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Abstrat. This paper onsiders arbitrary-length hosen-iphertext se-

ure asymmetri enryption, thus addressing what is atually needed for

a pratial usage of strong publi-key ryptography in the real world. We

put forward two generi onstrutions, gem-1 and gem-2, whih apply

to expliit �xed-length weakly seure primitives and provide a strongly se-

ure (IND-CCA2) publi-key enryption sheme for messages of un�xed

length (typially omputer �les). Our tehniques optimally ombine a

single all to any one-way trapdoor funtion with repeated enryptions

through some weak blok-ipher (a simple xor is �ne) and hash fun-

tions of �xed-length input so that a minimal number of alls to these

funtions is needed. Our enryption/deryption throughputs are om-

parable to the ones of standard methods (asymmetri enryption of a

session key + symmetri enryption with multiple modes). In our ase,

however, we formally prove that our designs are seure in the strongest

sense and provide omplete seurity redutions holding in the random

orale model.

1 Introdution

A real-life usage of publi-key enryption requires three distint ideal properties.

Seurity is a major onern: a ryptosystem should be seure against any attak

of any kind, should the attak be realisti in the ontext of use or only theoretial.

Performane has to be risen to upmost levels to guarantee high speed enryption

and deryption rates in ommuniation protools and real time appliations.

At last, design simpliity is desirable to save time and e�orts in software or

hardware developments, inrease modularity and reusability, and failitate publi

understanding and srutiny.



Designing an enryption sheme whih meets these riteria is quite a hal-

lenging work, but methodologies and tools exist, at least for the �rst property.

Our knowledge of seurity features inherent to ryptographi objets and of the

relations onneting them has intensively evolved lately, driving us to a growing

range of powerful generi onstrutions, both simple and provably seure [8, 9,

14, 13℄. Among these onstrutions, Okamoto and Pointheval's reat [13℄ is

ertainly the one that o�ers most exibility: unlike Bellare and Rogaway's long-

lived oaep [5℄, reat applies to any trapdoor funtion, i.e. any asymmetri

enryption sheme presenting suh a weak level of seurity as being OW-PCA

(see further), to provide a ryptosystem of strongest level IND-CCA2 in the ran-

dom orale model.

1.1 Our results

This paper onsiders arbitrary-length hosen-iphertext seure (IND-CCA2) asym-

metri enryption shemes, thus addressing what is atually needed for a pra-

tial usage of strong publi-key ryptography in the real world. We propose two

generi onstrutions whih apply to �xed-length weakly seure primitives and

provide a strongly seure publi-key ryptosystem for messages of un�xed length,

suh as omputers �les or ommuniation streams. In our shemes, the enryp-

tion and deryption proesses may start and progress without even knowing the

overall input bloklength; they also may stop at any time. Besides, our designs

are one-pass only, meaning that eah message blok will be treated exatly one.

Our tehniques ombine a single all to any one-way trapdoor funtion with

repeated enryptions through some weak blok-ipher (a simple xor will do) and

hash funtions of �xed-length input. Contrarily to previous generi onversions,

eah message blok will require only one all to a hash funtion so that the overall

exeution ost for an n-blok plaintext is exatly 1 all to the one-way trapdoor

enryption, followed by n alls to the blok-ipher and n + 1 (or n + 2) alls

to a hash funtion

1

. Besides, the storage of the whole plaintext �le in memory

is ompletely unneessary and enryption/deryption proedures use a memory

bu�er of only � 3 bloks, thus allowing on-the-y treatments of ommuniation

streams. We believe that our shemes are the �rst that ombine these pratial

properties simultaneously while keeping total generiity.

The �rst onstrution applies to any OW-PCA probabilisti trapdoor funtion

and inorporates two extra �elds of �xed length in the iphertext, one at eah

end. The seond onstrution we give only works for deterministi OW trap-

door funtions but adds only one extra �eld at the end of the iphertext. Our

performanes are similar to the ones of standard methods, whih usually en-

rypt some random session key under an asymmetri sheme and then feed that

key into some blok-ipher running under an appropriate multiple mode. In our

ase, however, we an formally prove that our designs are seure in the strongest

sense IND-CCA2. Indeed, we provide omplete seurity redutions holding in the

random orale model.

1

an extra hash all is needed for authentiity.



1.2 Outline of the paper

The paper is organized as follows. Setion 2 briey realls seurity notions for

enryption shemes in both symmetri and asymmetri settings. We also re-

view Okamoto and Pointheval's plaintext heking attaks in onnetion with

omputational gap problems [12℄. Then, Setions 3.1 and 3.2 introdue our new

generi onversions, gem-1 and gem-2, whose redution proofs are given in Ap-

pendies B and C. Furthermore, typial examples of pratial usage of these

systems are given in Setion 4. We onlude by giving some possible extensions

of our work in Setion 5.

2 Seurity notions for enryption shemes

2.1 Asymmetri enryption

We now introdue a few standard notations. An asymmetri enryption sheme

is a triple of algorithms (K; E ;D) where

{ K is a probabilisti key generation algorithm whih returns random pairs of

seret and publi keys (sk ; pk) depending on the seurity parameter �,

{ E is a probabilisti enryption algorithm whih takes on input a publi key

pk and a plaintext m 2 M, runs on a random tape u 2 U and returns a

iphertext ,

{ D is a deterministi deryption algorithm whih takes on input a seret

key sk , a iphertext  and returns the orresponding plaintext m or the

symbol ?. We require that if (sk ; pk ) K, then D

sk

(E

pk

(m;u)) = m for all

(m;u) 2 M�U .

Adversarial goals.

One-wayness. The �rst serey notion required from an enryption sheme

is its one-wayness, meaning that one should not be able to reover a plaintext

given its enryption. More formally, the sheme is said to be (�; ")-OW if for any

adversary A with running time bounded by � , the probability that A inverts E

is less than ":

Su

ow

(A) = Pr

m

R

 M

u

R

 U

[(sk ; pk) K(1

�

) : A(E

pk

(m;u)) = m℄ < " ;

where the probability is taken over the random hoies of the adversary.

Semanti seurity. Formalizing another seurity riterion that an enryption

sheme should verify beyond one-wayness, Goldwasser and Miali [10℄ introdued

the notion of semanti seurity. Also alled indistinguishability of enryptions (or

IND for short), this property aptures the idea that an adversary should not be

able to learn any information whatsoever about a plaintext, its length exepted,



given its enryption. More formally, an asymmetri enryption sheme is said to

be (�; ")-IND if for any adversaryA = (A

1

;A

2

) with running time upper-bounded

by � ,

Adv

ind

(A) = 2� Pr

b

R

 f0;1g

u

R

 U

�

(sk ; pk ) K(1

�

); (m

0

;m

1

; �) A

1

(pk )

 E

pk

(m

b

; u) : A

2

(; �) = b

�

� 1 < " ;

where the probability is taken over the random hoies of A. The two plaintexts

m

0

and m

1

hosen by the adversary inM have to be of idential length.

