terms) proeeds as follows.

4

This de�nition di�ers from those given in [5, 6℄ in that we restrit the �rst argument

of e

`

to E(F

q

)[`℄ and the seond argument to E(F

q

k

)[`℄ instead of E(F

q

k

)[`℄ and

E(F

q

k

)=`E(F

q

k

) respetively, and we raise f

P

(A

Q

) to the power (q

k

� 1)=`, so that

e

`

maps to ertain uniquely determined oset representatives. However, our de�nition

keeps the properties listed above unhanged, and aptures the essential properties

needed in pratie for ryptographial purposes.



Double-and-add salar multipliation:

set V  P

for i t� 1; t� 2; : : : ; 1; 0 do f

set V  2V

if k

i

= 1 then set V  V + P

g

return V

By extension, one de�nes 0P = O and (�k)P = k(�P ) = �(kP ).

Several improvements to this basi algorithm are well known [1, 17℄. However,

one an do muh better than this, as we will now see.

3.1 Point Tripling

In harateristi 3, point tripling for the supersingular urve E

3;b

an be done in

time O(m) in polynomial basis, or simply O(1) in hardware using normal basis.

Indeed, sine the ubing operation is linear in harateristi 3, given P = (x; y)

one omputes 3P = (x

3

; y

3

) with the formulas:

x

3

= (x

3

)

3

� b

y

3

= �(y

3

)

3

These formulas are derived from the basi arithmeti formulas above in a

straightforward way.

The linearity of point tripling orresponds to that of point doubling for super-

singular urves in harateristi 2, as disovered by Menezes and Vanstone [18℄,

and it leads to a triple-and-add salar multipliation algorithm muh faster

than the double-and-add method. Let the signed ternary representation of k

be k = (k

t

: : : k

1

k

0

)

2

where k

i

2 f�1; 0; 1g and k

t

6= 0. Computation of V = kP

proeeds as follows.

Triple-and-add salar multipliation:

set V  P if k

t

= 1, or V  �P if k

t

= �1

for i t� 1; t� 2; : : : ; 1; 0 do f

set V  3V

if k

i

= 1 then set V  V + P

if k

i

= �1 then set V  V � P

g

return V

Obviously, the same advaned tehniques used for the double-and-add

method an be easily applied to triple-and-add.



3.2 Projetive Coordinates

Koblitz [12℄ desribes a method to add urve points in harateristi 3 in pro-

jetive oordinates with 10 multipliations. Atually, point addition an be done

with only 9 multipliations. Let P

1

= (x

1

; y

1

; z

1

), P

2

= (x

2

; y

2

; 1); one omputes

P

3

= P

1

+ P

2

= (x

3

; y

3

; z

3

) as:

A x

2

z

1

� x

1

; B  y

2

z

1

� y

1

; C  A

3

; D  C � z

1

B

2

;

x

3

 x

1

C �AD; y

3

 BD � y

1

C; z

3

 z

1

C:

To reover P

3

in aÆne oordinates one just sets P

3

= (x

3

=z

3

; y

3

=z

3

). This

involves one single inversion, whih is usually only performed at the end of a

salar multipliation.

4 Square Root Extration

One an use the ellipti urve equation E : y

2

= f(x) over F

q

, where f(x) is a

ubi polynomial, to obtain a ompat representation of urve points. The idea

is to use a single bit from the ordinate y as a seletor

5

between the two solutions

of the equation y

2

= f(x) for a given x.

In a �nite �eld F

p

m

where p � 3 (mod 4) and odd m, the best algorithm

known [4, 17℄ to ompute a square root exeutes O(m

3

), or more preisely

O(m

3

log p), F

p

operations. By that method, a solution of x

2

= a is given by

x = a

(p

m

+1)=4

, assuming a is a quadrati residue.

