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Abstract. Secure and reliable group communication is an active area of reséarpopularity is caused by the
growing importance of group-oriented and collaborative applications.cEntral research challenge is secure and
efficient group key management. While centralized methods are oftgmo@ate for key distribution in large
multicast-style groups, many collaborative group settings require ditdiey agreement techniques. This work
investigates a novel group key agreement approach which blencled-key trees with Diffie-Hellman key ex-
change. It yields a secure protocol suite (TGDH) that is both simpleauititblerant. Moreover, the efficiency of
TGDH appreciably surpasses that of prior art.

1 Introduction

Fault-tolerant, scalable, and reliable communicatiomises have become critical in modern computing. An impdrtan
and popular trend is to convert traditional centralizediises (e.qg., file sharing, authentication, web, and matt) in
distributed services spread across multiple systems anares. Many of these newly distributed and other inhegentl
collaborative applications (e.g., conferencing, whitedals, shared instruments, and command-and-controlnsgkte
need secure communication. However, experience showsdbatity mechanisms for collaborative and dynamic peer
groups tend to be both expensive and unexpectedly compigkat regard, dynamic peer groups are very different
from non-collaborative, centrally managed, one-to-mamygw-to-many) broadcast groups such as those encountered
in Internet multicast.

Dynamic Peer Groups (DPGs)re common in many layers of the network protocol stack angyraaplication
areas of modern computing. Examples of DPGs include rdplicservers (such as database, web, time), audio and
video conferencing and, more generally, applications sttppy collaborative work. In contrast to large multicast
groups, DPGs tend to be relatively small in size, on the aoflaundred members. Larger groups are harder to control
on a peer basis and are often organized in a hierarchy. DRiEsally assume a many-to-many (or, equivalently,
any-to-any) communication pattern rather than one-toynpattern common of larger hierarchical groups.

Despite their relatively small number, group members in &DRay be spread throughout the Internet and must
be able to deal with arbitrary partitions due to networkueds, congestion, and hostile attacks. In essence, a group
can be split into a number of disconnected partitions eaathath must persist and function as an independent peer
group.

Security requirements in collaborative DPGs present sgirgeresting research challenges. In this paper, we focus
on secure and efficiegroup key management The goal of group key management is to set up and maintaiaragh
secret key among the group members. It serves as a correefetasther DPG security services.

1.1 Group Key Management

There are several fundamentally different approachesaiopgkey management in peer groups.

One approach relies on a single entity (called a key sergegherate keys and distribute them to the group. We
refer to it ascentralized group key distribution. Essentially, a key server maintains long-term shared wétyseach
group member in order to enable secure two-party commuaicédr the actual key distribution. One form of this
solution uses a fixed trusted third party (TTP) as the keyesefhis approach has two problems: 1) TTP must be

* An early version of this paper has appeared, in part, in [19].



constantly available, and 2) TTP must exist in every possiibset of a group in order to support continued operation
in the event of network partitions. The first problem can bdragised with fault-tolerance and replication techniques.
The second is impossible to solve in a scalable and efficiamir. We note, however, that the centralized approach
works well in one-to-many multicast scenarios since a TTiPa(set thereof) placed at, or very near, the source
of communication can support continued operation withinadsitrary partition as long as it includes the source.
Typically, one-to-many settings only aim to offer contidusperation within a single partition that includes the seur
Whereas, many-to-many environments must offer continuedation in an arbitrary number of partitions.

Another approach — callegkcentralized group key distribution — involves dynamically selecting a group mem-
ber to generate and distribute keys to other group membkisapproach is more robust and, thus, more applicable to
many-to-many groups since any partition can continue d¢jperay electing a key server. The drawback is that, as in
the TTP case, a key server must establish long-term paiseisere channels with all current group members in order
to distribute group keys. Consequently, each time a new émyes comes into play, significant costs must be incurred
to set up these channels. Another disadvantage, againtas TP case, is the reliance on a single entity to generate
good (i.e., cryptographically strong, random) keys.

In contrast to the above approaches, contributory groupri@yagement requires each group member to contribute
an equal share to the common group key (which is then com@st@dfunction of all members’ contributions). This
avoids the problems with the centralized trust and the sipgint of failure. Moreover, some contributory methods
do not require the establishment of pairwise secret charamabng group members. One significant problem with,
current contributorygroup key agreement? protocols is that they are not designed to tolerate failares group
membership changes during execution. In particular, de@ascaded) failures, partitions and other group events
are not accommodated. This is not surprising since mostiHnawihd cryptographic protocols do not offer built-in
robustness with the notable exception of protocols fordaghange [6].

1.2 Overview

In this paper, we focus on contributory group key agreemientloing so, we unify two important trends in group
key management: Rey treedo efficiently compute and update group keys and 2) DiffiehHah key exchange to
achieve provably secure and fully distributed protocolsr @ain result is a simple, secure, robust and efficient key
management solution, called TGDH (Tree-based Group Dhfé#man).

Organization: The rest of this paper is organized as follows. Section 2gmssour assumptions and requirements for
the reliable group communication system. Section 3 intcedicryptographic requirements of our group key agree-
ment protocol and Section 4 introduces notation and terimgyo The actual protocols are described in Section 5
followed by practical aspects of the protocol in Section éctn 7 analyzes both conceptual and experimental pro-
tocol complexity. The summary of related work appears intiec. Finally, security argument of the proposed
protocols are provided in Appendix A.

2 Group Communication and Group Key Agreement

As noted in the introduction, many modern collaborative disfributed applications require a reliable group com-
munication platform. The latter, in turn, needs specialigecurity mechanisms to perform — among other things —
group key management. This dependency is mutual sinceigabgtoup key agreement protocols themselves rely
on the underlying group communication semantics for prtotessage transport and strong membership semantics.
Implementing multi-party and multi-round cryptographioimcols without such support is foolhardy as, in the end,
one winds up reinventing reliable group communicationgool

In this section we begin with a brief discussion of reliableugp communication. Next, we summarize the rela-
tionship between group membership events and group keygearent protocols and conclude with the summary of
desired cryptographic properties.

1 We use the term "agreement,” as opposed to "distribution”, to emphasiztitributory nature of the key management.



2.1 Group Communication Semantics and Support

There are two commonly used strong group communication siesaExtended Virtual Synchrony (EVS) [23, 2] and
View Synchrony (VS) [17]. Both guarantee that: 1) group merslsee the same set of messages between two sequen-
tial group membership events, and, 2) sender’s requestssiage order (e.g., FIFO, Causal, or Total) is preserved. VS
provides a stricter service whereas EVS implementatiomg@nerally more efficient.

The main difference between EVS and VS is that EVS guaranitegsnessages are delivered to all receivers in
the same membership as existed when the message was dyigaralion the network. VS, in contrast, offers a stricter
guarantee that messages are delivered to all recipienite isaime membership as viewed by the sender application
when it originally sent the message.

Providing the latter property requires an extra round ofhagkedgment messages from all members before in-
stalling a new membership view. This need for acknowledgmdittates that the groups be closed, only allowing
members of the group to send messages to it. However, thelédge/that a message is received in the membership
the sender believed it was sent makes implementing secatg grommunication easier because every message is
encrypted with the same key as the receiver believes ismtumieen the message is delivered to them.

An implementation of any distributed fault-tolerant grokgy agreement protocol requires VS. This is because
implementing group key agreement on top of EVS would reqtlieekey agreement protocol to incorporate and
implement semantics identical to those of VS in order toexdty keep state of which messages were sent in which
key epoch (Intuitively, this is because membership events are uigiable and each triggers an instance of a key
agreement protocol. Thus, multiple key agreement prosozanh overlap in time and cause instability unless significan
amount of state is kept within the key agreement protocolémpgntation.) For this reason, there is no particular benefi
to building key agreement on top of EVS semantics.

The issues surrounding implementation of key agreemenymamic peer groups are addressed in detail in [3].
Suffice it to say that, in the context of this paper, we reqtheeunderlying group communication to provide View
Synchrony (VS). However, we stress that VS is needed forake ef fault-tolerance and robustness; the security of
our protocols is in no way affected by the lack of VS.

2.2 Group Membership Events

A comprehensive group key agreement solution must hanglistatkents to group secrets subsequent to all member-
ship change operations in the underlying group commumicatystem.

We distinguish among single and multiple member operatiSirtggle member changes include memjoén or
leave Leave occurs when a member wants (or is forced) to leave @pghvhile there might be different reasons
for member leave — such as voluntary leave, involuntaryadisect or forced expulsion — we believe that group key
agreement must only provide the tools to adjust the grougtseand leave the rest up to the higher-layer (application-
dependent) security mechanisms.

Multiple member changes can also be additive and subteadtie refer to the former operation gup merge,
in which case two or more groups merge into a single group.efég to the latter agroup partition , whereby a group
is split into smaller groups. A group partition can take pléar several reasons two of which are fairly common:

1. Network failure — a network event causes disconnectidhimithe group. Consequently, a group is split into
fragments some of which are singletons while others (thosenhaintain mutual connectivity) are sub-groups.

2. Explicit (application-driven) partition — the applicat decides to split the group into multiple components or
exclude multiple members at once.

Similarly, a group merge be either voluntary or involuntary

1. Network fault heal — a network event causes previouslgatisected network partitions to reconnect. Conse-
quently, groups on all sides (and there might be more tharstdes) of an erstwhile partition are merged into a
single group.

2. Explicit (application-driven) merge — the applicatiogcities to merge multiple pre-existing groups into a single
group. (The case of simultaneous multiple-member addis@mt covered.)

At the first glance, events such as network partitions ani feaals might appear infrequent and dealing with them
might seem a purely academic exercise. In practice, howsueh events are common due to network misconfigu-
rations and router failures. In addition, in the environingirad hocwireless communication, network partitions are



both common and expected. In [23], Moser et al. offer somepadling arguments in support of these claims. We
consider coping with group partitions and merges to be aaraomponent of group key agreement.

In addition to the aforementioned membership operatioaspgic refreshes of group secrets are advisable so as
to limit the amount of ciphertext generated with the samedayto recover from potential compromises of members’
contributions or prior session keys.

3 Cryptographic Properties

One of the most important security requirements of groupdgrgement is callekley freshness A key is fresh if it
can be guaranteed to be new, as opposed to possibly an oletkeyreused an adversary.

Furthermore, a session key should be known only to the ieebbarties. We can now define four important security
properties of group key agreement:

Definition 1. Assume that a group key is changedtimes and the sequence of successive group keys is
{Ko,...,Kn}.

1. Group Key Secrecyguarantees that it is computationally infeasible for a passdversary to discover any group
key K; € K for all .