Non-malleability. The property of non-malleability (NM), independently pro-

posed by Dolev, Dwork and Naor [6℄, supposes that, given the enryption of a

plaintext m, the attaker annot produe the enryption of a related plaintext

m

0

. Here, rather than learning some information about m, the adversary will try

to output the enryption ofm

0

. These two properties are related in the sense that

non-malleability implies semanti seurity for any adversarial model, as pointed

out in [6℄ and [3℄.

Adversarial models. On the other hand, there exist several types of adver-

saries, or attak models. In a hosen-plaintext attak (CPA), the adversary has

aess to an enryption orale, hene to the enryption of any plaintext she

wants. Clearly, in the publi-key setting, this senario annot be avoided. Naor

and Yung [11℄ onsidered non-adaptive hosen-iphertext attaks (CCA1) (also

known as lunhtime or midnight attaks), wherein the adversary gets, in ad-

dition, aess to a deryption orale before being given the hallenge ipher-

text. Finally, Rako� and Simon [15℄ de�ned adaptive hosen-iphertext attaks

(CCA2) as a senario in whih the adversary queries the deryption orale before

and after being hallenged; her only restrition here is that she may not feed the

orale with the hallenge iphertext itself. This is the strongest known attak

senario.

Various seurity levels are then de�ned by pairing eah goal (OW, IND or

NM) with an attak model (CPA, CCA1 or CCA2), these two harateristis being

onsidered separately. Interestingly, it has been shown that IND-CCA2 and NM-

CCA2 were stritly equivalent notions [3℄. This level is now onsidered as standard

and referred to as IND-CCA2 seurity or hosen-iphertext seurity. The seurity

of a ryptosystem is thus measured as the ability to resist an adversarial goal

in a given adversarial model. Whenever possible, the sheme is proven IND-

CCA2 seure by exhibiting a polynomial redution: if some adversary an break

the IND-CCA2 seurity of the system, then the same adversary an be invoked

(polynomially many times) to solve some related hard problem.

2.2 Symmetri enryption shemes

A symmetri enryption sheme with key bit-length k and message bit-length m

is a pair of algorithms (E; D) where



{ E is a deterministi enryption algorithm whih takes a key k 2 f0; 1g

k

and

a plaintext m 2 f0; 1g

m

and returns a iphertext  2 f0; 1g

m

,

{ D is a deterministi deryption algorithm whih takes a key k 2 f0; 1g

k

and a

iphertext  2 f0; 1g

m

and returns a plaintext m 2 f0; 1g

m

. We require that

D

k

(E

k

(m)) = m for all m 2 f0; 1g

m

and k 2 f0; 1g

k

.

In this setting, again, various seurity notions are de�ned; most are adapta-

tions from the asymmetri notions. In this work, however, we only need to de�ne

indistinguishability. A symmetri enryption sheme is said (�; ")-IND if for any

adversary A = (A

1

;A

2

) with running time bounded by � ,

Adv

ind

(A) = 2� Pr

k

R

 f0;1g

k

b

R

 f0;1g

[(m

0

;m

1

; �) A

1

(k);  E

k

(m

b

) : A

2

(; �) = b℄�1 < " ;

where the probability is also taken over the random hoies of A. Both plain-

texts m

0

and m

1

are hosen by the adversary in f0; 1g

k

. Although other attak

senarios may be onsidered, passive attaks are enough for our purposes. Note

that this notion is a very weak requirement. Note also that the one-time pad

enryption is perfetly indistinguishable, i.e. , it is (�; 0)-IND for any � .

2.3 Plaintext-heking seurity

Okamoto and Pointheval reently introdued an intermediate adversarial model

alled plaintext heking attaks [13℄. In this model, the adversary has aess to

a plaintext-heking orale O

pa

whih detets plaintext-iphertext orrespon-

denes: the orale takes as input a pair (m; ) and tells whether  enrypts m or

not. Clearly, this orale remains weaker than a deryption orale beause it is

generally easier to hek the solution of a problem (sheme inversion here) than

to ompute it. Obviously in the ase of a deterministi enryption sheme, PCA

and CPA are stritly equivalent attak senarios. More spei�ally, any trapdoor

permutation is OW-PCA if and only if it is OW (e.g., RSA).

From a omplexity viewpoint, breaking a sheme's OW-PCA-seurity exatly

onsists in breaking its OW-seurity (i.e. its one-wayness) with the help of an

orale solving a weaker problem. That kind of problems, i.e. solving P

1

with

aess to O

P

2

and P

2

( P

1

, are alled gap problems [12℄ and de�ne some notion

of omplexity distane between problems in a hierarhy.

A typial example is ElGamal enryption, for whih breaking OW is equiv-

alent to CDH and having aess to O

pa

allows to solve DDH trivially (and

onversely). OW-PCA-seurity is in this ase equivalent to the gap problem sep-

arating CDH from DDH, whih is alled Gap DiÆe-Hellman Problem and noted

GDH (see [12℄ for insights).

2.4 Generi onversions

In [5℄, Bellare and Rogaway proposed oaep, a spei� hash-based treatment ap-

pliable to any partial-domain [16, 7℄ one-way trapdoor permutation to provide



an IND-CCA2 seure enryption sheme in the random orale model [4℄. Later,

Fujisaki and Okamoto [8℄ presented a way to transform, still in the random ora-

le model, any IND-PCA trapdoor funtion into an IND-CCA2 enryption sheme.

They improved their results in [9℄ where they gave a generi method to on-

vert a one-way trapdoor funtion into an IND-CCA2 seure enryption sheme

in the random orale model

2

. A similar result was independently disovered by

Pointheval [14℄. More reently, Okamoto and Pointheval [13℄ proposed a more

eÆient generi onversion, alled reat. Contrarily to [8, 9, 14℄, a omplete re-

enryption is unneessary in the deryption proess of reat to ensure IND-CCA2

seurity, thus yielding a low running time overhead. Besides, reat applies to

any trapdoor funtion i.e. any asymmetri enryption sheme presenting suh a

weak level of seurity as being OW-PCA. Until now, however, no generi onver-

sion has been expliitly de�ned

3

to enrypt messages of variable length based on

�xed-length funtions. The next setion desribes our arbitrary-length generi

onversions.

3 Arbitrary-length IND-CCA2 enryption

The most popular and usual way of ensuring on�dentiality of un�xed-length

messages onsists in publi-key enrypting a random session key and then en-

rypting the message under that session key by the means of a blok-ipher used

within a suitable enryption mode. This approah has never been shown seure;

in partiular, the use of an IND-CCA2 asymmetri sheme to enrypt the session

key is obviously insuÆient to ensure any seurity whatsoever about the whole

onstrution.

In omparison, our onversions are based on the same primitives, i.e. some

asymmetri sheme E

pk

and some symmetri sheme E

k

. But we additionally use

hash funtions to make the session key evolve permanently as the enryption pro-

gresses. Our important result here is that the two ryptosystems we propose are

IND-CCA2-seure provided that E

pk

is OW-PCA or OW and E

k

is indistinguish-

able. Independently, they provide di�erent seurity/performane tradeo�s that

we analyze in setion 4.

