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Abstract. Secure and reliable group communication is an active area of research. Its popularity is caused by the
growing importance of group-oriented and collaborative applications. The central research challenge is secure and
efficient group key management. While centralized methods are often appropriate for key distribution in large
multicast-style groups, many collaborative group settings require distributed key agreement techniques. This work
investigates a novel group key agreement approach which blends so-called key trees with Diffie-Hellman key ex-
change. It yields a secure protocol suite (TGDH) that is both simple and fault-tolerant. Moreover, the efficiency of
TGDH appreciably surpasses that of prior art.

1 Introduction

Fault-tolerant, scalable, and reliable communication services have become critical in modern computing. An important
and popular trend is to convert traditional centralized services (e.g., file sharing, authentication, web, and mail) into
distributed services spread across multiple systems and networks. Many of these newly distributed and other inherently
collaborative applications (e.g., conferencing, white-boards, shared instruments, and command-and-control systems)
need secure communication. However, experience shows thatsecurity mechanisms for collaborative and dynamic peer
groups tend to be both expensive and unexpectedly complex. In that regard, dynamic peer groups are very different
from non-collaborative, centrally managed, one-to-many (or few-to-many) broadcast groups such as those encountered
in Internet multicast.

Dynamic Peer Groups (DPGs)are common in many layers of the network protocol stack and many application
areas of modern computing. Examples of DPGs include replicated servers (such as database, web, time), audio and
video conferencing and, more generally, applications supporting collaborative work. In contrast to large multicast
groups, DPGs tend to be relatively small in size, on the orderof hundred members. Larger groups are harder to control
on a peer basis and are often organized in a hierarchy. DPGs typically assume a many-to-many (or, equivalently,
any-to-any) communication pattern rather than one-to-many pattern common of larger hierarchical groups.

Despite their relatively small number, group members in a DPG may be spread throughout the Internet and must
be able to deal with arbitrary partitions due to network failures, congestion, and hostile attacks. In essence, a group
can be split into a number of disconnected partitions each ofwhich must persist and function as an independent peer
group.

Security requirements in collaborative DPGs present several interesting research challenges. In this paper, we focus
on secure and efficientgroup key management. The goal of group key management is to set up and maintain a shared
secret key among the group members. It serves as a cornerstone for other DPG security services.

1.1 Group Key Management

There are several fundamentally different approaches to group key management in peer groups.
One approach relies on a single entity (called a key server) to generate keys and distribute them to the group. We

refer to it ascentralized group key distribution. Essentially, a key server maintains long-term shared keyswith each
group member in order to enable secure two-party communication for the actual key distribution. One form of this
solution uses a fixed trusted third party (TTP) as the key server. This approach has two problems: 1) TTP must be

⋆ An early version of this paper has appeared, in part, in [19].



constantly available, and 2) TTP must exist in every possible subset of a group in order to support continued operation
in the event of network partitions. The first problem can be addressed with fault-tolerance and replication techniques.
The second is impossible to solve in a scalable and efficient manner. We note, however, that the centralized approach
works well in one-to-many multicast scenarios since a TTP (or a set thereof) placed at, or very near, the source
of communication can support continued operation within anarbitrary partition as long as it includes the source.
Typically, one-to-many settings only aim to offer continued operation within a single partition that includes the source.
Whereas, many-to-many environments must offer continued operation in an arbitrary number of partitions.

Another approach – calleddecentralized group key distribution – involves dynamically selecting a group mem-
ber to generate and distribute keys to other group members. This approach is more robust and, thus, more applicable to
many-to-many groups since any partition can continue operation by electing a key server. The drawback is that, as in
the TTP case, a key server must establish long-term pairwisesecure channels with all current group members in order
to distribute group keys. Consequently, each time a new key server comes into play, significant costs must be incurred
to set up these channels. Another disadvantage, again as in the TTP case, is the reliance on a single entity to generate
good (i.e., cryptographically strong, random) keys.

In contrast to the above approaches, contributory group keymanagement requires each group member to contribute
an equal share to the common group key (which is then computedas a function of all members’ contributions). This
avoids the problems with the centralized trust and the single point of failure. Moreover, some contributory methods
do not require the establishment of pairwise secret channels among group members. One significant problem with,
current contributorygroup key agreement1 protocols is that they are not designed to tolerate failuresand group
membership changes during execution. In particular, nested (cascaded) failures, partitions and other group events
are not accommodated. This is not surprising since most multi-round cryptographic protocols do not offer built-in
robustness with the notable exception of protocols for fairexchange [6].

1.2 Overview

In this paper, we focus on contributory group key agreement.In doing so, we unify two important trends in group
key management: 1)key treesto efficiently compute and update group keys and 2) Diffie-Hellman key exchange to
achieve provably secure and fully distributed protocols. Our main result is a simple, secure, robust and efficient key
management solution, called TGDH (Tree-based Group Diffie-Hellman).

Organization: The rest of this paper is organized as follows. Section 2 presents our assumptions and requirements for
the reliable group communication system. Section 3 introduces cryptographic requirements of our group key agree-
ment protocol and Section 4 introduces notation and terminology. The actual protocols are described in Section 5
followed by practical aspects of the protocol in Section 6. Section 7 analyzes both conceptual and experimental pro-
tocol complexity. The summary of related work appears in Section 8. Finally, security argument of the proposed
protocols are provided in Appendix A.

2 Group Communication and Group Key Agreement

As noted in the introduction, many modern collaborative anddistributed applications require a reliable group com-
munication platform. The latter, in turn, needs specialized security mechanisms to perform – among other things –
group key management. This dependency is mutual since practical group key agreement protocols themselves rely
on the underlying group communication semantics for protocol message transport and strong membership semantics.
Implementing multi-party and multi-round cryptographic protocols without such support is foolhardy as, in the end,
one winds up reinventing reliable group communication tools.

In this section we begin with a brief discussion of reliable group communication. Next, we summarize the rela-
tionship between group membership events and group key management protocols and conclude with the summary of
desired cryptographic properties.

1 We use the term ”agreement,” as opposed to ”distribution”, to emphasize the contributory nature of the key management.



2.1 Group Communication Semantics and Support

There are two commonly used strong group communication semantics: Extended Virtual Synchrony (EVS) [23, 2] and
View Synchrony (VS) [17]. Both guarantee that: 1) group members see the same set of messages between two sequen-
tial group membership events, and, 2) sender’s requested message order (e.g., FIFO, Causal, or Total) is preserved. VS
provides a stricter service whereas EVS implementations are generally more efficient.

The main difference between EVS and VS is that EVS guaranteesthat messages are delivered to all receivers in
the same membership as existed when the message was originally sent on the network. VS, in contrast, offers a stricter
guarantee that messages are delivered to all recipients in the same membership as viewed by the sender application
when it originally sent the message.

Providing the latter property requires an extra round of acknowledgment messages from all members before in-
stalling a new membership view. This need for acknowledgments dictates that the groups be closed, only allowing
members of the group to send messages to it. However, the knowledge that a message is received in the membership
the sender believed it was sent makes implementing secure group communication easier because every message is
encrypted with the same key as the receiver believes is current when the message is delivered to them.

An implementation of any distributed fault-tolerant groupkey agreement protocol requires VS. This is because
implementing group key agreement on top of EVS would requirethe key agreement protocol to incorporate and
implement semantics identical to those of VS in order to correctly keep state of which messages were sent in which
key epoch. (Intuitively, this is because membership events are unpredictable and each triggers an instance of a key
agreement protocol. Thus, multiple key agreement protocols can overlap in time and cause instability unless significant
amount of state is kept within the key agreement protocol implementation.) For this reason, there is no particular benefit
to building key agreement on top of EVS semantics.

The issues surrounding implementation of key agreement in dynamic peer groups are addressed in detail in [3].
Suffice it to say that, in the context of this paper, we requirethe underlying group communication to provide View
Synchrony (VS). However, we stress that VS is needed for the sake of fault-tolerance and robustness; the security of
our protocols is in no way affected by the lack of VS.

2.2 Group Membership Events

A comprehensive group key agreement solution must handle adjustments to group secrets subsequent to all member-
ship change operations in the underlying group communication system.

We distinguish among single and multiple member operations. Single member changes include memberjoin or
leave. Leave occurs when a member wants (or is forced) to leave a group. While there might be different reasons
for member leave – such as voluntary leave, involuntary disconnect or forced expulsion – we believe that group key
agreement must only provide the tools to adjust the group secrets and leave the rest up to the higher-layer (application-
dependent) security mechanisms.

Multiple member changes can also be additive and subtractive. We refer to the former operation asgroup merge,
in which case two or more groups merge into a single group. We refer to the latter asgroup partition , whereby a group
is split into smaller groups. A group partition can take place for several reasons two of which are fairly common:

1. Network failure – a network event causes disconnection within the group. Consequently, a group is split into
fragments some of which are singletons while others (those that maintain mutual connectivity) are sub-groups.

2. Explicit (application-driven) partition – the application decides to split the group into multiple components or
exclude multiple members at once.

Similarly, a group merge be either voluntary or involuntary:

1. Network fault heal – a network event causes previously disconnected network partitions to reconnect. Conse-
quently, groups on all sides (and there might be more than twosides) of an erstwhile partition are merged into a
single group.

2. Explicit (application-driven) merge – the application decides to merge multiple pre-existing groups into a single
group. (The case of simultaneous multiple-member additionis not covered.)

At the first glance, events such as network partitions and fault heals might appear infrequent and dealing with them
might seem a purely academic exercise. In practice, however, such events are common due to network misconfigu-
rations and router failures. In addition, in the environment of ad hocwireless communication, network partitions are



both common and expected. In [23], Moser et al. offer some compelling arguments in support of these claims. We
consider coping with group partitions and merges to be a crucial component of group key agreement.

In addition to the aforementioned membership operations, periodic refreshes of group secrets are advisable so as
to limit the amount of ciphertext generated with the same keyand to recover from potential compromises of members’
contributions or prior session keys.

3 Cryptographic Properties

One of the most important security requirements of group keyagreement is calledkey freshness. A key is fresh if it
can be guaranteed to be new, as opposed to possibly an old key being reused an adversary.

Furthermore, a session key should be known only to the involved parties. We can now define four important security
properties of group key agreement:

Definition 1. Assume that a group key is changedm times and the sequence of successive group keys isK =
{K0, . . . ,Km}.

1. Group Key Secrecyguarantees that it is computationally infeasible for a passive adversary to discover any group
keyKi ∈ K for all i.

2. Forward Secrecyguarantees that a passive adversary who knows a contiguous subset of old group keys (say
{K0,K1, . . . ,Ki}) cannot discover any subsequent group keyKj for all i andj wherej > i.

3. Backward Secrecy guarantees that a passive adversary who knows a contiguous subset group keys (say
{Ki,Ki+1, . . . ,Kj}) cannot discover preceding group keyKl for all l, j, k wherel < i < j.