2. Forward Secrecyguarantees that a passive adversary who knows a contigubsstsof old group keys (say
{Ko, K1, ..., K;}) cannot discover any subsequent group kgyfor all ; andj wherej > 1.

3. Backward Secrecy guarantees that a passive adversary who knows a contigudisetsgroup keys (say
{K;,Ki+1, ..., K;}) cannot discover preceding group k&y for all /, 7, k wherel < i < j.

4. Key Independenceguarantees that a passive adversary who knows a propet sfigseup keysf( C K cannot
discover any other group key € (K — K).

The relationship among the properties is intuitive. EitbéBackward or Forward Secrecy subsumes Group Key
Secrecy and Key Independence subsumes the rest. Also, fit@ragion of Backward and Forward Secrecy forms
Key Independence.

Our definition of group key secrecy allows partial leakagéédrmation. Therefore, it would be more desirable
to guarantee that any bit of the group key is unpredictaldettis reason, we prove a decisional version of group key
secrecy in Appendix A. In other words, decisional versiogi@up key secrecy guarantees that it is computationally
infeasible for a passive adversarydistinguish any group keyk; from random number.

Our definitions of Backward and Forward Secrecy are strotiger those typically found in the literature. The two
are often defined (respectively) as [32, 25]:

— Previously used group keys must not be discovered by newpgrmmbers.
— New keys must remain out of reach of former group members.

The difference is that the adversary here is assumed to beemtor a former group member. Our definition addition-
ally includes the cases of inadvertently leaked or otherwsmpromised group keys. We refer to the above as Weak
Forward Secrecy and Weak Backward Secrecy, respectively.

In this paper we do not consider (implicit or explicit) keytlaentication as part of the group key management
protocols. All communication channels are public but antite This means, as discussed later in the paper, that all
messages are digitally signed by the sender using a sufficigtnong public key signature method, such as DSA
or RSA. Furthermore, each message includes: the protoentifitr (TGDH), the event type identifier (i.e., JOIN,
LEAVE, etc.), the protocol sequence number and the sentileestamp. All receivers are required to verify signatures
on all received messages and check the aforementioned fids no long-term secrets or other keys are used for
encryption, we are not concerned with Perfect Forward $gdieFS) since it is achieved trivially.

4 Notation and Definitions

We use the following notation:



N |number of protocol parties (group members)
C set of current group members

L  |set of leaving members

J |set of newly joining members

M, |i-th group member; € {1,..., N}

h height of a tree

(1, v) |v-th node at level in a tree

T, |M,;'s view of the key tree

AZ» M;’s modified tree after membership operation
T,;) |A subtree rooted at nodg, j)

BK}|set of M;’s blinded keys

p,q |prime integers

Q@ exponentiation base

Key treeshave been suggested in the past for centralized group kéybditon systems. The seminal work of
Wallner et al. [34] is the earliest such proposal. One of tlennieatures of our work is the use of key trees in
fully distributed contributory key agreement. Figure 1whan example of a key tree. The root is located at level
0 and the lowest leaves are at level Since we use binary treésgvery node is either a leaf or a parent of two
nodes. The nodes are denotgdv), where0 < v < 2! — 1 since each level hosts at mose! nodes® Each node
(I,v) is associated with the kei(; ., and the blinded key (bkeyBK ., = f(K(..)) where the functionf ()
is modular exponentiation in prime order groups, ifék) = o* mod p (analogous to the Diffie-Hellman protocol).
Assuming a leaf nodd, v) hosts the membev/;, the nodg(, v) hasM;'s session random kel ; .,y . Furthermore, the
member); at node(l, v) knows every key along the path frofh v) to (0, 0), referred to as thkey-pathand denoted
KEY;. InFigure 1, if a membel, owns the tredy, thenM, knows every key K 3 1y, K 2.0y, K(1,0), K(0,0) } IN
KEYy = {(3,1),(2,0),(1,0),(0,0)} and every bkey3 K3 = {BK o0y, BK(1,0y,..., BK (37} onT,. Every key
K., is computed recursively as follows:

Koy = (BK(Z+1,21)+1))K<l+1’2"’> mod p
= (BK(I+1,2U>)K<H1’2I’+1> mod p

— ofa+1.20) K41,2041) mod P
= f(K<l+1,2v>K<l+1,2v+1>)

Computing a key at, v) requires the knowledge of the key of one of the two child nadesthe bkey of the other child
node.K oy at the root node is the group secret shared by all memberstréés sonce again, that this value is never
used as a cryptographic key for the purpose of encryptiatmeatication or integrity. Instead, such special-purpose
sub-keys are derived from the group secret, e.g., by seiting., = h,(K,0y) whereh, is a cryptographically
strong hash function uniquely indexed with the purposeitdenp, e.g., encryption.

For example, in Figure /> can computes i, oy, K 1,0y andK g oy USINGB K (3 gy, BK 2,1y, BK 1,1y, andK 3 1.
The final group keyx g o) is:

(ars(cﬂ'ﬂ‘z))(ar4(oﬂ‘57‘6))

K<070> =«

To simplify subsequent protocol description, we introdtlee termco-path denoted ag’O;, which is the set of
siblings of each node in the key-path of memBéy. For example, the co-patiO; of memberl/; in Figure 1 is
the set of node$(3,0), (2,1), (1,1)}. Consequently, every membgf; at leaf nod€/l, v) can derive the group secret
K 0,0y from all bkeys on the co-path'O; and its session randoid; .

5 TGDH Protocols

In this section we introduce the four basic protocols thainfethe TGDH protocol suite: join, leave, merge, and
partition. All protocols share a common framework with tbédwing notable features:

2 Note that the tree needs to be binary, since our protocol uses the tiyoRpifie-Hellman key exchange to derive a node key
from the contribution of the two children.

% Even though the key tree is not balanced, we assume a perfectly bhtaeedor node numbering. Thus, a nodé'sy) left and
right children have indexe8 + 1, 2v) and(l + 1, 2v + 1), respectively.



Fig. 1. Notation for tree

— Each group member contributes an equal share to the grouf kekey is computed as a function of all current
group members’ shares.

— Each share is secret (private to each group member) andés rexealed.

— As the group grows, new members’ shares are factored intgrthg key and, upon each new member’s joining,
one of the old members changes its share.

— As the group shrinks, departing members’ shares are renfovm@dhe new group key, and at least one remaining
member changes its key shhre

— All protocol messages are signed, timestamped, sequambeared and type-identified by the sender; as dis-
cussed at the end of Section 3. (We use RSA for message sgjncgythe number of receivers is greater than the
number of senders. )

After every membership change, all remaining members ienépntly update the key tree structure. Since we
assume that the underlying communication system prowgss synchronysee Section 2), all members who cor-
rectly execute the protocol, recompute identical key tefter any membership event. The following is the minimal
requirement for computing the group key:

Proposition 2. A group key can be computed from any member’s secret shareainy leaf value) and all bkeys on
the co-path to the root.

It is easy to see that knowledge of its own secret share arglldithg bkeys on the path to the root enables a
member to compute all intermediate keys on its key-pathudhiag the root group key. This is similar to other tree-
based schemes [36, 34] where each member is required to Kh&aya on the path from itself (leaf) to the root.
Although not strictly necessary for computing group key;, protocol also requires each member to kredwbkeys
in the entire key tree. As will be seen below, this makes tmellag of future membership changes more efficient and
robust.

As part of the protocol, a group member can take on a spgedaisor role which involves computing intermediate
keys and broadcasting to the group. Each broadcasted neessatpins the sender’s view of the key tree which
contains each bkey known to the sender. (We stress thatiatkate keys are never broadcasted!) Any member in the
group can unilaterally take on this responsibility, depegan the type of membership event. In some cases, such as
a partition event, multiple sponsors might be involved.

In case of an additive change (join or merge), all group mementify a unique sponsor. This sponsor is
responsible for updating its secret key share, computifegtef [key, bkey] pairs and broadcasting all bkeys of the
new tree to the rest of the group. The common criteria for spoeelection is determined by the tree maintenance
strategy described in Section 5.6. We emphasize, from tts=guhat sponsor is not a privileged entity: its only task
is the updating and broadcasting of tree information to tioeig.

4 This prevents the group from reusing old keys. For example, if a mejoins and immediately leaves, the group key would be
the same before the join and after the leave. Although, in practice, this Eways a problem and might even be a desirable
feature, we choose to err on the side of caution and change the kegrérconcrete terms, changing the key upon all membership
changes preserves key independence [32, 7].



In response to a subtractive membership change (leave titigrgr all members update the tree in the same
manner. Since the case of partition subsumes the case dfla save, we discuss it in more detail. Group partition
results in a smaller tree since some leaf nodes disappearrésult, some subtrees acquire new siblings; therefore,
new intermediate keys and bkeys must be computed througfffia-Bellman exchange between the new siblings
sub-trees. The computation proceeds in a bottom-up fastitbreach member computing keys and bkeys until either:
1) it blocks due to a dependency on a new sibling bkey thatasdmt yet know, or 2) it computes the new root (group)
key. If a member blocks without computing any new keys, itddoething. Otherwise, it broadcasts its view of the key
tree which includes the newly computed bkeys. This processpeated at mosttimes whereh is the height of the
tree, i.e., until all remaining members compute the new giay.

5.1 TGDH Membership Events

As discussed in Section 2, a group key agreement method megqulsevide key adjustment protocols to cope with
membership changes. TGDH includes protocols in suppoheofdllowing operations:

Join: a new member is added to the group

Leave: a member is removed from the group

Merge: a group is merged with the current group
Partition: a subset of members are split from the group
Key refresh: the group key is updated

Before turning our attention to the actual protocols wesstrihat, while a comprehensive protocol suite must
address all types of key adjustment operations, the gepeliay (or case-by-case decisions) regarding if and when to
change a group key is the responsibility of the applicatiothar the group communication system.

The following sections (5.2 — 5.5), present the four protecim each section, we assume that every member can
unambiguously determine both the sponsors and the insddation in the key tree (in case of an additive event).
Later in Section 5.6, we will explain how this works. Notetthize key refresh operation can be considered a special
case of leave without any members actually leaving the group

5.2 Join Protocol

We assume the group hasnembers{ My, ..., M, }. The new membek/,, ., initiates the protocol by broadcasting a
join request message that contains its own bKey,, oy. This message is distinct from any JOIN messages generated
by the underlying group communication system, althougtpractice, the two might be combined for efficiency’s
sake.

Step 1: The new member broadcasts request for join

— T
Mo BKo0=a’n+! C={M,... M)

Step 2: Every member
e update key tree by adding new member node and new intermediate node,
e removes all keys and bkeys from the leaf node related to the sponsertoatnode,
The sponsod/ additionally
e generates new share and computeskal) [ bkey] pairs on the key path,
e broadcasts updated trée including only bkeys.