We �rst notie that, if m = 2k + 1 for some k:

p

m

+ 1

4

=

p+ 1

4

"

p(p� 1)

k�1

X

i=0

(p

2

)

i

+ 1

#

;

so that

a

(p

m

+1)=4

= [(a

P

k�1

i=0

(p

2

)

i

)

p(p�1)

� a℄

(p+1)=4

:

These relations an be veri�ed by straightforward indution. The quantity

a

P

k�1

i=0

u

i

where u = p

2

an be eÆiently omputed in an analogous fashion to

Itoh-Teehai-Tsujii inversion [9℄, based on the Frobenius map in harateristi p:

a

1+u+���+u

k�1

=

(

(a

1+u+���+u

bk=2�1

) � (a

1+u+���+u

bk=2�1

)

u

bk=2

; k even;

((a

1+u+���+u

bk=2�1

) � (a

1+u+���+u

bk=2�1

)

u

bk=2

)

u

� a; k odd:

Notie that raising to a power of p is a linear operation in harateristi p

(and almost for free in normal basis representation). It an be easily veri�ed

5

In ertain ryptographi appliations one an simply disard y. This happens, for

instane, in BLS signatures [3℄, where one only keeps the absissa x as signature

representative. Notie that one ould disard the ordinates of publi keys as well

without a�eting the seurity level.



by indution that this method requires blg k + !(k) � 1 �eld multipliations,

where !(k) is the Hamming weight of the binary representation of k. Additional

O(log p) multipliations are needed to omplete the square root evaluation due

to the extra multipliation by a and to the raisings to p � 1 and (p + 1)=4,

whih an be done with a onventional exponentiation algorithm

6

. The overall

ost is O(m

2

(logm + log p)) F

p

operations to ompute a square root. If the

harateristi p is �xed and small ompared to m, the omplexity is simply

O(m

2

logm) F

p

operations.

Similar reurrene relations hold for a variant of Atkin's algorithm [21, se-

tion A.2.5℄ for omputing square roots in F

p

m

when p � 5 (mod 8) and odd

m, with the same O(m

2

(logm + log p)) omplexity. The details are left to the

reader.

The general ase is unfortunately not so easy. Neither the Tonelli-Shanks

algorithm [4℄ nor Lehmer's algorithm [21, setion A.2.5℄ an bene�t entirely

from the above tehnique, although partial improvements that don't hange the

overall omplexity are possible.

The above improvements are useful not only for pairing-based ryptosystems,

but for more onventional shemes as well (see e.g. [12, setion 6℄).

5 Computing the Tate Pairing

In this setion we propose several improvements to Miller's algorithm [19℄ for

omputing the Tate pairing in the ases of ryptographial interest. Let P 2

E(F

q

)[`℄ and Q 2 E(F

q

k )[`℄ be linearly independent points, and let n � #E(F

q

).

As we saw in setion 2, the Tate pairing is de�ned as e

`

(P;Q) = f

P

(A

Q

)

(q

k

�1)=`

,

where A

Q

� (Q)�(O) and (f

P

) = `(P )�`(O). Computation of the Tate pairing

is helped by the following observations.

Lemma 1. The value q � 1 is a fator of (q

k

� 1)=r for any fator r of n, for

all urves on table 1.

Proof. Sine F

�

q

is a multipliative subgroup of F

�

q

k

, it follows that # F

�

q

j# F

�

q

k

,

i.e. q� 1 j q

k

� 1. On the other hand, it is known [15, setion 5.2.2℄ that #E

1;b

=

q+1, #E

2;b

= q+1�

p

2q, and #E

3;b

= q+1�

p

3q. In all ases, gd(n; q�1) = 1,

and hene no fator r of n divides q � 1. Therefore, (q

k

� 1)=r ontains a fator

q � 1. ut

Theorem 1. Let r be a fator of n. Then e

r

(P;Q) = f

P

(Q)

(q

k

�1)=r

for Q 6= O

and for all urves on table 1.

Proof. Suppose R 62 fO;�Pg is some point on the urve. Let f

0

P

be a funtion

with divisor (f

0

P

) = r(P + R) � r(R) � (f

P

), so that e

r

(P;Q) = f

0

P

((Q) �

(O))

(q

k

�1)=r

. Sine P has oordinates in F

p

, and beause f

0

P

does not have a zero

6

If p is large, it may be advantageous to ompute z

p�1

as z

p

=z, trading O(log p)

multipliations by one inversion.



or pole at O, we know that f

0

P

(O) 2 F

�

q

. Thus f

0

P

((Q) � (O)) = f

0

P

(Q)=f

0

P

(O).

