CUT-&-PASTE ATTACKS WITH JAVA

Serge Lefranc

Ecole Nationale Supérieure des Techniques Avancées
32 Boulevard Victor
Paris cEDEX 15, F-75739, France
lefranc@ensta.fr

http://www.ensta.fr/~lefranc

David Naccache
Gemplus Card International
34 rue Guynemer, Issy-les-Moulineaux, F-92447, France
david.naccache@gemplus.com

http://www.gemplus.com/smart

Abstract. This paper describes malicious applets that use Java's so-
phisticated graphic features to rectify the browser’s padlock area and
cover the address bar with a false https domain name.

The attack was successfully tested on Netscape’s Navigator and Mi-
crosoft’s Internet Explorer; we consequently recommend to neutralize
Java whenever funds or private data transit via these browsers and patch
the flaw in the coming releases.

The degree of novelty of our attack is unclear since similar (yet non-
identical) results can be achieved by spoofing as described in [6]; however
our scenario is much simpler to mount as it only demands the inclusion
of an applet in the attacker’s web page. In any case, we believe that the
technical dissection of our malicious Java code has an illustrative value
in itself.

1 Introduction

In the past years, sSL [1] has become increasingly popular for protecting infor-
mation exchanged between web stores and Internet users.

ssL features public-key encryption and signature, two cryptographic func-
tions that require the prior exchange of public keys between the sender and the
receiver.

Assuming the security of the underlying algorithms, one must still make sure
that the received public keys actually belong to the entity claiming to possess
them. In other words, after receiving a public key from a site claiming to be
http://www.amazon. com, it still remains to check that the public key indeed
belongs to Amazon; this is ascertained using certificates.

A certificate is a signature of the user’s public-keys, issued by a trusted third
party (authority). Besides the public-key, the certificate’s signed field frequently
contains additional data such as the user’s identity (e.g. amazon.com), an al-
gorithm ID (e.g. RSA, DSA, ECDSA etc.), the key-size and an expiry date. The
authority’s public-keys, used for verifying the certificates, are assumed to be
known to everybody.

Besides the site-specific information displayed by a website to a user (contents
that one can trust or not), secure sessions has two visual tell-tale signs :

e The image of a closed padlock appears in the browser (at the lower left
corner of the browser for Netscape’s Navigator and at the lower right part of the
window for Microsoft’s Internet Explorer).

e A glight change appears in the address bar, where instead of the usual :
http://www.domain-name.com
an additional s (standing for the word secure) can be seen :

https://www.domain-name. com

Figures 1 and 2 illustrate these visual differences.

In essence, the main indications guaranteeing the session’s security to the
user are visual.

2 The flaw

To make navigation attractive and user-friendly, browsers progressively evolved
to enable the on-the-fly delivery of images, movies, sounds and music.

This is made possible by the programming language Java. When a user loads
an html page containing an applet (a Java program used in a web page), the
browser starts executing the byte-code of this applet. Unlike most other procedu-
ral languages, the compilation of a Java program does not yield a machine-code
executable but a byte-code file that can be interpreted by any browser imple-
menting a Java Virtual Machine. This approach allows to reach an unprecedented
level of compatibility between different operating systems (which is, in turn, the
reason why Java has become so popular [4, 5, 2]).

A very intriguing feature of applets is their ability to display images beyond
the browser’s bounds, a feature largely exploited by the attacks described in this
paper. In a nutshell, our malicious applet will cover the browser’s padlock area
with the image of a closed padlock and, using the same trick, rectify the address
bar’s http to an https). Several variants can also be imagined: cover and mimic
the genuine navigator menus, modify the title banners of open windows, display
false password entry windows etc.

2.1 Scenario and novelty

The scenario is easy to imagine: a user, misled by a fake padlock, can, for in-
stance, feed confidential banking details into a hostile site. The degree of novelty
of our attack is unclear since similar (yet non-identical) results can be achieved
by spoofing as described in [6]; however our scenario is much simpler to mount
as it only demands the inclusion of an applet in the attacker’s web page. In any
case, we believe that the technical dissection of our malicious Java code has an
illustrative value in itself.

3 The code

This section will explain in detail the structure of applets tailored for two popu-
lar browsers : Netscape’s Navigator et Microsoft’s Internet Explorer (our exper-
iments were conducted with version 4.0, at least, of each of these browsers, in
order to take advantage of Java. Previous versions of these browsers represent
less then 10% of the browsers in the field).