3.1 Relying on a OW-PCA trapdoor funtion: GEM-1

Our �rst onstrution E

1

pk

applies to any OW-PCA probabilisti trapdoor funtion

E

pk

and inorporates two extra �elds of �xed length in the iphertext, one at

eah end. To make the seurity proof easier, we will assume that the message

bloklength is upper-bounded by some very large number n

max

whih value is

disussed in setion 4. The enryption and deryption proedures are as depited

below.

2

the onversion ost is however quite heavy as a omplete re-enryption is needed

during deryption.

3

note that [13℄ onsiders the ase of variable-length enryption without providing any

expliit onstrution for �xed-length funtions.



Enryption

Input plaintext (m

1

; : : : ;m

n

), 1 � n � n

max

, random � = wku.

Output iphertext (t

1

; 

1

; � � � ; 

n

; t

2

) given by

E

1

pk

(m; �) = (E

pk

(w; u)

| {z }

t

1

; E

k

1

(m

1

)

| {z }



1

; E

k

2

(m

2

)

| {z }



2

; � � � ; E

k

n

(m

n

)

| {z }



n

;F(k

n

;m

n

; w)

| {z }

t

2

)

where k

1

= H

1

(w; t

1

), k

2

= H

2

(k

1

;m

1

; w), . . . , k

n

= H

n

(k

n�1

;m

n�1

; w).

Deryption

Input iphertext (t

1

; 

1

; � � � ; 

n

; t

2

) with 1 � n � n

max

.

Output plaintext (m̂

1

; � � � ; m̂

n

) or ? aording to

D

1

sk

(t

1

; 

1

; � � � ; 

n

; t

2

) =

�

m̂

1

= D

^

k

1

(

1

); : : : ; m̂

n

= D

^

k

n

(

n

) if t

2

= F(

^

k

n

; m̂

n

; ŵ)

? otherwise

where ŵ = D

sk

(t

1

),

^

k

1

= H

1

(ŵ; t

1

) and

^

k

i

= H

i

(

^

k

i�1

; m̂

i�1

; ŵ) for i = 2; n.

ε E E EHHH F1 2 n3
H

m m m

c c c tt

w

1 2 n

1 1 2 n 2

u

Fig. 1. Synopsis of gem-1.

We laim that for any OW-PCA asymmetri enryption E

pk

and any IND-seure

symmetri enryption sheme E

k

, our onverted sheme E

1

pk

[E

pk

; E

k

℄ is IND-CCA2

in the random orale model. To be more preise:

Theorem 1. Suppose there exists an adversary A whih distinguishes E

1

pk

[E

pk

; E

k

℄

within a time bound � with advantage " in less than q

F

, q

H

=

P

i2h1;n

max

i

q

H

i

, q

D

1

sk

orale alls. Suppose also that E

k

is (�; �)-indistinguishable. Then there exists an

algorithm B whih inverts E

pk

with probability "

0

greater than

"

0

�

"

2

� q

D

1

sk

�

1

℄ t

2

+

3

℄ k

�

� n

max

�

�

2

+

q

D

1

sk

℄ k

�

;

with a total number of alls to O

pa

upper-bounded by q

O

pa

� q

F

+ q

H

and in

time

�

B

= � + (q

D

1

sk

+ 1) (q

F

+ q

H

) � (�

pa

+O(1)) :



Here, ℄ a denotes the number of all possible values of a (hene ℄ k = 2

k

).

We refer the reader to the (extensive) redution proof given in appendix B.

3.2 Relying on a OW trapdoor funtion: GEM-2

Our seond onstrution E

2

pk

only works with a deterministi OW trapdoor fun-

tion E

pk

(suh as RSA) but adds only one extra �eld at the end of the iphertext.

Here again, we will assume that the message bloklength is upper-bounded by

some large number n

max

. The enryption and deryption proedures follow.

Enryption

Input plaintext (m

1

; : : : ;m

n

), 1 � n � n

max

, random r.

Output iphertext (

1

; � � � ; 

n

; t) given by

E

2

pk

(m; r) = (E

k

1

(m

1

)

| {z }



1

; E

k

2

(m

2

)

| {z }



2

; � � � ; E

k

n

(m

n

)

| {z }



n

; E

pk

(skv)

| {z }

t

)

where

�

k

1

= G

1

(r); k

i

= G

i

(k

i�1

;m

i�1

; r) for i = 2; : : : n;

s = F(k

n

;m

n

; r), and v = r �H(s):

Deryption

Input iphertext (

1

; � � � ; 

n

; t) with 1 � n � n

max

.

Output plaintext (m̂

1

; � � � ; m̂

n

) or ? aording to

D

2

sk

(

1

; � � � ; 

n

; t) =

�

m̂

1

= D

^

k

1

(

1

); : : : ; m̂

n

= D

^

k

n

(

n

) if ŝ = F(

^

k

n

; m̂

n

; r̂),

? otherwise.

where

�

ŝkv̂ = D

sk

(t); r̂ = v̂ �H(ŝ);

^

k

1

= G

1

(r̂); and

^

k

i

= G

i

(

^

k

i�1

; m̂

i�1

; r̂) for i = 2; : : : n:

We laim that for any OW asymmetri enryption E

pk

and any IND-seure sym-

metri enryption sheme E

k

, the onverted sheme E

2

pk

[E

pk

; E

k

℄ is IND-CCA2 in

the random orale model. To be more preise:

Theorem 2. Suppose there exists an adversary A whih distinguishes E

2

pk

[E

pk

; E

k

℄

within a time bound � with advantage " in less than q

F

, q

H

, q

G

=

P

i2h1;n

max

i

q

G

i

,

q

D

2

sk

orale alls. Suppose also that E

k

is (�; �)-indistinguishable. Then there ex-

ists an algorithm B whih inverts E

pk

with probability "

0

greater than

"

0

�

"

2

�

q

F

+ q

G

℄ r

� q

D

2

sk

(q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

�

q

D

2

sk

℄ k

� n

max

�

�

2

+

q

D

2

sk

℄ k

�

;

within a time bounded by

�

B

= � + (q

D

2

sk

+ 1) (q

F

+ q

G

) q

H

� (�

E

+O(1)) ;

where �

E

denotes the maximum time needed by E

pk

for a single enryption.
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Fig. 2. Synopsis of gem-2.

Again, the reader is invited to �nd the redution proof in Appendix C for teh-

nial details.

4 Appliations

Numerous appliations are possible when embodying E

pk

and E

k

. Due to lak of

spae, we will only onsider the typial ase E

pk

= RSA and E

k

= � (for whih

� = 0). The instantiations of random orales F, H

i

, H and G

i

in one sheme or

another by hash funtions an be done by setting for instane H

i

(�) = SHA(�ki)

where the ounter i 2 h1; n

max

i is inremented at eah blok treatment. Speial

values of i suh as 0 or �1 may be used to implement F and H.