By Fermat's Little Theorem for �nite �elds [13, lemma 2.3℄, f

0

P

(O)

q�1

= 1.

Lemma 1 then ensures that f

0

P

(O)

(q

k

�1)=r

= 1. Hene, f

0

P

(O) is an irrelevant

fator and an be omitted from the Tate pairing omputation, i.e. e

r

(P;Q) =

f

0

P

(Q)

(q

k

�1)=r

. Now onsider P;Q to be �xed and R to be variable. Sine the

above statement holds for all R 62 fO;�Pg we have that f

0

P

(Q) is a onstant

when viewed as a funtion of R, oiniding with the value of f

P

(Q). Therefore,

e

r

(P;Q) = f

P

(Q)

(q

k

�1)=r

. ut

Corollary 1. One an freely multiply or divide f

P

(Q) by any nonzero F

q

fator

without a�eting the pairing value.

The above orollary is not the same property that enables one to replae

(f) by (f); in partiular, it does not hold for the Weil pairing. Notie that the

speial ase Q = O where the theorem does not apply is trivially handled, sine

then e

r

(P;Q) = 1.

In the next theorem, for eah pair U; V 2 E(F

q

) we de�ne g

U;V

: E(F

q

k ) !

F

q

k to be (the equation of) the line through points U and V (if U = V , then

g

U;V

is the tangent to the urve at U , and if either one of U; V is the point at

in�nity O, then g

U;V

is the vertial line at the other point). The shorthand g

U

stands for g

U;�U

: if U = (u; v) and Q = (x; y), then g

U

(Q) = x� u.

Theorem 2 (Miller's formula). Let P be a point on E(F

q

) and f



be a fun-

tion with divisor (f



) = (P ) � (P ) � ( � 1)(O),  2

Z

. For all a; b 2

Z

,

f

a+b

(Q) = f

a

(Q) � f

b

(Q) � g

aP;bP

(Q)=g

(a+b)P

(Q).

Proof. The divisors of the line funtions satisfy:

(g

aP;bP

) = (aP ) + (bP )� (�(a+ b)P )� 3(O);

(g

(a+b)P

) = ((a+ b)P ) + (�(a+ b)P )� 2(O):

Hene, (g

aP;bP

)�(g

(a+b)P

) = (aP )+(bP )�((a+b)P )�(O). From the de�nition

of f



we see that:

(f

a+b

) = (a+ b)(P )� ((a+ b)P )� (a+ b� 1)(O)

= a(P )� (aP )� (a� 1)(O)

+ b(P )� (bP )� (b� 1)(O)

+ (aP ) + (bP )� ((a+ b)P )� (O)

= (f

a

) + (f

b

) + (g

aP;bP

)� (g

(a+b)P

):

Therefore f

a+b

(Q) = f

a

(Q) � f

b

(Q) � g

aP;bP

(Q) = g

(a+b)P

(Q). ut

Notie that (f

0

) = (f

1

) = 0, so that f

0

(Q) = f

1

(Q) = 1. Furthermore, f

a+1

(Q) =

f

a

(Q) � g

aP;P

(Q)=g

(a+1)P

(Q) and f

2a

(Q) = f

a

(Q)

2

� g

aP;aP

(Q)=g

2aP

(Q).

Let the binary representation of ` > 0 be ` = (`

t

; : : : ; `

1

; `

0

) where `

i

2 f0; 1g

and `

t

6= 0. Miller's algorithm omputes f

P

(Q) = f

`

(Q); Q 6= O by oupling the

above formulas with the double-and-add method to alulate `P :



Miller's algorithm:

set f  1 and V  P

for i t� 1; t� 2; : : : ; 1; 0 do f

set f  f

2

� g

V;V

(Q)=g

2V

(Q) and V  2V

if `

i

= 1 then set f  f � g

V;P

(Q)=g

V+P

(Q) and V  V + P

g

return f

5.1 Irrelevant denominators

We will now show that, when omputing e

n

(P; �(Q)) where Q 2 E(F

q

) and

where � is a distortion map [32℄, the g

2V

and g

V+P

denominators in Miller's

algorithm an be disarded. The hoie of parameters is important, and is sum-

marized in table 2. Notie that there is no entry for E

1;1

.