~

CU{Mn,+1}:{M1,...,M7L+1} T9(BK:) MS

Step 3: Every member computes the group key u?ﬁng

Fig. 2. Join Protocol



Each current member receives this message and determ@esséition point in the tree. The insertion point is
the shallowest rightmost node, where the join does not &aser¢he height of the key tree. Otherwise, if the key tree
is fully balanced, the new member joins to the root node. Tgunsor is the rightmost leaf in the subtree rooted at
the insertion node. Next, each member creates a new int@taagtbde and a new member node, and promotes the
new intermediate node to be the parent of both the insertiole mnd the new member node. After updating the tree,
all members, except the sponsor, block. The sponsor predeatpdate its share and compute the new group key; it
can do this since it knows all necessary bkeys. Next, thesspdiroadcasts the new tree which contains all bkeys. All
other members update their trees accordingly and compeitieetiv group key (see Proposition 2).

It might appear wasteful to broadcast the entire tree to athivers, since they already know most of the bkeys.
However, since the sponsor needs to send a broadcast meéssagegroup anyhow, it might as well include more
information which is useful to the new member, thus saving onicast message to the new member (which would
have to contain the entire tree).

Tree & Treeéﬁ

New Intermediate Node

Fig. 3. Tree update: join

Figure 3 shows an example of membé; joining a group where the sponsdvl§) performs the following actions:

1. renames nodg, 1) to (2, 2)
2. generates a new intermediate ngtlel) and a new member node, 3)
3. promoteg1, 1) as the parent node ¢2, 2) and(2, 3)

Since all members knoB K, 3, and BK 1 ), M3 can compute the new group ké, o). Every other member also
performs step 1 and 2, but cannot compute the group key inrdterdund. Upon receiving the broadcasted bkeys,
every member can compute the new group key.

5.3 Leave Protocol

Once again, we start with members and assume that membg&y leaves the group. The sponsor in this case is the
rightmost leaf node of the subtree rooted at the leaving neelbibling node. First off, as shown in Figure 4, each
member updates its key tree by deleting the leaf node camekipg to)M,;. The former sibling of\/, is promoted to
replaceM,’s parent node. The sponsor generates a new key share, @smgilikey, bkey] pairs on the key path up
to the root, and broadcasts the new set of bkeys. This allbwsembers to compute the new group key.

Looking at the setting in Figure 5, if membéf; leaves the group, every remaining member delétes) and
(2,2). After updating the tree, the sponsd/{) picks a new sharé((, 3y, recomputess’; 1y, Ko o), BK (2 3 and
BK 1y, and broadcasts the updated tigavith BK¢. Upon receiving the broadcast message, all members compute
the group key. Note that/; cannot compute the group key, though it knows all the bkegsabse its share is no
longer part of the group key.



Step 1: Every member
e updates key tree by by removing the leaving member node and relevamitmode,
e removes all keys and bkeys from the leaf node related to the sponserodhnode,
SponsorM; additionally
e generates new share and computeskaly[ bkey] pairs on the key path,
e broadcasts updated trée including only bkeys.

M, T.(BK?) (M. M)} — { Mg}

Step 2: Every member computes the group key uﬁng

Fig. 4. Leave Protocol

Fig. 5. Tree updating in leave operation

5.4 Partition Protocol

Assume that a network fault causes a partition ofithraember group. From the viewpoint of each remaining member,
this event appears as a concurrent leave of multiple membkespartition protocol is involves multiple rounds; it
runs until all members compute the new group key.

In the first round, each remaining member updates its treeelstidg all partitioned members as well as their
respective parent nodes and “compacting” the tree. Theedtoe is as follows:

All leaving nodes are sorted by depth order. Starting at depdst level, each pair of leavin
siblings is collapsed into its parent which is then markebtaging. This node is re-inserte
into the leaving nodes list. The above is repeated untilealVing nodes are processed, i.
there are no more leaving nodes that can be collapsed.

The resulting tree has a number of leaving (leaf) nodes leryesuch node has a remaining
sibling node. Now, for each leaving node we identify a sponsing the same criteria &
described in Section 5.3.

T o

D

[2)

Each sponsor now computes keys and bkeys on the key-path ag the tree as possible. Then, each sponsor
broadcasts the set of new bkeys. Upon receiving a broadgaast,member checks whether the message contains new
bkeys. This procedure iterates until all members obtairgtep key. (Recall that a member can compute the group
key if it has all the bkeys on its co-path.)



Step 1: Every member
e updates key tree by by removing all the leaving member nodes and theitpade,
e removes all keys and bkeys from the leaf node related to the sponsertoathnode,
— Each sponsak/,,
o If M, is the shallowest rightmost sponsor, generates new share,
e computes all ey, bkey] pairs on the key path until it can proceed,
e broadcasts updated tréet including only bkeys.

M., T, (BKZ,) c—r
-

Step 2 toh (Until a sponsoM;; computes the group key)
— Each sponsab/,,
e computes all fey, bkey] pairs on the key path until it can proceed,
e broadcasts updated tr@gt including only bkeys.

~

M, T, (BK?,) c—r
—

Steph + 1: Every member computes the group key us;f?;g

Fig. 6. Partition Protocol

To provide key independence, one of the remaining membedste change its key share. For this reason, in the
first round of the partition protocol, we require the shakstrightmost sponsor to generate a new key share.

This protocol takes multiple rounds to complete. We analiigenumber of rounds aftermembers are partitioned
from a group ofn members. In the first round, each remaining member updatd¢e# by deleting all partitioned
members as well as their respective parent nodes. Now, eaclrée has at mogt paths with empty bkeys. The
expected number of paths with empty keyj?. Filling up these bkeys requires at mosin(log, p, h) rounds,
since 1) every sponsor in each subsequent rounds compugs &k far up the tree as possible, and 2) the number of
rounds never exceeds the tree height.

Figure 7 shows an example where all remaining members dalatedes of leaving members and compute keys
and bkeys in the first round. In the figure on the right, anyhfor M3 (M5 or Mg) cannot compute the new group
key, since they lack the bkeB K, 1y (BK (1)), respectively. However)/; broadcasts3 K ; o in the first round,
and Mg can thus compute the group key. Finally, every member kndviskays and can compute the group key. As
discussed above, before computifig, ), Ms changes its shark ; 3.

" <0,0>
/\/"&Q\

e TN
/0 <1,1>0 N\
/-~ N\

M; Mg/
< Spons/ov

~_~—

~—

Fig. 7. Tree updating in partition operation



Note that, if some membeév/; computes the new group key in rouht] then all other members can compute the
group key, at the latest, in rourtd + 1, sinceM;’s broadcast message contains all bkeys in the key tree.eleach
member can detect the completion of the partition protaudépendently.

5.5 Merge Protocol

As discussed in Section 2, network faults can partition aigrioto several subgroups. After the network faults heal,
subgroups may need to be merged back into a single group. ¥Wdesxribe the merge protocol fbimerging groups.

In the first round of the merge protocol, each sponsor (thetmigst member of each group) broadcasts its tree
with all bkeys to all other groups after updating the sechatrs of the sponsor and relevdhty, bkey| pairs up to
the root node. Upon receiving these messages, all membeimoguely and independently determine how to merge
thosek trees by tree management policy described in 5.6.

Step 1: EachV/,, in each tredl;:
¢ generate new share and compute /], bkey] pairs on the key path dfy, ,
¢ broadcast updated tré&, including only bkeys.

M., T (BK,) U, G

Step 2: Every member:
e update key tree by adding new trees and new intermediate nodes,
e remove all keys and bkeys from the leaf node related to the sponsoroatheode,
Each sponsoi/,, additionally:
e compute all possibleifey, bkey] pairs on the key path,
e broadcast updated trée.

~

M., T, (BK?,) Uk, G
Step 3 toh (Until a sponsoiM;s; computes the group key): Each sponsdy, :
e compute all possiblekfey, bkey] pairs on the key path,
e broadcast updated trég, .
M., Ty (BKS,) U G
_—

Steph + 1: Every member computes the group key us:fi’;g

Fig. 8. Merge Protocol

Next, each sponsor computes @by, bkey| pairs on the key-path until it either reaches the root or entars a
dependency.lt then broadcasts its view of the tree to the group. All mershgpdate their tree views with the new
information. If the broadcasting sponsor computed the kegtthen, upon receiving the broadcast, all other members
can compute the root key as well. In a more general case, ddastnblocksexactly one locked sponsor who can
now compute furthefkey, bkey| pairs. This process is incremental, similar to the partifwotocol. Finally, some
sponsor will compute the new root key and will broadcast #aetkee. Now, all members can compute the group key.

The communication overhead of the merge protocol may agpghr However, this is not the case. Let us assume
k merging groups. In the first round, a sponsor in each grougdmasts its key tree after updating its session random.
Upon receiving these broadcast messages, every membddsebley tree which has some missing bkeys. At most
k paths will have missing bkeys. Propagating these bkeysresjat mostog, & rounds, since each sponsor (in each
subsequent round) computes bkeys as far as it can. Theraforerge of groups takes at mogig, k£ + 1 rounds.

% If a sponsor cannot compute a new intermediate key, it does notdasalout simply blocks.



Figure 9 shows an example of two merging groups, where thessps)/, and M, broadcast their tree§§ and
T7). Upon receiving these broadcast messages, every membetscivhether it is the sponsor in the second round.
Every member in both groups merges two trees, and thén(the sponsor in this example) updates the key tree,
computes and broadcasts bkeys.

. N\
M. S6_

Current members new members

Fig. 9. Tree update in merge

5.6 Tree Management

Modular exponentiation is the most computationally expeneperation in TGDH. The number of exponentiations
for a membership event depends on the current tree struémnirexample, if a single member or a whole tree merges
to the root node of the current tree, at most 5 modular expatems are required to complete this operation. If a
key tree is balanced, and a member joins to a leaf node, teenuimber of exponentiations 4§log, n] wheren is
the current number of users. Hence, it is easy to see thamngpio the root always requires the minimum number of
exponentiations for additive membership operations.rifembers join to the root, however, the resulting tree besome
unbalanced (similar to a linked list). If a key tree is fullglanced and a member leaves, the number of exponentiations
is 4[logy n].

Therefore, our goal for the tree management policy is to:

— keep the key tree as balanced as possible, and
— minimize the number of modular exponentiations, and
— minimize the number of protocol rounds

5.6.1 Policy for Additive and Subtractive Events Our heuristic for keeping the key tree balanced is to choose
the insertion node for a join or merge operation as the rigstrshallowest node. This usually does not increase the
height. If we have to increase the height of the key tree, weplsi join to the root. (See also Sections 5.2 and 5.5.)
We do not employ any tree balancing scheme for the subteaetients or attempt to re-balance when the key tree
becomes unbalanced.