4.1 E

1

pk

[RSA;�℄

Corollary 1. The enryption sheme E

1

pk

[RSA;�℄ is IND-CCA2 in the random

orale model under the RSA assumption.

For onrete seurity parameters, we suggest to use 1024-bit RSA keys with

publi exponent e = F

4

= 2

16

+ 1. We set for instane log

2

℄ t

2

= m = k = 160

(hash funtions F, H

i

being derived from SHA-1 using a ounter i 2 h1; n

max

i

like desribed above), ℄ w = 2

160

and n

max

= 2

32

. Assuming that the probability

"

0

to invert RSA lies around "

0

= 2

�60

, then an attaquer ould distinguish

E

1

pk

[RSA;�℄ with q

D

1

sk

= 2

50

deryptions with advantage no more than " = 2

�58

.

From an implementation viewpoint, note that as soon as the RSA enryp-

tion has been done, the enryption proedure may diretly output iphertexts

bloks one after the other without having to wait that all bloks are enrypted

to transmit them all together. This allows on-the-y enryption of ommuni-

ation streams. Three-tuples (w; y; k

1

) may also be omputed in advane to let



the enryption devie or software deal with hash omputations only. The sug-

gested setting allows to replae orales H

2

; : : : ;H

n

;F by the ompression funtion

(512 7! 160) of SHA-1, driving us to n+ 3 alls to this funtion sine the input

of H

1

is made of three 512-bit bloks. Another bene�t of our onstrution is that

it requires only a small memory bu�er (one �eld for the storage of w, one for

the urrent key k

i

and a third one for m

i

). Finally, hardware implementations

providing some hash oproessor may drastially inrease our speed rates.

4.2 E

2

pk

[RSA;�℄

Corollary 2. The enryption sheme E

2

pk

[RSA;�℄ is IND-CCA2 in the random

orale model under the RSA assumption.

For onrete seurity bounds, the same suggestions as previously lead to a

maximal advantage of " = 2

�58

if we take log

2

℄ s = log

2

℄ r = 512, q

F

= q

G

= 2

50

and n

max

= 2

32

.

Here again, any smart implementation allows on-the-y enryption. The

memory requirements are similar to the one of E

1

pk

. Here too, a oproessor

devoted to hash omputations would inrease speed rates.

5 Conlusion

We devised new generi onstrutions whih apply to �xed-length weakly se-

ure primitives and provide a strongly seure (IND-CCA2) publi-key enryption

sheme for messages of un�xed length like omputer �les or ommuniations

streams. An open question resides in investigating whether simpler and/or faster

designs ould exist, or whether the seurity requirements on the primitives ould

be shrunk further. Another hallenging topi would be to ome up with a on-

strution holding only one additional �eld in the iphertext but still employing

a probabilisti enryption E

pk

as in E

1

pk

. Finally, one ould try to inlude a

signature sheme in the enryption proess to simultaneously authentiate the

sender's identity, the plaintext and the iphertext itself. Suh an extension would

ideally lead to fast and seure (aording to one-more deryption attaks) sign-

ryption shemes for arbitrary-length messages.
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A Preliminary

A.1 Notations

It is useful to introdue some notations. If a is some random variable, then ℄ a

denotes the number all possible values of a. For integers a and b, ha; bi denotes



the set on integers ranging from a to b. For any prediate R(x), R(�) will stand

for 9x s.t. R(x). If O is an orale to whih A has aess, we denote by query 7!

response the orrespondane O establishes between A's request query and the

value response returned to A. Hist [O℄ stands for the set of orrespondanes

established by O as time goes on: Hist [O℄ an be seen as a memory whih gets

updated eah time A makes a query to O. We denote by q

O

the number of alls

A made to O during the simulation.

The relation E

1

E E

2

indiates that the event E

1

takes plae before the event

E

2

, if any of them ours. In other words, when E

1

E E

2

is true, if E

2

ever

happens, then one knows for sure that E

1

happened before. By E

1

; : : : ;E

p

E

E

0

1

; : : : ;E

0

q

, we mean of ourse that E

i

E E

0

j

stands for all i = 1; p and j = 1; q. We

note E

1

C E

2

the event whih sequentially realizes E

1

and then E

2

. Equivalently,

E

1

C E

2

= E

1

E E

2

^ E

2

. Again, E

1

; : : : ;E

p

C E

0

1

; : : : ;E

0

q

, means E

i

C E

0

j

for all

i = 1; p and j = 1; q. For onveniene, � E E

1

(resp. E

1

E �) indiates that the

event E

1

takes plae during the guess (resp. �nd) stage of A, � representing the

instants when A

1

ends and A

2

starts interhangeably.

A.2 Extending indistinguishability to sheme produts

Let E

1

and E

2

be two symmetri enryption shemes. We de�ne the sheme

produt of E

1

and E

2

, E = E

1

� E

2

by

E

k

(m) = (E

1

� E

2

)

(k

1

;k

2

)

(m

1

;m

2

) = (E

1

k

1

(m

1

); E

2

k

2

(m

2

)) ;

where all values stand in their respetive sets. Then

Lemma 1. If E

1

is (�; �

1

)-IND and E

2

is (�; �

2

)-IND then E is (�; �

1

+ �

2

)-IND.

Proof. A proof of that fat will appear in the �nal version of this paper.

Note that [1℄ and [2℄ provide similar results for asymmetri enryption shemes.

By immediate indution of lemma 1, we get that if E

i

is (�; �

i

)-IND for i 2 h1; ni,

then E =

Q

i

E

i

is (�;

P

i

�

i

)-IND. In partiular, if E is (�; �)-IND, then (E)

n

is

(�; n�)-IND.

B Seurity analysis of GEM-1

B.1 Desription of the redution algorithm

B is given an enryption y = E

pk

( ew; �), an oraleO

pa

whih heks plaintexts for

E

pk

, and an adversary A = (A

1

;A

2

) that breaks the IND-CCA2 seurity of E

1

pk

.

The goal of the redution B is to retrieve the total knowledge of ew. Eah time

the redution B needs to hek whether a plaintext-iphertext orrespondane

holds between y and w (whih we denote y = E

pk

(w; �)), the query (y; w) is

impliitly sent to O

pa

whih returns a boolean value. Wlog, we assume that

O

pa

responds to any of B's requests with no error and within a time bound

�

pa

.