Table 2. Choie of distortion maps

urve (see table 1) underlying �eld distortion map onditions

E

1;0

F

p

, p > 3 �

1

(x; y) = (�x; iy) i 2 F

p

2
,

i

2

= �1

E

2;b

, b 2 f0; 1g F

2

m

�

2

(x; y) = (x+ s

2

; y + sx+ t) s; t 2 F

2

4m
,

s

4

+ s = 0,

t

2

+ t+ s

6

+ s

2

= 0

E

3;b

, b 2 f�1; 1g F

3

m

�

3

(x; y) = (�x+ r

b

; iy) r

b

; i 2 F

3

6m

r

3

b

� r

b

� b = 0,

i

2

= �1

Theorem 3. With the settings listed in table 2, the denominators in Miller's

formula an be disarded altogether without hanging the value of e

n

(P;Q).

Proof. We will show that the denominators beome unity at the �nal powering

in the Tate pairing.

{ (Charateristi 2) Let q � 2

m

. From the de�ning ondition s

4

= s it follows

by indution that s

4

t

= s for all t > 0; in partiular, s

q

2

= s

2

2m

= s,

and hene (s

2

)

q

2

= s

2

. The denominators in Miller's formula have the form

g

U

(�(Q)) � x + s

2

+ , where x 2 F

q

is the absissa of Q and  2 F

q

,

so that x

q

2

= x and 

q

2

= . Hene, g

U

(�(Q))

q

2

= x

q

2

+ (s

2

)

q

2

+ 

q

2

=

x+ s

2

+  = g

U

(�(Q)), using the linearity of raising to powers of q in F

q

. It

follows that g

U

(�(Q))

q

2

�1

= 1. Now the exponent of the �nal powering in

the Tate pairing has the form z = (q

4

� 1)=n = (q + 1 �

p

2q)(q

2

� 1), i.e.

q

2

� 1 j z. Therefore, g

U

(�(Q))

z

= 1.



{ (Charateristi 3) Let q � 3

m

. From the de�ning ondition r

3

b

� r

b

� b = 0

it follows by indution that r

3

t

b

= r

b

+ b(t mod 3) for all t > 0; in partiu-

lar, r

q

3

b

= r

3

3m

b

= r

b

. The denominators in Miller's formula have the form

g

U

(�(Q)) � r

b

�x� , where x 2 F

q

is the absissa of Q and  2 F

q

, so that

x

q

t

= x and 

q

t

=  for all t > 0. Hene, g

U

(�(Q))

q

3

= r

q

3

b

� x

q

3

� 

q

3

=

r

b

� x�  = g

U

(�(Q)), using the linearity of raising to powers of q in F

q

. It

follows that g

U

(�(Q))

q

3

�1

= 1. Now the exponent of the �nal powering in

the Tate pairing has the form z = (q

6

� 1)=n = (q+1�

p

3q)(q

3

� 1)(q+1),

i.e. q

3

� 1 j z. Therefore, g

U

(�(Q))

z

= 1.

{ (Charateristi p > 3) The denominators in Miller's formula have the form

g

U

(�(Q)) � �x � , where x 2 F

p

is the absissa of Q and  2 F

p

. Hene,

g

U

(�(Q))

p

= �x

p

� 

p

= �x �  = g

U

(�(Q)), using the linearity of raising

to p in F

p

. It follows that g

U

(�(Q))

p�1

= 1. Now the exponent of �nal

powering in the Tate pairing is preisely z = (p

2

� 1)=n = p� 1. Therefore,

g

U

(�(Q))

z

= 1.

ut

One an alternatively ouple the evaluation of f

n

with the more eÆient

triple-and-add method in harateristi 3. To this end one needs a reursive

formula for f

3a

(Q), whih is easy to obtain from Miller's formula: the divisor of

f

3a

is (f

3a

) = 3(f

a

) + (g

aP;aP

) + (g

2aP;aP

) � (g

2aP

) � (g

3aP

), hene disarding

the irrelevant denominators one obtains:

f

3b

(Q) = f

3

b

(Q) � g

aP;aP

(Q) � g

2aP;aP

(Q):

Notie that it is not neessary to atually ompute 2aP , beause the oeÆ-

ients of g

2aP;aP

an be obtained from aP and 3aP .

