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Abstra
t. This paper 
onsiders arbitrary-length 
hosen-
iphertext se-


ure asymmetri
 en
ryption, thus addressing what is a
tually needed for

a pra
ti
al usage of strong publi
-key 
ryptography in the real world. We

put forward two generi
 
onstru
tions, gem-1 and gem-2, whi
h apply

to expli
it �xed-length weakly se
ure primitives and provide a strongly se-


ure (IND-CCA2) publi
-key en
ryption s
heme for messages of un�xed

length (typi
ally 
omputer �les). Our te
hniques optimally 
ombine a

single 
all to any one-way trapdoor fun
tion with repeated en
ryptions

through some weak blo
k-
ipher (a simple xor is �ne) and hash fun
-

tions of �xed-length input so that a minimal number of 
alls to these

fun
tions is needed. Our en
ryption/de
ryption throughputs are 
om-

parable to the ones of standard methods (asymmetri
 en
ryption of a

session key + symmetri
 en
ryption with multiple modes). In our 
ase,

however, we formally prove that our designs are se
ure in the strongest

sense and provide 
omplete se
urity redu
tions holding in the random

ora
le model.

1 Introdu
tion

A real-life usage of publi
-key en
ryption requires three distin
t ideal properties.

Se
urity is a major 
on
ern: a 
ryptosystem should be se
ure against any atta
k

of any kind, should the atta
k be realisti
 in the 
ontext of use or only theoreti
al.

Performan
e has to be risen to upmost levels to guarantee high speed en
ryption

and de
ryption rates in 
ommuni
ation proto
ols and real time appli
ations.

At last, design simpli
ity is desirable to save time and e�orts in software or

hardware developments, in
rease modularity and reusability, and fa
ilitate publi


understanding and s
rutiny.



Designing an en
ryption s
heme whi
h meets these 
riteria is quite a 
hal-

lenging work, but methodologies and tools exist, at least for the �rst property.

Our knowledge of se
urity features inherent to 
ryptographi
 obje
ts and of the

relations 
onne
ting them has intensively evolved lately, driving us to a growing

range of powerful generi
 
onstru
tions, both simple and provably se
ure [8, 9,

14, 13℄. Among these 
onstru
tions, Okamoto and Point
heval's rea
t [13℄ is


ertainly the one that o�ers most 
exibility: unlike Bellare and Rogaway's long-

lived oaep [5℄, rea
t applies to any trapdoor fun
tion, i.e. any asymmetri


en
ryption s
heme presenting su
h a weak level of se
urity as being OW-PCA

(see further), to provide a 
ryptosystem of strongest level IND-CCA2 in the ran-

dom ora
le model.

1.1 Our results

This paper 
onsiders arbitrary-length 
hosen-
iphertext se
ure (IND-CCA2) asym-

metri
 en
ryption s
hemes, thus addressing what is a
tually needed for a pra
-

ti
al usage of strong publi
-key 
ryptography in the real world. We propose two

generi
 
onstru
tions whi
h apply to �xed-length weakly se
ure primitives and

provide a strongly se
ure publi
-key 
ryptosystem for messages of un�xed length,

su
h as 
omputers �les or 
ommuni
ation streams. In our s
hemes, the en
ryp-

tion and de
ryption pro
esses may start and progress without even knowing the

overall input blo
klength; they also may stop at any time. Besides, our designs

are one-pass only, meaning that ea
h message blo
k will be treated exa
tly on
e.

Our te
hniques 
ombine a single 
all to any one-way trapdoor fun
tion with

repeated en
ryptions through some weak blo
k-
ipher (a simple xor will do) and

hash fun
tions of �xed-length input. Contrarily to previous generi
 
onversions,

ea
h message blo
k will require only one 
all to a hash fun
tion so that the overall

exe
ution 
ost for an n-blo
k plaintext is exa
tly 1 
all to the one-way trapdoor

en
ryption, followed by n 
alls to the blo
k-
ipher and n + 1 (or n + 2) 
alls

to a hash fun
tion

1

. Besides, the storage of the whole plaintext �le in memory

is 
ompletely unne
essary and en
ryption/de
ryption pro
edures use a memory

bu�er of only � 3 blo
ks, thus allowing on-the-
y treatments of 
ommuni
ation

streams. We believe that our s
hemes are the �rst that 
ombine these pra
ti
al

properties simultaneously while keeping total generi
ity.

The �rst 
onstru
tion applies to any OW-PCA probabilisti
 trapdoor fun
tion

and in
orporates two extra �elds of �xed length in the 
iphertext, one at ea
h

end. The se
ond 
onstru
tion we give only works for deterministi
 OW trap-

door fun
tions but adds only one extra �eld at the end of the 
iphertext. Our

performan
es are similar to the ones of standard methods, whi
h usually en-


rypt some random session key under an asymmetri
 s
heme and then feed that

key into some blo
k-
ipher running under an appropriate multiple mode. In our


ase, however, we 
an formally prove that our designs are se
ure in the strongest

sense IND-CCA2. Indeed, we provide 
omplete se
urity redu
tions holding in the

random ora
le model.

1

an extra hash 
all is needed for authenti
ity.



1.2 Outline of the paper

The paper is organized as follows. Se
tion 2 brie
y re
alls se
urity notions for

en
ryption s
hemes in both symmetri
 and asymmetri
 settings. We also re-

view Okamoto and Point
heval's plaintext 
he
king atta
ks in 
onne
tion with


omputational gap problems [12℄. Then, Se
tions 3.1 and 3.2 introdu
e our new

generi
 
onversions, gem-1 and gem-2, whose redu
tion proofs are given in Ap-

pendi
es B and C. Furthermore, typi
al examples of pra
ti
al usage of these

systems are given in Se
tion 4. We 
on
lude by giving some possible extensions

of our work in Se
tion 5.

2 Se
urity notions for en
ryption s
hemes

2.1 Asymmetri
 en
ryption

We now introdu
e a few standard notations. An asymmetri
 en
ryption s
heme

is a triple of algorithms (K; E ;D) where

{ K is a probabilisti
 key generation algorithm whi
h returns random pairs of

se
ret and publi
 keys (sk ; pk) depending on the se
urity parameter �,

{ E is a probabilisti
 en
ryption algorithm whi
h takes on input a publi
 key

pk and a plaintext m 2 M, runs on a random tape u 2 U and returns a


iphertext 
,

{ D is a deterministi
 de
ryption algorithm whi
h takes on input a se
ret

key sk , a 
iphertext 
 and returns the 
orresponding plaintext m or the

symbol ?. We require that if (sk ; pk ) K, then D

sk

(E

pk

(m;u)) = m for all

(m;u) 2 M�U .

Adversarial goals.

One-wayness. The �rst se
re
y notion required from an en
ryption s
heme

is its one-wayness, meaning that one should not be able to re
over a plaintext

given its en
ryption. More formally, the s
heme is said to be (�; ")-OW if for any

adversary A with running time bounded by � , the probability that A inverts E

is less than ":

Su



ow

(A) = Pr

m

R

 M

u

R

 U

[(sk ; pk) K(1

�

) : A(E

pk

(m;u)) = m℄ < " ;

where the probability is taken over the random 
hoi
es of the adversary.