Overview of B. B runs A

1

and provides a simulation for H

i

with i 2 h1; n

max

i,

F and D

1

sk

as desribed later (�nd stage). A

1

outputs a pair of message sequenes

(m

0

;m

1

) of idential bloklength n � n

max

after a ertain time. B then randomly

hooses b 2 f0; 1g and proeeds to the following operations:

{ if there exists (w; y) 7! k

1

2 Hist [H

1

℄ with y = E

pk

(w; �) then ew := w and

e

k

1

:= k

1

(event E

1

) otherwise

e

k

1

is set to a random value,

{ for i 2 h2; ni, if there exists (

e

k

i�1

;m

b

i

; w) 7! k

i

2 Hist [H

i

℄ with y =

E

pk

(w; �) then ew := w and

e

k

i

:= k

i

(event E

i

); otherwise

e

k

i

is set to a

random value,

{ if there exists (

e

k

n

;m

b

n

; w) 7! t

2

2 Hist [F℄ with y = E

pk

(w; �) then ew := w

and

e

t

2

:= t

2

(event E

F

); otherwise

e

t

2

is set to a random value.

B then omputes e

i

= E

e

k

i

(m

b

i

) for i 2 h1; ni and builds

e = (y;e

1

; : : : ;e

n

;

e

t

2

) :

This hallenge is given to A

2

whih outputs some bit after another ertain time

(guess stage). One �nished, B will atually hek whether some value ew was de-

�ned during the game. If so, ew is returned as the inversion of E

pk

on y. Otherwise,

the hallenge y is simply rejeted i.e. B sets ew := ? and stops. The simulation

of random orales as well as the simulation of the deryption orale D

1

sk

are de-

tailed hereafter. Wlog, we assume that all simulated orales keep traks of their

past queries throughout the game so that, if a query has been presented before

and responded with some reorded output, then the same output is returned. In

the sequel, all probabilities are taken over the random hoies of A and B if not

otherwise mentioned.

Simulation of H

1

. For eah new query (w; t

1

),

(event E

0

1

) if t

1

= y and y = E

pk

(w; �) then H

1

sets ew := w, returns

e

k

1

and

updates its history,

(event E

00

1

) else if y = E

pk

(w; �) then H

1

sets ew := w, outputs a random value

and updates its history,

(no event) else H

1

outputs a random value and updates its history.

Simulation of H

i

for i 2 h2; ni. For eah new query (k;m;w),

(event E

0

i

) if proessing guess stage and k =

e

k

i�1

, m = m

b

i�1

and y = E

pk

(w; �)

then H

i

sets ew := w, returns

e

k

i

and updates its history,

(event E

00

i

) else if y = E

pk

(w; �) then H

i

sets ew := w, outputs a random value

and updates its history,

(no event) else H

i

outputs a random value and updates its history.



Simulation of H

i

for i 2 hn+ 1; n

max

i. For eah new query (k;m;w),

(event E

i

) if y = E

pk

(w; �) then H

i

sets ew := w, outputs a random value and

updates its history,

(no event) else H

i

outputs a random value and updates its history.

Simulation of F. For eah new query (k;m;w),

(event E

0

F

) if proessing guess stage and k =

e

k

n

, m = m

b

n

and y = E

pk

(w; �)

then F sets ew := w, returns

e

t

2

and updates its history,

(event E

00

F

) else if y = E

pk

(w; �) then F sets ew := w, outputs a random value

and updates its history,

(no event) else F outputs a random value and updates its history.

Simulation of D

1

sk

(plaintext extrator). For eah new query (t

1

; 

1

; : : : ; 

d

; t

2

),

D

1

sk

�rst heks (this veri�ation step only stands while the guess phase A

2

is

running) that (t

1

; 

1

; : : : ; 

d

; t

2

) 6= (y;e

1

; : : : ;e

n

;

e

t

2

) sine if this equality holds,

the query must be rejeted as A attempts to derypt its own hallenge ipher-

text. Then, D

1

sk

tries to �nd the only (if any) message sequene (m

1

; : : : ;m

d

)

mathing the query. To ahieve this, D

1

sk

invokes the simulations of the random

orales provided by B as follows:

{ searh for the unique w 2 Hist [H

1

℄ [ : : : [ Hist [H

d

℄ [ Hist [F℄ suh that

t

1

= E

pk

(w; �). If suh a w exists,

� query H

1

to get k

1

= H

1

(w; t

1

),

� letting m

1

= D

k

1

(

1

), query H

2

to get k

2

= H

2

(k

1

;m

1

; w),

� letting m

2

= D

k

2

(

2

), query H

3

to get k

3

= H

3

(k

2

;m

2

; w),

.

.

.

� letting m

d�1

= D

k

d�1

(

d�1

), query H

d

to get k

d

= H

d

(k

d�1

;m

d�1

; w),

� letting m

d

= D

k

d

(

d

), query F to hek if F(k

d

;m

d

; w) = t

2

. If the equal-

ity holds, return (m

1

; : : : ;m

d

); otherwise rejet the query (event RJ

1

).

{ if the searh for w is unsuessful, rejet the query (event RJ

2

).

B.2 Soundness of B

Simulation of random orales.

Soundness of H

1

. The simulation is perfet.

Soundness of H

i

for i 2 h2; ni. The simulation is perfet.

Soundness of H

i

for i 2 hn+ 1; n

max

i. The simulation is perfet.



Soundness of F. The simulation is perfet.

Plaintext extration. The simulation of D

1

sk

fails when ? is returned although

the query  = (t

1

; 

1

; : : : ; 

d

; t

2

) is a valid iphertext. Let w and m

i

; k

i

for i 2

h1; di denote the unique random variables assoiated to  in this ase. Further

de�ne

H

d

=

[

i2h1;di

Hist [H

i

℄ [Hist [F℄ :

Obviously,  was rejeted through event RJ

2

, beause a rejetion through RJ

1

refutes the validity of . Therefore, if D

1

sk

is inorret for , we must have

(D

1

sk

inorret for ) ^ ( valid) ) w 62 H

d

:

We now deompose the failure event into several disjoint ases overing all pos-

sible situations.

Assume (k

d

6=

e

k

n

) _ (m

d

6= m

b

n

) _ (w 6= ew). Sine w 62 Hist [F℄ � H

d

,

F(k

d

;m

d

; w) is a uniformly distributed random value unknown to A. The fat

that  is a valid iphertext implies that F(k

d

;m

d

; w) = t

2

, whih happens with

probability

Pr

F

[F(k

d

;m

d

; w) = t

2

℄ =

1

℄ t

2

:

Assume (k

d

;m

d

; w) = (

e

k

n

;m

b

n

; ew) and d > n. Sine w 62 Hist [H

d

℄ � H

d

,

H

d

(k

d�1

;m

d�1

; w) is a uniformly distributed random value unknown to A. The

fat that  is a valid iphertext implies that H

d

(k

d�1

;m

d�1

; w) = k

d

=

e

k

n

, whih

happens with probability

Pr

H

d

h

H

d

(k

d�1

;m

d�1

; w) =

e

k

n

i

=

1

℄ k

:

Assume w = ew, d < n and (k

i

;m

i

) = (

e

k

n�d+i

;m

b

n�d+i

) for i 2 h1; di. If

t

1

= y, we must have

e

k

n�d+1

= k

1

= H

1

(w; t

1

) = H

1

( ew; y) =

e

k

1

and this only

happens with probability

Pr

e

k

1

;

e

k

n�d+1

h

e

k

1

=

e

k

n�d+1

i

=

1

℄ k

:

Now suppose t

1

6= y. This imposes H

1

(w; t

1

) =

e

k

n�d+1

. Beause w = ew was

never queried to H

1

, this situation ours with probability

Pr

H

1

h

H

1

(w; t

1

) =

e

k

n�d+1

i

=

1

℄ k

:



Assume w = ew, d = n and (k

i

;m

i

) = (

e

k

i

;m

b

i

) for i 2 h1; ni. Obviously t

1

6= y,

sine otherwise  = e. Now we must have

e

k

1

= k

1

= H

1

(w; t

1

) = H

1

( ew; t

1

), whih

happens with probability

Pr

H

1

h

H

1

( ew; t

1

) =

e

k

1

i

=

1

℄ k

:

Assume w = ew, d � n and (k

i

;m

i

) 6= (

e

k

n�d+i

;m

b

n�d+i

) for some i 2 h1; d�1i.