In harateristi 3, the tripling formula is by itself more eÆient than the

doubling formula, sine the squaring operation, whih takes O(m

2

) time, is re-

plaed by ubing, whih has only linear omplexity at most; besides, it is invoked

only a fration log

3

2 times ompared to the doubling ase. Furthermore, for the

Tate pairing of order n = (3

(m�1)=2

� 1)3

(m+1)=2

+ 1 the ontribution of the

underlying salar multipliation to the omplexity of Miller's algorithm is only

O(m

2

) instead of O(m

3

), as it involves only two additions or one addition and

one subtration. An analogous observation holds for supersingular ellipti urves

in harateristi 2.

An interesting observation is that, even if Miller's algorithm omputes f

r

(Q)

for r jn, it is often the ase that a tehnique similar to that used for square root

extration an be applied, reduing the number of point additions or subtrations

from O(m) down to O(logm). However, we won't elaborate on this possibility,

as the above hoie is learly faster.

5.2 Choie of the Subgroup Order

Pairing evaluation over �elds F

p

2

of general harateristi (as used, for instane,

in the Boneh-Franklin identity-based ryptosystem [2℄) with Miller's algorithm



an bene�t from the above observations with a areful hoie of parameters,

partiularly the size q of the sub�eld where alulations are performed. Instead of

hoosing a random sub�eld prime, use a Solinas prime [30℄ of form q = 2

�

�2

�

�1

(it is always possible to �nd suh primes for pratial subgroup sizes), sine

qP = (2

�

(2

���

� 1) � 1)P involves only two additions or subtrations plus �

doublings.

5.3 Speeding up the Final Powering

Evaluation of the Tate pairing e

n

(P;Q), where n � #E(F

p

m

), inludes a �nal

raising to the power of (p

km

�1)=n. The powering is usually omputed in O(m

3

)

steps. However, this exponent shows a rather periodial struture in base p. One

an exploit this property in a fashion similar to the square root algorithm of

setion 4, reduing the omputational e�ort to O(m

2

logm) steps. As it turns

out, it is atually possible to ompute the power in only O(m

2

) steps, by arefully

exploiting the struture of the exponent. Details of this proess are given in

appendix A.2.

5.4 Fixed-base Pairing Preomputation

Atual pairing-based ryptosystems often need to ompute pairings e

n

(P;Q)

where P is either �xed (e.g. the base point on the urve) or used repeatedly (e.g.

a publi key). In these ases, the underlying salar multipliation in Miller's

algorithm an be exeuted only one to preompute the oeÆients of the line

funtions g

U

(Q). The speedup resulting from this tehnique is more prominent

for harateristi p > 3.

5.5 MNT urves

Until reently, the only ellipti urves known to have embedding degree k 6 6

were supersingular like E

2;b

and E

3;b

. As it turns out, it is possible to onstrut

ordinary (non-supersingular) urves with k 2 f3; 4; 6g. Suh urves were �rst

desribed by Miyaji, Nakabayashi and Takano in [20℄; we all them MNT urves.

Briey, MNT urves are built with the omplex multipliation (CM)

method [1, hapter VIII℄. The idea is to impose ertain onstraints on the form

of the underlying �nite �eld F

q

, the urve order n, and the trae of Frobenius t,

whih are linked to eah other by the relation n = q + 1� t. These in turn lead

to further onstraints on the form of the CM equation DV

2

= 4q� t

2

, whih for

k 2 f3; 4; 6g redues to a Pell equation

7

, whose solution is well known [28℄.