Semanti
 se
urity. Formalizing another se
urity 
riterion that an en
ryption

s
heme should verify beyond one-wayness, Goldwasser and Mi
ali [10℄ introdu
ed

the notion of semanti
 se
urity. Also 
alled indistinguishability of en
ryptions (or

IND for short), this property 
aptures the idea that an adversary should not be

able to learn any information whatsoever about a plaintext, its length ex
epted,



given its en
ryption. More formally, an asymmetri
 en
ryption s
heme is said to

be (�; ")-IND if for any adversaryA = (A

1

;A

2

) with running time upper-bounded

by � ,

Adv

ind

(A) = 2� Pr

b

R

 f0;1g

u

R

 U

�

(sk ; pk ) K(1

�

); (m

0

;m

1

; �) A

1

(pk )


 E

pk

(m

b

; u) : A

2

(
; �) = b

�

� 1 < " ;

where the probability is taken over the random 
hoi
es of A. The two plaintexts

m

0

and m

1


hosen by the adversary inM have to be of identi
al length.

Non-malleability. The property of non-malleability (NM), independently pro-

posed by Dolev, Dwork and Naor [6℄, supposes that, given the en
ryption of a

plaintext m, the atta
ker 
annot produ
e the en
ryption of a related plaintext

m

0

. Here, rather than learning some information about m, the adversary will try

to output the en
ryption ofm

0

. These two properties are related in the sense that

non-malleability implies semanti
 se
urity for any adversarial model, as pointed

out in [6℄ and [3℄.

Adversarial models. On the other hand, there exist several types of adver-

saries, or atta
k models. In a 
hosen-plaintext atta
k (CPA), the adversary has

a

ess to an en
ryption ora
le, hen
e to the en
ryption of any plaintext she

wants. Clearly, in the publi
-key setting, this s
enario 
annot be avoided. Naor

and Yung [11℄ 
onsidered non-adaptive 
hosen-
iphertext atta
ks (CCA1) (also

known as lun
htime or midnight atta
ks), wherein the adversary gets, in ad-

dition, a

ess to a de
ryption ora
le before being given the 
hallenge 
ipher-

text. Finally, Ra
ko� and Simon [15℄ de�ned adaptive 
hosen-
iphertext atta
ks

(CCA2) as a s
enario in whi
h the adversary queries the de
ryption ora
le before

and after being 
hallenged; her only restri
tion here is that she may not feed the

ora
le with the 
hallenge 
iphertext itself. This is the strongest known atta
k

s
enario.

Various se
urity levels are then de�ned by pairing ea
h goal (OW, IND or

NM) with an atta
k model (CPA, CCA1 or CCA2), these two 
hara
teristi
s being


onsidered separately. Interestingly, it has been shown that IND-CCA2 and NM-

CCA2 were stri
tly equivalent notions [3℄. This level is now 
onsidered as standard

and referred to as IND-CCA2 se
urity or 
hosen-
iphertext se
urity. The se
urity

of a 
ryptosystem is thus measured as the ability to resist an adversarial goal

in a given adversarial model. Whenever possible, the s
heme is proven IND-

CCA2 se
ure by exhibiting a polynomial redu
tion: if some adversary 
an break

the IND-CCA2 se
urity of the system, then the same adversary 
an be invoked

(polynomially many times) to solve some related hard problem.

2.2 Symmetri
 en
ryption s
hemes

A symmetri
 en
ryption s
heme with key bit-length k and message bit-length m

is a pair of algorithms (E; D) where



{ E is a deterministi
 en
ryption algorithm whi
h takes a key k 2 f0; 1g

k

and

a plaintext m 2 f0; 1g

m

and returns a 
iphertext 
 2 f0; 1g

m

,

{ D is a deterministi
 de
ryption algorithm whi
h takes a key k 2 f0; 1g

k

and a


iphertext 
 2 f0; 1g

m

and returns a plaintext m 2 f0; 1g

m

. We require that

D

k

(E

k

(m)) = m for all m 2 f0; 1g

m

and k 2 f0; 1g

k

.

In this setting, again, various se
urity notions are de�ned; most are adapta-

tions from the asymmetri
 notions. In this work, however, we only need to de�ne

indistinguishability. A symmetri
 en
ryption s
heme is said (�; ")-IND if for any

adversary A = (A

1

;A

2

) with running time bounded by � ,

Adv

ind

(A) = 2� Pr

k

R

 f0;1g

k

b

R

 f0;1g

[(m

0

;m

1

; �) A

1

(k); 
 E

k

(m

b

) : A

2

(
; �) = b℄�1 < " ;

where the probability is also taken over the random 
hoi
es of A. Both plain-

texts m

0

and m

1

are 
hosen by the adversary in f0; 1g

k

. Although other atta
k

s
enarios may be 
onsidered, passive atta
ks are enough for our purposes. Note

that this notion is a very weak requirement. Note also that the one-time pad

en
ryption is perfe
tly indistinguishable, i.e. , it is (�; 0)-IND for any � .

2.3 Plaintext-
he
king se
urity

Okamoto and Point
heval re
ently introdu
ed an intermediate adversarial model


alled plaintext 
he
king atta
ks [13℄. In this model, the adversary has a

ess to

a plaintext-
he
king ora
le O

p
a

whi
h dete
ts plaintext-
iphertext 
orrespon-

den
es: the ora
le takes as input a pair (m; 
) and tells whether 
 en
rypts m or

not. Clearly, this ora
le remains weaker than a de
ryption ora
le be
ause it is

generally easier to 
he
k the solution of a problem (s
heme inversion here) than

to 
ompute it. Obviously in the 
ase of a deterministi
 en
ryption s
heme, PCA

and CPA are stri
tly equivalent atta
k s
enarios. More spe
i�
ally, any trapdoor

permutation is OW-PCA if and only if it is OW (e.g., RSA).

From a 
omplexity viewpoint, breaking a s
heme's OW-PCA-se
urity exa
tly


onsists in breaking its OW-se
urity (i.e. its one-wayness) with the help of an

ora
le solving a weaker problem. That kind of problems, i.e. solving P

1

with

a

ess to O

P

2

and P

2

( P

1

, are 
alled gap problems [12℄ and de�ne some notion

of 
omplexity distan
e between problems in a hierar
hy.

A typi
al example is ElGamal en
ryption, for whi
h breaking OW is equiv-

alent to CDH and having a

ess to O

p
a

allows to solve DDH trivially (and


onversely). OW-PCA-se
urity is in this 
ase equivalent to the gap problem sep-

arating CDH from DDH, whi
h is 
alled Gap DiÆe-Hellman Problem and noted

GDH (see [12℄ for insights).

2.4 Generi
 
onversions

In [5℄, Bellare and Rogaway proposed oaep, a spe
i�
 hash-based treatment ap-

pli
able to any partial-domain [16, 7℄ one-way trapdoor permutation to provide



an IND-CCA2 se
ure en
ryption s
heme in the random ora
le model [4℄. Later,

Fujisaki and Okamoto [8℄ presented a way to transform, still in the random ora-


le model, any IND-PCA trapdoor fun
tion into an IND-CCA2 en
ryption s
heme.

They improved their results in [9℄ where they gave a generi
 method to 
on-

vert a one-way trapdoor fun
tion into an IND-CCA2 se
ure en
ryption s
heme

in the random ora
le model

2

. A similar result was independently dis
overed by

Point
heval [14℄. More re
ently, Okamoto and Point
heval [13℄ proposed a more

eÆ
ient generi
 
onversion, 
alled rea
t. Contrarily to [8, 9, 14℄, a 
omplete re-

en
ryption is unne
essary in the de
ryption pro
ess of rea
t to ensure IND-CCA2

se
urity, thus yielding a low running time overhead. Besides, rea
t applies to

any trapdoor fun
tion i.e. any asymmetri
 en
ryption s
heme presenting su
h a

weak level of se
urity as being OW-PCA. Until now, however, no generi
 
onver-

sion has been expli
itly de�ned

3

to en
rypt messages of variable length based on

�xed-length fun
tions. The next se
tion des
ribes our arbitrary-length generi



onversions.