4. Key Independenceguarantees that a passive adversary who knows a proper subset of group keysK̂ ⊂ K cannot
discover any other group keȳK ∈ (K − K̂).

The relationship among the properties is intuitive. Eitherof Backward or Forward Secrecy subsumes Group Key
Secrecy and Key Independence subsumes the rest. Also, the combination of Backward and Forward Secrecy forms
Key Independence.

Our definition of group key secrecy allows partial leakage ofinformation. Therefore, it would be more desirable
to guarantee that any bit of the group key is unpredictable. For this reason, we prove a decisional version of group key
secrecy in Appendix A. In other words, decisional version ofgroup key secrecy guarantees that it is computationally
infeasible for a passive adversary todistinguish any group keyKi from random number.

Our definitions of Backward and Forward Secrecy are strongerthan those typically found in the literature. The two
are often defined (respectively) as [32, 25]:

– Previously used group keys must not be discovered by new group members.
– New keys must remain out of reach of former group members.

The difference is that the adversary here is assumed to be a current or a former group member. Our definition addition-
ally includes the cases of inadvertently leaked or otherwise compromised group keys. We refer to the above as Weak
Forward Secrecy and Weak Backward Secrecy, respectively.

In this paper we do not consider (implicit or explicit) key authentication as part of the group key management
protocols. All communication channels are public but authentic. This means, as discussed later in the paper, that all
messages are digitally signed by the sender using a sufficiently strong public key signature method, such as DSA
or RSA. Furthermore, each message includes: the protocol identifier (TGDH), the event type identifier (i.e., JOIN,
LEAVE, etc.), the protocol sequence number and the sender’stimestamp. All receivers are required to verify signatures
on all received messages and check the aforementioned fields. Since no long-term secrets or other keys are used for
encryption, we are not concerned with Perfect Forward Secrecy (PFS) since it is achieved trivially.

4 Notation and Definitions

We use the following notation:



N number of protocol parties (group members)
C set of current group members
L set of leaving members
J set of newly joining members
Mi i-th group member;i ∈ {1, . . . , N}
h height of a tree
〈l, v〉 v-th node at levell in a tree
Ti Mi’s view of the key tree
T̂i Mi’s modified tree after membership operation
T〈i,j〉 A subtree rooted at node〈i, j〉
BK∗

i set ofMi’s blinded keys
p, q prime integers
α exponentiation base

Key treeshave been suggested in the past for centralized group key distribution systems. The seminal work of
Wallner et al. [34] is the earliest such proposal. One of the main features of our work is the use of key trees in
fully distributed contributory key agreement. Figure 1 shows an example of a key tree. The root is located at level
0 and the lowest leaves are at levelh. Since we use binary trees,2 every node is either a leaf or a parent of two
nodes. The nodes are denoted〈l, v〉, where0 ≤ v ≤ 2l − 1 since each levell hosts at most2l nodes.3 Each node
〈l, v〉 is associated with the keyK〈l,v〉 and the blinded key (bkey)BK〈l,v〉 = f(K〈l,v〉) where the functionf()

is modular exponentiation in prime order groups, i.e.,f(k) = αk mod p (analogous to the Diffie-Hellman protocol).
Assuming a leaf node〈l, v〉 hosts the memberMi, the node〈l, v〉 hasMi’s session random keyK〈l,v〉. Furthermore, the
memberMi at node〈l, v〉 knows every key along the path from〈l, v〉 to 〈0, 0〉, referred to as thekey-pathand denoted
KEY ∗

i . In Figure 1, if a memberM2 owns the treeT2, thenM2 knows every key{K〈3,1〉,K〈2,0〉,K〈1,0〉,K〈0,0〉} in
KEY ∗

2 = {〈3, 1〉, 〈2, 0〉, 〈1, 0〉, 〈0, 0〉} and every bkeyBK∗
2 = {BK〈0,0〉, BK〈1,0〉, . . . , BK〈3,7〉} on T2. Every key

K〈l,v〉 is computed recursively as follows:

K〈l,v〉 = (BK〈l+1,2v+1〉)
K〈l+1,2v〉 mod p

= (BK〈l+1,2v〉)
K〈l+1,2v+1〉 mod p

= αK〈l+1,2v〉K〈l+1,2v+1〉 mod p

= f(K〈l+1,2v〉K〈l+1,2v+1〉)

Computing a key at〈l, v〉 requires the knowledge of the key of one of the two child nodesand the bkey of the other child
node.K〈0,0〉 at the root node is the group secret shared by all members. We stress, once again, that this value is never
used as a cryptographic key for the purpose of encryption, authentication or integrity. Instead, such special-purpose
sub-keys are derived from the group secret, e.g., by settingKgroup = hp(K〈0,0〉) wherehp is a cryptographically
strong hash function uniquely indexed with the purpose idenitifer p, e.g., encryption.

For example, in Figure 1,M2 can computeK〈2,0〉,K〈1,0〉 andK〈0,0〉 usingBK〈3,0〉, BK〈2,1〉, BK〈1,1〉, andK〈3,1〉.
The final group keyK〈0,0〉 is:

K〈0,0〉 = α(αr3(αr1r2 ))(αr4(αr5r6 )).

To simplify subsequent protocol description, we introducethe termco-path, denoted asCO∗
i , which is the set of

siblings of each node in the key-path of memberMi. For example, the co-pathCO∗
2 of memberM2 in Figure 1 is

the set of nodes{〈3, 0〉, 〈2, 1〉, 〈1, 1〉}. Consequently, every memberMi at leaf node〈l, v〉 can derive the group secret
K〈0,0〉 from all bkeys on the co-pathCO∗

i and its session randomK〈l,v〉.

5 TGDH Protocols

In this section we introduce the four basic protocols that form the TGDH protocol suite: join, leave, merge, and
partition. All protocols share a common framework with the following notable features:
2 Note that the tree needs to be binary, since our protocol uses the two-party Diffie-Hellman key exchange to derive a node key

from the contribution of the two children.
3 Even though the key tree is not balanced, we assume a perfectly balanced tree for node numbering. Thus, a node’s〈l, v〉 left and

right children have indexes〈l + 1, 2v〉 and〈l + 1, 2v + 1〉, respectively.
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Fig. 1.Notation for tree

– Each group member contributes an equal share to the group key. The key is computed as a function of all current
group members’ shares.

– Each share is secret (private to each group member) and is never revealed.
– As the group grows, new members’ shares are factored into thegroup key and, upon each new member’s joining,

one of the old members changes its share.
– As the group shrinks, departing members’ shares are removedfrom the new group key, and at least one remaining

member changes its key share4.
– All protocol messages are signed, timestamped, sequence-numbered and type-identified by the sender; as dis-

cussed at the end of Section 3. (We use RSA for message signingsince the number of receivers is greater than the
number of senders. )

After every membership change, all remaining members independently update the key tree structure. Since we
assume that the underlying communication system providesview synchrony(see Section 2), all members who cor-
rectly execute the protocol, recompute identical key treesafter any membership event. The following is the minimal
requirement for computing the group key:

Proposition 2. A group key can be computed from any member’s secret share (i.e., any leaf value) and all bkeys on
the co-path to the root.

It is easy to see that knowledge of its own secret share and allsibling bkeys on the path to the root enables a
member to compute all intermediate keys on its key-path, including the root group key. This is similar to other tree-
based schemes [36, 34] where each member is required to know all keys on the path from itself (leaf) to the root.
Although not strictly necessary for computing group key, our protocol also requires each member to knowall bkeys
in the entire key tree. As will be seen below, this makes the handling of future membership changes more efficient and
robust.

As part of the protocol, a group member can take on a specialsponsor role which involves computing intermediate
keys and broadcasting to the group. Each broadcasted message contains the sender’s view of the key tree which
contains each bkey known to the sender. (We stress that intermediate keys are never broadcasted!) Any member in the
group can unilaterally take on this responsibility, depending on the type of membership event. In some cases, such as
a partition event, multiple sponsors might be involved.

In case of an additive change (join or merge), all group members identify a unique sponsor. This sponsor is
responsible for updating its secret key share, computing affected[key, bkey] pairs and broadcasting all bkeys of the
new tree to the rest of the group. The common criteria for sponsor selection is determined by the tree maintenance
strategy described in Section 5.6. We emphasize, from the outset, that sponsor is not a privileged entity: its only task
is the updating and broadcasting of tree information to the group.

4 This prevents the group from reusing old keys. For example, if a member joins and immediately leaves, the group key would be
the same before the join and after the leave. Although, in practice, this is notalways a problem and might even be a desirable
feature, we choose to err on the side of caution and change the key. In more concrete terms, changing the key upon all membership
changes preserves key independence [32, 7].



In response to a subtractive membership change (leave or partition), all members update the tree in the same
manner. Since the case of partition subsumes the case of a single leave, we discuss it in more detail. Group partition
results in a smaller tree since some leaf nodes disappear. Asa result, some subtrees acquire new siblings; therefore,
new intermediate keys and bkeys must be computed through a Diffie-Hellman exchange between the new siblings
sub-trees. The computation proceeds in a bottom-up fashionwith each member computing keys and bkeys until either:
1) it blocks due to a dependency on a new sibling bkey that it does not yet know, or 2) it computes the new root (group)
key. If a member blocks without computing any new keys, it does nothing. Otherwise, it broadcasts its view of the key
tree which includes the newly computed bkeys. This process is repeated at mosth times whereh is the height of the
tree, i.e., until all remaining members compute the new group key.

5.1 TGDH Membership Events

As discussed in Section 2, a group key agreement method needsto provide key adjustment protocols to cope with
membership changes. TGDH includes protocols in support of the following operations:

– Join: a new member is added to the group
– Leave: a member is removed from the group
– Merge: a group is merged with the current group
– Partition: a subset of members are split from the group
– Key refresh: the group key is updated

Before turning our attention to the actual protocols we stress that, while a comprehensive protocol suite must
address all types of key adjustment operations, the generalpolicy (or case-by-case decisions) regarding if and when to
change a group key is the responsibility of the application and/or the group communication system.

The following sections (5.2 – 5.5), present the four protocols. In each section, we assume that every member can
unambiguously determine both the sponsors and the insertion location in the key tree (in case of an additive event).
Later in Section 5.6, we will explain how this works. Note that the key refresh operation can be considered a special
case of leave without any members actually leaving the group.

5.2 Join Protocol

We assume the group hasn members:{M1, . . . ,Mn}. The new memberMn+1 initiates the protocol by broadcasting a
join request message that contains its own bkeyBK〈0,0〉. This message is distinct from any JOIN messages generated
by the underlying group communication system, although, inpractice, the two might be combined for efficiency’s
sake.

Step 1: The new member broadcasts request for join

Mn+1
BK〈0,0〉=αrn+1

−−−−−−−−−−−−−−→ C = {M1, . . . , Mn}

Step 2: Every member
• update key tree by adding new member node and new intermediate node,
• removes all keys and bkeys from the leaf node related to the sponsor to the root node,

The sponsorMs additionally
• generates new share and computes all [key, bkey] pairs on the key path,
• broadcasts updated treêTs including only bkeys.