MNT urves address onerns that supersingular urves may not be as seure

as ordinary urves. They are suitable for variants of pairing-based ryptosystems

that do not involve distortion maps, like the BLS variant of [3, setion 3.5℄ or

7

There is reason to believe that one an e�etively onstrut MNT-like urves with

k 2 f5; 8; 10; 12g, for whih the CM equation redues to a quarti ellipti Diophantine

equation [31℄. However, we refrain from further investigating this possibility here.



the general IBE variants of [2, setion 4℄ and [6, setion 3℄. In suh systems, the

pairings have the form e

`

(P;Q) where P 2 E(F

q

) and Q 2 E(F

q

k ), and both are

hosen so that e

`

(P;Q) 6= 1.

An important property of the MNT riteria is that n j �

k

(q) but n - (q

k

�

1)=�

k

(q), where �

k

is the k-th ylotomi polynomial. Due to this property,

lemma 1 holds for MNT urves as well, and onsequently, so do theorem 1 and

orollary 1. Therefore, the deterministi version of Miller's algorithm presented

in setion 5 is equally valid for the MNT ase. Furthermore, for even k it often

happens that the point Q = (x; y) in the variant ryptosystems an be hosen

so that x 2 F

q

k=2

but y 62 F

q

k=2

; with this setting

8

, denominator elimination as

suggested in setion 5.1 is also appliable.

6 Experimental Results

The heaviest operation in any pairing-based ryptosystem is the pairing ompu-

tation. We give our timings for these operations in table 3.

Table 3. Tate pairing omputation times (in ms) on a PIII 1 GHz.

underlying base �eld timing

F

3

97
26.2

F

2

271
23.0

F

p

, jpj = 512 bits 20.0

F

p

with preproessing 8.6

Boneh-Lynn-Shaham (BLS) signature generation is omparable to RSA or

DSA signing at the same seurity level. Table 4 ompares the signing times for

the RSA, DSA (without preomputation), ECDSA (without preomputation),

and BLS signature shemes. We onsider two BLS implementations, namely, one

using the urve E

3;b

and one using an MNT urve.

Timings for BLS veri�ation and Boneh-Franklin identity-based enryption

(IBE) are listed in table 5. BLS signature veri�ation speed for F

3

97

shows an

improvement by a fator of about 55 over published timings. The performane

of IBE is also omparable to other ryptosystems; the data refers to a urve over

F

p

where jpj = 512 bits, using a subgroup of order q where q is a Solinas prime

and jqj = 160 bits.

The implementations in this setion were written in C/C++ and based on

the MIRACL [26℄ library.

8

Representing F

q

k

in polynomial basis as F

q

[t℄=R

k

(t) and arefully hoosing R

k

(t), it

is quite easy to �nd a point Q satisfying these onstraints. For instane, if R

k

(t) =

t

k

+ t

2

+  for some  2 F

q

, one an show that a suitable Q an be found by

restriting the oordinates to the form x = a

k�2

t

k�2

+ a

k�4

t

k�4

+ � � � + a

2

t

2

+ a

0

and y = b

k�1

t

k�1

+ b

k�3

t

k�3

+ � � �+ b

3

t

3

+ b

1

t.



Table 4. Comparison of signing and veri�ation times (in ms) on a PIII 1 GHz.

algorithm signing veri�ation

RSA, jnj = 1024 bits, jdj = 1007 bits 7.90 0.40

DSA, jpj = 1024 bits, jqj = 160 bits 4.09 4.87

F

p

ECDSA, jpj = 160 bits 4.00 5.17

F

2

160

ECDSA 5.77 7.15

F

3

97
BLS (supersingular) 3.57 53.0

F

p

BLS (MNT), jpj = 157 bits 2.75 81.0

Table 5. BLS and IBE times (in ms) on a PIII 1 GHz.

operation original [3, 14℄ ours

BLS veri�ation 2900 53

IBE enryption 170 48 (preproessed: 36)

IBE deryption 140 30 (preproessed: 19)

7 Conlusions and Aknowledgements

We have proposed several new algorithms to implement pairing-based ryptosys-

tems. Our algorithms are all pratial and lead to signi�ant improvements, not

only for the pairing evaluation proess but to other operations as well, suh as

ellipti urve salar multipliation and square root extration.