3 Arbitrary-length IND-CCA2 en
ryption

The most popular and usual way of ensuring 
on�dentiality of un�xed-length

messages 
onsists in publi
-key en
rypting a random session key and then en-


rypting the message under that session key by the means of a blo
k-
ipher used

within a suitable en
ryption mode. This approa
h has never been shown se
ure;

in parti
ular, the use of an IND-CCA2 asymmetri
 s
heme to en
rypt the session

key is obviously insuÆ
ient to ensure any se
urity whatsoever about the whole


onstru
tion.

In 
omparison, our 
onversions are based on the same primitives, i.e. some

asymmetri
 s
heme E

pk

and some symmetri
 s
heme E

k

. But we additionally use

hash fun
tions to make the session key evolve permanently as the en
ryption pro-

gresses. Our important result here is that the two 
ryptosystems we propose are

IND-CCA2-se
ure provided that E

pk

is OW-PCA or OW and E

k

is indistinguish-

able. Independently, they provide di�erent se
urity/performan
e tradeo�s that

we analyze in se
tion 4.

3.1 Relying on a OW-PCA trapdoor fun
tion: GEM-1

Our �rst 
onstru
tion E

1

pk

applies to any OW-PCA probabilisti
 trapdoor fun
tion

E

pk

and in
orporates two extra �elds of �xed length in the 
iphertext, one at

ea
h end. To make the se
urity proof easier, we will assume that the message

blo
klength is upper-bounded by some very large number n

max

whi
h value is

dis
ussed in se
tion 4. The en
ryption and de
ryption pro
edures are as depi
ted

below.

2

the 
onversion 
ost is however quite heavy as a 
omplete re-en
ryption is needed

during de
ryption.

3

note that [13℄ 
onsiders the 
ase of variable-length en
ryption without providing any

expli
it 
onstru
tion for �xed-length fun
tions.



En
ryption

Input plaintext (m

1

; : : : ;m

n

), 1 � n � n

max

, random � = wku.

Output 
iphertext (t

1

; 


1

; � � � ; 


n

; t

2

) given by

E

1

pk

(m; �) = (E

pk

(w; u)

| {z }

t

1

; E

k

1

(m

1

)

| {z }




1

; E

k

2

(m

2

)

| {z }




2

; � � � ; E

k

n

(m

n

)

| {z }




n

;F(k

n

;m

n

; w)

| {z }

t

2

)

where k

1

= H

1

(w; t

1

), k

2

= H

2

(k

1

;m

1

; w), . . . , k

n

= H

n

(k

n�1

;m

n�1

; w).

De
ryption

Input 
iphertext (t

1

; 


1

; � � � ; 


n

; t

2

) with 1 � n � n

max

.

Output plaintext (m̂

1

; � � � ; m̂

n

) or ? a

ording to

D

1

sk

(t

1

; 


1

; � � � ; 


n

; t

2

) =

�

m̂

1

= D

^

k

1

(


1

); : : : ; m̂

n

= D

^

k

n

(


n

) if t

2

= F(

^

k

n

; m̂

n

; ŵ)

? otherwise

where ŵ = D

sk

(t

1

),

^

k

1

= H

1

(ŵ; t

1

) and

^

k

i

= H

i

(

^

k

i�1

; m̂

i�1

; ŵ) for i = 2; n.

ε E E EHHH F1 2 n3
H

m m m

c c c tt

w

1 2 n

1 1 2 n 2

u

Fig. 1. Synopsis of gem-1.

We 
laim that for any OW-PCA asymmetri
 en
ryption E

pk

and any IND-se
ure

symmetri
 en
ryption s
heme E

k

, our 
onverted s
heme E

1

pk

[E

pk

; E

k

℄ is IND-CCA2

in the random ora
le model. To be more pre
ise:

Theorem 1. Suppose there exists an adversary A whi
h distinguishes E

1

pk

[E

pk

; E

k

℄

within a time bound � with advantage " in less than q

F

, q

H

=

P

i2h1;n

max

i

q

H

i

, q

D

1

sk

ora
le 
alls. Suppose also that E

k

is (�; �)-indistinguishable. Then there exists an

algorithm B whi
h inverts E

pk

with probability "

0

greater than

"

0

�

"

2

� q

D

1

sk

�

1

℄ t

2

+

3

℄ k

�

� n

max

�

�

2

+

q

D

1

sk

℄ k

�

;

with a total number of 
alls to O

p
a

upper-bounded by q

O

p
a

� q

F

+ q

H

and in

time

�

B

= � + (q

D

1

sk

+ 1) (q

F

+ q

H

) � (�

p
a

+O(1)) :



Here, ℄ a denotes the number of all possible values of a (hen
e ℄ k = 2

k

).

We refer the reader to the (extensive) redu
tion proof given in appendix B.

3.2 Relying on a OW trapdoor fun
tion: GEM-2

Our se
ond 
onstru
tion E

2

pk

only works with a deterministi
 OW trapdoor fun
-

tion E

pk

(su
h as RSA) but adds only one extra �eld at the end of the 
iphertext.

Here again, we will assume that the message blo
klength is upper-bounded by

some large number n

max

. The en
ryption and de
ryption pro
edures follow.

En
ryption

Input plaintext (m

1

; : : : ;m

n

), 1 � n � n

max

, random r.

Output 
iphertext (


1

; � � � ; 


n

; t) given by

E

2

pk

(m; r) = (E

k

1

(m

1

)

| {z }




1

; E

k

2

(m

2

)

| {z }




2

; � � � ; E

k

n

(m

n

)

| {z }




n

; E

pk

(skv)

| {z }

t

)

where

�

k

1

= G

1

(r); k

i

= G

i

(k

i�1

;m

i�1

; r) for i = 2; : : : n;

s = F(k

n

;m

n

; r), and v = r �H(s):

De
ryption

Input 
iphertext (


1

; � � � ; 


n

; t) with 1 � n � n

max

.

Output plaintext (m̂

1

; � � � ; m̂

n

) or ? a

ording to

D

2

sk

(


1

; � � � ; 


n

; t) =

�

m̂

1

= D

^

k

1

(


1

); : : : ; m̂

n

= D

^

k

n

(


n

) if ŝ = F(

^

k

n

; m̂

n

; r̂),

? otherwise.

where

�

ŝkv̂ = D

sk

(t); r̂ = v̂ �H(ŝ);

^

k

1

= G

1

(r̂); and

^

k

i

= G

i

(

^

k

i�1

; m̂

i�1

; r̂) for i = 2; : : : n:

We 
laim that for any OW asymmetri
 en
ryption E

pk

and any IND-se
ure sym-

metri
 en
ryption s
heme E

k

, the 
onverted s
heme E

2

pk

[E

pk

; E

k

℄ is IND-CCA2 in

the random ora
le model. To be more pre
ise:

Theorem 2. Suppose there exists an adversary A whi
h distinguishes E

2

pk

[E

pk

; E

k

℄

within a time bound � with advantage " in less than q

F

, q

H

, q

G

=

P

i2h1;n

max

i

q

G

i

,

q

D

2

sk

ora
le 
alls. Suppose also that E

k

is (�; �)-indistinguishable. Then there ex-

ists an algorithm B whi
h inverts E

pk

with probability "

0

greater than

"

0

�

"

2

�

q

F

+ q

G

℄ r

� q

D

2

sk

(q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

�

q

D

2

sk

℄ k

� n

max

�

�

2

+

q

D

2

sk

℄ k

�

;

within a time bounded by

�

B

= � + (q

D

2

sk

+ 1) (q

F

+ q

G

) q

H

� (�

E

+O(1)) ;

where �

E

denotes the maximum time needed by E

pk

for a single en
ryption.
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Fig. 2. Synopsis of gem-2.