C ∪ {Mn+1} = {M1, . . . , Mn+1} T̂s(BK∗
s )

←−−−−−−−−−−−−−− Ms

Step 3: Every member computes the group key usingT̂s

Fig. 2.Join Protocol



Each current member receives this message and determines the insertion point in the tree. The insertion point is
the shallowest rightmost node, where the join does not increase the height of the key tree. Otherwise, if the key tree
is fully balanced, the new member joins to the root node. The sponsor is the rightmost leaf in the subtree rooted at
the insertion node. Next, each member creates a new intermediate node and a new member node, and promotes the
new intermediate node to be the parent of both the insertion node and the new member node. After updating the tree,
all members, except the sponsor, block. The sponsor proceeds to update its share and compute the new group key; it
can do this since it knows all necessary bkeys. Next, the sponsor broadcasts the new tree which contains all bkeys. All
other members update their trees accordingly and compute the new group key (see Proposition 2).

It might appear wasteful to broadcast the entire tree to all members, since they already know most of the bkeys.
However, since the sponsor needs to send a broadcast messageto the group anyhow, it might as well include more
information which is useful to the new member, thus saving one unicast message to the new member (which would
have to contain the entire tree).

<2,0> <2,1>

<1,0> <1,1>

<0,0>

M M

M

1 2

3

Sponsor
<2,0> <2,1>

<1,0> <1,1>

<0,0>

M M M
1 2 3

<2,2> <2,3>

M4

New Intermediate Node

New Member

Tree T3 Tree T3

Fig. 3.Tree update: join

Figure 3 shows an example of memberM4 joining a group where the sponsor (M3) performs the following actions:

1. renames node〈1, 1〉 to 〈2, 2〉
2. generates a new intermediate node〈1, 1〉 and a new member node〈2, 3〉
3. promotes〈1, 1〉 as the parent node of〈2, 2〉 and〈2, 3〉

Since all members knowBK〈2,3〉 andBK〈1,0〉, M3 can compute the new group keyK〈0,0〉. Every other member also
performs step 1 and 2, but cannot compute the group key in the first round. Upon receiving the broadcasted bkeys,
every member can compute the new group key.

5.3 Leave Protocol

Once again, we start withn members and assume that memberMd leaves the group. The sponsor in this case is the
rightmost leaf node of the subtree rooted at the leaving member’s sibling node. First off, as shown in Figure 4, each
member updates its key tree by deleting the leaf node corresponding toMd. The former sibling ofMd is promoted to
replaceMd’s parent node. The sponsor generates a new key share, computes all[key, bkey] pairs on the key path up
to the root, and broadcasts the new set of bkeys. This allows all members to compute the new group key.

Looking at the setting in Figure 5, if memberM3 leaves the group, every remaining member deletes〈1, 1〉 and
〈2, 2〉. After updating the tree, the sponsor (M5) picks a new shareK〈2,3〉, recomputesK〈1,1〉,K〈0,0〉, BK〈2,3〉 and

BK〈1,1〉, and broadcasts the updated treeT̂5 with BK∗
5 . Upon receiving the broadcast message, all members compute

the group key. Note thatM3 cannot compute the group key, though it knows all the bkeys, because its share is no
longer part of the group key.



Step 1: Every member
• updates key tree by by removing the leaving member node and relevant parent node,
• removes all keys and bkeys from the leaf node related to the sponsor to the root node,

SponsorMi additionally
• generates new share and computes all [key, bkey] pairs on the key path,
• broadcasts updated treêTs including only bkeys.

Ms
T̂s(BK∗

s )
−−−−−−−−−−−−−−→ {M1..Mn} − {Md}

Step 2: Every member computes the group key usingT̂s

Fig. 4.Leave Protocol
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Fig. 5.Tree updating in leave operation

5.4 Partition Protocol

Assume that a network fault causes a partition of then-member group. From the viewpoint of each remaining member,
this event appears as a concurrent leave of multiple members. The partition protocol is involves multiple rounds; it
runs until all members compute the new group key.

In the first round, each remaining member updates its tree by deleting all partitioned members as well as their
respective parent nodes and “compacting” the tree. The procedure is as follows:

All leaving nodes are sorted by depth order. Starting at the deepest level, each pair of leaving
siblings is collapsed into its parent which is then marked asleaving. This node is re-inserted
into the leaving nodes list. The above is repeated until all leaving nodes are processed, i.e.,
there are no more leaving nodes that can be collapsed.
The resulting tree has a number of leaving (leaf) nodes but every such node has a remaining
sibling node. Now, for each leaving node we identify a sponsor using the same criteria as
described in Section 5.3.

Each sponsor now computes keys and bkeys on the key-path as far up the tree as possible. Then, each sponsor
broadcasts the set of new bkeys. Upon receiving a broadcast,each member checks whether the message contains new
bkeys. This procedure iterates until all members obtain thegroup key. (Recall that a member can compute the group
key if it has all the bkeys on its co-path.)



Step 1: Every member
• updates key tree by by removing all the leaving member nodes and their parent node,
• removes all keys and bkeys from the leaf node related to the sponsor to the root node,

– Each sponsorMst

• If Mst is the shallowest rightmost sponsor, generates new share,
• computes all [key, bkey] pairs on the key path until it can proceed,
• broadcasts updated treêTst including only bkeys.

Mst

T̂st
(BK∗

st
)

−−−−−−−→
C − L

Step 2 toh (Until a sponsorMsj
computes the group key)

– Each sponsorMst

• computes all [key, bkey] pairs on the key path until it can proceed,
• broadcasts updated treêTst including only bkeys.

Mst

T̂st
(BK∗

st
)

−−−−−−−→
C − L

Steph + 1: Every member computes the group key usingT̂st

Fig. 6.Partition Protocol

To provide key independence, one of the remaining members needs to change its key share. For this reason, in the
first round of the partition protocol, we require the shallowest rightmost sponsor to generate a new key share.

This protocol takes multiple rounds to complete. We analyzethe number of rounds afterp members are partitioned
from a group ofn members. In the first round, each remaining member updates its tree by deleting all partitioned
members as well as their respective parent nodes. Now, each key tree has at mostp paths with empty bkeys. The
expected number of paths with empty keys isp/2. Filling up these bkeys requires at mostmin(log2 p, h) rounds,
since 1) every sponsor in each subsequent rounds computes bkeys as far up the tree as possible, and 2) the number of
rounds never exceeds the tree height.

Figure 7 shows an example where all remaining members deleteall nodes of leaving members and compute keys
and bkeys in the first round. In the figure on the right, any ofM2 or M3 (M5 or M6) cannot compute the new group
key, since they lack the bkeyBK〈1,1〉 (BK〈1,0〉), respectively. However,M3 broadcastsBK〈1,0〉 in the first round,
andM6 can thus compute the group key. Finally, every member knows all bkeys and can compute the group key. As
discussed above, before computingK〈1,1〉, M6 changes its shareK〈2,3〉.
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Fig. 7.Tree updating in partition operation



Note that, if some memberMi computes the new group key in roundh′, then all other members can compute the
group key, at the latest, in roundh′ + 1, sinceMi’s broadcast message contains all bkeys in the key tree. Hence, each
member can detect the completion of the partition protocol independently.

5.5 Merge Protocol

As discussed in Section 2, network faults can partition a group into several subgroups. After the network faults heal,
subgroups may need to be merged back into a single group. We now describe the merge protocol fork merging groups.

In the first round of the merge protocol, each sponsor (the rightmost member of each group) broadcasts its tree
with all bkeys to all other groups after updating the secret share of the sponsor and relevant[key, bkey] pairs up to
the root node. Upon receiving these messages, all members can uniquely and independently determine how to merge
thosek trees by tree management policy described in 5.6.

Step 1: EachMsi
in each treeTsi

:
• generate new share and compute all [key, bkey] pairs on the key path ofTsi

,
• broadcast updated treêTsi

including only bkeys.

Msi

T̂si
(BK∗

si
)

−−−−−−−−−−−−−−→
∪k

i=1 Ci

Step 2: Every member:
• update key tree by adding new trees and new intermediate nodes,
• remove all keys and bkeys from the leaf node related to the sponsor to theroot node,

Each sponsorMst additionally:
• compute all possible [key, bkey] pairs on the key path,
• broadcast updated treêTs.

Mst

T̂st
(BK∗

st
)

−−−−−−−→
∪k

i=1 Ci

Step 3 toh (Until a sponsorMsj
computes the group key): Each sponsorMst :

• compute all possible [key, bkey] pairs on the key path,
• broadcast updated treêTst .

Mst

T̂st
(BK∗

st
)

−−−−−−−→
∪k

i=1 Ci

Steph + 1: Every member computes the group key usingT̂st

Fig. 8.Merge Protocol

Next, each sponsor computes all[key, bkey] pairs on the key-path until it either reaches the root or encounters a
dependency.5 It then broadcasts its view of the tree to the group. All members update their tree views with the new
information. If the broadcasting sponsor computed the rootkey, then, upon receiving the broadcast, all other members
can compute the root key as well. In a more general case, a broadcastunblocksexactly one locked sponsor who can
now compute further[key, bkey] pairs. This process is incremental, similar to the partition protocol. Finally, some
sponsor will compute the new root key and will broadcast the key tree. Now, all members can compute the group key.

The communication overhead of the merge protocol may appearhigh. However, this is not the case. Let us assume
k merging groups. In the first round, a sponsor in each group broadcasts its key tree after updating its session random.
Upon receiving these broadcast messages, every member rebuilds a key tree which has some missing bkeys. At most
k paths will have missing bkeys. Propagating these bkeys requires at mostlog2 k rounds, since each sponsor (in each
subsequent round) computes bkeys as far as it can. Therefore, a merge ofk groups takes at mostlog2 k + 1 rounds.

5 If a sponsor cannot compute a new intermediate key, it does not broadcast but simply blocks.



Figure 9 shows an example of two merging groups, where the sponsorsM2 andM7 broadcast their trees (T2 and
T7). Upon receiving these broadcast messages, every member checks whether it is the sponsor in the second round.
Every member in both groups merges two trees, and then,M2 (the sponsor in this example) updates the key tree,
computes and broadcasts bkeys.
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Fig. 9.Tree update in merge

5.6 Tree Management

Modular exponentiation is the most computationally expensive operation in TGDH. The number of exponentiations
for a membership event depends on the current tree structure. For example, if a single member or a whole tree merges
to the root node of the current tree, at most 5 modular exponentiations are required to complete this operation. If a
key tree is balanced, and a member joins to a leaf node, then the number of exponentiations is4⌈log2 n⌉ wheren is
the current number of users. Hence, it is easy to see that joining to the root always requires the minimum number of
exponentiations for additive membership operations. Ifn members join to the root, however, the resulting tree becomes
unbalanced (similar to a linked list). If a key tree is fully balanced and a member leaves, the number of exponentiations
is 4⌈log2 n⌉.