In the rest of this section, we discuss our tree managemeic gor Merge (Join is a special case thereof). In
particular, we focus on how each member independently, lEmeously, and unambiguously mergesrees and
selects an insertion point for each merge. Clearly, thegpegties (independency, concurrency, and consisteney) ar
crucial to obtain a correct and efficient protocol.

Recall that we havé merging trees. Each member invokes therge _trees functionk — 1 times:

1. First, the trees are ordered from the highBsto the lowestT},. If multiple trees are of the same height, we list
them in lexicographic order of the first member in each tree.

2. LetT =T.

3. Fori=2tok, T «— merge,trees(f, T;).



Since every member can order the merging trees indepegdentlunambiguously, all members can agree on a
key tree if themerge _trees algorithm guarantees uniqueness of the result. We now sbantdymerge two trees.

If two trees are of the same height, we join one tree to the modk (insertion point) of the other. To provide
unambiguous ordering we lexicographically compare thatiflers of the respective sponsors. Otherwise, we join
the shallower tree to the deeper tree. To locate the insgptiint we first try find the rightmost shallowest node (not
necessarily a leaf) where the join would not increase theatiieee height. If no such node exists (i.e., the tree heigh
would increase anyway) the insertion point is the root node.

As an illustration, consider two tre€g, and T;, where the height off}, is greater than that of;. The
merge _trees algorithm is as follows:

merge_trees (T_h, T_I) {

T=Th
i=1,j= 201
While (1) {

If (height (T_I) >= Max {height (T_<i, j>) | 0 <= j < 27} {
/I If the height of the smaller tree is
/I greater than that of all subtrees
result = T_h // Nowhere to join, join to root
Break
} Endif

If (T_I is joinable to node <i, j> of tree T_h){
result = T_<i, j> // Join to node T_<i, j>
} EndIf
Else{
J_-
If < 0){
i++, j = 201
} Endif
} EndElse
} EndWhile

/I Merge two trees
T_<i+l, 2j> = T_<i, j>

/I Old T_<i, j> becomes the left child of new T_<i,j>
T <i+l1, 2j+1> = T_I

/I T_| becomes the right child of new T_<i, j>

Return T

The firstif statement in the while loop breaks when there is no join-abtée inT}; the trees will then be joined
at the root node. Join-able means that we can merge two tittemvincreasing the height @f, by placing a subtree
rooted at the join-able node as the left child of itself, anttipg 7; as the right child. We can see thraerge _trees
algorithm fulfills the goal for the tree management policgatéed above.

5.6.2 Sponsor Selection SummarySponsor selection in TGDH takes place in each protocol ro(Recall that
TGDH is a multi-round protocol.) As mentioned earlier, urégess, consistency and independence of this process is
crucial for protocol correctness. Sponsor selection ifopered as follows.

We already mentioned the behavior of the sponsor in two tiitost

1. Additive event: member associated with the rightmodtiede of each key tree becomes the sponsor.



2. Subtractive event: member associated with the rightieestnode rooted at the sibling node of each leaving
member. In case of partition, there may be multiple sponsors

The above only covers the initial protocol round. In subsgjuounds, a sponsor is always the rightmost leaf rooted
at the node which lacks a current bkey.

To summarize, the role of a sponsor is three-fold: 1) refitsskey sharg, 2) compute allkey, bkey] pairs as far
on the key path as possible, and 3) broadcast the updateddestptallcurrentgroup members.

6 Practical Considerations

In this section, we describe the TGDH implementation isaresthen discuss self-stabilization and self-clustering
properties.

6.1 Implementation Architecture

TREEAPI is a group key agreement API that implements the cryjiplgic primitives of TGDH. It contains the
following three function calls:

— tree _new_user : called by any new member to generate its context.

— tree _merge _req : called by every group member when a join/merge occurselttifles the sponsor unambigu-
ously (as described in Section 5.6). It then remove§all, bkey] pairs on its key path. If the caller is a sponsor,
generates new secret share and computes all keys and bkigy&eypath. This function returns an output token,
which is then broadcast to the whole group.

— tree _cascade :invoked by every member when a subtractive event happemben all members try to compute
the group key collaboratively. In the former case, this fiorcremoves all leaving members and their parents as
described in Section 5.3. If the caller is a sponsor, it at@s tto computdkey, bkey] pairs on the sponsor’s
key-path. In the latter case, this function is called repaigtuntil the group key is computed.

The underlying communication system is assumed to deal gvithp communication and network events such
as merges, partitions, failures and other abnormalifisde use OpenSSL 0.9.6 [24] as the underlying cryptographic
library.

In the following Sections (6.2 and 6.3), we show tlwate _cascade provides robustness against cascaded
network events. Since TREEPI does not provide its own communication facility, the ustness of the API was
tested by simulating random events on a single machinemgraii group members.

6.2 Protocol Unification

Although described separately in the preceding sectitvesiaur TGDH operations (join, leave, merge and partition)
actually represent different strands of a single protoéf justify this claim with an informal argument below.

Obviously, join and leave are special cases of merge anitipastespectively. We observe that merge and partition
can be collapsed into a single protocol, since, in eithee,dhe key tree changes and remaining group members lack
some number of bkeys. This prevents them from computingdieroot key. In a partition, the remaining members (in
any surviving group fragment) reconstruct the tree whenessbkeys are missing. In case of a merge of two groups, let
us suppose that a taller (deeper) tees merged with a shorter (shallower) trBeSimilar to a partition, all members
formerly in A construct the new tree where some bkeys — thoge-iare missing. (This view is symmetric since the
members in3 see the same tree but with missing bkeys in the subdrge

We now established that both partition and merge initiadlyult in a new key tree with a number of missing bkeys.
In the first round of merge protocol, sponsor in each groupdicasts the key tree after updating its session random.
Upon receiving this broadcast message, every member dstauikey tree which has some missing bkeys. Filling up
this bkeys takes at mo&tg, & rounds. A partition is very similar except the first broadeasssage of merge. Recall
that every member reconstructs the key tree after a partiiat mostmin(log, p, k) rounds, wheré, is the tree
height andp is the number of leaving members.

% 1n ajoin, the new member simply generates its first share.
” Currently, TGDH is integrated with Spread [4] group communication system



1 receive msg (msg type = membership event)
2 construct new tree

3 while there are missing bkeys

4 if (I can compute any missing keys and | am the sponsor) ||
5 (sponsor computed a key))

6 while(1)

7 compute missing (key, bkey) pairs

8 if (I cannot compute)

9 break

10 endif

11 if (others need my information)

12 broadcast new bkeys

13 endif

14 endif

15 receive msg

16 if (msg type = broadcast)

17 update current tree

18 endif

19 endwhile

Fig. 10. Unified protocol pseudocode

The apparent similarity between partition and merge allos/ collapse the protocols stemming from all mem-
bership events into a single unified protocol. Figure 10 shitv pseudocode. The incentive for doing this is threefold.
First, unification allows us to simplify the implementatiand minimize its size. Second, the overall security and cor-
rectness are easier to demonstrate with a single protobokl, Twe can now claim that (with a slight modification)
TGDH is self-stabilizing and fault-tolerant as discussetbty.

6.3 Cascaded Events

Since network disruptions are random and unpredictahienitural to consider the possibility of so-calleascaded
membership event@in fact, cascaded events and their impact on group and-noultd protocols are often considered
in group communication literature, but, alas, not oftenugioin the security literature.) A cascaded event occurs, in
a simplest form, when one membership change occurs whilkhanis being handled. Hemyentmeans any of: join,
leave, partition, merge or any combination thereof. Fongxe, a partition can occur while a prior partition is being
dealt with, resulting in a cascade of size two. In principkscaded events of arbitrary size can occur if the undeylyin
network is highly volatile.

We claim that the TGDH partition protocol is self-stabitigi i.e., robust against cascaded network events. This
property is notable and rare as most multi-round cryptdgaprotocols are not geared towards handling of such
events. In general, self-stabilization is a very desirdbéure since lack thereof requires extensive and comiptica
protocol “coating” to either: 1) shield the protocol fromscaded events, or 2) harden it sufficiently to make the
protocol robust with respect to cascaded events (esdgniipimaking it re-entrant).

The high-level pseudocode for the self-stabilizing protés shown in Figure 11. The changes from Figure 10 are
minimal (lines 18 — 19 are added).

Instead of providing a formal proof of self-stabilizatiorewlemonstrate it with an example. Figure 12 shows an
example of a cascaded partition event. The first part of thedidepicts a partition of/;, M4, and M~ from the prior
group of ten member§M;, ..., Mio}. This partition normally requires two rounds to complete Key agreement.
As described in Section 5.4, every member constructs the s after completing the initial round. The middle part
shows the resulting tree. In it, all non-leaf nodes exdepts, must be recomputed as follows:

1. First,M; and M3 both computés , oy, M5 and Mg computek 1y while Mg, My and Mo computeK; 1. All
bkeys are broadcasted by each spordgr M5 and Ms.

2. Then, as all broadcasts are receivel, M3, M5 and Mg computeK ; oy andK g o). The bkeys are broadcasted
by the sponsof/g.



1 receive msg (msg type = membership event)
2 construct new tree

3 while there are missing bkeys

4 if (I can compute any missing keys and | am the sponsor) ||
5 (sponsor computed a key))

6 while(1)

7 compute missing (key, bkey) pairs
8 if (I cannot compute)

9 break

10 endif

11 if (others need my information)

12 broadcast new bkeys

13 endif

14 endif

15 receive msg

16 if (msg type = broadcast)

17 update current tree

18 else (msg type = membership event)
19 construct new tree

20 endif

21 endwhile

Fig. 11. Self-stabilizing protocol pseudocode

3. Finally, all broadcasts are received aid, Mo and My, computek g o) -

Fig. 12. An Example of Cascaded Partition

Suppose that, in the midst of handling the first partitiorgthar partition (ofA/3 and My) takes place. Note that,
regardless of which round (1,2,3) of the first partition ignogress, the departure 8f; and Mg does not affect the
keys (and bkeys) in the subtrees formedMy and M;, as well asM; and Mg. All remaining members update the
tree as shown in the rightmost part of Figure 12. The bkeygfy, is the only one missing in all members’ view
of the tree. It is computed b¥/,, M5 and Mg and broadcasted by/s. When the broadcast is received, all members
compute the root key.