Again, the reader is invited to �nd the redu
tion proof in Appendix C for te
h-

ni
al details.

4 Appli
ations

Numerous appli
ations are possible when embodying E

pk

and E

k

. Due to la
k of

spa
e, we will only 
onsider the typi
al 
ase E

pk

= RSA and E

k

= � (for whi
h

� = 0). The instantiations of random ora
les F, H

i

, H and G

i

in one s
heme or

another by hash fun
tions 
an be done by setting for instan
e H

i

(�) = SHA(�ki)

where the 
ounter i 2 h1; n

max

i is in
remented at ea
h blo
k treatment. Spe
ial

values of i su
h as 0 or �1 may be used to implement F and H.

4.1 E

1

pk

[RSA;�℄

Corollary 1. The en
ryption s
heme E

1

pk

[RSA;�℄ is IND-CCA2 in the random

ora
le model under the RSA assumption.

For 
on
rete se
urity parameters, we suggest to use 1024-bit RSA keys with

publi
 exponent e = F

4

= 2

16

+ 1. We set for instan
e log

2

℄ t

2

= m = k = 160

(hash fun
tions F, H

i

being derived from SHA-1 using a 
ounter i 2 h1; n

max

i

like des
ribed above), ℄ w = 2

160

and n

max

= 2

32

. Assuming that the probability

"

0

to invert RSA lies around "

0

= 2

�60

, then an attaquer 
ould distinguish

E

1

pk

[RSA;�℄ with q

D

1

sk

= 2

50

de
ryptions with advantage no more than " = 2

�58

.

From an implementation viewpoint, note that as soon as the RSA en
ryp-

tion has been done, the en
ryption pro
edure may dire
tly output 
iphertexts

blo
ks one after the other without having to wait that all blo
ks are en
rypted

to transmit them all together. This allows on-the-
y en
ryption of 
ommuni-


ation streams. Three-tuples (w; y; k

1

) may also be 
omputed in advan
e to let



the en
ryption devi
e or software deal with hash 
omputations only. The sug-

gested setting allows to repla
e ora
les H

2

; : : : ;H

n

;F by the 
ompression fun
tion

(512 7! 160) of SHA-1, driving us to n+ 3 
alls to this fun
tion sin
e the input

of H

1

is made of three 512-bit blo
ks. Another bene�t of our 
onstru
tion is that

it requires only a small memory bu�er (one �eld for the storage of w, one for

the 
urrent key k

i

and a third one for m

i

). Finally, hardware implementations

providing some hash 
opro
essor may drasti
ally in
rease our speed rates.

4.2 E

2

pk

[RSA;�℄

Corollary 2. The en
ryption s
heme E

2

pk

[RSA;�℄ is IND-CCA2 in the random

ora
le model under the RSA assumption.

For 
on
rete se
urity bounds, the same suggestions as previously lead to a

maximal advantage of " = 2

�58

if we take log

2

℄ s = log

2

℄ r = 512, q

F

= q

G

= 2

50

and n

max

= 2

32

.

Here again, any smart implementation allows on-the-
y en
ryption. The

memory requirements are similar to the one of E

1

pk

. Here too, a 
opro
essor

devoted to hash 
omputations would in
rease speed rates.

5 Con
lusion

We devised new generi
 
onstru
tions whi
h apply to �xed-length weakly se-


ure primitives and provide a strongly se
ure (IND-CCA2) publi
-key en
ryption

s
heme for messages of un�xed length like 
omputer �les or 
ommuni
ations

streams. An open question resides in investigating whether simpler and/or faster

designs 
ould exist, or whether the se
urity requirements on the primitives 
ould

be shrunk further. Another 
hallenging topi
 would be to 
ome up with a 
on-

stru
tion holding only one additional �eld in the 
iphertext but still employing

a probabilisti
 en
ryption E

pk

as in E

1

pk

. Finally, one 
ould try to in
lude a

signature s
heme in the en
ryption pro
ess to simultaneously authenti
ate the

sender's identity, the plaintext and the 
iphertext itself. Su
h an extension would

ideally lead to fast and se
ure (a

ording to one-more de
ryption atta
ks) sign-


ryption s
hemes for arbitrary-length messages.
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A Preliminary

A.1 Notations

It is useful to introdu
e some notations. If a is some random variable, then ℄ a

denotes the number all possible values of a. For integers a and b, ha; bi denotes



the set on integers ranging from a to b. For any predi
ate R(x), R(�) will stand

for 9x s.t. R(x). If O is an ora
le to whi
h A has a

ess, we denote by query 7!

response the 
orrespondan
e O establishes between A's request query and the

value response returned to A. Hist [O℄ stands for the set of 
orrespondan
es

established by O as time goes on: Hist [O℄ 
an be seen as a memory whi
h gets

updated ea
h time A makes a query to O. We denote by q

O

the number of 
alls

A made to O during the simulation.

The relation E

1

E E

2

indi
ates that the event E

1

takes pla
e before the event

E

2

, if any of them o

urs. In other words, when E

1

E E

2

is true, if E

2

ever

happens, then one knows for sure that E

1

happened before. By E

1

; : : : ;E

p

E

E

0

1

; : : : ;E

0

q

, we mean of 
ourse that E

i

E E

0

j

stands for all i = 1; p and j = 1; q. We

note E

1

C E

2

the event whi
h sequentially realizes E

1

and then E

2

. Equivalently,

E

1

C E

2

= E

1

E E

2

^ E

2

. Again, E

1

; : : : ;E

p

C E

0

1

; : : : ;E

0

q

, means E

i

C E

0

j

for all

i = 1; p and j = 1; q. For 
onvenien
e, � E E

1

(resp. E

1

E �) indi
ates that the

event E

1

takes pla
e during the guess (resp. �nd) stage of A, � representing the

instants when A

1

ends and A

2

starts inter
hangeably.

A.2 Extending indistinguishability to s
heme produ
ts

Let E

1

and E

2

be two symmetri
 en
ryption s
hemes. We de�ne the s
heme

produ
t of E

1

and E

2

, E = E

1

� E

2

by

E

k

(m) = (E

1

� E

2

)

(k

1

;k

2

)

(m

1

;m

2

) = (E

1

k

1

(m

1

); E

2

k

2

(m

2

)) ;

where all values stand in their respe
tive sets. Then

Lemma 1. If E

1

is (�; �

1

)-IND and E

2

is (�; �

2

)-IND then E is (�; �

1

+ �

2

)-IND.

Proof. A proof of that fa
t will appear in the �nal version of this paper.

Note that [1℄ and [2℄ provide similar results for asymmetri
 en
ryption s
hemes.

By immediate indu
tion of lemma 1, we get that if E

i

is (�; �

i

)-IND for i 2 h1; ni,

then E =

Q

i

E

i

is (�;

P

i

�

i

)-IND. In parti
ular, if E is (�; �)-IND, then (E)

n

is

(�; n�)-IND.

B Se
urity analysis of GEM-1

B.1 Des
ription of the redu
tion algorithm

B is given an en
ryption y = E

pk

( ew; �), an ora
leO

p
a

whi
h 
he
ks plaintexts for

E

pk

, and an adversary A = (A

1

;A

2

) that breaks the IND-CCA2 se
urity of E

1

pk

.