Therefore, our goal for the tree management policy is to:

– keep the key tree as balanced as possible, and
– minimize the number of modular exponentiations, and
– minimize the number of protocol rounds

5.6.1 Policy for Additive and Subtractive Events Our heuristic for keeping the key tree balanced is to choose
the insertion node for a join or merge operation as the rightmost shallowest node. This usually does not increase the
height. If we have to increase the height of the key tree, we simply join to the root. (See also Sections 5.2 and 5.5.)
We do not employ any tree balancing scheme for the subtractive events or attempt to re-balance when the key tree
becomes unbalanced.

In the rest of this section, we discuss our tree management policy for Merge (Join is a special case thereof). In
particular, we focus on how each member independently, simultaneously, and unambiguously mergesk trees and
selects an insertion point for each merge. Clearly, these properties (independency, concurrency, and consistency) are
crucial to obtain a correct and efficient protocol.

Recall that we havek merging trees. Each member invokes themerge trees functionk − 1 times:

1. First, the trees are ordered from the highestT1 to the lowestTk. If multiple trees are of the same height, we list
them in lexicographic order of the first member in each tree.

2. Let T̂ = T1.
3. Fori = 2 to k, T̂ ←− merge trees(T̂ , Ti).



Since every member can order the merging trees independently and unambiguously, all members can agree on a
key tree if themerge trees algorithm guarantees uniqueness of the result. We now show how to merge two trees.

If two trees are of the same height, we join one tree to the rootnode (insertion point) of the other. To provide
unambiguous ordering we lexicographically compare the identifiers of the respective sponsors. Otherwise, we join
the shallower tree to the deeper tree. To locate the insertion point we first try find the rightmost shallowest node (not
necessarily a leaf) where the join would not increase the overall tree height. If no such node exists (i.e., the tree height
would increase anyway) the insertion point is the root node.

As an illustration, consider two treesTh and Tl, where the height ofTh is greater than that ofTl. The
merge trees algorithm is as follows:

merge_trees (T_h, T_l) {
T = T_h
i = 1, j = 2ˆi-1;

While (1) {
If (height (T_l) >= Max {height (T_<i, j>) | 0 <= j < 2ˆi} {

// If the height of the smaller tree is
// greater than that of all subtrees
result = T_h // Nowhere to join, join to root
Break

} EndIf

If (T_l is joinable to node <i, j> of tree T_h){
result = T_<i, j> // Join to node T_<i, j>

} EndIf
Else{

j--
If(j < 0){

i++, j = 2ˆi-1
} EndIf

} EndElse
} EndWhile

// Merge two trees
T_<i+1, 2j> = T_<i, j>

// Old T_<i, j> becomes the left child of new T_<i,j>
T_<i+1, 2j+1> = T_l

// T_l becomes the right child of new T_<i, j>

Return T
}

The firstif statement in the while loop breaks when there is no join-ablenode inTh; the trees will then be joined
at the root node. Join-able means that we can merge two trees without increasing the height ofTh by placing a subtree
rooted at the join-able node as the left child of itself, and puttingTl as the right child. We can see thatmerge trees
algorithm fulfills the goal for the tree management policy described above.

5.6.2 Sponsor Selection SummarySponsor selection in TGDH takes place in each protocol round. (Recall that
TGDH is a multi-round protocol.) As mentioned earlier, uniqueness, consistency and independence of this process is
crucial for protocol correctness. Sponsor selection is performed as follows.

We already mentioned the behavior of the sponsor in two situations:

1. Additive event: member associated with the rightmost leaf node of each key tree becomes the sponsor.



2. Subtractive event: member associated with the rightmostleaf node rooted at the sibling node of each leaving
member. In case of partition, there may be multiple sponsors.

The above only covers the initial protocol round. In subsequent rounds, a sponsor is always the rightmost leaf rooted
at the node which lacks a current bkey.

To summarize, the role of a sponsor is three-fold: 1) refreshits key share6, 2) compute all[key, bkey] pairs as far
on the key path as possible, and 3) broadcast the updated key tree to allcurrentgroup members.

6 Practical Considerations

In this section, we describe the TGDH implementation issuesand then discuss self-stabilization and self-clustering
properties.

6.1 Implementation Architecture

TREE API is a group key agreement API that implements the cryptographic primitives of TGDH. It contains the
following three function calls:

– tree new user : called by any new member to generate its context.
– tree merge req : called by every group member when a join/merge occurs. It identifies the sponsor unambigu-

ously (as described in Section 5.6). It then removes all[key, bkey] pairs on its key path. If the caller is a sponsor,
generates new secret share and computes all keys and bkeys onits key path. This function returns an output token,
which is then broadcast to the whole group.

– tree cascade : invoked by every member when a subtractive event happens orwhen all members try to compute
the group key collaboratively. In the former case, this function removes all leaving members and their parents as
described in Section 5.3. If the caller is a sponsor, it also tries to compute[key, bkey] pairs on the sponsor’s
key-path. In the latter case, this function is called repeatedly until the group key is computed.

The underlying communication system is assumed to deal withgroup communication and network events such
as merges, partitions, failures and other abnormalities.7 We use OpenSSL 0.9.6 [24] as the underlying cryptographic
library.

In the following Sections (6.2 and 6.3), we show thattree cascade provides robustness against cascaded
network events. Since TREEAPI does not provide its own communication facility, the robustness of the API was
tested by simulating random events on a single machine running all group members.

6.2 Protocol Unification

Although described separately in the preceding sections, the four TGDH operations (join, leave, merge and partition)
actually represent different strands of a single protocol.We justify this claim with an informal argument below.

Obviously, join and leave are special cases of merge and partition, respectively. We observe that merge and partition
can be collapsed into a single protocol, since, in either case, the key tree changes and remaining group members lack
some number of bkeys. This prevents them from computing the new root key. In a partition, the remaining members (in
any surviving group fragment) reconstruct the tree where some bkeys are missing. In case of a merge of two groups, let
us suppose that a taller (deeper) treeA is merged with a shorter (shallower) treeB. Similar to a partition, all members
formerly inA construct the new tree where some bkeys – those inB – are missing. (This view is symmetric since the
members inB see the same tree but with missing bkeys in the subtreeA.)

We now established that both partition and merge initially result in a new key tree with a number of missing bkeys.
In the first round of merge protocol, sponsor in each group broadcasts the key tree after updating its session random.
Upon receiving this broadcast message, every member rebuilds a key tree which has some missing bkeys. Filling up
this bkeys takes at mostlog2k rounds. A partition is very similar except the first broadcast message of merge. Recall
that every member reconstructs the key tree after a partition in at mostmin(log2 p, h) rounds, whereh is the tree
height andp is the number of leaving members.

6 In a join, the new member simply generates its first share.
7 Currently, TGDH is integrated with Spread [4] group communication system.



1 receive msg (msg type = membership event)
2 construct new tree
3 while there are missing bkeys
4 if ((I can compute any missing keys and I am the sponsor) ||
5 (sponsor computed a key))
6 while(1)
7 compute missing (key, bkey) pairs
8 if (I cannot compute)
9 break

10 endif
11 if (others need my information)
12 broadcast new bkeys
13 endif
14 endif
15 receive msg
16 if (msg type = broadcast)
17 update current tree
18 endif
19 endwhile

Fig. 10.Unified protocol pseudocode

The apparent similarity between partition and merge allowsus to collapse the protocols stemming from all mem-
bership events into a single unified protocol. Figure 10 shows the pseudocode. The incentive for doing this is threefold.
First, unification allows us to simplify the implementationand minimize its size. Second, the overall security and cor-
rectness are easier to demonstrate with a single protocol. Third, we can now claim that (with a slight modification)
TGDH is self-stabilizing and fault-tolerant as discussed below.

6.3 Cascaded Events

Since network disruptions are random and unpredictable, itis natural to consider the possibility of so-calledcascaded
membership events. (In fact, cascaded events and their impact on group and multi-round protocols are often considered
in group communication literature, but, alas, not often enough in the security literature.) A cascaded event occurs, in
a simplest form, when one membership change occurs while another is being handled. Hereeventmeans any of: join,
leave, partition, merge or any combination thereof. For example, a partition can occur while a prior partition is being
dealt with, resulting in a cascade of size two. In principle,cascaded events of arbitrary size can occur if the underlying
network is highly volatile.

We claim that the TGDH partition protocol is self-stabilizing, i.e., robust against cascaded network events. This
property is notable and rare as most multi-round cryptographic protocols are not geared towards handling of such
events. In general, self-stabilization is a very desirablefeature since lack thereof requires extensive and complicated
protocol “coating” to either: 1) shield the protocol from cascaded events, or 2) harden it sufficiently to make the
protocol robust with respect to cascaded events (essentially, by making it re-entrant).

The high-level pseudocode for the self-stabilizing protocol is shown in Figure 11. The changes from Figure 10 are
minimal (lines 18 – 19 are added).

Instead of providing a formal proof of self-stabilization we demonstrate it with an example. Figure 12 shows an
example of a cascaded partition event. The first part of the figure depicts a partition ofM1, M4, andM7 from the prior
group of ten members{M1, . . .,M10}. This partition normally requires two rounds to complete the key agreement.
As described in Section 5.4, every member constructs the same tree after completing the initial round. The middle part
shows the resulting tree. In it, all non-leaf nodes exceptK〈2,3〉 must be recomputed as follows:

1. First,M2 andM3 both computeK〈2,0〉, M5 andM6 computeK〈2,1〉 while M8,M9 andM10 computeK〈1,1〉. All
bkeys are broadcasted by each sponsorM2,M5 andM8.

2. Then, as all broadcasts are received,M2,M3,M5 andM6 computeK〈1,0〉 andK〈0,0〉. The bkeys are broadcasted
by the sponsorM6.



1 receive msg (msg type = membership event)
2 construct new tree
3 while there are missing bkeys
4 if ((I can compute any missing keys and I am the sponsor) ||
5 (sponsor computed a key))
6 while(1)
7 compute missing (key, bkey) pairs
8 if (I cannot compute)
9 break

10 endif
11 if (others need my information)
12 broadcast new bkeys
13 endif
14 endif
15 receive msg
16 if (msg type = broadcast)
17 update current tree
18 else (msg type = membership event)
19 construct new tree
20 endif
21 endwhile

Fig. 11.Self-stabilizing protocol pseudocode

3. Finally, all broadcasts are received andM8,M9 andM10 computeK〈0,0〉.
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Fig. 12.An Example of Cascaded Partition

Suppose that, in the midst of handling the first partition, another partition (ofM3 andM8) takes place. Note that,
regardless of which round (1,2,3) of the first partition is inprogress, the departure ofM3 andM8 does not affect the
keys (and bkeys) in the subtrees formed byM9 andM10 as well asM5 andM6. All remaining members update the
tree as shown in the rightmost part of Figure 12. The bkey ofK〈1,0〉 is the only one missing in all members’ view
of the tree. It is computed byM2,M5 andM6 and broadcasted byM6. When the broadcast is received, all members
compute the root key.