The only remaining issue is whether a broadcast from thegasdition can be received after the notification of
the second (cascaded) partition. Here we rely on the uridgriyroup communication system to guarantee #iat



membership events are delivered in sequence after all outstding messages are deliveredn other words, if a
message is sent in one membership view and membership chahge the message is not yet delivered, the mem-
bership change must be postponed until the message isréeliteethe (surviving) subset of the original membership.
This is essentially a restatement of View Synchrony (asudised in Section 2).

6.4 Self-Clustering

The Internet as a whole provides sporadic and unstable ctivitg e.g., web users frequently experience discorsect
and server failures. The instability can occur because gestion, equipment failures or lossy links. It can als@tak
place as aresult of denial-of-service attacks, worms anges. It is often the case that an unstable network componen
(router or link) tends to have multiple failures. In otherrd®, an isolated, “once-in-a-blue-moon” type of failure is
uncommon. Repeated failures typically complicate prdtonplementation. However, oddly enough, TGDH not only
survives but also benefits from repeated failures.

Similar to other tree-based key management schemes @4g34, 22]) the key tree in TGDH is logical: group
members are leaves in a tree and internal nodes are logicalinitial placement of members (as tree leaves) is
not dependent on their relative physical location. Theefmembers physically close to each other might not be
neighbors in a key tree. When a partition occurs, all memlyeted same physical group fragment form a new key
tree and a new group. The partition protocol may cost as mamyga: rounds. Then, when the partition heals, the
previously separate groups are merged into a single keyhoeever, they are still clustered along the lines of the
partition. If another partition happens on the same link,ghrtitioned members are not scattered across the key tree
any longer. Therefore, any subsequent partition on the $iakwill take only one round to complete. This property
is especially important in high-delay wide area networkgsiclustering lowers the number of communication rounds
as well as the number of modular exponentiations, in mangas

Fig. 13. An Extreme Example of Self-Clustering

Figure 13 shows an extreme example of self-clustering. 8&sgfhat a group has sixteen members numb&fed
through M,4 where white odd-numbered nodes are located in one phydicstec (e.g., a LAN) and shaded even-
numbered nodes in another. The two partitions are conne@egh unstable linl. If L fails and a partition occurs,
it takes three rounds to complete the partition protocotalt be clearly seen that each group forms a cluster after
the partition. Whern, comes up and the partition heals (i.e., a merge occurs),dwads are needed to complete the
merge protocol. Subsequently, all partitions on linkvill require only one round and all merges — two rounds.



7 Performance Analysis

7.1 Complexity Analysis and Comparison

We analyze the communication and computation costs for jeave, merge and partition protocols. We focus on the
number of rounds, the total number of messages, the senab@uof exponentiations, the serial number of signature
generations, and the serial number of signature verificatiblote that we use RSA signature for message authenti-
cation since RSA is particularly efficient in verificationhd serial cost assumes parallelization within each prétoco
round and represents the greatest cost incurred by angipartt in a given round. The total cost is the sum of all
participants’ costs in a given round.

We also compare our protocol to other contributory group &gseement schemes including GDH.3 [32], BD
(Burmester-Desmedt) [12], and STR [20]. Although BD wagjiorally designed to support only group formation, we
modify the BD protocol to support dynamic membership operafThis modification is minimal.

Table 1 summarizes the communication and computation oé$tair protocols. The numbers of current group
members, merging members, merging groups, and leaving ersmabe denoted as; m, k andp, respectively.

The height of the key tree constructed by the TGDH protochl iBhe overhead of the TGDH protocol depends on
the tree height, the balancedness of the key tree, thedocatithe joining tree, and the leaving nodes. In our analysis
we assume the worst case configuration and list the worsteazzst for TGDH.

Table 1. Communication and Computation Costs

Communication Computation
Rounds | Messages|| Exponentiations Signatures | Verifications
Join 4 n+3 n+3 4 n+3
GDH Leave 1 1 n—1 1 1
Merge m+3 n+2m+1| n+2m+1 m+3 n+2m+1
Partition 1 1 n—op 1 1
Join 2 3 3 2 3
Leave 1 1 1 1 1
TGDH merge || log2k + 1 2k S log, k+1 log, k
Partition|min(log, p, h) 2h 3h min(log, p, h)|min(log, p, h)
Join 2 3 4 2 3
Leave 1 1 T +2 1 1
STR Merge 2 E+1 3m+1 2 3
Partitior] 1 1 342 1 1
Join 2 2n + 2 3 2 n-+3
BD Leave 2 2n — 2 3 2 n+1
Merge 2 2n +2m 3 2 n+m-+2
Partition 2 2n — 2p 3 2 n—p+2

The BD protocol has a hidden cost that is not listed in TabRL hasn — 1 modular exponentiations with a small
exponent. Unfortunately,— 1 such exponentiations can be expensive wherarge. For example, BD requirégn?)
1024-bit modular multiplications, if modular exponenitiatis implemented with the square-and-multiply algorithm
(OpenSSL uses Montgomery reduction and the sliding windgariéhm to implement the modular exponentiation,
which is faster than simple square-and-multiply algoritiiowever, the former requires almost the same time as the
latter for small exponents.) Because of this hidden comst hiird to compare the computational overhead of BD to the
other protocols. Below, we compare the four protocols faheaembership event.

Join: All protocols except GDH.3 require two communication rdanin terms of communication, the most expensive
protocol is BD which involves: messages (all broadcast) in each round. Other protocola usastant number of
messages. GDH is the most expensive in terms of computa#igniring linear number of exponentiations. TGDH
is comparatively efficient, scaling logarithmically in thember of exponentiations. STR has a constant number of
modular exponentiations. BD requires the least expontgnis, but has the hidden cost.



Leave BD is the most expensive protocol in terms of communicatibime cost order among others is determined
strictly by the computation cost, since they all have theesaommunication cost (one round consisting of one mes-
sage). Therefore, TGDH is best for handling leave eventR, &id GDH scale linearly with the group size. BD has a
hidden cost, which makes it hard to compare.

Merge: We first look at the communication cost. GDH scales linewiity the number of added members, while BD
and STR are more efficient with a constant number of roundsioibh a merge in TGDH takes multiple rounds, it
depends on the number of merging groups, which is usuallyl.s8iace BD and TGDH havén and2k messages
(at most) respectively, STR is the most communication-efiicfor handling merge events. Examining computation
requirements, BD has the lowest cost with only three expiistgons. TGDH scales logarithmically with the group
size. It is more efficient than STR and GDH which scale linearth both the group size and the number of new
members.

Partition : Both GDH and STR protocols are bandwidth efficient: only mend consisting of one message. BD is less
efficient with two rounds of: messages each. Partition is the most expensive operatigBDiH requiring a number
of rounds bounded by tree height. Computation-wise it iatift to compare BD with other protocols because of its
hidden cost. TGDH requires a logarithmic number of expaaénohs. GDH and STR scale linearly with the group
size.

7.2 Experimental Results

To compare the actual performance, we implemented the fatiogols and compared their costs in this section. We
simulated the total computation delay from the time whenrntenmbership event happens to the time when group
key agreement finishes. Average delay has been measured,alimmembers do not finish group key agreement
simultaneously.

7.2.1 Test MethodologyTo perform fair comparisons, we consider the followings:

— We usep = 1024 andq = 160 for all measurements. These values are known to be secime cutrent technology
[21].

— We use 1024-bit RSA signature with the fixed public exponefar3nessage authentication. All protocols have
multiple signature verifications that need to be processedlly. No security risk is known for RSA signatures
with small public exponents [11].

— For TGDH, we first generate a random tree by forcing a numbeamdom partition/merge events. Since the
cost of TGDH depends on the tree structure, it is fair to getieest random tree instead of a well-balanced or an
imbalanced tree.

We use the following scenario to measure delay. For join aadd, the number of current group members.is
For partition and mergey varies among: 16, 32, 64, and 128.

Join We measure the computational delay for a member to join apgodu. members. (Left graph of Figure 14)
In case of TGDH, we use a random tree as described abovez-Bixés denotes the number of current group
members, while thg-axis shows the computational delay in seconds.

Leave We measure the computational delay for a random member e kegroup ofn members. (Right graph of
Figure 14) Note that the delay for GDH and BD does not deperntti@tocation of the leaving member. However,
the number of modular exponentiations for STR upon a leagatadepends on the location of the leaving node.
For TGDH, we pick a random member from the tree, and measeravérage delay for the leave. Thexis
denotes the number of remaining group members ang-tas is the computational delay in seconds.

Partition We measure the computational delay after a partition. Ifriliaber of current group membersrisand
this group shrinks to group of size we measure the average delay for the remaining group merrbar BD
and GDH, the location of the leaving members does not méttewever, it is important in STR and TGDH. We,
therefore, choose leaving members at random. In Figureh&s;-axis denotes the number of remaining group
members.



Merge Merge is the trickiest algorithm to measure fairly. FirstBD and GDH, only the number of resulting mem-
bers decides the total delay, independent of the number ajingegroups. Second, the performance of STR
merge depends on the size of the largest group (which dettidasumber of modular exponentiation), and the
number of groups merging (which determines the number ofagige verifications). Finally, the performance of
TGDH merge depends upon the number of merging groups (wliebta the number of signature generations
and verifications), and the key tree structure. The numbeu&nt group members is not important for TGDH.
Since each protocol has different characteristics, we aredthe merge costs as follows:

— The number of resulting group memberd @5 32, 64 and128.

— We assume the maximum number of merging groups is five. Irtipeaanerge of two groups is the most
frequent event. However, we allow up to five groups since sgroep communication systems may allow
(require) more than two groups to merge at one time.

— For TGDH and STR, values in theaxis mean the number of current group members. The reggjtoup size
is 16, 32, 64, 128, respectively. The values ingkaxis are the average computational delays for a member in
the current group after a merge of 2 — 5 groups.
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Fig. 14.Join and Leave Cost Comparisdn;, y) =(number of remaining group members after JOIN/LEAVE, computatiover-
head in seconds)

7.2.2 Join Results. The left graph of Figure 14 depicts measurement for join. ¥geeted, STR has the smallest
delay. A surprising result comes from the TGDH for a randose tthe difference between TGDH and STR is small.
In case of a random tree, the joining node is located closegtodot node. GDH is the worst performer due to many
modular exponentiations. BD also shows interesting restihough it has constant number of exponentiations, the
hidden cost evidently plays an important role.

7.2.3 Leave Results.As expected, STR is the worst performer. Note that the waseé when a lowest member
leaves the group) cost for STR is almost twice as much as therdwaverage value. Performance of TGDH looks best
overall, while BD performs very well when the number of grauapmbers is less than 25. Leave cost in BD is almost
the same as join cost, since the protocol needs to restartavbea new membership event happens.