The goal of the redu
tion B is to retrieve the total knowledge of ew. Ea
h time

the redu
tion B needs to 
he
k whether a plaintext-
iphertext 
orrespondan
e

holds between y and w (whi
h we denote y = E

pk

(w; �)), the query (y; w) is

impli
itly sent to O

p
a

whi
h returns a boolean value. Wlog, we assume that

O

p
a

responds to any of B's requests with no error and within a time bound

�

p
a

.



Overview of B. B runs A

1

and provides a simulation for H

i

with i 2 h1; n

max

i,

F and D

1

sk

as des
ribed later (�nd stage). A

1

outputs a pair of message sequen
es

(m

0

;m

1

) of identi
al blo
klength n � n

max

after a 
ertain time. B then randomly


hooses b 2 f0; 1g and pro
eeds to the following operations:

{ if there exists (w; y) 7! k

1

2 Hist [H

1

℄ with y = E

pk

(w; �) then ew := w and

e

k

1

:= k

1

(event E

1

) otherwise

e

k

1

is set to a random value,

{ for i 2 h2; ni, if there exists (

e

k

i�1

;m

b

i

; w) 7! k

i

2 Hist [H

i

℄ with y =

E

pk

(w; �) then ew := w and

e

k

i

:= k

i

(event E

i

); otherwise

e

k

i

is set to a

random value,

{ if there exists (

e

k

n

;m

b

n

; w) 7! t

2

2 Hist [F℄ with y = E

pk

(w; �) then ew := w

and

e

t

2

:= t

2

(event E

F

); otherwise

e

t

2

is set to a random value.

B then 
omputes e


i

= E

e

k

i

(m

b

i

) for i 2 h1; ni and builds

e
 = (y;e


1

; : : : ;e


n

;

e

t

2

) :

This 
hallenge is given to A

2

whi
h outputs some bit after another 
ertain time

(guess stage). On
e �nished, B will a
tually 
he
k whether some value ew was de-

�ned during the game. If so, ew is returned as the inversion of E

pk

on y. Otherwise,

the 
hallenge y is simply reje
ted i.e. B sets ew := ? and stops. The simulation

of random ora
les as well as the simulation of the de
ryption ora
le D

1

sk

are de-

tailed hereafter. Wlog, we assume that all simulated ora
les keep tra
ks of their

past queries throughout the game so that, if a query has been presented before

and responded with some re
orded output, then the same output is returned. In

the sequel, all probabilities are taken over the random 
hoi
es of A and B if not

otherwise mentioned.

Simulation of H

1

. For ea
h new query (w; t

1

),

(event E

0

1

) if t

1

= y and y = E

pk

(w; �) then H

1

sets ew := w, returns

e

k

1

and

updates its history,

(event E

00

1

) else if y = E

pk

(w; �) then H

1

sets ew := w, outputs a random value

and updates its history,

(no event) else H

1

outputs a random value and updates its history.

Simulation of H

i

for i 2 h2; ni. For ea
h new query (k;m;w),

(event E

0

i

) if pro
essing guess stage and k =

e

k

i�1

, m = m

b

i�1

and y = E

pk

(w; �)

then H

i

sets ew := w, returns

e

k

i

and updates its history,

(event E

00

i

) else if y = E

pk

(w; �) then H

i

sets ew := w, outputs a random value

and updates its history,

(no event) else H

i

outputs a random value and updates its history.



Simulation of H

i

for i 2 hn+ 1; n

max

i. For ea
h new query (k;m;w),

(event E

i

) if y = E

pk

(w; �) then H

i

sets ew := w, outputs a random value and

updates its history,

(no event) else H

i

outputs a random value and updates its history.

Simulation of F. For ea
h new query (k;m;w),

(event E

0

F

) if pro
essing guess stage and k =

e

k

n

, m = m

b

n

and y = E

pk

(w; �)

then F sets ew := w, returns

e

t

2

and updates its history,

(event E

00

F

) else if y = E

pk

(w; �) then F sets ew := w, outputs a random value

and updates its history,

(no event) else F outputs a random value and updates its history.

Simulation of D

1

sk

(plaintext extra
tor). For ea
h new query (t

1

; 


1

; : : : ; 


d

; t

2

),

D

1

sk

�rst 
he
ks (this veri�
ation step only stands while the guess phase A

2

is

running) that (t

1

; 


1

; : : : ; 


d

; t

2

) 6= (y;e


1

; : : : ;e


n

;

e

t

2

) sin
e if this equality holds,

the query must be reje
ted as A attempts to de
rypt its own 
hallenge 
ipher-

text. Then, D

1

sk

tries to �nd the only (if any) message sequen
e (m

1

; : : : ;m

d

)

mat
hing the query. To a
hieve this, D

1

sk

invokes the simulations of the random

ora
les provided by B as follows:

{ sear
h for the unique w 2 Hist [H

1

℄ [ : : : [ Hist [H

d

℄ [ Hist [F℄ su
h that

t

1

= E

pk

(w; �). If su
h a w exists,

� query H

1

to get k

1

= H

1

(w; t

1

),

� letting m

1

= D

k

1

(


1

), query H

2

to get k

2

= H

2

(k

1

;m

1

; w),

� letting m

2

= D

k

2

(


2

), query H

3

to get k

3

= H

3

(k

2

;m

2

; w),

.

.

.

� letting m

d�1

= D

k

d�1

(


d�1

), query H

d

to get k

d

= H

d

(k

d�1

;m

d�1

; w),

� letting m

d

= D

k

d

(


d

), query F to 
he
k if F(k

d

;m

d

; w) = t

2

. If the equal-

ity holds, return (m

1

; : : : ;m

d

); otherwise reje
t the query (event RJ

1

).

{ if the sear
h for w is unsu

essful, reje
t the query (event RJ

2

).

B.2 Soundness of B

Simulation of random ora
les.

Soundness of H

1

. The simulation is perfe
t.

Soundness of H

i

for i 2 h2; ni. The simulation is perfe
t.

Soundness of H

i

for i 2 hn+ 1; n

max

i. The simulation is perfe
t.



Soundness of F. The simulation is perfe
t.

Plaintext extra
tion. The simulation of D

1

sk

fails when ? is returned although

the query 
 = (t

1

; 


1

; : : : ; 


d

; t

2

) is a valid 
iphertext. Let w and m

i

; k

i

for i 2

h1; di denote the unique random variables asso
iated to 
 in this 
ase. Further

de�ne

H

d

=

[

i2h1;di

Hist [H

i

℄ [Hist [F℄ :

Obviously, 
 was reje
ted through event RJ

2

, be
ause a reje
tion through RJ

1

refutes the validity of 
. Therefore, if D

1

sk

is in
orre
t for 
, we must have

(D

1

sk

in
orre
t for 
) ^ (
 valid) ) w 62 H

d

:

We now de
ompose the failure event into several disjoint 
ases 
overing all pos-

sible situations.