The only remaining issue is whether a broadcast from the firstpartition can be received after the notification of
the second (cascaded) partition. Here we rely on the underlying group communication system to guarantee thatall



membership events are delivered in sequence after all outstanding messages are delivered. In other words, if a
message is sent in one membership view and membership changes while the message is not yet delivered, the mem-
bership change must be postponed until the message is delivered to the (surviving) subset of the original membership.
This is essentially a restatement of View Synchrony (as discussed in Section 2).

6.4 Self-Clustering

The Internet as a whole provides sporadic and unstable connectivity, e.g., web users frequently experience disconnects
and server failures. The instability can occur because of congestion, equipment failures or lossy links. It can also take
place as a result of denial-of-service attacks, worms and viruses. It is often the case that an unstable network component
(router or link) tends to have multiple failures. In other words, an isolated, “once-in-a-blue-moon” type of failure is
uncommon. Repeated failures typically complicate protocol implementation. However, oddly enough, TGDH not only
survives but also benefits from repeated failures.

Similar to other tree-based key management schemes (e.g., [34, 36, 22]) the key tree in TGDH is logical: group
members are leaves in a tree and internal nodes are logical. The initial placement of members (as tree leaves) is
not dependent on their relative physical location. Therefore, members physically close to each other might not be
neighbors in a key tree. When a partition occurs, all members in the same physical group fragment form a new key
tree and a new group. The partition protocol may cost as many as log n rounds. Then, when the partition heals, the
previously separate groups are merged into a single key tree, however, they are still clustered along the lines of the
partition. If another partition happens on the same link, the partitioned members are not scattered across the key tree
any longer. Therefore, any subsequent partition on the samelink will take only one round to complete. This property
is especially important in high-delay wide area networks since clustering lowers the number of communication rounds
as well as the number of modular exponentiations, in many cases.

First Partitions on a weak link L All merges All other partitions on the weak link L

Fig. 13.An Extreme Example of Self-Clustering

Figure 13 shows an extreme example of self-clustering. Suppose that a group has sixteen members numberedM1

throughM16 where white odd-numbered nodes are located in one physical cluster (e.g., a LAN) and shaded even-
numbered nodes in another. The two partitions are connectedvia an unstable linkL. If L fails and a partition occurs,
it takes three rounds to complete the partition protocol. Itcan be clearly seen that each group forms a cluster after
the partition. WhenL comes up and the partition heals (i.e., a merge occurs), two rounds are needed to complete the
merge protocol. Subsequently, all partitions on linkL will require only one round and all merges – two rounds.



7 Performance Analysis

7.1 Complexity Analysis and Comparison

We analyze the communication and computation costs for join, leave, merge and partition protocols. We focus on the
number of rounds, the total number of messages, the serial number of exponentiations, the serial number of signature
generations, and the serial number of signature verifications. Note that we use RSA signature for message authenti-
cation since RSA is particularly efficient in verification. The serial cost assumes parallelization within each protocol
round and represents the greatest cost incurred by any participant in a given round. The total cost is the sum of all
participants’ costs in a given round.

We also compare our protocol to other contributory group keyagreement schemes including GDH.3 [32], BD
(Burmester-Desmedt) [12], and STR [20]. Although BD was originally designed to support only group formation, we
modify the BD protocol to support dynamic membership operation. This modification is minimal.

Table 1 summarizes the communication and computation costsof four protocols. The numbers of current group
members, merging members, merging groups, and leaving members are denoted as:n,m, k andp, respectively.

The height of the key tree constructed by the TGDH protocol ish. The overhead of the TGDH protocol depends on
the tree height, the balancedness of the key tree, the location of the joining tree, and the leaving nodes. In our analysis,
we assume the worst case configuration and list the worst-case cost for TGDH.

Table 1.Communication and Computation Costs

Communication Computation
Rounds Messages Exponentiations Signatures Verifications

GDH

Join 4 n + 3 n + 3 4 n + 3
Leave 1 1 n − 1 1 1
Merge m + 3 n + 2m + 1 n + 2m + 1 m + 3 n + 2m + 1

Partition 1 1 n − p 1 1

TGDH

Join 2 3 3h

2
2 3

Leave 1 1 3h

2
1 1

merge log2k + 1 2k 3h

2
log2 k + 1 log2 k

Partition min(log2 p, h) 2h 3h min(log2 p, h) min(log2 p, h)

STR

Join 2 3 4 2 3
Leave 1 1 3n

2
+ 2 1 1

Merge 2 k + 1 3m + 1 2 3
Partition 1 1 3n

2
+ 2 1 1

BD

Join 2 2n + 2 3 2 n + 3
Leave 2 2n − 2 3 2 n + 1
Merge 2 2n + 2m 3 2 n + m + 2

Partition 2 2n − 2p 3 2 n − p + 2

The BD protocol has a hidden cost that is not listed in Table 1:BD hasn−1 modular exponentiations with a small
exponent. Unfortunately,n−1 such exponentiations can be expensive whenn is large. For example, BD requiresO(n2)
1024-bit modular multiplications, if modular exponentiation is implemented with the square-and-multiply algorithm.
(OpenSSL uses Montgomery reduction and the sliding window algorithm to implement the modular exponentiation,
which is faster than simple square-and-multiply algorithm. However, the former requires almost the same time as the
latter for small exponents.) Because of this hidden cost, itis hard to compare the computational overhead of BD to the
other protocols. Below, we compare the four protocols for each membership event.

Join: All protocols except GDH.3 require two communication rounds. In terms of communication, the most expensive
protocol is BD which involvesn messages (all broadcast) in each round. Other protocols usea constant number of
messages. GDH is the most expensive in terms of computation,requiring linear number of exponentiations. TGDH
is comparatively efficient, scaling logarithmically in thenumber of exponentiations. STR has a constant number of
modular exponentiations. BD requires the least exponentiations, but has the hidden cost.



Leave: BD is the most expensive protocol in terms of communication. The cost order among others is determined
strictly by the computation cost, since they all have the same communication cost (one round consisting of one mes-
sage). Therefore, TGDH is best for handling leave events. STR, and GDH scale linearly with the group size. BD has a
hidden cost, which makes it hard to compare.

Merge: We first look at the communication cost. GDH scales linearlywith the number of added members, while BD
and STR are more efficient with a constant number of rounds. Although a merge in TGDH takes multiple rounds, it
depends on the number of merging groups, which is usually small. Since BD and TGDH have2n and2k messages
(at most) respectively, STR is the most communication-efficient for handling merge events. Examining computation
requirements, BD has the lowest cost with only three exponentiations. TGDH scales logarithmically with the group
size. It is more efficient than STR and GDH which scale linearly with both the group size and the number of new
members.

Partition : Both GDH and STR protocols are bandwidth efficient: only oneround consisting of one message. BD is less
efficient with two rounds ofn messages each. Partition is the most expensive operation inTGDH requiring a number
of rounds bounded by tree height. Computation-wise it is difficult to compare BD with other protocols because of its
hidden cost. TGDH requires a logarithmic number of exponentiations. GDH and STR scale linearly with the group
size.

7.2 Experimental Results

To compare the actual performance, we implemented the four protocols and compared their costs in this section. We
simulated the total computation delay from the time when themembership event happens to the time when group
key agreement finishes. Average delay has been measured, since all members do not finish group key agreement
simultaneously.

7.2.1 Test MethodologyTo perform fair comparisons, we consider the followings:

– We usep = 1024 andq = 160 for all measurements. These values are known to be secure in the current technology
[21].

– We use 1024-bit RSA signature with the fixed public exponent 3for message authentication. All protocols have
multiple signature verifications that need to be processed serially. No security risk is known for RSA signatures
with small public exponents [11].

– For TGDH, we first generate a random tree by forcing a number ofrandom partition/merge events. Since the
cost of TGDH depends on the tree structure, it is fair to generate a random tree instead of a well-balanced or an
imbalanced tree.

We use the following scenario to measure delay. For join and leave, the number of current group members isn.
For partition and merge,n varies among: 16, 32, 64, and 128.

Join We measure the computational delay for a member to join a group of n members. (Left graph of Figure 14)
In case of TGDH, we use a random tree as described above. Thex-axis denotes the number of current group
members, while they-axis shows the computational delay in seconds.

Leave We measure the computational delay for a random member to leave a group ofn members. (Right graph of
Figure 14) Note that the delay for GDH and BD does not depend onthe location of the leaving member. However,
the number of modular exponentiations for STR upon a leave event depends on the location of the leaving node.
For TGDH, we pick a random member from the tree, and measure the average delay for the leave. Thex-axis
denotes the number of remaining group members and they-axis is the computational delay in seconds.

Partition We measure the computational delay after a partition. If thenumber of current group members isn and
this group shrinks to group of sizek, we measure the average delay for the remaining group members. For BD
and GDH, the location of the leaving members does not matter.However, it is important in STR and TGDH. We,
therefore, choose leaving members at random. In Figure 15, thex-axis denotes the number of remaining group
members.



Merge Merge is the trickiest algorithm to measure fairly. First, in BD and GDH, only the number of resulting mem-
bers decides the total delay, independent of the number of merging groups. Second, the performance of STR
merge depends on the size of the largest group (which decidesthe number of modular exponentiation), and the
number of groups merging (which determines the number of signature verifications). Finally, the performance of
TGDH merge depends upon the number of merging groups (which affects the number of signature generations
and verifications), and the key tree structure. The number ofcurrent group members is not important for TGDH.
Since each protocol has different characteristics, we measured the merge costs as follows:

– The number of resulting group members is16, 32, 64 and128.
– We assume the maximum number of merging groups is five. In practice, merge of two groups is the most

frequent event. However, we allow up to five groups since somegroup communication systems may allow
(require) more than two groups to merge at one time.

– For TGDH and STR, values in thex-axis mean the number of current group members. The resulting group size
is 16, 32, 64, 128, respectively. The values in they-axis are the average computational delays for a member in
the current group after a merge of 2 – 5 groups.
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Fig. 14.Join and Leave Cost Comparison:(x, y) =(number of remaining group members after JOIN/LEAVE, computational over-
head in seconds)

7.2.2 Join Results.The left graph of Figure 14 depicts measurement for join. As expected, STR has the smallest
delay. A surprising result comes from the TGDH for a random tree: the difference between TGDH and STR is small.
In case of a random tree, the joining node is located close to the root node. GDH is the worst performer due to many
modular exponentiations. BD also shows interesting results. Though it has constant number of exponentiations, the
hidden cost evidently plays an important role.

7.2.3 Leave Results.As expected, STR is the worst performer. Note that the worst case (when a lowest member
leaves the group) cost for STR is almost twice as much as the current average value. Performance of TGDH looks best
overall, while BD performs very well when the number of groupmembers is less than 25. Leave cost in BD is almost
the same as join cost, since the protocol needs to restart whenever a new membership event happens.