7.2.4 Partition Results. Figure 15 shows partition cost when the number of currentigrmembers is 16, 32, 64,
and 128 respectively. As expected from the conceptualtsessiTR has the worst performance due to many modular
exponentiations. TGDH shows an interesting graph: it iases until 40% of the group members leave the group,



and decreases afterwards. This is because 1) as the numleawiofy members increases, the number of modular
exponentiations decreases, 2) when many members leaveothig the resulting group has many empty bkeys spread
over the tree, and, hence, requires more messages. Thef@Btand GDH decreases almost linearly, because it
depends on the number of resulting group members.

As described in Section 6.4, the cost of partition for TGDIH ba improved when the group experiences repeated
network partition on the same link.
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Fig. 15. Partition Cost Comparisoriz, y) =(number of remaining group members after the partition, computatimeahead for
an existing member if the original group shrinks to a group afiembers), the original numbers of group members are 16, 32, 64,
128 respectively.

7.2.5 Merge Results.Merge costs are shown in Figure 16 when the resulting gragisil 6, 32, 64, and 128. For a
fixed number of resulting group size TGDH and BD show almosstant cost meaning that it does not depend on the
number of current group members. In contrast, the perfocean GDH strongly depends on the number of current
group members, since the last member in the current grougniesthe sponsor.



Merge Cost Comparison (16 users) Merge Cost Comparison (32 users)
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Fig. 16.Merge Cost Comparisotiz, y) =(humber of current group members, computational overheadrfearaber located in the
group ofx members), after the membership event the number of group melmsomes 16, 32, 64, and 128 respectively.

7.3 Discussion

Based on the experimental results that measured the cotigmatiacost, TGDH exhibits the best performance despite
the relatively high cost of partitions. Recall that, in giee, the self-clustering property of TGDH lessens the actu
delay.

Looking at communication costs, it appears that TGDH alstperforms other protocols, except for partition
events. In a high-delay WAN, the overall partition cost inO¥ may be high, although this effect can be lessened by
self-clustering.

In high-delay WANs — where round-trip time exceeds 300 msieés-easy to see that computation cost for a small
group is not so important. For example, if the group size ityfdhe maximum difference in computational delay
for a join is about 300 msec. In other words, communicatiost@e.g. multicast vs. unicast, number of multicasts,
number of rounds) are much more important in a high-delawogt Based on this consideration, the performance
of STR gets better as communication delay increases. Qwaratonclude that TGDH performs best over low- and
medium-delay networks.



8 Related Work

Group key management protocols come in three different faxamntributory key agreement protocols, centralized,
decentralized group key distribution scheme, and serasedbkey distribution protocols. Since the focus of thiskwor
is to provide common key to the dynamic peer group, we onlsictar the first two below.

8.1 Group Key Agreement Protocols

Research on group key agreement protocols started in 198Zir8¥ summarize the early (theoretical) group key
agreement protocols which did not consider dynamic merhijeigperations; Most of them only supported group
genesis.

The earliest contributory group key agreement built upen2tparty Diffie-Hellman (DH) is due to Ingemarsson
et al. (ING) [18]. In the fist round of ING, every membéaf; generates its session randdvp and computes’. In
the subsequent roundsto n — 1, M; computesK; . = (K;_1 mod mk_l)Ni where K;_; is the message received
from M;_, in the previous roun& — 1. The resulting group key is of the form:

K, = oN1N2Nsw.No

The ING protocaol is inefficient because: 1) every member basdrt synchronously, 2) — 1 rounds are required to
compute a group key, 3) itis hard to support dynamic memigegberations due to its symmetry andrd$equential
modular exponentiations are required.

Another group key agreement developed for teleconfergneis proposed by Steer et al. [31]. This protocol is
of particular interest since its group key structure is knto that in TGDH.

(aNz@N2N1))

K, = e

This protocol is well-suited for adding new group memberg tekes only two rounds and four modular exponentia-
tions. Member exclusion, however, is relatively difficitifexample, consider excluding; from the group key).
Burmester and Desmedt construct an efficient protocoldd@ID) which takes only two rounds and three modular
exponentiations per member to generate a group key [123.&fficiency allows all members to re-compute the group
key for any membership change by rerunning the protocol. é¥ew according to [32], most (at least half) of the
members need to change their session random on every mérigbevent. The group key in this protocol is different

from STR and TGDH:
K = aN1N2+N2N3+...+NnN1.

One shortcoming of BD is the high communication overheadeduires2n broadcast messages and each member
needs to generate 2 signatures and vexifisignatures. BD also has a hidden cost mentioned in Sectton 7.

Becker and Wille analyze the minimal communication comipyexf contributory group key agreement in general
[8] and propose two protocolsctopusandhypercube Their group key has the same structure as the key in TGDH.
For example, for eight users their group key is:

T172 T34 )(aaTB’"G a™778 )

K, = a(a“

The Becker/Wille protocols handle join and merge operatifficiently, but the member leave operation is inefficient.
Also, thehypercubeprotocol requires the group to be of s2z& (for some integen); otherwise, the efficiency slips.

Asokan et al. look at the problem of small-group key agreegme&here the members do not have previously
set up security associations [5]. Their motivating examgla meeting where the participants want to bootstrap a
secure communication group. They adapt password authesdi®H key exchange to the group setting. Their setting,
however, is different from ours, since they assume that alhivers share a secret password, whereas we assume a
PKI where each member can verify any other members autlitgraied authorization to join the group.

Tzeng and Tzeng propose an authenticated key agreementethat is based on secure multi-party computation
[33]. This scheme also us@s broadcast messages. Although the cryptographic mecharasenquite elegant, a
shortcoming is that the resulting group key does not propiléect forward secrecy (PFS). If a long-term secret key
is leaked, all previous and future group keys become insecur



Steiner et al. first address dynamic membership issues]m3ftoup key agreement and propose a family of
Group Diffie Hellman (GDH) protocols based on straight-fard/extensions of the two-party Diffie-Hellman. GDH
provides contributory authenticated key agreement, kdgpendence, key integrity, resistance to known key atfacks
and perfect forward secrecy. The GDH protocol suite isyafficient in leave and partition operation, but the merge
protocol requires as many rounds as the number of new mertheosnplete key agreement.

Perrig extends one-way function trees (OFT, originallyadticed by McGrew and Sherman [22]) to design a
tree-based key agreement scheme for peer groups [25]. ditvisdsas foundation for the design of our protocol.

8.2 Decentralized Group Key Distribution Protocols

Decentralized group key distribution (DGKD) protocolsahxe dynamically selecting a group member who generates
and distributes keys to other group members. After suliantembership events, individual partitions can continue
operation by electing a new key server. The drawback is thatyaserver must establish long-term pairwise secure
channels (by making use of public key cryptosystem such fieiHellman) with all current group members in order
to distribute group keys. Consequently, each time a new éees comes into play, significant costs must be incurred
to set up these channels. Another disadvantage is thegel@na single entity to generate good (i.e., cryptografiiica
strong and random) keys.

First DGKD protocol is due to Waldvogel et al. [14]. They pose efficient protocols for small-group key agree-
ment and large-group key distribution. Unfortunately,ittseheme for autonomous small group key agreement is
insecure (not collusion resistant).

Dondeti et al. modified OFT (One-way Function Tree) [22] toydde dynamic server election [16]. This protocol
has the same key tree structure and uses the notations €gsj.linded keys) similar to ours. Other than expensive
maintenance of secure channels described above, thiscptdtas a high communication cost: even for single join
and leave, this protocol can tak¥ ) rounds. This scheme does not handle merge and partition. €évee advantage
different from other DGKD protocols is that their group kegsha contributory nature: whenever a group member
changes its session random, the group key changes.

Rodeh et al. [28] propose a DGKD protocol derived from the LEidtocol [35]. It tolerates network partitions
and other network events. Even though this approach does/oimt the disadvantages discussed above, it reduces the
communication and computational costs. In addition, isUBéL tree to provide provable tree height bound.

9 Other Related Work

We can find further related work in the context of fault-talercomputing and implementation issues. Protocol talkit
such as Rampart[26, 27] are designed to provide high dedfaalttolerance, even in the presence of malicious (i.e.,
Byzantine) faults inside a group. However, these methogl&gpensive since they need reliable and atomic multicast
secure against Byzantine faults.

Another interesting related work is due to Carman et al..[T8]s work compares energy consumption of group
key agreement/distribution protocols in a sensor netwgrkcdmputer simulation. They point out that centralized
group key distribution scheme is not appropriate for senstwork environments, though its power consumption is
lower than group key agreement scheme. GDH and BD are cothpétte their group key management algorithm. It
would be interesting to measure the power consumption of H@Bd STR protocol, but this is not our concern.

10 Conclusion

This paper presented a novel decentralized group key marageapproach, TGDH. In doing so, we unified two
important trends in group key managementkéy treego efficiently compute and update group keys and 2) group
Diffie-Hellman key exchange to achieve provably secure ahig distributed protocols. This yielded a secure, surpris
ingly simple and very efficient key management solution,clifis supported, respectively, by the security arguments
and the experiments. Moreover, our solution is inheremtbhust by virtue of being able to cope with cascaded (nested)
key management operations which can stem from tightly shgoaup membership changes. We believe this to be an
issue of independent interest.



References

[EEN

[

©

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.
23.
24.
25.
26.
27.

28.
20.

30.

. 5th ACM Conference on Computer and Communications Sec8aty Francisco, California, Nov. 1998. ACM Press.
. Y. Amir. Replication using Group Communication over a Partitioned NetwBHD thesis, Institute of Computer Science, The

Hebrew University of Jerusalem, Jerusalem, Israel, 1995.

. Y. Amir, G. Ateniese, D. Hasse, Y. Kim, C. Nita-Rotaru, T. Schlogémal. Schultz, J. Stanton, and G. Tsudik. Secure group

communication in asynchronous networks with failures: Integration apdraments. IHCDCS 2000 Apr. 2000.

. Y. Amir and J. Stanton. The spread wide area group communicatsersy Technical Report 98-4, Johns Hopkins University

Department of Computer Science, 1998.

. N. Asokan and P. Ginzboorg. Key-agreement in ad-hoc netwémkdordsec’99 1999.
. N. Asokan, V. Shoup, and M. Waidner. Optimistic fair exchange oitaligignatures.|EEE Journal on Selected Area in

Communications18(4):593—-610, 2000.

. G. Ateniese, M. Steiner, and G. Tsudik. Authenticated Group Keyéxgeat and Friends. In ACMCCS98 [1], pages 17-26.
. C. Becker and U. Wille. Communication complexity of group key distrilbutio ACMCCS98 [1].
. M. Bellare and P. Rogaway. Random oracles are practical: A panddiglesigning efficient protocols. ltst ACM Conference

on Computer and Communications Secyrit993.