Assume (k

d

6=

e

k

n

) _ (m

d

6= m

b

n

) _ (w 6= ew). Sin
e w 62 Hist [F℄ � H

d

,

F(k

d

;m

d

; w) is a uniformly distributed random value unknown to A. The fa
t

that 
 is a valid 
iphertext implies that F(k

d

;m

d

; w) = t

2

, whi
h happens with

probability

Pr

F

[F(k

d

;m

d

; w) = t

2

℄ =

1

℄ t

2

:

Assume (k

d

;m

d

; w) = (

e

k

n

;m

b

n

; ew) and d > n. Sin
e w 62 Hist [H

d

℄ � H

d

,

H

d

(k

d�1

;m

d�1

; w) is a uniformly distributed random value unknown to A. The

fa
t that 
 is a valid 
iphertext implies that H

d

(k

d�1

;m

d�1

; w) = k

d

=

e

k

n

, whi
h

happens with probability

Pr

H

d

h

H

d

(k

d�1

;m

d�1

; w) =

e

k

n

i

=

1

℄ k

:

Assume w = ew, d < n and (k

i

;m

i

) = (

e

k

n�d+i

;m

b

n�d+i

) for i 2 h1; di. If

t

1

= y, we must have

e

k

n�d+1

= k

1

= H

1

(w; t

1

) = H

1

( ew; y) =

e

k

1

and this only

happens with probability

Pr

e

k

1

;

e

k

n�d+1

h

e

k

1

=

e

k

n�d+1

i

=

1

℄ k

:

Now suppose t

1

6= y. This imposes H

1

(w; t

1

) =

e

k

n�d+1

. Be
ause w = ew was

never queried to H

1

, this situation o

urs with probability

Pr

H

1

h

H

1

(w; t

1

) =

e

k

n�d+1

i

=

1

℄ k

:



Assume w = ew, d = n and (k

i

;m

i

) = (

e

k

i

;m

b

i

) for i 2 h1; ni. Obviously t

1

6= y,

sin
e otherwise 
 = e
. Now we must have

e

k

1

= k

1

= H

1

(w; t

1

) = H

1

( ew; t

1

), whi
h

happens with probability

Pr

H

1

h

H

1

( ew; t

1

) =

e

k

1

i

=

1

℄ k

:

Assume w = ew, d � n and (k

i

;m

i

) 6= (

e

k

n�d+i

;m

b

n�d+i

) for some i 2 h1; d�1i.

Let us 
onsider H

j+1

where j = max

i�d�1

f(k

i

;m

i

) 6= (

e

k

n�d+i

;m

b

n�d+i

)g. We

have k

j+1

= H

j+1

(k

j

;m

j

; w) =

e

k

n�d+j+1

, whi
h, be
ause w was never asked to

H

j+1

, o

urs with probability

Pr

H

j+1

h

H

j+1

(k

j

;m

j

; w) =

e

k

n�d+j+1

i

=

1

℄ k

:

Con
lusion. Gathering all pre
eding bounds, we get

Pr

�


 is valid ^ D

1

sk

in
orre
t for 


�

�

1

℄ t

2

+

4

℄ k

+

X

j<d�n

1

℄ k

�

1

℄ t

2

+

n+ 3

℄ k

;

whi
h, taken over all queries of A

2

, leads to

Pr

�

D

1

sk

in
orre
t

�

� q

D

1

sk

�

1

℄ t

2

+

n+ 3

℄ k

�

:

We further de�ne

:

Pr [�℄ = Pr

�

� j :(D

1

sk

in
orre
t)

�

.

B.3 Redu
tion 
ost

Su

ess probability. Let us suppose that A distinguishes E

1

pk

within a time

bound � with advantage " in less than q

F

, q

H

=

P

i2h1;n

max

i

q

H

i

, q

D

1

sk

ora
le 
alls.

This means that

:

Pr [A = b℄ �

1

2

+

"

2

:

Suppose also that E

k

is (�; �)-indistinguishable. Assuming that the plaintext

extra
tor is 
orre
tly simulated, if none of the events E

i

, E

0

i

, E

00

i

or E

F

o

urs,

then A never asked ew to any of the random ora
les and so 
ould not learn any

information whatsoever about the keys

e

k

i

under whi
h the m

b

i

were en
rypted in

e
 due to the randomness of the H

i

. By virtue of lemma 1, this upper-limits the

information leakage on b by n�, sin
e A's running time is bounded by � . Noting

E

win

= E

F

W

i2h1;n

max

i

E

i

W

i2h1;ni

E

0

i

_ E

00

i

, this means

:

Pr [A = b j :E

win

℄ �

1

2

+

n�

2

:



We then get

1

2

+

"

2

�

:

Pr [A = b℄ �

:

Pr [A = b j :E

win

℄ +

:

Pr [E

win

℄ �

1

2

+

n�

2

+

:

Pr [E

win

℄ ;

wherefrom

:

Pr [E

win

℄ � ("� n�)=2. But

:

Pr [B = ew℄ =

:

Pr [E

win

℄ and �nally,

Pr [B = ew℄ �

:

Pr [B = ew℄� Pr

�

D

1

sk

in
orre
t

�

�

"� n�

2

� q

D

1

sk

�

1

℄ t

2

+

n+ 3

℄ k

�

:

Sin
e the blo
klength n of the message sequen
es (m

0

;m

1

) output by A

1


annot

ex
eed n

max

, B inverts E

pk

on y with probability greater than

"

2

� q

D

1

sk

�

1

℄ t

2

+

3

℄ k

�

� n

max

�

�

2

+

q

D

1

sk

℄ k

�

;

i.e. su

eeds with non-negligible probability.

Total number of 
alls to O

p
a

. Ea
h simulated ora
le H

i

(resp. F) makes

at most q

H

i

(resp. q

F

) queries to the plaintext-
he
king ora
le. Note that the

queries required by D

1

sk

were already asked to O

p
a

by either F or one of the H

i

.

By keeping tra
ks of all queries to O

p
a

, it is easy to see that the total number

of 
alls a
tually needed by B is upper-bounded by

q

O

p
a

� q

F

+ q

H

where q

H

=

X

i2h1;n

max

i

q

H

i

:

Total running time. The redu
tion algorithm runs in time bounded by

�

B

= � + (q

D

1

sk

+ 1) (q

F

+ q

H

) � (�

p
a

+O(1)) :

C Se
urity Analysis of GEM-2

C.1 Des
ription of the redu
tion algorithm

B is given an en
ryption y = E

pk

( ew) and an adversary A = (A

1

;A

2

) that breaks

the IND-CCA2 se
urity of E

2

pk

. The goal of the redu
tion B is to retrieve the total

knowledge of ew.



Overview of B. B runs A

1

and provides a simulation for G

i

with i 2 h1; n

max

i,

F, H and D

2

sk

as des
ribed later (�nd stage). A

1

outputs a pair of message

sequen
es (m

0

;m

1

) of identi
al blo
klength n � n

max

after a 
ertain time. B

then 
hooses b 2 f0; 1g,

e

k

1

, . . . ,

e

k

n

uniformly at random, 
omputes e


i

= E

e

k

i

(m

b

i

)

for i 2 h1; ni and builds

e
 = (e


1

; : : : ;e


n

; y) :

This 
hallenge is given to A

2

whi
h outputs some bit after another 
ertain time

(guess stage). On
e �nished, B will a
tually 
he
k whether some value ew was de-

�ned during the game. If so, ew is returned as the inversion of E

pk

on y. Otherwise,

the 
hallenge y is simply reje
ted i.e. B sets ew := ? and stops. The simulation

of random ora
les as well as the simulation of the de
ryption ora
le D

2

sk

are de-

tailed hereafter. Wlog, we assume that all simulated ora
les keep tra
ks of their

past queries throughout the game so that, if a query has been presented before

and responded with some re
orded output, then the same output is returned. In

the sequel, all probabilities are taken over the random 
hoi
es of A and B if not

otherwise mentioned.