For the sake of clarity we separately analyze the display and positioning
parts of the applets. Explanations refer to Netscape’s applet testN. java; minor
modifications suffice to convert testN. java into a code (testE. java) targeting
the Explorer.

3.1 Displaying the fake padlock

Image files downloaded from the Internet are usually displayed line after line, at
a relatively slow pace. Such a gradual display is by orders of magnitude slower
then the speed at which the microprocessor updates pixels. The closed padlock
must therefore appear as suddenly as possible so as not to attract the user’s
attention.

Luckily, there is a class in Java (MediaTracker) that avoids progressive dis-
play. To do so, we add the image of the padlock to a tracker object with the
following command:

MediaTracker tracker = new MediaTracker(this);
image = getImage(getCodeBase(),"PadlockN47.gif");
tracker.addImage (image,0) ;

We can add as many images as we please to a single media tracker but
one must assign ID numbers to these images. Here we have only one image
(PadlockN47.gif shown in figure 3) which ID is zero by default.

E]

Figure 3 : The fake padlock for Netscape’s Navigator
(image file PadlockN47.gif)

To wait for an image to be loaded completely, we use the following code :

try {tracker.waitForID(0);}
catch(Exception e) {}

This means that if the picture is not fully loaded, the program will throw an
exception. To display the picture we use Java’s standard function:

windowl.setBounds(X,Y,imgWidth, imgHeight) ;

which means that the frame containing the picture should appear at coordi-
nates {X,Y}, be imgWidth pixels wide and imgHeight pixels high.

windowl.show(); windowl.toFront();

The show() method makes a window visible and the toFront() method
makes sure that the window will be displayed at the top of the visualization
stack.

public void start() {
thread.start();
}

As we want to continuously display the padlock, we instanciate a Thread ob-
ject that creates an independent thread. The start () method creates the thread
and begins the display process by invoking the start () method of Thread. The
call of start () causes the call of the applet’s run () method that in turn displays
the padlock :

public void run() {

windowl.getGraphics() .drawImage(image,0,0,this);
windowl.validate();

}

These lines of code finally make sure that the drawImage () method draws
the picture at the right place, and validate it.

To make the applet fully functional, one can add a function that will check
if the victim has moved the browser and if so redraw the padlock at the right
position. We do not detail this feature here.

3.2 The padlock’s position

To paste the padlock at the right position we use Javascript [3] functions which
are distinct for the Navigator and the Explorer. The positioning calculations
are done in Javascript and involve constants representing the coordinates of the
padlock area and the dimensions of the fake padlock. This explains the existence
of two different html pages that we analyze separately. Both can be easily merged
into a code that adapts itself to the attacked browser, but this was avoided to
keep the description as simple as possible.

Netscape’s Navigator Two functions of the window method are very useful
for correctly displaying the padlock. The following Javascript code calculates its
exact position:

sX window.screenX;
sY = window.screenY + window.outerHeight - 23;

By default, {0,0} is the screen’s upper left corner, which is why we subtract
the height of the padlock (23 pixels) from the sum of window.screenY and
window.outerHeight.

It remains to hand over the Javascript variables sX and sY to the applet.

The strategy for doing so is the following: we define a one pixel applet so
as to remain quasi-invisible and avoid attracting the user’s attention. The pixel
can be hidden completely by assigning to it a color identical to the background
but again, this was avoided to keep the code simpler. We hand-over the position
data using:

document .write ("<APPLET CODE =’testN.class’ HEIGHT=1 WIDTH=1>")
document.write(" <PARAM NAME=’winPosX’ VALUE=’")
document.write(sX +"’>")

document .write(" <PARAM NAME=’winPosY’ VALUE=’")
document.write(sY +"’>")

document .write("</APPLET>")

Back in the Java code, these parameters are received as Strings and con-
verted to integers as follows:

String x = getParameter("winPosX"); int X
String y = getParameter("winPosY"); int Y

Integer.parselnt(x);
Integer.parselnt(y);

As illustrated in figure 4, our applet works perfectly when called from the
Navigator. Unless the user purposely dig information in the Navigator’s security
menu (Communicator/Security Info) the illusion is perfect. We intentionally
omitted the https part of the applet to avoid publishing an off-the-shelf mali-
cious code.

Microsoft’s Internet Explorer The Explorer’s behavior is slightly different.
When an applet is displayed, a warning banner is systematically added to its
window. To overcome this, we design an applet that appears to be behind the
browser while actually being in front of it. This is better understood by having
a look at figures 5 and 6.