Let us onsider H

j+1

where j = max

i�d�1

f(k

i

;m

i

) 6= (

e

k

n�d+i

;m

b

n�d+i

)g. We

have k

j+1

= H

j+1

(k

j

;m

j

; w) =

e

k

n�d+j+1

, whih, beause w was never asked to

H

j+1

, ours with probability

Pr

H

j+1

h

H

j+1

(k

j

;m

j

; w) =

e

k

n�d+j+1

i

=

1

℄ k

:

Conlusion. Gathering all preeding bounds, we get

Pr

�

 is valid ^ D

1

sk

inorret for 

�

�

1

℄ t

2

+

4

℄ k

+

X

j<d�n

1

℄ k

�

1

℄ t

2

+

n+ 3

℄ k

;

whih, taken over all queries of A

2

, leads to

Pr

�

D

1

sk

inorret

�

� q

D

1

sk

�

1

℄ t

2

+

n+ 3

℄ k

�

:

We further de�ne

:

Pr [�℄ = Pr

�

� j :(D

1

sk

inorret)

�

.

B.3 Redution ost

Suess probability. Let us suppose that A distinguishes E

1

pk

within a time

bound � with advantage " in less than q

F

, q

H

=

P

i2h1;n

max

i

q

H

i

, q

D

1

sk

orale alls.

This means that

:

Pr [A = b℄ �

1

2

+

"

2

:

Suppose also that E

k

is (�; �)-indistinguishable. Assuming that the plaintext

extrator is orretly simulated, if none of the events E

i

, E

0

i

, E

00

i

or E

F

ours,

then A never asked ew to any of the random orales and so ould not learn any

information whatsoever about the keys

e

k

i

under whih the m

b

i

were enrypted in

e due to the randomness of the H

i

. By virtue of lemma 1, this upper-limits the

information leakage on b by n�, sine A's running time is bounded by � . Noting

E

win

= E

F

W

i2h1;n

max

i

E

i

W

i2h1;ni

E

0

i

_ E

00

i

, this means

:

Pr [A = b j :E

win

℄ �

1

2

+

n�

2

:



We then get

1

2

+

"

2

�

:

Pr [A = b℄ �

:

Pr [A = b j :E

win

℄ +

:

Pr [E

win

℄ �

1

2

+

n�

2

+

:

Pr [E

win

℄ ;

wherefrom

:

Pr [E

win

℄ � ("� n�)=2. But

:

Pr [B = ew℄ =

:

Pr [E

win

℄ and �nally,

Pr [B = ew℄ �

:

Pr [B = ew℄� Pr

�

D

1

sk

inorret

�

�

"� n�

2

� q

D

1

sk

�

1

℄ t

2

+

n+ 3

℄ k

�

:

Sine the bloklength n of the message sequenes (m

0

;m

1

) output by A

1

annot

exeed n

max

, B inverts E

pk

on y with probability greater than

"

2

� q

D

1

sk

�

1

℄ t

2

+

3

℄ k

�

� n

max

�

�

2

+

q

D

1

sk

℄ k

�

;

i.e. sueeds with non-negligible probability.

Total number of alls to O

pa

. Eah simulated orale H

i

(resp. F) makes

at most q

H

i

(resp. q

F

) queries to the plaintext-heking orale. Note that the

queries required by D

1

sk

were already asked to O

pa

by either F or one of the H

i

.

By keeping traks of all queries to O

pa

, it is easy to see that the total number

of alls atually needed by B is upper-bounded by

q

O

pa

� q

F

+ q

H

where q

H

=

X

i2h1;n

max

i

q

H

i

:

Total running time. The redution algorithm runs in time bounded by

�

B

= � + (q

D

1

sk

+ 1) (q

F

+ q

H

) � (�

pa

+O(1)) :

C Seurity Analysis of GEM-2

C.1 Desription of the redution algorithm

B is given an enryption y = E

pk

( ew) and an adversary A = (A

1

;A

2

) that breaks

the IND-CCA2 seurity of E

2

pk

. The goal of the redution B is to retrieve the total

knowledge of ew.



Overview of B. B runs A

1

and provides a simulation for G

i

with i 2 h1; n

max

i,

F, H and D

2

sk

as desribed later (�nd stage). A

1

outputs a pair of message

sequenes (m

0

;m

1

) of idential bloklength n � n

max

after a ertain time. B

then hooses b 2 f0; 1g,

e

k

1

, . . . ,

e

k

n

uniformly at random, omputes e

i

= E

e

k

i

(m

b

i

)

for i 2 h1; ni and builds

e = (e

1

; : : : ;e

n

; y) :

This hallenge is given to A

2

whih outputs some bit after another ertain time

(guess stage). One �nished, B will atually hek whether some value ew was de-

�ned during the game. If so, ew is returned as the inversion of E

pk

on y. Otherwise,

the hallenge y is simply rejeted i.e. B sets ew := ? and stops. The simulation

of random orales as well as the simulation of the deryption orale D

2

sk

are de-

tailed hereafter. Wlog, we assume that all simulated orales keep traks of their

past queries throughout the game so that, if a query has been presented before

and responded with some reorded output, then the same output is returned. In

the sequel, all probabilities are taken over the random hoies of A and B if not

otherwise mentioned.

Simulation of G

1

. For eah new query r,

(event E

1

) if proessing guess stage and there exists s 7! h 2 Hist [H℄ suh

that y = E

pk

(skr� h) then G

1

sets ew := skr�h, returns

e

k

1

and updates its

history,

(event E

0

1

) else if there exists s 7! h 2 Hist [H℄ suh that y = E

pk

(skr � h)

then G

1

sets ew := skr� h, outputs a random value and updates its history,

(no event) else G

1

outputs a random value and updates its history.