An interesting line of further researh is the appliation of these tehniques

to more general algebrai urves; for instane, a fast n-th root algorithm in the

lines of the square root algorithm presented here would be useful for super-

ellipti urves. Investigating the onditions leading to omposition operations

omputable in linear time in abelian varieties would also be of great interest.

We are very grateful to Dan Boneh, Steven Galbraith, Antoine Joux, Frederik

Verauteren, and the anonymous referees for their valuable omments and/or

feedbak regarding this work.
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A Implementation Issues

A.1 Field Representation

The authors of the BLS sheme suggest representing F

3

6m

as F

3

6

[x℄=�

m

(x) for a

suitable irreduible polynomial �

m

(x) [3, setion 5.1℄. It is our experiene that the

alternative representation as F

3

m

[x℄=�

6

(x) using an irreduible trinomial �

6

(x)

(for instane, �

6

(x) = x

6

+ x � 1) leads to better performane for pratial

values of m; moreover, both signing and veri�ation bene�t at one from any

improvement made to the implementation of F

3

m

. Karatsuba multipliation an

also be used to great e�et, as one F

3

6m
multipliation an be implemented with

only 18 F

3

m

multipliations. Similar observations apply to harateristi 2, where

one F

2

4m

multipliation takes 9 F

2

m

multipliations.

As it turns out, however, Karatsuba is not the fastest multipliation teh-

nique in all irumstanes. As seen in setion 5.1, it is often the ase that the

atual pairing to be omputed is e

n

(P; �(Q)) where both P and Q are on the

urve over F

q

(rather than the urve over the extension �eld F

q

k ), and the pair-

ing algorithm an expliitly use the form of the � distortion map to redue the

number of F

q

produts involved in Miller's formula down to only two per line

equation evaluation.

A.2 Speeding up the Final Powering in the Tate Pairing

The exponentiation needed by the Tate pairing e

n

(P;Q) = f

P

(Q)

z

where z =

(q

k

� 1)=n an be eÆiently omputed with the following observations:



1. (Charateristi p > 3) Assume that p � 2 (mod 3) and p � 3 (mod 4). The

order of a urve E

1;b

is n = p + 1. Let the order of the urve subgroup of

interest be r, and notie that r j p + 1. Consider the senario where the

representation of a point t 2 F

p

2

is t = u+ iv where u; v 2 F

p

and i satis�es

i

2

+ 1 = 0. The Tate exponent is z = (p

2

� 1)=r = ((p + 1)=r) � (p � 1).

To alulate s = w

z

mod p, ompute t = w

(p+1)=r

� u + iv and set s =

(u + iv)

p�1

= (u + v)

p

=(u + iv) = (u � v)=(u + iv), using the linearity of

raising to p and the fat that i

p

= �i for p � 3 (mod 4). We an further

simplify to obtain s = (u

2

� v

2

)=(u

2

+ v

2

)� 2uvi=(u

2

+ v

2

).

2. (Charateristi 2) Let q = 2

m

. As we saw in the proof of theorem 3, the

Tate exponent is of form z = (q + 1�

p

2q)(q

2

� 1). Therefore, to alulate

s = w

z

one omputes t = w

q

� w � w

�

p

2q

and s = t

q

2

=t. Raising to the

exponents q,

p

2q and q

2

an be done in O(m) steps using normal basis, or

in O(m

2

) steps using polynomial basis with a areful hoie of the redution

polynomial (see [25℄, for instane), while the small (and onstant) number

of multipliations and inversions an be done in O(m

2

) steps. Therefore, the

omplete operation takes time O(m

2

).

3. (Charateristi 3) Let q = 3

m

. As we saw in the proof of theorem 3, the

Tate exponent is of form z = (q + 1 �

p

3q)(q

3

� 1)(q + 1). Therefore, to

alulate s = w

z

one omputes u = w

q

�w �w

�

p

3q

, t = u

q

3

=u, and s = t

q

� t.

Raising to the exponents q,

p

3q and q

3

an be done in O(m) steps using

normal basis, or in O(m

2

) steps using polynomial basis with a areful hoie

of the redution polynomial (see [25℄, for instane), while the small (and

onstant) number of multipliations and inversions an be done in O(m

2

)

steps. Therefore, the omplete operation takes time O(m

2

).