Simulation of G

1

. For ea
h new query r,

(event E

1

) if pro
essing guess stage and there exists s 7! h 2 Hist [H℄ su
h

that y = E

pk

(skr� h) then G

1

sets ew := skr�h, returns

e

k

1

and updates its

history,

(event E

0

1

) else if there exists s 7! h 2 Hist [H℄ su
h that y = E

pk

(skr � h)

then G

1

sets ew := skr� h, outputs a random value and updates its history,

(no event) else G

1

outputs a random value and updates its history.

Simulation of G

i

for i 2 h2; ni. For ea
h new query (k;m; r),

(event E

i

) if pro
essing guess stage and k =

e

k

i

, m = m

b

i�1

and there exists

s 7! h 2 Hist [H℄ su
h that y = E

pk

(skr � h) then G

i

sets ew := skr � h,

returns

e

k

i

and updates its history,

(event E

0

i

) else if there exists s 7! h 2 Hist [H℄ su
h that y = E

pk

(skr�h) then

G

i

sets ew := skr � h, outputs a random value and updates its history,

(no event) else G

i

outputs a random value and updates its history.

Simulation of G

i

for i 2 hn+ 1; n

max

i. For ea
h new query (k;m; r),

(event E

i

) if there exists s 7! h 2 Hist [H℄ su
h that y = E

pk

(skr� h) then G

i

sets ew := skr � h, outputs a random value and updates its history,

(no event) else G

i

outputs a random value and updates its history.



Simulation of F. For ea
h new query (k;m; r),

(event E

F

) if pro
essing guess stage and k =

e

k

n

, m = m

b

n

and there exists

s 7! h 2 Hist [H℄ su
h that y = E

pk

(skr � h) then F sets ew := skr � h,

returns s and updates its history,

(event E

0

F

) if there exists s 7! h 2 Hist [H℄ su
h that y = E

pk

(skr � h) then F

sets ew := skr � h, outputs a random value and updates its history,

(no event) else F outputs a random value and updates its history.

Simulation of H. For ea
h new query s, H outputs a random value and updates

its history.

Simulation of D

2

sk

(plaintext extra
tor). For ea
h new query (


1

; : : : ; 


d

; t),

D

2

sk

�rst 
he
ks (this veri�
ation step only stands while the guess stage A

2

is

running) that (


1

; : : : ; 


d

; t) 6= ( e


1

; : : : ; e


n

; y) sin
e if this equality holds, the query

must be reje
ted as A attempts to de
rypt its own 
hallenge 
iphertext. Then,

D

2

sk

attempts to �nd the only (if any) message sequen
e (m

1

; : : : ;m

d

) mat
hing

the query. To a
hieve this, D

2

sk

invokes the simulations of the random ora
les

provided by B as follows:

{ sear
h for the unique pair (r; s) su
h that r 2 Hist [G

1

℄ [ : : : [Hist [G

d

℄ [

Hist [F℄, s 7! h 2 Hist [H℄ and t = E

pk

(skr � h). If su
h a pair exists,

� query G

1

to get k

1

= G

1

(r),

� letting m

1

= D

k

1

(


1

), query G

2

to get k

2

= G

2

(k

1

;m

1

; r),

� letting m

2

= D

k

2

(


2

), query G

3

to get k

3

= H

3

(k

2

;m

2

; r),

.

.

.

� letting m

d�1

= D

k

d�1

(


d�1

), query G

d

to get k

d

= G

d

(k

d�1

;m

d�1

; r),

� letting m

d

= D

k

d

(


d

), query F to 
he
k if F(k

d

;m

d

; r) = s. If the equality

holds, return (m

1

; : : : ;m

d

); otherwise reje
t the query (event RJ

1

).

{ if the sear
h for (r; s) is unsu

essful, reje
t the query (event RJ

2

).

C.2 Soundness of B

Simulation of random ora
les. The plaintext ew uniquely de�nes es and ev

su
h that ew = eskev. We note er the random variable ev �H(es). We denote by

{ E

es

the event that A queries es to the ora
le H,

{ E

G

1

the event that A queries er to G

1

,

{ for i 2 h2; ni, E

G

i

the event that A queries (

e

k

i�1

;m

b

i�1

; er) to G

i

,

{ E

F

the event that A queries (

e

k

n

;m

b

n

; er) to F,

{ E

er

the event that A queries er to any of the ora
les F, G

i

i.e. E

F

_E

G

1

_ : : :_

E

G

n

.



Soundness of G

i

for i 2 h1; ni. The simulation of G

i

fails when (

e

k

i�1

;m

b

i�1

; er),

or er in the 
ase of G

1

, is queried and answered with some value k

i

6=

e

k

i

before

es appears in Hist [H℄. More pre
isely, the simulation is perfe
t if and only if

the predi
ate (�;E

es

E E

G

i

) is ful�lled, whi
h yields (G

i

in
orre
t), :(�;E

es

E

E

G

i

).

Soundness of G

i

for i 2 hn+ 1; n

max

i. The simulation is perfe
t.

Soundness of F. The simulation of F fails when (

e

k

n

;m

b

n

; er) is queried and an-

swered with some value s 6= es before es appears in Hist [H℄. Here, the simulation

runs perfe
tly if and only if �;E

es

E E

F

. Hen
e, (F in
orre
t), :(�;E

es

E E

F

).

Soundness of H. The simulation is perfe
t.

Con
lusion. Gathering pre
eding results, using :(E

1

E E

2

) = (:E

1

^ E

2

) _

(E

2

C E

1

) and reorganizing in disjoint events, one gets

in
orre
t ora
le , _

i�n

:(�;E

es

E E

G

i

) _ :(�;E

es

E E

F

)

, :(�;E

es

E (_

i2h1;ni

E

G

i

_ E

F

))

, :(�;E

es

E E

er

)

, (� E E

er

) ^ :(E

es

E E

er

) _ (E

er

C �) ;

wherefrom

Pr [in
orre
t ora
le℄ = Pr [(� E E

er

) ^ :(E

es

E E

er

)℄ + Pr [E

er

C �℄

� Pr [� E E

er

j :(E

es

E E

er

)℄ + Pr [E

er

C �℄ :

Sin
e A

1

does not have a

ess to y and be
ause y has a uniform distribution, er

is a uniformly distributed random variable throughout the �nd stage. Hen
e

Pr [E

er

C �℄ �

q

1

F

+

P

i�n

q

1

G

i

℄ r

;

where q

1

O

is the number of 
alls to ora
les O 2 fG

1

; : : : ;G

n

;Fg that A

1

made

during the �nd stage. Now, throughout the guess stage, A

2


annot gain any

information about er = ev�H(es) without knowing H(es) i.e. without submitting es

to H. Hen
e,

Pr [� E E

er

j :(E

es

E E

er

)℄ �

q

2

F

+

P

i�n

q

2

G

i

℄ r

:

Finally, the probability that an error o

urs while B simulates the ora
les F,

G

1

; : : : ;G

n

is upper-bounded by

Pr [in
orre
t ora
le℄ �

q

F

+

P

i�n

q

G

i

℄ r

:

We further de�ne

:

Pr [�℄ = Pr [� j :(in
orre
t ora
le)℄.



Plaintext extra
tion. Assume that all random ora
les are perfe
tly simulated

throughout the game. The simulation of D

2

sk

fails when ? is returned although

the query 
 = (


1

; : : : ; 


d

; t) is a valid 
iphertext. Let r, s, v and m

i

; k

i

for

i 2 h1; di denote the unique random variables asso
iated to 
 in this 
ase. Further

de�ne

G

d

=

[

i2h1;di

Hist [G

i

℄ [Hist [F℄ :

Obviously, 
 was reje
ted through event RJ

2

, be
ause a reje
tion through RJ

1

refutes the validity of 
. Therefore, if D

2

sk

is in
orre
t for 
, we must have

(D

2

sk

in
orre
t for 
) ^ (
 valid) ) r 62 G

d

_ s 62 Hist [H℄ :

We now de
ompose the failure event into several disjoint 
ases 
overing all pos-

sible situations.