Figure 5 : The fake padlock for Microsoft Explorer
(image file EvaPeronPadlock.gif)

A second (more aggressive) approach consists in adding to the html code an
instruction that expands the browser to the entire screen (the warning banner
will then disappear). It is even possible to neutralize the function that allows
the user to reduce the browser’s size.

4 Solutions

As our experiments prove, patching and upgrading seems in order. Here are some
solutions one can think of (the list is, of course, far from being exhaustive).

Random icons During installation, the program picks an icon at random (e.g.
from a database of one million icons) and customizes the padlock area with it.
The selected icon, that the user learns to recognize, can be displayed in green
(secure) or red (insecure). This should be enough to solve the problem, assuming
that hostile applets can not read the selected icon.

Warning messages Have the system display a warning message whenever
the padlock area is partially or completely covered by another window (e.g. A

window has just covered a security indicator, would you like to proceed?). Note
that warnings are necessary only when open padlocks are covered; warnings due
to intentional user actions such as dragging or resizing can be automatically
recognized and avoided.

Display in priority Whenever a window covers an open padlock, have the open
padlock (handled by the operating system as a privileged icon) systematically
appear in the foreplan. Note that such a radical solution paves the screen with
holes and might be difficult to live with.

Restricted graphic functions Allow display only within the browser’s bounds.

Selective tolerance Determine which application covered the padlock area
and activate any of the previous protections only if the covering application is
cataloged by the system as a priori insecure (e.g. unsigned by a trusted authority,
failure to complete an SSL session etc.).

Cockpit area Finally, one can completely dissociate the padlocks from the
browsers and display the padlocks, application names and address bars in a
special (cockpit) area. By design, the operating system will then make sure that
no application can access pixels in the cockpit area.

5 Acknowledgments

To be added after refereeing.

References

1. K. Hickman, The SSL Protocol, December 1995. Available electronically at :
http://www.netscape.com/newsref/std/ssl.html

2. C. Horstmann and G. Cornell, Core Java, volumes 1 and 2, Sun Microsystems Press,
Prentice Hall, 2000.

3. N. McFarlane,Professionnal Javascript, Wrox Press, 1999.

4. G. McGraw and E. Felten, Securing Java : getting down to business with mobile
code , 2-nd edition, Wiley, 1999.

5. S. Oaks, Java security, O’Reilly, 1998.

6. E. Felten & al., Web Spoofing : An Internet Con Game, Technical Report 540-96,
Princeton University, 1997.

APPENDICES

A The html page testN.html

<HTML>

<BODY BGCOLOR="#000000">

<P ALIGN=CENTER>
THIS SITE IS INSECURE

</P>

<P ALIGN=CENTER>
(DESPITE THE CLOSED PADLOCK)

</P>

<P><SCRIPT>

sX = window.screenX;

sY = window.screenY + window.outerHeight - 23;
document .write ("<APPLET CODE =’testN.class’ HEIGHT=1 WIDTH=1>")
document .write (" <PARAM NAME=’winPosX’ VALUE=’")

document .write(sX +"’>")

document .write (" <PARAM NAME=’winPosY’ VALUE=’")
document.write(sY +"’>")

document .write ("</APPLET>")

</SCRIPT></P>

</BODY>

</HTML>

The html page testE.html is obtained by changing the definitions of sX and
sY to:

sX = window.screenlLeft + document.body.offsetWidth - 198;
sY = window.screenTop + document.body.offsetHeight;

and replacing the applet’s name in:

document .write ("<APPLET CODE =’testIE.class’ HEIGHT=1 WIDTH=1>")

B The applet testN. java
import java.awt.*; import java.awt.image.*; import java.applet.x;
public class testN extends Applet implements Runnable {

Window windowl;
Image image ;

Thread thread
int imgWidth

new Thread(this);
24; int imgHeight = 23;

public void init() {
// We use the MediaTracker function to be sure that
// the padlock will be fully loaded before being displayed

MediaTracker tracker = new MediaTracker(this);
image = getImage(getCodeBase(),"PadlockN47.gif");
tracker.addImage (image,0);

try {tracker.waitForID(0);}

catch(Exception e) {}

Integer.parselnt(x);
Integer.parselnt(y);

String x = getParameter("winPosX"); int X
String y = getParameter ("winPosY"); int Y

windowl = new Window(new Frame());
windowl.setBounds (X,Y,imgWidth,imgHeight);

windowl.show();
windowl.toFront();