7.2.4 Partition Results. Figure 15 shows partition cost when the number of current group members is 16, 32, 64,
and 128 respectively. As expected from the conceptual results, STR has the worst performance due to many modular
exponentiations. TGDH shows an interesting graph: it increases until 40% of the group members leave the group,



and decreases afterwards. This is because 1) as the number ofleaving members increases, the number of modular
exponentiations decreases, 2) when many members leave the group, the resulting group has many empty bkeys spread
over the tree, and, hence, requires more messages. The cost of BD and GDH decreases almost linearly, because it
depends on the number of resulting group members.

As described in Section 6.4, the cost of partition for TGDH can be improved when the group experiences repeated
network partition on the same link.
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Fig. 15.Partition Cost Comparison:(x, y) =(number of remaining group members after the partition, computational overhead for
an existing member if the original group shrinks to a group ofx members), the original numbers of group members are 16, 32, 64,
128 respectively.

7.2.5 Merge Results.Merge costs are shown in Figure 16 when the resulting group size is 16, 32, 64, and 128. For a
fixed number of resulting group size TGDH and BD show almost constant cost meaning that it does not depend on the
number of current group members. In contrast, the performance of GDH strongly depends on the number of current
group members, since the last member in the current group becomes the sponsor.
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7.3 Discussion

Based on the experimental results that measured the computational cost, TGDH exhibits the best performance despite
the relatively high cost of partitions. Recall that, in practice, the self-clustering property of TGDH lessens the actual
delay.

Looking at communication costs, it appears that TGDH also outperforms other protocols, except for partition
events. In a high-delay WAN, the overall partition cost in TGDH may be high, although this effect can be lessened by
self-clustering.

In high-delay WANs – where round-trip time exceeds 300 msec –it is easy to see that computation cost for a small
group is not so important. For example, if the group size is forty, the maximum difference in computational delay
for a join is about 300 msec. In other words, communication costs (e.g. multicast vs. unicast, number of multicasts,
number of rounds) are much more important in a high-delay network. Based on this consideration, the performance
of STR gets better as communication delay increases. Overall, we conclude that TGDH performs best over low- and
medium-delay networks.



8 Related Work

Group key management protocols come in three different flavors: contributory key agreement protocols, centralized,
decentralized group key distribution scheme, and server-based key distribution protocols. Since the focus of this work
is to provide common key to the dynamic peer group, we only consider the first two below.

8.1 Group Key Agreement Protocols

Research on group key agreement protocols started in 1982. We first summarize the early (theoretical) group key
agreement protocols which did not consider dynamic membership operations; Most of them only supported group
genesis.

The earliest contributory group key agreement built upon the 2-party Diffie-Hellman (DH) is due to Ingemarsson
et al. (ING) [18]. In the fist round of ING, every memberMi generates its session randomNi and computesαNi . In
the subsequent roundsk to n − 1, Mi computesKi,k = (Ki−1 mod n,k−1)

Ni whereKi−1 is the message received
from Mi−1 in the previous roundk − 1. The resulting group key is of the form:

Kn = αN1N2N3...Nn .

The ING protocol is inefficient because: 1) every member has to start synchronously, 2)n − 1 rounds are required to
compute a group key, 3) it is hard to support dynamic membership operations due to its symmetry and 4)n sequential
modular exponentiations are required.

Another group key agreement developed for teleconferencing was proposed by Steer et al. [31]. This protocol is
of particular interest since its group key structure is similar to that in TGDH.

Kn = αNn(αNn−1...(αN3(αN2N1 ))···).

This protocol is well-suited for adding new group members asit takes only two rounds and four modular exponentia-
tions. Member exclusion, however, is relatively difficult (for example, consider excludingN1 from the group key).

Burmester and Desmedt construct an efficient protocol (called BD) which takes only two rounds and three modular
exponentiations per member to generate a group key [12]. This efficiency allows all members to re-compute the group
key for any membership change by rerunning the protocol. However, according to [32], most (at least half) of the
members need to change their session random on every membership event. The group key in this protocol is different
from STR and TGDH:

Kn = αN1N2+N2N3+...+NnN1 .

One shortcoming of BD is the high communication overhead. Itrequires2n broadcast messages and each member
needs to generate 2 signatures and verify2n signatures. BD also has a hidden cost mentioned in Section 7.2.

Becker and Wille analyze the minimal communication complexity of contributory group key agreement in general
[8] and propose two protocols:octopusandhypercube. Their group key has the same structure as the key in TGDH.
For example, for eight users their group key is:

Kn = α(ααr1r2αr3r4
)(ααr5r6αr7r8

).

The Becker/Wille protocols handle join and merge operations efficiently, but the member leave operation is inefficient.
Also, thehypercubeprotocol requires the group to be of size2n (for some integern); otherwise, the efficiency slips.

Asokan et al. look at the problem of small-group key agreement, where the members do not have previously
set up security associations [5]. Their motivating exampleis a meeting where the participants want to bootstrap a
secure communication group. They adapt password authenticated DH key exchange to the group setting. Their setting,
however, is different from ours, since they assume that all members share a secret password, whereas we assume a
PKI where each member can verify any other members authenticity and authorization to join the group.

Tzeng and Tzeng propose an authenticated key agreement scheme that is based on secure multi-party computation
[33]. This scheme also uses2n broadcast messages. Although the cryptographic mechanisms are quite elegant, a
shortcoming is that the resulting group key does not provideperfect forward secrecy (PFS). If a long-term secret key
is leaked, all previous and future group keys become insecure.



Steiner et al. first address dynamic membership issues [7, 32] in group key agreement and propose a family of
Group Diffie Hellman (GDH) protocols based on straight-forward extensions of the two-party Diffie-Hellman. GDH
provides contributory authenticated key agreement, key independence, key integrity, resistance to known key attacks,
and perfect forward secrecy. The GDH protocol suite is fairly efficient in leave and partition operation, but the merge
protocol requires as many rounds as the number of new membersto complete key agreement.

Perrig extends one-way function trees (OFT, originally introduced by McGrew and Sherman [22]) to design a
tree-based key agreement scheme for peer groups [25]. This served as foundation for the design of our protocol.

8.2 Decentralized Group Key Distribution Protocols

Decentralized group key distribution (DGKD) protocols involve dynamically selecting a group member who generates
and distributes keys to other group members. After subtractive membership events, individual partitions can continue
operation by electing a new key server. The drawback is that akey server must establish long-term pairwise secure
channels (by making use of public key cryptosystem such as Diffie-Hellman) with all current group members in order
to distribute group keys. Consequently, each time a new key server comes into play, significant costs must be incurred
to set up these channels. Another disadvantage is the reliance on a single entity to generate good (i.e., cryptographically
strong and random) keys.

First DGKD protocol is due to Waldvogel et al. [14]. They propose efficient protocols for small-group key agree-
ment and large-group key distribution. Unfortunately, their scheme for autonomous small group key agreement is
insecure (not collusion resistant).

Dondeti et al. modified OFT (One-way Function Tree) [22] to provide dynamic server election [16]. This protocol
has the same key tree structure and uses the notations (e.g. keys, blinded keys) similar to ours. Other than expensive
maintenance of secure channels described above, this protocol has a high communication cost: even for single join
and leave, this protocol can takeO(h) rounds. This scheme does not handle merge and partition event. One advantage
different from other DGKD protocols is that their group key has a contributory nature: whenever a group member
changes its session random, the group key changes.

Rodeh et al. [28] propose a DGKD protocol derived from the LKHprotocol [35]. It tolerates network partitions
and other network events. Even though this approach does notavoid the disadvantages discussed above, it reduces the
communication and computational costs. In addition, it uses AVL tree to provide provable tree height bound.

9 Other Related Work

We can find further related work in the context of fault-tolerant computing and implementation issues. Protocol toolkits
such as Rampart[26, 27] are designed to provide high degree of fault-tolerance, even in the presence of malicious (i.e.,
Byzantine) faults inside a group. However, these methods are expensive since they need reliable and atomic multicast
secure against Byzantine faults.

Another interesting related work is due to Carman et al. [13]. This work compares energy consumption of group
key agreement/distribution protocols in a sensor network by computer simulation. They point out that centralized
group key distribution scheme is not appropriate for sensornetwork environments, though its power consumption is
lower than group key agreement scheme. GDH and BD are compared with their group key management algorithm. It
would be interesting to measure the power consumption of TGDH and STR protocol, but this is not our concern.

10 Conclusion

This paper presented a novel decentralized group key management approach, TGDH. In doing so, we unified two
important trends in group key management: 1)key treesto efficiently compute and update group keys and 2) group
Diffie-Hellman key exchange to achieve provably secure and fully distributed protocols. This yielded a secure, surpris-
ingly simple and very efficient key management solution, which is supported, respectively, by the security arguments
and the experiments. Moreover, our solution is inherently robust by virtue of being able to cope with cascaded (nested)
key management operations which can stem from tightly spaced group membership changes. We believe this to be an
issue of independent interest.



References

1. 5th ACM Conference on Computer and Communications Security, San Francisco, California, Nov. 1998. ACM Press.
2. Y. Amir. Replication using Group Communication over a Partitioned Network. PhD thesis, Institute of Computer Science, The

Hebrew University of Jerusalem, Jerusalem, Israel, 1995.
3. Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T. Schlossnagle, J. Schultz, J. Stanton, and G. Tsudik. Secure group

communication in asynchronous networks with failures: Integration and experiments. InICDCS 2000, Apr. 2000.
4. Y. Amir and J. Stanton. The spread wide area group communication system. Technical Report 98-4, Johns Hopkins University

Department of Computer Science, 1998.
5. N. Asokan and P. Ginzboorg. Key-agreement in ad-hoc networks. In Nordsec’99, 1999.
6. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange of digital signatures. IEEE Journal on Selected Area in

Communications, 18(4):593–610, 2000.
7. G. Ateniese, M. Steiner, and G. Tsudik. Authenticated Group Key Agreement and Friends. In ACMCCS98 [1], pages 17–26.
8. C. Becker and U. Wille. Communication complexity of group key distribution. In ACMCCS98 [1].
9. M. Bellare and P. Rogaway. Random oracles are practical: A paradigm for designing efficient protocols. In1st ACM Conference

on Computer and Communications Security, 1993.
10. D. Boneh. The Decision Diffie-Hellman problem. InThird Algorithmic Number Theory Symposium, number 1423 in Lecture

Notes in Computer Science, pages 48–63. Springer-Verlag, Berlin Germany, 1998.
11. D. Boneh. Twenty years of attacks on the RSA cryptosystem.Notices of the American Mathematical Society (AMS), 46(2):203–

213, 1999.
12. M. Burmester and Y. Desmedt. A secure and efficient conference key distribution system. In A. D. Santis, editor,Advances in

Cryptology – EUROCRYPT ’94, number 950 in Lecture Notes in Computer Science, pages 275–286. International Association
for Cryptologic Research, Springer-Verlag, Berlin Germany, 1995.Final version of proceedings.