Simulation of G

i

for i 2 h2; ni. For eah new query (k;m; r),

(event E

i

) if proessing guess stage and k =

e

k

i

, m = m

b

i�1

and there exists

s 7! h 2 Hist [H℄ suh that y = E

pk

(skr � h) then G

i

sets ew := skr � h,

returns

e

k

i

and updates its history,

(event E

0

i

) else if there exists s 7! h 2 Hist [H℄ suh that y = E

pk

(skr�h) then

G

i

sets ew := skr � h, outputs a random value and updates its history,

(no event) else G

i

outputs a random value and updates its history.

Simulation of G

i

for i 2 hn+ 1; n

max

i. For eah new query (k;m; r),

(event E

i

) if there exists s 7! h 2 Hist [H℄ suh that y = E

pk

(skr� h) then G

i

sets ew := skr � h, outputs a random value and updates its history,

(no event) else G

i

outputs a random value and updates its history.



Simulation of F. For eah new query (k;m; r),

(event E

F

) if proessing guess stage and k =

e

k

n

, m = m

b

n

and there exists

s 7! h 2 Hist [H℄ suh that y = E

pk

(skr � h) then F sets ew := skr � h,

returns s and updates its history,

(event E

0

F

) if there exists s 7! h 2 Hist [H℄ suh that y = E

pk

(skr � h) then F

sets ew := skr � h, outputs a random value and updates its history,

(no event) else F outputs a random value and updates its history.

Simulation of H. For eah new query s, H outputs a random value and updates

its history.

Simulation of D

2

sk

(plaintext extrator). For eah new query (

1

; : : : ; 

d

; t),

D

2

sk

�rst heks (this veri�ation step only stands while the guess stage A

2

is

running) that (

1

; : : : ; 

d

; t) 6= ( e

1

; : : : ; e

n

; y) sine if this equality holds, the query

must be rejeted as A attempts to derypt its own hallenge iphertext. Then,

D

2

sk

attempts to �nd the only (if any) message sequene (m

1

; : : : ;m

d

) mathing

the query. To ahieve this, D

2

sk

invokes the simulations of the random orales

provided by B as follows:

{ searh for the unique pair (r; s) suh that r 2 Hist [G

1

℄ [ : : : [Hist [G

d

℄ [

Hist [F℄, s 7! h 2 Hist [H℄ and t = E

pk

(skr � h). If suh a pair exists,

� query G

1

to get k

1

= G

1

(r),

� letting m

1

= D

k

1

(

1

), query G

2

to get k

2

= G

2

(k

1

;m

1

; r),

� letting m

2

= D

k

2

(

2

), query G

3

to get k

3

= H

3

(k

2

;m

2

; r),

.

.

.

� letting m

d�1

= D

k

d�1

(

d�1

), query G

d

to get k

d

= G

d

(k

d�1

;m

d�1

; r),

� letting m

d

= D

k

d

(

d

), query F to hek if F(k

d

;m

d

; r) = s. If the equality

holds, return (m

1

; : : : ;m

d

); otherwise rejet the query (event RJ

1

).

{ if the searh for (r; s) is unsuessful, rejet the query (event RJ

2

).

C.2 Soundness of B

Simulation of random orales. The plaintext ew uniquely de�nes es and ev

suh that ew = eskev. We note er the random variable ev �H(es). We denote by

{ E

es

the event that A queries es to the orale H,

{ E

G

1

the event that A queries er to G

1

,

{ for i 2 h2; ni, E

G

i

the event that A queries (

e

k

i�1

;m

b

i�1

; er) to G

i

,

{ E

F

the event that A queries (

e

k

n

;m

b

n

; er) to F,

{ E

er

the event that A queries er to any of the orales F, G

i

i.e. E

F

_E

G

1

_ : : :_

E

G

n

.



Soundness of G

i

for i 2 h1; ni. The simulation of G

i

fails when (

e

k

i�1

;m

b

i�1

; er),

or er in the ase of G

1

, is queried and answered with some value k

i

6=

e

k

i

before

es appears in Hist [H℄. More preisely, the simulation is perfet if and only if

the prediate (�;E

es

E E

G

i

) is ful�lled, whih yields (G

i

inorret), :(�;E

es

E

E

G

i

).

Soundness of G

i

for i 2 hn+ 1; n

max

i. The simulation is perfet.

Soundness of F. The simulation of F fails when (

e

k

n

;m

b

n

; er) is queried and an-

swered with some value s 6= es before es appears in Hist [H℄. Here, the simulation

runs perfetly if and only if �;E

es

E E

F

. Hene, (F inorret), :(�;E

es

E E

F

).

Soundness of H. The simulation is perfet.

Conlusion. Gathering preeding results, using :(E

1

E E

2

) = (:E

1

^ E

2

) _

(E

2

C E

1

) and reorganizing in disjoint events, one gets

inorret orale , _

i�n

:(�;E

es

E E

G

i

) _ :(�;E

es

E E

F

)

, :(�;E

es

E (_

i2h1;ni

E

G

i

_ E

F

))

, :(�;E

es

E E

er

)

, (� E E

er

) ^ :(E

es

E E

er

) _ (E

er

C �) ;

wherefrom

Pr [inorret orale℄ = Pr [(� E E

er

) ^ :(E

es

E E

er

)℄ + Pr [E

er

C �℄

� Pr [� E E

er

j :(E

es

E E

er

)℄ + Pr [E

er

C �℄ :

Sine A

1

does not have aess to y and beause y has a uniform distribution, er

is a uniformly distributed random variable throughout the �nd stage. Hene

Pr [E

er

C �℄ �

q

1

F

+

P

i�n

q

1

G

i

℄ r

;

where q

1

O

is the number of alls to orales O 2 fG

1

; : : : ;G

n

;Fg that A

1

made

during the �nd stage. Now, throughout the guess stage, A

2

annot gain any

information about er = ev�H(es) without knowing H(es) i.e. without submitting es

to H. Hene,

Pr [� E E

er

j :(E

es

E E

er

)℄ �

q

2

F

+

P

i�n

q

2

G

i

℄ r

:

Finally, the probability that an error ours while B simulates the orales F,

G

1

; : : : ;G

n

is upper-bounded by

Pr [inorret orale℄ �

q

F

+

P

i�n

q

G

i

℄ r

:

We further de�ne

:

Pr [�℄ = Pr [� j :(inorret orale)℄.



Plaintext extration. Assume that all random orales are perfetly simulated

throughout the game. The simulation of D

2

sk

fails when ? is returned although

the query  = (

1

; : : : ; 

d

; t) is a valid iphertext. Let r, s, v and m

i

; k

i

for

i 2 h1; di denote the unique random variables assoiated to  in this ase. Further

de�ne

G

d

=

[

i2h1;di

Hist [G

i

℄ [Hist [F℄ :

Obviously,  was rejeted through event RJ

2

, beause a rejetion through RJ

1

refutes the validity of . Therefore, if D

2

sk

is inorret for , we must have

(D

2

sk

inorret for ) ^ ( valid) ) r 62 G

d

_ s 62 Hist [H℄ :

We now deompose the failure event into several disjoint ases overing all pos-

sible situations.