D. Boneh. The Decision Diffie-Hellman problem. Third Algorithmic Number Theory Symposiumumber 1423 in Lecture
Notes in Computer Science, pages 48—63. Springer-Verlag, Berlim&gr 1998.

D. Boneh. Twenty years of attacks on the RSA cryptosydimtices of the American Mathematical Society (AM®)2):203—
213, 1999.

M. Burmester and Y. Desmedt. A secure and efficient conferkey distribution system. In A. D. Santis, editAdvances in
Cryptology — EUROCRYPT '9éumber 950 in Lecture Notes in Computer Science, pages 275-28@dtional Association
for Cryptologic Research, Springer-Verlag, Berlin Germany, 1%98al version of proceedings.

D. W. Carman, P. S. Kruss, and B. J. Matt. Constraints and agmsdor distributed sensor network security. NAI Lab
Technical Report 00-010, Network Assoiciates, Inc, Septembed.200

G. Caronni, M. Waldvogel, D. Sun, N. Weiler, and B. Plattner. Thesaléey framework: Versatile group key management.
IEEE Journal on Selected Areas in Communicatjdrig9), Sept. 1999.

D. Chaum. Zero-knowledge undeniable signatures. In |. Daingditor, Advances in Cryptology — EUROCRYPT, @dmber
473 in Lecture Notes in Computer Science, pages 458-464. Spriegag)/Berlin Germany, May 1991.

L. Dondeti, S. Mukherjee, and A.Samal. Disec: A distributed fraomkvior scalable secure many-to-many communication.
In Proceedings of The Fifth IEEE Symposium on Computers and Commung&@&CC 200Q)July 2000.

A. Fekete, N. Lynch, and A. Shvartsman. Specifying and usirgytgopable group communication service. AGM PODC
'97, pages 53-62, Santa Barbara, CA, August 1997.

I. Ingemarsson, D. T. Tang, and C. K. Wong. A conferengedisribution systemlEEE Transactions on Information Theory
28(5):714-720, Sept. 1982.

Y. Kim, A. Perrig, and G. Tsudik. Simple and fault-tolerant key egrent for dynamic collaborative groups. In S. Jajodia,
editor, 7th ACM Conference on Computer and Communications Secpetes 235-244, Athens, Greece, Nov. 2000. ACM
Press.

Y. Kim, A. Perrig, and G. Tsudik. Communication-efficient groey kgreement. Imformation Systems Security, Proceedings
of the 17th International Information Security Conference IFIP SECAID1.

A. K. Lenstra and E. R. Verheul. Selecting cryptographic key sitetp://www.cryptosavvy.com/ , Nov. 1999.
Shorter version of the report appeared in the proceedings of the R@yli€ryptography Conference (PKC2000) and in the
Autumn '99 PricewaterhouseCoopers CCE newsletter. To appearrinalai Cryptology.

D. A. McGrew and A. T. Sherman. Key establishment in large dymgnoups using one-way function trees. Manuscript, May
1998.

L. Moser, Y. Amir, P. Melliar-Smith, and D. Agarwal. Extended vittsignchrony. InNNICDCS '94 pages 56—65, June 1994.
OpenSSL Project team. Openssl, May 2001. http://www.opengsl.org

A. Perrig. Efficient collaborative key management protocolsémure autonomous group communicationniternational
Workshop on Cryptographic Techniques and E-Commerce (Crypd®CJuly 1999.

M. K. Reiter. Secure agreement protocols: Reliable and atomi@grauticast in rampart. In J. Stern, edit@nd ACM
Conference on Computer and Communications Secyréiges 68—80, Fairfax, Virginia, Nov. 1994. ACM Press.

M. K. Reiter. A secure group membership protocol. 22(1):31342, 1996.

O. Rodeh, K. Birman, and D. Dolev. Optimized rekey for group mmmication systems. INDSS2000pages 37-48, 2000.

V. Shoup. Lower bounds for discrete logarithms and related preblén W. Fumy, editorAdvances in Cryptology — EURO-
CRYPT '97 number 1233 in Lecture Notes in Computer Science, pages 256-+26fdtional Association for Cryptologic
Research, Springer-Verlag, Berlin Germany, 1997.

V. Shoup. Using hash functions as a hedge against chosenteigtattacks. In B. Preneel, editéxgdvances in Cryptology
— EUROCRYPT '20Q0number 1807 in Lecture Notes in Computer Science, pages 275+#88ndtional Association for
Cryptologic Research, Springer-Verlag, Berlin Germany, 2000.



31.

32.

33.

34.

35.

36.

D. Steer, L. Strawczynski, W. Diffie, and M. Wiener. A secure@ateleconference system. In S. Goldwasser, editdvances
in Cryptology — CRYPTO '8&umber 403 in Lecture Notes in Computer Science, pages 520-528, Barbara, CA, USA,
1990. International Association for Cryptologic Research, Spriivgeiag, Berlin Germany.

M. Steiner, G. Tsudik, and M. Waidner. Key agreement in dynameéc groupslEEE Transactions on Parallel and Distributed
SystemgsAugust 2000.

W.-G. Tzeng and Z.-J. Tzeng. Round-efficient conferdmgeagreement protocols with provable security. Alivances in
Cryptology — ASIACRYPT '200Decture Notes in Computer Science, Kyoto, Japan, December 208thétional Association
for Cryptologic Research, Springer-Verlag, Berlin Germany.

D. Wallner, E. Harder, and R. Agee. Key management for multitssies and architecture. Internet-Draft draft-wallner-key-
arch-00.txt, June 1997.

C. Wong, M. Gouda, and S. Lam. Secure group communicationg key graphs. IrProceedings of the ACM SIGCOMM
'98 conference on Applications, technologies, architectures, and gotsdor computer communicatippages 68-79, 1998.
Appeared in ACM SIGCOMM Computer Communication Review, Vol. 28, 8¢Oct. 1998).

C.Wong, M. Gouda, and S. Lam. Secure group communicatiang kesy graphslIEEE/ACM Trans. on Networkin@(1):16—
30, 2000.



A Security Proof

This section proves the security of TGDH. We introduce thei§lenal (binary) Tree Group Diffie-Hellman problem
(DTGDH) and, in a specific group setting, prove that DTGDHgbem is reducible to 2-party Decision Diffie-Hellman
(DDH) problem. Later, in Sections (A.3 — A.4), this resultised to prove the security of entire TGDH protocol suite.

A.1 2-party Decision Diffie-Hellman Problem

Our proofs require a specific grou. In this section, we introduce the grodp and define the 2-party Decision
Diffie-Hellman (DDH) problem orG.

Let k£ be a security parameter ance an integer. All algorithm run in probabilistic polynoriiene with & andn
as inputs.

For concreteness, we consider a specific

On inputk, algorithmgenchooses at random a pdiy, o) whereq is a2k-bit value®, andg andp = 2¢ + 1 are
both prime. Before introducing:, we first consider a grouﬁ?, which is a group of squares modulo primeThis
group can be explained more precisely as follows: Consid&lementy which is a square of a primitive element
of multiplicative groupZ?, i.e.« = &2. (Without loss of generality, we may assume< ¢.) Then groupG can be
represented as R

G={a'modpl|i€ll,q}.

An attractive variation of this group is to represent theredats by the integers from 0 to— 1. The group operation
is slightly different: Let a functiory be defined as

CR
Using thisf function, we can introduce the grodpas

G = {f(a'modp)|i€Z,}.
Group operation on grou@ is defined ag - b = f(a - b (mod p)), wherea,b € G.
Proposition 3. Letg(xz) = a® mod p. Then the functiotf o g is a bijection froniz, to Z,.

Proof. To see this, supposgo g(x) = f o g(y). Then this can be written anfi{X) = f(Y) where integetX =
a® mod p andY = oY mod p. Now we can have four different cases:

-X <q,Y <q Inthiscasef(X) = X andf(Y) = Y and henceX = Y. Now we have an equatiai?(*~¥) =
1 mod p. Sincea is a generator foZ, its order (i.e2q¢) has to divide2(z — ). This implies that; has to divide
x —y and finallyx = y since0 < z,y < q.

—-X >q,Y >q Inthiscasef(X)=p— X andf(Y)=p—Y and henceX = Y. Rests are same as above.

—X <¢q,Y > q: This case is impossible, sin(e;f—) =1land (%) = —1sincep=3mod4andX =p-—Y.

—X > q,Y < gq: Thisis also impossible by similar reasoning.

Therefore,f o g is an injection. It is also a surjection, since the sizes ohdim and co-domain are the same.

Proposition 4. When a distribution- is uniform and random i, f o g(r) is still uniform and random irG, since
f o g is bijective.

Groups of this type are also considered by Chaum [15]. It ieegaEly assumed that DDH is intractable in these
groups [10]. More concretely, ttieparty Decision Diffie-Hellman assumption on groupG is that for all polynomial
time attackers4, for all polynomials@Q(k) 3ko Vk > ko, for Xo := N1 Ny andX; := N3 with N1, N3, N3 €x G
uniformly chosen, and for a random bitthe following equation holds:

|Pr0b[A(1k;G;a;ole;aN2;aX”) =b—1/2| < 1/Q(k)
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Fig. 17.Notations for fully balanced binary tree

A.2 Decisional Binary Tree Group Diffie-Hellman Problem

In this section we define the DTGDH problem (and assumptioi) @rove this problem is equivalent to 2-party
decisional Diffie-Hellman problem. Figure 17 is an examgla key tree whem = 8.

For(q,a) < gen(k),n € NandX = (Ny, No,...,N,) for N; € G and a key tred" with n leaf nodes which
correspond taV;, we define the following random variables:

- K; i-th level j-th key (secret), each leaf node is associated with a membession random, i.é(JQ = N, for
somek € [1,n].

- BK}: i-th level j-th blinded key (public), i.eaki
- K; is recursively defined as follows:
. KL 1 KL 1
KJ

2j—1

= <BK;J;11>K'2? 1

= (BK3; Y 2
In other words, we considef(;i = fi(Ny,Ng,...,N,) for some function f;, and henceBK;ﬁ =
alt(NLN2 s Nn) — £ (Ny, Ny, ..., N,,) for some functionfs.