13. D. W. Carman, P. S. Kruss, and B. J. Matt. Constraints and approaches for distributed sensor network security. NAI Lab
Technical Report 00-010, Network Assoiciates, Inc, September 2000.

14. G. Caronni, M. Waldvogel, D. Sun, N. Weiler, and B. Plattner. The VersaKey framework: Versatile group key management.
IEEE Journal on Selected Areas in Communications, 17(9), Sept. 1999.

15. D. Chaum. Zero-knowledge undeniable signatures. In I. Damgard, editor,Advances in Cryptology – EUROCRYPT ’90, number
473 in Lecture Notes in Computer Science, pages 458–464. Springer-Verlag, Berlin Germany, May 1991.

16. L. Dondeti, S. Mukherjee, and A.Samal. Disec: A distributed framework for scalable secure many-to-many communication.
In Proceedings of The Fifth IEEE Symposium on Computers and Communications (ISCC 2000), July 2000.

17. A. Fekete, N. Lynch, and A. Shvartsman. Specifying and using a partionable group communication service. InACM PODC
’97, pages 53–62, Santa Barbara, CA, August 1997.

18. I. Ingemarsson, D. T. Tang, and C. K. Wong. A conference key distribution system.IEEE Transactions on Information Theory,
28(5):714–720, Sept. 1982.

19. Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key agreement for dynamic collaborative groups. In S. Jajodia,
editor,7th ACM Conference on Computer and Communications Security, pages 235–244, Athens, Greece, Nov. 2000. ACM
Press.

20. Y. Kim, A. Perrig, and G. Tsudik. Communication-efficient group key agreement. InInformation Systems Security, Proceedings
of the 17th International Information Security Conference IFIP SEC’01, 2001.

21. A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sizes. http://www.cryptosavvy.com/ , Nov. 1999.
Shorter version of the report appeared in the proceedings of the PublicKey Cryptography Conference (PKC2000) and in the
Autumn ’99 PricewaterhouseCoopers CCE newsletter. To appear in Journal of Cryptology.

22. D. A. McGrew and A. T. Sherman. Key establishment in large dynamic groups using one-way function trees. Manuscript, May
1998.

23. L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Extended virtual synchrony. InICDCS ’94, pages 56–65, June 1994.
24. OpenSSL Project team. Openssl, May 2001. http://www.openssl.org/.
25. A. Perrig. Efficient collaborative key management protocols forsecure autonomous group communication. InInternational

Workshop on Cryptographic Techniques and E-Commerce (CrypTEC’99), July 1999.
26. M. K. Reiter. Secure agreement protocols: Reliable and atomic group multicast in rampart. In J. Stern, editor,2nd ACM

Conference on Computer and Communications Security, pages 68–80, Fairfax, Virginia, Nov. 1994. ACM Press.
27. M. K. Reiter. A secure group membership protocol. 22(1):31–42,Jan. 1996.
28. O. Rodeh, K. Birman, and D. Dolev. Optimized rekey for group communication systems. InNDSS2000, pages 37–48, 2000.
29. V. Shoup. Lower bounds for discrete logarithms and related problems. In W. Fumy, editor,Advances in Cryptology – EURO-

CRYPT ’97, number 1233 in Lecture Notes in Computer Science, pages 256–266. International Association for Cryptologic
Research, Springer-Verlag, Berlin Germany, 1997.

30. V. Shoup. Using hash functions as a hedge against chosen ciphertext attacks. In B. Preneel, editor,Advances in Cryptology
– EUROCRYPT ’2000, number 1807 in Lecture Notes in Computer Science, pages 275–288. International Association for
Cryptologic Research, Springer-Verlag, Berlin Germany, 2000.



31. D. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A secure audio teleconference system. In S. Goldwasser, editor,Advances
in Cryptology – CRYPTO ’88, number 403 in Lecture Notes in Computer Science, pages 520–528, Santa Barbara, CA, USA,
1990. International Association for Cryptologic Research, Springer-Verlag, Berlin Germany.

32. M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynamic peer groups.IEEE Transactions on Parallel and Distributed
Systems, August 2000.

33. W.-G. Tzeng and Z.-J. Tzeng. Round-efficient conference-key agreement protocols with provable security. InAdvances in
Cryptology – ASIACRYPT ’2000, Lecture Notes in Computer Science, Kyoto, Japan, December 2000. International Association
for Cryptologic Research, Springer-Verlag, Berlin Germany.

34. D. Wallner, E. Harder, and R. Agee. Key management for multicast: Issues and architecture. Internet-Draft draft-wallner-key-
arch-00.txt, June 1997.

35. C. Wong, M. Gouda, and S. Lam. Secure group communications using key graphs. InProceedings of the ACM SIGCOMM
’98 conference on Applications, technologies, architectures, and protocols for computer communication, pages 68–79, 1998.
Appeared in ACM SIGCOMM Computer Communication Review, Vol. 28, No.4 (Oct. 1998).

36. C. Wong, M. Gouda, and S. Lam. Secure group communications using key graphs.IEEE/ACM Trans. on Networking, 8(1):16–
30, 2000.



A Security Proof

This section proves the security of TGDH. We introduce the Decisional (binary) Tree Group Diffie-Hellman problem
(DTGDH) and, in a specific group setting, prove that DTGDH problem is reducible to 2-party Decision Diffie-Hellman
(DDH) problem. Later, in Sections (A.3 – A.4), this result isused to prove the security of entire TGDH protocol suite.

A.1 2-party Decision Diffie-Hellman Problem

Our proofs require a specific groupG. In this section, we introduce the groupG and define the 2-party Decision
Diffie-Hellman (DDH) problem onG.

Let k be a security parameter andn be an integer. All algorithm run in probabilistic polynomial time with k andn
as inputs.

For concreteness, we consider a specificG:
On inputk, algorithmgenchooses at random a pair(q, α) whereq is a2k-bit value8, andq andp = 2q + 1 are

both prime. Before introducingG, we first consider a group̂G, which is a group of squares modulo primep. This
group can be explained more precisely as follows: Consider an elementα which is a square of a primitive elementα̂
of multiplicative groupZ

∗
p, i.e. α = α̂2. (Without loss of generality, we may assumeα < q.) Then groupĜ can be

represented as
Ĝ =

{
αi mod p | i ∈ [1, q]

}
.

An attractive variation of this group is to represent the elements by the integers from 0 toq − 1. The group operation
is slightly different: Let a functionf be defined as

f(x) =

{
x if x ≤ q

p− x if q < x < p.

Using thisf function, we can introduce the groupG as

G =
{
f(αi mod p) | i ∈ Zq

}
.

Group operation on groupG is defined asa · b = f(a · b (mod p)), wherea, b ∈ G.

Proposition 3. Letg(x) = αx mod p. Then the functionf ◦ g is a bijection fromZq to Zq.

Proof. To see this, supposef ◦ g(x) = f ◦ g(y). Then this can be written andf(X) = f(Y ) where integerX =
αx mod p andY = αy mod p. Now we can have four different cases:

– X ≤ q, Y ≤ q: In this case,f(X) = X andf(Y ) = Y and henceX = Y . Now we have an equation̂α2(x−y) =
1 mod p. Sinceα̂ is a generator forZ∗

p, its order (i.e.2q) has to divide2(x− y). This implies thatq has to divide
x− y and finallyx = y since0 < x, y ≤ q.

– X > q, Y > q: In this case,f(X) = p−X andf(Y ) = p− Y and henceX = Y . Rests are same as above.

– X ≤ q, Y > q: This case is impossible, since
(

X
p

)
= 1 and

(
p−Y

p

)
= −1 sincep ≡ 3 mod 4 andX = p− Y .

– X > q, Y ≤ q: This is also impossible by similar reasoning.

Therefore,f ◦ g is an injection. It is also a surjection, since the sizes of domain and co-domain are the same.

Proposition 4. When a distributionr is uniform and random inG, f ◦ g(r) is still uniform and random inG, since
f ◦ g is bijective.

Groups of this type are also considered by Chaum [15]. It is generally assumed that DDH is intractable in these
groups [10]. More concretely, the2-party Decision Diffie-Hellman assumption on groupG is that for all polynomial
time attackersA, for all polynomialsQ(k) ∃k0 ∀k > k0, for X0 := N1N2 andX1 := N3 with N1, N2, N3 ∈R G
uniformly chosen, and for a random bitb, the following equation holds:

∣∣Prob[A(1k;G;α;αN1 ;αN2 ;αXb) = b]− 1/2
∣∣ < 1/Q(k)
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Fig. 17.Notations for fully balanced binary tree

A.2 Decisional Binary Tree Group Diffie-Hellman Problem

In this section we define the DTGDH problem (and assumption) and prove this problem is equivalent to 2-party
decisional Diffie-Hellman problem. Figure 17 is an example of a key tree whenn = 8.

For (q, α) ← gen(k), n ∈ N andX = (N1, N2, . . . , Nn) for Ni ∈ G and a key treeT with n leaf nodes which
correspond toNi, we define the following random variables:

– Ki
j : i-th levelj-th key (secret), each leaf node is associated with a member’s session random, i.e.K0

j = Nk for
somek ∈ [1, n].

– BKi
j : i-th levelj-th blinded key (public), i.e.αKi

j

– Ki
j is recursively defined as follows:

Ki
j = αK

i−1
2j−1K

i−1
2j

= (BKi−1
2j−1)

K
i−1
2j

= (BKi−1
2j )K

i−1
2j−1

In other words, we considerKi
j = f1(N1, N2, . . . , Nn) for some functionf1, and henceBKi

j =

αf1(N1,N2,...,Nn) = f2(N1, N2, . . . , Nn) for some functionf2.

For (q, α) ← gen(k), n ∈ N andX = (N1, N2, . . . , Nn) for Ni ∈ G and a key treeT with n leaf nodes which
correspond toNi, we can define public and secret values collectively as below:

view(q, α, h,X, T ) := {BKi
j wherej andi are defined according toT} (1)

= {αKi
j mod p wherej andi are defined according toT}

K(q, α, h,X, T ) := αK
h−1
1 K

h−1
2

Since(q, α) are obvious from the context, we omit them inview() andK(). Note thatview(h,X, T ) is exactly
the view of the adversary in TGDH as will be described in Section 5, where the final secret key isK(h,X, T ). Let
the following two random variables be defined by generating(q, α) ← gen(k), choosingX randomly fromG and
choosing key treeT randomly from all binary trees havingn leaf nodes:

– Ah := (view(h,X, T ), y)
– Fh := (view(h,X, T ),K(h,X, T ))

Let the operator “≈poly” denote polynomial indistinguishability.

8 In order to achieve the security level2−k, the group size should be at least22k [29].



Proposition 5. [32] Let K and R be l-bit strings such thatR is a random andK is a Diffie-Hellman key. We say
that K and R are polynomially indistinguishable if, for all polynomial time distinguishers,A, the probability of
distinguishingK andR is smaller than( 1

2 + 1
Q(k) ), for all polynomialQ(l).