Assume (k

d

;m

d

; r) 6= (

e

k

n

;m

b

n

; er) and r 62 G

d

. Sine r 62 Hist [F℄ � H

d

,

F(k

d

;m

d

; r) is a uniformly distributed random value unknown to A. The fat

that  is a valid iphertext implies that F(k

d

;m

d

; r) = s, whih happens with

probability

:

Pr

F

[F(k

d

;m

d

; r) = s℄ =

1

℄ s

:

Assume (k

d

;m

d

; r) 6= (

e

k

n

;m

b

n

; er) and r 2 Hist [F℄ ^ s 62 Hist [H℄. Suppose

that s 6= es. Sine s 62 Hist [H℄, H(s) is a uniformly distributed random value

unknown to A. The validity of  implies that (k

d

;m

d

; v �H(s)) 7! s 2 Hist [F℄,

whih happens with probability

:

Pr

H

[(k

d

;m

d

; v �H(s)) 7! s 2 Hist [F℄℄ �

q

F

℄ r

:

Now assume s = es. In this ase, we must have (k

d

;m

d

; r) 7! es 2 Hist [F℄ whih

ours with probability

:

Pr

F

[(k

d

;m

d

; r) 7! es 2 Hist [F℄℄ �

q

F

℄ s

:

Assume (k

d

;m

d

; r) = (

e

k

n

;m

b

n

; er) and s 6= es. This is absurd sine s = F(k

d

;m

d

; r) =

F(

e

k

n

;m

b

n

; er) = es.

Assume (k

d

;m

d

; r; s) = (

e

k

n

;m

b

n

; er; es) and es 62 Hist [H℄. Sine  is a valid

iphertext, we must have r = v � H(s) i.e. H(es) = er � v. Beause es was never

given to H, this happens with probability

:

Pr

H

[H(es) = er � v℄ =

1

℄ r

:

From now on, we suppose that r = er, s = es, es 7! er�ev 2 Hist [H℄ (so that t = y)

and er 62 G

d

.



Assume (k

d

;m

d

) = (

e

k

n

;m

b

n

) and d > n. Sine r 62 Hist [G

d

℄, G

d

(k

d�1

;m

d�1

; r)

is a uniformly distributed random value unknown to A. The fat that  is a

valid iphertext implies that G

d

(k

d�1

;m

d�1

; r) = k

d

=

e

k

n

, whih happens with

probability

:

Pr

G

d

h

G

d

(k

d�1

;m

d�1

; r) =

e

k

n

i

=

1

℄ k

:

Assume d � n and (k

i

;m

i

) = (

e

k

n�d+i

;m

b

n�d+i

) for i 2 h1; di. The ase d = n

leads to the absurd equality  = e. Suppose d < n. Considering G

1

, we must

have

e

k

n�d+1

= k

1

= H

1

(r) = H

1

(er) =

e

k

1

and this only happens with probability

:

Pr

e

k

1

;

e

k

n�d+1

h

e

k

1

=

e

k

n�d+1

i

=

1

℄ k

:

Assume d � n and (k

i

;m

i

) 6= (

e

k

n�d+i

;m

b

n�d+i

) for some i 2 h1; d� 1i. Let

us onsider G

j+1

where j = max

i�d�1

f(k

i

;m

i

) 6= (

e

k

n�d+i

;m

b

n�d+i

)g. We have

k

j+1

= G

j+1

(k

j

;m

j

; er) =

e

k

n�d+j+1

, whih, beause er was never asked to H

j+1

,

ours with probability

:

Pr

G

j+1

h

G

j+1

(k

j

;m

j

; er) =

e

k

n�d+j+1

i

=

1

℄ k

:

Conlusion. Gathering all preeding bounds, we get

:

Pr

�

 is valid ^ D

2

sk

inorret for 

�

� (q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

+

1

℄ k

+

X

j<d�n

1

℄ k

� (q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

+

n+ 1

℄ k

;

whih, taken over all queries of A

2

, leads to

Pr

�

D

2

sk

inorret

�

� q

D

2

sk

�

(q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

+

n+ 1

℄ k

�

:

We have

Pr [B inorret℄ = Pr [inorret orale℄ + Pr

�

D

2

sk

inorret ^ :(inorret orale)

�

� Pr [inorret orale℄ + Pr

�

D

2

sk

inorret j :(inorret orale)

�

�

q

F

+

P

i

q

G

i

℄ r

+ q

D

2

sk

�

(q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

+

n+ 1

℄ k

�

:

We further de�ne

::

Pr [�℄ = Pr [� j :(B inorret)℄.



C.3 Redution ost

Suess probability. Let us suppose that A distinguishes E

2

pk

within a time

bound � with advantage " in less than q

F

, q

H

, q

G

=

P

i2h1;n

max

i

q

G

i

, q

D

2

sk

orale

alls. This means that

::

Pr [A = b℄ �

1

2

+

"

2

:

Suppose also that E

k

is (�; �)-indistinguishable. Assuming that the random or-

ales and the plaintext extrator are perfetly simulated, if none of the events

E

i

, E

0

i

or E

F

ours, then A never asked er to any of the random orales and so

ould not learn any information whatsoever about the keys

e

k

i

under whih the

m

b

i

were enrypted in e due to the randomness of the G

i

. By virtue of lemma 1,

this upper-limits the information leakage on b by n�, sine A's running time is

bounded by � . Noting E

win

= E

F

W

i2h1;n

max

i

E

i

W

i2h1;ni

E

0

i

, this means

::

Pr [A = b j :E

win

℄ �

1

2

+

n�

2

:

We then get

1

2

+

"

2

�

::

Pr [A = b℄ �

::

Pr [A = b j :E

win

℄ +

::

Pr [E

win

℄ �

1

2

+

n�

2

+

::

Pr [E

win

℄ ;

wherefrom

::

Pr [E

win

℄ � ("� n�)=2. But

::

Pr [B = ew℄ =

::

Pr [E

win

℄ and �nally,

Pr [B = ew℄ �

::

Pr [B = ew℄� Pr

�

D

2

sk

inorret

�

�

"� n�

2

�

q

F

+

P

i

q

G

i

℄ r

� q

D

2

sk

�

(q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

+

n+ 1

℄ k

�

:

Sine the bloklength n of the message sequenes (m

0

;m

1

) output by A

1

annot

exeed n

max

, B inverts E

pk

on y with probability greater than

"

2

�

q

F

+ q

G

℄ r

� q

D

2

sk

(q

F

+ 1)

�

1

℄ s

+

1

℄ r

�

�

q

D

2

sk

℄ k

� n

max

�

�

2

+

q

D

2

sk

℄ k

�

;

i.e. sueeds with non-negligible probability.

Total running time. The redution algorithm runs in time bounded by

�

B

= � + (q

D

2

sk

+ 1) (q

F

+ q

G

) q

H

� (�

E

+O(1)) ;

where �

E

denotes the maximum time needed by E

pk

for a single enryption.