}

public void start() {
thread.start();
}

public void run() {
// winPosX,Y are parameters that define the position
// of the padlock in the screen

String x = getParameter ("winPosX"); int X = Integer.parselnt(x);
String y = getParameter("winPosY"); int Y = Integer.parselnt(y);

windowl.setBounds (X,Y,imgWidth,imgHeight);
windowl.getGraphics() .drawImage (image,0,0,this);
windowl.validate();

The applet testE. java is obtained by replacing the definitions of imgWidth
and imgHeight by:

int imgWidth = 251; int imgHeight = 357;
and changing the fake padlock file’s name to:
image = getImage(getCodeBase() ,"EvaPeronPadlock.gif");

=y ‘aung] Juawnaog) | == &
- | |
[+ | puadoys on w we | A3DLD 533] USSMO|EH JNOA SHE L
WSl T sABY NOA & 01 S1850] U] |B sey SNbnooog [« s1anpold Iiv |
'FID A, 10] MASN OS5 MO[EH JNo 'S2WnIsos

s Jeym 295 of U1 UDIG 07 S43793ND 31000 Lod]
|£19LL01SMD B ApRadly|

: saeyms “sdojdef "
. : _ . :
woduozewe BupLiosdn ano jo malasad i

2|BS opBlE4MO])

18 MAU 5 1B

SAoTSZ m Jo L

B pUE SaLUN}sod 5387 (sUo0onYy

'sUoRepUsWoDa) 3126 o) TTUDIS ;J2u03snD B Apead)y 'o||2H

SILHOAY SHITIAS
3344 ¥ 50NF1Hd d L

[s3mva [IuwvmadvH _

AHOLIIH10 EElyieeEEl

{ SHODA MEMW | MIHILNA

7 SA0L 7 57001
53H0L5 GIFNAYIS S AWE0L T

a13n | (02D ENoA. | A EOO:ONGEN
sppuueyy 71 |2
_umam_m.m.m_um;?,..@ “”m_m.m_”_ _.a__._._E.m._._._n_;xm_._.__u;xﬁn_zwan__u_n__uxumxmen_u.cn_Nm._._._m..a_a_a_xﬁn_:;_”:_uzm.n_n_n_ qw_. FHIRUIHDO0 ..m.w.. >
. i n__”_u_m days Alnsas Ao adeasiap Yadleas Ao H pEOEY plEsto Haeg i
™ 2 © 2 & B ¥ & & ® |

| F= R = i T =T 5 -)

adeaszjap - uonaajas jsabblg = yyie 3--wod uozewny L

Figure 1.1 : Potentially insecure session (Netscape’s Navigator).

auo(] uawnaog| | ==| m_

| T 22U SSaJ4ppy

| :owep ng

“IapIo SW[) UL SYIS 218 2431} J1 Xoq Y3y _| §8

"S3SSAIPPE [BUOYIPPE IUI 0) UOYNQ ,SSHIPPE IA[OUR PPV,
1]} YOI[D ‘SSAIPPE U0 URI[) 2IOUI 0) S SWPUIS aI,noA JI 10 T0YPNq INTWMT0,) 1) Y12
p axnol uatpp (“Iage] ssaippe SuIpq moX 1o sk [[,24\) Iapio moA dufs o) sn ayf p,nok
M SSAIPPE PUB WRU I 1)U U], I2pJo oA Ul)5 Aue aIe 2131 JT Mo s Ja])i

N ‘alay ssauppe buiddiys ayj 123u3

5534aav
. = ‘woouozewe
g[auuELY ._U i
pajEEY 5By 3»@ _ﬂ mmm_”:.__ﬁ.m_”__”_‘_.c_.cm_W.E_H_um;n_xw_u_u_n__uxumxmx_._._au.caNmEm.az}{ﬁwEE_”cn__um.n_n_._ .ﬁ_,v SIEWYo0g »ﬂ? ;
fufayl= doys fjunaacg g adeazjapy yoleas Ao H pEO[EY plEMID Haeyg i
¥ B v & B € L& 8 & P |

dgq MmEdunuuoT 0 salg 1p3 &g
[=[al— adeazjay - 39333IPPY 19325 JN0YIAYT WO UOZEWY

: Secure session (Netscape’s Navigator).

Figure 1.2

s @ ||)

7
ﬂ_l._c.ﬂ_ .ﬁ..-!.