For(q,a) < gen(k),n € NandX = (Ny,Na,...,N,) for N; € G and a key tred" with n leaf nodes which
correspond taV;, we can define public and secret values collectively as helow

view(q, o, h, X, T) := {BK; wherej and: are defined according 6} Q)
= {aKf mod p wherej andi are defined according 6}

K(g.0,h, X, T) = o1 K27

Since(q, ) are obvious from the context, we omit themuifew() and K (). Note thatview(h, X, T') is exactly
the view of the adversary in TGDH as will be described in $8cb, where the final secret key i§(h, X, T"). Let
the following two random variables be defined by generating:) — gen(k), choosingX randomly fromG and
choosing key tred” randomly from all binary trees havingleaf nodes:

— Ay = (view(h, X, T),y)
- F, := (view(h, X, T),K(h,X,T))

Let the operator#,,,;,,” denote polynomial indistinguishability.

8 In order to achieve the security levist*, the group size should be at leasf [29].



Proposition 5. [32] Let K and R be [-bit strings such that? is a random andK is a Diffie-Hellman key. We say
that K and R are polynomially indistinguishable if, for all polynomial time distinguishers4, the probability of
distinguishingk” and R is smaller than(} + ﬁ), for all polynomialQ(1).

Now we define DTGDH algorithm concretely:

Definition 6. Let(q, «) « gen(k),n € NandX = (N1, Na,...,N,,) for N; € G and a key tre€ with n leaf nodes
which correspond tav;, and A, and F}, is defined as abov@TGDH algorithm A for groupG is a probabilistic
polynomial time algorithm satisfying, for some fixéd> 0 and sufficiently largen:

|ProblA(Ay) = “True’] — ProblA(Fy,) = “True”]| > e

Accordingly,DTGDH problem is to find an Binary Tree DDH algorithm.

Now, we show that DTGDH problem is hard for the passive adwgrdf the 2-party DDH in grougz defined
above is hard, DTGDH problem is hard.

Using polynomial indistinguishability, the DTGDH probledefined in Definition 6 can be restated as: Find a
polynomial distinguishes which can distinguist;, and F}, defined above.

Theorem 7. If the 2-party DDH onG is hard, then4;, ~,o1, F},.

Proof. We first note thatd;, andF}, can be rewritten as:

If X; = (R1, Ra,...,R;) andXgr = (Rg+1, Rk+2,- -, R,) WhereR; throughR), are associated with leaf node in
the left treeT, and Ry, 1 throughRy, are in the right tre@'y:

Ay, = (view(h, X, T),y) forrandomy € G

= (view(h — 1, Xy, Ty),view(h — 1, Xg, Tr), BK~* BKI =1 y)
= (view(h — 1, Xy, Ty), view(h — 1,XR,TR),CVK{L_1,CVK§_1,y)
(view(h
= (view(h
= (view(h

Fy, = (view(h, X), K(h, X))
—1,X;,T1),view(h — 1, Xg, Tr), BKh_l,BKg_aaKfflKg*l)

-1 XL,TL) vz’ew(h—l XRaTR) 1 1’0/{3_1’0/{{1_1[{;_1)

view

view

We prove this theorem by induction and contradiction. Thmgty DDH problem irG is equivalent to distinguish-
ing A, andF;. We assume that;,_; andFj,_; are indistinguishable in polynomial time for the inductioypothesis.
We further assume that there exists a polynomial algorithab ¢an distinguish betwee#y, and E;, for a random
binary tree. We will show that this algorithm can be used siidguishA;_; and E;,_; or can be used to solve the
2-party DDH problem.

Consider the following:

—1,XR, Tr),a®1 " aX5 " )

Ay, = (view(h — 1, X, T),view(h )

By, := (view(h — 1, X, T),view(h — 1, Xr, Tr), ", « Kh ' ,Y)

Cp = (view(h — 1, X1, Tr),view(h — 1, Xr,Tg),a", a" ,y)

Dy, := (view(h — 1, X1, Tp),view(h — 1 XR,TR),a ”'/)

Ej, := (view(h — 1, X, Tp),view(h — 1, Xgr,Tr), " . 7'Khil)

Fj, := (view(h — 1, X1, Tr),view(h — 1, X, Tr), o P Kh " KﬁilKIh%il)

Since we can distinguisd;, and F}, in polynomial time, we can distinguish at least one of;,( By,), (B, Cr),
(Ch, Dr), (Dn, Ep), or (En, Fp).



— Ay and By,: Suppose we can distinguishy, and By, in polynomial time. We will show that this distinguisher
Aap, can be used to solve DTGDH problem with height- 1. Suppose We want to decide whetli¢y | =
(view(h — 1, X', T"),r’) is an instance of DTGDH problem of is a random number. To solve this, we generate
another tred"” of heighth — 1 with distribution.X"”’. Note that we know all secret and public informatioriZéf.
Using P, _, and(T", X"), we generate a distribution:

Pl = (view(h — 1, X", T"),view(h — 1, X", T"),a" , o Kn=1LX"T) )y

wherey ez G. Now we putP} as input ofAd4p, . If P/ is an instance ofi;, (By), thenP}_, is an instance of
Fy_1 (An—1) by Proposition 4.

— By, and Cj,: Suppose we can distinguigh, andC}, in polynomial time. We will show that this distinguishdrz -,
can be used to solve DTGDH problem with height 1. Suppose We want to decide whetti&r , = (view(h —
1,X’,T"),r") is an instance of DTGDH problem ef is a random number. To solve this, we generate another
treeT” of heighth — 1 with distribution X" and choose”’ € G. As before we know all secret and public
information of . Using P; _, and(T7", X""), we generate a distribution:

/

P = (view(h — 1, X", T"),view(h — LX T, 0" a" y)

wherey €r G. By Proposition 47" is random and uniform id:. Now we putP;, as input ofAgc, . If P} is an
instance ofB;, (C1,), thenP},_, is an instance of},_; (A,_1) by Proposition 4.

—C}, and Dy,: Suppose we can distinguigty, and Dy, in polynomial time. Then, this distinguishetcp, can be
used to solve the 2-party DDH problem in groGp Note thato”, o”" are independent variable fromew(h —
1, X1, Tr) andview(h — 1, Xg, Tr). Suppose we want to test wheth{er®, a’, a¢) is a DDH triple or not. To

solve this, we generate two key tréEsand T, of heighth — 1 with distributionsX; and X, respectively. Now
we generate a new distribution:

P = (view(h — 1, X1, T}),view(h — 1, X5, T»), a%, o, a®).

If P/ is an instance of’, (Dy), then(a?, o, a¢) is a valid (invalid) DDH triple.

— Dy, and E},: Suppose we can distinguidhy, and £}, in polynomial time. We argue that this distinguishép g,
can be used to solve DTGDH problem with height- 1. Suppose We want to decide & |, = (view(h —
1,X’,T"),r") is an instance of DTGDH problem of is a random number. To solve this, we generate another tree

T" of heighth — 1 with distributionX”. As before, we know all secret and public informatior7df. Using Py,
and(T”, X", we generate a distribution:

P = (view(h — 1, X", T"),view(h — 1, X", T"),a" ,a"", ("))
= (view(h — 1, X", T"), view(h — l,X",T”),of/,of

wherer” e G. Since we generaté’, we can computéa” ). Now we putP; as input ofApg, . If P} is an
instance ofDy, (E), thenP},_, is an instance of},_; (A,—1) by Proposition 4.

— E;, and F},: Suppose we can distinguigh), and F3, in polynomial time. We will show that this distinguishdrz 7,
can be used to solve DTGDH problem with height- 1. Suppose we want to decide M, , = (view(h —
1,X’,T"),r") is an instance of DTGDH problem of is a random number. To solve this, we generate another tree

T" of heighth — 1 with distribution X”. Again, we know all secret and public informationBf. Using P; _,
and(T”, X", we generate a distribution:

P] = (view(h — 1, X", T"),view(h — 1, X”,T”),of/,aK(hfl'X”’T”), (ofl)K(hfl'X”’T”))

= (view(h — 1, X", T"), view(h — 1, X”,T”),of/,ozK(hfl‘X”’T”), oflK(h*l'X”’T”))

wherer’ € G. Sincer’ is given, we can comput” )< (*=1-X".T") Now we putP;, as input ofAgp, . If P}
is an instance oFE}, (F}3,), thenP},_, is an instance of},_; (4,—_1) by Proposition 4.



A.3 Group Key Secrecy

Before considering the group key secrecy, we briefly exarké@yefreshness. Every group key is fresh, since at least
one member in the group generates its random key share mnfyféor every membership changeThe probability
that new group key is same as any old group key is negligibdetdbijectiveness off o g) function.

We note that the root (group) key is never used directly fergtrposes of encryption, authentication or integrity.
Instead, special-purpose sub-keys are derived from thiekeyo e.g., by applying a cryptographically secure hash
function to the root key, i.eH (group key) is used for such applications.

As discussed in Section 3, decisional group key secrecy e meaningful if sub-keys are derived from a group
key. Decisional group key secrecy of TGDH protocol is somswRklated to DTGDH assumption mentioned in Sec-
tion A.2. This assumption ensures that there is no infowndgakage other that public blinded key informations.

We can also derive the sub-keys based on Shoup’s hedge [@®jp@e the key a#l (group key) ®H (group key)
whereH is a random oracle. It follows that in addition to the seguiit the standard model based on DTGDH
assumption, the derived key is also secure in the randonfearsadel [9] based on Computational Tree-based Group
Diffie-Hellman assumption.

A.4 Key Independence

We now give an informal proof that TGDH satisfies forward aadkward secrecy, or equivalently key independence.
In order to show that TGDH provides key independence, we oadd to show that théewof the former (prospective)
member to the current tree is exactly same avibe of the passive adversary respectively, since this showshba
advantage of the former (prospective) member is same asfsivp adversary and by Theorem 7.

We first consider backward secrecy, which states that a newbmewho knows the current group key cannot
derive any previous group key. Léf,,,; be the new member. The sponsor for this join event changegdsion
random and, consequently, previous root key is changedefdre, theview of M,, 1, with respect to the prior key
tree is exactly same as twéew of an outsider. Hence, the new member does not gain any afy@nbmpared to a
passive adversary.

This argument can be easily extended to the merge of two g groups. When a merge happens, sponsor in each
tree changes its session random. Therefore, each mematev'sn other member’s tree is exactly same asvilber of
a passive adversary. This shows that the newly merged memabearxactly same advantage about any of the old key
tree as a passive adversary.

Now we consider the forward secrecy, meaning that a passiversary who knows a contiguous subset of old
group keys cannot discover subsequent group keys. Herepmgder partition and leave at the same time. Suppose
M, is a former group member. Whenever subtractive event happesgonsor refreshes its session random, and,
therefore, all keys known to leaving members will be changexbrdingly. Therefore)/,’s viewis exactly same as
theviewof the passive adversary.

This proves that TGDH provides decisional version of keyejmehdence.

° Recall that insider attacks are not our concern. This excludes thewdsese an insider intentionally generates non-random
number.