Assume (k

d

;m

d

; r) 6= (

e

k

n

;m

b

n

; er) and r 62 G

d

. Sin
e r 62 Hist [F℄ � H

d

,

F(k

d

;m

d

; r) is a uniformly distributed random value unknown to A. The fa
t

that 
 is a valid 
iphertext implies that F(k

d

;m

d

; r) = s, whi
h happens with

probability

:

Pr

F

[F(k

d

;m

d

; r) = s℄ =

1

℄ s

:

Assume (k

d

;m

d

; r) 6= (

e

k

n

;m

b

n

; er) and r 2 Hist [F℄ ^ s 62 Hist [H℄. Suppose

that s 6= es. Sin
e s 62 Hist [H℄, H(s) is a uniformly distributed random value

unknown to A. The validity of 
 implies that (k

d

;m

d

; v �H(s)) 7! s 2 Hist [F℄,

whi
h happens with probability

:

Pr

H

[(k

d

;m

d

; v �H(s)) 7! s 2 Hist [F℄℄ �

q

F

℄ r

:

Now assume s = es. In this 
ase, we must have (k

d

;m

d

; r) 7! es 2 Hist [F℄ whi
h

o

urs with probability

:

Pr

F

[(k

d

;m

d

; r) 7! es 2 Hist [F℄℄ �

q

F

℄ s

:

Assume (k

d

;m

d

; r) = (

e

k

n

;m

b

n

; er) and s 6= es. This is absurd sin
e s = F(k

d

;m

d

; r) =

F(

e

k

n

;m

b

n

; er) = es.

Assume (k

d

;m

d

; r; s) = (

e

k

n

;m

b

n

; er; es) and es 62 Hist [H℄. Sin
e 
 is a valid


iphertext, we must have r = v � H(s) i.e. H(es) = er � v. Be
ause es was never

given to H, this happens with probability

:

Pr

H

[H(es) = er � v℄ =

1

℄ r

:

From now on, we suppose that r = er, s = es, es 7! er�ev 2 Hist [H℄ (so that t = y)

and er 62 G

d

.



Assume (k

d

;m

d

) = (

e

k

n

;m

b

n

) and d > n. Sin
e r 62 Hist [G

d

℄, G

d

(k

d�1

;m

d�1

; r)

is a uniformly distributed random value unknown to A. The fa
t that 
 is a

valid 
iphertext implies that G

d

(k

d�1

;m

d�1

; r) = k

d

=

e

k

n

, whi
h happens with

probability

:

Pr

G

d

h

G

d

(k

d�1

;m

d�1

; r) =

e

k

n

i

=

1

℄ k

:

Assume d � n and (k

i

;m

i

) = (

e

k

n�d+i

;m

b

n�d+i

) for i 2 h1; di. The 
ase d = n

leads to the absurd equality 
 = e
. Suppose d < n. Considering G

1

, we must

have

e

k

n�d+1

= k

1

= H

1

(r) = H

1

(er) =

e

k

1

and this only happens with probability

:

Pr

e

k

1

;

e

k

n�d+1

h

e

k

1

=

e

k

n�d+1

i

=

1

℄ k

:

Assume d � n and (k

i

;m

i

) 6= (

e

k

n�d+i

;m

b

n�d+i

) for some i 2 h1; d� 1i. Let

us 
onsider G

j+1

where j = max

i�d�1

f(k

i

;m

i

) 6= (

e

k

n�d+i

;m

b

n�d+i

)g. We have

k

j+1

= G

j+1

(k

j

;m

j

; er) =

e

k

n�d+j+1

, whi
h, be
ause er was never asked to H

j+1

,

o

urs with probability

:

Pr

G

j+1

h

G

j+1

(k

j

;m

j

; er) =

e

k

n�d+j+1

i

=

1

℄ k

:

Con
lusion. Gathering all pre
eding bounds, we get

:

Pr

�


 is valid ^ D

2

sk

in
orre
t for 


�

� (q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

+

1

℄ k

+

X

j<d�n

1

℄ k

� (q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

+

n+ 1

℄ k

;

whi
h, taken over all queries of A

2

, leads to

Pr

�

D

2

sk

in
orre
t

�

� q

D

2

sk

�

(q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

+

n+ 1

℄ k

�

:

We have

Pr [B in
orre
t℄ = Pr [in
orre
t ora
le℄ + Pr

�

D

2

sk

in
orre
t ^ :(in
orre
t ora
le)

�

� Pr [in
orre
t ora
le℄ + Pr

�

D

2

sk

in
orre
t j :(in
orre
t ora
le)

�

�

q

F

+

P

i

q

G

i

℄ r

+ q

D

2

sk

�

(q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

+

n+ 1

℄ k

�

:

We further de�ne

::

Pr [�℄ = Pr [� j :(B in
orre
t)℄.



C.3 Redu
tion 
ost

Su

ess probability. Let us suppose that A distinguishes E

2

pk

within a time

bound � with advantage " in less than q

F

, q

H

, q

G

=

P

i2h1;n

max

i

q

G

i

, q

D

2

sk

ora
le


alls. This means that

::

Pr [A = b℄ �

1

2

+

"

2

:

Suppose also that E

k

is (�; �)-indistinguishable. Assuming that the random or-

a
les and the plaintext extra
tor are perfe
tly simulated, if none of the events

E

i

, E

0

i

or E

F

o

urs, then A never asked er to any of the random ora
les and so


ould not learn any information whatsoever about the keys

e

k

i

under whi
h the

m

b

i

were en
rypted in e
 due to the randomness of the G

i

. By virtue of lemma 1,

this upper-limits the information leakage on b by n�, sin
e A's running time is

bounded by � . Noting E

win

= E

F

W

i2h1;n

max

i

E

i

W

i2h1;ni

E

0

i

, this means

::

Pr [A = b j :E

win

℄ �

1

2

+

n�

2

:

We then get

1

2

+

"

2

�

::

Pr [A = b℄ �

::

Pr [A = b j :E

win

℄ +

::

Pr [E

win

℄ �

1

2

+

n�

2

+

::

Pr [E

win

℄ ;

wherefrom

::

Pr [E

win

℄ � ("� n�)=2. But

::

Pr [B = ew℄ =

::

Pr [E

win

℄ and �nally,

Pr [B = ew℄ �

::

Pr [B = ew℄� Pr

�

D

2

sk

in
orre
t

�

�

"� n�

2

�

q

F

+

P

i

q

G

i

℄ r

� q

D

2

sk

�

(q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

+

n+ 1

℄ k

�

:

Sin
e the blo
klength n of the message sequen
es (m

0

;m

1

) output by A

1


annot

ex
eed n

max

, B inverts E

pk

on y with probability greater than

"

2

�

q

F

+ q

G

℄ r

� q

D

2

sk

(q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

�

q

D

2

sk

℄ k

� n

max

�

�

2

+

q

D

2

sk

℄ k

�

;

i.e. su

eeds with non-negligible probability.

Total running time. The redu
tion algorithm runs in time bounded by

�

B

= � + (q

D

2

sk

+ 1) (q

F

+ q

G

) q

H

� (�

E

+O(1)) ;

where �

E

denotes the maximum time needed by E

pk

for a single en
ryption.