T PUIA THESH 09 _
_...mmmmm_mm may ‘1557000 AEMESAID) S[qdendo.) [« spEnpolg __{_
~ 'NOA 10} M3 gEES Jno Jajug jles

s jeym 295 03 U1 0BG LUESID JNoA UL ABre SALT nm
[¢12L1015ND B Apead)y : =
. P _|.1 saeyms “sdojdey o

= 9|25 SpEIEJMOD
= buiuoadn ano jo malazad
B pur S3LONJS0D SI2) (SUoony

wmnus g g
:SdoTSZ W Jog

WoJuozZewe

18 MBU 5384

e

‘sUOREpUSLUIWOD2) 126 of TTUDIE /J2Wolsnd 8 Apead)y 'o||=2H

SILHON SHATIAS
B SON3HA d0L

SAMYD [Alnwag =

- | syoo9 | '8 s x01 | Mamaud | | 3wwmidos TR LRI AHOL33HI0 EERiERET
SIH0L5 OIMAIVES S AVO0L ™ e
a13n | (INnooovEnoh ' | A .EOOF—QNWEQ
R .w:m_..L wﬂm...w_ _” FSF9Z09-2 SR G0 F-Z 00/ L SLU0L A 200U 20,/ S0PIQ0, DERa 00 LIDZEIE wde iy @_ mwmmﬁ{_
G- -G PEg Ve« =

I ospng suofey ebefoyy uonpd enad |

1910jdx] Jauiaju| JJosoIdNy - UoNIafag Jsabbig s ype 3--woa uozewy

Figure 2.1 : Potentially insecure session (Microsoft Explorer).

TN g_ I@_ |_

aunne) [

WIPIO SI) m#—ﬂ,lm 21 I3 JTX0q I | ’

[EUOHIpPE 122 0) HOYNq ,SSIIPPR IA[OUR PPY,, 2} YOI ‘SSAIPPE 2U0 URL 2101
0} ST SWPUas a1,nok JI ‘10 UWONPNQ T 21 Y212 ‘auop arnok uaymp (123e]
ssaIppe Suriq moi Joj yse [[,2,) “Fapio moA dmgs oy sn ay p,nofk azaym ssaippe

puR WL 21[) 12)U2 U], Japio Mok ur syis Aue ame 2121 1 motny sn Jaf Jsng

242y ssadppe buiddiys ay3 123u3

553HAAY
g

T Ul SS2IppPY

1aLuepn [In4

‘sassaIppe

‘woouozewe

|GP3Z09-4BE50F-200/U-UBIS INDIR1A/SOPIGD/IKE/ D2 WOZRWE Wikivi/ /304] assaipiy

*
¢ ME-HPEg Ve - €2
*

£

shng suoRey sBefoyyy uonpd sEyag

1210]dx 3 J2u1aju| YosoIdl - $3sSAIPPY 199135 JNoyIay] woa uozewy B

Figure 2.2 : Secure session (Microsoft Explorer).

s [EE 2 TFE T BLiLung bz jo)ddy

CIDOTAVd dASOTD HHL ALIdSHA)

HANODHASNI ST H.LIS SIH.L

==|

E[aULEL] .__U
PRIE[E Y 5 UM, »@ _” __._._E.zummuxummuxn_cm_u_m_zx_u_.Emcm.zzzaﬁa:;_ monean] o syewyoog msr
doys dunaag g adeasjay ymeag awoy pEO[EY Yyaeg

T T P £ B €€ £ € €

ha

ke

ke

&

adeasjapyT

Figure 4 : Fake padlock applet on a Netscape Navigator.

ja|dde p augua) ULy

-

Jaua) | ﬂ__ aupa | [

D01AVd AASOTD AHL ALIdSHAD
HANIASNI ST H.LIS STH.L

“_._._u__.,_.m_ﬂwm_u_.._.”_wm_u__.__u_._m.:m__!_._.c.m.u_w_."m_._...____..._.__..._.__._._._.”n_”_”__.,_ _..ww mﬁw.m:ﬂ.ﬂ__. _ |

732_2@_1 V= = =t = M =11=11 == g ==/ el S =111 . sjuspmaa |

£ B B | P & € e o

& Eng W__._wm_.m.n_ abEpyyy Lonpy ey |
1310[dx g JBUIaU] YOS0IMY - (WY JREA)F1ED)/IURLS],. /1) BIsUa mmm 7 2 A1y ﬁ

Figure 6 : Fake padlock applet on a Microsoft Explorer.

This article was processed using the BTEX macro package with LLNCS style