Now we define DTGDH algorithm concretely:

Definition 6. Let (q, α)← gen(k), n ∈ N andX = (N1, N2, . . . , Nn) for Ni ∈ G and a key treeT with n leaf nodes
which correspond toNi, andAh andFh is defined as above.DTGDH algorithm A for groupG is a probabilistic
polynomial time algorithm satisfying, for some fixedk > 0 and sufficiently largem:

|Prob[A(Ah) = “True′′]− Prob[A(Fh) = “True′′]| >
1

mk
.

Accordingly,DTGDH problem is to find an Binary Tree DDH algorithm.

Now, we show that DTGDH problem is hard for the passive adversary: If the 2-party DDH in groupG defined
above is hard, DTGDH problem is hard.

Using polynomial indistinguishability, the DTGDH problemdefined in Definition 6 can be restated as: Find a
polynomial distinguisherA which can distinguishAh andFh defined above.

Theorem 7. If the 2-party DDH onG is hard, thenAh ≈poly Fh.

Proof. We first note thatAh andFh can be rewritten as:
If XL = (R1, R2, . . . , Rk) andXR = (Rk+1, Rk+2, . . . , Rn) whereR1 throughRk are associated with leaf node in
the left treeTL andRk+1 throughRh are in the right treeTR:

Ah := (view(h,X, T ), y) for randomy ∈ G

= (view(h− 1,XL, TL), view(h− 1,XR, TR), BKh−1
1 , BKh−1

2 , y)

= (view(h− 1,XL, TL), view(h− 1,XR, TR), αK
h−1
1 , αK

h−1
2 , y)

Fh := (view(h,X),K(h,X))

= (view(h− 1,XL, TL), view(h− 1,XR, TR), BKh−1
1 , BKh−1

2 , αK
h−1
1 K

h−1
2 )

= (view(h− 1,XL, TL), view(h− 1,XR, TR), αK
h−1
1 , αK

h−1
2 , αK

h−1
1 K

h−1
2 )

We prove this theorem by induction and contradiction. The 2-party DDH problem inG is equivalent to distinguish-
ing A1 andF1. We assume thatAh−1 andFh−1 are indistinguishable in polynomial time for the inductionhypothesis.
We further assume that there exists a polynomial algorithm that can distinguish betweenAh andEh for a random
binary tree. We will show that this algorithm can be used to distinguishAh−1 andEh−1 or can be used to solve the
2-party DDH problem.

Consider the following:

Ah := (view(h− 1,XL, TL), view(h− 1,XR, TR), αK
h−1
L , αK

h−1
R , y)

Bh := (view(h− 1,XL, TL), view(h− 1,XR, TR), αr, αK
h−1
R , y)

Ch := (view(h− 1,XL, TL), view(h− 1,XR, TR), αr, αr′

, y)

Dh := (view(h− 1,XL, TL), view(h− 1,XR, TR), αr, αr′

, αrr′

)

Eh := (view(h− 1,XL, TL), view(h− 1,XR, TR), αr, αK
h−1
2 , αrK

h−1
2 )

Fh := (view(h− 1,XL, TL), view(h− 1,XR, TR), αK
h−1
L , αK

h−1
R , αK

h−1
L

K
h−1
R )

Since we can distinguishAh andFh in polynomial time, we can distinguish at least one of: (Ah, Bh), (Bh, Ch),
(Ch, Dh), (Dh, Eh), or (Eh, Fh).



– Ah and Bh: Suppose we can distinguishAh and Bh in polynomial time. We will show that this distinguisher
AABh

can be used to solve DTGDH problem with heighth − 1. Suppose We want to decide whetherP ′
h−1 =

(view(h− 1,X ′, T ′), r′) is an instance of DTGDH problem orr′ is a random number. To solve this, we generate
another treeT ′′ of heighth− 1 with distributionX ′′. Note that we know all secret and public information ofT ′′.
UsingP ′

h−1 and(T ′′,X ′′), we generate a distribution:

P ′
h = (view(h− 1,X ′, T ′), view(h− 1,X ′′, T ′′), αr′

, αK(h−1,X′′,T ′′), y)

wherey ∈R G. Now we putP ′
h as input ofAABh

. If P ′
h is an instance ofAh (Bh), thenP ′

h−1 is an instance of
Fh−1 (Ah−1) by Proposition 4.

– Bh and Ch: Suppose we can distinguishBh andCh in polynomial time. We will show that this distinguisherABCh

can be used to solve DTGDH problem with heighth−1. Suppose We want to decide whetherP ′
h−1 = (view(h−

1,X ′, T ′), r′) is an instance of DTGDH problem orr′ is a random number. To solve this, we generate another
treeT ′′ of heighth − 1 with distributionX ′′ and chooser′′ ∈R G. As before we know all secret and public
information ofT ′′. UsingP ′

h−1 and(T ′′,X ′′), we generate a distribution:

P ′
h = (view(h− 1,X ′′, T ′′), view(h− 1,X ′, T ′), αr′′

, αr′

, y)

wherey ∈R G. By Proposition 4,r′′ is random and uniform inG. Now we putP ′
h as input ofABCh

. If P ′
h is an

instance ofBh (Ch), thenP ′
h−1 is an instance ofFh−1 (Ah−1) by Proposition 4.

– Ch and Dh: Suppose we can distinguishCh andDh in polynomial time. Then, this distinguisherACDh
can be

used to solve the 2-party DDH problem in groupG. Note thatαr, αr′

are independent variable fromview(h −
1,XL, TL) andview(h − 1,XR, TR). Suppose we want to test whether(αa, αb, αc) is a DDH triple or not. To
solve this, we generate two key treesT1 andT2 of heighth − 1 with distributionsX1 andX2, respectively. Now
we generate a new distribution:

P ′
h = (view(h− 1,X1, T1), view(h− 1,X2, T2), α

a, αb, αc).

If P ′
h is an instance ofCh (Dh), then(αa, αb, αc) is a valid (invalid) DDH triple.

– Dh and Eh: Suppose we can distinguishDh andEh in polynomial time. We argue that this distinguisherADEh

can be used to solve DTGDH problem with heighth − 1. Suppose We want to decide ifP ′
h−1 = (view(h −

1,X ′, T ′), r′) is an instance of DTGDH problem orr′ is a random number. To solve this, we generate another tree
T ′′ of heighth−1 with distributionX ′′. As before, we know all secret and public information ofT ′′. UsingP ′

h−1

and(T ′′,X ′′), we generate a distribution:

P ′
h = (view(h− 1,X ′, T ′), view(h− 1,X ′′, T ′′), αr′

, αr′′

, (αr′

)r′′

)

= (view(h− 1,X ′, T ′), view(h− 1,X ′′, T ′′), αr′

, αr′′

, αr′r′′

)

wherer′′ ∈R G. Since we generater′′, we can compute(αr′

)r′′

. Now we putP ′
h as input ofADEh

. If P ′
h is an

instance ofDh (Eh), thenP ′
h−1 is an instance ofFh−1 (Ah−1) by Proposition 4.

– Eh and Fh: Suppose we can distinguishEh andFh in polynomial time. We will show that this distinguisherAEFh

can be used to solve DTGDH problem with heighth − 1. Suppose we want to decide ifP ′
h−1 = (view(h −

1,X ′, T ′), r′) is an instance of DTGDH problem orr′ is a random number. To solve this, we generate another tree
T ′′ of heighth − 1 with distributionX ′′. Again, we know all secret and public information ofT ′′. UsingP ′

h−1

and(T ′′,X ′′), we generate a distribution:

P ′
h = (view(h− 1,X ′, T ′), view(h− 1,X ′′, T ′′), αr′

, αK(h−1.X′′,T ′′), (αr′

)K(h−1.X′′,T ′′))

= (view(h− 1,X ′, T ′), view(h− 1,X ′′, T ′′), αr′

, αK(h−1.X′′,T ′′), αr′K(h−1.X′′,T ′′))

wherer′ ∈R G. Sincer′ is given, we can compute(αr′

)K(h−1.X′′,T ′′). Now we putP ′
h as input ofAEFh

. If P ′
h

is an instance ofEh (Fh), thenP ′
h−1 is an instance ofFh−1 (Ah−1) by Proposition 4.



A.3 Group Key Secrecy

Before considering the group key secrecy, we briefly examinekey freshness. Every group key is fresh, since at least
one member in the group generates its random key share uniformly for every membership change9. The probability
that new group key is same as any old group key is negligible due to bijectiveness of(f ◦ g) function.

We note that the root (group) key is never used directly for the purposes of encryption, authentication or integrity.
Instead, special-purpose sub-keys are derived from the root key, e.g., by applying a cryptographically secure hash
function to the root key, i.e.H(group key) is used for such applications.

As discussed in Section 3, decisional group key secrecy is more meaningful if sub-keys are derived from a group
key. Decisional group key secrecy of TGDH protocol is somewhat related to DTGDH assumption mentioned in Sec-
tion A.2. This assumption ensures that there is no information leakage other that public blinded key informations.

We can also derive the sub-keys based on Shoup’s hedge [30]: Compute the key asH(group key)⊕H(group key)
whereH is a random oracle. It follows that in addition to the security in the standard model based on DTGDH
assumption, the derived key is also secure in the random oracle model [9] based on Computational Tree-based Group
Diffie-Hellman assumption.

A.4 Key Independence

We now give an informal proof that TGDH satisfies forward and backward secrecy, or equivalently key independence.
In order to show that TGDH provides key independence, we onlyneed to show that theviewof the former (prospective)
member to the current tree is exactly same as theviewof the passive adversary respectively, since this shows that the
advantage of the former (prospective) member is same as the passive adversary and by Theorem 7.

We first consider backward secrecy, which states that a new member who knows the current group key cannot
derive any previous group key. LetMn+1 be the new member. The sponsor for this join event changes itssession
random and, consequently, previous root key is changed. Therefore, theview of Mn+1 with respect to the prior key
tree is exactly same as theview of an outsider. Hence, the new member does not gain any advantage compared to a
passive adversary.

This argument can be easily extended to the merge of two or more groups. When a merge happens, sponsor in each
tree changes its session random. Therefore, each member’sviewon other member’s tree is exactly same as theviewof
a passive adversary. This shows that the newly merged memberhas exactly same advantage about any of the old key
tree as a passive adversary.

Now we consider the forward secrecy, meaning that a passive adversary who knows a contiguous subset of old
group keys cannot discover subsequent group keys. Here, we consider partition and leave at the same time. Suppose
Md is a former group member. Whenever subtractive event happens, a sponsor refreshes its session random, and,
therefore, all keys known to leaving members will be changedaccordingly. Therefore,Md’s view is exactly same as
theviewof the passive adversary.

This proves that TGDH provides decisional version of key independence.

9 Recall that insider attacks are not our concern. This excludes the casewhen an insider intentionally generates non-random
number.


